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We present a coverage-guided testing algorithm for distributed systems implementations. Our main innovation
is the use of an abstract formal model of the system that is used to define coverage. Such abstract models
are frequently developed in the early phases of protocol design and verification but are infrequently used at
testing time. We show that guiding random test generation using model coverage can be effective in covering
interesting points in the implementation state space. We have implemented a fuzzer for distributed system
implementations and abstract models written in TLA+. Our algorithm achieves better coverage over purely
random exploration as well as random exploration guided by different notions of scheduler coverage and
mutation. In particular, we show consistently higher coverage on implementations of distributed consensus
protocols such as Two-Phase Commit and the Raft implementations in Etcd-raft and RedisRaft and detect
bugs faster. Moreover, we discovered 12 previously unknown bugs in their implementations, four of which
could only be detected by model-guided fuzzing.
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1 Introduction

Large-scale distributed systems form the core infrastructure for many software applications. It is
well-known that designing such systems is difficult and error-prone due to the interaction between
concurrency and faults, and subtle bugs often show up in production. Thus, designing testing
techniques that cover diverse and interesting program behaviors to find subtle bugs has been an
important research challenge.

Coverage-guided fuzzing, which guides test generation toward more coverage, has been effective
in exploring diverse executions, mainly in the sequential setting, using structural coverage criteria as
a feedback mechanism [32, 75]. However, adopting coverage-guided fuzzing for testing distributed
system implementations is nontrivial since there is no common notion of coverage for distributed
system executions. Unfortunately, structural code coverage criteria such as line coverage can ignore
the orderings of message interactions in a system, thus missing interesting schedules. On the other
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hand, more detailed criteria, such as traces of messages, may provide too many coverage goals and
thus consider each random trace a new behavior, giving up the advantages of coverage-guided
exploration.

In this paper, we propose to use state coverage in an abstract formal model of the system as a
coverage criterion and present model-guided fuzzing of distributed systems. Abstract formal models
are often developed in the design phase of distributed systems to model and formally analyze the
underlying protocols [11, 16, 17, 19, 39, 53]. We show that these artifacts are also beneficial in the
continuous testing infrastructure of the implementations themselves. Our experiments show that a
formal model can serve as a good “guide” for a random testing engine—this is because the formal
model often captures the important scenarios of the protocol, and coverage of states in the model
correlates well with coverage of interesting behaviors in the implementation.

Our motivation for using abstract model guidance to generate test executions shares common
insights with semantic fuzzing [55] and grammar-based fuzzing approaches [30, 40] used for testing
sequential programs. Semantic fuzzing aims to cover interesting program executions processing
program inputs rather than spending exploration budget for exercising uninteresting, syntactic
input parsing logic. While a naive fuzzer is likely to generate inputs that cannot pass the input
validation and parsing stage, semantic fuzzing generates test inputs that can go deep into the
execution. Similarly, a naive event scheduler for distributed systems is likely to produce tests
that spend execution budget in exercising uninteresting, network setup stages. For example, it
can explore many different orderings of vote messages during the cluster’s leader election phase,
barely electing a leader after a prolonged execution. Our approach aims to direct testing toward
interesting system behaviors, e.g., processing of user requests once a leader is elected. Similar to
grammar-based fuzzing that uses formal specification of the test input to guide test generation,
we use an abstract formal model of distributed systems to guide the generation of semantically
interesting temporal event schedules.

At a high level, the abstract models recognize semantically interesting behavior; the use of
abstract states is a way to provide coverage criteria that capture program semantics. Of course, the
use of abstract models is not a panacea: the abstraction may not cover certain implementation details
where bugs may lurk. However, lack of structural coverage after model-guided exploration can
indicate where additional testing effort should focus, as well as point out aspects of implementation
behavior that are not covered by the model.

We have implemented our algorithm for testing distributed systems implementations using
TLA+ models [39] of protocols. In a nutshell, our testing algorithm proceeds as follows. We start
by exploring random schedules of messages, but feed the same sequence of messages to the
TLA+ model. We use the TLC model checker [72] to generate the set of reachable model states
corresponding to the explored schedule. We mark a schedule as “interesting” if it covers a new
state of the abstract model. We perform, as in coverage-guided fuzzing, a mutation of an interesting
schedule by swapping the receipt order of two randomly chosen messages or changing the processes
to crash. Applying a mutation to an event schedule gives a new schedule to explore that is similar
to the original schedule but likely to exercise new system behavior.

We applied our algorithm to test an implementation of the Two-Phase Commit protocol and two
industrial implementations of Raft in Etcd-raft and RedisRaft. Our evaluation shows that model-
guided fuzzing leads to higher coverage and can detect bugs faster than pure (unguided) random
testing, structural code-coverage guided fuzzing, and trace-based coverage-guided fuzzing. Besides
reproducing known bugs, we discovered 12 previously unknown bugs in the implementations of
Etcd-raft and RedisRaft. More importantly, four of the new bugs could only be detected by our
model-guided fuzzing approach.
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Overall, we make the following contributions:

(1) We propose using abstract models of the systems to guide the testing of system implementa-
tions and present ModelFuzz, a model-guided fuzzing approach for distributed systems.

(2) We implement ModelFuzz for testing the two production implementations of the Two-Phase
Commit and Raft protocols and evaluate it compared to the existing approaches.

(3) We discovered 12 unknown bugs in total in the implementations of Etcd-raft and RedisRaft.

2 Overview

In this section, we motivate and overview the use of state coverage in an abstract system model
to guide test generation on an example distributed system. First, we describe the example system
with a concurrency bug in its implementation. Then, we motivate coverage-guided testing to detect
such bugs more effectively. Finally, we show that model-guided coverage provides more useful
information in guiding test generation than other coverage notions.

An example distributed system. Figure la presents an example system implemented in a Coyote-
like actor programming framework [1, 17]. The system consists of three processes AppMaster, Worker,
and Terminator. Each runs in a separate process and communicates with each other by exchanging
asynchronous messages. AppMaster receives client requests, coordinates their execution by a Worker
process, and manages the termination of the worker using a Terminator process. It accepts the
registration messages from Worker and Terminator and registers them (lines 5-11). Upon receipt of a
client request Request (r), it checks whether the cluster is ready by checking the registrations of the
worker and terminator. If it is ready, it sends Execute(r) to Worker to handle the request and sends
Terminate(w) to Terminator (lines 13-17). The Worker and Terminator register to the AppMaster upon
their initialization (lines 26, 39). The Worker handles Execute(r) by processing it (line 30) and Flush
by cleaning up its buffers (line 34). The Terminator handles Terminate by sending Flush to the
worker (line 42).

The above implementation has a message race bug [42], which occurs in a particular delivery
ordering of the asynchronous messages. The worker code mistakenly omits to check if the buffer
is null before processing a task (line 31). This causes the worker to access a null pointer while
processing the client request if Flush is delivered to it before Execute(r). Figures 1b and 1c illustrate
a correct and an incorrect execution of the implementation.

Although the bug seems simple, it is hard to discover such bugs using naive random testing.
Manifesting the bug requires reaching a system state that allows the system to produce interesting
executions. In our example, the processes must register themselves to the AppMaster before the
system serves client requests. Thus, pure random testing can be ineffective at exposing distributed
system bugs since the generated test cases can get stuck in uninteresting parts of the execution
space or explore redundant executions.

Coverage-guided testing. Coverage-guided techniques guide the generation of test executions
toward unexplored system behaviors to increase test coverage and search for bugs more efficiently.
These methods track the coverage of each test execution and use this information while generating
new test cases. However, structural test coverage metrics, such as line or branch coverage, are
ineffective for assessing the coverage of distributed system executions since they do not capture the
concurrency behavior of the distributed systems. For example, both correct and buggy executions
in Figures 1b and 1c hit exactly the same lines and branches of the program in Figure 1a but with
different processing orders of the messages.

