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Silicon photonic micro-ring resonators to
sense strain and ultrasound

Summary

We demonstrated that photonic micro-ring resonators can be used in micro-
machined ultrasound microphones. This might cause a breakthrough in array
transducers for ultrasonography; first because optical multiplexing allows array
interrogation via one optical fiber and second because the silicon-on-insulator tech-
nology allows cost-effective fabrication. To understand this microphone, all of its
components were studied: fundamental theory of the photonic resonators, exper-
imental characteristics of the resonators, and the effect of a static deformation of
the resonator.
The most familiar use of ultrasound is observing unborn children but ultra-

sonography is widely used in medical and industrial applications. Today’s clear
ultrasonic images are made by digital focusing which requires an array of trans-
ducers that records the sound at a number of positions spaced less than a wave-
length. Typical sound frequencies are 1 – 40 MHz with corresponding wavelengths
of 0.04 – 1.5 mm in water.
Conventional ultrasound transducers employ piezo-electric material to convert

sound pressure to an electronic signal. An array requires individual fabrication,
placement and wiring of these transducers. Last decades, micro-machined ultra-
sound transducers (MUTs) have received large interest. Array MUTs are fabri-
cated and wired directly as a single silicon “chip”. This micro-machining technol-
ogy leverages the cost-effective wafer-scale CMOS technology that was developed
by the semiconductor industry. A MUT consists of a flexible membrane that is
sensitive to ultrasonic pressure waves, like a drumhead. The membrane deforma-
tion is most commonly measured by recording the electrical capacitance between
the membrane and a fixed bottom plate. Unfortunately, these MUTs do not meet
the sensitivity of piezo-electric transducers. Moreover, electrical transducers nor-
mally require a coaxial wire for each array element. The size of this wire bundle is,
for example, problematic in medical intravascular ultrasonography (IVUS), where
atherosclerosis is diagnosed from a high-resolution ultrasonograph of the artery
wall that is obtained by catheter which is brought inside the blood vessel.
We propose a new type of ultrasound microphone that consists of a silicon

photonic micro-ring resonator integrated in the membrane of a MUT. Incident
ultrasonic pressure waves deform the membrane and thus deform the resonator,
thereby shifting its optical resonance frequencies. This shift is accurately recorded
by an external interrogation system. Next to the resonators, it is possible to
integrate tiny optical multiplexers on the same chip so that many resonators can
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be simultaneously interrogated via a single optical fiber. Moreover, the all-optical
sensor can be used in MRI scanners.
We proved the operation principle of this new ultrasound microphone. The de-

signed, fabricated and characterized microphone consists of a photonic racetrack-
shaped resonator (footprint 50 μm by 10 μm, height 0.220 μm) that is integrated
in an acoustically resonant silicon-dioxide membrane (diameter 0.124 mm, height
2.5 μm). Fabrication of the microphone demonstrated successful integration of
silicon photonic circuits in silicon micro-mechanical systems. First the photonic
circuit was fabricated in a semi-industrial CMOS line. Second the membrane was
fabricated by etching a hole from the back-side of the wafer using a Bosch etch
process. The photonic micro-ring resonator was interrogated using a laser and
a photo-receiver, providing a minimal detectable wavelength shift of 36 fm. We
measured a ultrasonic minimal detection level (noise equivalent pressure) below
1 Pa which is on the same order of magnitude as the state-of-the-art of PZT
piezo-electric based transducers. The microphone showed an acoustical resonance
around 0.75 MHz with a -6 dB bandwidth of 20%. We only studied the most simple
configuration of this microphone and there is a lot of room for improvement.
The relation between a deformation of the micro-ring resonator and the shift in

the resonance wavelengths was studied in a well-defined static mechanical setup.
Depending on the width of the waveguide and the orientation of the silicon crys-
tal, the linear wavelength shift per applied strain varies between 0.5 and 0.75
pm/microstrain for infrared light around 1550 nm wavelength. The influence of
the increasing ring circumference is about three times larger than the influence of
the change in the propagation speed of the light through the waveguide (effective
index), and the two effects oppose each other. The strong dispersion in silicon sub-
wavelength waveguides (400 nm by 220 nm) accounts for a decrease in sensitivity
of about a factor two.
The optical characteristics of the micro-ring resonators and their components

were extensively studied. Different methods to characterize directional couplers
(direct and in ring-resonators) gave similar results. An interesting observation
was that directional couplers introduce a large coupling-induced phase delay when
nearly all light couples from one waveguide to the other.
Most properties of silicon ring resonators and their components can be computed

using approximate analytical theories. Many theories on integrated optics were
originally derived for low-index-contrast waveguides like optical fibers (Δn < 0.1).
We reviewed and revised those theories for application to silicon-on-insulator wave-
guides which have a very high index contrast (Δn ≈ 2). This work is formulated
such that it can be used in a university course with only basic theory of elec-
trodynamics as prerequisite. Analytical theories provide insight and allow fast
computation of the behavior of photonic devices and circuits.
In conclusion, we studied silicon photonic micro-ring resonators and their ap-

plication in mechanical sensing. Application of these sensors in micro-machined
ultrasound transducers opens new opportunities for ultrasonic array technology.



Silicium optische micro-ring-resonatoren
voor het meten van rek en ultrageluid

Samenvatting

In dit proefschrift tonen we aan dat fotonische micro-ring-resonatoren kunnen
worden gebruikt in ultrageluid microfoons. Dit kan een doorbraak betekenen in
matrix transducenten (luidsprekers/microfoons) voor ultrasone echografie. Ten
eerste kunnen meerdere microfoons worden uitgelezen via één optische glasvezel.
Ten tweede kunnen de microfoons kosteneffectief worden gemaakt. Om de wer-
king van de microfoon te begrijpen, hebben we alle onderdelen bestudeerd: fun-
damentele theorie van optische resonatoren, experimentele karakterisering van de
resonatoren en het effect van een statische deformatie van de resonator.
Ultrasone echografie wordt gebruikt in medische en industriële toepassingen.

De meest bekende toepassing is de echo van een foetus. Moderne, hoge-kwaliteit
afbeeldingen worden gemaakt door digitale focussering. Hiervoor is een matrix van
ultrageluid transducenten nodig die minder dan een golflengte van elkaar liggen.
Typische frequenties zijn 1–40 MHz met golflengtes 0.04–1.5 mm (in water).
In conventionele ultrageluid transducenten wordt piëzo-elektrisch materiaal ge-

bruikt om geluidsdruk om te zetten in een elektrisch signaal. Voor een matrix
transducent is individuele fabricage, plaatsing en elektrische aansluiting van elk
element nodig. In de afgelopen twintig jaar zijn micro-gefabriceerde ultrageluid
transducenten (MUTs) ontwikkeld. Matrix MUTs worden direct als één silicium
“chip” gemaakt met micro-fabricage technologie. Deze technologie is gebaseerd op
de kosteneffectieve CMOS-technologie die is ontwikkeld door de halfgeleider indu-
strie. Een MUT bestaat uit een flexibel membraan dat wordt bewogen door ge-
luidsgolven, zoals bij een trommelvlies. De beweging wordt meestal gemeten door
uitlezing van de elektrische capaciteit tussen het membraan en een vaste grond-
plaat. Helaas is de gevoeligheid van MUTs lager dan die van piëzo-elektrische
transducenten. Elektrische matrix transducenten hebben een coaxkabel per ele-
ment nodig en hiervoor is niet altijd ruimte. Dit is bijvoorbeeld het geval bij de
medische diagnosticering van aderverkalking. Hierbij worden echo’s van de krans-
slagader gemaakt vanuit een katheter (ø 1 mm) die in de ader wordt gebracht.
We introduceren een nieuw type ultrageluid microfoon. Deze bestaat uit een

silicium optische micro-ring-resonator die is gëıntegreerd in het membraan van
een MUT. Ultrageluidgolven vervormen het membraan en dus de resonator, waar-
door zijn optische resonantiefrequenties verschuiven. Deze verschuivingen kunnen
nauwkeurig worden gemeten met externe uitleesapparatuur. Naast de resonatoren
kan een optische multiplexer worden gëıntegreerd die, door gebruik te maken van
verschillende kleuren licht, ervoor zorgt dat verschillende resonatoren tegelijk kun-
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nen worden uitgelezen via één glasvezel. Deze microfoon kan ook worden ingezet
in MRI-scanners.
We hebben de werking van deze nieuwe ultrageluid microfoon aangetoond. Het

ontworpen, gefabriceerde en experimenteel gekarakteriseerde prototype bestaat
uit een optische, atletiekbaan-vormige, ring-resonator (oppervlakte 50 bij 10 μm2,
hoogte 0.220 μm) die is gëıntegreerd in een akoestisch resonant membraan (diame-
ter 0.124 mm, hoogte 2.5 μm). De fabricage van het prototype bewijst de succes-
volle integratie van de optische schakelingen in micro-mechanische systemen. Als
eerste heeft IMEC, een onderzoekscentrum in Leuven, met hun semi-industriële
CMOS-technologie de optische schakelingen gemaakt op een silicumschijf (wafer).
Hierna hebben wij het membraan gefabriceerd door vanaf de achterkant van de
siliciumschijf een gat te etsen (Bosch ets). Het optische uitleessysteem bestaat uit
een laser en een fotodiode en geeft een detecteerbare golflengteverschuiving van
36 fm. Het detecteerbare ultrageluidniveau van deze sensor ligt onder 1 Pa. Dit is
dezelfde ordegrootte als ’s werelds beste piëzo-elektrische PZT transducenten. De
microfoon heeft een akoestische resonantie bij 0.75 MHz en een -6 dB bandbreedte
van 20%. We hebben de meest eenvoudige uitvoering bestudeerd en er is nog veel
ruimte voor verbetering van deze sensor.
In een mechanisch goed gedefinieerde opstelling hebben we de invloed van de

vervorming van een micro-ring op de verschuiving van zijn optische resonanties ge-
meten. De resonantiegolflengte verschuiving ligt tussen de 0.5 en 0.75 pm/microrek
voor licht met een golflengte van 1550 nm. De verschuiving is afhankelijk van de
breedte van de golfgeleider en van de silicium kristaloriëntatie. De resonantiever-
schuiving komt vooral door de verlenging van de golfgeleider. De invloed van de
verandering van de fasesnelheid van het licht in de golfgeleider (effectieve index)
is een factor drie kleiner en werkt in tegengestelde richting. De sterke dispersie in
sub-golflengte silicium golfgeleiders (400 bij 220 nm2) halveert de verschuiving.
De optische eigenschappen van de micro-ring-resonatoren en hun componenten

hebben we uitvoerig bestudeerd. Verschillende methoden voor de karakterisering
van directionele koppelaars, die licht naar de ring koppelen, geven vergelijkbare
resultaten (direct en in ring-resonatoren). Een interessant gemeten effect is de
grote faseverandering die deze koppelaars introduceren wanneer nagenoeg al het
licht van de ene naar de andere golfgeleider koppelt.
De meeste eigenschappen van silicium ring-resonatoren kunnen worden berekend

met benaderende analytische theorie. Deze theorieën zijn meestal ontwikkeld voor
golfgeleiders met een laag brekingsindexcontrast, zoals glasvezels (Δn < 0.1). We
hebben deze theorieën nagekeken en, waar nodig, aangepast voor silicium golfge-
leiders, die juist een hoog brekingsindexcontrast hebben (Δn ≈ 2). Analytische
theorieën geven fysisch inzicht en kunnen worden gebruikt in snelle simulaties van
grote fotonische schakelingen. Voor het lezen van dit proefschrift is basiskennis
van elektrodynamica voldoende. Hoofdstuk 2 kan worden gebruikt als onderdeel
van een vak op universitair niveau.
Dit proefschrift beschrijft ons onderzoek naar silicium fotonische micro-ring-

resonatoren en hun toepassing als mechanische sensoren. Het gebruik van zulke
resonatoren in micro-gefabriceerde ultrageluid transducenten (MUTs) biedt nieuwe
mogelijkheden voor ultrasone matrix technologie.
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Preface

As the title suggests, this thesis is about silicon photonic micro-ring resonators
to sense strain and ultrasound. To some readers, this title clearly states what I
did while this title will sound alien to others. Basically, I used photons (light)
to measure deformation (strain) and high-frequent sound. I have tried to address
all readers. Chapters 1 and 6 should be readable to anyone with an interest in
technology (and a good level of English). The technical Chapters 2 to 5 contain
abstracts that address scientific peers. Anybody with a basic knowledge of electro-
dynamics should be able to read this thesis without consulting other literature –
provided that you read the thesis from front to back. Chapters 4 and 5 are directly
accessible to mechanical and acoustical engineers. Whatever your background, I
hope that you enjoy the reading, that you learn something, and that you get as
enthusiastic as I am about these new sensors.
I got the idea of this ultrasound sensor when I was doing my Masters’ thesis

project in the field of silicon photonics (Dec. 2008). This project was collaboration
between the Optics Research Group of Delft University of Technology (TU Delft)
and TNO (Delft). At TNO, there was a project to develop a pressures sensor based
on silicon photonic micro-ring resonators. I had done my bachelor’s project in the
acoustics group (of TU Delft) and my industrial internship on ultrasonic imaging
of oil pipes (at Applus RTD, Rotterdam). I realized that TNO’s pressure sensors
could also measure ultrasound when interrogated fast enough and that this would
have substantial benefits for microphone arrays in hard-to-reach locations such as
oil pipes or the human artery. My supervisors, prof. Paul Urbach of TU Delft and
dr. Mirvais Yousefi of TNO decided that this would be an interesting project for
me to carry out as a PhD student in their groups.
This project was initially funded by TNO while we wrote a research proposal.

The codename of the project was “Photonic NanoPhone” because we were working
towards a very small and sensitive optical microphone. Dr. Koen van Dongen of
the acoustical wavefield imaging group (TU Delft) joined the project. His team
was developing a piezo-electric transducer array for ultrasonic imaging inside blood
vessels (IVUS). Prof. Ton van der Steen of the Thorax Center of the Erasmus MC
(Rotterdam) found the project interesting and promising but decided not to join
because the microphone would not go to the clinic within the duration of this
project. He was very right about that - although size of the actual microphone
we report in this thesis is smaller than the diameter of a human hair, this mi-
crophone is in a package of a few centimeters. Something I would not like in my
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artery. We wrote the proposal and I would like to acknowledge the IOP Photonic
Devices programme of NL-Agency of the Dutch Ministry of Economic Affairs for
the grant. This project fits well in their research programme which focuses on
intensive collaboration between multidisciplinary research groups and industry.
This new microphone has a huge potential for applications in industry while there
were many fundamental issues unknown and there was no proof of the principle.
The project started March 2011. Next to TNO, Technobis Fibre Technologies
(Uitgeest) and HQ sonics (Waalre) joined as industrial partners to work on the
electro-optic interrogation and on the ultrasonic testing, respectively. Ir. Suzanne
Leinders joined as PhD student in the acoustics group with a focus on the acous-
tics of the sensor and the application to ultrasonic imaging. We collaborated a
lot. In November 2011, Mirvais Yousefi left TNO and dr. Jose Pozo took over as
my direct supervisor. In April 2013, dr. Martin Verweij and prof. Nico de Jong
took over as supervisors of Suzanne. Nico de Jong is also with the Erasmus MC.
With this thesis, I leave the project but the research continues by Suzanne and her
supervisors and possible by other PhD students that join this research activity.
This project has been performed in close collaboration between the partners

and I have experienced an open-door policy. I had the luxury of having two and
sometimes even three desks in the same building. One at TNO, one at TU Delft,
and occasionally one in the acoustics group to efficiently work together. I have
used two labs: the photonics lab of TNO for the measurements of Chapters 3 and 4
and we have built the setup for Chapter 5 in a lab of the TU Delft acoustics group.
The micro-mechanical fabrication was performed by TNO in the Van Leeuwenhoek
Laboratory, a joined lab of TU Delft and TNO. We received large interest from
Technobis - I hope that we did not drive them crazy by asking for different specs
every time we met. Henk Huynen was always critical about the specs of the
microphone and with Chapter 5, we can finally answer his questions. Positively.

As should be clear by now, I have many people to acknowledge: Paul Urbach,
Mirvais Yousefi and Jose Pozo for the guidance, insightful discussions, and their
open-door attitude; Suzanne for the open discussions, her practical mindset about
technical and non-technical issues and her jokes; Koen van Dongen for the collabo-
ration on the research proposal; Martin Verweij and Nico de Jong for the guidance
of Chapter 5’s research.

At TNO, I would like to acknowledge Hans van den Berg for the micro-
fabrication: the PECVD deposition and the micro-fabrication of the membranes in
the ultrasound sensors (Appendices A and D); Peter Harmsma, Remco Nieuwland
and Jos Groote Schaarsberg for the help and training in the photonics lab; Emile
van Veldhoven for the helium ion microscope (HIM) images; Pim Muijlwijk (then
intern at TNO and now employee) for the work on Chapter 4 including automation
of the setup; Teun van den Dool and Erik Tabak for the development of the strain
tool and the discussions on Chapter 4; Martin Lemmen for the discussions on me-
chanics; Ruud Schmits for the fabrication of the first silicon photonic resonators
(not reported in this thesis); Paul van Neer for the discussions about ultrasound
sensors; Dario Lo Cascio, Michael Engelmann, Jan-Leendert Joppe, and Roland
van Vliet (”let’s do cool stuff”) for the management support.
I would like to acknowledge TU Delft’s technical and support staff, Yvonne



xv

van Aalst, Henry den Bok, Gerrit van Dijk, Dennis van Doorn, Roland Horsten,
Emile Noothout, Rob Pols, Thim Zuidwijk. I would like to thank the staff of
the Van Leeuwenhoek Laboratory / Kavli NanoLab Delft for the help with the
metrology and fabrication of the membranes. I would like to acknowledge Olaf
Janssen sharing the layout template of his thesis.
I would like to acknowledge the ePIXfab consortium for the fabrication of the

photonic chips; Pieter Dumon, Amit Khanna and their team at IMEC (Leuven,
Belgium) for the technical support; Bradley Sneyder and Peter O’Brien of the
Tyndall National Institute (Cork, Ireland) for the non-trivial packaging of the
photonic microphones; Khalid Chougrani of Applus RTD (Rotterdam) for Figure
1.1b; Anne-Sophie Bonnet-Ben Dhia, Omar El Gawhary, Kevin van Hoogdalem,
Adrianus T. de Hoop, Steven Johnson, Wim van Horssen, Jos Thijssen, and Ad
Verbruggen for the input on Chapter 2; Vincent Brulis of Photon Design (Oxford,
UK) for his support on their software; the user committee of the project for their
interest and their constructive feedback during our meetings. I would like to
acknowledge my doctoral committee (see page iv).
I would like to thank my colleagues at both TU Delft and TNO for the fruitful

discussions, the fruitless discussions, and the laughters. I would also like to thank
all the people with whom I have had interesting discussions or good times at
scientific conferences. Special thanks to the people of Southampton’s ORC who I
was always welcome to join for dinner and drinks when I was visiting conferences
by myself. I have become good friends with my TU Delft long-term office mates:
Nitish and Adonis, I enjoyed sharing thoughts about technical and non-technical
topics. I am indebted to my friends, my family, my parents, my sisters, and
especially to my girlfriend, Mirjam, for their enduring trust and support. Thank
you very much.





Chapter

1
Introduction

This thesis is about photonic ring resonators to be used as ultrasound micro-
phones (Sec. 1.2) or strain gauges (Sec. 1.3). Hereafter we first explain how these
new sensors work and the research we carried out to make them work (Sec. 1.1).
Recent technological developments in the semiconductor industry make (mass-)
production of these silicon devices possible (Sec. 1.4). The outline of this thesis is
presented in Sec. 1.5.

1.1 The aim: photonic ring resonators to sense ultrasound

This thesis is about the research that has been carried out towards a new ul-
trasound microphone based on silicon photonic ring resonators. In this photonic
microphone, light is guided through a waveguide to a photonic resonator and the
light that passes the resonator is recorded using a photo-receiver. The photonic
resonator is made to modulate the light with the ultrasonic pressure. We used
a photonic ring resonator which consists of a looped waveguide, forming a closed
cavity that has specific optical resonances. This resonator was integrated in a thin
membrane. The operation principle is as follows: ultrasonic pressure waves de-
form the membrane and thus deform the photonic ring resonator. This deformation
shifts of the resonance frequencies of the ring resonator. These shifts are measured
by recording the light that passes the ring resonator. We have investigated these
microphones in silicon-on-insulator (SOI) technology, because it allows for cheap
and reliable fabrication of both the photonic circuits and the micro-mechanics of
the devices.
The aim of this research project was to proof the operation principle of this

new type of microphone and to study the feasibility for application in ultrasonic
imaging. We have chosen to also develop thorough understanding of the compo-
nents and principles on which this sensor is built, so that the obtained knowledge
is useful for many other applications as well.
Therefore the first objective was to review and, when necessary, extend funda-

mental theory of silicon photonic micro-ring resonators (Chapter 2). The second
objective was to characterize and understand the optical behavior of the resonator,
thus without applied deformation (Chapter 3). The third objective was to under-
stand the relation between an applied deformation of the resonator and the corre-
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sponding shift in the resonance wavelength, as little was known in literature about
this relation (Chapter 4). In Chapter 5, we reach the final goal of this research and
we demonstrate the operation principle of the new type of ultrasound microphone
that is based on silicon photonic micro-ring resonators. The demonstrated sensor
has a sensitivity that is already similar to the state-of-the-art of conventional ul-
trasound sensors despite the fact that we report on the most basic configuration
and that there is much room for optimization and improvement.
The chapters of this thesis are relevant to different fields of scientific research.

Therefore we have reviewed the literature in the introductory section of each chap-
ter, and not in this Chapter 1 as is often done. The history and rationale behind
silicon photonics is introduced in Sec. 2.2 while the state-of-the-art is summarized
in Sec. 3.1. This introductory Chapter 1 motivates the research reported in this
thesis from a more general perspective.

1.2 A new microphone for (medical) ultrasound

This thesis demonstrates the working principle of a new type of microphone with
important benefits for medical and industrial ultrasonography. In this section,
we first introduce ultrasonography and traditional microphones. Then we present
the new microphone. We conclude this section with two applications: medical
intravascular ultrasonography (IVUS) and non-destructive testing (NDT) of in-
dustrial pipes.
Ultrasonography is a technique in which high-frequent sound waves are used to

image something which is not visible with light. Well known are the images of a
fetus, which are made with an ultrasonic transducer placed on the belly of a preg-
nant woman. Sound waves are emitted downwards into the belly, partially reflect
upwards on the structure of interest (the fetus), and these echoes are recorded
by the transducer. The technique is similar to sonar used by some animals such
as bats. Today’s clear ultrasonic images are made with an array of transducers,
which record the sound waves at a number of positions spaced at distances smaller
than the wavelength. The recordings are transformed to images by digital focus-
ing, using a computer to generate an acoustical image similar to what a lens does
with visible light.
Conventional ultrasound transducers employ piezo-electric material. As a sound

(pressure) wave compresses this material, the piezo-electric effect generates an
electric voltage. The resulting electrical signal is a direct measure of the incoming
sound pressure. Last decades, micro-machined ultrasound transducers (MUTs)
have received a lot of interest. Arrays of traditional piezo-electric transducers re-
quire individual fabrication, placement and wiring of the piezo-electric elements,
while micro-machined transducers are fabricated with optical lithography in which
all array elements are made simultaneously. This may result in an huge reduction
of the price of such transducer arrays. In MUTs, sound pressure deforms a flexible
membrane, similar to the human eardrum. The most popular MUT is a capacitive
MUT (cMUT) in which the vibrating deflection is measured by recording the elec-
trical capacitance between the membrane an a bottom plate. The high-frequency
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signal of the electrical transducers is transmitted via a coaxial wire. Despite the
low capacitance of these cables, the capacitance still limits the cable length.
In this thesis, we investigate and prove the principle of an ultrasound microphone

based on integrated photonic resonators, in which photons rather than electrons,
carry information (Chapter 5). We demonstrate a microphone for operation at
0.75 MHz with a minimal detection level (NEP) as low as 1 Pa. This is already
on the same order of magnitude as the state-of-the-art of piezo-electric transduc-
ers while there is much room for improvement. One sensor consists of an optical
resonator integrated in the membrane of a micro-machined ultrasound transducer.
The deflection of the membrane caused by the ultrasonic waves shift the optical
resonance frequencies. This shift of resonance can be optically monitored by an ex-
ternal interrogator system. Next to the resonators, it is possible to integrate optical
multiplexers1 directing specific wavelengths to individual resonators (wavelength-
division-multiplexing, WDM). In the literature, various types of multiplexers in
silicon-on-insulator technology have been demonstrated with footprints below 1
mm2 [1, 2]. This allows simultaneous reading of multiple sensors with one optical
fiber. Fabrication of the devices is done with optical lithography for photonics and
micromechanics, exploiting the high-tech fabrication technology developed in the
semiconductor industry. Another major advantage of the all-optical sensor that
we investigate is that it does not suffer from electromagnetic interference (EMI).
A limitation of this new type of transducer is that it only records but does not

generate sound. Acoustical imaging with digital focusing only requires an array
of microphones, while one omnidirectional source suffices. This source can be a
single traditional piezo-electric transducer. Alternatively, all-optical solutions use
the photo-acoustic effect, either in a well-defined structure in the catheter [3–7],
or in the imaged medium (this has additional advantages, see [8]).
Ultrasonography is used in medical diagnostics for the imaging of different sub-

cutaneous body structures. Lately, it has been recommended as an effective tool
for the diagnoses of atherosclerosis (intravascular ultrasonography, IVUS) [10–12].
By bringing the ultrasonic transducer, mounted on the tip of a catheter, into the
artery an image of the vessel wall can be obtained (see Fig. 1.1a for an example
of an IVUS image). However, respiratory motion can displace the catheter tip
as much as 6 mm, resulting in serious blurring and artifacts in the images. To
improve the image quality, it is advantageous to use an array of many transducers
in the arterial direction. This was demonstrated by our collaborators of the acous-
tical wavefield imaging laboratory [13]. Although possible to a certain extent,
it is difficult to wire many electronic transducers with coaxial cables through the
artery. In contrast, when the optical MUT is used, the signals of many sensors can
be transmitted via one optical fiber2. Moreover, the insensitivity to EMI allows
the ultrasound microphone to be used inside MRI-scanners, combining two com-
plementing imaging modalities. Our research has received large interest from the

1Multiplexing is the simultaneous transmittance of multiple signals via one cable.
2An alternative approach is placing a micro-chip on the catheter tip, pre-processing the signal

to limit the amount of data to be transmitted through the coaxial wires. This is explored
in the STW-project “Miniature ultrasound probe for real-time three-dimensional imaging and
monitoring of Cardiac interventions”.
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(a) (b)

Figure 1.1: Applications of ultrasonography. (a) Intravascular imaging. Ultrasono-
graph of the cross-section of a blood vessel (main image), scan along the longitudinal
direction of the blood vessel (right image). Screenshot illustrating VH R©IVUS of
Volcano Corporation (San Diego, California, USA) [9]. (b) Ultrasonic inspection of
the girth welds of industrial pipes. RTD Rotoscan IWEX 3D equipment of Applus
RTD (Rotterdam, The Netherlands). Photograph courtesy of Applus RTD (mr.
Khalid Chougrani).

biomedical engineering group of the Thorax center of the Erasmus Medical Center
in Rotterdam, who pioneered and developped ultrasonic diagnostic techniques for
vulnerable plaque detection.
Ultrasonography is also used for non-destructive testing (NDT) of industrial

vessels or pipes as applied in the petrochemical and oil&gas industries. A major
application is the inspection of grith welds of new pipelines. Welding of metal
pipes is not straightforward, and industrial use requires strong and defect-free
welds. One can imagine that these issues are especially important when a pipe
is to be submerged to the bottom of the sea. In today’s ultrasonic NDT, array
technology with over one hundred elements is employed. Applus RTD, a Rotter-
dam based company, is leading in ultrasonic inspection of such welds. In their
state-of-the-art IWEX 3D imaging technology, the electronical processing unit is
located close to the actual ultrasound transducers, in order to limit the length
of the ultrasonic signal cables (see Fig. 1.1b). This unit is relatively large and
heavy compared to the size of the transducer. In contrast, our optical transducers
allow the processing to be done kilometers from the inspected structures by using
optical fibers originally developed for long-haul telecommunication. Moreover, the
all-optical system cannot ignite gas explosions.
In this thesis, we have given a proof-of-the-principle of an micro-machined ultra-

sound microphone based on integrated optical resonators. This microphone is very
promising for various fields of ultrasonography, varying from medical to industrial
applications.
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1.3 A new strain sensor for micro-mechanical systems

Microscale displacement sensors are widely used in micro electro-mechanical sys-
tems (MEMS) to measure strains such as those induced by force, acceleration,
pressure or (ultra)sound (Refs [14] and [15] and review MEMS and Piezoresitive
devices in particular, respectively). MEMS mechanical sensors are, for example,
used in the iPhone 4 which is equipped with a MEMS accelerometer and a MEMS
gyroscope to provide the feature of automatic recognition whether the phone is
held horizontally or vertically. Another example is in cars, where the air-bags are
usually triggered by a MEMS accelerometer. Although the aim of our research
was to obtain a micromechanical all optical ultrasound sensor, the sensor that is
studied in this thesis is actually more generally applicable.
Traditional MEMS sensors are based on a capacitor or on piezoresistive material

to transduce a displacement into an electrical signal. Alternatively, we propose to
use optical resonators as sensing element, which provides particular benefits: high-
speed readout, small sensor size, small multiplexer size (1 mm2), insensitivity to
electromagnetic interference, and no danger of igniting gas explosions by electric
sparks.
Integrated optics technology allows the optical sensors, as well as their multi-

plexing circuit, to be integrated with MEMS. The sensing elements and their mul-
tiplexers can often be fabricated in a single processing step. Silicon-on-insulator
(SOI) has emerged as one of the focus platforms for integrated optics, and is rela-
tively straightforward to integrate with MEMS, since MEMS are most commonly
made of silicon.
Any change in the size or in the refractive index of a silicon integrated optical

resonator shifts its resonance frequencies, and this shift can be accurately recorded.
Several groups have reported on sensor MEMS that are based on silicon integrated
optical ring resonators, such as strain gauges [16–18], or pressure sensors [19–22].
In Chapter 4, we will study in detail the relation between an applied strain and
the shift in the optical resonance frequency.

1.4 Silicon photonic and micromechanical fabrication technology

We have chosen to develop opto-mechanical sensors in silicon-on-insulator tech-
nology, to profit from 50 years of development in semiconductor fabrication tech-
nology.
The electronic integrated circuit (IC) industry has tremendously improved

micro-fabrication technologies. Many innovations of the last 50 years were due
to the desire to reduce the cost, size, and power consumption of ICs (computer
chips), for application in computers, internet, cruise control, mobile phones, etc.
The heart of semiconductor fabrication is photolithography, where the patterns
that have to be realized are projected in a photosensitive layer. This layer is
transferred into the actual material using an etch process. (Reference [23] in-
troduces ICs.) Next to the fabrication of ICs, the micro-fabrication technology
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has been extended to the fabrication of micro-mechanical systems (MEMS) and
photonic integrated circuits (PICs). (See Refs. [14] and [24], respectively).
Standardized technology platforms have been developed because accurate and

reproducible fabrication takes many years to develop. Such a platform restricts to
a wafer with layers of specific materials, and uses specific processes to fabricate
structures in these wafers. The fabrication platforms are offered by semiconductor
fabrication plants (fabs) worldwide.
We have chosen the silicon-on-insulator technology platform in which both mi-

cromechanics and integrated photonics are fabricated. (A more detailed motiva-
tion for this choice of material platform is given in Sec. 5.2.) Silicon technology is
the most developed platform, and is offered by many fabs. Fabrication of silicon
devices is reproducible and mass-production is relatively cheap. Silicon is a strong
material and the common material in MEMS. The optical properties of silicon are
good enough to meet the requirements of our resonator. The very high refrac-
tive index contrast confines the light strongly inside the silicon, allowing devices
with a small footprint (ring resonators with diameters down to 6 μm). However,
silicon photonics also has some drawbacks. First, silicon does not electronically
generate or detect light at the used telecommunication wavelengths (∼1550 nm).
Other groups have solved this by adding active materials, but, in our case, we
actually prefer light to be transmitted to and from the chip via an optical fiber to
an external read-out system. Second, silicon waveguides have relatively high loss,
reducing the quality factor of the resonators and thus their theoretical sensitivity.
Third, the thermo-optic effect is quite large in silicon, which causes relatively large
thermal noise [25]. Our ultrasound signals have, however, a small and well known
bandwidth so that filtering drastically reduces this noise to acceptable values.
Integrated photonics requires a higher fabrication accuracy than is needed for

MEMS membranes that we use. We ordered the photonic integrated circuits via
the EU-funded ePIXfab consortium at IMEC (Leuven, Belgium) [24, 26]. IMEC
fabricated the devices in their CMOS line with deep-UV lithography. We suc-
cessfully post-processed these chips in-house with MEMS fabrication processes,
without damaging the photonic circuits.

1.5 Outline of this thesis

In this chapter, we introduced the concept of strain and ultrasound sensing with
silicon photonic micro-ring resonators. We motivated this research by presenting
applications of this sensor in ultrasound detection and in microscale strain sen-
sors. These sensors are widely used in the medical market, the oil & gas industry,
the petrochemical industry, the automotive industry and the consumer electronics
market. The remainder of this thesis is about the advances in theory and tech-
nology that we made, starting with a theoretical and experimental studies of the
ring itself, followed by a study of the relation between strain and the resonances
of the optical micro-rings and then presenting the proof-of-the-principle of the ul-
trasound sensor. Each chapter contains an introduction in which we compare the
presented work with the state-of-the-art.
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Chapter 2 presents fundamental theories on silicon photonic micro-rings, in-
cluding waveguides, couplers and resonators. It includes the fundamentals of in-
tegrated optics so that it can be used as additional material in a university course
on electrodynamics. We assume the book Electrodynamics by Griffiths as pre-
requisite. The chapter reviews theories in the literature from the perspective of
high-index-contrast (silicon-on-insulator waveguides have a high index contrast).
It includes new extensions and revisions of existing theories to the regime of high-
index-contrast.
Chapter 3 provides a methodology for characterization of micro-ring resonators

and their components (waveguides and directional couplers). It reports on the ob-
tained characteristics of the resonators that are used as mechanical sensors in the
chapters thereafter. Directional couplers are used to couple light to and from the
micro-ring resonators. An interesting observation is that these couplers introduces
a significant additional phase delay in the regime that nearly all light is coupled
to/from the ring. We observed this as a significant change in the resonance wave-
lengths of a micro-ring; this change was caused by a tiny difference between the
waveguides of the directional coupler.
Chapter 4 studies the shift in the optical resonance frequencies of silicon ring

resonators due to an applied static mechanical strain. It presents a methodology
to characterize strain sensors in silicon photonic technology, including a novel
mechanical setup. Different design choices are investigated such as width of the
waveguides and orientation of the resonator with respect to the orientation of the
silicon crystal. The influence of different physical effects is analyzed: elongation of
the track circumference, a change in the size of the cross-section of the waveguides
due to Poisson’s effect, the change in the refractive index of the silicon and silicon-
dioxide due to the photo-elastic effect, and the dispersion that is introduced by
the waveguide. These figures and insights are necessary for the design of strain
and ultrasound sensors based on silicon waveguides.
Chapter 5 presents the proof-of-the-principle of ultrasound detection with op-

tical silicon ring resonators integrated in an acoustical resonant membrane. It
presents the design, fabrication and characterization of this microphone. The char-
acterization shows a minimal detection level (NEP) below 1 Pa which is already on
the same order of magnitude as the state-of-the-art of piezo-electric transducers.
The chapter concludes with a number of suggestions to improve the detection limit
even further.
Chapter 6 concludes the thesis with a summary of the previous chapters and an

outlook to the future.
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Abstract – many theories on integrated optics were originally derived for low-index-
contrast (Δn < 0.1) waveguides while contemporary SOI waveguides have a high-
index-contrast (Δn ≈ 2). In this chapter, we review theories in the literature from
the perspective of high-index-contrast and we extend the theories where necessary.
We describe general properties of light propagation through waveguides following the
work of Kogelnik [27] and Marcuse [28, 29] (Secs. 2.4-2.6). We extend Marcatili’s
approximate analytical method for rectangular waveguides to the regime of high-
index-contrast [30] (Sec. 2.7). We find that Marcatilis eigenvalue equation for the
propagation constant is also valid for SOI waveguides and we improve the method
by adjusting the amplitudes of the components of the electromagnetic fields. Our
method shows much better agreement with rigorous simulations of SOI waveguides.
Furthermore, we derive expressions for the effective group index and we study the
avoided crossing of TE- and TM-like modes. We present three calculations for
directional couplers, based on coupled mode theory, eigenmode expansion and FDTD
(Sec. 2.10). We review and reformulate the coupled mode theory of Hardy and
Streifer [31,32] to show that this theory is, despite the high index contrast, applicable
to silicon directional couplers (Sec. 2.10.3). We introduce out-of-plane grating
couplers, including a new simulation scheme for 1-D grating couplers and a brief
review of more advanced out-of-plane grating couplers (Sec. 2.11). We present
Yariv’s formulation of ring resonators, but with exact equations for the extinction
ratio and the full-width at half-max (FWHM, Sec. 2.12). We design, as example,
racetrack-shaped ring resonators for strain and ultrasound sensing (Sec. 2.13).

2.1 Introduction

This chapter presents fundamental theories that describe photonic micro-ring res-
onators in silicon-on-insulator (SOI) technology. Waveguides in SOI technology
have a high index contrast (i.e., a large difference between the refractive index of
the core of the waveguide and the cladding of the waveguide). In the early days
of integrated optics, mainly low index contrast waveguides were used, and many
theories stem from this time [27–38]. Unfortunately, these theories are not always
applicable to high-index-contrast. This chapter presents theories for high-index-
contrast silicon waveguides, including two theories newly derived in the scope of

Section 2.7 is based on W.J. Westerveld, S.M. Leinders, K.W.A. van Dongen, H.P. Urbach,
and M.Yousefi, “Extension of marcatili’s analytical approach for rectangular silicon optical wave-
guides,” Journal of Lightwave Technology, vol. 30, no. 14, pp. 2388–2401, 2012.

Section 2.11 is based on W.J. Westerveld, H.P. Urbach, and M. Yousefi, “Optimized 3-D
simulation method for modeling out-of-plane radiation in silicon photonic integrated circuits,”
IEEE Journal of Quantum Electronics, vol. 47, no. 5, pp. 561–568, May 2011.

A free open-source Matlab implementation of the methods in Sec. 2.7 has been published
online as “RECTWG: Matlab implementation of the extended Marcatili approach for rectangular
dielectric optical waveguides”, distributed in RECTWG package for Matlab – Version 0.1, Mar.
2013. This package is maintained by W.J. Westerveld, R.C. Horsten, J. Pozo, and H. P. Urbach.
Available at http://waveguide.sourceforge.net.

http://waveguide.sourceforge.net
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this thesis, and a review of existing theories. The scope of this chapter is limited
to photonic components in the silicon-on-insulator technology with subwavelength
rectangular waveguides. Nowadays, this is one of the most used platforms. Other
technologies, such as rib waveguides, are not included here and the reader is re-
ferred to, for example, Ref. [39]. This chapter includes fundamentals so that it
can be used as extra material in a university course on electrodynamics (such as
Ref. [40]).
This chapter first introduces the concepts of integrated optics and silicon-on-

insulator technology (Secs. 2.2 and 2.3). Then it states Maxwell’s Equations,
describes the modal propagation of light through slab waveguides, and derives
general properties of modes (Secs. 2.4, 2.5 and 2.6). After this, a new approximate
method for rectangular SOI waveguides is derived, folllowed by a short introduction
to numerical mode-solvers and typical properties of SOI waveguides (Secs. 2.7,
2.8 and 2.9). The chapter continues with components: directional couplers, out-
of-plane grating couplers, and ring resonators (Secs. 2.10, 2.11 and 2.12). The
chapter is concluded with our rationale behind the design of racetrack resonators
for sensing of mechanical strain and ultrasound (Sec. 2.13).

2.2 Silicon Photonics

This section briefly introduces photonics, integrated photonics, silicon photonics,
and the state-of-the-art of silicon photonic fabrication techniques. Recent scientific
advancements are further detailed in Sec. 3.1.

In photonics, light is used as carrier of information, likewise electrons are used
in electronics. Photonics as a field began with the invention of the laser in 1960.
Other developments followed, including: the laser diode, optical fibers for transmit-
ting information, and the Erbium-doped fiber amplifier. These inventions formed
the basis for the telecommunications revolution of the late 20th century and pro-
vided the infrastructure for the internet [41]. Photonics is not limited to telecom-
munications, for example, in this thesis we work on optical sensors. A number of
optical components are required: laser sources, modulators to encode the light with
an (electronic) signal, detectors, and splitters to redirect signals to the designated
users.
The concept of integrated optics, already proposed in the late 1960’s, is to fabri-

cate all these optical components in a single on-chip integrated circuit [42]. These
chips usually use dielectric materials to confine and guide light (like optical fibers).
The size of a single-mode-waveguide depends strongly on its refractive index con-
trast, i.e., the difference in refractive index between the core of the waveguide
and is cladding. For example, optical fibers have a low index contrast (∼0.05)
with a core of ∼8.2 μm [43], and silicon waveguides with a SiO2 cladding have a
high index contrast (∼2) and core of ∼0.5 μm. In the early days of integrated
optics, only low index contrast waveguides could be fabricated. Development of
integrated photonic components has always gone hand-in-hand with development
of lithographic fabrication processes. Devices and waveguides require dimensions
on the order of the wavelength with a much higher accuracy, demanding the most
of micro-fabrication techniques. Over the last decades, a number of more-or-less
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standardized platforms have been developed, comprising a set of material combi-
nations, fabrication processes, and typical optical components.
One of the most promising platforms for integrated photonics is the silicon-on-

insulator platform, often referred to as Silicon Photonics. Silicon photonic com-
ponents have first been reported in the mid 1980’s [44] and silicon-on-insulator
waveguides were reported few years later [45, 46]. Photonics has been driven by
the telecommunication industry and the vision of a “superchip” combining elec-
tronics and photonics, presented in the early 1990’s, has inspired many researchers
since [47,48]. A review of the field of silicon photonics may be found in Refs. [39]
and [49]. Large companies such as Intel, IBM, Molex, and Teraxion have an-
nounced and launched products in silicon photonic technology, for example op-
tical interconnects for high-speed communication [50–55]. A major advantage of
this platform is that photonic integrated circuits can be fabricated in the exist-
ing CMOS infrastructure of the semiconductor industry, allowing for low cost and
stable mass-fabrication. Moreover, silicon is a strong material and its high refrac-
tive index contrast allows for small devices. Silicon is a passive material with no
direct semiconductor band gap around 1550 nm free-space wavelength, thereby it
cannot be used to electronically detect or generate light. Germanium or silicon-
germanium alloys are added to provide this functionality, while this processing is
still possible in CMOS fabrication lines [56–59]. Alternatively, III-V materials can
be integrated into silicon photonic integrated circuits [60, 61].
Integrated photonic circuits have different requirements than electronic circuits.

Typical critical dimensions of silicon waveguides (100 nm - 500 nm) are fairly large
in today’s high-end CMOS tools; however, optical components require the dimen-
sions to be accurate within nanometers and consist of diverse features (ranging
from isolated waveguides to dense arrays of holes). Existing CMOS processes have
been tailored to these demands of integrated photonics, and a silicon photonics
platform is offered for about a decade by the ePIXfab consortium [24]. Today,
wafer-scale fabrication in (semi) industrial fabrication plants (fabs) is offered by
various parties1. Photonic components in today’s silicon platforms are often based
on rectangular silicon waveguides on a SiO2 burried oxidie (BOX) substrate, and
with an air or SiO2 cladding. Waveguides have a typical height around 220 nm
and width around 450 nm.
This chapter presents a selection of theories that are applicable to integrated

photonic components in SOI technology. We assume light with a free-space wave-
length λ around 1.55 μm. Telecommunications often works with this wavelength,
and many components (sources, detectors, fibers, etc) are relatively cheap available
for this wavelength, making this wavelength also attractive for other applications.