Model coverage. Instead, we propose to use an abstract, formal, model of the system (e.g., its
TLA+ model [39]) to assess test coverage and guide the test generation.
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1 class AppMaster: StateMachine {
2 StateMachine worker;

Ege Berkay Gulcan, Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Srinidhi Nagendra

23 class Worker: StateMachine {
24 Buffer buffer;

3 StateMachine terminator; 25

4 26 def onInit(StateMachine a) = {
5 def onRegister(Register r) = { 27 initBuffer(buffer);

6 StateMachine m = r.stateMachine; 28 a.send(Register(this)); }

7 if (m instanceOf Worker) 29

8 worker = m; 30 def onExecute(Request r) = {

9 else if (m instanceOf Terminator) 31 // if (buffer != null)

10 terminator = m; 32 runTask(buffer, r); 3}

11 } 33

12 34 def onFlush() = { buffer = null; }
13 def onRequest(Request r) = { 35 %

14 if (isReady()) { 36

15 worker.send(Execute(r)); 37 class Terminator: StateMachine {
16 terminator.send(Terminate(worker)); 38

17 3 39 def onInit(StateMachine a) = {
18 40 a.send(Register(this));}

19 def isReady(): Boolean = { 41

20 return worker != null 42 def onTerminate(Worker w) = {
21 && terminator != null; } 43 w.send(Flush); }

2 3 a4}

(a) An example system with three processes AppMaster, Worker, and Terminator
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(b) A correct execution
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(c) A buggy execution
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(d) Execution space of the system’s abstract model

Fig. 1. An example distributed system, its two possible executions, and the execution space of the system’s

abstract model.

Figure 1d shows the execution space of the abstract system model. We consider the TLA* model
of the system!, which describes the system’s behavior as a transition system specified by a set
of states and a set of transitions between them. The figure illustrates the possible executions of

Thttps://github.com/burcuku/tlc-controlled-with-benchmarks
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the system, including the system states and transitions, where each transition corresponds to the
delivery of a particular message. A state of the TLA* model of the system is defined by (i) the state
of the AppMaster, which keeps the set of registered processes registered and the set of client requests
to process requests, (ii) the state of the Worker, which keeps the set of completed tasks, completed,
and (iii) the state of the Terminator, which keeps the set of tasks to terminate, toTerminate and
the set of terminated tasks terminated. For simplicity, we denote the state of the system as a
tuple (registered, requests, completed, toTerminate, terminated). The possible actions in the system
are the delivery of the messages Request(r), Register(w), Register(t), Execute(r), Terminate(w), and
Flush, which match the delivery of the messages Request(r), Register(w), Register(t), Execute(r),
Terminate(w), and Flush in the system’s implementation, respectively. As given in Figure 1d, the
execution starts in the initial state (0, 0, @, 0, 0) and updates the system state based on the actions
taken. Our approach assesses the coverage of a set of executions by measuring their state coverage
in the abstract formal model.

We could have alternatively considered trace-based coverage based on the Mazurkiewicz traces
arising out of an execution. Mazurkiewicz traces associate two sequences of messages with the
same Mazurkiewicz trace if they only reorder independent messages, whose reordering does not
affect the system’s behavior. Our state-based notion is coarser than traces while keeping the
essential information about the system’s behavior. For example, although the messages Register (w)
and Register(t) are dependent, their relative ordering does not affect the system state. On the
other hand, the ordering of Request(r) affects the reached system state; the system handles the
request only if it is delivered after the two registration messages. The given system has 10 possible
message orderings with 8 Mazurkiewicz traces (capturing the commutativity of the Execute and
Terminate messages). However, the set of all possible system states can be covered by running
fewer executions, e.g., only 2 executions for this example.

Model-guided testing. Now, we show that guiding the generation of test executions using the
model state coverage directs the exploration toward interesting behaviors more effectively than
with trace-based coverage. This is because model-state based coverage captures the covered set
of program behavior more succinctly than trace-based coverage, which labels each reordering of
dependent events as a new coverage class regardless of the system behavior.

Consider an example where the following set of executions has been explored:

E1 Request(r), Register(w), Register(t)
E2 Register(w), Request(r), Register(t)
E3 Request(r), Register(t), Register(w)
E4 Register(t), Request(r), Register(w)
E5 Register(w), Register(t), Request(r), Execute(r), Terminate(w), Flush
E6 Register(t), Register(w), Request(r), Terminate(w), Execute(r), Flush

Coverage-guided testing selects the executions that hit previously unseen coverage classes,
and it generates new test executions by mutating them. Trace-based coverage would label all
these executions as interesting since each belongs to a different coverage class (i.e., they deliver
Request(r), Register(w), and Register(t) to the same process in a different order). Generating
new tests around all of these executions is likely to result in many redundant runs since many of
them (E1-E4) already demonstrate the same system behavior.

In contrast, state-based coverage identifies the coverage of new states in the executions of E5
and E6, which hit some new system states (marked blue in Figure 1d) that are not observed in
E1-E4. Therefore, state-based coverage-guided testing generates new test cases only around these
executions. A mutation that swaps the order of Execute(r) and Flush in the execution (marked by
the red arrows in the figure) triggers the concurrency bug in the implementation:
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E7 Register(t), Register(w), Request(r), Terminate(w), Flush, Execute(r)

In summary, while naive random testing tends to spend the exploration budget exercising
the reorderings of the first messages in Figure 1d and trace-based coverage guidance promotes
exploration around all unique traces, our model-based coverage-guided testing directs the execution
to the unexplored, interesting executions.

3 Coverage-Guided Fuzzing with Abstract Models

We use coverage-guided fuzzing for exploring distributed system executions and guiding the test
generation using abstract model coverage. Our method is complementary to the traditional fuzzing
methods (e.g., AFL [74]), which explore the space of program inputs, as ModelFuzz explores the
space of event schedules in distributed systems. In this section, we define executions and explain how
we adopt the coverage-guided fuzzing approach for the model-guided exploration of distributed
system executions.

3.1 Executions of Distributed Systems

A distributed system S consists of a set of processes that concurrently operate on their local states
and communicate by exchanging asynchronous messages. The processes are equipped with message
buffers that keep the messages sent to that process, and they process the messages in their buffers
serially. Upon handling a message, a process can update its local state and/or send new messages
to the processes.

Let Procs be the set of processes and Msgs be the set of all messages exchanged in the system.
We represent the delivery of a message msg € Msgs to its receiver process by an event e =
(recv, send, msg) for recv, send € Procs, where recv(e) is the receiver of the message, send(e)
the sender, and msg(e) is the message. Let 3 be the set of all message delivery events. A state s of the
system is s : (Buffer : Procs X Procs +— [Msgs]) where Buffer is a map from a sender-receiver
pair of processes to the list of messages in their message buffers. A transition in the system picks a
buffer buff and executes the first message msg in it, i.e., running an event e = (recv, send, msg).
Executing the message can lead to the creation of messages m; sent to recv, i.e., send may send
new messages to some processes upon processing m. The new state s’ is obtained by removing

m from s(buff) and appending m; to s(Buffer(send, recv)) for each i, and we write s 5 ¢, An
execution of the distributed system is a sequence s, SN S1 SENEENN sp+1 Of states s; and events
e;. In addition to delivering messages, we introduce two other types of events (proc, crash), and
(proc, restart), which respectively correspond to crash or restart events of a process proc. We

call the sequence {eq, . . ., e,) an event schedule.

3.2 Coverage-Guided Fuzzing of Distributed Systems

Algorithm 1 shows the coverage-guided fuzzing algorithm for generating test inputs [8, 75], which
we extended for generating test schedules using coverage-guided fuzzing with abstract models.
The coverage-guided fuzzing algorithm takes the program under test (S) and a set of initial
test cases (Tp) as inputs. It maintains the set of test cases to explore (T) and the total coverage
(totalCoverage) of the executed test cases. After each test execution (line 5), the algorithm checks
if the execution covers new system behavior (line 6). If the test case covers new behavior, it assigns
an energy value to the test case proportional to the new coverage it achieves (line 7) to explore
more around the executions that cover more new behavior. The algorithm generates new test cases
by mutating such executions, adds them to the set of executions to explore (lines 8-9), and updates

2We consider FIFO message queues that preserve the order of messages between the same sender-receiver pairs, as in
distributed system frameworks such as P [19], Coyote [17], or Akka [45].
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Input: A distributed system S

Input: An abstract model of the system M

Input: A map map from system events to model actions
Input: An initial corpus of test cases Ty

Output: The set of explored test cases T

Output: The set of covered abstract states totalCoverage

1 proc coverageGuidedFuzzer(S, M, Ty)

2 T « Ty ; totalCoverage — 0

3 while test budget not exceeded do

4 fort €T do

5 coverage <« executeAndGetCoverage(S, M, t)
6 if coverage N totalCoverage # () then

7 p < assignEnergy(coverage)

8 for 1topdo

9 | T'=mutate(t);T < TUT’

10 totalCoverage < totalCoverage U coverage
11 return T, totalCoverage
12 proc executeAndGetCoverage(S, M, t)
13 events « executeConcreteSystem(S, t)
14 actions «— map(events)
15 states < executeAbstractModel(M, actions)
16 return states

Algorithm 1: Coverage-guided fuzzing using abstract models. The statements that differ from
traditional fuzzers are highlighted in blue.

the total coverage with the newly covered behavior (line 10). It terminates when a test budget (e.g.,
specified by a test duration or number of test cases) returns the explored set of test cases together
with the test coverage.

Our approach adopts coverage-guided fuzzing for the exploration of distributed system executions
by (i) generating event schedules rather than program inputs, (ii) defining mutations on the event
schedules to obtain a new schedule, and (iii) assessing the test coverage based on the coverage
in the abstract system model rather than using traditional code coverage metrics. Along with
the implementation of the system under test S, our algorithm takes an abstract model M of the
system as an additional input, which is used to assess coverage. After running a test schedule on
the concrete system implementation S, it collects the sequence of executed events (line 13) and
maps that sequence of concrete system events into the sequence of abstract model actions (line 14).
The event mapper method map is provided by the developer, which simply maps an event in the
system implementation (e.g., delivery of a message to a process) to an action in the abstract system
model. After mapping the system events to model actions, the algorithm runs these actions on the
systems’ abstract model (line 15). It collects the set of abstract states covered in the system model
and returns that as the coverage information for the test schedule (line 16).

Event schedules as test cases. A test case corresponds to a schedule of distributed system events
(eq, - - ., en), where e; is either (i) the delivery of a message or (ii) crashing a process or (iii) restarting
it. We collect the set of initial test schedules (Ty) by randomly scheduling the events in the executions,
where we select the next event uniformly at random among the set of all enabled events.
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The space of mutations. Mutations are used to extend the search around interesting schedules
that cover new coverage goals. They introduce small changes to an event schedule to produce new
executions that are similar to the original schedule but likely to exercise new behavior. A difficulty
in mutating event schedules is obtaining a feasible schedule after mutating the event order. An
offline shuffle of a sequence is likely to produce an infeasible schedule, e.g., the new schedule may
not contain all the events that appear in the new execution.

We represent event schedules by referring to the events using the processes that run them
rather than directly referring to the delivered messages. We represent a test case as a sequence
of abstract events s = (buffy : ag) ... (buff, : a,) with aq,...,a, € {deliver,crash, restart}.
Event (buff; : deliver) delivers the first message in buff; to its recipient process, (buff; : crash)
crashes the recipient process of buff;, and (buff; : restart) restarts it. The test case does not ex-
plicitly refer to the messages delivered by the deliver action (i.e., with certain sender and content)
but indirectly refers to them using the message buffers whose messages we deliver. Moreover, we
parameterize deliver with the number of messages to deliver, e.g., (buff; : deliver(n)) corre-
sponds to delivering n messages from buff; to the recipient process. The indirect representation of
the messages helps design mutations that result in feasible event schedules while modifying the
order of events. We use the following mutations to generate new schedules:

e SwapBuffers randomly selects two schedule indices i, j in s, and swaps the scheduling order of
buff; and buff;,

e SwapCrashProcesses randomly selects two schedule indices i, j where the recipient of the buff;
is crashed at step i and buff; is crashed at step j, and swaps the positions of the crash events
(for schedules with a single crashing process, it changes the process to crash),

e SwapMaxMessages randomly selects two schedule indices i, j with message delivery events and
swaps g; and gj, i.e., the number of messages to deliver at these positions.

3.3 Notions of Coverage

The main challenge in designing a coverage-guided testing method for exploring distributed system
executions is to decide whether an execution covers interesting behaviors to guide the exploration
around that execution. Unfortunately, existing code coverage metrics, which are designed for
measuring the coverage of sequential programs, or Mazurkiewicz traces, which provide a syntac-
tic definition of equivalent behaviors in concurrent programs, are unsuitable for measuring the
coverage of distributed system executions.

Code coverage metrics. The traditional coverage-guided testing algorithms, such as AFL++, use
code coverage metrics to check whether an execution covers new behaviors. If the execution of
a test input exercises new lines or branches of the program under test, it marks that execution
as interesting and generates more test inputs similar to that input. However, the existing code
coverage notions used for testing sequential programs are not suitable for measuring the coverage
of behaviors of distributed system executions. The same lines or branches of code can be covered
by different orderings of the concurrent events in a system, which may result in a different program
behavior (illustrated in Section 2).

Mazurkiewicz traces. A foundational formalization of a concurrent system’s possible executions
is Mazurkiewicz traces [49]. Traces partition the executions of a concurrent system into a set of
equivalence classes (traces) based on the orderings of the concurrent events in an execution. Traces
are defined on a set of events and an independence relation, where the independent events are
commutative; hence, their order in execution does not affect the program behavior. The executions
belonging to the same trace order the dependent events in the same total order, but they can reorder
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Coverage Guided Fuzzer
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Fig. 2. The workflow of model-guided fuzzing

the independent events. Hence, traces partition the event sequences based on their partial order on
the dependent events.

While traces provide a precise formalization for defining the notion of equivalence of executions,
defining test coverage classes based on traces is too fine-grained, as many different traces may
exhibit the same behavior from the perspective of the protocol (illustrated in Section 2).

Coverage of abstract model states. Our method uses the coverage of states in the system’s abstract
formal model (e.g., written in TLA+ [39]) to assess the coverage of new system behaviors and
guide the test executions. The states in the abstract model succinctly represent the system’s state,
abstracting away uninteresting implementation-level details while keeping the essential information
of relevant system states and actions. Furthermore, high coverage over the different model states
requires exploring all code paths that handle the different system states. We show in our evaluation
that high coverage of the formal system states does not degrade the structural code coverage.

We consider the formal model of a system as a labeled transition system M = (Q, I, A, §) where
Q is a set of states, I is the set of initial states, A is the set of actions, and § C Q X A X Q is a set of
transitions. An action a € A is enabled at state g € Q iff (q,a,q’) €  for some ¢’ € Q. Arun of M
is a sequence p = qo o, q - -- SLN qn where qo € I and (g, a;, g;+1) € 6 holds for all i.

Given an execution of a system S with a set of events Events, the formal model of that system M,

and the mapping ¢ : Events +— A, the execution t covers the abstract system states qq, . . ., qn iff the
. ( (en
sequence of actions ¢(e;), ..., ¢(e,) produce the run p = qo ¢—el)> q - -- ¢—e)> qn of M.

4 Implementation of ModelFuzz
4.1 The Workflow

Figure 2 illustrates the workflow of model-guided fuzzing. Given a distributed system under test S
and a set of initial tests Ty, the fuzzer runs a test ¢ that represents an event schedule, collects the
sequence of executed system events, and maps them to a sequence of actions in the system’s formal
model. The resulting model actions are run on the system’s abstract model M. The covered set of
abstract model states is used as feedback to guide the test generation.

Different from traditional fuzzers, model-guided fuzzing uses a controlled scheduler to control
the execution order of events in a distributed system, an event mapper to map the system events to
abstract actions in the formal model, and a controlled model checker to run the given sequence of
abstract actions on the model.

Controlled scheduler. The controlled scheduler controls the nondeterminism in the delivery order
of messages and executes a particular schedule of events. For each event in an event schedule, ¢ =
(buffy : ag)...{(buff, : a,) withay,...,a, € {deliver, crash, restart}, the controlled scheduler
either delivers a message to its recipient process, or crashes a process, or restarts a process. To
enforce the delivery of a message at a certain time in execution, the scheduler intercepts all in-flight
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messages in the system and collects them in the message buffers for each process. For the process
crash and restart actions, we provide scripts for starting and stopping the processes in the system
under test. The controlled scheduler runs these scripts to enforce a process crash or restart.