1In Europe, the EU-funded ePIXfab consortium offers fabrication at IMEC (Leuven, Belgium),
CEA-LETI (Grenoble, France) or IHP (Frankfurt an der Oder, Germany) [24, 26]. A similar
service is offered by the OpSIS project based at the University of Washington in Seattle and the
University of Delaware in Newark, a consortium including the Institute of Microelectronics (IME,
Singapore), Luxtera (headquarter in Carlsbad, California), and STMicroelectronics (headquarter
in Geneva, Switzerland) [62].
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2.3 Fabrication technology for optical designers

Fabrication of the small waveguides in silicon-on-insulator technology is not
straightforward, only last decade’s high-end technology is accurate enough. The
rules that apply to macro-fabrication do generally not apply to micro-fabrication.
To illustrate this, we compare the fabrication of a photonic chip in a fab against
the fabrication of a wooden table by a craftsman. Asking a fab to make a device
from a slightly different material might a decade of development, whereas a wood
craftsman could easily work with a slightly different type of wood. On the con-
trary, it would be almost impossible for a craftsman to fabricate a million tables,
while a fab easily fabricates a millions devices
We briefly explain the fabrication concept. First, the optical designer makes a

construction plan based on the technology which is offered by a fab. The fab starts
with a clean silicon-on-insulator wafer. A photo-sensitive layer is spun upon the
wafer. This layer is illuminated with the pattern that has to be written in this layer.
(You can compare this with a traditional photography, where an image created by
light falling on a photographic film.) Then the photosensitive layer is developed
such that it transforms into a mask protecting only the illuminated patterns. The
actual fabrication is done using etching, a chemical process a in which a plasma
“eats” the unprotected silicon. Then the wafer is cleaned, removing the residue
of the mask. Most chips require more than one of these fabrication sequences, for
example for the fabrication of out-of-plane grating couplers (see Sec. 2.11), which
basically is a grating etched in the top surface of a wide waveguide.
In reality, micro-fabrication is a rough process on the micro-scale. We will

illustrate this with some examples, most appreciated when one realizes that the
width of a waveguide (500 nm) is about one hundredth of the diameter of a human
hair. In the illumination, the imaging has to be accurate within a few nanometers
over a surface of about 1 cm2 (the chip). Multiple layers have to be aligned to
each other, so after fabrication of the first layer, the wafer has to go back into
the lithography machine and the image of the second layer has to be aligned to
the patterns on the wafer with an accuracy of a few tens of nanometers. Also the
etching is notably rough. The top of the patterns is protected with a mask, but the
formation of the sides is controlled in the etch process. The unprotected areas of
the chip consume the etchant in a higher rate than the protected patterns, giving
a variation of the etchant over the wafer. Etching small deep features is especially
difficult as “fresh” etchant has difficulty arriving at the bottom.
This gives a number of differences between the fabricated devices and the de-

signed ones and we list the most important differences. (1) The world-leading
manufacturer of SOI-wafers, Soitec (Bernin, France), specifies the variation of the
height of the silicon light-guiding layer as 20 nm, 10% of the typical height of
220 nm [63]. (2) Variations in illumination may cause all devices to be larger or
smaller than designed. (3) The lithography can be optimized for only one feature
size [24]. For example, when 450 nm wide waveguides are according to specifica-
tion, then other widths are not. (4) The sides of the pattern (waveguide) are not
perfectly straight but have an angle of about 10 degrees [64]. (5) The sides of the
patterns are not smooth, but have nanometer-scale roughness [65].
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Figure 2.1: Refractive index n of (a) silicon and (b) silicon dioxide, plotted as a
function of wavelength.

For an optical designer, it is necessary to design the devices such that they
remain functional regardless the fabrication-induced variations. There are two
approaches to address these fabrication-variations. For known fabrication-induced
differences, it is possible to design the pattern not to be identical to the desired
pattern, but to make it such that it will be fabricated as the desired pattern.
For example, when one knows the relation between the designed and fabricated
width of a waveguide, it is easy to draw the waveguide with a width that will be
fabricated as the desired width. Another example is the placement of the grating
in out-of-plane grating couplers on top of a wide waveguide. The width of the
grating can be designed larger than the waveguide (the part which extends further
than the waveguide has little effect on the light in the guide), and the length
of the wide waveguide can be chosen longer than the length of the grating. An
unintentional offset between the waveguide and the grating will then not affect the
optical properties of the device. For unknown fabrication variations, it is necessary
to design the device such that it is tolerant against fabrication variations, i.e., to
design it such that the optical functionality remains acceptable. An example here
is in the design of ring resonators, see Sec. 2.13.

2.4 Maxwell’s equations for linear, passive materials

Maxwell’s equations generally describe the propagation of light in terms of the
electric field E and the magnetic field H. This section presents Maxwell’s equa-
tions in a convenient form to describe passive components in silicon-on-insulator
technology.
Typical passive optical components in silicon-on-insulator technology consist of

silicon (Si), silicon-dioxide (SiO2) and air (see Fig. 2.1 for refractive indices). These
materials have no direct band-gap around the telecom wavelength (1550 nm),
therefore active components use different materials to generate and detect (ab-
sorb) the light. The active components are typically located far away (hundreds
of wavelengths) from the passive components. The passive components have no
free carriers or currents, so we can neglect these terms in Maxwell’s equations.
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Unless intentionally modified, silicon and SiO2 can be approximated as linear di-
electrics (i.e., approximating the material polarization proportional to the electric
field E). The linear and nonlinear susceptibilities χ(i) of silicon are well described
in Ref [66]. The magnetic susceptibility of the dielectrics can be neglected (i.e.,
approximating the permeability μ as the vacuum permeability μ0). In this work,
all optics is presented for monochromatic light with angular frequency ω and vac-
uum wavelength λ = ω/c, with c the speed of light in vacuum. This is not a
limitation, as all linear systems can equally be described in terms of time t or
angular frequency ω via the Fourier transform.
We describe the physical electromagnetic fields in terms of their complex am-

plitudes E and H. The physical (and thus real) electromagnetic fields are the real
components of these complex amplitudes, i.e., Re{E} and Re{H}, respectively.
Maxwell’s complex equations for monochromatic light in an isotropic linear di-
electric medium without charges are given by [40]

∇× E = −ıμ0ωH, (2.1)

∇×H = ıωεE , (2.2)

∇ · εE = 0, (2.3)

∇ ·H = 0, (2.4)

with vacuum permeability μ0, and permittivity ε. The latter two equations
(2.3) and (2.4) are not independent and follow directly from the first two equa-
tions (2.1) and (2.2), as the divergence of the curl of a vector is zero. The refractive
index n =

√
ε/ε0, with ε0 the vacuum permittivity. The permeability ε(x, y, z)

profile describes how the devices (e.g., waveguides, couplers, ec) look like, and
how the electromagnetic fields behave.
Electromagnetic fields in a homogeneous isotropic medium obey the wave equa-

tions

(∇2 + n2k2)E = 0, (2.5)

(∇2 + n2k2)H = 0, (2.6)

with k = ω/c the free-space propagation constant [40, Ch. 9]. When using the
wave equation for homogeneous media, it is necessary to apply interface conditions
to ensure that the solutions also obey Maxwell’s equations across interfaces. These
four conditions are that the tangential components of the electric E and magnetic
H fields are continuous [40, Ch. 7].

2.5 Dielectric Slab waveguides

Dielectric waveguides consist of a beam of a material that has a refractive index
higher than its surrounding. Light can be guided along the long direction of such
a beam. In typical2 silicon-on-insulator technology, the silicon beam is rectangular
and fabricated on top of a SiO2 layer with a cladding of either SiO2 or air. The eas-
iest waveguide to describe is a slab waveguide. This basic structure demonstrates
the concept of modes, and our description of rectangular waveguides (Sec. 2.7) is

2Different waveguide types are possible in SOI, but rectangular ones are often used today (see
Sec. 2.9).
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Figure 2.2: Silicon-on-insulator slab waveguide with height 600 nm. (a,b) Sketches
of cross sections. (a) TE-modes. Coordinate frame. Electric fields of the three
supported guided modes. (b) TM-modes. Coordinate frame. Magnetic fields of the
three supported guided modes. (c) Graphical method to solve Eq. (2.17) for TE
modes. Tangential term (dashed line) and fraction term (solid line) both plotted
versus the effective index ne (ky =

√
k2n2

1 − k2n2
e). The three crossings correspond

to the solutions plotted in (a). In Sec. 2.5, n2 = n4 and n3 = n5. We chose different
labels of the cladding refractive indices for the TE- and TM-modes (n4, n5 and n2,
n3) because that will be useful in Sec. 2.7.

strongly related to the equations derived here. A slab waveguide is a layer with a
sandwiched between two layers with a lower refractive index. Light propagation
through slab waveguide is surprisingly well described with ray optics, despite the
waveguide height being only half a wavelength (see [27, 28, 67]). We, however,
directly use the more complete wave optics.
Figure 2.2 depicts a slab waveguide. For now, we stick to the coordinate frame

in Fig. 2.2a, in which we chose a coordinate frame with the z-direction along the
direction of propagation of the wave and the y-direction normal to the slab. In
Sec. 2.5.2 (Fig. 2.2b), we will use a different coordinate frame because that will
be useful in the description of rectangular waveguides (Sec. 2.7). We simplify the
analysis by assuming that there is no variation of the electromagnetic fields in the
transversal x-direction (∂/∂x = 0), i.e., we assume an infinitely wide waveguide.
Maxwell’s equations (2.1-2.4) actually include 8 equations as Faraday’s law (2.1)
and Ampère’s law (2.2) are vectorial. Substituting ∂/∂x = 0 in these equations
shows that they decouple in equations either with Ex, Hy and Hz, or with Hx, Ey
and Ez. Solutions to the first set of equations are classified as transverse electric
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(TE) modes because the electric field E = Exx̂ is transverse to the direction of
propagation. Solutions of the second set of equations are classified as transverse
magnetic (TM) modes because H = Hxx̂.

2.5.1 TE modes

Figure 2.2a sketches the TE-modes in a 600 nm high silicon-on-insulator slab
waveguide. Transverse electric modes have only three non-zero field components:
Ex, Hy and Hz. The magnetic components can be computed from the electric
component, so that Ex uniquely defines the electromagnetic fields. We look for
monochromatic propagating wave solutions, i.e. solutions in the form

E = Ex(y)e
ı(ωt−βz)x̂, (2.7)

with propagation constant β. Subsituting this in Eq. (2.5) gives

∂2Ex

∂y2
= (β2 − k2n2)Ex. (2.8)

Depending on the sign of (β2 − k2n2), the solutions of this equation are ei-
ther standing waves or exponentially decreasing fields towards ±y. Exponen-
tially increasing solutions are not physical. The slab acts as a waveguide for
k2n2

1 > β2 > k2n2
4, k

2n2
5. In this case, the electric field inside the core (n1) is a

standing wave, while the field exponentially decay in the cladding. The light is
thus confined in the core. For β2 > k2n2

1, the wave is above the material cutoff of
all of the materials and does not propagate. For β2 < k2n2

4, k
2n2

5, the wave prop-
agates in the upper/lower cladding and is not confined to the core. For guided
waves, Eq. (2.8) has the solutions

Ex =

⎧⎨
⎩

C exp[−γ5(y − b/2)], upper cladding y > b/2,
A cos[ky(y + η)], core b/2 ≥ y ≥ −b/2,
B exp[γ4(y + b/2)], lower cladding y < −b/2,

(2.9)

with

ky =
√

k2n2
1 − β2, (2.10)

γj =
√

β2 − k2n2
j =
√

k2(n2
1 − n2

j )− k2y, j = 4, 5. (2.11)

Equation (2.9) obeys Maxwell’s equations in all three layers of the slab, but it also
has to obey these equations at the interfaces. Electromagnetic interface conditions
demand continuity of the tangential electromagnetic field components. Continuity
of Hz in combination with Faraday’s law (2.1) and ∂/∂x = 0 demands continuity
of ∂Ex/∂y. We first calculate the relations which follow from these conditions and
then discuss their meaning.

∂2Ex

∂y2
=

⎧⎨
⎩

−γ5C exp[−γ5(y − b/2)], upper cladding,
−kyA sin[ky(y + η)], core,
γ4B exp[γ4(y + b/2)], lower cladding.

(2.12)
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From the interface conditions at the lower interface (y = −b/2), we find

A cos[ky(η − b/2)] = B, (2.13)

tan[ky(η − b/2)] = −γ4/ky, (2.14)

and at the upper interface (y = b/2), we find

A cos[ky(η + b/2)] = C, (2.15)

tan[ky(η + b/2)] = γ5/ky. (2.16)

In the description of the modal electric field, Eq. (2.9), B and C follow from
Eqs. (2.13) and (2.15), respectively. The amplitude factor A is a normalization
factor, describing the amount of light in the mode, and should not follow from the
interface conditions. Note that the propagation constant β is not free as it directly
follows from ky via Eq. (2.10). Equations (2.14) and (2.16) define ky and η. After
some algebra3, we find

F (ky, k, n1, n4, n5, b) ≡ tan[kyb]− ky(γ4 + γ5)

k2y − γ4γ5
= 0. (2.17)

For a given slab waveguide (n1, n4, n5, b) and angular frequency (k = ω/c),
Maxwell’s equations thus demand ky to obey Eq. (2.17). Depending on the slab
waveguide, this equation has zero or more solutions for guided waves with β be-
tween n1k and the higher value of n4k and n5k. The tangential term is periodic,
due to which multiple solutions might exist (see Fig. 2.2c). We hereby demon-
strated that a waveguide has a distinct number of modes given a certain frequency.
Each mode has its own distinct propagation constant β and with modal field E(y).

2.5.2 TM modes

Transverse magnetic modes have the magnetic field transversal to the propagation
direction in the waveguide. Although annoying now, we switch to a different
coordinate frame in which the x-direction is normal to the slab (see Fig. 2.2b). In
this frame, non-zero electromagnetic field components are Hy, Ex, and Ez. The
waveguide is infinitely wide in the y-direction and ∂/∂y = 0. Analogue to the
derivation of TE modes, we look for propagating wave solutions

H = Hy(x)e
ı(ωt−βz)ŷ, (2.18)

obeying the wave equation (2.6), so that

∂2Hy

∂x2
= (β2 − k2n2)Hy. (2.19)

3tan[kyb] = tan[ky(b/2 + η) + ky(b/2− η)] =
tan[ky(b/2+η)]+tan[ky(b/2−η)]

1−tan[ky(b/2+η)] tan[ky(b/2−η)]
=

γ4/ky+γ5/ky

1−γ4γ5/k2
y

,

using [68, Eq. (2.174)] for the 2nd equality sign and Eqs. (2.14) and (2.16) for the 3rd equality
sign.
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Guided waves have k2n2
1 > β2 > k2n2

2, k
2n2

3, hence the solutions of Eq. (2.19) are

Hy =

⎧⎨
⎩

C̃ exp[−γ3(x− d/2)], upper cladding x > d/2,

Ã cos[kx(x+ ξ)], core d/2 ≥ x ≥ −d/2,

B̃ exp[γ2(x+ d/2)], lower cladding x < −d/2,

(2.20)

with

k2x = k2n2
1 − β2, (2.21)

γ2
j = β2 − k2n2

j = k2(n2
1 − n2

j )− k2x, j = 2, 3. (2.22)

The interface conditions demand continuity of the tangential electromagnetic field
components (i.e., Hy). Inspecting Ampère’s law (2.2) in the z-direction and using
∂/∂y = 0 gives

ıωEz =
1

n2

∂Hy

∂x
=

1

n2

∂Hy

∂x
eı(ωt−βz), (2.23)

demanding continuity of the right-hand-side of this equation because Ez is contin-
uous. Time and z-position evolution are identical in all layers of the slab, hence
continuity of the following term is demanded

1

n2

∂2Hy

∂x2
=

⎧⎨
⎩

−γ3/n
2
3 C̃ exp[−γ3(x− d/2)], upper cladding,

−kx/n
2
1 Ã sin[kx(x+ ξ)], core,

γ2/n
2
2 B̃ exp[γ2(x+ d/2)], lower cladding.

(2.24)

The four interfaces conditions, continuity of Hy and Ez at x = −d/2 and x = d/2,
demand

Ã cos[kx(ξ − d/2)] = B̃, (2.25)

tan[kx(ξ − d/2)] = −n2
1

n2
2

γ2
kx

, (2.26)

Ã cos[kx(ξ + d/2)] = C̃, (2.27)

tan[kx(ξ + d/2)] = −n2
1

n2
3

γ3
kx

. (2.28)

Combining4 Eqs. (2.26) and (2.28) gives the condition for the propagation constant
β (in terms of kx)

G(kx, k, n1, n2, n3, d) ≡ tan[kxd]− n2
1kx(n

2
2γ3 + n2

3γ2)

k2xn
2
2n

2
3 − n4

1γ2γ3
= 0. (2.29)

2.6 General properties of modes in dielectric waveguides

This section is about general properties of dielectric waveguides. Some important
characteristics such as the finite and discrete number of modes in a waveguides

4tan[kxd] = tan[kx(d/2 + ξ) + kx(d/2 − ξ)] =
tan[kx(d/2+ξ)]+tan[kx(d/2−ξ)]
1−tan[kx(d/2+ξ)] tan[kx(d/2−ξ)]

, using

[68, Eq. (2.174)] for the second equality sign.
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were already observed in the slab waveguide, and this section derives properties
and equations for guided modes in a general waveguide with a two-dimensional
refractive index profile n(x, y) (or permittivity profile). A dielectric waveguide
is fully described by its permittivity profile ε(x, y) which is invariant in the z-
direction, the direction in which the light propagates. We look for propagating
wave solutions in the from

E(x, y, z, t) = E(x, y)eı(ωt−βz), H(x, y, z, t) = H(x, y)eı(ωt−βz). (2.30)

The propagation constant β is often expressed in terms of the effective index

ne ≡ β

k
, (2.31)

with free-space propagation constant k = 2π/λ and free-space wavelength λ. The
first-order dispersion in the effective index ne can be expressed in terms of the
effective group index ng

ng ≡ ∂β

∂k
= ne − λ

∂ne

∂λ
, (2.32)

where the last equality follows from Eq. (2.31). In the case that we only use small
wavelength span around a center wavelength λc, it is often possible to approximate
the wavelength-dependence of the effective index ne(λ) as linear, so that

β(λ) ≈ 2π

[
ne(λc)− ng(λc)

λc
+

ng(λc)

λ

]
. (2.33)

2.6.1 Maxwell’s equations in Ex, Ey, Hx and Hy:
an eigenvalue problem

With electromagnetic fields in the form of Eq. (2.30), Maxwell’s equations (2.1)
and (2.2) may be written as5

∇β ×E = −ıωμ0H, (2.34)

∇β ×H = ıωεE, (2.35)

with

∇β =
∂

∂x
x̂+

∂

∂y
ŷ − ıβẑ. (2.36)

We may describe the propagation of light through waveguides as an eigenvalue
problem with the propagation constant β as eigenvalue. By eliminating the longi-
tudinal components Ez and Hz from Maxwell’s equations, one obtains the follow-
ing eigenvalue problem for the transverse components only

(
Ô − β

)⎛⎜⎜⎝
Ex(x, y)
Ey(x, y)
Hx(x, y)
Hy(x, y)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0
0
0
0

⎞
⎟⎟⎠ , (2.37)

5As components,

⎛
⎜⎜⎜⎝

∂Ez
∂y

+ ıβEy

−ıβEx − ∂Ez
∂x

∂Ey

∂x
− ∂Ex

∂y

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
−ıωμ0Hx

−ıωμ0Hy

−ıωμ0Hz

⎞
⎟⎟⎟⎠, and

⎛
⎜⎜⎜⎝

∂Hz
∂y

+ ıβHy

−ıβHx − ∂Hz
∂x

∂Hy

∂x
− ∂Hx

∂y

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
ıωεEx

ıωεEy

ıωεEz

⎞
⎟⎟⎟⎠.
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Figure 2.3: Sketch of Eigenvalues β of the eigenvalue problem in Eq. (2.37 with
2.40) showing guided, radiation and evanescent modes. Waveguide with cladding
refractive index n2 and core refractive index n1. Light with free-space propagation
constant k. The discrete number of guided modes are marked x, lay on the real axis,
and have kn2 > |β| > kn1. The continuum of radiation modes lays on the real axis
and have |β| ≤ kn2. The continuum of evanescent modes lays on the imaginary
axis. Solutions with general complex β may exist as well. See Refs. [29, 33].

with Ô a second-order partial differential operator with respect to transverse vari-
ables x and y. From the z-components of Faraday’s law (2.34) and Ampère’s law
(2.35), we respectively find

Hz =
ı

ωμ0

(
∂Ey

∂x
− ∂Ex

∂y

)
, (2.38)

Ez =
ı

ωε

(
∂Hx

∂y
− ∂Hy

∂x

)
. (2.39)

Substituting Eq. (2.39) in the x- and y-components of Faraday’s law (2.34) and
substituting Eq. (2.38) in the x- and y-components of Ampères law (2.35) gives a
set of four equations which are linear in Ex, Ey, Hx and Hy. Rearranging these
equations to the form of Eq. (2.37) gives

Ô =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 ωμ0

0 0 −ωμ0 0

0 −ωε 0 0

ωε 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 − ∂
∂x

1
ωε

∂
∂y

∂
∂x

1
ωε

∂
∂x

0 0 − ∂
∂y

1
ωε

∂
∂y

∂
∂y

1
ωε

∂
∂x

1
ωμ0

∂2

∂x∂y
−1
ωμ0

∂2

∂x2 0 0

1
ωμ0

∂2

∂y2
−1
ωμ0

∂2

∂y∂x 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠ . (2.40)

The solutions of the eigenvalue problem Eq. (2.37 with 2.40) are called modes
and the eigenvalues β are called propagation constants. Different types of modes
are associated with different eigenvalues β (see Fig. 2.3). We consider a waveguide
with core refractive index n1 and cladding refractive index n2. Similar to the slab
waveguide, guided modes propagate along the guide in the z direction. This finite
number of guided modes have real propagation constants β with kn2 > |β| > kn1.
There is a continuum of radiation modes which have real propagation constants
β with |β| ≤ kn2. There is a continuum of evanescent modes with imaginary
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propagation constants β. There may also be solutions with general complex β.
The total electric (or magnetic) field may be written as a superposition of the
electric (or magnetic) fields corresponding to these modes.
It is relevant to note that the operator, Ô, and the eigenvalues of guided

modes, β, are real. Therefore, we may choose the eigenfunctions of guided modes
(Ex, Ey, Hx, Hy) to be real6. Hence all their transversal electromagnetic field com-
ponents are in phase.

2.6.2 Maxwell’s equations in Ez and Hz: few unknowns

Alternatively, it is possible to formulate Maxwell’s equations in terms of the lon-
gitudinal field components Ez and Hz. This formulation has only two unknown
field components, and it will be used in the description of rectangular waveguides
(Sec. 2.7). Solving Eqs. (2.34) and (2.35) for the transversal field components
gives7 [28]

Ex =
−ı

K2

(
β
∂Ez

∂x
+ ωμ0

∂Hz

∂y

)
, (2.41)

Ey =
−ı

K2

(
β
∂Ez

∂y
− ωμ0

∂Hz

∂x

)
, (2.42)

Hx =
−ı

K2

(
β
∂Hz

∂x
− ωε0n

2
j

∂Ez

∂y

)
, (2.43)

Hy =
−ı

K2

(
β
∂Hz

∂y
+ ωε0n

2
j

∂Ez

∂x

)
, (2.44)

with
K(x, y) =

√
n(x, y)2k2 − β2. (2.45)

All components, and hence in particular the longitudinal components Ez and Hz,
satisfy the reduced wave equation (here given for Ez) [28]:

∂2Ez

∂x2
+

∂2Ez

∂y2
+K2Ez = 0. (2.46)

This equation is found by substituting the modal electromagnetic field, Eq. (2.30),
in the wave equation (2.5).

6 Proof: Let a real number β be the eigenvalue of a real operator Ô with a corresponding
complex eigenfunction u = u′ + ıu′′, with real u′ and u′′. Then the eigenproblem (Ô−β)u = 0

separates into (Ô − β)u′ = 0 and (Ô − β)u′′ = 0. As both equations are identical, they span
the same eigenspace, and we may thus choose the real eigenspace as basis.

7 Eq. (2.41) follows from solving the y-component of Eq. (2.34) for Hy , and substituting this
in the x-component of Eq. (2.35). Eq. (2.42) follows from solving the x-component of Eq. (2.34)
for Hx, and substituting this in the y-component of Eq. (2.35). Eq. (2.43) follows from solving
the y-component of Eq. (2.35) for Ey , and substituting this in the x-component of Eq. (2.34).
Eq. (2.44) follows from solving the x-component of Eq. (2.35) for Ex, and substituting this in
the y-component of Eq. (2.34).
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2.6.3 Orthogonality

We will derive the orthogonality relation which modes in a waveguide obey. Con-
sider two modes in the form of Eq. (2.30), labelled 1 and 2. First we use a vector
identity8 to find

∇ · (E1 ×H∗
2) = H∗

2 · (∇× E1)− E1 · (∇×H∗
2) (2.47)

(∗ denotes the complex conjugate). Then we use Faraday’s law (2.1) and Ampère’s
law (2.2) on the first and second terms on the right-hand-side of Eq. (2.47), re-
spectively, to arrive at

∇ · (E1 ×H∗
2) = ıω(εE1 · E∗

2 − μ0H1 ·H∗
2), (2.48)

Now we exchange labels 1 and 2 in Eq. (2.48), take the complex conjugate, and
add the result to Eq. (2.48) to obtain

∇ · (E1 ×H∗
2 + E∗

2 ×H1) = 0. (2.49)

Modes 1 and 2 are waveguide modes with the form of Eq. (2.30), substituting this
in Eq. (2.49) gives

∇ · (E1 ×H∗
2 +E∗

2 ×H1)e
ı(β2−β1)z = 0, (2.50)

or, using the differentiation product rules9,

∇ · (E1 ×H∗
2 +E∗

2 ×H1) + (E1 ×H∗
2 +E∗

2 ×H1) · ẑ ı(β2 − β1) = 0. (2.51)

The phase term eı(β2−β1)z is never zero thus was divided out this equation. We
now apply a special case of the divergence theorem10 in which we choose a plane
S as a cross-section of the waveguide, i.e., an entire plane in (x,y). Integrating
Eq. (2.51) over this plane, and applying the divergence theorem, gives∮

∂S

(E1 ×H∗
2 +E∗

2 ×H1) · n̂ dS

+

∫∫
S

(E1 ×H∗
2 +E∗

2 ×H1) · ẑ dxdy ı(β2 − β1) = 0, (2.52)

with n̂ the unit vector in the (x,y) plane being perpendicular to the curve ∂S.
The first term is a contour integral over an infinitely large curve enclosing the
waveguide. This term vanishes as the fields of guided modes decay exponentially
towards infinity. Equation (2.52) thus reduces to the orthogonality relation

1

4

+∞∫∫
−∞

(E1 ×H∗
2 +E∗

2 ×H1) · ẑ dxdy = 0, or, (β2 − β1) = 0. (2.53)

8 ∇ · (a× b) = b · (∇× a)− a · (∇× b). [68, Eq. 2.53]
9 ∇ · (fa) = f(∇ · a) + a · (∇f). [68, Eq. 2.50]

10 A special case of the divergence theorem follows by specializing it to the plane instead of a
volume [40, 69]. Letting S be a region in the plane with boundary ∂S, the divergence theorem

then collapses to
∫∫

S

(
∂
∂x

x̂+ ∂
∂y

ŷ
)
· a dA =

∮
∂S a · n̂ dS.
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For two equal modes 1 and 2, the second equation is satisfied (β1 = β2) and the first
equation is not. Moreover, the left-hand-side of the first equation then represents
the power carried by the mode, as will be shown in Eq. (2.60). We have proved
orthogonality relation (2.53) for two guided modes but this relation holds also for
orhogornality between all guided, radiative and evanescent modes [27,29,33].
Equation (2.53) is probably the neatest orthogonality relation, but we will pro-

ceed deriving a shorter relation. The shorter relation is often used, but forward-
and backward-traveling modes are not necessarily orthogonal in the shorter rela-
tion. We proceed by showing that the two terms under the integral in Eq. (2.53)
vanish separately. The permittivity ε(x, y) is symmetric in z, so if there is a mode
propagating in the positive z-direction, then we also expect a mode propagating
in the negative z-direction. In fact, if there exist a forward-traveling mode (la-
belled 2) E2 with propagation constant β2 and transverse fields E2 and H2, then
there also exists a backward-traveling mode (labelled 3) with

β3 = −β2 (2.54)

E3 = E2xx̂+ E2yŷ−E2zẑ, (2.55)

H3 =−H2xx̂−H2yŷ+H2zẑ. (2.56)

Equation (2.56) is found by substituting Eqs. (2.54) and (2.55) in Faraday’s law
(2.34) and comparing the result with β2 and E2 also substituted in Faraday’s law.
Equations (2.54)-(2.56) also obey Ampère’s law (2.35), as can be verified by first
substituting β3 and H3 in Ampère’s law, then also substituting β2 and H2 in
Ampère’s law, to compare the resulting equations. The fact that the modal fields
of the backwards traveling mode are different from the forward traveling modes
can be explained from a physics point of view. As will be shown later, the power
flow of a mode is related to Re{(E × H∗) · ẑ}. Thus the fields of a backwards
traveling mode should be different from fields of a forward traveling mode because
the direction of the power flow should be reversed.
Once realized that only the transversal field components (x and y) contribute

to Eq. (2.53), it follows that Eq. (2.53) applied to modes 1 and 3 gives

1

4

∫∫
(−E1 ×H∗

2 +E∗
2 ×H1) · ẑ dxdy = 0, or, (β2 + β1) = 0. (2.57)

Subtracting Eq. (2.53) from Eq. (2.57) shows that [27,29]

1

2

∫∫
(E1 ×H∗

2 ) · ẑ dxdy = 0, for |β2| 	= |β1|. (2.58)

Note that the orthogonality in Eq. (2.58) does not apply to a forward propagating
mode and its backwards propagating counterpart as their propagation constants
β are equal in magnitude.

2.6.4 Power flow

The energy flux density (energy per unit area per unit time) is given by the Point-
ing vector [40]

S = Re{E} × Re{H}, (2.59)
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which is defined in terms of the physical (real) electromagnetic fields. The Pointing
vector of a waveguide mode is found by inserting Eq. (2.30) in Eq. (2.59) and using
Re{E} = 1

2 (E + E∗) to arrive at

S =
1

4

(
(E ×H∗) + (E∗ ×H) + (E ×H)eı2(ωt−βz) + (E∗ ×H∗)eı2(βz−ωt)

)
.

The last two terms on the right-hand-side of this equation vanish when averaging
over time. The time-averaged power P carried by the mode is found by integrating
the time-averaged Pointing vector S over an infinite cross-section of the waveguide
(i.e., a x,y-plane) [27,28]

P =
1

4

∫∫
(E ×H∗ +E∗ ×H) · ẑ dxdy. (2.60)

For guided modes, the transversal components of the electromagnetic fields are in
phase, so that both terms under the integral of Eq. (2.60) are real and

P =
1

2

∫∫
(E ×H∗) · ẑ dxdy. (2.61)

2.6.5 Mode expansion, normalization and bra-ket notation

The electric and magnetic fields in a waveguide may be expressed as a superposition
of the modes of the waveguide. These modes are solutions of Maxwell’s equations
formulated as eigenvalue problem with operator Ô, see Eq. (2.37 with 2.40). The
eigenvalues of this operator are the propagation constants β and the eigenfunctions
are the transverse components of the corresponding modal electromagnetic fields.
Expressing the total electric field in a waveguide with core refractive index n1 and
cladding refractive index n2 as a superposition of its modes gives

E(x, y, z, t) =
N−1∑
i=0

aiEi(x, y)e
ı(ωt−βiz)

︸ ︷︷ ︸
guided

+

+kn2∫
−kn2

b(β)E(β;x, y)eı(ωt−βz)dβ

︸ ︷︷ ︸
radiation

(2.62)

+

+ı∞∫
−ı∞

c(β)E(β;x, y)eı(ωt−βz)dβ

︸ ︷︷ ︸
evanescent

+ ...

︸︷︷︸
general

complex β

,

with ai, b(β) and c(β) the complex amplitudes of the guided, radiation and evanes-
cent modes, respectively, E the electric fields corresponding to the modes, and N
the number of guided modes (see Fig. 2.3 on page 21). A similar expression holds
for the magnetic field H. We introduce a short-hand notation of Eq. (2.62) by
writing the second, third and fourth terms as a summation. The modal amplitudes
ai, b(β) and c(β), as well as the modal amplitudes of the solutions with complex
β, are lumped together in ai with infinite i. This gives

E(x, y, z, t) =
∞∑
i=0

aiEi(x, y)e
ı(ωt−βiz), (2.63)
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with the summation running over all modes including discrete and continuum
modes. The magnetic field H may be expressed in a similar expression. In this
thesis, we normalize the guided waves such that they carry unit power in the
positive or negative z-direction, i.e., P = ±1 in Eq. (2.60). There was no need
to normalize the radiation and evanescent modes (this is not straightforward as
evanescent modes carry no power in the z-direction).
A bra-ket notation is adopted for later use (Secs. 2.7.4 and 2.10.3). In bra-ket

notation, transverse electromagnetic fields of a mode with label i are denoted |i〉.
The operator Ô is not symmetric, however solutions of Eq. (2.37) are orthogonal
with respect to the bilinear form derived from the power flux, Eq. (2.53). In bra-ket
notation, Eqs. (2.37) and (2.53) read

Ô|i〉 = βi|i〉, (2.64)

〈i|j〉 ≡ 1

4

∞∫∫
−∞

(
Ei ×H∗

j +E∗
j ×Hi

) · ẑ dxdy, (2.65)

respectively, defining the scalar product between two solutions i and j. The guided
modes are normalized such that they carry unit power, so that

〈i|j〉 = βi

|βi| δij (guided modes). (2.66)

2.6.6 Waveguides with losses and bends

So far, we have discussed ideal waveguides, composed of lossless materials, without
the slightest variation of the refractive index profile in the z-direction, and with in-
finite cladding. However, real waveguides are never perfect and also include bends
to, for example, form a ring resonator. This section describes these phenomena
in a less formal manner than the previous sections. Rigorously including all loss
mechanisms leads a complication which is unnecessary for the scope of this work,
and calculations are often impossible due to limited knowledge about the precise
material and structural properties of the waveguides. Roughness of the side-walls
of the waveguide and bends in waveguides break the assumption of z-invariance of
the permittivity profile ε(x, y) on which the rigorous formalism is based.

Waveguide propagation loss

We include a propagation loss αp in our description of modes in waveguides, and
modify Eq. (2.30) to

E = e−αpzE(x, y)eı(ωt−βz), H = e−αpzH(x, y)eı(ωt−βz). (2.67)

This equation does not rigorously conform the mathematical framework of this sec-
tion. We have assumed no absorption (already in Maxwell’s equations, Sec. 2.4)
and invariance of the refractive index in the z-direction, giving Eq. (2.30). Real
waveguides are not perfectly invariant in the z-direction as the side-walls con-
tain nanometer-scale roughness, the material contains nanometer-scale defects,
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Figure 2.4: Sketch of a bent waveguide with radiation loss, top-view.

the waveguides have width variations over a millimeter length-scale, etc. This
leads to coupling of the guided mode to other modes. Moreover, the materials
and material interfaces of real waveguides absorb electromagnetic energy. These
effects are lumped together in the propagation loss αp. The term exp[−αpz] can
be interpreted as modal amplitude, and the theories in this section remain a good
approximation when this amplitude varies slow compared to the other variations
of the electromagnetic fields.

Waveguide bends

For waveguide bends with radii R much larger than the width of the waveguide,
it is reasonable to approximate the modes in the bend as the modes of a straight
waveguide. We will illustrate that radiation loss in waveguide bends is lower when
the bending radius is larger and the when refractive index contrast is higher.
We assume that the phase front of a mode in a bent waveguide has an angular
velocity Ω and that the velocity vz of the light at a distance r′ from the center of
the waveguide reads

vz = (R+ r′)Ω, (2.68)

see Fig. 2.4. We approximate the phase velocity of in the center of the waveguide
by the phase velocity of the mode in a straight waveguide, i.e., vz = ω/β for r′ = 0.
The phase front of a mode in a bent waveguide thus has angular velocity

Ω =
ω

βR
. (2.69)

Around the waveguide, the velocity of the light, vz, is similar, because the width
of the waveguide is much smaller than the bending radius. However, this velocity
increases with increasing distance from the center of the guide. At a certain
distance r from the center of the waveguide, the required velocity is higher than
the speed of light supported by the medium (c/n2), leading to radiation. We find
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this distance r by solving vz = c/n2, Eq. (2.68) and Eq. (2.69) for r, and find

r = R

(
β − n2k

n2k

)
. (2.70)

The strength of the radiation scales with the amount of the modal electromagnetic
field that is located further than the distance r from the center of the waveguide.
Large bending radius R implies a large r, thus lower radiation loss. High index
contrast waveguides have modes that are strongly confined around the waveguide
and smaller field values at distances larger than r. Moreover, the difference be-
tween β and kn2 is generally large for lower order modes in high-index-contrast
waveguides. Therefore sharp bends in silicon waveguide have in general lower
radiation loss than waveguides of the same geometry with lower index contrast.

2.7 Rectangular silicon waveguides: Extension of Marcatili’s ap-
proach

Marcatili’s famous approximate analytical description of light propagation through
rectangular dielectric waveguides, which was published in 1969, gives accurate re-
sults for low-index-contrast waveguides [30]. However, silicon-on-insulator wave-
guides have a very high-index-contrast. In this section, we extend Marcatili’s
model to the regime of high-index-contrast waveguides by adjusting the ampli-
tudes of the components of the electromagnetic fields [70, 71]. Our improved
method gives the modal fields of SOI waveguides that are much closer to the
solutions obtained by rigorous numerical computations than Marcatili’s original
approximation. The goal of this section is to clearly explain this method while
the reader is referred to Ref. [70] for more details such as an extensive compari-
son with the literature. Aalto [72] derived an empirical relation for single mode
operation of rectangular silicon waveguides was extracted from rigorous numerical
simulations. Although numerical mode-solvers are available, we believe that an
analytical model is useful in order to gain insight in the physics of the devices,
and also for fast explorative simulations of photonic-integrated circuitry [73].
We will compare the approximate analytical approaches presented in this section

with results obtained using a rigorous numerical mode solver (FMM method, see
Sec. 2.8 for details). Typical silicon-on-insulator waveguides with air cladding are
studied, with waveguide heights of 220 nm and 300 nm. The first height is often
used because it only supports TE-like modes, whereas the second height supports
both TE-like and TM-like modes.
This section starts with an Ansatz for the form of the modes followed by the

resulting boundary conditions (Secs. 2.7.1 and 2.7.2). Then it proposes approx-
imate solutions (Sec. 2.7.3). Last, it discusses apparent degeneracy of “TE-like”
and “TM-like” modes (Sec. 2.7.4).

We have published a Matlab implementation of the methods presented in this
section as a free and open-source software package entitled RECTWG [74].
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Figure 2.5: Cross-section of a SOI waveguide. (a) Waveguide definition. Sketch
of the Ex component of the fundamental mode in color. (Dark blue represents a
large field, white represents zero field.) (b) Outline of the approximate analytical
method.

2.7.1 Ansatz for the shape of the field

Figure 2.5 shows a typical SOI waveguide, whose core has a higher refractive
index (n1) than its surroundings (n2−n5). In this section, we make an Ansatz for
the shape of the modal electromagnetic fields, inspired by the assumptions that
fundamental modes have most of their energy in the center of the waveguide (such
as in Fig. 2.5a), and that modes are either “TE-like” or “TM-like”. For “TE-like”
modes, the electric field is predominantly tangential to the upper surface of the
waveguide, whereas “TM-like” modes have the electric field predominantly normal
to the upper surface of the waveguide. In our analysis, we choose our coordinate
frame such that Ex is the dominant electric field component. Consequently, Hy

is the dominant magnetic field component of such modes. In Fig. 2.5, the width
of the waveguide, d, is larger than its height b, and the mode is “TE-like” as Ex

is parallel to the upper surface of the waveguide. However, in our analysis, there
are no restrictions on the values of d, b, and n1-n5, so that the analysis equally
describes a “TM-like” mode when n2 is said to be the substrate, b the width, and
d the height of the waveguide (thus b > d).

As derived in Sec. 2.6.2, Maxwell’s equations may be formulated in terms
of the longitudinal field components (Ez and Hz) only. For permittivity pro-
files that are invariant in the z-direction, the transverse components follow from
Eqs. (2.41-2.44).
Following Marcatili’s original approach, we use the following Ansatz for the

fields of the modes. The dominant field components, Ex(x, y), and Hy(x, y), are
proportional to cos[kx(x + ξ)] cos[ky(y + η)], with maximum field in the center.
Furthermore, outside the core, the fields decay exponentially, while the transverse
profile of the field is identical to that in the core (Figs. 2.5b and 2.6a). Finally, the
fields in the outer quadrants are neglected because they are small in these regions.
Fig. 2.6b presents the Ansatz for the full field, expressed in its longitudinal compo-
nents (Ez and Hz). We choose to obey Maxwell’s equations in all regions 1-5, and
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(a) region 5:

y
x

Ex ∝ cos[kx(x+ ξ)]

· exp[−γ5(y − b/2)]

region 2: region 1: region 3:

Ex ∝ exp[γ2(x+ d/2)]

· cos[ky(y + η)]

Ex ∝ cos[kx(x+ ξ)]

· cos[ky(y + η)]

Ex ∝ exp[−γ3(x− d/2)]

· cos[ky(y + η)]

region 4:

Ex ∝ cos[kx(x+ ξ)]

· exp[γ4(y + b/2)]

(b)
Ez = A9 sin[kx(x+ ξ)]

· exp[−γ5(y − b/2)]

y
x

Hz = A10 cos[kx(x+ ξ)]

· exp[−γ5(y − b/2)]

Ez = A3 exp[γ2(x+ d/2)]

· cos[ky(y + η)]

Ez = A1 sin[kx(x+ ξ)]

· cos[ky(y + η)]

Ez = A5 exp[−γ3(x− d/2)]

· cos[ky(y + η)]

Hz = A4 exp[γ2(x+ d/2)]

· sin[ky(y + η)]

Hz = A2 cos[kx(x+ ξ)]

· sin[ky(y + η)]

Hz = A6 exp[−γ3(x− d/2)]

· sin[ky(y + η)]

Ez = A7 sin[kx(x+ ξ)]

· exp[γ4(y + b/2)]

Hz = A8 cos[kx(x+ ξ)]

· exp[γ4(y + b/2)]

Figure 2.6: (a) Shape of the dominant electromagnetic field components Ex and
Hy. (b) Ansatz describing the modal electromagnetic field in terms of Ez and
Hz. The gray background color sketches the waveguide such that the mode is a
“TE-like” mode.

express β, and γ2 - γ5 in terms of kx and ky employing the wave equation (2.46)

β =
√
n2
1k

2 − k2x − k2y, (2.71)

γ2 =
√

(n2
1 − n2

2)k
2 − k2x, γ3 =

√
(n2

1 − n2
3)k

2 − k2x, (2.72)

γ4 =
√

(n2
1 − n2

4)k
2 − k2y, γ5 =

√
(n2

1 − n2
5)k

2 − k2y. (2.73)

Equations (2.72) and (2.73) are identical to Eqs. (2.22) and (2.11). The errors
of the approximation manifest themselves at the interfaces between the core and
the cladding of the waveguide. Field amplitude A1 is employed to normalize the
mode to a power flux of unity. The remaining free parameters that still have to
be determined are A2 - A10, ξ, η, kx and ky (thirteen in total, also see Fig. 2.6b).
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2.7.2 Boundary conditions

At interfaces between the core and the cladding of the waveguide, continuity of the
electromagnetic field components tangential to these interfaces is required, adding
up to 4 × 4 = 16 electromagnetic boundary conditions. With these conditions
satisfied, the normal components automatically obey Maxwell’s equations.
We derive the requirements that follow from continuity of the fields at the two

horizontal interfaces, to which the dominant electric field Ex is tangential. The
field components Ex, Hx, Ez and Hz are tangential to these interfaces. From the
four boundary conditions, we find

A2 =
βky

ωμ0kx
A1, (2.74)

A7 =A1 cos[ky(η − b/2)], (2.75)

A8 =A2 sin[ky(η − b/2)], (2.76)

A9 =A1 cos[ky(η + b/2)], (2.77)

A10 =A2 sin[ky(η + b/2)], (2.78)

together with

tan[ky(η − b/2)] = −γ4/ky, (2.79)

tan[ky(η + b/2)] = γ5/ky. (2.80)

Equations (2.75)-(2.78) follow from the continuity of Ez and Hz. Continuity of
Ex and Hx is most easily verified by substituting Eqs. (2.74)-(2.80) into the four
boundary conditions corresponding to these field components at the two interfaces.
It follows from Eq. (2.42) that with these field amplitudes A2, A7 - A10, the
electric field component Ey is zero in regions 1, 4 and 5. The last two equations,
(2.79) and (2.80) can be recognized as the eigenvalue equations for a TE mode
in a slab waveguide, namely (2.14) and (2.16), respectively. These eigenvalue
equations thus do not only hold for a slab solution where ∂/∂x = 0 and Ex, Hy

and Hz are the non-zero field components, but also for our Ansatz where there
is a variation in the x-direction. This observation agrees with the limit that the
width of the waveguide goes to infinity d → ∞, as the waveguide then becomes a
slab waveguide. Eliminating η from the latter two equations gives the functional
F in Eq. (2.17).
The dominant magnetic field component, Hy, is tangential to the vertical inter-

faces, and so are Ey, Ez and Hz. From the four boundary conditions at the two
vertical interfaces, we find

A2 =
ωε0n

2
1ky

βkx
A1, (2.81)

A3 =A1 sin[kx(ξ − d/2)], (2.82)

A4 =A2 cos[kx(ξ − d/2)], (2.83)

A5 =A1 sin[kx(ξ + d/2)], (2.84)

A6 =A2 cos[kx(ξ + d/2)], (2.85)
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together with

tan[kx(ξ − d/2)] = −n2
1

n2
2

γ2
kx

, (2.86)

tan[kx(ξ + d/2)] =
n2
1

n2
3

γ3
kx

. (2.87)

Equations (2.82)-(2.85) follow directly from the continuity of Ez and Hz. The con-
tinuity of Ey and Hy is most easily verified by substituting Eqs. (2.81)-(2.87) into
the remaining electromagnetic boundary conditions. With these field amplitudes
A2 - A6, the magnetic field component Hx is zero in regions 1, 2 and 3, as follows
from Eq. (2.43). The last two equations, (2.86) and (2.87), may be recognized as
the eigenvalue equations of a TM mode in a slab waveguide, despite the fact that
our Ansatz does have variation in the y-direction.
It can be seen that the horizontal and the vertical interfaces require a different

ratio A2/A1, i.e. a different Hz/Ez in the core. Thus the Ansatz has no solutions
that exactly obey the boundary conditions at all interfaces simultaneously. In what
follows, the 13 free parameters are chosen such that the error in the 16 boundary
conditions is minimal.