Event mapper. The event mapper translates the sequence of concrete events executed on the
system by the controlled scheduler into a sequence of actions in the abstract model. Since the
implementation level events recorded by the controlled scheduler are specific to the implementation
under test, they cannot directly be mapped onto the abstract actions on the formal model. ModelFuzz
uses an event mapping interface that the developer implements to map the implementation-level
events to the abstract model actions. The mapping of the events from the implementation to the
model is mostly syntactic, and it does not require an in-depth understanding of the system under
test implementation. For example, event mapping for Raft matches the protocol verbs and fields in
the collected messages and the TLA+ model actions (e.g., matching the AppendEntries messages
with the receiver process, term, and index numbers).

Our implementation (1) converts the collected implementation-level events to a standard JSON
encoding and (2) maps the standardized events in JSON format to abstract actions on the model.
The second step is embedded in the controlled TLC model checker. The interface to the controlled
model checker accepts a sequence of standardized events and outputs the sequence of abstract
states observed in the model.

Controlled model checker. The sequence of mapped actions is run on the controlled model checker,
which enforces their execution on the model. Unlike a standard model checker, which explores
the whole state space of the abstract model, the controlled model checker runs a given sequence
of actions and returns the visited set of model states as coverage information. The actions in the
specifications used in our evaluation are deterministic, and each execution of the implementation
matches a single path in the abstract model. For the models where a single action can lead to
multiple model states, model coverage provides an overapproximation, e.g., tracing all paths and
collecting all states that could be visited with the executed event schedule.

For the controlled model checker, we implement a simulation engine that (i) controls the next
action to take at each state of the model execution and (ii) records the visited states to provide them
as feedback to the fuzzer. Our implementation uses TLA+ [39] models of the distributed systems
for coverage feedback, and we implement the controlled model checker for the TLC explicit state
model checker [72] in the TLA+ Toolbox [37].

4.2 Testing Distributed Systems with ModelFuzz

ModelFuzz can be used to test any distributed system that has a TLA+ model. To test an imple-
mentation of a distributed system using ModelFuzz, two key steps are required: (i) intercepting
the messages of the system under test to control their delivery and enforce the delivery ordering
specified by the fuzzing algorithm, and (ii) writing an event mapper to map the system’s events
into the actions defined in the TLA+ model. Testing different system implementations and using
different TLA+ models do not require any modifications for the controlled TLC model checker.

The first requirement for controlling delivery is a common requirement across all controlled
concurrency testing algorithms. This is essential to enable the execution of specific event schedules
generated by the algorithms. Additionally, ModelFuzz requires a TLA+ model of the system as well
as an event mapping. TLA+ models are available for popular distributed system protocols, such as
Two-Phase Commit, Paxos, and Raft. The event mapping, which maps the implementation events
to the abstract TLA+ model actions, is mostly synthetic. It is tailored to the specific system being
tested and is provided by the developers.
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In the rest of this section, we explain our implementation for testing Raft protocol implementa-
tions, providing an overview of the protocol, its abstract model, and the event mapper.

Raft protocol. Raft [54] is a leader-based consensus protocol that proceeds in a sequence of
terms. Each term begins with a leader election phase. A candidate sends RequestVote messages
requesting votes from other processes to be elected as leader. A candidate process transitions to the
leader state if it receives a quorum of accepted votes. Upon successful election, the leader executes
client requests, records the executed operations in a log, and replicates the log of operations on
the other processes by sending AppendEntries messages to the follower processes. The leader
also periodically sends Heartbeat messages to communicate its availability to other processes. If a
process does not receive Heartbeat messages from the leader over a time period, it moves to a
new term, incrementing its term number, and transitions to the candidate state.

Abstract protocol model. We use the TLA+ model of the Raft protocol made available by the
protocol’s authors [28] and extend it by modeling (i) crash and restart of the processes and (ii)
snapshot operations. Therefore, besides the variables for the internal states of each process (e.g.,
the term number, its log of requests), the extended model uses an additional variable to keep the
set of active processes in a cluster and introduces crash and restart actions. The crash and restart
actions are enabled for the active and crashed processes, respectively, and they update the set of
active processes in the cluster. Based on empirical evidence that implementation bugs can occur in
the snapshot processing logic, we also extend the model to capture snapshot operations so that
the model can guide the executions toward executions where processes trigger snapshots and
restore them upon recovery. While the existing TLA+ model does not capture snapshot operations,
our model uses a snapshot index variable for each process to record the snapshot index of each
process and introduces actions to update the processes’ snapshot indices. Our extended TLA+
model® satisfies the correctness specifications listed in the original model and, therefore, preserves
correctness.

Collection of abstract states. While the abstraction provided by the TLA+ model is useful in
guiding the fuzzer, we observe the need for further abstracting the set of observed states to guide
the exploration to ‘interesting’ parts of the state space. Concretely, the states of the existing TLA+
model are defined by the local states (e.g., operation logs) of each process, along with the current
term numbers of each process. Therefore, the model states differentiate between the system states
with the same set of local process states if they are reached in different term numbers. Consider
the leader election phase of an execution. Although the local states of the processes do not change,
unsuccessful leader election rounds result in hitting new system states since the processes increment
their term numbers. Such state information guides the fuzzer toward exploring executions with
growing term numbers without covering interesting system behavior.

To guide the fuzzer with more concise state information, we abstract the term numbers in the
formal model state. Specifically, we merge two consecutive states in an execution, which differ only
in terms of the number of non-leaders.

Note that state abstraction does not require any modification of the formal TLA+ model or
the model checker. The abstraction post-processes the collected abstract states from the model
checker, and the abstracted states are communicated to the fuzzer. In general, any abstraction can
be incorporated by writing an abstraction function from the output state of the model checker to
the input state of ModelFuzz.

Shttps://github.com/burcuku/tle-controlled-with-benchmarks/blob/main/tla-benchmarks/Raft/model/raft_enhanced.tla
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Event mapper from Raft implementations to the abstract TLA+ actions. We implemented event
mappers for two different implementations of the Raft protocol (in etcd and Redis) to the abstract
TLA+ model. Our mapper for Raft maps system events collected during the execution into three
classes of actions in the TLA+ model:

o The cluster actions AddProcess, Crash, Restart, identified with a process id as an argument: The
system events for adding a process, crashing a process, and restarting a process map to the given
actions, respectively.

o The protocol actions of a process, Timeout, ElectLeader, UpdateSnapshotIndex, identified with
a process id and protocol arguments (e.g., term and snapshot numbers): The system events to
initiate a term change, electing a leader, and updating a snapshot map to the actions, respectively.

o The protocol actions for processing protocol messages, ClientRequest, HandleRequestVoteRequest,
HandleRequestVoteResponse, HandleAppendEntriesRequest, HandleAppendEntriesRequest, and
HandleNilAppendEntriesResponse, identified with protocol arguments (e.g., term and index num-
bers): The system events of exchanging these messages with corresponding arguments map to
the actions.

5 Experimental Evaluation

We implement ModelFuzz to test two industrial implementations of the Raft protocol [54]: Etcd-
raft* and RedisRaft® along with an implementation of the Two-Phase Commit Protocol and an
implementation of a parametrized version of the example system presented in Section 2 in the
Coyote framework [17]. Our implementation for the Raft protocol uses the TLA+ model of the
protocol made available by the protocol’s authors [28] and extends it® by modeling (i) crash and
restart of the processes and (ii) snapshot operations. Our implementation for the Two-Phase Commit
protocol is based on the protocol’s model available in the TLA+ documentation [38] and extends
it” with transaction variables and support for multiple requests.

We evaluate the performance of model guidance compared to pure (unguided) random test-
ing, guided testing using structural code coverage and trace coverage information, and, finally,
state-of-the-art reinforcement learning guided testing, BonusMaxRL [10]. For comparison against
BonusMaxRL, we leverage the publicly available implementation®’ and retain the configurations
detailed in the original paper.