2.7.3 Approximate methods

This section presents three approximate methods for rectangular waveguides,
based on the previous Ansatz. All three methods share the same equations for
the computation of the propagation constant β, but the amplitudes A2 - A10 of
the modal fields are computed differently. The methods for computation of the
fields are based on (1) the assumption of low-index-contrast, (2) continuity of the
dominant electric and magnetic field components, and (3) minimization of the
discontinuity of the electromagnetic fields. The first method is Marcatili’s orig-
inal approach [30]. The last two methods were derived in our analysis of SOI
waveguides [70].

Propagation constant β and spatial frequencies kx, ky

We argue that the dominant boundary conditions for determining ky and η are
at the horizontal interfaces, while the vertical interfaces influence kx and ξ more
strongly. Therefore we compute kx from Eq. (2.29), ky from Eq. (2.17), and β
from Eq. (2.71). In Fig. 2.7a,c we compare our approximate analytical calculation
with a rigorous numerical calculation and find that the effective index, neff = β/k,
is accurately found within 2% for typical waveguides.

Fields (1): Marcatili’s approach for low-index-contrast waveguides

Marcatili has developed a widely used analytical approach for low-index-contrast
waveguides in which all refractive indices nj have similar values [28,30]. For prop-
agating modes in these guides, knj ≈ β because modes are not guided otherwise,
so kx, ky << knj . Choosing Ey = 0 gives a modal field profile that is continuous
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Figure 2.7: Approximate analytical model compared with rigorous mode solver
(FMM method). Typical rectangular silicon-on-insulator waveguides with air
cladding. (a,b) 220 nm high, fundamental mode. (c-f) 300 nm high, first 3 modes:
TE0, TM0, TE1. We omitted one zero from conventional notation (e.g., TE00),
because our waveguides have higher-order standing waves only in the direction of
the width of the waveguide. (a,c) Effective index. (b,d,e,f) Energy in the differ-
ence field between the two approximate methods and the rigorously computed field,
normalized to the energy in the rigorously computed field, i.e., Eq. (2.93).
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on the horizontal interfaces, while it obeys the conditions on the vertical interfaces
when neglecting terms on the order of (kx/knj)

2. However, for high-index-contrast
guides, these terms can be even larger than one.

Fields (2): continuity of dominant electromagnetic field components

This method demands continuity of dominant electromagnetic field components
(Ex, Hy) across all interfaces that they are tangential to. In this section, we
consider the mode to be “TE-like”, such as the mode depicted in Fig. 2.5. For
“TM-like” modes in wide waveguides, a similar method can be derived (see our
work in Ref. [70]). As typical waveguides are larger in width than in height, the
height gives the strongest confinement, therefore we chose to match all boundary
conditions at the horizontal interfaces. This choice is supported by the argument
that the vertical sides are irrelevant for an infinitely wide waveguide. With these
requirements (including ky and kx obtained from the slab eigenvalue equations),
only one amplitude parameter is left free, although we have not yet matched Ey,
Ez and Hz on the vertical interfaces. Of these field components we chose to match
Ez because Hz goes to zero for infinitely wide (b → ∞) waveguides and Ey is a
weak field component which is largest at the corners of the waveguide. With these
requirements, the free parameters in the Ansatz are fully determined. Parameters
kx, ky, ξ and η are given by the slab eigenvalue equations (2.29) and (2.17).
The amplitudes of the field components, A2-A10, are given by Eqs. (2.74)-(2.78),
together with

A3 =A1 sin[kx(ξ − d/2)], (2.88)

A4 =A2

(
1 +

k2(n2
1 − n2

2)

β2

)
cos[kx(ξ − d/2)], (2.89)

A5 =A1 sin[kx(ξ + d/2)], (2.90)

A6 =A2

(
1 +

k2(n2
1 − n2

3)

β2

)
cos[kx(ξ + d/2)]. (2.91)

This method was first presented in Ref. [70] as Improved Ey ≈ 0 method, because
Ey is zero in regions 1, 4 and 5.

Fields (3): least-discontinuity optimization of the Ansatz parameters

We presented an Ansatz for the form of the electromagnetic field of modes in a
rectangular waveguide. This Ansatz was chosen such that Maxwell’s equations
are satisfied in regions 1-5, so that all errors manifest themselves at the four
interfaces between the waveguide core and the cladding regions. The method we
propose is to minimize this error, by minimizing the discontinuity of the tangential
electromagnetic field components at the interfaces. The measure we adopt to
quantify this error is the average energy density that is associated with these
discontinuities, defined by:

Umm =
ε0
4l

∮
(n++ n−)2 · ∣∣ν̂ × (E+−E−)∣∣2 dl + μ0

l

∮ ∣∣ν̂ × (H+−H−)∣∣2 dl.
(2.92)
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The four interfaces of the waveguide are simultaneously described by the integral.
The line integral runs along the entire circumference of the waveguide in the (x,y)-
plane, and l = 2(b + d) is the length of this circumference. E+ and E− are the
electric fields just outside and inside the waveguide core region 1, so that (E+ −
E−) represents the discontinuity of this field, and ν̂ is a unit vector orthogonal
to the waveguide surface. The cross product of ν̂ with the discontinuity in the
field just selects the tangential components. n+ and n− are the refractive indices
just outside and inside the waveguide. At the interface, an average refractive
index (n++n−)/2 is assumed to calculate the energy density of the electric field
components. Although Umm can be intuitively interpreted as an energy density,
we cannot attach a rigorous physical meaning to this quantity. The discontinuity
of the fields only occurs at interfaces, which have no physical volume. Therefore
the energy density cannot be integrated over volume in order to obtain a total
energy.
We determined the minimum Umm numerically using an unconstrained nonlinear

optimization as implemented in MATLAB. As initial estimate we use the modal
amplitudes as computed using the previously described Improved Ey ≈ 0 method.
However, Eq. (2.92) is quadratic in the amplitudes A2-A10 and the minimum
can thus be found analytically. This method was first presented in Ref. [70] as
amplitude optimization method, because the amplitudes A2 - A10 are optimized.

Comparison

We have presented one approximate method to compute the propagation constant,
or effective index, of the modes in rectangular waveguides. Given this propaga-
tion constant, we presented three different methods that approximate the field of
these modes: (1) Marcatili’s original approach, (2) a method based on continuity
of the dominant electromagnetic field components, and (3) a method based on
minimization of the discontinuities of the electromagnetic fields.
In Fig. 2.7b and Fig. 2.7d-f, we compare modal fields computed with the approx-

imate methods with the fields computed with a rigorous numerical mode solver.
The measure that is used to compare two electromagnetic fields is the relative
energy of the difference of the fields, i.e.

ΔU =

∫∫
regions 1-5

(
n2ε0|EA −EN |2 + μ0|HA −HN |2) dxdy∫∫

regions 1-5

(n2ε0|EN |2 + μ0|HN |2) dxdy (2.93)

where EA and EN are the analytically and rigorous numerically calculated fields,
respectively. This integral runs over all regions that are described by the analytical
solution.
It is clear that something interesting happens for waveguides with dimensions

around 833 nm width by 300 nm height. This is at the point of the apparent
crossing of the propagation constants of the TM0 and TE1 modes (see Fig. 2.7c),
and this case is addressed in the next section. Apart from this special case, the
relative errors of the method with continuity of the dominant field components is
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below 3%, and the relative error of the method in which the energy associated with
the discontinues is minimized is even lower. Both method outperform Marcatili’s
original approach for these typical SOI waveguides with high index contrast. The
amplitude optimization method, which minimizes the energy associated with the
discontinuities, has the advantage that it is works for both “TE-like” and “TM-
like” modes.

2.7.4 Avoided crossing of modes with similar propagation constants

Figure 2.7e,f on page 33 suggest that something interesting happens at the appar-
ent crossing of the effective indices of the TM0-like and the TE1-like modes when
the width of the guide is changed. A detailed inspection of the waveguides with
widths around 833 nm is presented in Fig. 2.8. In Fig. 2.8a, it can be seen that the
numerically computed effective indices of the 2nd and 3rd mode in the waveguide
(counted from high to low effective index) actually do not cross each other, but
show a behavior that is known in quantum mechanics as avoided crossing [75]. We
investigate the modes that where found numerically in terms of the analytically
computed approximate modes.
We denote the actual, rigorous numerically computed, modes as EN

i with i the
number of the mode. We will verify that the actual modes EN

2 and EN
3 can in good

approximation be written as a superposition of the approximate TM0-like, ETM0,
and TE1-like, ETE1 modes. The TM0-like and TE1-like modes were calculated
using the approximate amplitude optimization method. Thus

EN
i ≈ aETM0 + bETE1, (2.94)

for some real a and b, and i = 2 or 3. The phase of mode Ei is chosen such
that coefficient b is positive. The coefficient a of the TM0-like mode can be either
positive or negative. The approximate calculated modes ETM0 and ETE1, are in
good approximation orthonormal such that normalization of the guided modes Ei

in the norm of Eq. (2.66) implies b =
√
1− a2.

The coefficient a of the TM0-like mode is optimized such that the difference
measured using Eq. (2.93) between the left- and right-hand sides of Eq. (2.94) is
minimum. The result is plotted in Fig. 2.8b, where it can be seen that mode 2
looks like a TM0-mode at the left of the crossing, while it looks like a TE1-like
mode on the right-hand-side of the crossing, whereas close to the crossing the
modes are an equal mixture of ETM0 and ETE1. In Fig. 2.8c, it can be seen that
the error between the superposition Ei and the rigorous numerically calculated
field EN

i close to the apparent crossing is small and similar to the error that was
found away from the crossing (see Fig. 2.7e,f). Therefore we may indeed conclude
that the field around the crossing can be written as a superposition of modes of
the types that are present away from the crossing. Figure 2.9 presents the electric
fields ETM0, ETE1, E

N
2 and EN

3 for a 833 nm wide by 300 nm high waveguide,
where a2 ≈ b2 ≈ 0.5.
Using this observation, we will derive a qualitative description of this avoided

crossing. We consider forward propagating guided modes with positive βi. The
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Figure 2.8: Investigation of the avoided crossing of effective indices of two modes.
(a) Numerically calculated effective indices of the 2nd and 3rd mode, zoom-in of
Fig. 2.7c. (b) Power in the TM0-like mode when the fields of the modes in plot
(a) are written as a superposition of a TM0-like and a TM1-like mode. The curves
in plot (a) are color-coded accordingly. (c) Relative energy in the electromagnetic
difference field between the superposition and the rigorous numerically calculated
fields, to be compared with Fig 2.7 (e) and (f).

guided modes modes are normalized such that they carry unit power. We em-
ploy the eigenvalue-problem formulation of Maxwell’s equations for waveguides
(Sec. 2.6.1) and we use the bra-ket notation (Sec. 2.6.5). We formulated Maxwell’s
equations as an eigenvalue problem, Ô|i〉 = βi|i〉, with the propagation con-
stant βi as eigenvalue. The operator Ô is not symmetric. However, forward-
propagating guided modes are orthonormal with respect to the scalar product
given by Eq (2.65), i.e., 〈i|j〉 = δij . We now apply the aforementioned obser-
vation that, in good approximation, the electromagnetic fields of the modes in
the waveguide, also around the crossing, can be written as a superposition of the
approximate fields. Hence

Ei ≈ aETM0 + bETE1, or |i〉 ≈ a|a〉+ b|b〉, (2.95)

where |a〉 and |b〉 represent the TM0-like and TE1-like modes in the waveguide,
respectively, while |i〉 represents the exact solutions of Eq. (2.64). We only consider
the 2nd and 3rd approximate solutions here. As will become clear, only modes with
similar propagation constants have to be taken into account around the crossing.
The other modes are already accurately calculated by the approximate methods
presented in Sec. 2.7.3. Substituting Eq. (2.95) in Eq. (2.64) and taking the inner
product with 〈a| gives

a〈a|Ôa〉+ b〈a|Ôb〉 ≈ βi (a〈a|a〉+ b〈a|b〉) . (2.96)

If we also take the inner product of Eq. (2.64) with 〈b| we arrive at the (2x2)-
system: (〈a|Ôa〉 〈a|Ôb〉

〈b|Ôa〉 〈b|Ôb〉
)(

a
b

)
≈ βi

(〈a|a〉 〈a|b〉
〈b|a〉 〈b|b〉

)(
a
b

)
, (2.97)
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or,

1

D

( 〈b|b〉〈a|Ôa〉 − 〈a|b〉〈b|Ôa〉 〈b|b〉〈a|Ôb〉 − 〈a|b〉〈b|Ôb〉
−〈b|a〉〈a|Ôa〉+ 〈a|a〉〈b|Ôa〉 −〈b|a〉〈a|Ôb〉+ 〈a|a〉〈b|Ôb〉

)(
a
b

)
≈ βi

(
a
b

)
,

with
D = 〈a|a〉〈b|b〉 − 〈a|b〉〈b|a〉. (2.98)

The modes that we found in our approximate analysis are almost orthonormal,
so 〈a|a〉 and 〈b|b〉 are approximately unity and 〈a|b〉 and 〈b|a〉 are approximately
zero. Away from the crossing, we found that the approximate solutions |a〉 and
|b〉 obey relation (2.64) so that 〈a|Ôa〉 ≈ βa, 〈b|Ôb〉 ≈ βb, while 〈a|Ôb〉 and 〈b|Ôa〉
are small. This allows us to write the Eq. (2.98) as(

βa + δa δab
δba βb + δb

)(
a
b

)
≈ βi

(
a
b

)
, (2.99)

where δa, δb, δab, and δba are quantities that are much smaller than the β’s. This
system has the eigenvalues (labelled 2 and 3 because they correspond to the 2nd
and 3rd modes of the waveguide) [75]

β2,3 =
β′
a + β′

b

2
±
√
(β′

a − β′
b)

2 + 4δabδba

2
, (2.100)

with corresponding eigenvectors v2,3 (not normalized)

(
2δab

−β′
a + β′

b ±
√

(β′
a − β′

b)
2 + 4δabδba

)
, (2.101)

where β′
a ≡ βa + δa and β′

b ≡ βb + δb. The two propagation constants are closest
when β′

a = β′
b but are always separated by a minimum distance 4

√
δabδba, so that

they never intersect. For small δa, δb, δab, δba � |βa − βb|, we find the eigenvector
for βa > βb to be v2 ≈ (1, 0) and v3 ≈ (0, 1). The upper propagation constant,
β2, has a TM0-like mode in this limit, while the lower propagation constant, β3,
has a TE1-like mode. For βb > βa we find v2 ≈ (0, 1) and v3 ≈ (1, 0), so that the
upper propagation constant now has a TE1-like mode while the lower propagation
constant has a TM0-like mode. An interesting case occurs when β′

a = β′
b and

δab = δba. Then the normalized eigenvectors of this system are v2 = 1√
2
· (1, 1)

and v3 = 1√
2
· (1,−1), i.e., they are an equal superposition of the eigenvectors far

from the crossing.
This simple description of the avoided crossing agrees with the observations of

the numerically computed modal profiles as presented in Figs. 2.8 and 2.9.

2.7.5 Dispersion: effective group index

Having an analytical equation for the propagation constant β or effective index ne,
it is also possible to analytically calculate the dispersion in the waveguide. Linear
dispersion in waveguides is often described in terms of the effective group index,
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ng, an important quantity which, for example, describes the free-spectral-range
(FSR) of ring resonators and influences the sensitivity of waveguide-based sensors.
Silicon-on-insulator waveguides have, in fact, a very strong modal dispersion due
to the strong confinement of the light. The group index is defined by Eq. (2.32)
as ng ≡ ∂β/∂k. From Eq. (2.71), we find

∂β

∂k
=

1

β

(
kn2

1 + k2n1
∂n1

∂k
− kx

∂kx
∂k

− ky
∂ky
∂k

)
. (2.102)

The 1st and 2nd term on the right-hand-side of this equation are specified by the
material refractive indices. The refractive indices nj(k) may depend on frequency
and thus on k = ω/c. The 3rd term is calculated from Eq. (2.29). Although kx is
only given implicitly, ∂kx/∂k can be calculated explicitly. The total derivative of
the left-hand-side of Eq. (2.29) with respect to k, dG/dk, equals zero for solutions
of G = 0. The height d does not depend on frequency. So we get

dG

dk
=

∂G

∂k
+

∂G

∂kx

∂kx
∂k

+
∂G

∂n1

∂n1

∂k
+

∂G

∂n2

∂n2

∂k
+

∂G

∂n3

∂n3

∂k
, (2.103)

or,

∂kx
∂k

= −
∂G
∂k + ∂G

∂n1

∂n1

∂k + ∂G
∂n2

∂n2

∂k + ∂G
∂n3

∂n3

∂k
∂G
∂kx

. (2.104)

Similarly, the 4th term of the right-hand-side of Eq. (2.102) is calculated from Eq.
(2.17) as

∂ky
∂k

= −
∂F
∂k + ∂F

∂n1

∂n1

∂k + ∂F
∂n4

∂n4

∂k + ∂F
∂n5

∂n5

∂k
∂F
∂ky

. (2.105)

The partial derivatives in Eqs. (2.104) and (2.105) are straightforward to calculate.
For the case that only the core material is dispersive, i.e. n1(k), and where the

other refractive indices do not depend on the frequency, thus also not on k, we
define

α2 ≡
(
k2x
n4
1

+
γ2
3

n4
3

)
1

n2
2γ2

, (2.106)

α3 ≡
(
k2x
n4
1

+
γ2
2

n4
2

)
1

n2
3γ3

, (2.107)

α4 ≡ k2y + γ2
5

γ4
, (2.108)

α5 ≡ k2y + γ2
4

γ5
, (2.109)

to arrive at

∂kx
∂k

=

{
kxk

(
α2(n

2
1 − n2

2) + α3(n
2
1 − n2

3) + (α2 + α3)n1k
∂n1

∂k

)
(2.110)

+

(
γ2
n2
2

+
γ3
n2
3

)(
4k3

x

n5
1

− 2kx
n1

(
k2
x

n4
1

− γ2γ3
n2
2n

2
3

))
∂n1

∂k

}

·
{(

γ2
n2
2

+
γ3
n2
3

)(
k2
x

n4
1

+
γ2γ3
n2
2n

2
3

)
+ k2

x (α2 + α3) + n2
1d

(
k2
x

n4
1

− γ2γ3
n2
2n

2
3

)2
sec2[kxd]

}−1

,
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Figure 2.10: Effective group indices. Approximate analytical model compared with
rigorous mode solver. Typical rectangular silicon-on-insulator waveguides with air
cladding. (a) 220 nm high, fundamental mode. (b-d) 300 nm high, first 3 modes.

and

∂ky
∂k

=
kyk
(
α4(n

2
1 − n2

4) + α5(n
2
1 − n2

5) + (α4 + α5)n1k
∂n1

∂k

)
(γ4 + γ5)(k2y + γ4γ5) + k2y (α4 + α5) + b(k2y − γ4γ5)2 sec2[kyb]

. (2.111)

We calculated the effective group indices of typical SOI waveguides with heights
of 220 nm and 300 nm, and compared the result with a numerical mode solver.
Silicon dispersion was taken into account, with ∂n1/∂k = 3.147·108 m−1, k = 2π/λ
and λ = 1550 nm [76]. These results are compared with the group index that was
numerically calculated using the FMM method as implemented in FimmWave.
Results are presented in Fig. 2.10 where it can be seen that the error remains
below 4%.
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2.8 Rigorous numerical mode-solvers

Exact analytical solutions, i.e. closed form solutions, for the guided modes ex-
ist only for some waveguide shapes, such as a slab waveguides or circular wave-
guides. For waveguides with a rectangular cross-section, approximate models such
as Marcatili’s method and its modifications exist (see Sec. 2.7). However, actual
waveguides might have different shapes, for example, silicon waveguides are ac-
tually trapezoidal rather than rectangular. Moreover, waveguides for evanescent
field sensing have even more special shapes to maximize the overlap of the modal
field with the material that is to be sensed. Rigorous numerical mode solvers can
handle arbitrary shaped waveguides including losses and bends, and are therefore
often used in the design of photonic waveguides.
We have used two different numerical mode solvers: the film mode-matching

(FMM) method and the finite element method (FEM), both implemented in the
FimmWave software package by Photon Design (Oxford, UK) [77,78].
The FMM method is very suitable to solve waveguide geometries in which the

waveguide is built up from a number of vertical slices (such as rectangular wave-
guides or directional couplers). In this method, the cross-section of the ridge
waveguide is split in vertical slices, and 1-dimensional modes are computed ana-
lytically for each slice. The 2-D modes are found by finding a set of coefficients of
the 1-D modes that will give a field profile obeying Maxell’s equations everywhere.
In our simulations, the area of the numerical simulation extends 2 μm from the
waveguide, and 200 1-D modes are used per slice.
In the finite element method (FEM), Maxwell’s equations for the modes of a

waveguide are discretized and the modes are solved on the discrete grid. The
FEM implementation in FimmWave uses first and second order finite elements.
The triangular grid is automatically chosen such that it aligns with the waveguide
structure. In our simulations, we used ∼210 gridpoints in both the x- and the
y-directions.
For verification, we compared the FMM method with the finite element method

(FEM) for the rectangular waveguides in Fig. 2.7. We found that difference (be-
tween FMM and FEM) in effective index is below 10−3 and the relative energy in
the difference field is below 10−4.

2.9 Typical silicon-on-insulator waveguides

This section details some typical characteristics of rectangular silicon-on-insulator
waveguides: (1) the uncertainty in the propagation constant, (2) the effects of
slightly slanted side-walls, (3) the propagation loss due to side-wall roughness,
and (4) the wavelength-dependence of the effective index.
Fabrication of sub-wavelength silicon waveguides is not straightforward and real

waveguides differ from the designed ones (Sec. 2.3). The most standard wave-
guide in SOI technology is rectangular, because it is simple and has particular
advantages. The mode is strongly confined in this waveguide, allowing for sharp
bends. The height of the waveguide is solely defined by the thickness of the silicon
layer, and thus does not depend on etch processes which may cause variations or
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Figure 2.11: Trapezoidal waveguides with 10◦ side-wall angle compared with
rectangular waveguides. Silicon-in-SiO2 waveguides with a height h of 220 nm.
Silicon-dioxide cladding. Film mode matching (FMM) method is used as mode-
solver for the rectangular waveguids. Finite element method (FEM) is used as mode-
solver for the trapezoidal waveguides because this method handles the trapezoidal
structures more accurate (see Sec. 2.8). (a) Sketch the cross-section of a trapezoidal
waveguide. (b) Sketch the cross-section of a rectangular waveguide, width w is equal
to the average width of the trapezoidal waveguide. (c) Effective index. (d) Effective
group index.

roughness. A drawback of this waveguide type is that the strong confinement also
causes the effective index to be sensitive to fabrication-induced variations particu-
larly in the width of the guides. This is a problem for some devices such as arrayed
waveguide gratings.
Although the waveguides are intended to be rectangular, the side-wall angle is

about 10 degrees, hence the bottom of a 220 nm high waveguide is 78 nm wider
than its top (Fig. 2.11a). This is caused by the etch process in the CMOS fabrica-
tion of the waveguides. We used rigorous numerical simulations to show that the
effective index and the effective group index of trapezoidal waveguides are very well
approximated by rectangular waveguides that that have a width equal to the aver-
age width of the trapezoidal guide. Figure 2.11 compares trapezoidal waveguides
with rectangular waveguides. For silicon waveguides embedded in silicon-dioxide
with height 220 nm and widths varying from 400 nm to 1000 nm, the effective
index and effective group index agree within 0.1%. Hence the effective index and
the effective group index of typical trapezoidal SOI waveguides may be very well
approximated by rectangular waveguides.
The propagation losses αp of SOI waveguides have many causes: linear and

non-linear absorption in the material (both in the bulk as well as at the interfaces
between materials), leakage into the silicon substrate, scattering from small defects
in the material, and scattering from roughness of the silicon-silica interfaces of
the waveguide. Dry etching, which is used to fabricate these guides, creates sub-
wavelength roughness at the sidewalls of the waveguides. This is the dominant loss
mechanism in sub-wavelength silicon waveguides [79]. The high index contrast of
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waveguides in SOI technology allows small bending radii (3 μm) with reasonable
propagation losses. These losses originate not only from radiation loss due to the
curvature in the waveguide. The fields of the mode of a bend waveguide is pushed
outwards towards the outer side of the waveguide. This increases losses due to
side-wall roughness because the field intensity at the sidewalls is higher compared
to a straight waveguide. This also increases substrate leakage because the mode
is less confined. Moreover, side-walls are typically not perfectly vertical, which
introduces TE/TM conversion in the bends; this conversion gives additional loss
[64]. Moreover, there is a mismatch between the mode of the straight waveguide
and the mode of the bend waveguide, especially for smaller bending radii. This
causes at the interfaces between the straight and the curved waveguides. Therefore
the loss of two 90◦ turns separated by a straight guide is not necessarily same as
the loss of a single 180◦ turn. Finding the modes of an ideal waveguide without
losses can be done with high accuracy, but the calculation of loss mechanisms is
relatively difficult [79].
The out-of-plane grating couplers which we used to couple light to and from the

chip work approximately in a 30 nm wavelength span around a center wavelength
λc of 1550 nm. In this regime, the wavelength-dependence of the effective index
can be approximated as linear, so that we may use Eq. (2.33).

2.10 Directional couplers

Directional couplers can be used to couple a fraction of the light from one wave-
guide to another, for example to couple light to ring resonators. This section
starts with an intuitive introduction to the behavior of such couplers. Then three
methods to calculate the behavior of directional couplers are presented and com-
pared: eigenmode expansion (Sec. 2.10.1), rigorous numerical FDTD simulations
(Sec. 2.10.2), and coupled mode theory (Sec. 2.10.3).
A directional coupler consists of two parallel single-mode waveguides close to

each other so that power couples from one waveguide to the other (see Fig. 2.12).
Describing this system with coupled mode theory, we assume that the electric field
in the coupler can be approximated by a superposition of the two modes of the
isolated waveguides. The amplitudes of the two modes vary while propagating
through the parallel waveguides due to the coupling (i.e., light “leaks” from one
mode to the other). This coupled mode theory will be derived in Sec. 2.10.3 but we
present the most important results already in this paragraph. The electromagnetic
field is approximated by

Ec(x, y, z, t) ≈ Ea(x, y)ua(z)e
ıωt +Eb(x, y)ub(z)e

ıωt, (2.112)

with ua(z) and ub(z) the complex modal amplitudes of waveguides a and b, re-
spectively, Ea(x, y) and Eb(x, y) the modal electric fields of the waveguides and
Ec(x, y, z, t) the electric field. Let us consider the result of an excitation of mode b
at z = 0 (i.e., all light is in waveguide b). The transmission of a coupler with length
L̃ is given by ub(L̃) = τub(0), while the coupled light is given by ua(L̃) = κub(0).
These complex amplitudes τ and κ can be calculated using coupled mode theory
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Figure 2.12: Sketch of a directional coupler consisting of two parallel waveguides.
We studied couplers with an silicon-dioxide cladding because these devices were used
in Chapters 3, 4 and 5. (a) Cross-section of the coupler. Two 440 nm × 220 nm
rectangular silicon waveguides are separated 200 nm. Refractive index of the guides
is n1 and the SiO2 cladding has index n2. (b) Top-view including the bends. Upper
waveguide a and lower waveguide b. (c) Optical microscope photo of a directional
coupler in SOI. The very narrow pinkish lines are the waveguides.
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Figure 2.13: (a and b) Behavior of a directional coupler. Power in upper waveguide
a and lower waveguide b. At z = 0, all power resides in the lower guide b. (a)
Coupling coefficient s = 0.1, identical waveguides, δ = 0. (b) Coupling coefficient
s = 0.1, different waveguides, δ = 0.02.
(c) Coupling coefficient calculated using three different methods (see legend). The
five groups of lines correspond to waveguide widths: 380 nm, 400 nm, 420 nm,
440 nm and 460 nm (top to bottom). The rectangular silicon waveguides are
220 nm high and have silicon-dioxide cladding.
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(see Sec. 2.10.3)

τ =

(
cos sL̃− ıδ

s
sin sL̃

)
e−ı(βb+κbb−δ)L̃, (2.113)

κ = −
( ıκab

s
sin sL̃

)
e−ı(βb+κbb−δ)L̃, (2.114)

where βb is the propagation constant of mode b, κbb is the correction to this propa-
gation constant originating from the other waveguide, δ ≡ 1

2 (βb + κbbb − βa − κaa)
is the difference between the corrected propagation constants of the guides,
s =

√
κbaκab + δ2 is the coupling coefficient dominated by κab and κba. The guides

in the coupler we study are designed to be identical, but we experimentally ob-
served non-zero δ in our couplers. Equation (2.113) is valid for two parallel wave-
guides, whereas the actual coupler also includes bends to connect the parallel
waveguides to the components in the circuit. We take the coupling which hap-
pens in the bends into account by re-defining the length L̃ in Eq. (2.113) as an
effective coupling length L̃ = L + ΔL, with L the length of the parallel wave-
guides. Figure 2.13a illustrates the behavior of a directional coupler in which light
“leaks” from waveguide b (power |ub|2) to waveguide a. For two different wave-
guides (non-zero δ), the power never fully transfers from one waveguide to the
other (Fig. 2.13b). In Sec. 2.10.3, we derive Eq. (2.113) by following the approach
of Hardy & Streifer [31, 32]. In the conclusion of Sec. 2.10.3, we show that this
method agrees well with rigorous FDTD simulations also for high-index-contrast
SOI waveguides.
When using the couplers not for a single wavelength λc but for a range of

wavelengths, it is necessary to study how the behavior of the coupler depends on
the wavelength. Dispersion is taken into account by assuming linear dispersion of
the effective index (hence the propagation constant βb(λ) is given by Eq. (2.33))
and by assuming linear dispersion of the coupling s(λ). With the definition of L̃, it
is not necessary to include dispersion in ΔL. We found that dispersion in ΔL, and
higher order dispersion in s, are small and below our numerical and experimental
noise (see Sec. 2.10.2 and Chapter 3, respectively).

2.10.1 Eigenmode expansion (EME)

The directional coupler may be looked upon as one single waveguide with z-
invariant refractive index profile εc(x, y) consisting of two disconnected parts. A
coupler that consists of two identical single-mode waveguides has two modes: a
symmetric mode (labeled 0) an an anti-symmetric mode (labeled 1). These are
pure “waveguide” modes, in the form of Eq. (2.30), which propagate in the z-
direction with propagation constants β0 and β1 and without distortion. Hence

Ec(x, y, z, t) = u0E
(0)(x, y)eı(ωt−β0z) + u1E

(1)(x, y)eı(ωt−β1z). (2.115)

The relative phase between modes 0 and 1 changes with z due to the different
propagation constants β0 and β1. After a certain propagation distance Lπ, the
relative phase of the two modes is changed by π rad. In Eq. (2.115), the relation
to the individual waveguides a and b is not clearly visible. However, we may
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Figure 2.14: Two description of the modes in a directional coupler, modal electric
field, Ex(x, y) at y=0. The upper two curves show the modes of isolated waveguides
a and b. The fields in the directional coupler can be approximated as a superposi-
tion of those two modes with z-dependent amplitude coefficients ua(z) and ub(z)
(coupled mode theory). The lower two curves are exact solutions of the direc-
tional coupler “waveguide” (eigenmode expansion method). Symmetric mode (0)
and Anti-symmetric mode (1). Modal profiles obtained using rigorous mode-solver
(FMM method in FimmWave).

approximate the mode of isolated waveguide a by adding modes 0 and 1. We may
approximate the mode of isolated waveguide b by subtracting mode 1 from mode
0 (see Fig. 2.14). Thus the excitation of the “mode” of waveguide b at z = 0
can be approximated by u0 =

√
1/2 and u1 = −√1/2. After a propagating a

distance Lπ, the sign of one mode 1 has effectively flipped, so that all light is
now approximately in the “mode” of waveguide a. The length over which all ligth
transfers from waveguide b to waveguide a is hence given by Lπ.

In the coupled mode theory, Eqs. (2.112-2.114), it was found that all light
transfers from mode b to mode a when |ub(L̃)| = cos sL̃ = 0, thus when sL̃ = π/2.
This length L̃ is thus the same length as Lπ.This allows us to define a coupling
coefficient sEME as found with the eigenmode expansion (EME) method as

sEME =
β1 − β0

2
. (2.116)

In the implemenation of the EME method, we calculated the coupling coef-
ficients sEME from the propagation constants (β1 and β0) that were calculated
with a rigorous numerical mode-solver (FMM method). The calculated coupling
coefficients sEME agree well with coupled mode theory and with rigorous FDTD
simulations (see Fig. 2.13c).
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Figure 2.15: Setup of the directional coupler FDTD simulation, based on screen-
shots of CyrstalWave. (a) Top-view with the exciter and sensors in, cross, and
through, indicated. (b) Cross-section at z=0 depicting the two waveguides.

As discussed in Sec. 2.9, the side-walls of waveguides in SOI technology are
not perfectly vertical but have an angle of ∼10◦, hence the waveguides are trape-
zoidal. It was shown that the effective index index of typical trapezoidal SOI
waveguides are well approximated by a rectangular waveguide with a width equal
to the average width of the trapezoidal waveguide. In this paragraph, we study
the influence of the side-wall angle of the waveguides in directional couplers using
the EME method. We computed the coupling coefficients sEME of couplers with
trapezoidal and rectangular waveguides, to find that they agree within 1% (for
waveguide widths varying from 380 nm to 480 nm, gaps varying from 140 nm to
240 nm, and 10◦ side-wall angle for the trapezoidal guides). Propagation constants
β0 and β1 were, for both cases, computed with the finite element method (FEM)
mode-solver.

2.10.2 Rigorous FDTD simulations

We have used rigorous finite difference time domain (FDTD) simulations to cal-
culate the transmittance of light through the directional coupler. Rigorous means
that we calculate the solution to Maxwell’s equations without approximations.
Space and time are discretized, and the behavior of the electromagnetic fields over
time is calculated using Maxwell’s equations. This means that the solutions are
exact when using an infinitely small grid-size, an infinitely small time-step, and
an infinitely accurate computer. In reality, however, computation times and com-
puter memory are limited of course and therefore so is the accuracy that can be
obtained (see Refs. [80, 81] for FDTD).
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Figure 2.16: Example of FDTD simulations of a directional coupler (waveguide
width 440 nm, gap 200 nm). Lengths L are: 0, 4, 8, 12, and 16 μm. (a) Power
flow through the sensors, from FDTD (markers) and fitted (curves). (b-c) Fitted
values of coupling coefficient s, transmittance A0 and correction for coupling in the
bends ΔL. Plotted versus wavelength to investigate both dispersion and noise.

We have used CrystalWave, a commercial FDTD implementation by Photon
Design (Oxford, UK) [82]. This solver has an user-friendly interface and is de-
signed for integrated-optical problems. The simulations were performed on a fast
PC using 10 CPU-cores with a clock-speed of 2.66 GHz and 96 GBs of memory.
For the simulations of the directional coupler, we used a simulation domain that
extends 1 μm above and below the waveguides (see Fig. 2.15) and a grid-spacing
of 20 nm for vacuum wavelengths around 1550 nm. The grid was aligned to the
parallel waveguides, such that the refractive index profile in this region is not dis-
cretized or averaged. The reflections from the borders of the simulation volume
was minimized using perfectly matched layers [82]. A TE-like mode is excited in
the lower waveguide (see Fig. 2.15) with a time-pulse that consists of a sinusoidal
signal (free-space wavelength 1550 nm) with an envelope that has a bandwidth of
200 nm (free-space wavelength). The electromagnetic energy flux through the rect-
angular surfaces of the in-, through- and cross-sensors are recorded (see Fig. 2.15).
The sensors record the electromagnetic fields versus time and a Fourier transform
is used to find the energy flux as function of frequency or free-space wavelength.
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Figure 2.17: Characteristics of directional couplers with different waveguide widths
and separation gaps, extracted from FDTD simulations. Labels of the y-axis are
above the plots. (a) coupling coefficient s. Curves represent waveguide widths
380 nm, 400 nm, 420 nm, 440 nm, and 460 nm (top-to-bottom). The curves in
(b) and (c) have the same color and line-style coding. (b) Correction for coupling
in the bends ΔL (c) Dispersion in the coupling coefficient ∂s/∂λ.

The power inserted in waveguide b was normalized to one using the recordings of
the in sensor.

Equation (2.114) is used to study the behavior of the couplers. With unit power
in waveguide b before the coupler, the power in waveguide a after the coupler,
|ua(L̃)|2, is

|ua(L̃)|2 = A0 sin
2 [s (L+ΔL)] . (2.117)

For a lossless coupler as described by Eq. (2.114), A0 = |κab/s|2, but radiation loss
in fact also influences A0. We performed a series of FDTD simulations with length
L varying from 0 μm to 18 μm and recorded the power in waveguide a after the
coupler, |ua(L̃)|2 for each length L. Then unknowns in Eq. (2.117), s, ΔL and A0,
are found by fitting this equation to the |ua(L̃)|2 versus L curve. An example of the
results of such a FDTD simulation and fitting is shown in Fig. 2.16a, where plusses
show the FDTD results and the solid line shows the fitting. For all simulations, we
found that A0 ≈ 1, thus radiation loss and asymmetries between the waveguides δ
can be neglected. The numerical error in the FDTD computation is estimated by
inspecting the results at different frequencies or free-space wavelengths (Fig. 2.16b-
d). The curves in this figure are expected to be smooth, but it can be seen that the
numerical error in A0, s, and ΔL are on the order of 1%, 4% and 5%, respectively.
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The power going straight through waveguide b was also recorded in the FDTD
simulations (circles in Fig. 2.16a). We compare this recorded power with the pa-
rameters (s, ΔL and A0) that were obtained using the recordings of the power
coupled to waveguide a. For lossless couplers, the straight-through power in wave-
guide b, |ub(L̃)|2 = 1− |ua(L̃)|2, which is plotted as the dashed line in 2.16a. This
plot shows good agreement between the dashed line and the circles.
In Fig. 2.16b,d, it can be seen that the dispersion in s is linear and that the dis-

persion in ΔL is negligible. A linear fit is used to find linear dispersion ∂s/∂λ in the
regime from 1525 nm to 1575 nm free-space wavelength. Figure 2.17 presents the
simulated characteristics of directional couplers with different waveguide widths
and separation gaps.

2.10.3 Coupled mode theory following Hardy & Streifer

This section presents the coupled mode theory as derived by Hardy and Streifer
[31, 32]. This formalism requires fewer approximations than, for example, that
derived by Yariv [35, 83]. Most importantly, Yariv’s formalism approximates the
modes as pure transverse electric (TE) or transverse magnetic (TM) which is not
valid for single-mode waveguides with a high index contrast. A detailed comparison
of the formalism presented here with theories reported in the literature can be
found a the end of this section. We have done our best to present the derivation as
clearly as possible, despite the many mathematical steps. Although the coupled
mode formalism is generally applicable, we directly apply it to the directional
couplers because this clarifies the description.
We consider a directional coupler consisting of two parallel rectangular wave-

guides (index n1), embedded in a homogeneous cladding (index n2), separated by
a gap g (see Fig. 2.12a). For typical SOI waveguides, this gap is about 200 nm.
The coupler is described by its permittivity profile εc(x, y) = ε0n

2
c(x, y). We de-

scribe the electromagnetic fields in the coupler in terms of the modes of the two
waveguides, labeled a and b. Isolated waveguide a is described by permittivity
profile εa(x, y), and waveguide b is described by permittivity profile εb(x, y). We
define Δεa(x, y) and Δεb(x, y) as the difference between the coupler permittivity
profile and the isolated waveguide permittivity profile, i.e.,

εc(x, y) = εa(x, y) + Δεa(x, y) = εb(x, y) + Δεb(x, y), (2.118)

see Fig. 2.18. In the analysis, we assume that the mode expansion conjecture is
valid. After explaining this conjecture, we go trough a long mathematical deriva-
tion to write Maxwell’s equations in a form that is very useful for the description
of the directional coupler. We then expand the field in terms of modes of the
waveguides a and b and approximate it by only considering the modes which are
important in the directional coupler, neglecting radiation and backwards-traveling
modes. This results in intuitive equations for the directional coupler.

Mode expansion conjecture

The mode expansion conjecture states that, for a given frequency ω, the modes of a
waveguide (including radiation modes and evanescent modes) form in every cross-
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Figure 2.18: Permittivity profiles, cross-section at y = 0. Permittivity profiles of
the directional coupler εc(x, y), isolated waveguide a εa(x, y), isolated waveguide b
εb(x, y) and difference profiles Δεa(x, y) and Δεb(x, y). In typical SOI waveguides,
ε1 and ε2 are the permittivities of silicon and silicon-dioxide, respectively.

sectional plate (z = constant) a complete set; in the sense that all transversal field
components for arbitrary permittivity profile can in any cross-sectional plane be
written as a linear superposition of the transversal field components of the modes
of the waveguide. In the example of a directional coupler, we write the time-
harmonic fields of the directional coupler (permittivity εc(x, y)) as a superposition
of the modes of waveguide a (permittivity εa(x,y)) [28, 29,31,32,84], i.e.,

Ec
t(x, y, z, t) =

∞∑
ν=1

aν(z)E
a,ν
t (x, y)eıωt, (2.119)

Hc
t(x, y, z, t) =

∞∑
ν=1

aν(z)H
a,ν
t (x, y)eıωt. (2.120)

where Ec
t and Hc

t are the transversal electromagnetic field components in coupler
and with the summation over an infinite set waveguide modal profiles Ea,ν

t (x, y)
and Ha,ν

t (x, y). Subscript t denotes the transversal field components x and y.
Actually, this superposition consists of a finite sum of the guided modes and an
integral over the radiation and evanescent modes, but for simplicity we will keep
writing the single infinite sum (see Sec. 2.6.5). The modes of waveguide a are
solutions of Maxwell’s equations for permittivity εa(x, y), but they are not a so-
lution of Maxwell’s equations for the directional coupler which has permittivity
εc(x, y). For example, the individual modes of waveguide a are smooth outside the
core of waveguide a, whereas certain transverse components of the electromagnetic
fields in the coupler are discontinuous at the interfaces of waveguide b. One might



Chapter 2. Fundamental theory of silicon photonic micro-ring resonators 53

compare this expansion with spatial Fourier decomposition, in which an arbitrary
function f(x, y) can be written as an infinite superposition of spatial harmonic
functions. So far, this conjecture has only been proven for two-dimensional loss-
less optical components, including TE- and TM-modes in slab waveguides [84].
This conjecture is often assumed to hold also for the general case, and is in fact
often used, but a proof seems not to have been given so far. The general case of
this conjecture is made plausible by the fact that the transversal components of
the modes are, for given frequency ω, the eigenfields of a differential operator Ô de-
fined in Eq. (2.40) with the propagation constant β as eigenvalue (see Eq. (2.37)).
The fact that Ô is not selfadjoint makes this problem difficult because it precludes
the use of some useful theories. Still, we may project the complete space on the
eigenvalues of Ô which, for a complete set, would give identity, i.e., completeness
may be formulated as

lim
|β|→∞

∮
β

(
βÎ − Ô

)−1

dβ = Î , (2.121)

where complex β runs along a contour in the complex plane with |β| → ∞ and
with identity operator Î. This projection only depends on this contour integral
and not on the details in the complex plane. From Fourier theory, we know that
the operator Ô for free-space is complete and we argue that the introduction of
the waveguide can be seen as a small perturbation on the operator Ô which has
little influence on the integral along the complex plane at infinite |β|.
The modal fields Ea,ν(x, y) and Ha,ν(x, y) are solutions of Maxwell’s equations

for a waveguide with permittivity profile εa(x, y). The z-component of the electric
field follows from the transversal components of the magnetic field using Ampère’s
law (2.2):

Ea,ν
z (x, y) =

1

ıωεa(x, y)

(
∂Ha,ν

x

∂y
− ∂Ha,ν

y

∂x

)
. (2.122)

The mode expansion, Eqs. (2.119 and 2.120), concerns the transversal field com-
ponents (x,y) of the electromagnetic fields in the coupler. The z-components of
this field follow from Maxwell’s equations. Maxwell’s equations are linear so that
the z-components of the electromagnetic fields (Ec

z and Hc
z) are a superposition of

the contributions of the individual modes of waveguide a. However, these contri-
butions are different from Ea,ν

z because Ec is a solution to Maxwell’s equations in
the coupler with permittivity εc and not a solution to the individual waveguide
a with permittivity εa. We substitute the field in the form of Eq. (2.120) in the
z-component of Ampère’s law (2.2) and move all terms under the summation to
arrive at

Ec
z(x, y, z, t) =

∞∑
ν=1

aν(z)
1

ıωεc(x, y)

(
∂Ha,ν

x

∂y
− ∂Ha,ν

y

∂x

)
eıωt (2.123)

≡
∞∑
ν=1

aν(z)Ẽ
a,ν
z eıωt, (2.124)
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where we defined Ẽa,ν
z . From Eqs. (2.122), (2.123) and (2.124), we find

Ẽa,ν
z (x, y) =

εa(x, y)

εc(x, y)
Ea,ν

z (x, y). (2.125)

The z-component of the magnetic field can be calculated from the z-component
of Faraday’s law (2.1). The coupler and isolated waveguide share the same per-
meability profile, namely μ0, from which follows that the contribution of mode ν
of isolated waveguide a does not depend on the structure (waveguide or coupler),
hence is given by Ha,ν

z .
Finally, we arrive at a description of the electromagnetic fields in the coupler,

Ec and Hc , in terms of the modes of waveguide a,

Ec(x, y, z, t) =

∞∑
ν=1

aν(z)Ẽ
a,ν(x, y)eıωt, (2.126)

Hc(x, y, z, t) =

∞∑
ν=1

aν(z)H
a,ν(x, y)eıωt, (2.127)

with

Ẽa,ν(x, y) = Ea,ν
x (x, y)x̂+ Ea,ν

y (x, y)ŷ +
εa(x, y)

εc(x, y)
Ea,ν

z (x, y)ẑ. (2.128)

Adopting bra-ket notation for later use, Eqs. (2.126) and (2.127) read

|c〉 =
∞∑
ν=1

aν(z)|aν〉. (2.129)

Equation (2.65) in Sec. 2.6.5 defines the scalar product between two modes. This
scalar product only depends on the transversal field components and is defined
for two arbitrary modes, not necessarily two modes of the same waveguide. Two
modes of the same waveguide are orthogonal (Sec. 2.6.3), but the modes of different
waveguides are in general not. We will assume henceforth that the modes of
waveguide a are normalized with respect to this scalar product, i.e., we assume
that

〈aμ|aν〉 = δμν . (2.130)

Differential equations for the modal amplitudes

We have written the electromagnetic field in the coupler as a superposition of the
modes of waveguide a, with z-dependent modal amplitudes aν(z). We now derive
differential equations that describe the z-evolution of these modal amplitudes.
Later, these equations will form the basis for the coupled mode theory.
We start with two electromagnetic fields: Ec, Hc and Ea,μ, Ha,μ. Both fields

are monochromatic with frequency ω hence time evolution is given by eıωt. The
first fields, labeled c, are the fields in the directional coupler. The latter is mode μ
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of waveguide a, which is a solution to Maxwell’s equations for the waveguide with
permittivity εa(x, y). Its electric field is written as

Ea,μ(x, y, z, t) = Ea,μ(x, y)eı(ωt−βa,μz). (2.131)

Fields c and a obey Ampères law (2.2) for εc(x, y) and εa(x, y), respectively,

∇×Hc = ıωεc(x, y)Ec, ∇×Ha,μ = ıω
(
εc(x, y)−Δεa(x, y)

)
Ea,μ. (2.132)

Similar to Sec. 2.6.3, we calculate using Faraday’s (2.1) and Ampère’s (2.132) laws:

∇ · (Ec ×H∗a,μ) = ıω
(
εc(x, y)Ec · E∗a,μ − μ0Hc ·H∗a,μ −Δεa(x, y)Ec · E∗a,μ

)
,

∇ · (E∗a,μ ×Hc) = ıω
(
μ0Hc ·H∗a,μ − εc(x, y)Ec · E∗a,μ

)
,

adding up to

(
∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂z
ẑ) · (Ec ×H∗a,μ + E∗a,μ ×Hc) = −ıωΔεa(x, y)Ec · E∗a,μ.

Following the strategy of Sec. 2.6.3, we integrate this equation over a (x,y)-plane,
and apply the two-dimensional divergence theorem to obtain

∂

∂z
ẑ ·
∫∫

(Ec ×H∗a,μ + E∗a,μ ×Hc) dxdy = −ıω

∫∫
Δεa(x, y)Ec · E∗a,μ dxdy,

(2.133)
in which we used the fact that the integral along a closed contour vanishes for
increasing distance to the origin x = y = 0. The mode expansion conjecture states
that the electromagnetic fields Ec and Hc may be written as a superposition of
the fields of the modes of waveguide a. We will use this to formulate Eq. (2.133)
in terms of the modes of waveguide a. We substitute Eqs. (2.126) and (2.127),
together with Eq. (2.131) (and corresponding equation for Ha,μ) in Eq. (2.133).
We see that all time-dependencies cancel each other. We move the summation over
ν outside the integrals, and we also move the z-dependencies outside the integrals,
to arrive at

∞∑
ν=1

∫∫
ẑ ·
(
Ẽa,ν ×H∗a,μ +E∗a,μ ×Ha,ν

)
dxdy ·

(
∂aν(z)

∂z
+ ıβa,μaν(z)

)
eıβa,μz

= −ıω
∞∑
ν=1

aν(z)e
ıβa,μz

∫∫
Δεa(x, y)Ẽ

a,ν ·E∗a,μ dxdy. (2.134)

The integral in the left-hand-side of the equation is the scalar product between
modes ν and μ of waveguide a, which gives δμν since the modes are assumed to have
been normalized (the tilde does not influence the scalar product as it only applies
to the z-component). Thus the summation on the left-hand-side of this equation
reduces to only one term with ν = μ. We cancel the exponential z-dependence
exp[ıβa,μ] and solve for ∂aμ/∂z to obtain

∂aμ
∂z

= −ıβa,μaμ − ı

∞∑
ν=1

aν κ̃
a
νμ, (2.135)
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where

κ̃a
νμ ≡ ω

∫∫
Δεa(x, y)Ẽ

a,ν ·E∗a,μ dxdy. (2.136)

This is a formulation of electromagnetic fields in terms of the modal fields of
waveguide a, with z-dependent modal amplitudes. Equation (2.135) describes how
the modal amplitudes change with z. At this point, this may seem a complicated
way to write Maxwell’s equations, but it will turn out to be very useful when
only a limited number of modes are taken into account, such as in the case of the
directional coupler.

Exact differential equations for the field in the directional coupler

Without restricting the generality, we may write the electromagnetic fields in the
directional coupler (denoted |c〉) as sum of the fundamental mode of waveguide a,
|a1〉, the fundamental mode of waveguide b, |b1〉 and a residual field, i.e.,

Ec(x, y, z, t) = ua(z)Ẽ
a,1(x, y)eıωt + ub(z)Ẽ

b,1(x, y)eıωt +Er(x, y, z)eıωt,

with analogous equation for Hc. The residual field Er(x, y, z) may be assumed to
be orthogonal to the fundamental modes of waveguides a and b, for each z, with
respect to the scalar product (2.65). In bra-ket notation, we have

|c〉 = ua(z)|a1〉+ ub(z)|b1〉+ |r(x, y, z)〉, (2.137)

with
〈a1|r(x, y, z)〉 = 〈b1|r(x, y, z)〉 = 0. (2.138)

Taking the scalar product of Eq. (2.137) with |a1〉 gives

a1 = ua + 〈a1|b1〉ub, (2.139)

where we used 〈a1|c〉 = a1 which follows from the expansion of the field in the
coupler |c〉 in terms of the modes |aν〉 of waveguide a, see Eq. (2.129). Substituting
Eq. (2.139) into Eq. (2.135) gives

∂ua

∂z
+ 〈a1|b1〉∂ub

∂z
= −ı

(
βa1 + κ̃a

11

)
ua

− ı
(
〈a1|b1〉βa1 + 〈a1|b1〉κ̃a

11

)
ub − ı

∞∑
ν=2

aν κ̃
a
ν1 . (2.140)

We introduce κ̂ab by:

κ̂ab ≡
∞∑
ν=1

〈aν |b1〉κ̃a
ν1. (2.141)

where κ̃a
ν1 are given by Eq. (2.136). The first term of the summation in Eq. (2.141),

i.e., 〈a1|b1〉κ̃a
11, is already present in the second term of the right-hand-side of
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Eq. (2.140). We respectively add and subtract the other terms (ν = 2 .. ∞) to
the second and third term of the right-hand-side of Eq. (2.140), and find

∂ua

∂z
+ 〈a1|b1〉∂ub

∂z
= −ı

(
βa1 + κ̃a

11

)
ua

− ı
(
〈a1|b1〉βa1 + κ̂ab

)
ub − ı

∞∑
ν=2

κ̃a
ν1

(
aν − 〈aν |b1〉ub

)
. (2.142)

This differential equation is, in fact, the one we were looking for. Coefficient κ̂ab

is related to the coupling of the fundamental mode of waveguide a, |a1〉, to the
fundamental mode of waveguide b, |b1〉. We will now simplify κ̂ab and express it in
terms of the modal electric fields Ea,1 and Eb,1 of the fundamental modes of the
waveguides (|a1〉 and |b1〉). First we realize that we may express the transversal
electric field components of |b1〉 as a superposition of the transversal electric fields
components of |aν〉, i.e.

Ẽb,1 =

∞∑
ν=1

〈aν |b1〉Ẽa,ν , (2.143)

where we also calculated Ẽb,1
z which is related to Eb,1

z using Eq. (2.125) with the
labels a replaced by b. Substitution of Eq. (2.136) in Eq. (2.141), and interchanging
the order of the integral and the summation reads

κ̂ab = ω

∫∫
Δεa(x, y)

( ∞∑
ν=1

〈aν |b1〉Ẽa,ν

)
·E∗a,1 dxdy, (2.144)

or, employing Eq. (2.143)

κ̂ab = ω

∫∫
Δεa(x, y)Ẽ

b,1 ·E∗a,μ dxdy, (2.145)

or, in component form and using Eq. (2.125) (for mode b)

κ̂ab = ω

∫∫
Δεa(x, y)

(
Eb,1

x E∗a,1
x + Eb,1

y E∗a,1
y +

εb(x, y)

εc(x, y)
Eb,1

z E∗a,1
z

)
dxdy.

(2.146)

We derived a differential equation describing the evolution of the amplitudes
(ua and ub) of the modal fields (|a1〉 and |b1〉) of the fundamental modes of wave-
guides a and b. We started by taking the scalar product of Eq. (2.137) with |a1〉.
Likewise, we may also take the scalar product of this equation with |b1〉. This
gives Eq. (2.142) with Eq. (2.146) but with labels a and b interchanged. We write
this system of differential equations as

C
∂u

∂z
= −ı

(
BC + K̂

)
u(z)− ıW (z), (2.147)
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with

u =

(
ua

ub

)
, (2.148)

C =

(
1 〈a1|b1〉

〈b1|a1〉 1

)
, (2.149)

B =

(
βa,1 0
0 βb,1

)
, (2.150)

K̂ =

(
κ̂aa κ̂ab

κ̂ba κ̂bb

)
, (2.151)

W (z) =

⎛
⎝∑∞

ν=2 κ̃
a
ν1

(
aν − 〈aν |b1〉ub

)
∑∞

ν=2 κ̃
b
ν1

(
bν − 〈bν |a1〉ua

)
⎞
⎠ , (2.152)

with κ̂aa ≡ κ̃a
11, κ̂bb ≡ κ̃b

11, κ̂ab given by Eq. (2.146), and κ̃a
ν1 given by Eq. (2.136).

Equation Eq. (2.147) may be rearranged to

∂u

∂z
= −ı (B +K)u(z)− ıC−1W (z), (2.153)

with

K =

(
κaa κab

κba κbb

)
, (2.154)

κaa =
1

1− 〈a1|b1〉〈b1|a1〉
(
κ̂aa − 〈a1|b1〉κ̂ba + 〈a1|b1〉〈b1|a1〉(βa,1 − βb,1

))
,

κbb =
1

1− 〈a1|b1〉〈b1|a1〉
(
κ̂bb − 〈b1|a1〉κ̂ab + 〈a1|b1〉〈b1|a1〉(βb,1 − βa,1

))
,

κab =
1

1− 〈a1|b1〉〈b1|a1〉
(
κ̂ab + 〈a1|b1〉(βa,1 − βb,1 − κ̂bb

))
,

κba =
1

1− 〈a1|b1〉〈b1|a1〉
(
κ̂ba + 〈b1|a1〉(βb,1 − βa,1 − κ̂aa

))
.

Note that these equations are exact (provided the mode expansion conjecture is
correct). That is, these are Maxwell’s equations in an alternative representation,
which is suitable for coupled-mode analysis.

Approximations and solutions of the differential equations

We approximate the analysis of the directional coupler by neglecting W in
Eq. (2.153). This term is related to the other modes of the system, not being
the fundamental mode of waveguide a or b. More specifically, we assume that for
higher-order modes (ν ≥ 2), κ̃a

ν1aν and κ̃a
ν1〈aν |b1〉 are much smaller then κ̂aa, κ̂ab,

and βa,1 (and a similar requirement with a and b interchanged). This assumption
is justified by the results of rigorous FDTD simulations, discussed in Sec. 2.10.2,
which show that directional couplers in SOI technology have little loss, i.e., almost
all energy resides in the modes of waveguides a and b.
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The fundamental modes of waveguides a and b are almost orthogonal which
allows to neglect all terms involving 〈a1|b1〉 or 〈b1|a1〉. When neglecting these

terms, C reduces to the identity matrix and K̂ = K. The results obtained
with this additional approximation did not differ appreciably from keeping these
terms in the model. We nevertheless kept the terms with 〈a1|b1〉 or 〈b1|a1〉 in the
equations.
By neglecting W , i.e, neglecting the coupling to higher-order (radiation, evanes-

cent and backwards-traveling) modes, Eq. (2.153) becomes

∂u

∂z
= −ı (B +K)u(z). (2.155)

We consider a coupler in which all energy resides in waveguide b at z = 0, i.e.
u = (0, 1). Solving Eq. (2.155) for this initial condition gives11

ua(z) = − ıκab

s
sin(sz) e−ı(βb,1+κbb−δ)z, (2.156)

ub(z) =

(
cos sz − ıδ

s
sin sz

)
e−ı(βb,1+κbb−δ)z, (2.157)

δ =
1

2
(βb,1 + κbb − βa,1 − κaa) , (2.158)

s =
√
κabκba + δ2. (2.159)

These equations describe the behavior of the parallel waveguides in a directional
coupler, when all the field is in the fundamental mode of waveguide b at z = 0.
These equations are identical to Eqs. (2.113) and (2.114) that were previously
presented and explained (but not derived) in the beginning of Sec. 2.10.

Comparison with Literature

We have followed the approach of Hardy & Streifer [31] from 1985, together with
the unified notation presented by Hardy in 1998 [32]. In comparison with their
derivation, we introduced a few changes. Our analysis is fully based on the or-
thogonality relation (2.53) rather than relation (2.58). Forward- and backwards-
traveling modes are orthogonal in this relation, so that we may use a single summa-
tion over all forward- and backwards traveling modes. In the directional coupler,
excitation of the backwards traveling modes can be neglected, and these modes

11 We write Eq. (2.155) as ∂u/∂z = −ıMu(z), with M =

(
ma κab

κba mb

)
, ma = βa,1 + κaa,

and mb = βb,1 + κbb. We look for solutions in the form u(z) = a± exp[−ıλ±z]. Substitut-
ing this in the differential equation gives λ±a± = Ma±, which we recognize as the eigenvalue
equation for M with eigenvalues λ±. This equations has solutions when det |M − Iλ±| = 0,

from which we find the eigenvalues λ± = 1
2
(ma + mb) ± 1

2

√
(ma +mb)2 − 4(mamb − κabκba)

= 1
2
(ma+mb)±

√
1
4
(mb −ma)2 + κabκba = 1

2
(ma+mb)±s, with s and δ defined in Eqs. (2.159)

and (2.158). From the eigenvalue equation of M , we find eigenvectors a+ = (κab, δ + s)
and a− = (κab, δ − s). If we solve the general solution of the differential equation, u(z) =
c+a+ exp[−ıλ+z] + c−a− exp[−ıλ−z], for initial condition u(0) = (0, 1), we find c− = −c+ and
c+ = 1/2s, giving Eqs. (2.156) and (2.157).
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lumped together with the radiative and evanescent modes in the residual field
Er(x, y, z). We have assumed a lossless material with real permittivity εc(x, y).
In the description of the fields in terms of the modes of waveguide a, we followed
Kogelnik [27] and started our derivation with the orthogonality relation (2.53) in-
cluding the complex conjugates, which led to a slightly different notation for κ̃a

νμ,
Eq. (2.136), and κ̂ab, Eq. (2.146). With real transversal fields, the longitudinal
(z) component of the field is imaginary, which indeed causes a minus sign in the
definition of κ̂ab in Refs. [31] and [32]. The derivation here is for two parallel
waveguides without z-dependency in the permittivity. However, the derivation is
extendable to the more general case by changing εc(x, y) to εc(x, y, z), leading to
z-dependence of Ẽa,ν

z , Ẽb,ν
z , κ̃a

νμ, κ̃
b
νμ, κ̂ab, κ̂ba, κ̂aa, κ̂bb, K̂, and K. In Ref. [32] it

is stated that neglecting the radiation and the backwards propagating waves may
not be justified in the case of waveguides with high refractive index contrast. Our
comparison with rigorous FDTD simulations show that by far the most energy
indeed resides in the fundamental modes of the waveguides, such that neglecting
the residual fields is allowed for parallel waveguides. In contrast, gratings in silicon
introduce strong scattering, which will not only couple the fundamental mode to
another mode, but couple to a spectrum of modes. We have tried to formulate the
approach of Hardy & Streifer as clear as possible, with consistent notation, and
including all steps.
In comparison with the work of Yariv, Refs. [35] and [83], the most important

difference is in contrast to our approach is that Yariv approximate the modes as
pure TE or pure TM. Typical typical SOI-waveguides have relevant longitudinal
components of the electromagnetic fields, and neglecting them underestimates the
coupling between waveguides. Furthermore, Ref. [83], approximates the fundamen-
tal modes of isolated waveguides a and b to be orthogonal, which is admittingly a
good approximation for typical SOI waveguides.

Implementation and comparison with other methods

We implemented the coupled mode theory in Matlab, in which we used the modal
fields as computed with a numerical mode-solver (FMM method in FimmWave),
using a discretization grid of 5 nm. In Fig. 2.13c on page 45, we compare the
calculated coupling coefficient s with other methods. It can be seen that there
is a good agreement between the methods, so that the use of the coupled mode
theory is justified for typical directional couplers in high-index-contrast silicon
waveguides.

2.11 Out-of-plane grating couplers

Silicon photonic integrated circuits have a large refractive index contrast allowing
for small device footprint, which is convenient for most applications. However, it
makes in-and-out coupling of light into the photonic integrated circuit (PIC) very
difficult, since one has to match a ∼9 μm fiber core with a ∼0.5 μm waveguide.
The use of out-of-plane grating couplers circumvent this problem by employing
a grating that redirects the light from the waveguide upwards. Radiation occurs
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Figure 2.19: Sketches of out-of-plane grating coupler. Silicon layer height 220 nm
and grating etch depth 70 nm. Waveguide width is 450 nm. Grating Coupler width
10 μm, and grating length is ∼15 μm. (a) Impression. b Cross-section of the
grating coupler. An efficient simulation method (2D FDTD, effective index method
and diffraction integral) is outlined.

from an area on the top surface of the PIC, allowing for a coupler with the same
dimensions as the fiber core (Fig. 2.19a). Dielectric grating couplers date from the
1970’s, and designs for SOI technology have been presented over the last decade
by, among others, Gent University [85–88]. The large tolerance of the alignment
of the optical fiber with respect to the couplers and the relatively straightforward
CMOS fabrication make these coupler often preferable over end-fire-coupling or
butt-coupling, both for characterization of integrated photonic components in labs,
as well as for fiber-pig-tailing silicon integrated photonic devices. The devices re-
ported in this thesis all have basic out-of-plane grating couplers, with a coupling
efficiency of about -5 dB (30%), although more advanced grating coupler designs
exist today (see Sec. 2.11.2). One of the interesting features of sensing with (ring-)
resonators is that transmission loss does not have a large influence on the sensi-
tivity.

2.11.1 Basic grating couplers

A basic grating coupler consists of a very wide (10 μm) waveguide with a grating
etched in its top surface. We define a basic grating coupler as a one-dimensional
grating in a wide waveguide with all identical and rectangular grating grooves. Ad-
vanced couplers may, for example, have a concentric cylindrical gratings, different
profiles of the grooves or teeth of the grating, or an apodized grating period (see
Sec. 2.11.2). For basic grating couplers, the variations of the electromagnetic fields
in the x-direction are slow with respect to the variations in the y- and z-directions
(see Fig. 2.19b). In and near the coupler, we may approximate the shape of the
electromagnetic fields in the x-direction as the shape of the fundamental mode
of the waveguide. In Ref. [89], we have justified this approximation and also pro-
posed an efficient simulation method for out-of-plane grating couplers in which the
propagation through air is computed with a two- or three-dimensional diffraction
integral.
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The behavior of the coupler can intuitively be understood by considering all the
tall-to-short interfaces on the edge of the grating grooves as “point-source” which
have a phase difference dictated by the propagation speed of the light through
the waveguide (a few of such point-sources are indicated by P in Fig. 2.19b). The
effective (refractive) index of the grating can be estimated as the spatially weighted
average of the effective indices of the fundamental modes in the tall and short parts
of the waveguide. The fields emitted by these point-sources constructively interfere
to a far field that is a plane wave propagating under a certain angle θq w.r.t. the
y-axis. This angle is given by

n3 sin(θq) = ne − q
λ

Λ
, (2.160)

where n3 is the refractive index of the upper medium (air in Figure 2.19), ne is
the averaged effective index of the grating, q is the diffraction order and Λ is the
grating period. For perfect vertical coupling, θq = 0◦, Eq. (2.160) describes the
second order resonance of a distributed Bragg reflector (DBR), which very effi-
ciently reflects the forward propagating light in the waveguide backwards, rather
than radiating it upwards. For low index contrast waveguides, Eq. (2.160) has been
derived using coupled mode theory; treating the grating as a perturbation of the
waveguide and calculating the coupling coefficient between the waveguide mode
and a plane wave radiating with angle θq [36, 37]. To our knowledge, the validity
of this perturbation approach has not been verified for high-index-contrast guides,
and it is common to use numerical methods (e.g., FDTD). We have compared
Eq. (2.160) with the strongest far-field radiation angle, and found good agreement
for etch depths up to 110 nm for a free-space wavelength of 1550 nm. For efficient
coupling to a fiber, the grating should be designed such that only one coupling
order (q = 1) is allowed, and the coupling strength should be designed between
strong upwards coupling and low backwards reflections. The ratio between up-
wards and downwards radiation is strongly influenced by the height of the buried
oxide (BOX) layer.
We have developed an efficient scheme for numerical simulation of such out-of-

plane grating couplers. This scheme consists of four steps: a 2D FDTD simulation
which describes the propagation from the waveguide to a plane just above the
coupler. Then, the effective index method is applied to calculate the lateral profile
of the field, based on the width of the grating in this plane, resulting in a 3D field
profile. Thereafter, Rayleigh-Sommerfeld diffraction is used to propagate the field
from this plane to the plane of the fiber facet and finally an overlap integral is
used to calculate the coupling into the fiber mode. In what follows, we will detail
the theory behind each of these steps.

Two-dimensional calculations and the effective index method

A two-dimensional (y,z) analysis can be used in the vicinity of the coupler up to
approximately one wavelength above the grating. To obtain the lateral profile in
a plane just above the coupler, we apply a method similar to the effective index
method (EIM) by approximating the field Ex as Ex(x, y, z) = E2D

x (y, z) ·Emode
x (x),
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where E2D
x is the electric field as calculated using two-dimensional analysis (assum-

ing invariance in the x-direction) and lateral field profile Emode
x (x) is approximated

from the lowest order mode in the waveguide.

Propagation into the upper-half space

To obtain the electromagnetic field radiated into the homogeneous half space y >
y0 by a finite aperture or source in the plane y = y0 one can use the Rayleigh-
Sommerfeld diffraction integral [90]. In our case, the finite aperture is a sufficiently
large part of the plane just above the grating coupler such that the electromagnetic
fields outside this aperture are small and hence may be neglected. The medium
above y0 is air. The diffraction integral for monochromatic light is written as [90]:

U(x, y, z) =

∫∫
aperture

U(x′, y′0, z
′)G(x, y, z;x′, y′0, z

′)dx′dz′, (2.161)

where

G =
(1 + ıkr)

2π

(y − y′0)
r

exp(−ıkr)

r2
, (2.162)

r =
√
(x− x′)2 + (y − y′0)2 + (z − z′)2, (2.163)

and U is any electric or magnetic field component in phasor notation with time
dependence given by eiωt. The Greens’ function G is the sum of the fields of two
in-phase point sources that are images of each other with the plane y = y′0 as
mirror. This choice of Greens’ function allows the field in the air to be described
as a function of the field in the aperture, not requiring knowledge of the normal
derivative of the field. When the field is calculated for a horizontal plane (y
constant), G depends on x − x′ and z − z′, so Eq. (2.161) is a 2D convolution,
which can be very efficiently calculated using fast-fourier-transforms (FFTs) [91].
When the plane is tilted along the x-direction, the inner integral over x′ is a
convolution and can be calculated using FFTs. The 2D equivalent of Eq. (2.161),
where U = U(y, z), is obtained by integrating Eq. (2.161) along x′, resulting in [92]:

U(y, z) =

∫
aperture

U(y′0, z
′)G(y, z; y′0, z

′)dz′, (2.164)

where

G =
−ık

2

(y − y′0)
r

H
(2)
1 (kr), (2.165)

r =
√
(y − y′0)2 + (z − z′)2, (2.166)

where H
(2)
1 (kr) is the first Hankel function of the second kind, i.e. H

(2)
1 (kr) =

J1(kr) − ıY1(kr) where J1 and Y1 are the first order Bessel functions of the first
and second kind, respectively.
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Coupling into a fiber

The power flux through the plane S just before the fiber can be calculated using
Eq. (2.59) integrated over the plane of the fiber-end. The power coupling efficiency
for TE-like modes can be estimated by [38]:

ηoverlap =
| ∫∫ E i

x(x, ρ) · Ef
x (x, ρ)dS|2∫∫ |E i

x(x, ρ)|2dS · ∫∫ |Ef
x (x, ρ)|2dS

, (2.167)

where E i
x is the x-component of electric field incident on the fiber facet. Coordi-

nates x and ρ are in the tilted plane, parallel to the fiber facet (see Fig. 2.19).
The fiber mode of a standard single-mode fiber can be approximated by a Gaus-
sian beam [93]. Details of coupling from air into the fiber are neglected since
there is a small refractive index step and a small angle of incidence of the in-
coming wave. When the field E i

x can be separated in x and ρ dependence, i.e
E i
x(x, ρ) = E i,x

x (x) · E i,ρ
x (ρ), then the overlap ηoverlap can also be separated, i.e.

ηoverlap = ηoverlap,x · ηoverlap,ρ.

2.11.2 Advanced grating couplers

The basic grating coupler has four major of drawbacks, which are to a large ex-
tend solved by new grating coupler designs. First, in 220 nm high waveguides,
light is directed not only upwards but also in the unwanted downwards direction,
accounting for 35% to 45% of loss [94]. This problem can be solved by increasing
the height of the waveguide such that the downwards reflections in the grating cou-
pler cancel each other, thereby directing the light predominantly upwards. Such
grating couplers can be fabricated in wafer-scale CMOS processes by depositing an
amorphous silicon layer on top of the 220 nm waveguide layer [88,94]. In this way,
efficiencies up to -1.6 dB (69%) have been reported for the of coupling of electro-
magnetic power from a 220 nm high silicon waveguide to a standard single-mode
optical fiber. Alternatively, mirrors can be included in the substrate, but this
approach has not been demonstrated in wafer-scale CMOS processes. The second
drawback is that the radiation is strongest from the first grating tooth and decays
exponentially with larger distance z from the beginning of the grating. Hence the
radiation profile has poor mode-matching with the Gaussian-shaped mode of an
optical fiber (contributing to ∼20% of efficiency loss) [94]. An apodized grating
can match the radiation profile to the optical fiber (Ref. [95] reported the efficiency
record of -1.2 dB or 76%), but these fine grating structures can not be fabricated
in today’s wafer-scale CMOS technology (the first groove in Ref. [95] is 44 nm
wide). The third drawback is that the adiabatic taper from the small waveguide
to a the wider waveguide is a few hundred microns long and thus occupies a sub-
stantial footprint on the photonic chips. This drawback can be overcome by using
a focusing grating coupler, in which the light at the end of the straight waveguide
diffracts because the waveguide rapidly tapers in width (angle of 27◦) [96]. For
such a cylindrical wave-front, it is possible to design a cylindrical grating that
couples the light to a single mode fiber. The fourth drawback of the basic grating
structure is that it introduces reflections (below 6%) from the connecting wave-
guide back into the device, forming an undesired Fabry-Pèrot cavity between the
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input and the output grating couplers of the device. The focused grating coupler
can be designed such that the light reflecting back from the cylindrical grating
does not focus on the waveguide, but just next to it. By this reflections are re-
duces while the efficiency remains on the order -5 dB, similar to the efficiency of
the basic grating couplers [97, 98]. Probably the most favorable grating coupler
design is reported in Ref. [99]. It is wafer-scale CMOS compatible, and combines
the reflectionless focused grating couplers with increased upwards directivity using
a grating that has a higher waveguide, thereby providing -2.2 dB (60%) coupling
efficiency with -40 dB (0.01%) back-reflections.

2.12 Ring and racetrack resonators

In Fig. 2.20, racetrack-shaped ring resonators are shown which are coupled to one
or two waveguides. In this section we study the power |b1|2 that is transmitted
to the output waveguide and the power |ad|2 in the so-called drop port of the
configuration in which the ring resonator is coupled to two waveguides, the so-
called add-drop configuration.
First the configuration with a single coupler is considered (Fig. 2.20a,b). All

waveguides are single-mode and the complex amplitudes of the traveling modes
in the waveguides (a1, a2, b1 and b2) are normalized such that their squared
magnitude corresponds to the power in the mode. A lossless coupler without
reflections is generally described by12(

b1
b2

)
=

(
τ∗ κ
−κ∗ τ

)(
a1
a2

)
, (2.168)

with |τ |2 + |κ|2 = 1. This matrix does not depend on the specific type of coupler.
After one round-trip through the racetrack, the wave has experienced a phase

12 We will use power conservation to show that we may write the lossless transmission matrix
U in the notation of Eq. (2.168) with only two unknowns τ and κ. First we will show that
the transmission matrix is unitary, i.e., that its inverse equals the transpose of its complex
conjugate, U−1 = U∗T , so that U∗TU = I (with identity matrix I). The general transmission
matrix equation for a system without reflections is(

b1
b2

)
=

(
A κ
B τ

)(
a1
a2

)
.

We express b1 and b2 in terms of a1 and a2, and compute

b1b
∗
1 + b2b

∗
2 = (AA∗ +BB∗)a1a∗1 + (κκ∗ + ττ∗)a2a∗2 + (Aκ∗ +Bτ∗)a1a∗2 + (A∗κ+B∗τ)a∗1a2.

This power flow out of the coupler, |b1|2 + |b2|2, should be equal to the power flow into the
coupler, |a1|2 + |a2|2, for arbitrary a1 and a2. Hence

(AA∗ +BB∗) = 1, (κκ∗ + ττ∗) = 1, (Aκ∗ +Bτ∗) = 0, (A∗κ+B∗τ) = 0

We use these relations to compute U∗TU and find U∗TU = I. The lossless transmission matrix
U is thus unitary. Now using U−1 = U∗T gives

1

D

(
τ −κ

−B A

)
=

(
A∗ B∗
κ∗ τ∗

)
,

with D = Aτ −κB. Hence |D| = 1, A = Dτ∗, and B = −Dκ∗. Arbitrarily choosing D = 1 gives
Eq. (2.168).
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delay φr and a loss:
a2 = αeıφrb2, (2.169)

where α2 is the power that is transmitted through one round-trip of the ring (i.e.,
α = 1 means no loss). The power in the output waveguide, |b1|2, is obtained by
solving Eqs. (2.168) and (2.169) for |b1|. First we substitute Eq. (2.169) in the
last row of Eq. (2.168) to find

b2 =
−κ∗

1− ταeıφr
a1. (2.170)

Subsituting this consecutively in Eq. (2.169) and in the first row of Eq. (2.168)
gives

b1 =

(
τ∗ − κκ∗αeıφr

1− ταeıφr

)
a1. (2.171)

We define τ = |τ |eıφτ and use ττ∗ + κκ∗ = 1 to rewrite Eq. (2.171) as

b1 =
−α+ |τ |e−ı(φr+φτ )

e−ıφr − α|τ |eıφτ
a1 (2.172)

Finally we compute b1b
∗
1 and use 2 cos θ =

(
eıθ + e−ıθ

)
to arrive at [100]

|b1|2 =
α2 + |τ |2 − 2α|τ | cos θ
1 + α2|τ |2 − 2α|τ | cos θ |a1|

2, (2.173)

where θ is the net phase delay of traveling through the ring and coupler

θ = φr + φτ . (2.174)

In the case of two bus waveguides with identical couplers (Fig. 2.20c),
Eqs. (2.169) and (2.173) still apply, provided we include the transmission through
the second coupler in the track round-trip by replacing α by α|τ |, giving

|b1|2 =

(
α2 + 1− 2α cos θ

) |τ |2
1 + α2|τ |4 − 2α|τ |2 cos θ |a1|

2, (2.175)

and Eq. (2.174) changes to
θ = φr + 2φτ . (2.176)

The amplitude of the mode in the drop output waveguide is

ad =
√
α|κ|eı(φr/2+φκ)b2, (2.177)

in which the drop bus waveguide is exactly located symmetric to the input bus
waveguide, so that the wave travels half a round-trip from b2 to the second coupler.
Solving Eqs. (2.168), (2.169), and (2.177) for |ad|2 gives

|ad|2 =
(1− |τ |2)2α

1 + α2|τ |4 − 2α|τ |2 cos θ |a1|
2 (2.178)
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Figure 2.20: Racetrack-shaped ring resonator with one and two coupler(s). (a)
Sketch with the coupling described by a general transmission matrix. (b) Layout of
a racetrack resonator with 450 nm wide waveguides, a straight track of 40 μm, a
bend radius of 5 μm, and a coupler as in Fig. 2.12a. (c) Sketch of a racetrack with
two couplers (add-drop configuration).

2.12.1 Silicon ring resonators with directional couplers

We now apply the general ring theory to the racetrack resonators with directional
couplers in add-drop configuration with two coupled waveguides (Fig 2.20c). The
racetrack including the couplers has lenght l. The transmission τ through the
directional couplers with effective length L̃ is given by Eq. (2.113). The phase
delay due to propagation through a waveguide with length l− 2L̃ is, according to
Eq. (2.67), equal to φr = −β(l − 2L̃). Hence the total phase delay of the ring is

θ = −βl + 2δL̃− 2κbbL̃+ 2arg

{
cos sL̃− ıδ

s
sin sL̃

}
. (2.179)

For typical silicon-on-insulator racetrack resonators, the second and third term
at the right-hand-side of this equation are small (δ, κbb � β). The uncertainty
in the propagation constant β due to imperfect fabrication is larger than δ and
κbb. The last term of Eq. (2.179) is usually small as the real part of the complex
number of which the argument is taken is much larger than the imaginary part
that is proportional to δ/s. This term can also be close to π when the real part is
negative. However, in the particular case that nearly all light is coupled from/to
the resonator, cos sL̃ ≈ 0 and the argument is then close to π/2 rad. We recall that
the dispersion in the effective index ne and in the directional coupler coefficient s
can considered to be linear, while the dispersion in L̃ is negligible (see Secs. 2.6
and 2.10, respectively). For a coupler with two identical waveguides, neglecting
the κbb, and with linear dispersion of the effective index, Eq. (2.179) reduces to

θ = −βl = −2π

[
ne − ng

λc
+

ng

λ

]
l, (2.180)
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with ne and ng evaluated at the center wavelength λc.
The loss in the coupler can be approximated by the loss in the isolated wave-

guide, thus the round-trip transmittance α = e−αpl where αp is the propagation
loss of the waveguide.

2.12.2 Ring resonator resonances

In this section, we compute some relevant characteristics of the transmission spec-
tra that are described by Eq. (2.173). The relations derived in this section give
insight in the behavior of racetrack resonators and are useful to the designers of
such resonators. For simplicity, we consider ring and racetrack resonators with
only one connected waveguide. The transmission spectrum of the connected wave-
guide is given by |b1|2 as a function of wavelength. It shows dips for θ = 2πm,
with m an integer number. For the case of two identical waveguides in the coupler
(i.e., δ = 0) and neglecting κbb, the resonance wavelengths λm are

m · λm = ne(λm) · l. (2.181)

The free spectral range (FSR) is the difference between the resonance wavelengths
of two adjacent resonances m and m + 1. The FSR may be approximated by
linearizing the relation between m and λ(m), i.e., m = (ne(λ) · l)/λ, and then
computing |Δλ| for Δm = 1. This gives

ΔλFSR =

∣∣∣∣ ∂λ∂m
∣∣∣∣ · 1 =

λ2(
ne − λ∂ne

∂λ

)
l
=

λ2

ngl
, (2.182)

where it was useful to compute ∂λ/∂m via (∂m/∂λ)−1. The last equality sign
follows from Eq. (2.32).
At resonance, cos θ = 0 and Eq. (2.173) becomes

|b1|2 =
(α− |τ |)2
(1− α|τ |)2 |a1|

2. (2.183)

From Eq. (2.183) it is observed that there is no transmission at the wavelengths
of the dips when |τ | = α, hence when the round-trip loss of the racetrack is
equal to the power coupled to the racetrack. This condition is called critical
coupling. The minimum, |b1|2min, and maximum, |b1|2max, transmitted power occur
at resonance and in between the resonances, respectively. The extinction ratio r ≡
|b1|2min/|b1|2max and the full-width at half-max (FWHM) of the dips in Eq. (2.173)
are

r =
(α− |τ |)2(1 + α|τ |)2
(α+ |τ |)2(1− α|τ |)2 , (2.184)

and

ΔλFWHM =
λ2

πlng
cos−1

[
2α|τ |

1 + α2|τ |2
]
. (2.185)

The relation for ΔλFWHM is found by solving13 Eq. (2.173) for cos θ at half-max,
i.e. with |b1|2 = (|b1|2max + |b1|2min)/2, and then employing the linearized relation

13The full-width at half-max in terms of phase θ is ΔθFWHM = 2 cos−1
[

2α|τ |
1+α2|τ |2

]
.



Chapter 2. Fundamental theory of silicon photonic micro-ring resonators 69

between the phase delay and vacuum wavelength. The relations in Eq. (2.184)
and Eq. (2.185) explicitly show the shape of the resonances as a function of the
waveguide and coupler properties, and are very useful in the design of resonators.
The FWHM depends on the losses in the resonator (transmittance α|τ |), and it
scales with the free spectral range (FSR), while the extinction ratio r scales with
(α−|τ |)2 so that critical coupling is most important. The equations in this section,
Eqs. (2.181 - 2.185), are also valid for the case of two couplers when α is replaced
by ατ , i.e., the second coupler acts as an additional source of loss.

2.12.3 Ring resonators with a non-uniform waveguide

It is sometimes advantageous to use a ring resonator in which the width of the
waveguide varies. The fundamental mode of wider waveguides have a lower group
index, giving a higher sensitivity of rings employed as sensors; however, these
guides support multiple lateral modes which are exited when the waveguide is bent.
Adiabatically tapering the wide waveguide to a single-mode waveguide before the
bends of the resonator prevents the excitation of the higher modes. For ring
resonator with a varying waveguide width and of which the coupler(s) consist of
two identical waveguides (i.e., δ = 0), the phase delay of one round-trip is

θ = −
∮

β(ρ, λm)dρ, (2.186)

in which the integral runs over the circumference of the track. We have neglected
κbb. Comparing Eq. (2.186) with Eq. (2.180) shows that the previously presented
theory for uniform guides remains applicable provided that the track-averaged
effective indices are used

〈ne〉 = 1

l

∮
ne(ρ)dρ, (2.187)

〈ng〉 = 1

l

∮
ng(ρ)dρ. (2.188)

2.13 Design of racetrack resonators for strain and ultrasound sens-
ing

This section presents the rationale behind the design of the racetrack resonators
for the sensing of strain and ultrasound. The size and shape of these sensors is
determined by acoustical/mechanical requirements.
The strains sensors are long racetracks with straight track lengths varying from

250 μm to 1000 μm. Having long resonators allows to neglect the mechanical
effects at the bends of the racetracks. Hence the mechanical properties in the res-
onator can be considered homogeneous. The strain sensors are interrogated using
a broadband light source and an optical spectrum analyzer. The full transmit-
tance spectrum is recorded and fitting can be used to obtain an accuracy below
the resolution bandwidth of the spectrum analyzer. However, such measurements



Chapter 2. Fundamental theory of silicon photonic micro-ring resonators 70

−40

−20

0
le

ng
th

 5
0μ

m
extinction ratio r [dB]

0

500

1000
FWHM [pm]

0

0.005

0.01
sensitivity [pm−1]

0.8 0.9 1
−40

−20

0

coupler straight τ2

le
ng

th
 2

30
μ

m

0.8 0.9 1
0

100

200

coupler straight τ2
0.8 0.9 1
0

0.02

0.04

coupler straight τ2

−40

−20

0

le
ng

th
 8

00
μ

m

extinction ratio r [dB]

0

200

400
FWHM [pm]

0

0.05

0.1
sensitivity [pm−1]

0 0.5 1
−40

−20

0

coupler straight τ2

le
ng

th
 2

30
0μ

m

0 0.5 1
0

100

200

coupler straight τ2
0 0.5 1

0

0.1

0.2

coupler straight τ2

 

 

1

3

5

loss dB/cm

Figure 2.21: Design of the directional couplers for racetrack resonators. Horizontal
axis: straight-through power |τ |2 (coupled power |κ|2 = 1− |τ |2). Upper two rows:
racetracks for ultrasound sensors. Lower two rows: racetracks for strain sensors.
First and second columns are calculated using Eq. (2.184) and (2.185), repectively.
The losses in the racetracks are 1 dB/cm, 3 dB/cm and 5 dB/cm plus an additional
0.1 dB for the bends (legend in right-bottom plot). The effective group index
ng = 4.28 and free-space wavelength λc = 1550 nm. Sensitivity (right column) is
estimated as the extinction ratio devided by the FWHM (r/ΔλFWHM).

are rather slow (minutes). To be sure of good interrogation, we designed the res-
onators with an extinction ratio of at least -10 dB (i.e. transmission at a resonance
is maximum 10% of the off-resonant transmission).
The ultrasound sensors are placed on acoustical resonant membranes. Using

wafer-scale fabrication by IMEC via the ePIXfab consortium, many chips with
the same photonic circuitry were fabricated simultaneously. Then the the wafers
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were diced so that each die (piece of a silicon wafer) contained one or more chips.
Later, membranes of different sizes were fabricated in the different dies. This was
done by etching holes in the silicon substrate from the back-side of the chip. As
we had not finalized the acoustical design when fabricating the photonic circuity,
we decided to place different racetrack resonators in the chip design, with straight-
track lengths varying from 10 μm to 100 μm. Ultrasonic measurements require a
high interrogation speed, therefore we used a different interrogation method than
the optical spectrum analyzer. We tuned the wavelength of a laser to the flank
of a resonance dip of an acoustical sensor, and recorded the transmitted power at
high speed (20 MHz). A shift of the resonance dip changes the transmitted laser
intensity. The steeper the flank of the resonances, the more sensitive the sensor.
We estimate the sensitivity of the optical resonator in the sensor as the extinction
ratio divided by the FWHM (r/ΔλFWHM) which has the unit relative power per
(wave-) length.
As the shapes of the sensors were fixed by mechanical requirements, only the

couplers were still free to choose. When designing the chip, there was a high
uncertainty in the coupling coefficient s of directional couplers, thus also in the
power |τ |2 being coupled from and to the ring resonator. This was due to the
fabrication process and also because we it was the first chip design with directional
couplers that was fabricated by our team. Hence we had no experimental figures
on the characteristics of the directional couplers. However, it can be assumed that
two couplers with identical design behave approximately the same, as differences
caused by the fabrication vary only little over one chip. Also the waveguide loss
was not exactly specified when we designed the chip. IMEC specified a typical
waveguide loss of 3 dB/cm but IMEC did not specify the tolerance in this number,
i.e. the range in which waveguide loss will certainly lay. In the last years, the
ePIXfab platform has matured and many of these numbers are now better known.
We have designed the racetrack resonators with two identical couplers. Although

this design has a poor FWHM of the resonance dips, it is robust against fabrication
variations. When a single coupler is used, critical coupling requires that the loss
in the ring is compensated by the power coupled to the ring. Because the loss
and coupled power are known only to a certain extent, there is a large change of
ending up with a poor extinction ratio. When two couplers are used, the power
coupled to and from the ring can be chosen such that it is larger than the loss in
the ring. To realize strain sensors with a good extinction ratio, we chose a design
with directional couplers that coupler 50% of optical power to and from the ring
(i.e., |τ |2 = 0.50). A large deviation in the relative power that is coupled to the
ring will still give an acceptable extinction ratio (Fig. 2.21, lower two rows). For
ultrasound sensors, we chose to couple 5% of power to the ring (i.e., |τ |2 = 0.95).
The highest sensitivity would be obtained with a coupling of only 2%, but these
designs have the disadvantage that a slight increase of coupling quickly reduces
the sensitivity (see the upper two rows of Fig. 2.21).
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2.14 Conclusion

In photonic integrated circuits (PICs), light is guided through waveguides and
components that are in a planar chip. Silicon-on-insulator is one of the most
promising technologies because PICs can be fabricated in the same CMOS infras-
tructure as electronic integrated circuits (ICs). Moreover, silicon PICs are small
and strong. One of the key component in silicon PICs is a ring resonator which
can be employed as filter or modulator.
Most properties of silicon ring resonators and their components (waveguides

and directional couplers) can be computed using approximate analytical theories.
Many theories on integrated optics were originally derived for low-index-contrast
waveguides like optical fibers (Δn < 0.1). We reviewed and revised those theories
for application to silicon-on-insulator waveguides which have a very high index
contrast (Δn ≈ 2).

Analytical theories allow fast computation of the behavior of photonic devices
and circuits. This is especially important when considering large circuits that
consist of many components. Moreover, we believe that analytical theories provide
insight in the physics of the system that is difficult to reveal with brute-force
numerical simulations.
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Abstract – Silicon micro-ring resonators are widely used and studied as filters in
the field of optical communication and as sensitive elements in the field of sens-
ing. This chapter provides a methodology for the characterization of micro-ring
resonators and their components (waveguides and directional couplers) and reports
on the obtained characteristics of a chip that was fabricated via the ePIXfab plat-
form. Wavelength dependency and loss of the components is incorporated in the
characterization. Different characterization methods for directional couplers are
compared, such as power transmission measurements and methods based on ring
resonator transmittance spectra. Good agreement is found between the methods.
It is shown that the performance of directional couplers depends significantly on
the wavelength. Moreover, we theoretically and experimentally demonstrate a large
coupling-induced phase delay that occurs when nearly all light is coupled from one
waveguide to the other, i.e., when the coupler operates as a cross-coupler. In this
regime, ring resonators in add-drop configuration showed a change of 28% in the
free-spectral-range which could be explained by a difference of only 0.1% in the prop-
agation constants of the two waveguides. Last, the measured coupling-coefficients
of directional couplers are compared with numerical simulations and significant dis-
agreement is found. This is possibly due to imperfect deposition of the SiO2 cladding
between the waveguides of the directional couplers.