We evaluate the performance of ModelFuzz in terms of test coverage and bug finding ability,
answering the following research questions:

RQ1 How does the test coverage of ModelFuzz compare to other strategies?
RQ2 Is ModelFuzz more effective at detecting bugs than the other strategies?

We address RQ1 by comparing the abstract state coverage of ModelFuzz to pure random, line
coverage-guided, and trace coverage-guided fuzzing strategies. We address RQ2 by evaluating the
bug-finding effectiveness of different testing strategies in two measures [9]: the unique number of
bugs found and the number of test executions to find a bug.

Test oracle. We check the correctness of test executions by checking for assertion violations,
exceptions, and crashes. We also check the serializability of the operations in etcd and Redis,

4https://github.com/etcd-io/raft

5 https://github.com/RedisLabs/redisraft

6https:// github.com/burcuku/tlc-controlled-with-benchmarks/blob/main/tla-benchmarks/Raft/model/raft_enhanced.tla
7 https://github.com/egeberkaygulcan/2PC-Fuzzing/blob/main/tla/TPCL.tla

8hittps://github.com/zeu5/raft-rl-test

9https:/ /github.com/zeu5/dist-rl-testing
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Fig. 3. Testing the microbenchmark. (a) Test coverage for m = 6 workers and n = 40 tasks (b) #tests to find
the bug for varying #tasks with m = 6 workers.

running Elle [2], a black-box isolation checker on the collected history of log operations. on the
executed operation history.

Statistical evaluation [4]. . We analyze the statistical significance of the coverage results of our
experiments by performing the Mann-Whitney U-test [48]. We assess ModelFuzz’s bug-finding
ability compared to the other strategies using Vargha and Delaney’s A, statistic [65], with A;, = 0.6
as in previous work [50].

Test configuration. We run the fuzzers with an initial set of |T| = 20 random test cases. For each
test case that covers a new state, we create five new test cases by mutating the original test case.
We multiply the number of generated test cases proportionally with the number of new states
observed in the test execution. When the set T of tests to explore becomes empty, we repopulate a
random set of tests and repeat the cycle until the test budget is exceeded.

We run the experiments on an Intel(R) Xeon(R) CPU E5-2667 v2 machine with 32 cores and with
252GB of RAM.

5.1 Microbenchmark in Coyote

We implemented a parametrized version of the example in Section 2 in the Coyote framework [17].
The implementation parametrizes the system in (i) the number of worker processes and (ii) the
number of Execute task messages that need to be processed to handle a request. For (i), we generate
m workers that need to register to the AppMaster before AppMaster can process a client request.
For (ii), we modify the processing of Execute so that the Worker divides the work into a chain of n
number of tasks.

The system’s possible executions involve different interleavings of the Terminate message with
the chain of Execute messages sent to the Worker. We seeded a concurrency bug that occurs if
Terminate is processed by the Worker just before the last Execute message while processing a
client request. The bug gets harder to trigger with increasing m and n since it requires all m workers
to register to AppMaster before Request and also to deliver the chain of Execute messages except
for the last one before Terminate. '°

10 Available at https://github.com/burcuku/coyote-concurrency-testing
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Table 1. Pairwise A;y statistic results against ModelFuzz for the microbenchmark with varying m and n.

m=5 m=6 m=7
n |10 20 30 40|10 20 30 40|10 20 30 40

Random|0.81 1.00 1.00 1.00{0.86 1.00 1.00 1.00(0.71 1.00 1.00 1.00
Trace [0.33 1.55 0.80 0.83(0.32 0.43 0.73 0.75/0.14 0.14 0.37 0.60

We ran the microbenchmark with 10K iterations with varying m = {5, 6,7} workers and n =
{10, 20, 30,40} tasks over ten runs for each configuration. For this system, we do not compare with
line-based coverage as the existing coverage tools do not integrate with the framework we use.

Coverage. Figure 3a shows the coverage of the abstract states of the microbenchmark with m = 6
workers and n = 40 tasks, which is representative of different parameter configurations. Since
the microbenchmark is a small example with a small state space, the difference in the explored
number of unique abstract states among different testing approaches is not large. However, the
results show ModelFuzz’s ability to cover more abstract states compared to random testing and
trace coverage guidance. Our Mann-Whitney U-tests show that ModelFuzz achieves statistically
significantly better coverage results at &« = 0.05, compared to random testing and trace-guided
fuzzing with p-values {0.0001, 0.0004}.

Bug finding. We observe a trend with ModelFuzz where it consistently detects the bug faster
than random and trace coverage guided testing approaches with increasing m and n. Figure 3b plots
the number of test iterations to find the bug for increasing n number of task messages with a fixed
m = 6 processes. The results show that the increasing number of task messages makes the bug more
difficult to detect as it is triggered deep in the execution space. This effect is most evidently seen
with pure random testing, as it fails to detect the bug after n = 10. Trace coverage guided testing
achieves a more consistent variance among different campaigns. However, we observe a trend in
its median value for the first iteration to detect the bug, where it declines as the bug gets harder to
detect with increasing n. The performance degradation is not as significant for ModelFuzz, as its
median value does not change drastically among the experiments.

We use Vargha and Delaney’s Ay, statistic to analyze the significance of our bug-finding results
on all parameter configurations. Table 1 lists the pair-wise A;, statistic values against ModelFuzz
for testing the microbenchmark with varying m workers and n tasks. The results show the statistical
significance of 17 out of 24 configurations (highlighted in bold), which indicates that ModelFuzz is
more effective than the other testing approaches at finding the bug.

5.2 Two-Phase Commit

The Two-Phase Commit protocol is a popular distributed algorithm that ensures all nodes in a
distributed database either commit or abort a transaction in a coordinated manner. It plays a crucial
role in maintaining consistency within distributed databases and transaction management systems.
We provide a thread-based implementation, where we modify the standard protocol to handle
requests as sets of variables written by a transaction!!. Each node maintains a lock table, which
starts in an unlocked state. When a transaction commit request is received, the node checks the lock
status of the variables. If none are locked, the vote is approved; otherwise, the request is aborted.

The implementation omits details such as network communication and storage code, as the
benchmark’s primary goal is to observe the protocol’s behavioral changes under different re-
quest and server interleavings. This results in a compact server implementation of 350 lines of

u https://github.com/egeberkaygulcan/2PC-Fuzzing
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Go code, with approximately 150 additional lines for instrumentation. The implementation of
ModelFuzz, including the fuzzer loop and communication with the controlled TLC model checker,
is approximately 1k lines of Go code.

We tested the Two-Phase Commit protocol using three resource managers (RM), a dedicated
transaction manager, two variables (V), and five transaction commit requests (N). These parame-
ters were selected for two key reasons: (i) smaller V values reduce the likelihood of successfully
committing concurrent requests, and (ii) the number of distinct abstract model states grows expo-
nentially with increasing N and RM. In experiments with higher N and RM values, we observed
similar results, with the only difference being a larger state space requiring a greater time budget
for exploration. The chosen parameter set strikes a balance between exploration difficulty and
maintaining a manageable state space.

Since the protocol is not fault-tolerant, we excluded crash faults from this benchmark. Each test
execution ran for 100 steps per iteration, with a maximum of five messages delivered at each step.
We run all tests for one hour and report the average result of 20 test runs.

Coverage. Figure 4 presents the test coverage of the test harnesses, measured by the number of
abstract states observed across different strategies. The results show that ModelFuzz surpasses both
random and trace coverage-guided exploration strategies. In Figure 2, we report the average number
of distinct abstract model states discovered by each strategy, with the best result highlighted in
bold. Overall, ModelFuzz observes 1.16x more states than random exploration, 1.23x more than
trace coverage-guided exploration, 1.20x more than line coverage-guided exploration, and 182.96x
more than the reinforcement learning-based testing BonusMaxRL.

Our analysis of the experiments reveals that BonusMaxRL’s poor performance stems from its
high learning cost, which exceeds the execution cost of the program. Within the same time budget,
fuzzing-based strategies complete three orders of magnitude more iterations than BonusMaxRL. As
a result, BonusMaxRL is significantly less efficient at exploring the state space.

Consistent with our other benchmarks, we address RQ1 by confirming that model guidance
outperforms random exploration, reinforcement learning-guided and other coverage-guidance
strategies in the coverage of explored states.