3.1 Introduction

This chapter is about the optical characteristics of the resonators that we apply
as strain- and ultrasound sensors in the chapters hereafter.
One of the key components in silicon integrated circuits are micro-rings, which

are used as resonant filters for the routing and modulation of tele-communication
signals, and also as sensing element (biomedical-) sensors [101–103]. The field
of silicon photonic micro-ring resonators and their applications has recently been
reviewed in Refs. [79, 104–106].
In this work, we detailedly characterize silicon micro-ring resonators which were

fabricated in modern CMOS processes. All components of the resonator, such as
the waveguides, the bends, and the couplers, are fully characterized. We describe

The results presented in Sec. 3.7 were published as W. J. Westerveld, J. Pozo, S. M. Leinders,
M. Yousefi, and H. P. Urbach, “Demonstration of large coupling-induced phase delay in silicon
directional cross-couplers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 20,
no. 4, 2014, to appear.

The results presented in Sec. 3.9 were published by W.J. Westerveld, J. Pozo, M. Yousefi,
H.P. Urbach as ”Critical coupling of optical microring resonators for opto-mechanical sensors” in
Europractice IC Service Activity Report 2011, pp. 22-23, 2012. These results were also presented
in April 2012 at the 16th European Conference on Integrated Optics (ECIO) in Barcelona (talk
nr. 187) and in September 2012 at the European Optical Society Annual Meeting (EOSAM) in
Aberdeen (talk nr. 5995).
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the micro-ring resonators with simple analytical models that include all the ob-
served effects. Wavelength-dependency is taken into account in all measurements.
Silicon photonic devices and components have been extensively reported and

characterized in literature [64,79,107–110]. In this chapter, we report on a method-
ology to characterize the properties of silicon ring-resonator based photonic inte-
grated circuit (PICs). This chapter features, to the best of our knowledge, some
analyses that have not been reported before.
In particular, we compared four different methods to characterize directional

couplers. These methods are based on two different types of devices: sole direc-
tional couplers and directional couplers that are loaded with ring resonators. The
latter devices are studied in more detail and equations are presented that include
all the phenomena that we observed in the transmission spectra. This includes
the effect of wavelength-dependency of the coupling coefficient and the effect of
a minute asymmetry between the waveguides of the coupler. In Refs. [79, 110], a
Mach-Zehnder based device was used to characterize the coupler; however, asym-
metry and phase delay of the coupler were not measured. In the mathematical
description, we included the coupling which occurs in the bends into account as
a delta length (rather than a delta coupling as in [79, 110]), which allowed us to
neglect wavelength dependency of this term.
We studied the phase delay that is introduced by directional couplers. For a

coupler with two identical waveguides and with effective length L̃ shorter than
the length Lπ for which all power transfers from one waveguide to the other, the
phase delay may be approximated by the phase delay of an isolated waveguide
(βbL̃). However, there has been recent interest in a more precise characterization
of the couplers. Ref. [111] reported on a Mach-Zehnder interferometer with a ring
coupled to one of its arms. It was shown that correcting the length of the other
arm for the coupler-induced phase delay significantly improves the filter response.
Ref. [112] reported on a theoretical and numerical study of the influence of the
coupling-induced phase delay on a cascade of ring resonators. A modified design for
cascaded resonators was presented in which the rings were adjusted to compensate
for the coupling induced phase delay. We observed the additional phase delay that
is introduced by directional couplers in the cross-coupling regime, i.e., when nearly
all light couplers from one waveguide to the other. To the best of our knowledge,
we were the first to report on the fact that a ring resonator with two couplers
in the cross-coupling regime is particularly sensitive to the difference between the
two waveguides.
This chapter is organized as follows. In Sec. 3.3, we describe the process of

the fabrication and metrology of the devices in silicon-on-insulator technology. In
Secs. 3.5, 3.6 and 3.8, we present the characterizations of the waveguides loss, di-
rectional couplers and waveguide group indices (guide widths 310 nm to 860 nm),
respectively. In Sec. 3.7, we demonstrate that directional couplers introduce a
large additional phase delay when nearly all light is coupled from one waveguide
to the other. In Sec. 3.9, we illustrate the influence of critical coupling by study-
ing the spectra of small racetrack-shaped ring resonators that have high losses
due to their small bending radius of 3 μm. In Sec. 3.10, we compare measured
coupling-coefficients of directional couplers with numerical simulations and we



Chapter 3. Characterization of silicon micro-ring resonators 76

find significant disagreement. This is possibly due to imperfect deposition of the
silicon-dioxide cladding layer between the waveguides of the directional couplers.
We intended to provide a dateset for the designers of silicon photonic resonators,
but the uncertainty in the cladding precludes the use of this dataset for future
designs. In Sec. 3.11, we conclude the chapter.

3.2 Theory

For the convenience of the reader, we summarize the theory of Chapter 2 that
is needed to describe the behavior of light in the devices we characterize in this
chapter.

3.2.1 Waveguides (summary of Sec. 2.6)

Waveguides in silicon-on-insulator technology consist of a rectangular silicon rod
embedded in silica (see Fig. 2.5 on page 29). We use infrared light around vacuum
wavelength λc to excite “TE-like” modes of the waveguides. For a guide in the
z-direction (i.e., with a refractive index n(x, y)), such a mode is described by
Eq. (2.67):

E(x, y, z, t) = E(x, y)eıωt−ıβz−αpz, (3.1)

with modal electric field profile E(x, y), angular frequency ω, time t, modal prop-
agation constant β, and propagation loss αp. In this thesis, we approximate the
wavelength dependency of the effective index by a linear relation, so that we may
express the propagation constant β(λ) around center wavelength λc in terms of
the effective index ne(λc) and effective group index ng(λc), as given by Eq. (2.33)
or Eq. (3.8). Henceforth, we drop the explicit (λc) notation and assume that ne

and ng without explicit wavelength dependency are evaluated at λc.

3.2.2 Directional couplers (summary of Sec. 2.10)

A directional coupler consists of two parallel waveguides that are so close that
power couples from one waveguide (labeled a) to the other (labeled b, see Fig. 2.12
on page 45) via the evanescent fields of the modes. Describing this system with
coupled mode theory, the electric field in the coupler is approximated by a su-
perposition of the two modes of the isolated waveguides. The amplitudes of the
two modes, ua(z) and ub(z), vary while propagating through the coupler. Upon
excitation of mode b at te left-hand-side of the coupler, the amplitude of mode b
after propagation through the lossless coupler is given by ub(L̃) = τub(0), with τ
given by Eq. (2.113):

τ(λ) = e−ı(βb(λ)+κbb−δ)L̃

(
cos
[
s(λ)L̃

]
− ıδ

s(λ)
sin
[
s(λ)L̃

])
, (3.2)

with βb(λ) the propagation constant of waveguide b, κbb a small correction on βb

due to the vicinity of the other waveguide, 2δ the difference between the corrected
propagation constants of the two waveguides, s(λ) the coupling coefficient, and
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L̃ the effective length of the coupler. This length L̃ = L + ΔL, with L the
length of the two parallel waveguides and ΔL a correction for the coupling in the
bends (see Secs. 2.10, 2.10.3 and Eqs. (2.156-2.159)). Ref. [79] incorporates the
coupling in the bends using a correction in the phase rather than a correction in
the length. We believe that a correction ΔL in the length is more useful because
we showed that this term is relatively wavelength independent and that it is only
weakly sensitive to details of the geometry of the coupler. The correction of the
propagation constant κbb is very small compared to the propagation constant βb

and we did not observe it due to fabrication-induced uncertainty in βb. Therefore
we neglect κbb � βb in the remainder of this thesis. Moreover, we study waveguides
that are designed to be identical, but observed a very small asymmetry δ � s, βb.
(Ref. [79] neglects this asymmetry.)
As throughout this work, we assume linear dispersion of the effective index so

that βb(λ) is given by Eq. (2.33) or Eq. (3.8). We also assume linear dispersion in
the coupling coefficient s, i.e.,

s(λ) = sc + s′c · (λ− λc), (3.3)

with sc ≡ s(λc) and s′c = ∂s/∂λ at λc. We neglect dispersion in ΔL, which is
validated by the fact that the obtained relations accurately describe the measured
spectra. The numerical analysis in Sec. 2.10.2 also showed that the wavelength
dependency of ΔL may be neglected.

3.2.3 Ring resonators with two couplers (summary of Sec. 2.12)

The behavior of light in micro-ring resonators with two couplers was introduced
in Sec. 2.12. Figure 2.20c on page 67 shows the schematics of a ring resonator
with length l and two identical couplers (i.e., with drop waveguide). The rings are
described in terms of the straight-through amplitude of the couplers τ , the round-
trip amplitude transmittance α (α = 1 means zero loss), and round-trip phase
delay θ. The latter consists of the the phase delay due to propagation through the
waveguide of the ring φr = −(l−2L̃)βb, and twice the phase delay due to the cou-
pler φτ = arg{τ}. We excite the rings with infrared light in the input waveguide
(modal amplitude a1) and measure power in the output waveguide (modal am-
plitude b1) and in the drop waveguide (modal amplitude ad). Equations (2.175),
(2.176), and (2.178) describe the powers at the output waveguide, |b1|2 and drop
waveguide, |ad|2 in terms of the power in the input waveguide |a1|2:

|b1|2 =

(
α2 + 1− 2α cos θ

) |τ |2
1 + α2|τ |4 − 2α|τ |2 cos θ |a1|

2, (3.4)

|ad|2 =
(1− |τ |2)2α

1 + α2|τ |4 − 2α|τ |2 cos θ |a1|
2, with (3.5)

θ = φr + 2φτ .

Note that α, τ , and especially θ are wavelength dependent, so that these equations
describe transmission spectra.
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Employing the full equation of the directional coupler, Eq. (3.2), to compute the
straight through transmitted power in the coupler |τ |2 and to compute the total
phase delay θ of a racetrack round-trip gives

|τ(λ)|2 = cos2 s(λ)L̃+

∣∣∣∣ δ

s(λ)

∣∣∣∣2 sin2 s(λ)L̃, (3.6)

θ(λ) = −βb(ne, ng, λ)l + 2δL̃+ 2arg

{
cos s(λ)L̃− ıδ

s(λ)
sin s(λ)L̃

}
, (3.7)

with

βb(λ) = 2π

(
ne − ng

λc
+

ng

λ

)
, (3.8)

L̃ = L+ΔL, (3.9)

s(λ) = sc + s′c · (λ− λc), (3.10)

with ne and ng evaluated at λc, i.e. the explicit (λc) is dropped from the notation
and ne ≡ ne(λc) and ng ≡ ng(λc). Equation (3.8) is copied from Eq. (2.33).

3.2.4 Neglecting coupler asymmetry and wavelength-dependency

It is often possible to neglect the small asymmetry between the waveguides in
the coupler, i.e., δ = 0. Moreover, is often possible to neglect the wavelength
dependency of the coupler coefficient s(λ), i.e., s(λ) = sc and s′ = 0.

In this case, the power transmitted straight through the directional coupler |τ |2
is, from Eq. (3.6),

|τ |2 = cos2[sc(L+ΔL)]. (3.11)

The total phase delay of a round-trip through the ring with two couplers, θ as
given by Eq. (3.7), reduces to

θ = −βbl = −2π

[
ne − ng

λc
+

ng

λ

]
l, (3.12)

with ring circumference l. The propagation constant depends on wavelength and
is expressed in terms of ne and ng at λc via Eq. (3.8). When the racetrack consists
of a waveguide width a varying width, the track-averaged effective index 〈ne〉 and
group index 〈ng〉 may be used in this equation, see Eqs. (2.187 and 2.188). The
resonance wavelengths of a ring resonator λm, i.e., the wavelengths with minimal
transmission, are given by

mλm = ne(λm) · l =
[
λm

λc
ne +

(
1− λm

λc

)
ng

]
l, (3.13)

with resonance number m and using Eqs. (2.181) and (2.32).
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12.7 mm

Figure 3.1: Chip-design with a few hundred devices. Showing original GDSII
computer-aided-design file with overlaying examples of devices.

3.3 Technology and metrology

All experimental results in this thesis are obtained from one chip design containing
a few hundred devices (Fig. 3.1). These integrated optical devices were fabricated
in silicon-on-insulator technology, with 220 nm thick rectangular waveguides of
mono-crystalline silicon embedded in silica.
The devices were fabricated via the ePIXfab consortium at IMEC (Leuven,

Belgium) [24,26]. IMEC fabricated the devices in their semi-industrial CMOS line
with 193 nm deep-UV lithography. The diameter of the wafers was 200 mm. We
submitted our design for the IMEC08 multi-project-wafer shuttle (October 2011)
meaning that the designs of different users are simultaneously fabricated to reduce
cost. We briefly report on this participation, but we warn the reader that this is the
short story. Good and frequent communication with the fab (IMEC in our case) is
essential to successful participation and we gratefully knowledge IMEC’s support
throughout the process. First we registered for the run and booked an area on the
optical mask (chip size 12.7 × 6.3 mm2). We asked for three wafers, two with the
normal thickness and two that were thinned from the back for the fabrication of
the ultrasound sensors (this is not a standard option and was kindly provided by
IMEC). Then we designed the photonic circuits. We used L-Edit (Tanner EDA,
Monrovia, Califoria) to draw the designs and convert them to proper drawings in
the GDSII file format. However, more suitable tools dedicated to photonic designs
are available today.1 The drawings in the GDSII-files have to obey a certain set of

1ePIXfab supports, among others, the PhoeniX Suite (Phoenix BV, Enschede, The Nether-
lands) and IPKISS (Ghent University, Belgium).
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rules to ensure proper fabrication. This is verified by a design rule check (DRC).
It is advisable to do a DRC as early as possible in the process, for example after
a typical device has been designed and drew. Our final design did not fully pass
the DRC due to the non-standard resonators in the <100> crystalline direction
(rotated 45◦). However, we agreed with IMEC that the reported violations where
due to the check and actually not in the design itself. After a few months, the
devices were fabricated and wafers were shipped to us. The wafer with the normal
thickness was diced (cut) in-house because we required some chips to be diced
along the non-standard <110> direction (for the strain sensors, see Ch. 4). We
characterized devices with the nominal lithography dose.
The dimensions of the fabricated devices typically differ from the designed sizes.

This is especially the case when the patterns have a large variation in the typical
dimensions, which is the case for integrated optical devices in a multi-project-
wafer [24]. The directional coupler is the most critical pattern on our chip design,
as it has a small gap (∼200 nm) between the two waveguides. The widths of the
gap and surrounding waveguides might differ from the designed ones due to the
optical proximity effect in the lithography or due to the lag effect in the etching.
The waveguides are not perfectly rectangular but slightly trapezoidal because the
etch process causes slanted side walls with a ∼10◦ angle. This corresponds to a
significant difference of 76 nm between the widths at the top and at the bottom
of the waveguide. Throughout this thesis, we refer to the average width of the
waveguide. Sections 2.9 and 2.10.1 numerically show that behavior of light in such
trapezoidal waveguides is very well approximated by the behavior in rectangular
waveguides with the average width. We compared trapezoidal waveguides with
rectangular waveguides and found agreement within 1% for the effective index ne

of waveguides, the effective group index ng of waveguides, and for the the coupling
constants s of directional couplers.
The height of the waveguides was designed to be 220 nm and we have measured

that the variation is below three nanometers. This was measured using a surface
profiler (Bruker Dektak XT from Bruker, Billerica, Massachusetts, USA). This is
much more accurate than the specified variation of 10%.
We have measured the dimensions of the fabricated waveguides and couplers

with a helium-ion-microscope (HIM, Zeiss Orion Plus from Carl Zeiss SMT,
Oberkochen, Germany) [113–115]. In a helium ion microscope, a beam of pos-
itively charged helium ions is focused to a sub-nm area of the surface of the chip,
where it extracts electrons, which are then detected. The beam scans the surface
of the chip, and extracts few electrons at the silicon-dioxide layer, more electrons
at the silicon structures, and even more electrons at the side-walls of these struc-
tures. A directional coupler is depicted in Fig. 3.2. Imaging silicon-on-insulator
structures with charged particles (ions or electrons) suffers from accumulation of
charge in the silicon devices, as they are isolated by the silicon-dioxide layer. This
charging deteriorates the images as the charged devices repel the incoming particle
beam. To overcome this problem, the HIM is equipped with a flood gun which uses
a coarse electron beam to discharge the positively charged devices while imaging.
The interpretation of the images and sizing of the devices was done by an experi-
enced operator. Figure 3.2 show an example of a HIM image with the sizing of the
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Figure 3.2: Helium ion microscope image of directional coupler (HIM, Zeiss Orion
plus of Carl Zeiss SMT). The waveguides have a trapezoidal shape; the side-walls
of the waveguides have an angle of ∼10◦. The high-intensity “lines” are the four
side-walls of the two guides. Right graph shows the average intensity of a 100 nm
wide strip in the center of the image. Light-green dashed lines show the sizing of
the upper and lower edges of the waveguides.

waveguides and the gap of a directional coupler. The accuracy of measurements
of the widths of the waveguides and gaps was estimated below 15 nm.
We characterized the functionality of the chip before we preformed the metrol-

ogy on the device dimensions. The metrology was performed on a different chip of
the same wafer with the same nominal lithography dose because we had deposited
the SiO2 cladding on the original chip. The isolated waveguides (widths ranging
from 309 nm to 860 nm) show a linear relation between the designed width and
the measured width of the fabricated waveguide (see Fig. 3.3). The devices are
10% smaller than designed. The waveguide with 450 nm designed width was fab-
ricated as 397 nm. IMEC performed metrology on 5 wafers in the IMEC8 run
(not including our chip wafers). A waveguide with a design width of 450 nm was
fabricated at an average width of 410 nm (mean of all wafers) with a variation of
8 nm [116]. This agrees with our measurements within the measurement accura-
cies. We measured the waveguides in directional couplers with a designed width
of 450 nm as 391 nm, 392 nm, and 394 nm, similar to the width of the isolated
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Figure 3.3: Metrology of the waveguide sizes with helium ion microscope (HIM),
showing the average width of the top and bottom of the waveguides. (b) is a zoom-
in of (a). Isolated vertical waveguides (blue plusses). Linear fit of the measured
width versus the designed width of the isolated waveguides, tangent 0.92 nm/nm
(solid green line). Horizontal waveguides in directional couplers (red dots, in (b)).
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Figure 3.4: Schematics of the measurement setup. See Sec. 3.4 for description.
The small arrows indicate in which direction the mechanical stages can move. The
thick arrows in the top of the figure indicate optical fibers. Photos of the setup can
be found in Appendix B.

waveguide (397 nm). The optical proximity effect and the lag effects did thus not
significantly affect the fabrication of the directional couplers.
We have deposited the SiO2 cladding using plasma-enhanced chemical vapor

deposition (PECVD). However, the disagreement between the measured coupling
of directional couplers and the simulated coupling suggests that our PECVD is
imperfect. The main concern is the deposition of SiO2 in the small gap between
the waveguides, as imperfect deposition might not completely fill the gap. The
PECVD process is detailed in Appendix A.
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3.4 Measurement setup

The photonic circuitry has out-of-plane grating couplers to couple the light from
the waveguides to optical fibers which are positioned above the photonic chip, and
vice versa [89, 93]. The alignment tolerances of these couplers is large compared
to the alignment tolerance with butt coupling. The fibers are positioned under an
8 degree angle with respect to the normal on the chip surface.
The measurements of the chip are automated in order to provide a high repeata-

bility of the alignment. The setup consists of a vacuum chuck on which the chip
is placed, and two 3-axis positioning stages which hold the fibers (Fig. 3.4). The
chuck has a Peltier element to control the temperature. The chip is manually posi-
tioned on the chuck, and the height of the in/output fibers is manually adjusted to
approximately a few hundred microns above the chip surface. We used standard
single-mode fibers for a wavelength of 1550 nm (similar to Ref. [43]). The grating
couplers of adjacent devices are placed next to each other with a minimum spac-
ing of 25 μm and the chuck is placed on a motorized linear stage which moves the
required device coarsely to the position below the fibers. In-plane alignment of the
fibers is done automatically with piezo-electric actuators in the positioning stages,
which have sub-micron resolution. The active alignment is achieved by maximizing
the transmitted power through the to-be measured device, while sequentially scan-
ning the 4 in-plane axis of the two fibers. The piezo-electric actuators showed high
repeatability (without hysteresis) when the movement was always done downwards
from the maximum voltage. Note that the device-to-device difference in alignment
for a set of devices is thus only from the automated alignment, as the manual align-
ment is not changed anymore. We performed ten repetitive measurements of the
devices that are used for loss characterization and we found that the maximum
deviation in the transmitted power in a 5 nm wavelength span was below 0.3 dB.
We used an amplified spontaneous emission source (Opto-link ASE) to emit

50 mW of light in the C-band with an emission spectrum between 1528 nm and
1565 nm. No more than 12 mW of light is coupled to the chip (the grating couplers
have a theoretical efficiency of about -3 dB for input with the right polarization,
and we use unpolarized light giving an additional 3 dB of loss). The light coupled
to the devices is thus constant during the measurement, in contrast to the use of a
scanning laser in which the power residing in a ring resonator will vary during the
scan. Light leaves the chip via the output grating coupler to an optical fiber. Part
of this light is coupled to a photo-diode for the active alignment. The spectrum
is recorded with an optical spectrum analyzer (Yokogawa AQ6370B OSA), which
has a resolution bandwidth of 20 pm and a sampling accuracy of 4 pm.
The out-of-plane grating couplers reflect a small fraction of the light back in

the waveguide, thereby causing Fabry-Pérot fringes. We have simulated these
reflections with FDTD and found that the reflected power is below 6%, which is
much lower than the reflection from a waveguide-air interface which is between
20% and 40% [89, 117]. In the analysis of resonators and directional couplers,
the recorded spectra are normalized to the transmission spectrum of a single-
mode waveguide. In order to remove the Fabry-Pérot reflections in this reference
spectrum, it was smoothed by a convolution with a Gaussian window with a full-
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Table 3.1: Waveguide propagation loss. Waveguide width 397 nm x height 220 nm.
Mean values taken over an interval of 25 nm around 1550 nm vacuum wavelength.
Measurement-to-measurement differences all below 2% (12 repetitions).

dB/180◦ dB/cm

straight waveguide x 2.50

bent waveguide, radius 5 μm 0.024 15.29

bent waveguide, radius 3 μm 0.036 38.73

width at half-max (FWHM) of 1 nm. Datapoins in the ring transmission spectrum
below -80 dB/nm were clipped as this is the noise floor of the OSA.

3.5 Waveguide and bend losses

The losses in straight waveguides are characterized by comparing the transmission
of waveguides with different lengths, as shown in Fig. 3.5a. The number of bends
in these structures and the length of the connecting waveguides is identical for
all of them, so that only the length l′ of the straight waveguides is varied from
20 μm to 4380 μm, adding up to a length variation of 5 cm. The measured
spectra of the four structures are shown in Fig. 3.6a, in which the effect of the
Fabry-Pérot reflections from the out-of-plane grating couplers is visible as “noise”
on the spectra. The average of 5-nm wavelength spans was used to remove this
effect, as indicated by the black crosses. The loss per unit length around specific
wavelengths is obtained from a linear fit of the intensity versus waveguide length
plot (Fig. 3.6). The average loss over the 25 nm wavelength span is 2.50 dB/cm
and there is only a weak wavelength dependence. This loss is slightly higher than
the values reported in literature [79, 107], which might be attributed to (1) the
fact that our waveguides are smaller (397 nm here and 460 nm in Ref. [79, 107]),
and (2) the fact that we have not optimized our PECVD deposition of the SiO2

cladding.
Losses in the waveguide bends are characterized by comparing the transmission

through waveguides with different numbers of bends. The structures used for this
analysis consist of 180◦ bends which are separated by a 20 μm straight waveguide
(Fig. 3.5b). We assume that this is long enough to describe propagation from the
bend to an arbitrary long waveguide. The loss in two 90◦ bends is generally not
identical to twice the loss of one 180◦ bend. This is because there is a mismatch
between the mode in the straight waveguide and the mode in the bend waveguide.
In Ref. [107], a significant decrease in the bending loss of bends with 3 μm radius
is shown when the first and last 10◦ of the circular bend are replaced by a spline
shape. Figure 3.7 presents the measured spectra (5 μm and 3 μm bending radii)
and the wavelength-dependent bend losses (plot c). Table 3.1 presents the averages
over a wavelength span of 25 nm. We observed a strong wavelength dependency
of the loss in the 3 μm bends (Fig. 3.7c); the loss around a wavelength of 1560 nm
is 1.7 times higher than the loss around 1540 nm. This information is useful for
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Figure 3.5: Layout of the structures for measuring waveguide loss. Waveguide
width 397 nm and height 220 nm. (a) Structure to measure straight waveguide
loss. The length of the straight waveguide l′ is varied (20 μm, 1500 μm, 2900 μm,
4380 μm) while each structure contains the same bends and length of the connecting
waveguides. (b) Structure to measure waveguide bend loss. The structures have
bends of 180◦ separated by a straight section of 20 μm. The depicted bend radius is 3
μm. The actual structures contain 1, 119, 239, or 359 bends, and have bending radii
of 3 μm and 5 μm. (c) and (d) Microscope photographs of the designs in (a) and
(b), respectively. Pinkish color is the silicion light-guiding layer and greenish color is
the SiO2 BOX layer. The very narrow line is the waveguide, which is surrounded by
a broad 2 μm wide trench. Far away from the structure, a “tile” pattern is written
to improve the uniformity of the etch process in the CMOS fabrication.
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Figure 3.6: (a) Transmission spectra of 397 nm wide waveguides with lengths
0.240 mm, 18.000 mm, 34.800 mm, and 52.560 mm. Black crosses indicate the
average of a 5 nm span. (b) Waveguide loss per centimeter, obtained from a
linear fit of the data of (a). The lines between the datapoints are linearly interpo-
lated/extrapolated. Error bars indicate the standard deviation of the 12 repetitive
measurements.
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Figure 3.7: Labels of y-axes are above the plots. (a) and (b) Transmission spectra
of 397 nm wide waveguides with a number 180◦ bends. From high to low transmis-
sion, the number of bends is 1, 119, 239, and 359. (a) 5 μm bend radius. (b) 3 μm
bend radius. (c) Loss per 180◦ bend, obtained from a linear fit of the data of (a)
and (b). The numbers are corrected for the loss in the straight waveguides. Error
bars indicate the standard deviation of the 12 repetitive measurements. The lines
between the datapoints are linearly interpolated/extrapolated. The crossing around
1538 nm wavelength is caused by extrapolation and we do not expect it in reality.
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design; for example, one could tune a device to critical coupling by selecting the
resonance where the losses are similar to the coupling.

3.6 Methods of characterizing directional couplers

We describe four methods for characterizing directional couplers and compare
these methods. Five sets of directional couplers with different waveguide widths
and gaps are characterized.
The first method is based on direct measurement of the coupler power trans-

mission (DCM1, transmitted power), the other methods are based on the recorded
transmission spectra of ring resonators with two identical couplers. The rings are
racetrack-shaped resonators consisting of two 40 μm long straight waveguides and
two 180◦ bends with radius 5 μm (see Fig. 2.20 on page 67). The second method
uses the output spectrum of the ring, and neglects dispersion and asymmetries in
the couplers (DCM2, ring simple). The third and fourth methods use the output
and drop spectra of the ring, respectively, and include dispersion (wavelength de-
pendency) and asymmetry in the coupler (DCM3, ring and DCM4, ring drop).
Method DCM1 depends on the repeatability of the alignment of the optical fibers
with respect to the chip and method DCM2 depends on fitting of the spectra that
have noise and spurious reflections. From the results of this section, it can be
concluded that both methods can be used for the characterization of directional
couplers in SOI technology.
Five sets of directional couplers were characterized, each with one straight wave-

guide and one waveguide which is bend to form a section with two parallel wave-
guides (Fig. 2.12 on page 45). The bending radius is 5 μm and the length of the
parallel section is varied from 0 μm to 18 μm. The five sets have a different wave-
guide widths and gaps. The nominal coupler has waveguide width ∼400 nm and
gap ∼220 nm. Three couplers have a different waveguide width (375 nm, 391 nm,
and 413 nm) but similar gap and three couplers have a different gap (168 nm,
195 nm and 222 nm) with waveguide width ∼400 nm (see Table 3.2).

In this section, we first present the four different methods (Secs. 3.6.1-3.6.4).
Then we compare the methods and study their applicability and accuracy in the
determination of the different properties of the directional couplers (Sec. 3.6.5). We
conclude with the typical characteristics of directional couplers in SOI technology
such as strong wavelength dependency (Sec. 3.6.6). Section 3.7 hereafter is about
the large coupling-induced phase delay of directional couplers in the regime of
cross-coupling.

3.6.1 Transmitted power measurement (DCM1)

In each set of directional couplers, the length L of the parallel waveguide section
was varied. We measured the transmitted power going straight through the wave-
guides the coupler. Both the power going straight through the upper waveguide a
as well as the power going straight through the lower waveguide b were recorded
(see Fig. 2.12 on page 45 for a sketch of the directional couplers).
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ferent waveguide width (w) / gap
(g) combinations. Power transmit-
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data. The data is in this plot nor-
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In this characterization method, it was assumed that the couplers are lossless,
that both waveguides are identical (i.e., δ = 0), and that the coupling coefficient
does not depend on wavelength (i.e., s = sc and s′c = 0). These assumptions
are listed in Sec. 3.2.4. This method is based on Eq. (3.11) which describes the
transmitted power of the directional coupler. We denote the power transmis-
sion of a straight waveguide without coupling P0 and we denote the straight-
through power transmission of a directional coupler Pτ . The loss of the con-
necting waveguides is the same for the case with or without the coupler, hence
Pτ/P0 = |ub(L+ΔL)|2/|ub(0)|2 = |τ |2. From Eq. (3.11) we hence find

Pτ = cos2[sc(L+ΔL)] · P0. (3.14)

The transmitted power Pτ was measured for different coupler lengths L. From
these measurements, the unknowns in Eq. (3.14); P0, sc, and ΔL; were fitted (see
Fig. 3.8). The results are presented in Table 3.2.

3.6.2 Ring spectra analysis neglecting asymmetry and dispersion in the cou-
pler (DCM2)

This method is based on the transmittance spectra of ring resonators. In contrary
to the previous DCM1, it does not strongly depend on the repeatability of the
fiber-chip coupling. As in DCM1, we neglect asymmetry in the coupler (i.e., δ = 0)
and wavelength-dependency of the coupling coefficient (i.e., s = sc and s′c = 0).
We recorded a set of transmission spectra of racetrack resonators in add-drop
configuration for different coupler lengths L (see Fig. 2.20c on page 67 for a sketch
of the device). Examples of recorded spectra are shown in Fig. 3.9 on page 93 (solid
cyan curves). This method consists of two steps. In the first step, we considered the
measured spectra individually and we fitted the unknowns in Eq. (3.4 with 3.12) to
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Table 3.2: Directional coupler characterization. x denotes that a certain quantity is
not measured or taken into account in that type of analysis. DCM1 : average over
2 repetitions, DCM2 and DCM2 : average over 5 repetitions, DCM4 : average over
2 repetitions.

sc ΔL s′c δ ng

[μm−1] [μm] [μm−2] [μm]

waveguide width 391 nm, gap 222 nm

transmitted power DCM1 0.072 2.377 x x x

ring, approximate DCM2 0.071 2.297 x x 4.317

ring DCM3 0.073 2.134 0.339 0.0006 4.319

ring drop DCM4 0.072 2.287 0.352 0.0034 4.320

waveguide width 413 nm, gap 219 nm

transmitted power DCM1 0.058 2.416 x x x

ring, approximate DCM2 0.057 2.213 x x 4.292

ring DCM2 0.057 2.285 0.277 0.0014 4.288

ring drop DCM3 0.057 2.316 0.351 0.0002 4.287

waveguide width 375 nm, gap 220 nm

transmitted power DCM1 0.088 2.562 x x x

ring, approximate DCM2 0.089 2.245 x x 4.321

ring DCM3 0.091 2.343 0.372 0.0027 4.351

ring drop DCM4 0.089 2.408 0.416 0.0078 4.346

waveguide width 392 nm, gap 195 nm

transmitted power DCM1 0.085 1.977 x x x

ring, approximate DCM2 0.082 2.288 x x 4.232

ring DCM3 0.084 2.118 0.411 0.0048 4.319

ring drop DCM4 0.082 2.329 0.332 0.0047 4.319

waveguide width 394 nm, gap 168 nm

transmitted power DCM1 0.098 2.136 x x x

ring, approximate DCM2 0.099 1.992 x x 4.247

ring DCM3 0.099 2.053 0.414 0.0042 4.313

ring drop DCM4 0.100 2.019 0.436 0.0046 4.318
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each spectrum. From this fitting, we obtained the transmittance of the directional
coupler |τL| as a function of the coupler length L (|τL| denotes τ for given L). In
the second step, we fitted the unknowns in Eq. (3.11) to the |τL| versus L curve,
obtaining the characteristics of the directional coupler.
In the first step, we fitted the unknowns in Eq. (3.4 with 3.12) to each recorded

spectrum. In the fitting, the resolution bandwidth of the optical spectrum analyzer
was incorporated by convoluting the calculated spectrum with a Gaussian curve
with a FWHM of 20 pm. We independently measured α (wavelength-averaged,
using the numbers for waveguide width ∼400 nm in Table 3.1). Fitting α is difficult
for the configuration of racetrack resonators with two couplers and large coupling
(small |τ | with respect to transmittance α) because the the transmittance spectrum
only weakly depends on the value of α. Although the spectra were corrected for
a reference spectrum, it was necessary to also fit the inserted power in the device,
P0 = |a1|2, to correct for the fiber-chip alignment repeatability. Knowing the
transmittance α and track circumference l, the fitted unknowns in Eq. (3.4 with
3.12) are thus |τL|2, ne, ng and P0.

An accurate initial estimate of ne and ng (defining the resonance wavelengths
λm via Eq. (3.13)) is necessary as starting point for the fitting. Therefore, the
resonance wavelengths in the spectrum were first estimated using the findpeaks
algorithm as implemented in Ref. [118]. This algorithm is capable of detecting
peaks or valleys in signals with random noise by using a priori information about
the peaks such as the expected width and amplitude. The group index ng was
estimated from the average free-spectral-range (FSR) between the resonances, us-
ing ng = λ2

c/(FSR · l). The integer resonance number m was estimated from the
resonance equation (3.13) at λc, m ≈ nel/λc, where the effective index ne was
calculated using a mode solver (FMM mode solver, rectangular silicon-in-silica
waveguide). The estimated ne is then corrected such that the resonance equation
(3.13) is obeyed for the resonance λm closest to λc with λm obtained using find-
peaks, and using the previously estimated ng and integer number m. With this
accurate initial estimate, the fitting converged properly. The fitting of the param-
eters in Eq. (3.4 with 3.12) to the measured spectra was done by minimizing the
root-square difference between the computed transmission spectrum, |b1(λ)|2, and
the measured spectrum. We used the Matlab implementation of the Levenberg-
Marquardt optimization algorithm [119]. The fitting of Eq. (3.4 with 3.12) to the
measured spectra was done in two iteration, first fitting |τL|2 and P0, and then
fitting all unknowns.
In the second step, we fitted the unknowns in Eq. (3.11) to the |τL|2 versus L

curve that was obtained in the first step. Equation (3.11) describes the behavior
of the directional coupler. The fitted unknowns are the coupling coefficient sc and
the correction for the coupling in the bends ΔL.

Using the DCM2 method as presented in this section, we obtained sc, ΔL, and
ng (we used the fitted ng of the L = 0 μm spectrum). Results for the five types of
couplers are presented in Table 3.2. Figure 3.9 depicts the measured spectra (solid
cyan lines) and, for clarity, only the fitting results of the next Section 3.6.3. For
lengths L = 0 and L = 4, the results of this DCM2 method were indistinguishable
in this plot from the depicted results of the DCM3 method (black dashed lines).



Chapter 3. Characterization of silicon micro-ring resonators 91

The measured spectrum with L = 14 is not well described by the theory in this
section, as the FSR, or spacing between the resonance wavelengths, is wavelength-
dependent. These effects are addressed in the next Section 3.6.3.

3.6.3 Full analysis of ring spectra (DCM3)

This section presents our most complete characterization of the directional cou-
plers. The dispersion in the couplers (i.e., the wavelength dependency of s(λ)) and
the effect of an asymmetry δ between the waveguides of a coupler are taken into
account in this analysis while these effects were neglected in the previous DCM2.
As follows from this analysis and as will be described in Sec. 3.6.6, dispersion
in the coupler is significant and can thus not be neglected when designing pho-
tonic integrated circuits in SOI technology. As will be described in Sec. 3.7, this
analysis led to the observation that an asymmetry between the waveguides of the
coupler introduces a significant phase delay when nearly all light couplers from
one waveguide to the other.
This analysis is based on the transmission spectra of ring resonators. We mea-

sured the transmission spectra of a set of eleven directional couplers in racetrack-
shaped ring resonators (see Fig. 2.20c on page 67), in which the length of the
parallel waveguides L was varied from 0 to 18 μm. Fig. 3.9 presents the measured
transmittance spectra for a waveguide width width 394 nm and a gap width of
168 nm.
Equation (3.4 with 3.6 - 3.10) was fitted to the recorded spectra and the de-

tails of this fitting will be described in this paragraph. The spectra of the set
of resonators with varying length of the coupler L were used simultaneously in
the fitting. We had independently measured the wavelength-dependent losses of
straight and bend waveguides to calculate the round-trip transmittance α(λ) (us-
ing the numbers for waveguide width ∼400 nm as plotted in Figs. 3.6 and 3.7).
We have used single values for sc, s

′
c, ΔL, δ and ng, i.e., single values were used

to simultaneously describe all measured spectra in the set. The resonance wave-
lengths depend strongly on the effective index, which varies from device to device
due to fabrication. This can be seen in the upper three plots of Fig. 3.9, in which
the resonances are not exactly at the same wavelength. Therefore device-specific
effective indices were used in the fitting, {ne}, with the curly brackets indicating
that this is a set of numbers. The input powers, {P0} = {|a1|2}, were also fitted
from measurement-to-measurement as it depends on the alignment of the optical
fibers with respect to the chip. The simultaneously fitted unknowns in Eq. (3.4
with 3.6-3.10) are thus: coupling coefficient sc, dispersion in the coupler s′c, asym-
metry in the coupler δ, effective group index ng, the correction for coupling in the
bends ΔL, a set of effective indices {ne}, and a set of input powers {P0}.

The unknowns in Eq (3.4 with 3.6-3.10) were fitted to the spectra by minimiz-
ing least-square difference between the computed transmission, |b1(λ)|2, and the
measured spectra. Each datapoint (wavelength) in this minimization is weighted
with 1/I, where I is the average intensity in a 5 nm wavelength span around this
wavelength. This 5 nm corresponds to approximately one FSR. The fitting is done
in the intensity domain (not in the logarithmic dB scale that is used in the plotting
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of the figures). The noise (or spurious reflections) in the L = 0 μm have a stronger
intensity than the signal in the L = 14 μm spectrum. Without weighting, the noise
in the L = 0 μm spectrum would thus have more influence than the signal in the
L = 14 μm spectrum. The Matlab implementation of the Levenberg-Marquardt
optimization is used for the fitting [119].
An accurate initial estimate is required as starting point for the fitting to con-

verge properly. The properties of the coupler sc and ΔL and ng are estimated from
the DCM2 method neglecting asymmetry and dispersion in the coupler. This less
complete method gave an accurate estimate, close to the values obtained in this
DCM3 method. An accurate initial estimate of the resonance wavelengths λm was
required. Therefore, λm were first found using the findpeaks algorithm [118]. Simi-
lar to DCM2 method, the effective index ne was first estimated by the mode-solver.
Then the resonance number m was estimated for all dips from Eq. (3.13) using
λm from findpeaks, ng from DCM2, and ne from the mode-solver. The resonance
numbers of the dips in the spectra were, when needed, corrected to be consecutive
integers. Then for each resonance in the recorded spectrum, the effective index is
calculated from Eq. (3.13) (using λm from findpeaks and ng from DCM2 ) and the
mean effective index over all 5 or 6 resonances is used as initial estimate of ne.
As initial estimate, we chose s′c = 0 μm−2 and δ = 0.002 μm−1 (this gave best
convergence). This procedure provided an initial estimate that is accurate enough
for the fitting to converge.
Figure 3.9 shows that the fitted spectra agree very well with the measured

spectra, indicating that Eq. (3.4 with 3.6 - 3.10) indeed contains all important
physical effects. Length L = 14 μm is of special interest as it contains the cross-
coupling regime. This causes the change in FSR from 5.0 nm to 6.4 nm as will be
explained in Sec. 3.7. The results of DCM3 are listed as “ring” in Table 3.2.

3.6.4 Full ring spectral analysis at the drop port (DCM4)

The transmittance spectra of the drop ports of the racetrack resonators were also
analyzed using a method similar to the previous method DCM3. This is done to
verify the theory of Eq. (3.5); moreover, it is useful to know whether the spectrum
of the drop port can be used for the analysis of the directional couplers, because
the output port is not necessarily available in all chip designs. As in DMC3, the
wavelength dependency of s(λ) is described by a linear model and the asymmetry
between the waveguides of the coupler is taken into account by parameter δ.
The analysis is analogue to DCM3, but with the spectra described by Eq. (3.5)

instead of Eq. (3.4). Both methods share Eqs. (3.6 - 3.10). Instead of finding
dips at resonance wavelengths, the spectrum of the drop ports show peaks at the
resonance wavelengths (see Fig. 3.10). Equation (3.5 with 3.6 - 3.10) was fitted to
the measured drop-port spectra. Unlike DCM3, the spectra were not weighted in
the fitting because maximal transmission of the peaks of the drop ports is around
unity for all spectra, while only the off-resonant transmittance depends strongly
on the amount of light coupled to the ring. Similar to DCM3, the initial estimates
of sc, ΔL and ng were obtained from an analysis analogue to DCM2 but using the
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Figure 3.9: Characterization of a set of racetrack resonators with two identical
couplers. Racetrack consists of two 40 μm long straight waveguides and two
180◦ bends with 5 μm radius. The couplers have waveguide width 394 nm and
gap 168 nm. Each row shows a different length L of the parallel waveguides in
the coupler. The fitted transmissions of method DCM3, including all effects, are
shown. Left column: measured transmittance spectrum (solid cyan lines) and fit-
ted transmission function |b1|2 given by Eq. (3.4 with 3.6 - 3.10) (dashed black
lines). Middle column: Fitted value of the straight-through power in the coupler
|τ(λ)|2. Right column: Fitted value of the additional phase shift due to asymmetry,
2 arg{cos s(λ)L̃− ıδ

s(λ)
sin s(λ)L̃}, see Eq. (3.15). This term is hardly visible in the

two uppermost graphs (lengths 0 μm and 4 μm) because the curve coincides with
the upper border of the graph. Lengths 1 μm, 2 μm, 6 μm, 10 μm, and 18 μm are
also taken into account in the fitting but are not shown here.
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Figure 3.10: Characterization of a set of racetrack resonators with two identical
directional couplers by analyzing the drop ports. Waveguide width 394 nm and
gap 168 nm. Each row shows a different length L of the parallel waveguides of
the couplers. The fitted transmissions of method DCM4, including all effects, are
shown. Labels of y-axes are above the plots. Left column: measured transmittance
spectrum (solid cyan lines) and fitted transmission function |ad|2 (dashed black
lines). Middle column: Fitted value of the straight-through power in the coupler
|τ(λ)|2. Right column: Fitted value of the additional phase shift due to asymmetry,
2 arg{cos s(λ)L̃− ıδ

s(λ)
sin s(λ)L̃}. This term is hardly visible in the two uppermost

graphs (lengths 0 μm and 4 μm) because the curve coincides with the upper border
of the graph.

measured spectra of the drop port and Eq. (3.5, again with 3.12). Initial estimates
s′c = 0 μm−2 and δ = 0.002 μm−1 were identical to the ones in DCM3.

In the case that almost all light is coupled to and from the ring (|τ |2 ≈ 1), the
resonance peaks in the drop port spectra were not visible, while noise or spurious
reflections dominated these spectra. Therefore 7 spectra out of the 55 measured
spectra were not used in the analysis. Of the five waveguide width/gap combi-
nations in Table 3.2, the following datapoints were not used: L = 0 (misaligned
fiber); L = 18; L = 16 and L = 14; L = 18 and L = 16; and L = 14; respectively.
Figure 3.10 shows an example of recorded spectra with the fitted transmission,
which are in good agreement. The results of the fitting of all parameters to the
spectra of the drop ports is listed as “ring, drop” in Table 3.2.
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Table 3.3: Differences between directional coupler characterization methods. De-
rived from the data in Table 3.2. The maximum observed difference for all five
sets directional couplers is presented. Middle block: Relative differences of the
parameters. Right block: the maximum difference in |τ |2 for couplers with lengths
L between 0 μm and 18 μm. At wavelength λc = 1550 nm (first column) and
the maximum over a wavelength span from 1535 nm to 1565 nm (second column).
Methods: direct measurement of transmitted power (DCM1), ring spectra analysis
neglecting dispersion and asymmetry (DCM2), full ring spectra analysis (DCM3),
full ring drop port spectra analysis (DCM4).

compared relative difference |τ |2 difference

methods s ΔL s′ δ ng at λc at λc ± 15 nm

DCM1 vs DCM2 4% 15% x x x 0.020 x

DCM2 vs DCM3 3% 8% x x 3% 0.026 x

DCM3 vs DCM4 3% 10% 24% 140% 1% 0.018 0.028

3.6.5 Comparison of different methods

This section compares the different methods and studies their applicability to
the characterization of directional couplers. The results of the different methods
are presented in Fig. 3.11a and compared in Table 3.3. For each method-to-
method comparison in this Table, the maximum difference over all width/gap
combinations is shown. The first row compares the two methods that neglect
dispersion and asymmetry (i.e., for which s(λ) = sc, s′c = 0 and δ = 0): the
direct transmitted power method (DCM1 ) and the approximate fitting of the ring
spectra method (DCM2 ). The methods in the second row are both based on the
recorded spectra of the ring output port, and the influence of neglecting dispersion
and asymmetry is compared. The methods in the third row are both based on
the full directional coupler analysis, and the difference between the analysis of the
output and drop ports is shown. The middle block shows the relative differences
of the fitted parameters, and the right block shows the maximum difference in the
transmitted power of the directional coupler |τ |2 (see Fig. 3.11).
The differences between the methods are all of the same order of magnitude,

and we could not attribute the differences to a specific reason. In general, it can
be seen that the difference in the fitted parameters is quite large, but that the net
influence on the directional coupler is low (the difference in |τ |2 is below 0.03).
This indicates that the combination of the parameters is more accurate than an
individual parameter. The value of δ could only be accurately obtained for the
directional couplers with smaller gaps of 195 nm and 168 nm, as seen by comparing
the results of the ring (DCM3 ) and ring drop (DCM4 ) in Table 3.2. We believe
this is because the measured spectra have the point of minimal transmission |τ |2 in
the middle of a recorded spectrum, such that asymmetry-induced widening of the
FSR is included in this fitting. For the directional couplers with gaps of ∼220 nm,
the coupler with waveguides widths 391 nm and 413 nm have this point for lengths
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Figure 3.11: (a) Comparison of the different methods for characterizing the di-
rectional couplers. Results are shown for the center wavelength λc = 1550 nm.
Five width/gap (w/g) combinations are shown. For each combination, four differ-
ent characterization methods are shown: transmitted power (DCM1), ring output
port spectra neglecting asymmetry and dispersion (DCM2), ring output port spec-
tra (DCM3) and ring drop port spectra (DCM4). (b,c) Effect of the waveguide
width and gap on the coupling coefficient s. (d,e) Effect of the waveguide width
and gap on the correction ΔL of the coupling length due to the bends. (b-e) Cou-
plers in plots (b) and (d) have similar gaps ∼220 nm. Couplers in plots (c) and
(e) have similar waveguide width ∼390 nm. (f) Analysis of the effect of dispersion
in the couplers, using data of the “ring” analysis (DCM3). Five width/gap (w/g)
combinations are shown. For each type of coupler (w/g), an area is plotted that is
bounded by the maximum and the minimum transmission |τ(λ)|2 over a wavelength
span from λ = 1535 nm to λ = 1565 nm.
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longer than 18 μm, while the coupler with waveguide width 375 nm has this point
around a length of 15 μm which was not in our set of lengths (minimal |τ |2 was at
the edge of the spectra of the resonators with coupler lengths 14 μm and 16 μm).

In general, it can be concluded that all methods give similar results and that the
different methods agree fairly well with each other. A set of directional coupler
parameters (sc, ΔL, s′c and δ) obtained from the same characterization method
should be used together, because the net differences in the transmission are lower
than the differences in the individual parameters.
The characteristics of directional couplers in SOI technology can be obtained

from direct measurements of the directional couplers (DCM1 ) and also from the
analysis of the spectra of ring resonators (DCM2 ). The values of |τ | obtained from
sc and ΔL agree for both methods.
We extensively studied the analysis employing racetrack resonators and also

measured the dispersion in the coupler by fitting the linear model of s(λ) of
Eq. (3.3). Both the output port as well as the drop ports of the ring can be
used in the analysis (DCM3 and DCM4, respectively). To characterize the differ-
ence between the waveguides of the couplers, δ, it is best to use the output port of
the ring resonator because noise or spurious reflections dominate the spectra in the
drop port of the devices where the effect of δ is most visible. The good agreement
between the measured spectra and the theory suggests that the equations that are
used in DCM3 and in DCM4 in include all relevant physics. Dispersion in ΔL and
nonlinear dispersion in s(λ) can thus indeed be neglected in the studied devices.

3.6.6 Characteristics of typical directional couplers in SOI technology

This section is about typical characteristics of directional couplers in SOI tech-
nology. It addresses the influence of the waveguide and the gap on the coupling
coefficient s(λ) and it also addresses the strong dispersion in the couplers.

Influence of the width of the waveguides and the gap on the coupling

We studied the influence of the width of the waveguide and the size of the gap
on the coupling coefficient s between the waveguides in the coupler. Directional
couplers with narrow waveguides show a stronger coupling s than couplers with
wider waveguides (see Fig. 3.11b). This is expected because the evanescent tail
of the modes is larger for the narrower waveguides, so that these modes have
more overlap with the other waveguide. Couplers with smaller gaps show stronger
coupling than couplers with wider gaps (see Fig. 3.11c), as expected.
The correction ΔL due to the coupling in the bends shows little variation for

the different width and gap combinations (see Fig.3.11d,e). We attribute these
small variations to noise induced by fabrication, measurement, or fitting.

Dispersion in the coupler

Figure 3.11f shows the effect of dispersion in the couplers on the transmittance
|τ(λ)|2. The colored areas shown are bounded by the maximum and the minimum
transmission over a wavelength span from 1535 nm to 1565 nm. The maximum
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observed difference between the transmittance at 1535 nm and at 1565 nm varies
from 0.12 to 0.18 for the different waveguide width/gap combinations. This is a
very significant effect and it is nessecary to take this into account when designing
photonic integrated circuits. One might, for example, use this effect to tune a ring
resonator to critical coupling by changing the operation wavelength. However,
this effect might also be very unfavourable when the functionallity of the device
should be the same for a broader range of wavelengths. As alternative to a single
directional coupler, it is possible to casade two directional couplers with 50/50
splitting, forming a Mach-Zehnder interferometer that is less wavelength depen-
dent (see, for example, Ref. [120] where the functionality of the device demands a
constant coupling coefficient over a broad wavelength range).

3.7 Large phase delay in directional cross-couplers

For a coupler with two identical waveguides and with effective length L̃ shorter
than the length Lπ for which all power transfers from one waveguide to the other,
the phase delay may be approximated as the phase delay of an isolated waveguide
(βbL̃). However, there has been a recent interest in a more precise characterization
of this phase delay because some devices such as ring-loaded Mach-Zehnder inter-
ferometers or cascaded ring resonators critically depend on this delay [111, 112].
In the previous Section 3.6, we measured the behavior of directional couplers by
studying the transmission spectra of ring resonators. In this section, we focus on
the coupling-induced phase delay for the case that nearly all light couples from
one waveguide to the other, i.e., when the coupler operate as cross-coupler. For
ring resonators with two couplers (add-drop configuration), the effect of this phase
delay vanishes for a symmetric coupler consisting of two identical waveguides. We
show that a tiny asymmetry δ between the waveguides causes a significant addi-
tional phase delay in the cross-coupling regime. This phase delay was observed as
a significant change in the free-spectral-range (FSR) of the ring resonator.
In Sec. 3.2.2, we described the behavior of directional couplers with coupled

mode theory and derived Eq. (3.2). The phase delay that is introduced by the
coupling is given by the argument of τ in Eq. (3.2), i.e.,

φτ = −βb(λ)L̃+ δL̃+ arg

{
cos
[
s(λ)L̃

]
− ıδ

s(λ)

[
sin s(λ)L̃

]}
, (3.15)

with arg{} the argument of a complex number. The right-hand-side of this equa-
tion has three terms. The first term, −βbL̃ is the phase delay that is introduced by
an isolated waveguide b of length L̃. The second term, δL̃, is small and may be ne-
glected because δ is smaller than the uncertainty in βb due to fabrication-induced
variations. The third term, arg{...}, is what we refer to as the coupling-induced
phase delay. This term is usually small or close to −π as the real part of the term
inside the argument is much larger than the imaginary part because δ/s is small.
However, the real part vanishes around cos sL̃ = 0, hence this argument rapidly
changes to −π/2. Equation (3.2) shows that the amplitude of τ is smallest at this
point thus, at this point, most light is coupled from waveguide b to waveguide a.
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We studied racetrack resonators with two directional couplers (i.e., in add-drop
configuration). These resonators have round-trip phase delay θ = φr+2φτ with φr

the phase delay due to the isolated waveguide and φτ the phase delay due to the
coupler. Eq. (3.7) gives θ. For this configuration, the effect of the coupling-induced
phase delay, 2 arg{cos sL̃− ı(δ/s) sin sL̃}, vanishes for symmetric couplers (δ = 0).
A tiny asymmetry δ causes an additional phase delay in the cross-coupling regime
and hence a change in the resonance wavelengths λm of the resonator.
Figure 3.9 (page 93) shows the transmission spectra of racetrack resonators

for different coupler lengths L. In each spectrum the wavelength dependency of
s(λ) gives a wavelength dependency of |τ(λ)|2 (middle column in Fig. 3.9). The
spectrum with L = 14 μm includes the cross-coupling regime (minimal |τ |2) and
the coupling-induced phase delay is observed as a FSR which is different from the
resonators with other coupler lengths.
DCM3 is based on Eq. (3.4 with 3.6 - 3.10) and includes this coupling-induced

phase delay. It can be seen that the wavelengths λm of the resonances and hence
also the particular FSR are well described by these equations (remember that the
fitted transmission functions shown in Fig. 3.9 all have the same value for sc, s

′
c,

ΔL, δ and ng).
For the L = 14 μm spectrum, maximal coupling |τ |2 ≈ 0 occurs at a wave-

length of 1547 nm. The corresponding change in FSR from 5.0 nm to 6.4 nm is
visible in the measured spectrum. This significant change is explained by a small
difference between the propagation constants in the guides, 2δ/β, of 0.1% (β is
computed with the numerical mode solver). To get a feeling for δ, we compute
the difference in the widths of the waveguides that would give such an asymme-
try. The corresponding difference between the widths of the waveguides would be
Δw ≈ ∂w/∂β ·2δ = 1 nm, where ∂w/∂β was calculated using the FMM numerical
mode solver and verified with the analytical approximate mode-solver [70]. This
1 nm difference is below the fabrication accuracy of the waveguides. Another ex-
planation for the origin of δ lays in the asymmetry in the connecting waveguides
of the coupler, as the upper waveguides are bent whereas the lower waveguides are
straight.
The coupling coefficient sc obtained from fitting the transmission spectra is much

lower than the one we obtained with numerical simulations (see Sec. 3.10). This
could be caused by imperfect PECVD deposition of the silicon-dioxide cladding,
leaving low quality SiO2 between the parallel waveguides of the coupler. We be-
lieve that this is unrelated to the observed large phase delay. This is because this
particular phase delay was only observed in the cross-coupling regime (|τ |2 ≈ 0)
and shows a very strong wavelength-dependent or transmission-dependent behav-
ior. A different cladding would not introduce such a strong wavelength dependent
or transmission dependent effect. Moreover, all eleven measured spectra are si-
multaneously well described by Eq. (3.4 with 3.6 - 3.10), validating the theory of
DCM3. Therefore the asymmetry in the waveguides is the most likely explanation
of this particular phase delay.
In conclusion, we observed a coupler-induced phase delay by studying the reso-

nance wavelengths of racetrack resonators. In a configuration with two couplers,
this phase delay is only introduced when the waveguides of the coupler are not
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Figure 3.12: (a) Sketch of long racetrack resonator with in/output ports (not
to scale). Long straight waveguide has length ls and width w. Taper section has
length lt = 64.35 μm (4.35 μm long waveguide of width 397 nm, taper with a length
varying from 0 to 60 μm, followed by a waveguide of width w to close the space.)
Coupler consists of two 10 μm long parallel guides (width ∼397 nm, gap 222 nm),
and bends with a radius of 5 μm. For each width w, a set of four racetracks with
ls = 250 μm, 500 μm, 750 μm, and 1000 μm were measured.
(b) Effective group index of rectangular silicon waveguides.

identical. We observed a 28% change in the free-spectral-range between two reso-
nances due to a tiny asymmetry with a magnitude of that corresponds to a 1 nm
difference between the widths of the two waveguides. In silicon-on-insulator ridge
waveguides, such asymmetries are practically inevitable due to nanometer-scale
variations in the fabrication process.

3.8 Waveguide group index

The effective group index of waveguides with different widths is characterized in
this section. The transmission spectra of long resonators as shown in Fig. 3.12a
were recorded. A small 5 nm span of this spectrum around λ = 1550 nm was
analyzed so that the wavelength dependence of the effective index could be ap-
proximated as linear and the dispersion in the coupler could be neglected. The
straight-through power of the couplers |τ |2 = 0.41, so that additional phase shift
in the couplers due to δ could also be neglected. The shape of the transmission
spectrum in Eq. (3.4 with 3.12) was fitted to the measured spectra, using the pro-
cedure described in Sec. 3.6.2 (DCM2 ). For this racetrack with varying waveguide
width, the track-averaged effective index 〈ne〉 and group index 〈ng〉 were fitted.
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Figure 3.13: (a) Optical microscope photograph of a very small racetrack resonator
with one coupled waveguide. (b) Transmission spectra of the racetrack resonators
with different coupler lengths L are plotted at planes parallel to the backside of the
box. Upper axis is the wavelength with respect to the wavelength of the resonance,
λ− λm [nm]. Measurements (solid, blue) and fits (dashed, red).

For each waveguide width, a set of four resonators were measured in which the
long straight waveguides have different lengths ls, while the tapers and couplers
are identical. The track-averaged group index 〈ng〉 times the track circumference
l is then

〈ng〉l = 2ng,sls + 2

∫
ngdρ, (3.16)

where ng,s is the group index of the long straight section and where the integral
runs over a section with the tapers, bends, and couplers. Plotting 〈ng〉l versus 2ls
and performing a linear fit gives ng,s as the tangent

∂ 〈ng〉l
∂ 2ls

= ng,s. (3.17)

The group index is presented in Fig. 3.12b. We also computed the effective group
index numerically using a mode solver and found good agreement with the mea-
sured group index (difference below 2%, see Fig. 3.12b). The FMM mode solver
was used with the silicon-in-silica waveguides approximated as rectangular (see
Sec. 2.8)

3.9 Critical coupling of ring resonators

This section presents an example of critical coupling. This example clearly illus-
trates the effect of critical coupling on the design of ring resonators, providing
insight to the readers that are new to the design of resonators.
We designed a set of racetrack-shaped ring resonators (Fig. 3.13a) with a straight

section of 10 μm, a very small bend radius of 1.5 μm, and circumference l =
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Figure 3.14: Characterization of very small racetrack resonators with one coupled
waveguide. (a) Fitted round-trip power transmittance α2, solid curve. Also showing
|τ |2 from DCM1 (Sec. 3.6.1). (b) Extinction ratio. (c) full-width at half-max
(FWHM).

30 μm. Such a shape is required for specific applications such as local and direc-
tional sensing of mechanical strain (see Ch. 4). It has severe losses however. The
racetracks have only one coupler (as in Fig. 2.20a) and the power in the output
waveguide, |b1|2, may be computed from the power in the input waveguide, |a1|2,
using Eqs. (2.173) and (2.174):

|b1|2 =
α2 + |τ |2 − 2α|τ | cos θ
1 + α2|τ |2 − 2α|τ | cos θ |a1|

2, with (3.18)

θ = φr + φτ .

The extinction ratio r and the full-width at half-max ΔλFWHM of the resonance
dips in the output spectrum are given by Eqs. (2.184) and (2.185):

r =
(α− |τ |)2(1 + α|τ |)2
(α+ |τ |)2(1− α|τ |)2 , ΔλFWHM =

λ2

πlng
cos−1

[
2α|τ |

1 + α2|τ |2
]
. (3.19)

Critical coupling means that the transmittance at resonance is zero (r = 0). This
occurs when the power coupled to the racetrack is equal to the losses in the race-
track (i.e., when |τ |2 = α2). Transmittance spectra of the racetracks were recorded
(30 nm span around λc = 1550 nm) and we fitted the ring transmission shape,
Eq. (3.18 with 3.12), to these measurements. In this fitting, the coupler trans-
mission |τ |2 (from DCM1 ) and track circumference l were fixed, while effective
index ne, group index ng, power transmittance |α|2, and wavelength independent
fiber-coupling power P0 = |a1|2 were fitted.

The resonance dip closest to λc is shown in Fig. 3.13b, for a set of racetracks
with a varying length of the directional coupler. It is clearly seen that under-
coupling (small lengths) or over-coupling (long lengths) lead to shallow resonance
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Figure 3.15: Sketch of direc-
tional coupler in mode-solver (cross-
section). Silicon waveguides with
10◦ side-wall-angle, width w, height
h, and gap g. Lower cladding
(BOX) is silicon-dioxide, and upper
cladding (deposited) has refractive
index nclad. Possible inclusion of a
“bubble” with refractive index n = 1
and height hb.

dips, while the close-to critical coupled racetracks shows an extinction of -25 dB.
In Fig. 3.14a it can be seen that the fitted power transmission of one round-
trip, α2, is −0.4 dB and does not strongly depend on the coupler, as expected.
The extinction ratio and FWHM were calculated from the fitted transmission
shape employing Eqs. (3.19). Figure 3.14b clearly shows the effect of coupling
on the extinction ratio, with critical coupling around coupler length L = 2 μm.
Figure 3.14c shows the increasing FWHM for increasing coupling, this trend was
predicted from Eqs. (3.19). The quality-factor, Q = λ/ΔλFWHM, varies from 3800
to 1800 for increasing lengths of the coupler.

3.10 Comparison with numerical simulations

In this section, we compare the measured coupling with numerical simulations
and we find a large difference between them. The coupling coefficients s were
numerically computed using the eigenmode expansion method employing the FEM
mode-solver (see Secs. 2.10.1). Fig. 3.15 depicts the simulated geometry consisting
of two waveguides with a 10◦ side-wall-angle that are separated by a small gap. For
the nominal simulations, there is no “bubble” (hb = 0) and the upper cladding is
silicon-dioxide (nclad = 1.444). The measured and computed coupling coefficients
s of the five sets of directional couplers are listed in Table 3.4, showing differences
of about 20% .
We studied possible imperfections in fabrication that could explain this differ-

ence. We computed the coupling of directional couplers that might have been
fabricated unintentionally (right block in Table 3.4). The studied imperfections
are: a difference in the width of the waveguide Δw, a difference in the gap Δg,
a different cladding nclad, and an formation of a gas bubble in the gap between
the waveguides of the coupler. First we consider the influence of the width of the
waveguide w and the gap g. Figure 3.16 depicts the coupling s as a function of
both waveguide width w and gap g. The measured coupling s is highlighted in
Fig. 3.16b, and the change in waveguide width Δw or in gap Δg that correspond
to the simulated s are shown. The five types of directional couplers are compared
in Table 3.4, showing Δw ≈ 35 nm and Δg ≈ 50 nm. These differences are larger
than our accuracy of the metrology of the devices, hence do not explain this differ-
ence. The PECVD deposition of the upper cladding might be imperfect, leading
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Figure 3.17: Possible effects of imperfect cladding deposition, see Fig. 3.15. Five
sets of measured directional couplers. From top to bottom, the lines correspond to
the waveguide width / gap combinations: 394/168, 375/220, 392/195, 391/222,
and 413/219 [μm]. Black plusses show the value of nclad or hb that explains the
measured coupling coefficients. (a) Upper cladding refractive index nclad. (b) In-
clusion of a bubble with refractive index n = 1 in the gap between the waveguides,
height hb. Inset shows the hb corresponding to the measured coupling as function
of the gap g.
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coupler coefficient s corresponding geometry

w g measured calculated Δs Δw Δg nclad hb

nm nm μm−1 μm−1 μm−1 nm nm - nm

391 222 0.073 0.105 0.032 31 49 1.073 142

413 219 0.057 0.083 0.026 36 48 1.104 142

375 220 0.091 0.130 0.039 29 49 1.031 145

392 195 0.084 0.128 0.044 39 55 1.026 164

394 168 0.099 0.154 0.055 43 57 1.008 174

Table 3.4: Comparison between measured and computed coupling coefficients s for
five sets of directional couplers. Left block shows nominal waveguide width w and
gap g. Wavelength λ = 1550 nm. Middle block shows measured and calculated
coupling coefficient s, and their difference Δs. Right block shows the change in
coupler geometry that could explain such a difference in s. Difference in width Δw,
difference in gap Δg, upper cladding refractive index nclad, or height of an included
“bubble” hb. Also see Figs. 3.15, 3.16 and 3.17.

to a lower quality of the SiO2 of the upper cladding or leading to a vacuum “bub-
ble” or gas “bubble” in the small gap between the waveguides. The effect of the
cladding refractive index was studied by changing it in the numerical simulations,
which shows that a cladding index which explains the measured coupling is around
nclad = 1, i.e., air (Fig. 3.17a). This is not a realistic explanation. The effect of
an inclusion of an bubble in the cap is studied by including a strip with height hb

between the waveguides of the coupler. Such a bubble might be formed when the
cladding starts growing from the corners of the waveguide surface and closes the
gap before it is fully filled. A gap with height hb ≈ 150 nm would agree with the
measured coupling (Fig. 3.17b). Although this is a large bubble, we believe that
this is the most likely explanation of the discrepancy between the calculated and
the measured coupling. The inset of Fig. 3.17b shows the height of the possible
bubble hb versus the width of the gap g, showing that the bubble is larger for
smaller gaps, which is the expected trend.

3.11 Conclusion

In this chapter, we presented all necessities for the design, fabrication and char-
acterization of silicon photonic micro-ring resonators. First, we discussed the
fabrication via the ePIXfab platform that provides CMOS fabrication of the pho-
tonic chips. We discussed the in-house post-processing and metrology of these
chips. Second, we presented a measurement setup that is capable of automatically
measuring a series of devices with high repeatability. Third, we presented devices
and a methodology to measure the important characteristics of silicon micro-ring
resonators and their individual components. This included waveguides, directional
couplers, and racetrack-shaped ring resonators. The obtained figures provide a ref-
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erence for the typical behavior of silicon micro-ring resonators that are fabricated
using contemporary semi-industrial CMOS fabrication. The probable inclusion
of gas between the waveguides of the fabricated directional coupler unfortunately
precludes the usage of the obtained figures as a reference for design of new sensors.
Especially the directional couplers were studied in detail. We provided a theory

that agrees well with the measured characteristics. This intuitive description of the
coupler was derived using coupled mode theory. In this theory, we approximated
the wavelength-dependency of the coupling coefficient s as linear and we accounted
for the coupling occurring in the bends of the coupler by introducing a wavelength-
independent effective length of the coupler L̃. We observed an interesting effect
in the cross-coupling regime where most light is coupled from one waveguide to
the other. In this regime, the directional coupler introduces a surprisingly large
additional phase delay.
We provided a clear example of critical coupling that clearly demonstrates the

physics of ring resonators. The transmission at resonance is minimal when the
amount of light that is coupled to the ring is equal to the amount of light during
one round-trip in the ring because this gives perfect destructive interference in
the output waveguide. The width of the resonances depends on the round-trip
losses of the ring resonator, where the coupling from the ring to the connecting
waveguide is also considered as loss. Our measurements provide a typical example
of this behavior.
We believe that the methodology presented in this chapter and some of the

obtained figures will be useful for designers of photonic chips. Moreover, this
chapter provides understanding of the racetrack resonators that is necessary to
study these devices as strain- or ultrasound sensors. These mechanical sensors
will be the topics of the Chapters 4 and 5.
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Abstract – Microscale strain gauges are widely used in micro electro-mechanical
systems (MEMS) to measure strains such as those induced by force, acceleration,
pressure or sound. We propose all-optical strain sensors based on micro-ring res-
onators to be integrated with MEMS. We characterized the strain-induced shift of
the resonances of such devices. Depending on the width of the waveguide and the
orientation of the silicon crystal, the linear wavelength shift per applied strain varies
between 0.5 and 0.75 pm/microstrain for infrared light around 1550 nm wavelength.
The influence of the increasing ring circumference is about three times larger than
the influence of the change in waveguide effective index, and the two effects oppose
each other. The strong dispersion in 220 nm high silicon sub-wavelength waveguides
accounts for a decrease in sensitivity of a factor 2.2 to 1.4 for waveguide widths of
310 nm to 860 nm. These figures and insights are necessary for the design of strain
sensors based on silicon waveguides.

4.1 Introduction

This chapter is about the relation between a strain applied to a micro-ring res-
onator and the shift in its resonance wavelengths. The ultrasound sensors that we
will study in the next chapter have a complicated optical behavior and complicated
mechanical behavior. Therefore we first use structures that behave mechanically
in a well-defined manner to study the opto-mechanical relation.
Microscale strain gauges are widely used in micro electro-mechanical systems

(MEMS) to measure strains such as those induced by force, acceleration, pres-
sure or (ultra)sound. These sensors are traditionally based on a piezoresistive
or piezoelectric material which transduces the strain to an electrical signal. Al-
ternatively, we propose to use integrated optical silicon micro-ring resonators as
sensing element (see Sec. 1.3). Any change in the size or in the refractive index
of the waveguide of the ring resonator shifts its resonances, and this shift can
be accurately recorded. Silicon-on-insulator technology allows the optical strain
sensors, as well as their multiplexing circuit, to be integrated with silicon MEMS.
Several groups have reported on sensor MEMS that are based on integrated op-
tical ring resonators in SOI technology, such as strain gauges [16–18], pressure
sensors [19–22], or accelerometers [121]. However, details of the relation between

This chapter is based on W.J. Westerveld, S.M. Leinders, P.M. Muilwijk, J. Pozo, T.C. van
den Dool, M.D. Verweij, M. Yousefi and H.P. Urbach, “Characterization of integratd optical
strain sensors based on silicon waveguides,” IEEE Journal of Selected Topcis in Quantum Elec-
tronics, vol. 20, no. 4, 2014, to appear.

Earlier results based on micro-ring resonator where we excited the fundamental TM-like mode
of a 300 nm high silicon waveguide were published as W.J. Westerveld, J. Pozo, P.J. Harmsma,
R. Schmits, E. Tabak, T.C. van den Dool, S.M. Leinders, K.W.A. van Dongen, H.P. Urbach,
and M. Yousefi, “Characterization of a photonic strain sensor in silicon-on-insulator technology,”
Optics Letters, vol. 37, no. 4, pp. 479–481, Feb 2012.
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an applied strain and the shift in optical resonance of ring resonators have not
been studied.
We characterized the shift of the resonance wavelengths that is caused by a

well-defined strain. This includes a characterization of the change in the effective
index of the sub-wavelength silicon waveguide. We studied the influence of the
waveguide width and the influence of the orientation of the silicon crystal. This
knowledge is required for the design of mechanical sensors based on silicon inte-
grated optics, such as ring resonators or Mach-Zehnder interferometers. Also, we
quantified the contribution of three physical effects: (1) the strain-induced change
in circumference of the resonator, (2) the strain-induced change in effective index
of the waveguide, and (3) the dispersion which is strong in sub-wavelength silicon
waveguides.
This chapter is organized as follows: first we present the devices which are used

to study the effect of strain on silicon optical waveguides (Sec. 4.2), then we derive
opto-mechanical theory describing these devices (Sec. 4.3), after which we detail
the experimental setup and methodology (Sec. 4.4). The characterization and the
analysis of the devices are presented in Sec. 4.5 and Sec. 4.6, respectively, and we
conclude in Sec. 4.7.

4.2 Devices

The integrated optical devices are in SOI technology with 220 nm thick silicon
waveguides embedded in silica. From bottom to top, the chip consists of a 675 μm
thick silicon substrate, a 2 μm thick SiO2 (BOX) layer, the 220 nm thick silicon
waveguide layer, and a 2 μm thick SiO2 top cladding (see Sec. 3.3 for details).
We designed long racetrack-shaped ring resonators in an “add-drop” configura-

tion (Fig. 4.1), and excite the “input” waveguide with infrared light with wave-
lengths λ around a center wavelength λc of 1550 nm. A directional coupler couples
light from the “input/output” waveguide to the resonator, and an identical cou-
pler is used half-way the racetrack to couple light to a “drop” waveguide. The
transmitted spectrum T (λ) in the “output” port has dips at the resonance wave-
lengths of the resonator. We characterized the couplers and found that 59% of the
power is coupled from the waveguide to the track, such that the power which goes
straight-through the coupler |τ |2 = 41%. Having a strong coupling in a symmetric
add-drop configuration gives resonance dips with good extinction ratio even for
high losses in the racetrack or for fabrication-induced variations in coupling (see
Sec. 2.13).
Silicon is anisotropic, so its deformation depends on the direction in which a

force is applied. Therefore two sets of devices were designed, fabricated and char-
acterized; one with the long side of the racetrack parallel to the 〈110〉 direction of
the silicon crystal and one with the long side parallel to the 〈100〉 direction of the
silicon crystal. Hopcroft et al. in [122] explain the crystal planes in a “(100) wafer”
as we used. We characterized the influence of the width of the waveguide on the
shift in resonance, therefore each set of devices consists of resonators with wave-
guide widths varying from 310 nm up to 860 nm. We only excited the fundamental
mode of the waveguides.
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Figure 4.1: Sketch of racetrack resonator with in/output ports (not to scale). Long
straight waveguide has length ls = 1000 μm and width w. Taper section has length
lt = 64.35 μm (4.35 μm long waveguide of width 400 nm, taper with a length
varying from 0 to 60 μm, followed by a waveguide of width w to close the space.)
Coupler section has length lc and consists of two 10 μm long parallel guides (width
∼400 nm, gap 220 nm), and bends with a radius of 5 μm.

4.3 Theory

This section presents the theory of ring resonators such as presented in the previous
section, i.e. a looped waveguide with a varying width. First, in Sec. 4.3.1, we
briefly summarize the optical theory of ring resonators. Then in Sec. 4.3.2, the
opto-mechanical theory is described. Sec. 4.3.3 applies the theory to the long
racetrack resonators under study. The relations derived in this section are used
as fitting function of the measured spectra, and as basis for the analysis of the
measurements.

4.3.1 Ring and racetrack resonators

The fraction T of power that is transmitted from the input port to the output port
of a micro-ring resonator with two lossless couplers in an add-drop configuration
such as shown in Fig. 4.1 is, from Eqs. (2.175 and 2.176),

T =
α2|τ |2 + |τ |2 − 2α|τ |2 cos(θ)
1 + α2|τ |4 − 2α|τ |2 cos(θ) , (4.1)

where |τ |2 is the straight-through power of the coupler and α2 is the power trans-
mission due to one round-trip through the ring (α = 1 means zero loss). T thus
describes the fraction of optical power transmitted from the input to the output
of the connecting waveguide, and is wavelength dependent primarily because θ
is wavelength-dependent. The phase delay θ of one round-trip through the ring
(including passing the couplers) is, from Eqs. (2.186 and 2.31)

θ =

∮
ne(ρ, λ)

2π

λ
dρ = 〈ne(λ)〉2π

λ
l, (4.2)

where the waveguide effective index ne(ρ, λ) is averaged over the position ρ in the
track with circumference l as 〈ne(λ)〉 ≡ 1

l

∮
ne(ρ, λ)dρ. The effective index in the
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coupler is approximated by the effective index of a single isolated waveguide. The
strong modal dispersion in sub-wavelength silicon waveguides is approximated to
be linear around the center wavelength λc, and is expressed in terms of the effective
group index ng ≡ ne − λ∂ne

∂λ , see (2.33). As λ and ρ are independent, the track-
averaged effective index 〈ne(λ)〉 is then given by

〈ne(λ)〉 = 〈ne〉+ (〈ne〉 − 〈ng〉)( λ
λc

− 1), (4.3)

where ne and ng at the right-hand-side, denoted without λ dependence, are eval-
uated at λc.

Equation (4.1) with Eqs. (4.2) and (4.3) will be fitted to the measured resonance
spectra to accurately obtain 〈ng〉 and 〈ne〉, from which the resonance wavelengths
are calculated.

4.3.2 Strain-induced resonance shift of ring resonators

In this section we study the shift in the resonances of a ring resonator due to an
applied mechanical strain. Four physical effects play a role when elongating a ring-
or racetrack resonator. First, the circumference of the track l increases. Second,
the cross section of the waveguide shrinks due to the Poisson effect. Third, the
refractive indices of the silicon and SiO2 change due to the photo-elastic effect.
The latter two effects together influence the effective index ne of the waveguide.
Fourth, the shift in resonance is affected by the dispersion in the waveguide.
In our case, a homogeneous strain Sz is applied parallel to the long sides of

the racetrack resonator (whose direction is referred to as the z-direction). The
transmitted spectrum of the connecting waveguide shows dips at the resonance
wavelengths λm when θ = m2π, or

mλm =

∮
ne(ρ, λm, Sz) (1 + Sρ(ρ, Sz)) dρ. (4.4)

The effective index of the waveguide depends on the mechanical deformation. The
local strain in the direction of the track Sρ is taken into account by stretching
each element dρ to (1 + Sρ)dρ. For the straight waveguide of the racetracks as
in Fig. 4.1, the z- and ρ-directions coincide, whereas they do not for the coupler
sections. We found experimentally that the relation between an applied strain Sz

and the shift in resonance wavelength is linear, which is explained by the fact that
we applied small strains. A description of this linear influence can be found by
taking the first derivative of Eq. (4.4) with respect to Sz,

m
∂λm

∂Sz
=

∮ {(
∂ne

∂Sz
+

∂ne

∂λm

∂λm

∂Sz

)
(1 + Sρ) + ne

∂Sρ

∂Sz

}
dρ,

which we evaluate at zero strain (i.e. Sz = Sρ = 0). Solving this equation for
∂λm/∂Sz, substituting m from Eq. (4.4), and dividing by track circumference l
gives

∂λm

∂Sz
=

λc

〈ng〉l
∮ (

∂ne

∂Sz
+ ne

∂Sρ

∂Sz

)
dρ, (4.5)
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where λc is the resonance wavelength λm without deformation. In this work,
we studied the resonace with a wavelength closest to a 1550 nm and we have
approximated λc by 1550 nm. This gives a maximum error below below 0.01%.
Equation (4.5) is easiest understood when considering a resonator with a uniform
waveguide shape (i.e. 〈ne〉 = ne and 〈ng〉 = ng). In that case,

∂λm

∂Sz
=

ne

ng︸︷︷︸
dispersion

〈 λc

ne

∂ne

∂Sz︸ ︷︷ ︸
eff. index

+ λc
∂Sρ

∂Sz︸ ︷︷ ︸
track-length

〉
, (4.6)

where the influence of the different physical effects are indicated. Without disper-
sion, ne/ng = 1. For the part of the track which is in the direction of the applied
strain Sρ = Sz, so ∂Sρ/∂Sz = 1, hence the contribution of the track-length change
is simply λc.

4.3.3 Strain-induced resonance shift of long racetracks

We measured very (1 mm) long racetracks because this allows neglecting the influ-
ence of the tapers and the couplers (see Fig. 4.1). In the long racetrack resonators,
Eq. (4.4) reads

mλm = 2lsns(1 + Sz) (4.7)

+

∫
tapers

ne (1 + Sρ) dρ+

∫
couplers

ne (1 + Sρ) dρ,

where the contributions of the different sections of the track are separated (see
Fig. 4.1, with ls, lt, and lc indicating the straight, taper and coupler sections,
respectively) and ns is the effective index of the long straight waveguide. We
calculate the first-order influence of strain on this racetrack similarly to Eq. (4.5),
and rewrite the equation such that the influence of the tapers and the couplers is
written as a correction to the shift caused by the long straight guides,

〈ng〉∂λm

∂Sz
=λc

(
∂ns

∂Sz
+ ns

)
(4.8)

+
λc

l

∫
tapers

(
∂ne

∂Sz
+ ne

∂Sρ

∂Sz
− ∂ns

∂Sz
− ns

)
dρ

+
λc

l

∫
couplers

(
∂ne

∂Sz
+ ne

∂Sρ

∂Sz
− ∂ns

∂Sz
− ns

)
dρ.

We will justify hereafter that the second and third term of the right-hand-side of
this equation are small compared to the first one, and hence can be neglected,
resulting in

〈ng〉∂λm

∂Sz
≈ λc

(
∂ns

∂Sz
+ ns

)
. (4.9)
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The taper is a waveguide in the z-direction with a width varying from 400 nm
up to the width w of the long section waveguide. The second term at the right-
hand-side of Eq. (4.8) is defined as the relative contribution of the taper to the
resonance shift, with respect to the contribution of a waveguide with width w of
the same length. The relative contribution of the taper is smaller than the relative
contribution of a 400 nm wide waveguide of the same length. Using Eq. (4.9), it is
thus found that the second term of the right-hand-side of Eq. (4.8) is smaller than

4lt
l

∣∣∣∣ 〈ng〉∂λm

∂Sz︸ ︷︷ ︸
width under study

− 〈ng〉∂λm

∂Sz︸ ︷︷ ︸
width 400 nm

∣∣∣∣. (4.10)

The third term of Eq. (4.8) comes from the effect of the couplers including the bend
waveguides. This contribution can be either positive (as for the long waveguides) or
negative (as the path-length might shrink due to the Poisson effect). We expect the
magnitude of this term to be smaller than twice the effect of a straight waveguide
of equal length that is strained in its long direction. Thus the 3rd term in Eq. (4.8)
is smaller in magnitude than

2
2lc
l

(
〈ng〉∂λm

∂Sz

)
. (4.11)

As will be shown in Sec 4.5, the maximum measured difference in 〈ng〉(∂λm/∂Sz)
for the devices under study with different waveguide widths is 10%. For these
long racetracks, 4lt/l = 11%, so the second term in Eq. (4.8) is smaller than 1.1%.
The third term is smaller than 4lc/l = 5%. Equation (4.9) is used in the charac-
terization of the measurements. We characterized both 〈ng〉 and ∂λm/∂Sz. The
effective index of the straight waveguide ns is computed with a numerical mode
solver, which allows us to extract the strain-induced change in effective index.
Similar to Eq. (4.6) in the more general Sec. 4.3.2, we indicate the effects of the

different phenomena in Eq. (4.9)

∂λm

∂Sz
=

ns

〈ng〉︸ ︷︷ ︸
dispersion

( λc

ns

∂ns

∂Sz︸ ︷︷ ︸
eff. index

+ λc︸︷︷︸
track-length

)
. (4.12)

This result is used in the interpretation of the measurements in Sec. 4.6. In fact,
we find that track-averaged group index 〈ng〉 can be approximated as the group
index ng of the straight waveguide. We have used the numerical mode solver to
show that this approximation is valid within 1%. In our analysis, we use the
track-averaged group index which was accurately measured.

4.4 Methodology

We characterized the photonic chips in an automated setup in which they are
bent such that the top layer with the racetrack resonators is strained. Trans-
mission spectra of the resonators were recorded for elongations varying from 0 to
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Figure 4.2: Example of resonance shift due to an applied strain. (a) Small wave-
length span of 7 measured spectra for increasing values of applied strain. Resonance
dips shift to the red. Racetrack is in the <100> crystalline direction, with wave-
guide width 400 nm. (b) The wavelengths of the resonance dips λm in (a) is plotted
versus the applied strain Sz. The wavelengths of the resonance dips for decreasing
values of strain are also plotted. Note that the observed relation is linear and that
no hysteresis was observed. Resonance shift ∂λm/∂Sz is obtained from a linear fit.

275 microstrain. As example, Fig. 4.2a shows a resonance dip of the measured
spectra for increasing strain. The resonance wavelengths, and the group index ng,
were extracted from fitting a relation for ring resonator transmission. Figure 4.2b
shows the resonance wavelength λm plotted versus the applied strain.

4.4.1 Mechanical setup: four point bending

We designed and fabricated a mechanical setup in which the chips are bent such
that the top layer with the photonic circuit is uniformly strained (Fig. 4.3). The
setup is equipped with elastic elements to provide an accurate bending moment
to the chip, without hysteresis or other non-linearities. Figure 4.3a-c explains
the mechanics of the setup. A load L is applied at the lever. The upper beam
acts as a lever so that total downwards force acting on the chip L′ = L · a1/a2
(Fig. 4.3b). This force is equally split between the two outer supports, which each
provide a concentrated load 1

2L
′ on the chip such that the inner supports each

have a reaction force 1
2L

′ upwards (Fig. 4.3c). The entire chip is in mechanical
equilibrium, so that also a cross-section of the chip at arbitrary z-position is in
equilibrium. The torque or bending moment M(z) on a section is transmitted
across it, and can be defined as “the sum of the moments about that section of all
external forces acting to one side of that section”. As the section is in equilibrium,
either the left-hand-side of the section or the right-hand-side of the section result in
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Figure 4.3: (a-c) Analysis of the mechanical setup. (d) Sketch of the mechanical
setup. Composed of the CAD drawing that was used to fabricate the setup (left-
hand-side), and a sketch of the linear stage with the load cell (right-hand-side).
Appendix B presents photographs of this setup.

the same bending moment. The region of the chip between the two inner supports
has a uniform bending moment M = (a4 − a3)L

′/4, which is referred to as pure
bending (see Fig. 5-4 in Ref. [123]). This gives

M =
a1(a4 − a3)

4a2
L, (4.13)

The bending of the chip is described by plate bending theory for thin plates with
small deflections [124], as its thickness H is small compared to its width W and
length. An assumption in this theory is that the normal stresses in the x-direction
can be neglected, so that there is no strain Sx in the x-direction and the width
W of the chip does not change due to the applied load. Moreover, we neglect the
influence of upper layers of the chip (BOX layer, waveguide layer, and cladding
layer) as their total thickness of 4.220 μm is much smaller than the chip thickness
of 675 μm. Hooke’s law and plate bending theory give the relation between the
stress σz and strain (relative elongation) Sz in the chip [122,124]:

σz =
Ez

1− νxzνzx
Sz, (4.14)
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with Young’s modulus1 Ez and anisotropic Poisson’s ratios2 νxz and νzx. Under
the aforementioned assumptions, the deflection of the chip at considerable distance
from its ends can be assumed to be cylindrical. The chip bends into a cylinder
with curvature κ. The neutral axis of the chip experiences no strain, and the strain
at a distance y above (or below, for negative y) the neutral axis is

Sz = κy (4.15)

The moment experienced by a small strip of the section with height dy is

dM = σz(y) yWdy. (4.16)

Integrating over all small strips of the section gives the total bending moment on
the section. Substituting Eqs. (4.14) and (4.15) in Eq. (4.16) and integrating over
y from −H/2 to H/2 gives

M =
κEzWH3

12(1− νxzνzx)
. (4.17)

The strain at the top surface, y = H/2, of the chip is given by Eqs. (4.15) and
(4.17) as

Sz =
6M(1− νxzνzx)

WH2Ez
. (4.18)

Combining Eqs. (4.13) and (4.18), the strain on the top surface of the chip in the
mechanical setup is

Sz =
3a1(a4 − a3)(1− νxzνzx)

2a2WH2Ez
L. (4.19)

A precise linear stage (Newport MFA-CC) applies a force to the lever, while a
load cell (Omega LECB5) measures the actual applied load L. It was observed
that the relation between the displacement of the linear stage Y and the applied
load L is linear in the regime of our measurements, and also that the repeatability
of the linear stage position Y was higher than the repeatability of the load cell.
Therefore, we extracted a single number for the resistance of the chip to bending,
∂Y/∂L, from all the measurements performed on a chip.

4.4.2 Optical setup

The transmission spectra of the racetracks were measured with near infrared light
around λc = 1550 nm. An amplified spontaneous emission light-source (OptoLink
C-band ASE) was used to emit this light, and a 5 nm span of the spectra were
recorded with an optical spectrum analyzer (Yokogawa AQ6370B). The input and
output waveguides of the racetrack resonators are routed to out-of-plane grating
couplers at convenient locations on the chip, and coupled to cleaved optical fibers
via free-space (see Sec. 2.11). These fibers were mounted on stages with piezo

1Ei is the Young’s modulus along axis i.
2νij is the Poisson’s ratio that corresponds to a contraction in direction j when an extension

is applied in direction i.
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positioning, and automatically actively aligned in the horizontal (x,z)-plane before
recording a spectrum. All transmission spectra are normalized to the transmission
spectrum of a reference waveguide, which was smoothened by convolution with a
1 nm wide Gaussian window to remove Fabry-Pérot resonances originating from
reflections of the out-of-plane grating couples.
A relation for ring resonator transmittance, Eqs. (4.1)-(4.3), was fitted to the

recorded spectrum (similar to the DCM2 method in Sec. 3.6.2). The ring length l
and straight-through power of the coupler |τ |2 = 41% were fixed, while the effective
index 〈ne〉, group index 〈ng〉, resonator waveguide loss α2 and fiber-coupling loss
were fitted. The resolution bandwidth of the optical spectrum analyzer (OSA) was
incorporated in this fitting by convoluting the calculated spectrum with a 20 pm
wide Gaussian curve. For the zero-strain measurement, the mode number m of
the resonance closest to λc was estimated from Eq. (4.4) where the effective index
ne(ρ, λc, 0) was calculated using a mode solver (film mode matching method, see
Sec. 2.8). This dip was followed over consecutive measurements. An accurate
initial estimate of 〈ne〉 and 〈ng〉 (thus the wavelengths of the resonance dips) is
necessary for the Levenberg-Marquardt fitting algorithm [119]. Therefore, the
resonance dips were first found using findpeaks [118] and from this 〈ne〉 and 〈ng〉
were estimated via Eq. (4.4). This initial estimate allows for automated fitting
of the spectra. With this fitting, the free parameters in Eqs. (4.1)-(4.3) could be
obtained, and λm was calculated from Eq. (4.4) with an accuracy much higher
than the resolution bandwidth of the OSA.