We conduct Mann-Whitney U tests to compare our benchmarks against ModelFuzz and validate
the statistical significance of our results. Across 20 experiments, the tests confirm that ModelFuzz
discovers significantly more states than the other testing strategies, with p-values of 6.80e—8 for
all comparisons.
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Table 4. Pairwise Ay statistics against ModelFuzz for etcd.

Bug ‘ Random ‘ Trace ‘ Line ‘ RL
Seeded | 057 | 0.53 | 047 | 0.49

5.3 Etcd-Raft

Etcd-raft'? powers the popular distributed key-value store ETcp'®. It is a well-tested, production-
ready implementation of Raft used by companies such as Cloudflare. We instrument its source
code ' to intercept the messages exchanged between processes and implement the fuzzer. The
highly modular nature of the ETcD implementation allows us to instrument and run all the nodes
within a single OS process, making it easier and faster to start, stop, and restart all the nodes. The
Etcd-raft implementation consists of approximately 7k lines of Go code. We instrument its source
code and use an additional 1k lines to implement the fuzzer loop, gain control of the messages
exchanged between processes, and implement necessary adapters to communicate with the model
checker.

We tested the executions of Etcd-raft with three processes and with five client requests. We ran
our tests with a crash quota of 10 and delivered a maximum of 5 messages at each step. For each
test run, we execute the test for 12 hours, where each iteration runs for a fixed duration of 1s, and
report the average results of 20 test runs.

Coverage. Figure 5 reports the test coverage of the test harnesses in the number of abstract
states observed with different strategies. The results show that model-guided test generation of
ModelFuzz covers similar coverage as random testing (Random), coverage-guided fuzzing using
line coverage (Line), and outperforms coverage-guided fuzzing using trace coverage (Trace) in
the explored number of unique system states. However, the reinforcement learning approach
BonusMaxRL outperforms all other approaches.

Given the nature of our instrumentation with Etcd-raft implementation, ModelFuzz suffers from
the performance overhead of communicating with the TLC model checker to measure and retrieve
the state trace for the explored execution. However, other approaches are able to achieve better
coverage in the absence of this overhead. Comparing model-guided fuzzing and structural guidance,
we find that in both cases, the code coverage saturates at 47.9%. Similarly, comparing model-guided
fuzzing and trace-based fuzzing, we find that in both cases, we explore 10k unique traces.

2https://github.com/etcd-io/raft
13https://etcdjo
14https:/ /github.com/zeu5/raft-fuzzing
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Bug finding. Etcd-raft has been the subject of many extensive testing approaches. However, we
found one new bug in addition to reproducing a seeded bug. The seeded bug modifies the condition
for checking if a process has a quorum of votes. Specifically, we change the valid quorum size
from n/2 + 1 to n/3 + 1. The new bug we found is more subtle and leads to a process crash when
accessing a missing snapshot. We reported the bug'® to developers.

To answer RQ2, we analyze the number of detected bugs and the number of test iterations to
discover a bug using different strategies. While the seeded bug can be found in each of the 20
trials by all of the strategies, the new bug can only be found using ModelFuzz. Figure 3 reports the
average number of iterations to discover the seeded bug using different strategies. The bug can be
found by random search faster on average. This can be explained by the characteristics of the bug,
which is easily triggered in executions with quorums of only n/3 + 1 processes.

Table 4 compares the distributions of the first occurrence of the seeded bug in each trial against
ModelFuzz for the different guidance approaches. The Vargha-Delaney (A;,) statistical significance
test shows that no approach is significantly better for the seeded bug.

The results show that ModelFuzz is more effective at finding bugs, as only ModelFuzz finds the
new bug, and all approaches show comparable performance for the seeded bug.

5.4 RedisRaft

RedisRaft!® powers the popular high-performance Redis distributed key-value store. It compiles
into a module that can be loaded onto the main Redis server, which enables different Redis servers
to behave as a group and commit client requests in the same order. We instrumented RedisRaft to
intercept the exchanged messages!” and implement the fuzzer!®. Overall, the Raft module consists
of 30k lines of C code. Our instrumentation adds an additional 1.5k lines of C and Go code, where
the Go code implements the fuzzer loop. Unlike with Etcd, the instrumentation of RedisRaft requires
running all the nodes in different OS processes, along with a network server to capture and deliver
messages. Therefore, starting, stopping, and restarting nodes is a time-consuming process.

We tested RedisRaft by running the fuzzer with three processes and five client requests. We ran
the test executions with a crash quota of 10 and delivered a maximum of five messages at each step.
For each test run, we executed the test for 12 hours, each iteration running for a fixed duration of
3s, and reported the average results of 21 test runs.

Coverage. Figure 6 illustrates the average coverage measures for 12-hour test runs for each
testing strategy. We show that ModelFuzz can obtain better coverage over model states compared to
random testing, line coverage-guided, and trace coverage-guided fuzzing strategies. The coverage
of the reinforcement learning-based approach BonusMaxRL is comparable to ModelFuzz.

On average, ModelFuzz observes 2.58x more states than random exploration, 2.43x more than line
coverage, 2.84x more coverage than trace-guided fuzzing, and 1.06x more than BonusMaxRL. We
answer RQ1 with an observation that model guidance outperforms random exploration and other
coverage-guidance strategies in the coverage of explored system states and achieves comparable
coverage to the BonusMaxRL strategy.

We perform the Mann-Whitney U test over the final coverage numbers to mitigate the effect of
randomness. We obtain p values of 3.12e—8 vs random, trace, and line coverage guidance strategies.
The U tests show that ModelFuzz covers significantly more states than the other traditional guidance
strategies, barring the reinforcement learning guided approach.

Shttps://github.com/etcd-io/raft/issues/108
16https://github.com/RedisLabs/lredisraft

17 https://github.com/egeberkaygulcan/redisraft-fuzzing
18https:/ /github.com/zeu5/redisraft-fuzzing
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We also analyze the branch coverage of the tests and observe that guiding the test executions
using model coverage does not degrade the coverage over traditional code coverage metrics. Table ??
reports the mean and standard deviation branch coverage of the different guidance methods. We
measure the branch coverage of the source code in C using the gcov tool. However, we observe a
high variance in the data, which we attribute to the coverage measurement tool. As we run multiple
copies of the source code during each test iteration, the branch coverage is combined for each copy.
However, we found that the gcov tool does not always merge the coverage values of concurrent
invocations correctly. Failing to merge coverage information results in the high variance we observe
with the branch coverage measures presented in the table.

Unlike for Etcd-raft, ModelFuzz is able to cover more states when compared to other approaches.
The difference lies in the nature of the instrumentation. The performance overhead (in time) of
communicating with TLC to obtain coverage information is insignificant compared to the time
required to restart all the nodes. Therefore, all approaches cover a similar number of iterations, and
we are able to achieve better coverage.

Bug finding. Our experiments for testing RedisRaft discovered 13 different bugs, two of which
are known bugs reported in RedisRaft’s issue tracker, and the remaining 11 are new, previously
unknown bugs. The bugs occur in the existence of process crashes and restarts with certain orderings
of events, and they manifest as thrown exceptions or assertion violations. We investigated the bugs
and reported them in the issue tracker of the RedisRaft open-source repository.!® Table 6 briefly
describes the new bugs we discovered.

Among all 13 bugs, ModelFuzz found more bugs than other guidance approaches. Specifically,
ModelFuzz found 12 bugs, while random exploration found 8, trace-guided found 9, line-guided
found 8, and BonusMaxRL found only 6 of them. For each bug and guidance method, the table in
Figure 7 lists the number of runs that find the bug (in parenthesis) and the average first occurrence
of the bug (in hours) in the successful runs. For each bug, we highlight the lowest average first
occurrence in bold. Among the bugs, one of them is found only using ModelFuzz. Overall, ModelFuzz
is more consistent in reproducing the bugs, finding them more frequently than other approaches.