4.4.3 Measurements

We characterized chips with the racetracks in the <110> crystalline direction and
with the racetracks in the <100> direction. The measurements were repeated
several times for consistency and validation. First, the chip was manually placed
in the setup. Then resonators with different widths of the straight waveguide
were automatically measured. The strain of the racetrack was increased and de-
creased from 0 to approximately 275 microstrain, with 6 steps in each direction
(see Fig. 4.2a). The transmittance spectrum was recorded for each applied strain,
and the resonance position λm that started closest to λc was extracted. The ef-
fective group index 〈ng〉 was also extracted from this spectrum. For each value of
applied strain, the measured load L and the position of the linear stage Y were
recorded. Per measurement-set of increasing and decreasing strain, the resonance
shift per displacement of the load cell, ∂λm/∂Y , was obtained from a linear fit, and
so was the relation between the displacement and the applied load, ∂Y/∂L. We
observed that both relations were indeed linear in this regime. The strain-induced
resonance shift is then

∂λm

∂Sz
=

∂λm

∂Y
· ∂Y
∂L

· ∂L

∂Sz
, (4.20)

in which the first two factors on the right-hand-side are measured and the last
factor is calculated from Eq. (4.19).
The relation between the displacement of the load cell and the measured load can

be interpreted as the resistance of the chip and setup to bending. The average value
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for the chip with the racetracks in the <110> direction is ∂Y/∂L = 0.128 μm/mN
and the average value for the chip with the racetracks in the <100> direction
∂Y/∂L = 0.135 μm/mN.

4.4.4 Numerical mode solver

For the analysis of the measurements, we calculated the effective index at zero
strain, ne(ρ, λc, 0) using the film mode matching method (see Sec. 2.8). Also the
effective group index ng(ρ) at λc was calculated using this mode solver. The
track-averaged effective index 〈ne〉 and group index 〈ng〉 are then straightforward
to calculate.

4.4.5 Measurement uncertainty analysis

The uncertainty in the measurements was estimated following the guidelines of
Ref. [125]. The relative errors of the three factors at the right-hand-side of
Eq. (4.20) are added quadratically, as they are independent. The chips with the
racetrack resonators in the <110> and <100> directions were placed in the me-
chanical setup and measured 6 and 5 times, respectively.

Uncertainty in ∂λm/∂Y

The value for ∂λm/∂Y is averaged over the repetitive measurements, and the un-
certainty is estimated by the standard deviation. The relative uncertainty did not
significantly depend on the width of the waveguide, and the maximum relative un-
certainty (of all widths) is used. The uncertainty in ∂λm/∂Y for the chips with the
waveguides in the <110> and <100> directions are 3.1% and 1.1%, respectively.
The measurement-to-measurement difference mainly originated from reposition-
ing the chip in the setup, which was done before each measurement. Repeating a
measurement without repositioning the chip in the setup gives a measurement-to-
measurement difference which is negligible. We could not attribute this difference
to a slight tilt of the chip with respect to the setup (around the y-direction). We
do not fully understand why the uncertainty in the <110> direction is higher, but
the strong angle dependency of Poisson’s ratio around the <110> direction may
play a role. Also, we had to reassemble the setup between various <110> measure-
ments, while the measurements of the <100> chip were performed consecutively
in a mainly empty laboratory.

Uncertainty in ∂Y/∂L

The value of ∂Y/∂L did not significantly depend on the position of the chip in the
setup. All measurements (for different widths of the waveguide, and repetitions
of the measurements) are averaged to obtain ∂Y/∂L. The statistical uncertainty
(arising from random fluctuations) is estimated as the standard deviation, and the
systematic uncertainty of the system (load cell, load cell voltage source, and A/D
converter) is estimated as 3%. The standard deviation of the 30 measurements in
the <110> direction is 2.8%, and the standard deviation of the 45 measurements
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Table 4.1: Material properties, dimensions, and estimated uncertainties of
mechanical setup

Quantity Value Uncertainty

Ez/(1− νxzνzx), <110> 170 GPaa 4 GPa 2.5%b

Ez/(1− νxzνzx), <100> 141 GPaa 4 GPa 2.5%b

a1 156 mm 0.3 mm 0.2%c

a2 24 mm 0.03 mm 0.1%d

a3 5 mm 0.03 mm 0.6%d

a4 20 mm 0.03 mm 0.1%d

Chip W 24 mm 0.3 mm 1.2%c

Chip H 0.675 mm 0.01 mm 1.7%e

∂L/∂Sz, <110> 12.7 mN/μstrain 0.6 mN/μstrain 4.7%

∂L/∂Sz, <100> 10.5 mN/μstrain 0.5 mN/μstrain 4.7%

a From Ref. [122]
b Estimated.
c Measured with digital electronic calipers, maximum error 0.5 mm.
d Estimated fabrication uncertainty, maximum error 0.05 mm.
e Measured with digital electronic calipers, maximum error
0.02 mm.

in the <100> direction is 0.7%. This difference can be explained by the fact that
we increased the integration time of the read-out of the load cell from 50 samples
at 1 kHz for the <100> direction measurements to 1000 samples at 1 kHz for
the <110> direction measurements. The output voltage of the load cell is a few
mV, which required this longer integration time of our A/D converter (National
Instruments USB-6251 DAQ). The uncertainties of ∂Y/∂L are thus 5.8% and 3.7%
for the chips with the racetracks in the <110> and <100> directions, respectively.

Uncertainty in ∂L/∂Sz

The mechanics of the setup is described by Eq. (4.19). The material properties,
dimensions, and uncertainties that are used in this equation are listed in Table 4.1.
The uncertainty σ of a quantity whose uncertainty is estimated as a maximum
deviation u is given by σ = u/

√
3 [125]. In the computation of the uncertainty of

∂L/∂Sz, we have treated all uncertainties as independent and approximated the
influence of all the uncertainties as linear.

Uncertainty in the group index 〈ng〉
We found that the track-averaged effective group index does not depend on the
applied strain. Therefore all measurements of a device are averaged, and the
uncertainty is estimated as the standard deviation. These where 78 and 65 mea-
surements for the racetracks in the <110> direction and <100> directions, respec-
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tively. The relative uncertainty did not depend much on the width of the straight
waveguide in the racetrack nor on the crystalline orientation, so that we have used
the maximum of 0.03%.

Uncertainty in the effective index 〈ne〉
In the analysis of the measurements, we calculated the effective index with a
numerical mode solver. We do not know the uncertainty, as it is mostly related
to the difference between the simulated waveguide and the fabricated waveguide.
Therefore, we estimated the uncertainty in the effective index as the difference
between the measured effective group index 〈ng〉 and the track-averaged group
index as calculated with the same mode solver (see Fig. 4.4b).

4.5 Characterization

We characterized two chips with long racetrack resonators; one chip with the res-
onators in the <110> silicon crystalline direction and one with the resonators in
the <100> direction. A strain Sz was applied to the top surface of the chips, where
the resonators are placed. The strain was increased to approximately 275 micros-
train, and then decreased to zero strain in steps of approximately 45 microstrain.
Per applied strain, the transmission spectrum of the resonator was recorded, as
is shown in Fig. 4.2a. The wavelength of the resonance dip around 1550 nm is
extracted from each of the spectra and it is plotted versus the applied strain in
Fig. 4.2b. The shift per applied strain ∂λm/∂Sz is obtained from a linear fit. This
is done for racetracks with different widths, and the resonance shifts per strain are
presented in Fig. 4.4a. It can be seen that the racetracks in the <110> direction
are slightly more sensitive than the tracks in the <100> direction, and that the
resonators with wider waveguides are more sensitive to strain than the ones with
narrower waveguides widths. The latter can be attributed to the dispersion in the
waveguide, as shown in Sec. 4.6. The estimated uncertainties are with respect to
the absolute value of λm/Sz, and a large part of the uncertainty is a systematic
bias and equal for all measurements. Considering only the statistical (or random)
uncertainties, we found that the racetracks in the <110> and <100> directions
have a significantly different shift in resonance.
The track-averaged effective group indices 〈ng〉 were also extracted from the

spectra and are presented in Fig. 4.4b. Next to this, we calculated the effective
group index with the numerical mode solver. The calculated and measured track-
averaged effective group indices agree within 3%.
The change in effective index due to strain, ∂ns/∂Sz, is calculated using

Eq. (4.9). We measured the resonance shift ∂λm/∂Sz and the effective group
index 〈ng〉, and we calculated the effective index ns of the straight waveguide with
the numerical mode solver. The resulting ∂ns/∂Sz is shown in Fig. 4.4c.
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Figure 4.4: (a) Measured resonance shift per applied strain ∂λm/∂Sz, with reso-
nance wavelength λm and strain Sz. (b) Measured and calculated track-averaged
effective group indices 〈ng〉. Measured for racetracks in the <100> and in the
<100> silicon crystalline directions. (c) Change in effective index of a straight
waveguide, ns, due to a strain, Sz, applied in the direction of the guide.
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Figure 4.5: (a) Influence of dispersion on the strain-induced resonance shift,
ns/〈ng〉. Effective index ns is calculated with a mode solver. Track-averaged
effective group index 〈ng〉 is measured. (b) The hypothetical strain-induced shift
in resonance in which the dispersion is excluded. The two different contributions to
this shift (track-length change and effective-index change) are shown. Results for
the racetracks in the <110> and the <100> directions are shown

4.6 Analysis

In this section, we interpret the measured shift and indicate the contributions
of different physical effects: the elongation of the track, the change in effective
index and the dispersion of the waveguide. Equation (4.12) shows how these
effects shift the resonance wavelength. The effect of the elongation of the track
(λc) and the effect of the change in effective index are added. The change in
effective index ∂ns/∂Sz is negative, so the two effects oppose each other. The
dispersion of the waveguide, ns/ng, is smaller than unity, and thus damps the
shift. Figure 4.5a presents ns/〈ng〉, in which it can be seen that this damping
is stronger for small waveguides. Figure 4.5b presents the resonance wavelength
shift with dispersion excluded. The shift due to the change in the effective index
increases (in magnitude) with increasing width of the guide. The higher resonance
shift ∂λm/∂Sz for wider waveguides is thus due to the dispersion, and not due to
the change in effective index of the waveguide.
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4.7 Conclusion

We measured the strain-induced shift of the resonances of optical racetrack res-
onators in silicon-on-insulator technology. For waveguides with a width of 400 nm,
the resonance wavelength shift per applied strain is 0.55 pm/microstrain when
the racetrack is parallel to the 〈100〉-direction of the silicon crystal, and 0.66
pm/microstrain when the racetrack is parallel to the 〈110〉-direction. We observed
largest sensitivity for wider waveguides; a racetrack with 860 nm wide waveguides
oriented in the 〈110〉-direction has a resonance shift of 0.75 pm/microstrain. We
have studied elongations up to 275 microstrain, and observed a linear relation
between the resonance wavelength and the applied strain.
The effect of the strain-induced increase in track circumference and the effect

of the strain-induced change in waveguide effective index oppose each other. The
effect of the strain-induced increase in circumference is about three times larger
than the effect of the change in effective index. The strong dispersion in the sub-
wavelength silicon waveguides lowers the change in wavelength shift approximately
by a factor two. In fact, the lower dispersion of the wider waveguides is the reason
that these devices are more sensitive.
In this work, we have characterized a novel type of optical strain sensors which

can be integrated in micro-electro-mechanical systems (MEMS). As detailed in
Sec. 1.3, we believe these sensors open opportunities in different fields of applica-
tions such as in the medical, petrochemical, or oil&gas markets, by offering specific
advantages such as high-speed readout over kilometer distances, integrated optical
multiplexing, and small device size. Moreover, by removing the need for galvanic
connections, susceptibility to electromagnetic disturbance is eliminated.
The relation between strain and silicon waveguides is of broader interest than

sensing alone. Electro-mechanical modulation of silicon optical resonators may be
employed to modulate optical signals, for application in the field of telecommuni-
cation [126]. As alternative to using silicon waveguides-based ring-resonators, it
is also possible to use photonic crystals cavities, which have their own dispersion
relations [127]. Strain has also been used to modify the birefringence of larger SOI
rib waveguides [128]. Strain is inevitable when using silicon photonic circuits on a
flexible substrate [129]. Another interesting field of research is the strain-induced
change in the electronic band-gap and the optical refractive index of silicon, with
the possibility to introduce second-order nonlinearity [130,131]. All these fields of
research might benefit from our analysis of the relation between an applied strain
and the shift in resonance wavelengths of silicon micro-ring resonators.
Moreover, knowledge about the relation between an applied strain and the shift

in resonance wavelength of racetrack-shaped ring resonators is necessary for design
and understanding of the ultrasound sensors that we present in the next Chapter 5.
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Abstract – Ultrasonography (imaging with ultrasound) is widely used in medical
and industrial applications. Computation of sharp images using digital ultrasonic
focusing requires an array of small microphones that have a size below half of the
wavelength of the ultrasound. Fabrication of such small microphones and wiring
of these microphones is challenging with traditional piezo-electric ultrasound trans-
ducers. We propose a new type of ultrasound microphone with photonic readout.
Both the photonic circuit as well as the acoustical resonant membrane of this mi-
crophone were fabricated in wafer-scale silicon-on-insulator chip technology. Silicon
photonic technology allows for devices with a small footprint such that wavelength-
division multiplexers can be fabricated along with the microphone-resonator. This
opens the possibility to read an array of sensors using one optical fiber. We have
designed, fabricated, and measured a new type of ultrasonic microphone which is
based on photonic micro-ring resonators. The microphone was designed to prove
the operation principle of this microphone and the first prototype was fabricated.
We demonstrated the operation principle of this new photonic microphone by mea-
suring ultrasound around a frequency of 0.75 MHz. The sensitivity is 1.2 mV/Pa
and the detection limit (NEP) is below 1 Pa. This is on the same order of magnitude
as the state-of-the-art of conventional piezo-electric based ultrasound transducers.
The measured -6 dB bandwidth of the acoustical resonator is 20%. Moreover, we
report on the most basic configuration and we believe that there is much room for
improvement and optimzation of this new type of microphone.

5.1 Introduction

Ultrasonography (imaging with ultrasound) is widely used in medical and indus-
trial applications (Sec. 1.2). Ultrasonography is usually done either in an aqueous
environment or using a liquid to enhance the acoustical coupling between the
microphone and the object of interest (e.g. the human body or an oil pipe). To-
day’s array technology allows the formation of images using digital focusing of the
recorded signals. For such applications, it is desired to have an array of ultrasonic
microphones that are spaced less than a half wavelength of the sound [92]. For
sound waves in water (or blood), this corresponds to approximately 750 μm for an
ultrasonic frequency of 1 MHz and to 37 μm for 20 MHz. This chapter is about a
new type of microphone for the detection of ultrasound but we first give a short
review of ultrasonic microphones that are currently used.
The most commonly used ultrasound transducers employ piezo-electric mate-

rial to convert mechanical stress (or pressure) to an electric potential. However,
fabricating transducer arrays is relatively difficult and expensive because the piezo-
electric elements need to be wired individually. Over the last decades, there has
been a substantial interest in micro-machined ultrasound transducers with capaci-
tive read-out (cMUTs) [132,133]. These transducers consist of a flexible membrane
that is above a fixed substrate. A pressure-induced deformation of the membrane

The design of the acoustical resonant membrane as reported in Sec. 5.4.1 is based on S. M.
Leinders, W. J. Westerveld, J. Pozo, H. P. Urbach, N. de Jong, and M. D. Verweij, “Membrane
design of an all-optical ultrasound receiver,” in Proceedings IEEE International Ultrasonics Sym-
posium, Prague, Jul. 2013, and the simulations in that section have been performed by the first
author of that paper.



Chapter 5. Ultrasound microphone employing integrated ring resonators 127

(a)

(b)

(c)

wavelength

tra
ns

m
is

si
on

 o
r r

ef
le

ct
an

ce

(d)

Figure 5.1: Sketch of optical ultrasound microphones. (a) Fabry-Pérot resonator
at the facet of an optical fiber. (b) Distributed Bragg reflector (DBR) in the
optical fiber. (c) Ring resonator that is coupled to the optical fiber or waveguide.
(d) Sketch of the reflected or transmitted light. The wavelength of the resonance
will shift when the resonator is deformed by ultrasonic pressure waves.

directly results in a change in the capacitance between the membrane and the sub-
strate and this capacitance is continuously measured. An array of cMUTs can be
simultaneously fabricated and wired using silicon micro-machining. This allows
cost-effective wafer-scale fabrication in the CMOS infrastructure (see Sec. 1.4).
Unfortunately, the sensitivity of cMUTs is generally lower than the sensitivity of
piezo-electic devices [134]. Both piezo-electric transducers as well as cMUTs use
electricity as carrier of information and normally need a coaxial wire for each sen-
sor element. The bundle of wires requires substantial space which is not always
available. For example in intravascular ultrasonic imaging, the wall of a blood
vessel is imaged from a transducer inside the vessel and there is lack of space for
wires (Sec. 1.2). Also, the capacitance of the wire scales with its length, thereby
limiting the length of the wires for the high-frequent (MHz range) ultrasound.
As alternative, optical ultrasound transduces have been developed. In contrast

to ultrasonic-electronic transducers, optical ultrasonic devices are usually not re-
ciprocal. These are designed to either detect ultrasound (microphones) or generate
ultrasound (sources or speakers). In the case of microphones, light is generated
externally and the microphone modulates the lightwave with the acoustical sig-
nal. The examples hereafter are all based on the same sensing principle (see
Fig. 5.1). Light is sent via an optical fiber or waveguide to an optical resonator.
The light that is reflected from the resonator or the light that passes the resonator
is recorded. Depending on the configuration, this light has minimal (dips) or max-
imal (peaks) transmission at the wavelengths that correspond to the resonances of
the optical resonator (Fig. 5.1d). An incident acoustical soundwave will deform the
resonator and change its refractive index which results in a shift of the resonance
wavelengths. This shift is thus a direct measure for the ultrasonic signal and it
can be recorded using an external interrogation system. One example of an optical
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ultrasound microphone consists of a Fabry-Pérot optical resonator at the end of
the facet of an optical fiber (Fig. 5.1a). The Fabry-Pérot resonator is formed by
two gold mirrors with a polymer spacing. Light is sent to the resonator via the
fiber. Reflection of the light is minimal for optical wavelengths that correspond to
the resonances of the Fabry-Pérot resonator. A hydrophone based on this principle
is reported in Ref. [135] and commercially available from Precision Acoustics Ltd
(Higher Bockhampton, Dorchester, UK). Another method to detect ultrasound via
an optical fiber is by integrating a distributed Bragg reflector (DBR) in the fiber
(Fig. 5.1b). This reflector has optical resonances such that it only reflects light
around specific optical wavelengths. Similar to the previous method, the DBR can
be stretched by ultrasonic waves due to which the optical resonance wavelengths
shift [136].

Over the last decade, Guo and co-workers have reported on ultrasound micro-
phones that are based on a polymer ring resonator (Fig. 5.1c) [137–142]. An ul-
trasonic wave incident on the polymer micro-ring resonator deforms the resonator
and thereby shifts its resonance wavelengths. The devices reported in Ref. [141]
have diameters 40 μm and 60 μm. The size of the ring resonators can not be
very small because otherwise the losses in the highly curved bends are too high.
This problem can be solved by using rings with waveguides that have a higher re-
fractive index contrast. The polymer waveguides can be fabricated as a photonic
integrated circuit on a planar substrate. In fact, Ref. [140] reports on a cascade
of four ring resonators with distinct resonance wavelengths such that they can be
interrogated via one optical fiber. The small device size and the planar integra-
tion make these devices attractive as microphone arrays for ultrasonography. The
fabrication of these polymer photonic integrated circuits depends on special tech-
nologies. Recently, Rosenthal [143] and co-workers have reported an ultrasound
microphone in silicon-on-insulator technology with waveguides similar to the ones
we used. Their microphone is based on a π-phase-shifted Bragg grating formed by
waveguide corrugation. In contrast to our ring-resonator, the grating is not placed
in on a membrane and Ref. [143] does not report on the sensitivity of the sensor.

Ultrasonography requires an array of microphones but only a single acoustical
source is, in fact, sufficient for the reconstruction of ultrasonic images. This source
needs to be omnidirectional and deliver sufficient acoustical signal. This source
can be a single piezo-electric element. Alternatively, it is possible to use the
photo-acoustic effect to generate ultrasound, either in a well defined emitter or in
the tissue to be imaged itself [3–7]. The latter is known photo-acoustic imaging.
Photo-acoustic imaging has the additional advantage to provide a discrimination
of different types of tissue by studying the absorbance of the light [8].
We propose the use of silicon photonic micro-ring resonators to sense ultrasound.

Incident pressure waves will deform the optical resonator and hence shift its optical
resonance wavelengths. These small silicon ring resonator can be integrated in a
mechanical structure to enhance the sound-induced deformation. In particular,
we study the use of an acoustical membrane such as is used in cMUTs. Pressure
sensors based on this principle have been already been proposed in the 90’s [144].
We are, to the best of our knowledge, the first to report the operation of such
microphones for ultrasonic frequencies.
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This microphone can be fabricated in silicon-on-insulator (SOI) technology.
Both the photonic circuits with waveguides of sub-micron cross section as well as
the acoustical membrane with a diameter of tens of microns can be fabricated in
this technology. This allows for cost-effective wafers-scale fabrication of the micro-
phones using existing CMOS fabrication infrastructure. An array of microphones
including wiring can be simultaneously fabricated in this fabrication process. The
photonic circuits in the devices that we report in this thesis are fabricated in a
semi-industrial CMOS line (Sec. 3.3). Hereafter, we fabricated the membrane by
lithography and etching from the back-side of the wafer as is common in MEMS
fabrication (Sec. 5.5).
Photonic integrated circuits in SOI have a high refractive index contrast and

a small footprint. Silicon micro-ring resonators can have diameters down to
10 μm without substantial radiation losses. This corresponds to an ultrasonic
half-wavelength in water for a frequency of 75 MHz. Moreover, the small footprint
of silicon photonic integrated circuits allows integration of small passive optical
multiplexers for simultaneous readout of many microphones [1,2]. This opens the
possibility for high-speed interrogation of an array of sensors via only one or two
optical fibers. The height of the waveguiding layer is only a quarter of a micron
and has little influence on the acoustical properties of the membrane. This gives
the flexibility to optimize the membrane for the desired acoustical characteristics.
Alternatively, another acoustical resonant or non-resonant structure could be used.
This is different from piezo-electric transducers or cMUTS were the design of the
transducer is a trade-off between the electric and acoustic characteristics.
We believe that our new type of ultrasound microphone is very promising for

application in ultrasonography. Integrated passive optical multiplexers and the
read-out of a sensor arrays at large distance via few optical fibers is highly attrac-
tive for certain applications. Moreover, the all-optical sensors do not suffer from
electromagnetic interference so that they can be used in, for example, MRI scan-
ners. Another advantage is that the all-optical signal does not produce electric
sparks and hence does not have the danger to ignite gas explosions.
In this thesis, we present the proof-of-the-principle for this new type of ultra-

sound microphone. The design is optimized to proof the operation principle for
sound waves with a frequency around 1 MHz. The aim of the optimization was
twofold. First we wanted to obtain a device that is as simple as possible to be
able to compare the experimental results with simulations. Secondly, the sensi-
tivity was optimized as this was our biggest concern. We chose to integrate a
silicon micro-ring resonator in an acoustically resonant membrane, similar to the
membrane of a cMUT (Fig. 5.2 on page 132, or see the cover of this thesis).
This device was designed to proof the operation principle and the specifications

are not yet tailored to a specific application. This makes it difficult to compare the
performance with other types of sensors; however, we compare our results with two
state-of-the art devices. A comparison of ultrasonic microphones needs to include
at least the following figures: the noise equivalent power, the bandwidth and the
surface area. The noise equivalent pressure (NEP) indicates the detection limit of
the microphone and is defined as the acoustical pressure for which the signal-to-
noise ratio is unity. The bandwidth is the frequency range in which the microphone
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is sensitive. A correct specification of the NEP also includes the bandwidth that is
used to obtain the NEP. Usually, the noise scales with the root of the bandwidth.
The total force acting on the microphone for a given acoustical pressure scales
with the surface area.
Our sensor has maximal sensitivity at 0.75 MHz, a NEP below 1 Pa, a -6 dB

bandwidth of 20% and a surface area of 0.03 mm2. First, we compare our results
with a transducer of PZT piezo-electric material that was recently developed for
photo-acoustic breast tomography by Manohar and co-workers at the University
of Twente [145]. This sensor operates at 0.9 MHz with a similar NEP of 0.5 Pa, a
larger bandwidth of 80% but with a surface area of 25 mm which is two orders of
magnitude larger than our sensor. Second, we compare our result with the latest
microphones of Guo and co-workers based on polymer micro-ring resonators [141].
These sensors have a very wide bandwidth up to 75 MHz. For a bandwidth from
1 to 25 MHz, they reported a NEP of 10.5 Pa, one order of magnitude larger
than our sensor, and a surface area of 0.01 mm2 which is three times smaller
than our microphone. Ultrasound microphones based on piezo-electic material
and on polymer photonic ring resonators have experienced a century and a decade
of development, respectively. We believe that the type of microphone reported
in this thesis has a huge potential especially when considering the large room for
improvement (Sec. 5.9).

This chapter is organized as follows. First we detail the choice of the SOI
platform. Then we present the new microphone and the principle of the opera-
tion of interrogation (Sec. 5.3). Then we present the design (Sec. 5.4) and the
fabrication process (Sec. 5.5). Then the characterization methodology (Sec. 5.6),
results (Sec. 5.7), and analysis (Sec. 5.8) are presented. We conclude this chapter
suggestions for improvements (Sec. 5.9) and the conclusions (Sec. 5.10).

5.2 Choice of the platforms

In this section, we detail requirements for the ultrasound sensor and the choices
of mechanical platform, type of photonic resonator, and photonic platform.
The aim of this work was to proof the operation principle but the primary ap-

plication that we had in mind is in intravascular ultrasonography. This gives the
following requirements. (1) Operation should be extendable to at least 20 MHz
meaning that the technology should allow for with sensing elements smaller than
40 μm. (2) The technology should allow for optical multiplexers with a footprint
smaller than 1 mm x 2 mm. Moreover, the primary interest of the Acoustical
Wavefield Imaging laboratory (TU Delft) and of TNO (a contract research insti-
tute) is in usage of this new type of microphone in applications. Therefore (3) the
fabrication of the sensor should be reproducible without much difficulty and (4)
the sensor should be strong enough for practical applications. Moreover, it was
decided that (5) the technology should, as much as possible, be already available
in order to limit the development of new fabrication processes within this project.
Silicon is the most commonly used material in MEMS and many processes have

been developed for silicon micro-machining. Capacitive micro-machined ultra-
sound transducers (cMUTs) are mostly fabricated in silicon technology and often
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employ silicon-on-insulator (SOI) wafers. We therefore chose silicon technology
for the micro-mechanical devices because it has been proven to work as ultra-
sound transducer, because of the knowledge on the mechanical behavior of silicon
micro-structures, because of the known fabrication processes, and because of the
favorable properties. Moreover, silicon micro-machining technology and experi-
ence was available in the Van Leeuwenhoek Laboratory which is a joint facility of
TNO and Delft University of Technology.
There are different photonic platforms that use silicon wafers as substrate. We

chose to use the photonic silicon-on-insulator platform because it matches with
the five requirements listed before and because the research integrated photonics
activity at TNO was focused at the silicon-on-insulator platform. Fabrication is
offered by various institutions for affordable prices. We chose to use micro-ring
resonators because these resonators are small enough to be applied for 20 MHz
ultrasound sensors yet the size is large enough for reproducible fabrication. Pho-
tonic crystal cavities can be much smaller (about half a wavelength) but require
more precise fabrication. We chose to use directional coupler to couple light to
the ring resonators because they introduce little reflections and because arbitrary
splitting ratios can be achieved, in contrast to multimode-interference (MMI) cou-
plers [146, 147]. The drawback of directional couplers is that the coupling |κ|2
strongly depends on the fabrication but this can be circumvented by designing a
resonator whose response does not strongly depend on the coupling (see Sec. 2.13).
Additional advantages of SOI are, for example, that it withstands large tempera-
ture fluctuations and radiation as may occur in industrial NDT applications and
another advantage is that the materials are non-toxic which is favorable for medical
applications.
A major drawback of the silicon-on-insulator platform for sensing is the strong

elasto-optic effect of silicon, resulting in a shift of the resonance wavelength as
large as 80 pm/degC [148]. From a practical point of view, slow drift of the reso-
nance wavelength due to temperature would give a change in the sensitivity over
time while faster fluctuations appear as noise in the measurements [25]. Fortu-
nately, a measurement takes only 2.5 seconds including 500 averages and we are
able to tune the interrogation system to the resonance wavelength in-between the
measurements. Next to this, the bandwidth of the ultrasonic signal is limited and
we used a high-pass filter at with a roll-off at 25 kHz. In Sec. 5.8, we find that
the noise in the system is not dominated by changes in the resonance wavelengths
of the ring and thus not by temperature fluctuations. Another drawback of the
silicon-on-insulator platform is that the losses are relatively high as compared to,
for example, glass or polymer. This loss ultimately determines the steepness of
the flank of the resonator an thus the sensitivity of the system.
Alternative platforms that use a silicon wafer as substrate include silica-on-

silicon technology [149], Si3N4-in-SiO2-on-silicon technology [150], or polymer
[137–142]. Silica-on-silicon devices typically have dimensions that are too large
for our application (although different types of resonators might have smaller di-
mensions) [149]. When this project started the services offered by the ePIXfab
consortium (SOI technology) were more mature than the fabrication services of
Si3N4-in-SiO2. Today, LioniX BV (Enschede, The Netherlands) also offers multi-
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Figure 5.2: (a) Sketch of the new type of ultrasound microphone. Showing the
photonic micro-ring resonator on top of a membrane. The actual device has a
thin silicon dioxide top cladding to isolate the waveguide from the water. The
actual device has a circular membrane. Light transmitted through the input/output
waveguide is coupled to the resonator. The incident acoustical wave deforms the
membrane and hence the resonator. (b) Sketch of the transmittance spectrum of
the photonic micro-ring resonator. The interrogation system is depicted. Ultrasonic
pressure shifts the photonic resonance as depicted by the three plotted spectra. The
wavelength of the laser is chosen at the flank of the optical resonance such that a
shift of the resonance directly translates into a modulation of the transmitted optical
power.

project-wafer (MPW) services for Si3N4-in-SiO2 waveguides based on their propri-
etary TriPleXTM technology [151]. Many research has been performed on platforms
that can generate or detect light, such platforms based on indium-phosphide or
gallium-arsenide but we are not interested in on-chip electro-optic conversion. The
polymer platform is currently at the limit for applicability to 20 MHz ultrasound
and depends on in-house technology (see Refs. [137–142] as discussed in Sec. 5.1).
Alternative resonators include distributed Bragg gratings in waveguides, π-phase-
shifted Bragg gratings in waveguides [143], or photonic crystal resonators [127].
Studying these alternatives was beyond the scope of this research.

5.3 The novel photonic ultrasound microphone

The sensing element of the microphone is a photonic ring resonator that is inte-
grated in a membrane (Fig. 5.2). Incident acoustical pressure waves deform the
membrane and hence the resonator. We used a racetrack shaped resonator. The
deformation of the resonator causes a change in the circumference of the racetrack,
a change in the cross-section of the waveguide and a change in the refractive index
of the waveguide and the cladding (due to the photo-elastic effect). These changes
result in a shift of the optical resonances. This shift is monitored using an external
interrogation system. The microphone is fabricated in silicon-on-insulator (SOI)
technology. We started with the fabrication of the photonic circuitry in a standard
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silicon-on-insulator platform. This yields a 220 nm thick silicon waveguides on top
of a 2 μm thick SiO2 buried oxide (BOX) layer on top of a 250 μm thick silicon
substrate. The membrane was locally etched from the back-side of the substrate.
We deposited an SiO2 cladding of 0.5 μm to isolate the waveguide from the water.
The interrogation system that we used is based on a laser and a photo-diode.

The laser emits coherent light with a center wavelength λl and with a very small
bandwidth so that we may approximate the light as monochromatic. We tune the
laser wavelength to the flank of a resonance of the silicon photonic ring resonator
that is in the microphone (see Fig. 5.2b). The transmitted light is then usually
about half the incident light. A shift in the wavelength of the resonance gives a
change in the transmittance of the ring at this wavelength λl. The transmitted
intensity is thus a direct measure of the shift of the resonance wavelength and
hence a direct measure of the deflection of the membrane.
The optical transmission from the input to the output of the connecting wave-

guide is described by T (λ). Equation (2.175) provides an expression for this trans-
mission. An applied deformation results, in first order, in a wavelength shift Δλ
of the transmission, given by T (λ) ≈ T0(λ+Δλ) where T0 is defined as the trans-
mission for zero deformation. For interrogation of the microphone, we use a laser
to provide light in input waveguide with power I0 and free-space wavelength λl.
This wavelength is chosen at the flank of a resonance dip. The power in the output
waveguide is then

I = T (λl)I0 = T0(λl +Δλ)I0. (5.1)

The expected change in resonance wavelength Δλ is small and therefore we may
approximate the behavior of the system as linear. The normalized sensitivity of
the microphone to an applied pressure difference P may thus be written as

∂T

∂P
=

∂T

∂λ

∂Δλ

∂P
. (5.2)

The actual sensitivity also depends on the optical input power,

∂I

∂P
=

∂T

∂P

∂P

∂I0
. (5.3)

5.4 Design

In this section, we describe how we designed the microphone to demonstrate the
operation principle. We optimized the design for (1) simplicity of fabrication and
analysis and (2) for sensitivity because this was our biggest concern. The micro-
phone for the proof of the principle was designed for operation at 1 MHz. This
relatively low frequency implies a relatively large size of the membrane which is
easier to fabricate. Moreover, sensitivity is expected higher. But this frequency
is also interesting for certain applications [145]. The microphone is designed for
operation in water. Hereafter we explain the qualitative choices made for the
shape of the acoustical resonant structure. Then in Secs. 5.4.1 and 5.4.2, we de-
scribe the design of the acoustical resonant membrane and of the optical resonator,
respectively.
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We chose to use an acoustically resonant membrane to achieve a large deforma-
tion of the optical ring resonator for a given acoustical pressure. The behavior of
such membranes was studied for operation in cMUTs. We chose to use a circular
membrane because this allowed us to use radial symmetry in the computations
that were used for the design of the microphone. For a simple geometry it is also
easier to understand the physics of the measured device. We chose to have air in
the hole behind the membrane. When the back-side of the device containing the
membrane is exposed to water, it is not know whether the water will fill the hole
or an air bubble remains. Moreover, a given membrane has a higher resonance
frequency when there is air below it compared to when there is water below it. We
designed the structure to be resonant at 1 MHz and having air below the mem-
brane implies a larger membrane. The chip was mounted on a glass plate so that
the hole behind the membrane was closed.
The photonic ring resonator is sensitive to deformation which may be expressed

in terms of strain (i.e., relative elongation). This sensor may be looked upon
as a high-speed application of the strain sensor that was studied in the previous
Chapter 4.
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Figure 5.3: (a) Strain in the radial, transversal and height directions. The mem-
brane diameter is 100 μm and has no silicon layer. The pressure above the membrane
is 1 kPa. Strain and deflection are computed using the static FEM analysis (see
Sec. 5.4.1, second step). The maximum deflection of the membrane is 17 nm which
is much smaller than the height of the membrane (2.5 μm). (b) Sketch of the
deflection and the strain in the radial direction for a layer that is above the neutral
plane.

5.4.1 Design of the acoustical resonant membrane

The relation between the dimensions of the membrane and the pressure-induced
strain in the ring resonator is nontrivial. First we consider static loading of the
membrane under constant pressure (Fig. 5.3). The pressure-induced deflection of
the membrane is expected small compared to the height of the membrane which
allows us to use plate bending theory [124]. In the bending of membranes, there
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Figure 5.4: Design of the membrane. The membrane consist of a 2.5 μm thick
silicon dioxide layer on top of a silicon layer with thickness h2. (a) Diameter of the
membrane as a function of the thickness h2 for which the resonance is at 1 MHz
(approximate analytical computation, Eq. 5.4). (b) Strain that is introduced by a
static pressure of 1 kPa. Strain in the radial direction at the center of the membrane
at a point located 0.5 μm below the surface as a function of the thickness hw. For
each h2, the diameter of the membrane is chosen such that the membrane is resonant
at 1 MHz using the curve presented in plot (a). The deformation of the membrane
is computed using FEM simulations for static loading (COMSOL).The simulations
include a substantial part of the thick substrate so that the deflection at the edges
of the computational domain can be neglected. The clamping of the membrane in
the chip is thus included in the FEM simulation.

is a neutral plane in which the deformation can be neglected.The curvature of
the membrane results in a position-dependent strain that scales linearly with the
distance from this neutral plane. The membranes that we consider have a minimal
thickness h1 of approximately 2.5 μm SiO2 (neglecting the silicon waveguide layer).
The strain sensor is located at a plane that is 0.5 μm below the surface. We are
free to choose the thickness h2 of the silicon layer below the SiO2 layer. However,
two effects oppose each other. Choosing a large thickness h2 of this layer increases
the distance of the strain sensor to the neutral plane which causes a higher strain
for a given curvature. But by choosing a large thickness h2 also the stiffness of the
membrane increases so that for a given pressure the obtained curvature is lower.
Knowing these difficulties, we designed the membrane with the procedure that is
presented hereafter. The parameters to obtain are the membrane diameter d and
silicon thickness h2.

Membrane design: first step, resonance at 1 MHz

The first step of the design was to ensure resonance at 1 MHz. The acoustical
resonance frequency of the membrane is determined by the geometry and the
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material properties1. For a given thickness of the silicon layer h2 it is possible to
choose the diameter d such that the fundamental resonance of the membrane is at
1 MHz. The resonance frequency f of a circular membrane may be approximated
by [152–154].

f =
1

A

2

π

λ2
M

d2

√
D

ρh
(5.4)

with A = 1 for a membrane in air, λM a value dependent on the mode shape and
the boudary conditions of the membrane, d the diameter of the membrane, D the
rigidity of the membrane, ρ the density of the membrane and h the thickness of
the membrane. For a membrane consisting of one material, D = Eh3/(12(1− ν))
with Young’s modulus E and Poisson’s ratio ν. We used λM = 4.977 which
corresponds to the fundamental resonance of a simply supported membrane (for
ν = 0.3) [152]. This is an approximation as the actual boundary conditions are
expected somewhere between simply supported and clamped (λM = 10.2). The
membranes that we studied consist of two layers. We have approximated the
rigidity of the membrane using the following equation2

D ≈ 1

2
(D′

1 +D′
2)h

3 +
1

2
(D′

2 −D′
1)(h2 − h1)

3, (5.5)

with D′
i = Ei/(12(1 − ν2i )) where the i indicates the layer with corresponding

Young’s modulus Ei, Poisson’s ratio νi and height hi. The product of the height
and density is approximated by hρ ≈ (h1ρ1 + h2ρ2). Equation 5.4 with A = 1
is valid for a membrane in air while the membrane of the microphone has water
above the membrane. This water damps the resonance. This damping is difficult
to compute as movement and inertia of the water need to be taken into account.
However, it is possible to approximate this damping by a single factor A = fa/fw
with fa and fw the resonance frequencies with air and water above the membrane,
respectively. This factor A depends on the resonance mode of the membrane, the
boundary conditions of the membrane, the geometry of the membrane, and the
ratio of the density of water and the density of the membrane. We computed A
using a numerical FEM analysis. The simulation included not only the membrane
but also the substrate so that the boundary conditions of the membrane were
included in the FEM analysis. The analysis was performed in the time-domain
and the membrane was brought in motion using a very short pulse as boundary
load at its top surface. Similar to the acoustical FEM analysis that are detailed

1 density Young’s modulus Poisson’s ratio
[kg/m3] (isotropic) [GPa] (isotropic)

Silicon 2329 170 0.28
Silicon-dioxide 2200 70 0.17

2 We follow Ref. [153]. The y-direction is defined normal to the membrane. The rigidity D
of a plate is the relation between the bending moments per unit length and the deflection of

the plate w. For the bending moment along x, Mx, this gives Mx = −D
(

∂2w
∂x2 + ν ∂2w

∂z2

)
. The

relation for Mz is identical but with x and z interchanged. Combining (4.2.16) and (4.2.12) of

Ref. [153] gives D =
∫ h/2
−h/2

(y2E)/(1 − ν2)dy. This equation assumes that the neutral plane is

in the middle of the membrane. We approximate that this is also the case for our two-layer
membrane and arrive at Eq. (5.5).
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hereafter (third design step), the strain was recorded as a function of time and
the resonance of the membrane was found using a discrete Fourier transform.
The resonance frequencies in air (fa = 2.9 MHz) and water (fw = 1.6 MHz)
were computed for a membrane with only silicon-dioxide (h2 = 0) and diameter
d = 80μm. This gave A = 2.4. Equation 5.4 was used to compute the diameter
of the membrane d for a given thickness of the silicon layer h2 such that the
membrane has a resonance frequency fw of 1 MHz.

Membrane design: second step, silicon thickness h2

The second step in the design was to choose the optimal thickness h2 of the sil-
icon layer provided that we use the corresponding membrane diameter d from
Fig. 5.4a. The sensitivity of the microphone was studied using a static analysis
so that the sensor acts as a pressure sensor. We expect that the geometry of
the membrane that provides maximal sensitivity to static pressure also provides
maximal sensitivity to ultrasonic pressure waves. The deformation of the mem-
brane depends on the exact boundary conditions which are unknown. Therefore
we numerically simulated the deformation of the membrane using a finite element
method (implemented in COMSOL Multiphysics). The numerical model is of a 2D
axis-symmetric domain exploiting the circular symmetry of the membrane. The
influence of the 0.22 μm thick waveguide layer is neglected in this analysis. The
model includes the substrate that support the membrane. The simulation domain
has a radius of 300 μm so that the boundaries of the simulation domain are suf-
ficiently far away from the membrane. The side of the substrate is clamped (no
deformation) at the boundary of the simulation domain. For static loading, the
result is not influenced by the type of fluid below the membrane (air or water).
The microphone is loaded from the top with a static pressure of 1 kPa and we
recorded the strain at a point 0.5 μm below the surface of the membrane at the
center of the membrane. This is the position where the photonic resonator will be
placed. We recorded the strain in the radial direction. Figure 5.4b presents this
strain for a varying thickness h2 of the the silicon layer with corresponding mem-
brane diameter d. It can be seen that a thickness h2 of 1.3 μm gives the optimal
sensitivity. However, in the fabrication process of the membrane, the flatness and
thickness of the silicon layer are difficult to control. A well defined fabrication can
be achieved by completely removing the silicon layer of the membrane (h2 = 0).
In that case, the SiO2 layer of the membrane is used as etch stop in a chemically
selective etch process. Therefore we chose to completely remove the silicon below
the membrane at the expense that the predicted sensitivity is 1.5 times lower.

Membrane design: third step, fine-tune diameter d

The third and final step was to determine the diameter of the membrane more pre-
cisely. This was done using acoustical FEM simulations in the time domain (also
using COMSOL Multiphysics). The geometry of these simulations was similar to
the static simulations and the same 2D axis-symmetry was used. The membrane
consists only of the 2.5 μm thick SiO2 layer. The etched “hole” behind the mem-
brane is filled with air and the remaining part of the modeling domain is filled
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Figure 5.5: Time-domain acoustical FEM modeling of the membrane. An inci-
dent plane pressure-wave introduces a resonant vibration of the membrane. Silicon-
dioxide membrane with thickness 2.5 μm and diameter 100 μm. (a) Radial strain
in the center of the membrane, 0.5 μm below the top. (b) Spectrum of plot (a)
showing a resonance at 0.9 MHz. This is the response of the chip to the incoming
Gaussian pulse with a finite width of 0.6 μs.

with water. The discretization of the computational grid contained least 12 points
per wavelength. The water domain is large enough to separate reflecting waves
from the boundaries of the domain. The microphones were exited with an incident
plane pressure-wave. This wave has a Gaussian shape with a maximal amplitude
of 50 kPa and a pulse width of 0.6 μs. As in the static analysis, the radial strain
at the center of the membrane and 0.5 μm below the surface was recorded. In
this dynamical analysis, this strain is obviously time-dependent. The resonance of
the membrane was found by computing the Fourier transform of this time signal.
The duration of the simulation corresponded to a frequency accuracy of 0.1 MHz.
Figure 5.5 shows the result of the simulation for the membrane with a diameter

Table 5.1: Response of the three microphone membrane for different diameters.
Accuracy in the frequency is 0.1 Mhz.

membrane diameter resonance frequency

[μm] [MHz]

60 3.2

80 1.6

100 0.9

124 0.6
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of 100 μm. We studied membrane diameters of 60 μm, 80 μm, 100 μm. The reso-
nance frequencies for the different membrane diameters are listed in Table 5.1. For
operation at a frequency of 1 MHz we chose a membrane diameter d of 100 μm.

Membrane design: summary

In this section, we presented the systematic design of the acoustically resonant
membrane of the microphone. Many properties were dictated by the fabrication
processes, such as the used materials and the thickness of the membrane. For
operation at 1 MHz, we chose a diameter d of 100 μm.

5.4.2 Design of the photonic resonator for strain sensing

The photonic resonators were fabricated by a semi-industrial CMOS line in a multi-
project-wafer run. Such a fabrication typically takes several months while many
chips are simultaneously fabricated. Therefore the optical resonators were designed
before the membrane design was finished. The chips contained 24 different ring
and racetrack resonators. The design procedure for these resonators was presented
in Sec. 2.13.