For each of the bugs, we calculate Vargha and Delaney’s Ay, statistics to analyze the pairwise
statistical significance of the results. Table 8 reports the Aj, statistics against ModelFuzz for
each bug, highlighting the results with statistical significance in bold. The analysis shows that
ModelFuzz detects the bug {6} statistically significantly faster than all other guidance approaches,
{8,9,10, 11} statistically significantly faster than some of the approaches, and comparably faster

19https:// github.com/RedisLabs/redisraft/issues (Issue numbers: #643-#649)
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Table 6. The new bugs found in RedisRaft

ID ‘ Bug description

3 | Process crashes when restoring the log from a snapshot stored on disk.

4 | Process crashes when polling peer connections. Specifically, a segmentation failure is raised when
reading the connection information of a peer.

5 | After receiving information of a newly added node, the process crashes when setting a flag indicating
the node has been successfully added.

6 | Redis server crashes when checking for active client connections.

7 | Process crashes when updating the log after receiving an AppendEntries message. Specifically occurs
when it has to delete existing log entries.

8 | Process crashes when sending AppendEntries and reading from a corrupt log.

9 | Process crashes when updating the state to follower upon receiving a message from the leader.

10 | Process crashes when updating the state to follower upon receiving a message of a higher term.

11 | Process fails to update its current term upon receiving AppendEntries with a higher term.

12 | Process fails to update its current term upon receiving RequestVote with a higher term.

13 | Process fails to update its current term upon receiving RequestVoteResponse with a higher term.

Table 7. The number of RedisRaft tests for the first occur-
rences of the bugs (in hours) using different guidance strate-
gies.

Table 8. Pairwise Alz statistic results
against ModelFuzz.

ID‘Random‘ Trace ‘ Line ‘ RL ‘ModelFuzz ID‘Random‘Trace‘Line‘ RL

1 |0.12(21)[0.18(21)]0.15(21)| - 0.14(21) 1] 0399 10.46710.494)1.000
2 [3.72(19) |4.26(20)| 4.06(15)| 0.02(1) | 4.13(21) 2| 0.491 10.540/0.52110.000
3 0.01(21)[0.01(21)] 0.01(21)[0.02(21)| 0.02(21) 3| 0.434 10.506)0.47110.585
4 |4.84(16)[5.00(13)|3.45(10)| 3.15(3) | 3.63(12) 4| 0529 10.604/0.524)0.462
5 |1.78(21)[1.35(21)|1.41(21)| 5.91(8) | 1.75(21) > | 0.480 0.43510.4650.892
- ’ ) ) 9.8(1) 6| 1.000 |1.000|1.000/1.000
7 - 8.76(2) | 5.21(1) | - - 7 - ) ) )

8 |1.94(21)|1.82(21)0.93(21)|2.68(19)| 1.14(21) 8| 0.628 10.637)0.4390.667
9 | 576(6) | 5.054) | 2.78(5)| - | 4.71(5) 9| 0.58 1 0.5 11.000/1.000
ol ) " e1r)| ss001) 10| 1.000 [1.000|1.000/0.000
11 4.67(1) 9.60(1) B ) 11.41(1) 11{ 0.000 |{0.000|1.000/1.000
e ) ] ] 3.93(1) 12| 1.000 |1.000|1.000|1.000
al - ] ] ] 051() 13| 1.000 |1.000|1.000/1.000

for the remainder. While this indicates its ability to detect bugs faster, the A;, results do not draw
clear conclusions on the statistical significance.

What is significant is the number of bugs and the occurrences of the bugs found by ModelFuzz
compared to other approaches. Specifically, while RL based approach BonusMaxRL achieves com-
parable coverage over the states, the number of bugs found by BonusMaxRL is significantly lesser
than ModelFuzz or other traditional guidance measures. The targeted coverage guided fuzzing
approach is able to lead the exploration to corner cases leading to better bug finding ability.

5.5 Comparison to Related Work

5.5.1 Comparison to Mallory. A closely related work to our approach is MALLORY [50], a greybox
fuzzer for distributed systems that employs reinforcement learning to guide test generation.
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Fig. 7. Comparison of abstract state coverage of Mallory and ModelFuzz for testing Redis for 8-hour test
runs with the state abstraction of term numbers (a) including the set of active processes (b) excluding the set
of active processes in the abstract system state.

While both MaLLorY and ModelFuzz learn from test executions to guide test generation, they
adopt different approaches to learning. Mallory runs a long test execution (with a reported duration
of 24 hours in their paper) and learns from the exploration within that test execution. After each
action taken during the execution, it updates its reinforcement learning policy and makes decisions
about subsequent actions based on that information. On the other hand, ModelFuzz runs short
test executions (each with a duration of a few seconds) and learns from the exploration across
executions. After each test, it analyzes the model coverage achieved and generates the next test
cases by mutating the previous executions that have led to coverage of new states.

The two approaches also differ in the coverage information they use to learn from the executions.
MALLORY uses a timeline abstraction of the system states, which is similar to the trace coverage
notion. However, the set of traces is typically too large for effective guidance. MALLORY overcomes
this problem by allowing the user to manually annotate the system’s code to specify the interesting
parts and use this information in the learning process. On the other hand, ModelFuzz uses the
abstract state coverage based on the formal model states (in our experiments, TLA+) of a system.

Our evaluation does not provide an empirical comparison to MALLORY across all the benchmark
systems we tested, since the application of MALLORY requires manual inspection and annotation of
the source code under test. Therefore, we focus our comparison on the shared benchmark, RedisRaft.
Specifically, we compare the abstract state coverage and bug detection of the two techniques.

We ran MALLORY using the default parameters in its artifact repository, updating its configuration
files for the Docker setup and adjusting for differences in our test platforms. Because MALLORY’s
standard logs lack the detailed event and state information needed to measure abstract state
coverage, we extended its instrumentation to RedisRaft to log this information. A limitation in
measuring the abstract state coverage of MALLORY tests is due to the length of their test executions.
A single test execution of MALLORY processes thousands of user requests, as opposed to five client
requests in ModelFuzz tests, making it infeasible to run TLC simulations on the event traces. We
mitigate this by collecting abstract state information during the test execution, at the same points
where MALLORY collects its event information. Since MALLORY collects the process logs separately,
rather than compiling them into a combined serial log of system events like ModelFuzz does, we
merged the process logs of MALLORY executions, ordering them by their timestamps. This allowed
us to reconstruct the sequence of system states explored during execution. We read the logs into
the same definition of model state in MALLORY as we used for ModelFuzz.
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State coverage. We ran MALLORY and ModelFuzz for an 8-hour duration of testing, repeated the
tests 20 times, and reported their averages. To ensure a fair comparison in the number of requests
processed by MALLORY and ModelFuzz, we normalized the logs so that the processes process the
same maximum number of user requests simultaneously in the executions of both methods.

The coverage results showed a linear increase in MALLORY’s state coverage over the duration
of fuzzing. Upon analyzing the covered states, we observed that the linear growth in coverage is
introduced by the increasing term numbers during the protocol execution. The term number is a
monotonically increasing counter that tracks the leader election processes in the protocol execution.
During the 8-hour test execution of MALLORY, the term number increases with the test execution
time, while it remains relatively constant, within a few seconds of ModelFuzz tests. To eliminate
the effect of the term counter in counting distinct states, we abstracted the term numbers in the
state information by considering two states that differ only in the term number as equivalent.

Figure 7a presents the abstract state coverage of MALLORY and ModelFuzz with the term number
abstraction. The results show that ModelFuzz and MaLLORY perform comparably, with ModelFuzz
achieving higher coverage. Figure 7b presents the state coverage with an additional abstraction of
the information of the set of currently active processes in the system state. As given in Section 4.2,
we extend Raft’s TLA+ model to track the information of crash and restart of the processes and
keep that information as part of the abstract system state. ModelFuzz utilizes this information to
guide the new tests through the controlled injection of process crashes. However, the exact points
of process crashes and restarts are not available in the MALLORY logs and, therefore, are not read
into the abstract states. To present a fair comparison based on the same set of collected data, we
additionally present the state coverage results without this information in Figure 7b. The results
show comparable performance for MALLORY and ModelFuzz.

Bug finding. ModelFuzz tests replicate 2 of the previously known bugs found by both JEPSEN
and MALLORY, and we find 6 new bugs in RedisRaft that were previously not found (described in
Table 6). The existence of bugs that could only be detected by MALLORY or only by ModelFuzz
suggests the complementary bug-finding capabilities of the two methods. ModelFuzz may miss
bugs in parts of the implementation (e.g., rolling back a snapshot) that are not captured by the
system’s abstract model used. On the other hand, it can uncover bugs that occur in the parts of the
system code that are not user-annotated but captured in the model.

Overall, MALLORY and ModelFuzz show comparable performance in abstract state coverage and
bug detection, and they can be used complementarily to each other. The performance of MALLORY
is influenced by user annotations that identify significant states, while ModelFuzz relies on the
expressiveness of the abstract model used. Depending on the user annotations for MALLORY and
the abstract model used by ModelFuzz, they can be more effective at covering and detecting bugs
in the complementary parts of the execution space.

5.5.2  Comparison to BonusMaxRL. We empirically compare our approach against BonusMaxRL [10],
which utilizes reinforcement learning techniques to explore the state space of a distributed system.
Specifically, BonusMaxRL provides a novel reward mechanism that extends prior work and has

been proven to be successful in finding bugs in both RedisRaft and Etcd-raft benchmarks. We

present empirical comparison of the coverage for all our benchmarks. For the Etcd benchmark,
BonusMaxRL outperforms ModelFuzz while for the RedisRaft benchmark, BonusMaxRL achieves

comparable coverage to ModelFuzz. However, we observe that BonusMaxRL fails to find all the

bugs in both benchmarks.
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5.6 Summary of the Evaluation Results

In summary, we answer RQ1, showing that ModelFuzz outperforms pure random testing and
code-coverage and trace-guided fuzzing strategies in the coverage of model states, yet producing
coverage comparable to or worse than BonusMaxRL. We answered RQ2 by comparing the number
of test executions until the first occurrence of a bug. We showed that ModelFuzz discovers bugs
faster than the other strategies on average.

Moreover, the intuition of using model state coverage to guide the fuzzer has shown effective,
discovering 1 new bug for Etcd-raft and 11 new bugs for RedisRaft, along with replicating 2
previously known bugs. Note that 2 of the new bugs in RedisRaft discovered by ModelFuzz could
not be detected by other approaches in the given test budget, showing that our approach is more
robust in finding bugs earlier than other guidance approaches.

Finally, our evaluation on several systems under test that implement different distributed proto-
cols demonstrates the applicability of ModelFuzz across multiple systems and the generalizability
of the findings.

6 Limitations

Model-guided fuzzing requires the model to be close to the implementation so that the model
provides effective feedback for test generation. The abstraction level of the model heavily affects
the performance of model guidance. A high-level model abstracting away critical aspects will be
ineffective at guiding the tests toward exploring these aspects in the system implementation. For
example, while the TLA+ model of Raft protocol [28] provided by the protocol’s authors models
process interactions, it does not capture process crash and restart actions. Therefore, using this
model to guide test generation will be ineffective at directing the test executions with process
crashes and restarts that potentially lead to previously unseen executions. Conversely, a model
that is too fine-grained and captures all implementation details is also not helpful. For example,
a model that implements HeartBeat messages or captures too many details of process states
distinguishes equivalent high-level behaviors of the system. It can guide test generation toward
exploring different executions that produce equivalent system behavior.

7 Related Work

Coverage-guided fuzzing. Fuzzing [6, 8, 32, 43, 47, 75] has been extensively studied for test input
generation for sequential programs. Rather than generating test inputs independently at random,
coverage-guided fuzzing techniques incorporate lightweight program instrumentation to collect
some feedback information from the test executions and use that information to guide the generation
of new tests. Recent techniques target the generation of different types of program inputs [22, 29, 63]
and improve fuzzer performance [7, 61]. Extensions of AFL [74] such as AFLNET [56], StateAFL [52]
test communication protocols by mutating structured message inputs guided by the states explored.
Different from test input fuzzing, our work utilizes the fuzzing approach to generate event schedules
for testing distributed system executions.

Testing distributed systems. Distributed systems have been the focus of a wide range of research
such as systematic testing and model checking [18, 20, 23, 41, 42, 57, 62, 70], random fault injec-
tion [34] or scheduling [27], and designing methods for carefully sampling event schedules and
faults [14, 21, 35, 36, 68, 73]. While some methods guide fault injection using lineage [3], runtime
state [12], or system’s meta-variables [46], most techniques do not exploit information observed in
the test executions and generate tests independently from each other.
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Fuzzing concurrent and distributed systems. Fuzzing methods for multithreaded concurrency
guide the tests by monitoring races and synchronization events [60, 66, 71], execution states caused
by thread interleavings [13], coverage of concurrent call pairs [33], and using the reads-from relation
between the memory accesses [69]. These methods are designed for multithreaded programs, and
they do not target distributed concurrency.

Recent testing techniques for distributed systems learn from the explored executions and adapt re-
inforcement learning or fuzzing approaches to generate new tests. QL [51] uses reinforcement learn-
ing to guide the exploration to unexplored parts of the execution space. Recent work [10] improves
the reward augmentation using theoretical results in reinforcement learning and programmer-
provided information for the interesting parts of the search space. Evolutionary search-based
testing [64] directs the exploration toward a fitness function.

Existing work for fuzzing distributed systems uses code coverage and message traces as program
feedback. CrashFuzz [26] and FaultFuzz[24] fault-injection tools inject process crashes using
code coverage information as program feedback. MALLORY [50] builds on JEPSEN [34] and guides
test generation using programmer annotations that mark interesting parts of the code and an
event timeline abstraction (close to traces) as the feedback information. Different from using user
annotations, code coverage, or trace coverage for guidance, ModelFuzz uses guidance from the
abstract system model.

Model-based testing. Model-based testing uses formal models (e.g., TLA+ specifications) to ex-
haustively enumerate system executions and enforce them on the implementation. Its applications
include testing APIs [5], fragments of HTTP protocol [44] and specific systems [59]. Protocol
fuzzers DTLS-Fuzzer [25] and EDHOC-Fuzzer [58] use model learning to generate a state machine
model of the protocol implementations which can be used for model-based testing.

MockeT [67] and MET [76] adopt model-based testing to test distributed systems and CRDTs.
MockET uses the paths in the model’s state space graph as test cases, and it enforces the system
under test to run the actions generated on the system’s model on the corresponding states and
actions in the implementation. For this, it synchronizes the executions of the system and the model
at each step. The synchronization of executions requires heavy annotation on the system’s source
code to mark the program variables and messages associated with the system’s model variables.

Our work conceptually differs from model-based testing, as it performs an unconstrained ex-
ploration of the implementation. Model-based testing generates test cases using model paths, and
hence, it does not cover parts of the implementation that are abstracted away in the model. In
contrast, model-guided fuzzing explores the executions of the implementation, including those not
captured by the model.

Recent work [15] uses TLA+ models to validate execution traces of distributed systems. It uses
programmer instrumentation on the system implementation to identify the points of state variable
updates and transitions and validates the collected execution traces on the TLA+ model to detect
the conformance or discrepancies between the system specification and its implementations. While
this work focuses on verifying execution traces, its future work points to using TLA+ models for
guiding test executions towards interesting parts of the search space, as we do with ModelFuzz.

Model-guided fuzzing. ModelFuzz stands out from the state-of-the-art in testing distributed
systems as it steers the exploration towards more coverage of system behaviors without the need
for the programmer’s comprehension and annotations on the source code (e.g., to identify and mark
interesting parts of the source code or using heavy instrumentation to synchronize its execution
with a formal model). Instead, it utilizes the system’s abstract model, which already captures the
essential information about system behavior, to collect information about the explored system
behaviors and generate new tests.
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8 Conclusion

In this paper, we present ModelFuzz, a new approach for fuzzing distributed systems implementa-
tions. Our novel approach uses coverage over abstract model states as feedback for the fuzzer to
generate test executions and guide the test generation toward interesting parts of the state space.
We use ModelFuzz to test the implementations of different distributed protocols, including two
production distributed system implementations. We show that ModelFuzz can achieve high model
coverage, allowing us to discover new bugs and replicate known bugs more quickly than other
guidance methods.

Data Availability Statement

The implementation of ModelFuzz and the systems under test are available in the accompanying
artifact [31].
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