Sensor resonator design: first step, optical sensitivity

First we characterized the optical resonators to obtain the expected sensitivity of
the interrogation system to a change in resonance wavelength Δλ of the resonators.
We measured the characteristics of racetrack resonators in the <100> crystalline
direction using the methodology presented in Sec. 3.6.2 (DCM2 ). An example
of the resonance of a resonator is plotted in Fig. 5.6a. The tangent of the flank
is estimated by ∂T/∂λ ≈ (1 − r)/λFWHM with optical power transmission T ,
wavelength λ, resonance extinction ratio r and resonance full-width at half-max
λFWHM. A set of eight racetracks with different lengths of the straight section ls
was characterized and the steepness of the flank ∂T/∂λ is plotted in Fig. 5.6b.
As expected, the flanks of resonators with a longer circumference are steeper and
hence the sensitivity given a fixed change in resonance wavelength Δλ is higher.

Sensor resonator design: second step, strain sensitivity

Secondly we estimate the expected change in resonance wavelength Δλ per applied
pressure P . The static mechanical analysis discussed in the previous Section 5.4.1
was used to compute the pressure-induced strain in the plane that is 0.5 μm below
the top of the membrane. This strain profile is circular symmetric and given in
Fig. 5.3a. We applied an analysis similar to the derivation in Sec. 4.3.2 but with the
applied strain parameter Sz replaced by the applied pressure P . The resonators
that we used consists of a waveguide with constant width and effective index over
the full track. In this analysis, we neglected the change in effective refractive index,
i.e., ∂ne/∂P = 0. This effect is difficult to compute as (1) details of the mechanical
deformation of the waveguide are unknown because the cross-section of the stiff
silicon waveguide does not necessarily follow the surrounding silicon-dioxide and
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Figure 5.6: Optical properties of racetrack resonators. Characterization result of
racetrack resonators as depicted in Fig. 2.20 (page 67). Bending radius 5 μm,
waveguide width 400 nm (measured), length of the parallel waveguides in the direc-
tional coupler L = 1μm, coupler straight-through power |τ |2 = 94%. (a) Measured
transmission spectrum (blue solid line) and fitted transmission (dashed red line).
Racetrack with straight track length ls = 40μm. Exinction ratio r and full-width at
half-max λFWHM are indicated. (b) Steepenes of the flank of the resonator approxi-
mated by (1 − r)/λFWHM [relative power / pm]. Here r and λFWHM were obtained
from the fitting as shown in (a).

(2) the optical properties of the waveguide are difficult to compute because the
photo-elastic effect causes a non-homogeneous anisotropic refractive index profile
of the waveguide and its cladding. For uniformly strained racetracks, the shift
in the resonance wavelength is dominated by the change in the circumference of
the racetrack and the contribution of the effective index was three times lower (see
Ch. 4). We believe that neglecting this effect is justified in this analysis because the
purpose is to find the most sensitive configuration and not to provide quantitative
results. The pressure-induced shift of the resonance wavelengths is then given by

∂Δλ

∂P
=

ne

ng

λc

l

∮
∂Sρ

∂P
dρ, (5.6)

with λc the resonance wavelength without deformation, ne the effective index of
the waveguide, ng the effective group index of the waveguide, l the circumference
of the racetrack, Sρ the strain in the direction of the waveguide and the integral
running along the track coordinate ρ. This integral was numerically evaluated by
replacing it with a summation over discrete positions ρi with Δρ = 0.5 μm. At
each position, the strain tensor S is rotated to find the strain Sρ in the direction
of the waveguide. The contributions of all waveguide elements ρi are summed
to compute ∂Δλ/∂P . To obtain the position and length of the racetrack with
maximum sensitivity to pressure, we computed the resonance shift per applied
pressure for racetracks with different lengths of the straight waveguide ls located
at different positions of the membrane. In Fig. 5.7a, it can be seen that a short
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Figure 5.7: Design of the racetrack resonator in the membrane. The varied pa-
rameters are the length of the straight track of the racetrack (ls) and the position
of the racetrack on the membrane. The racetrack is horizontally displaced and r
indicates the displacement of the center of the racetrack with respect to the center
of the membrane. (a) Top-view of the circular membrane with a racetrack (length
ls, displacement r), sketch. (b) Expected shift in resonance wavelength due to a
static pressure on the membrane. The change in effective index has been neglected.
(c) Expected change in transmitted optical power due to a static pressure on the
membrane. Normalized to incident optical power.

racetrack (straight track length ls = 10 μm and bend radius 5 μm) located at
the center of the membrane provides the maximal wavelengths shift per applied
pressure.

Sensor resonator design: third and final step

Finally the previously obtained numbers are combined. For a maximal change in
transmitted light per wavelengths shift (∂T/∂Δλ), it is desired to have a long race-
track resonator. For a maximal wavelength shift per applied pressure (∂Δλ/∂P ),
it is desired to have a short resonator. The change in transmitted power T per
applied pressure P is given by Eq. 5.2. In Fig. 5.7b, it can be seen that the maxi-
mal sensitivity is expected for a racetrack with straight track length of 40 μm that
is positioned at the center of the membrane. We also investigated the effect of a
misalignment between the racetrack and the membrane. A misalignment of 5 μm
results in an estimated decrease of the sensitivity of 4%. Figure 5.8 depicts the
drawing of the final optimized resonator for the sensing of ultrasound.

5.5 Fabrication technology

This section is dedicated to the fabrication of the microphone. Both the photonic
resonators as well as the membranes are fabricated in silicon-on-insulator tech-
nology. The fabrication process started with the photonic resonators including
connecting waveguides and out-of-plane grating couplers. This fabrication was
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(a)

(b) (c) (d)

Figure 5.8: Drawing of the optimized photonic device for the sensing of ultrasound.
From the GDSII file as used for the fabrication. (a) Device including connecting
waveguides and out-of-plane grating couplers at the ends of the waveguides. Total
width 6 mm. (b) Zoom-in of the resonator. Waveguide width 450 nm (400 nm
fabricated), straight-track lenth 40 μm, bending radius 5 μm. (c) Zoom-in of the
couplers of the resonator. Bending radius 5 μm, section of parallel waveguides 1 μm.
(d) Overlay of the resonator and the membrane. Membrane diameter 100 μm.

done in the semi-industrial CMOS line of IMEC (Leuven, Belgium) via the ePIX-
fab platform (see Sec. 3.3). After the fabrication of the photonic circuits on wafers
with a diameter of 200 mm, the wafers were thinned to a thickness of 250 μm and
cut into dies of 51 mm by 57 nm. Each die contains 2 by 4 identical chips. Figure
5.8 shows the drawing of the resonator and Fig. 3.1 (page 79) shows the full chip
design with over 300 devices.
The membranes were fabricated using standard MEMS processes in the Van

Leeuwenhoek Laboratory (joint laboratory of Delft University of Technology and
TNO). The membrane is etched from the back-side of the dies. The fabrication
process is based on optical lithography with back-side alignment and deep reac-
tive ion etching (DRIE). The Bosch etch process was used to etch deep with a
high aspect ratio (holes of 250 μm deep and 100 μm diameter). Lithography was
simultaneously done on the eight chips in one die and the dies are sawed to indi-
vidual chip-dies before the etch process. Appendix D presents the details of this
fabrication. Figure 5.9 depicts the resulting chip.
Before further handling we glued the chips on a glass plate. In fact, we glued

the chips on a stack of two plates which each have a thickness of 1 mm. The first
plate has a hole with a diameter of 4 mm that is below the membrane of the chip.
This was done because direct gluing of the chip on a plate would have caused the
adhesive to be sucked into the hole below the membrane by capillary forces. Figure
5.10 shows a sketch of the chip with the glass plates including their dimensions.
Connecting optical fibers to the photonic chip is referred to as packaging because

it is usually part of the packaging process. Connecting optical fibers to the chip
requires very precise alignment between the optical fibers and the photonic chip.
We used out-of-plane grating couplers which still require alignment within a few
micron (Sec. 2.11). These couplers require the fibers to have an angle of 8 degrees
with respect to the normal of the surface of the chip. Packaging was done by
Tyndall National Institute (Cork, Ireland) via the ePIXfab platform. Tyndall
provides fiber-chip coupling for an array of optical fibers. These fibers end next to
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Figure 5.9: Microscope photograph of a membrane with optical resonator. Zoom
50x. This chip has a membrane with a diameter of 78 μm (measured). (a) Photo
from above the chip. The circular membrane is visible because the microscope has a
lamp that shines upwards from below the chip through the 2.5 μm thick membrane.
(b) Photo from below the chip (chip up-side down). Focus of the microscope is
at the membrane. The photonic circuit is visible through the silicon-dioxide (glass)
membrane.

(a) top view (b) side view, cross-section
membrane

4 mm

10.78 
mm

16.06 mm

pyrex (1.65 mm)

silicon (0.25 mm)

glass (1 mm)
glass (1 mm)

Figure 5.10: Prototype for the proof-of-the-principle of the new microphone (sketch
not to scale). Includes dimensions of the device. In one direction the glass plates
have the same length as the chip (a). In the other direction, the glass plates are
1 mm and 2 mm wider. Adhesive was gently applied at these ridges and capillary
forces sucked the adhesive to form a sheet between the plates.

each other in a Pyrex (glass) block that has a slanted facet under an angle of 49
degrees. This facet reflects the light that leaves the fibers horizontally downwards
to the grating couplers at the required angle (see Fig. 5.11, inset). Usually the
glass-air interface gives total internal reflection of the ray of light but we emerge
the chip in water which has a similar refractive index as glass. We gratefully
acknowledge the researchers at Tyndall for developing a solution especially for
our microphone. They have coated the end facets of the fiber array blocks with
aluminum. This aluminum now acts as a mirror and reflects the light from the
fiber to the chip. Figure 5.11 shows a photograph of the packaged chip.
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Figure 5.11: Photograph showing the microphone chip with optical fiber connec-
tions. Inset shows how the fiber array blocks reflect the light to the out-of-plane
grating couples in the chip. Packaging was done by Tyndall National Institute (Cork,
Ireland). Photograph by Brad Snyder.

Figure 5.12: Photograph showing the microphone mounted on a brass rod.

Finally the chip was mounted on a brass rod for accurate and reproducible
positioning of the chip in the setup (Fig. 5.12).

5.6 Characterization methodology

This section details the methodology that we used to characterize the sensors: the
electro-optical interrogation system (Sec. 5.6.1), the acoustical setup (Sec. 5.6.2),
the ultrasonic pressure signals (Sec. 5.6.3), and the measures (Sec. 5.6.4).
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photo-receiver

AWG

ADC

laser

PC attenuator

polarization c.

card 1
card 2
card 3

trigger (coax)
signal (coax)

light (fiber)

AC
DC

chip
transducer

water basin

Figure 5.13: Schematics of the measurement setup. Abbreviations AWG (arbitrary
waveform generator), ADC (analog to digital converter), coax (coaxial wire) and
chip (our new microphone chip). Wires that send control information from the PC
have been omitted from the drawing (PC – laser, PC – AWG and PC – ADC).
Optical path starts with laser and ends with photo-receiver. Photographs of the
setup are presented in Appendix C.

5.6.1 Interrogation of the photonic micro-ring resonator

The resonance shift of the photonic resonator is monitored by the following inter-
rogation system (Fig. 5.13). A tunable laser is used to generate the light around
a wavelength λl. The light passes through an in-fiber isolator, an in-fiber atten-
uator and an in-fiber polarization controller. The latter is required because the
photonic chip only accepts one polarization state. This light is coupled to the
chip where it is modulated by the photonic resonator and thus by the ultrasound.
Light leaving the chip is measured with a photo-receiver that was designed to mea-
sured small fluctuations in signals with a large continuous-wave component. The
photo-receiver includes a InGaAs photo-diode and an electronic circuit with two
outputs. The AC output has a high-pass filter with a roll-off around 25 kHz and
the DC output has a low-pass filter with a roll-of around 50 kHz. The AC output
is used to measure the (ultrasonic) signal. The DC output is used to measure
the spectrum of the resonator (by stepping the wavelength of the laser) and to
position the laser at the flank of the resonance. Both outputs are connected to the
analog-digital converters (ADC). The ADC has an electronic low-pass filter that
was used to avoid aliasing of the recorded signal. We measured at a speed of 20
mega-samples per second. We took care in selecting equipment with high stability
and low noise (see Table 5.2).
Throughout the measurements, we kept the laser power at 12 mW and we

attenuated the light using the manual variable attenuator. We kept the optical
power at the output of the system (at the photo-diode) at approximately 50 μW
for a laser wavelength that is away from the resonance.
Silicon micro-ring resonators are very sensitive to temperature due to the strong

thermo-optic effect in silicon. The temperature of the waveguide of the ring res-
onator is not only influenced by the environmental temperature but also by dissipa-
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Table 5.2: List of equipment (optical, acoustical, electronic).

Tunable laser 81940A (Agilent, Santa Clara, California, USA). Wavelength span 1520 nm -
1630 nm; linewidth 100 kHz; wavelength resolution 1 pm; wavelength repeatability 1pm;
wavelength stability (24 hours) ± 2.5 pm; power stability (1 hour) ± 0.01 dB.

Optical isolator OLISO-I-S155 (Opto-link Corporation Ltd., Hong-Kong). Isolation 32 dB.

Variable optical attenuator OLVAO-MN-155-2TA (Opto-link Corporation Ltd., Hong-
Kong). Maximum attenuation -30 dB.

Fiber polarization controller FPC560 (Thorlabs, Newton, New Jersey, USA). Three pad-
dles, diameter 56 mm.

Photo-receiver Newfocus 1811-FC-AC (Newport, Santa Clara, California, USA). InGaAs
photo-diode; typical responsivity 1.0 μA/μW at 1550 nm wavelengt. AC output: high-
pass filter with roll-off at 25 kHz and transimpedance gain of 40 mV/μA. DC output:
low-pass filter with a roll-off around 50 kHz and a transimpedance gain of 10 mV/μA.

Digitizer (ADC) M3i4142-exp (Spectrum, Grosshansdorf, Germany). 16 bit; sampling up-
to 250 MSamples/second. Includes electronic low-pass filter to avoid aliasing. Optional
50 Ohm or 1 MOhm impedance.

Arbitrary Waveform Generator (AWG) 33521A (Agilent, Santa Clara, California, USA).
30 MHz bandwidth. 250 MSa/s, 16-bit sampling rate for arbitrary waveforms.

Acoustical Transducer Panametrics V314 (Olympus NDT, Waltham, Massachusetts, USA).
Center frequency 1 MHz (specs).

Hydrophone Needle hydrophone (Precision Acoustics Ltd, Higher Bockhampton, Dorchester,
UK). 1 mm diameter.

tion of the optical power in the resonator. Therefore we obeyed long stabilization
times before starting the measurements. At the beginning of the day the photonic
microphone was placed in the water basin, the laser was connected, the laser was
switched on and the system was left one hour to stabilize.
Before each set of measurements, we set the laser to a wavelength away from the

resonance (λl = 1543.5 nm), we manually optimized the polarization control for
maximum transmission through the system and we manually set the power at the
output of the system at 50 μW (unless specified differently). The remainder of the
measurements was automized. First the optical transmission spectrum of the pho-
tonic resonator was measured by stepping the laser from a wavelength of 1543.5 nm
to 1544.0 nm in steps of 20 pm. The transmitted optical power was recorded for
each wavelength. Then a Lorenzian curve was fitted through the spectrum and
the laser wavelength was set at half-max of the left (blue) flank of the resonance.
Then the system was left for 10 minutes to stabilize at this wavelength. This step
was performed twice (although this turned out to be unnecessary). Hereafter we
tried to optimize the laser wavelength by searching for the maximal signal-to-noise
ratio (SNR) of the ultrasonic measurements. At each wavelength, an ultrasonic
signal was measured and so was the noise of the system. The laser was stepped in
steps of 2 pm in the direction of the highest SNR. However, we believe that this
algorithm did not work properly and that noise caused the search to settle after
only a few steps.
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5.6.2 Acoustical setup and calibration

The acoustical setup consists of a signal generator and a ultrasound transducer.
In the measurements, we used monotone-like ultrasonic signals that have a narrow
frequency band around a central frequency.
The ultrasonic signals are generated using an arbitrary waveform generator

(AWG). A digital arbitrary waveform can be loaded to the AWG and the AWG
generates a voltage corresponding to this waveform at its output. The AWG may
be looked upon ans the inverse of an analog-to-digital converter. This electronic
signal is send to the ultrasound transducer which generates the pressure wave.
This source transducer and the microphone chip were mounted in a mechanical
U-frame. This allowed reproducible aliment of the microphone with respect to the
transducer. Appendix C includes photos of the setup and of the the U-frame.
The setup was calibrated using a calibrated needle hydrophone that was placed

at exactly the same location as the microphone chip (see Table 5.2). This hy-
drophone was used to calibrate the relation between the signal that was sent to
the source transducer and the resulting acoustical pressure at the position of the
microphone. We have used low acoustical pressures up to 3 kPa so that we may
approximate the acoustical system as linear. By this we mean that the pressure
that we generate at the position of the microphone chip scales linearly with the
amplitude of the acoustical pulse that we load to the AWG. This requires linearity
of the AWG, the source transducer and the propagation of the ultrasound. The
calibration of the setup with the hydrophone confirmed linearity of the system
(Sec. 5.7). The transfer function of the source transducer is not flat with respect
to frequency. The setup is calibrated for different frequencies using monotone-like
signals with exactly the same shape as the signals that were used for the measure-
ments, but with a larger amplitude. We used the calibrated hydrophone data-sheet
at the center frequency of the transmitted signal. The hydrophone has a specified
accuracy of 8%.
We have measured the distance between the microphone and the transducer

using an ultrasonic pulse-echo technique. From these measurements, we estimated
that the uncertainty in the placement of the microphone was below 5 mm. We
measured the pressure as a function of position using the hydrophone. A 5 mm
change in the position of the hydrophone corresponded to a change of 3.8% in
pressure. The combined uncertainty of the hydrophone specifications and the po-
sitioning of the microphone is 9% (quadratically summed as the two uncertainties
are independent [125]).

5.6.3 Signals

The measurements have been performed with monotone-like signals at a certain
frequency with a narrow bandwidth of 5%. These signals are loaded to the AWG
and are transduced to pressure waves with little distortion. We have used a sine
function with a Gaussian envelope. This function has a clean spectral content.
This is important because the source transducer has a limited bandwidth which
would cause distortion to signals with spectral content outside this bandwidth.
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The signal has the shape [155]

s(t) = A exp

[
−
(

t− τd
N/(2f0)

)2
]
· sin [2πf0t] , (5.7)

where s is the signal as a function of time t, A is the amplitude of the signal, τd
is the time delay of the envelope, N is half the number of sine periods that are
visible below the envelope and f0 is the center frequency of the signal. The full-
width at half-max in the time and frequency domains are ΔtFWHM ≈ 1.2 · N/f0
and ΔfFWHM ≈ N/f0, respectively

3. The spectrum of this signal is a Gaussian
function centered at frequency f0 with a bandwidth of ΔfFHWM.

We measured the microphones in a frequency range from 0.4 MHz to 1.4 MHz.
We used long signals with N = 20 so that the bandwidth ΔfFHWM is maximal
0.07 MHz. This provides enough detail to resolve the spectral response of the
microphone. This signal is short enough to prevent interfernce of the incoming
signal with the signal that is reflected back from the U-frame.

5.6.4 Measures

This section details the measures that we use to characterize the device.

Maximum of the envelope (m.e.) of the signal

The signal that is measured with the photonic microphone does not have the same
temporal shape as the incident pressure wave. The acoustical resonant membrane
remains vibrating even when the pressure wave has already passed the chip4.
Therefore it is not straightforward what the amplitude of the signal is. The quan-
tity that we used to describe amplitude of a signal is the maximum value of the
envelope of the signal, i.e., [155]

sm.e. = max
t

{ ∣∣s(t) + ıHt [s(t)]
∣∣ }, (5.8)

where s(t) denotes a signal, sm.e. denotes the maximum of the envelope of the
signal, and Ht [s(t)] denotes the temporal Hilbert transform of s(t). The Hilbert
transform was computed using the implementation in Matlab. The envelope was
used because the signal s(t) as defined in Eq. (5.7) does not necessarily have
the maximum of the Gaussian shape coincident with a maximum of the sine. In
practice, we did not observe a difference between the maximum of the envelope
and the maximum of the absolute value of the signal. Throughout this work, we
introduce the abbreviation m.e. to denote the maximum of the envelope of a signal
as defined in Eq. (5.8).

3 The characteristic time width of the envelope of the signal τw = N/f0, the full-width at

half-max (FWHM) of the envelope in the time domain Δt = N/(
√
ln 2f0). The FWHM of the

envelope in the frequency domain ΔfFWHM = 4
√
ln 2N/(πf0).

4 For example, Fig. 5.14a shows an incident pressure wave and Fig. 5.15a shows the corre-
sponding response of the microphone. (The amplitude of the pressure wave in Fig. 5.15a was
lower.)
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The hydrophone showed an offset in the measured voltage. Therefore the signals
(both of the hydrophone as well as the photonic microphone) were corrected for
this offset by removing the mean of the signal.
The uncertainty in the measurements was decreased by averaging over 500 con-

secutive recordings. This improves the accuracy of the measured sensitivity and
transfer function. This does not influence the specified noise equivalent pressure
(NEP) as we did not average the noise measurements.

Sensitivity, linearity, and transfer function

The sensitivity was obtained by measuring the (maximum of the envelope of the)
voltage [mV] at the AC output of the photo-receiver as function of the m.e. pres-
sure [Pa]. Pressures were varied from 3.5 Pa to 35 Pa and the sensitivity [mV/Pa]
was obtained using a linear fit through the origin (e.g., Fig. 5.15b).
The linearity was quantified as the pressure where the measured signal (voltage

at the AC output of the photo-receiver) deviates more than 5% from the value
that was predicted by the linear sensitivity (3.5 Pa to 35 Pa). Non-linearities may
cause a difference in the minimum and the maximum of the signal. Therefore we
presented the pressure when either the minimum or the maximum deviated more
than 5% from the linearly predicted value.
The transfer function of the photonic microphone was obtained by measuring

the sensitivity for signals with different center frequencies f0. Low pressures were
used so that the response of the microphone is linear. Therefore it was sufficient to
measure the voltage signal of the microphone for only one pressure. The sensitivity
is then simply the m.e. voltage signal divided by the m.e. pressure. The amplitude
of the electric signal that was sent to the transducer was kept constant so that
the actual pressures at the position of the chip varied between 4 Pa and 30 Pa for
frequencies between 0.4 MHz and 1.4 MHz. The transfer function of the source
system (i.e., mainly the transducer) showed a maximum at 1.14 MHz.

Noise equivalent pressure (NEP)

The noise equivalent pressure (NEP) is a measure of the minimum detection limit
of the microphone. The NEP is defined as the pressure for which the signal-to-
noise ratio is one. The NEP is obtained by dividing the root-mean-square (RMS)
value of the noise [mV] by the sensitivity [mV/Pa] of the microphone. The noise
was measured by recording the output of the photonic microphone (voltage at the
AC output of the photo-receiver) for the case that there is no acoustical pressure
induced. As in the signal measurements, 500 time-traces were recorded but here
they are treated as one long recording. The offset was removed by subtracting the
mean value. Then the RMS of this long noise signal was computed.

Distance from transducer to chip

The distance from the transducer to the chip was measured using an ultrasonic
pulse-echo technique. In fact, we used one of the measurements that was also used
to measure the photonic microphone (we used the measurement with 35 Pa m.e.
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pressure). We recorded the voltage across the transducer with the ADC. First, this
recording shows the signal that was sent from the AWG to the transducer. Later,
this recording shows the pressure wave that was reflected from the surface of the
microphone chip back to the transducer. As the transducers works as both source
and receiver, the reflected pressure signal was transduced to a voltage. From both
signals, we extracted the time at which the Gaussian envelope was maximum by
computing the envelope of the signal (using the Hilbert transform) and smoothing
this envelope to ensure that the sinusoidal modulation does not influence the time
of the maximum. The time difference between the two pulses is the travel time
of an ultrasonic pressure wave from the transducer to the chip and back. This is
translated to the distance using the speed of the sound in the water.
The speed of ultrasound in the water was separately measured using a similar

pulse-echo technique. This measurement used two conventional 5 MHz ultrasound
transducers that are mounted in a U-frame with known distance of 20 cm between
the transducers. An ultrasonic pulse is transmitted from one transducer to other
and the speed of sound is computed from the pulse-echo time.
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Figure 5.14: Measurement of the pressure wave using the hydrophone. Center
frequency f0 = 0.75 MHz. Distance from transducer to hydrophone is 24.2 cm.
(a) Measured pressure versus time. The envelope of the signal is also shown. Ver-
tical axis is computed using the value of the hydrophone calibration curve at f0.
(b) Measured maximum of the envelope of the pressure wave for different ampli-
tudes of the signals that were sent to the transducer (Vpp). The AWG is designed to
have a 50 Ohm termination while the impedance of the transducer is much higher.
Therefore the actual voltage that is sent to the transducer is about half of the Vpp
value as listed here. The transfer of the system is computed as the slope of the
linear fit (351 Pa/Vpp).
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5.7 Results

This section presents the results of the characterization: the calibration of the
setup using the hydrophone, the actual dimensions of the fabricated microphone,
the sensitivity, the NEP, and the transfer function of the photonic microphone.
The calibration of the setup with the hydrophone for center frequency

f0 = 0.75 MHz is shown in Fig. 5.14. The relation between the signal that is
loaded to the AWG and the m.e. pressure is linear for the measured pressures up
to 3 kPa.
We measured the diameter of the membrane of the fabricated microphone chip

using a confocal optical microscope. The diameter of the fabricated membrane is
124 μm which is larger than designed.

Figure 5.15 presents characteristics of the photonic microphone. We observed
a sensitivity of 1.3 mV/Pa, a noise equivalent pressure (NEP) of 0.8 Pa and a
linearity up to 105 Pa. Plot (c) shows that the response of the photonic microphone
is not symmetric, that is, the maximum and the minimum of the signal do not
overlap whereas the input pressure is symmetric. This is because the flank of the
resonance dip of the optical resonator is not linear (see, for example, Fig. 5.6 or
Fig. 5.19). This is especially visible for the minimum of the signal. The resonance
has shifted so far to the left (blue) that the minimum of the resonance dip is at
the wavelength of the laser. Note that the signals in this regime are deformed by
the high-pass filter (roll-off at 25 kHz) of the photo-receiver as non-linearity of the
microphone may cause frequencies below 25 kHz.
The repeatability of the measurements was studied by performing the mea-

surements several times. Before each measurement, the optical spectrum of the
photonic resonator was measured and the laser was positioned at the flank of the
resonance (see Sec. 5.6.1). The influence of repositioning the microphone was also
studied by rotating the microphone along the axis of the brass rod. This also
introduced variations in the distance between the microphone and the transducer.
The maximum measured difference (using an ultrasonic pulse-echo technique) was
only 3 mm. The variation in the measurements (linearity and NEP) was not larger
when rotating the microphone. Therefore we treated the 12 measurements as one
dataset and found a sensitivity of 1.2 mV/Pa and a NEP of 0.8 Pa with standard
deviations of 7% and 20%, respectively. The total uncertainty may be estimated
as the quadratic sum of these standard deviations and the uncertainty in the cali-
bration of the setup. This gives an estimated uncertainty of 12% in the sensitivity
and of 22% in the NEP.
The frequency dependent transfer function was measured by sending narrow-

band acoustical pulses with different center frequencies f0. The sensitivity of the
photonic microphone is obtained by dividing the recorded m.e. voltage signal by
the m.e. pressure. Figure 5.16 presents the result. The photonic microphone has
maximal sensitivity at 0.76 MHz and a -6 dB bandwith of 20%. This frequency
is 22% of from the resonance frequency of the membrane that we predicted using
numerical simulations (0.6 MHz, see Table 5.1).
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Figure 5.15: Measurement of the photonic microphone. Center frequency
f0 = 0.75 MHz at which the microphone has maximal sensitivity. (a) Measured
signal versus time (photo-receiver AC output). The envelope of the signal is also
shown. (b) Measured maximum of the envelope of the signal plotted versus cali-
brated maximum of the envelope of the pressure wave (blue dots). Linear fit through
the origin with tangent 1.3 mV/Pa (red dashed line). Noise RMS = 0.8 mV (green
dashed line). Crossing of the lines gives NEP at 0.7 Pa. (c) Measured maximum
of the signal (blue dots) and minimum of the signal (green squares) plotted versus
calibrated maximum of the envelope of the pressure wave. Also showing the linear
fit of plot (b). The difference between the linear extrapolation and the measured
maximum is above 5% at 105 Pa. The difference between the linear extrapolation
and the measured minimum is above 5% at 281 Pa.
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Table 5.3: Repeatability of the measurements. Power is the optical power that
is transmitted through the resonator without ultrasound. Wavelength is the wave-
length of the laser.

# position date power wavelength sensitivity NEP distance

[μW] [nm] [mV/Pa] [Pa] [cm]

1 1 6 Dec 24.075 1544.775 1.258 0.667 24.182

2 1 6 Dec 24.270 1544.804 1.265 0.661 24.068

3 1 6 Dec 25.781 1544.803 1.170 0.701 24.054

4 1 9 Dec 18.328 1544.616 1.041 0.920 24.158

5 1 9 Dec 26.220 1544.619 1.126 0.981 24.059

6 1 9 Dec 24.807 1544.632 1.205 0.876 24.056

7 1 9 Dec 20.380 1544.651 1.318 0.613 24.045

8 2 9 Dec 20.598 1544.664 1.308 0.698 24.191

9 3 9 Dec 24.480 1544.667 1.187 1.083 24.176

10 4 9 Dec 25.725 1544.677 1.145 1.027 23.975

11 5 9 Dec 23.304 1544.694 1.229 0.809 24.264

12 6 9 Dec 23.050 1544.704 1.223 0.726 24.052

mean 1.206 0.813 24.107

standard deviation 7 % 20 % 0.08 %
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] Figure 5.16: Normalized transfer
function of the photonic microphone.
This figure was measured by send-
ing narrow-banded acoutical pulses at
different center frequencies f0 (hori-
zontal axis). For each frequency, the
m.e. signal [mV] of the photonic mi-
crophone was recorded and the m.e.
pressure [Pa] was recorded (using the
hydrophone). The two signals are di-
vided to get the sensitivity [mV/Pa].
This quantity is plotted in the loga-
rithmic decibel (power) scale.
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5.8 Analysis of the interrogation system

The interrogation system was studied by stepping the wavelength of the laser.
For each wavelength λl, the optical and acoustical properties are recorded. The
optical powers as used for the measurements in this chapter caused heating of the
waveguide of the ring resonator due to dissipation of the light in the ring resonator.
Therefore we first study the ring resonator using lower optical power.

Interrogation system with low optical power

We stepped the laser output wavelength λl and measured the optical transmis-
sion as well as the acoustical characteristics at each wavelength. Figure 5.17a
shows the transmitted optical power I(λl) as a function of the wavelength of the
incident light λl. The derivative ∂I/∂λ is also shown. Figure 5.17b shows the
sensitivity of the microphone in units of micro-volt per pascal. We may compute
the sensitivity expressed in optical power, ∂I/∂P , using the transimpedance gain
of the photo-receiver (∼40 mV/μW). We expect that the sensitivity scales with
the steepness of the flank of the optical resonance, ∂I/∂λ. This can be seen in
Eq. (5.2) multiplied by I0, i.e., ∂I/∂P = (∂I/∂λ) · (∂Δλ/∂P ). Fig. 5.17b shows
that these curves indeed show the same wavelength-dependecy and we computed
∂Δλ/∂P = (∂I/∂P )/(∂I/∂λ) as the ratio of the two curves. We computed the
wavelength shift per ultrasonic pressure ∂Δλ/∂P = 67 fm/Pa (at f0 = 0.75 MHz).
Figure 5.17c show the root-means-square value of the noise, i.e, the measured AC
output of the photo-receiver for the case that there is no ultrasound. The noise
follows the same trend as the optical power I(λ) but with an offset that does not
depend on the optical power. From this we may conclude that fluctuations in
the resonance wavelength of the ring resonator do not dominate the noise in the
measurements. Noise in the resonance wavelength of the ring, such as caused by
random temperature fluctuations, would result in a higher noise for laser wave-
lengths at the flank of the resonator [25]. The NEP has a minimum value of 1.7 Pa
which is higher than the NEP that could be obtained using higher optical power.

Interrogation system with higher optical power and heating of the ring

Figure 5.18 presents the influence of the laser wavelength for the case of higher
optical power (50 μW transmission away from the resonance). This power was used
for the ultrasonic measurements in this chapter because it provides a better signal-
to-noise ratio. Figure 5.18b shows the sensitivity of the photonic microphone as a
function of the wavelength of the laser. Figure 5.18c shows the RMS value of the
noise. Figure 5.18d shows the NEP as a function of laser wavelength. The NEP
has a minimal value of 0.43 Pa at wavelength λl = 1544.830 nm. Increasing the
optical power by a factor 5 thus resulted in a decrease in the NEP by a factor 4.
Figure 5.18a shows the optical transmission as a function of laser wavelength.

It seems that the resonance has an asymmetric lineshape, however, we believe
that this asymmetry is due to heating of the ring. This asymmetric shape is thus
not the instantaneous transmission of the resonator T0(λ) but it is due to the
fact that the waveguide of the micro-ring resonator is heated by the incident light
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Figure 5.17: Characteristics of the photonic microphone as a function of the wave-
length of the laser λl. Transmitted power away from the resonance I0 = 10 μW at
λl = 1543.5 nm. This is lower than the optical power that was used in the other
measurements in this chapter. Acoustical signal is kept constant: f0 = 0.75 MHz
with e.m. pressure 18 Pa. (a) Transmitted power I versus wavelength of the laser
λl (solid blue curve). Also showing derivative with respect to wavelength ∂I/∂λl

(dashed red curve, normalized for visibility). Same data as Fig. 5.19. (b) Sensitivity
S in mV/Pa. Also showing the curve A · ∂I/∂λ of (a) with factor A such that the
squared difference between S and A · ∂I/∂λ is minimal. We found A = 67 fm/Pa.
(c) Root-mean-square value of noise [mV]. (d) Noise equivalent pressure (NEP)
[Pa].

with a certain wavelength λl. The asymmetry was much smaller when we used
lower optical input power (Fig. 5.17). The asymmetry was not observed when
measuring the ring in a setup as was described in Sec. 3.4. In that setup, the
optical input of the ring resonator is broadband and constant while the spectral
response is measured using an optical spectrum analyzer (OSA) at the output
of the ring. Silicon has a strong thermo-optic effect and the resulting shift in
resonance wavelength is about 80 pm/◦C [148]. The asymmetry is explained by
heating of the ring due to dissipation of the light that is in the waveguide of the ring
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Figure 5.18: Characteristics of the photonic microphone as a function of the wave-
length of the laser λl. Same measures as in Fig. 5.17 but with different optical input
power: transmitted power away from the resonance I = 50 μW at λl = 1543.5 nm.
Acoustical signal is kept constant: f0 = 0.75 MHz with e.m. pressure 18 Pa. Wave-
length steps 10 pm. The stepsize 10 pm is not small enough to reveal all details,
especially at the right (red) flank of the resonator. At least 20 s stabilization time
after each step. (a) Transmitted optical power I versus wavelength of the laser
λl (solid blue curve). Also showing derivative with respect to wavelength ∂I/∂λl

(dashed red curve, normalized for visibility). (b) Sensitivity in mV/Pa. (c) Root-
mean-square value of noise [mV]. (d) Noise equivalent pressure (NEP) [Pa]. Blue
dots in (b-d) are the values as measured in Fig. 5.15.

resonator. The amount of light in the ring waveguide is maximal when the input
wavelength is exactly at a resonance of the ring. The amount of light in the ring,
and thus the dissipation, thus changes while measuring the transmittance of the
ring resonator with a tunable laser. On the left (blue) flank of the resonance, the
amount of light increases for increasing laser wavelength and the resonance thus
shifts to the right while measuring. On the right (red) flank of the resonance, the
amount of light decreases for increasing laser wavelength and the resonance thus
shift to the left. This gives the asymmetric transmission as observed in Fig. 5.18.
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Figure 5.19: (a) Measured optical transmission spectrum T (λ) = I(λ)/I0 of
the racetrack resonator. Transmitted optical power away from the resonance
I0 = 10 μW at λl = 1543.5 nm. Wavelength steps 10 pm. At least 20 s sta-
bilization time after each step. (b) Derivative of (a) with respect to wavelength,
∂T/∂λ.

As will be argued hereafter, we expect that the ultrasonic measurements are not
influenced by the heating. The ultrasound-induced shift of the resonance wave-
length is small and fast oscillating around a certain value. Figure 5.18b shows
the sensitivity of the photonic microphone. Sensitivity is approximately equal
for wavelengths at the left or at the right flank of the resonator. This sensitiv-
ity does not have the same trend as the steepness of the flank of the resonator,
∂I/∂λl, when I(λl) is measured with a tunable laser with high power. The fact
that the sensitivity is approximately equal at the left flank and the right flank of
the resonator suggests a symmetric resonance dip. Therefore we believe that the
temperature of the ring during the ultrasonic measurements can be approximated
constant. Typical measurements with 18 Pa m.e. pressure introduce only a small
wavelength shift of approximately 1.2 pm. Also, the acoustical pressure has a
mean value of zero and a fluctuation with a frequency of 0.75 MHz. The typical
timescale for the change in the heating is thus only 0.7 μs.

We may introduced the heating-induced wavelength shift in Eq. (5.1) as

I(λl) = T (λl +Δλ(t) + Δλh(λl)) · I0 (5.9)

with Δλ(t) the ultrasound-induced wavelength shift and Δλh(λl) the heating-
induced wavelength shift. We neglected the influence of the ultrasound-induced
change in the resonance wavelength on the heating ring resonator. This means
that Δλh is constant during the ultrasound measurements and only depends on the
wavelength of the laser λl. When using low optical powers and without ultrasound,
Δλh may be neglected and Eq. 5.9 reduces to I(λ) = T (λ) · I0. We have used
the measurement with low optical power (I0 = 10 μW) to measure T (λ). The
transmitted power I(λ) was shown in Fig. 5.17a and the corresponding normalized
optical transmission spectrum T (λ) is presented in Fig. 5.19.
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For low optical powers (Δλh ≈ 0), Eq. (5.3) with Eq. (5.9) predict that
the sensitivity ∂I/∂P of the microphone scales linearly with the optical power
away form the resonance I0. For higher optical powers, the relation between the
sensitivity of the ultrasound measurements and the measured optical transmitted
power I(λ) is not as straightforward anymore. However, the maximum sensitivity
of the ultrasound measurements ∂I/∂Δλ is still the maximum of (∂T/∂Δλ)I0
but the maxima are not at the same wavelength λl due to the heating-induced
shift Δλh. Using the data of the measurements with a low optical power (I0 =
10 μW), we predict the sensitivity of the measurements with high optical power
(I0 = 50 μW) to be five times as high. This predicts a maximal sensitivity of
1.3 mV/Pa which is close to the maximal measured sensitivity of 1.5 mV/Pa.

Detection limit of the interrogator in terms of wavelength shift

It is interesting to know the detection limit of the interrogation system in
terms of shift of the wavelength of the resonator. We may express this limit
in terms of noise equivalent wavelength shift. We estimate the sensitivity of
the interrogator as the steepness of the flank of the resonance, i.e. ∂I/∂Δλ =
∂T/∂λ · I0 (neglecting heating-induced wavelength shift). We measure the noise
as the RMS value of the output of the system without induced ultrasound
(ΔInoise). Note that the electronic filters reduce the bandwidth from approxi-
mately 25 kHz to 20 MHz. The noise equivalent wavelength shift is then com-
puted as Δλnoise = (∂λ/∂T ) · (ΔInoise/I0). We use the left (blue) flank of the
resonance as the ultrasonic measurements were performed at this flank. For low
optical power I0 = 10 μW and at wavelength λl = 1544.770 we find RMS noise
ΔInoise ≈ 12 nW (Fig. 5.17c) and ∂T/∂λ = 9.6 nm−1 (Fig. 5.19b) to arrive at
Δλnoise ≈ 121 fm. For higher optical intensity, I0 = 50 μW, we know that T (λ)
and I(λ) are not straightforwardly correlated due to the heating-induced shift of
the resonance wavelength. Therefore we used wavelengths of maximal sensitiv-
ity. For ∂T/∂λ this is at λl = 1544.770 nm. The corresponding wavelength in
the I0 = 50 μW data is estimated as the optical wavelength where the system
has maximal sensitivity to ultrasound, i.e. 1544.820 nm from Fig. 5.18b. The
corresponding noise ΔInoise ≈ 17 nW (Fig. 5.18c) and Δλnoise ≈ 36 fm.

Summary

This section was mainly about the physics and the performance of the interroga-
tion system. For lower optical powers, the system follows the characteristics as
expected from Eqs. (5.1)-(5.3) and the sensitivity of the microphone scales with
the steepness of the flank of the resonance. From these measurements we could
compute the change in resonance wavelength due to the ultrasound. We found a
m.e. wavelength shift per m.e. pressure ∂Δλ/∂P = 67 fm/Pa (at f0 = 0.75 MHz).
For high optical powers, dissipation of the light in the waveguide of the ring

resonator heats this waveguide and thereby shifts the resonance depending on the
amount of light that is coupled to the ring. However, we have shown that this
does not influence the response of microphone to ultrasound. The microphone
is most sensitive and has lowest NEP for the case of high optical power. We
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measured a NEP of 0.43 Pa. We computed the noise-equivalent-wavelength-shift
of the interrogation system to be 36 fm.

5.9 Outlook

The studied microphone was designed for simplicity of fabrication and under-
standing and we believe that there is much room for the improvement of our new
ultrasound microphone.
The sensitivity of the optical read-out system scales with the steepness of the

flank of the optical resonator. Decreasing the full-width at half-max of the op-
tical resonator gives an increase in sensitivity. We have estimated the sensitiv-
ity of the resonator as the ratio of the extinction ratio r and the full-width at
half-max ΔλFWHM. For a racetrack resonator with a straight track length of
40 μm, we measured r/ΔλFWHM = 0.01 pm−1 (Fig. 5.1b). For a racetrack res-
onator with the same shape (straight track length 40 μm, bending radius 5 μm),
with the same waveguide (400 nm by 220 nm), with a waveguide propagation
loss of 2.5 dB/cm, but with only one coupler and with critical coupling, we find
r/ΔλFWHM = 0.1 pm−1 which is one order of magnitude more sensitive. This num-
ber was computed using Eq. (2.184), Eq. (2.185) and the mode-solver presented
in Sec. 2.7. Moreover, the sensitivity of the resonator increases with increasing
length of the track. It is possible to fold the waveguide of the resonator on the
membrane to increase the sensitivity of the resonator to ultrasound.
We have used off-the-shelf components for the interrogation system. Although

the equipment was selected with care, a dedicated design for the lightsource, photo-
receiver, and the electronic circuits thereof will most likely reduce the noise. More-
over, literature reports on a wide variety of interrogation concepts although not
all of them operate at frequencies in the MHz range [25,156–161].
The acoustical characteristics of a membrane with equal thickness were discussed

in this chapter. The 2.5 μm silicon-dioxide membrane layer was kept constant and
the only design parameters that were studied were the diameter d and the thickness
h2 of possible silicon layer in the membrane. However, it is possible to fabricate
different membranes that translate a given pressure to a higher local strain. For
example by using layers that are fabricated of different materials. Another ap-
proach that is used in MEMS pressure sensors is to have membranes with a height
that varies over the membrane surface (e.g., a boss membrane). Such structures
could be fabricated at the top surface of our chips by deposition and etching of the
required materials and structures. A well controlled etch process from the back of
the wafer could thin the silicon-dioxide layer behind the membrane.
Moreover, it is also possible to consider photonic resonators with their long

direction in the same direction as the vibration of the longitudinal ultrasonic pres-
sure wave (the y-direction). This requires cutting the dies into small stripes and
rotating them by 90◦. In general, many mechanical designs can be used as the
optical circuit is small with respect to the mechanical structure.
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5.10 Conclusion

We have designed, fabricated, and measured a new type of ultrasonic microphone
which is based on photonic micro-ring resonators. The microphone was designed
to proof the operation principle of this microphone and the first prototype was
fabricated in silicon-on-insulator technology.
We demonstrated the operation principle of this new photonic microphone

by measuring ultrasound around a frequency of 0.75 MHz. The sensitivity is
1.2 mV/Pa and the detection limit (NEP) is below 1 Pa. This is on the same
order of magnitude as the state-of-the art of conventional piezo-electric based ul-
trasound transducers. The measured -6 dB bandwidth of the acoustical resonator
is 20%.
We studied the interrogation system and found a detection limit (noise equiva-

lent wavelength shift) of 36 fm. For higher optical powers, dissipation of the light
in the waveguide of the ring resonator heats the ring which results in a measurable
shift of the resonance wavelength. The ultrasound measurement is not influenced
by this heating-induced shift. Moreover, we found that an ultrasonic pressure wave
with a frequency around 0.75 MHz induced a wavelength shift of 67 fm/Pa.
We believe that there is much room for improvement of this new type of mi-

crophone as we report on the most simple design. Wafer-scale fabrication of the
sensor is possible using silicon-on-insulator technology that is used in the electronic
IC industry and the MEMS industry. One of the key features of this optical sensor
is that wavelength-division multiplexing allows read-out of many microphone ele-
ments via one optical fiber. This is highly attractive for array technology such as
is used in ultrasonography with applications in medical imaging or non-destructive
inspection.



Chapter

6
Conclusions and outlook

We have demonstrated the use of silicon photonic micro-ring resonators as sensi-
tive elements in strain sensors and in ultrasound sensors. The conclusions that
are listed hereafter show the feasibility of the applications as introduced in Chap-
ter 1. This section starts with a discussion of the ultrasound microphone and then
continues with its components.

An ultrasound microphone based on silicon photonic ring resonators

Silicon photonic micro-ring resonators can be used as sensitive ultrasound mi-
crophones. The designed, fabricated and characterized microphone consists of a
photonic racetrack-shaped resonator (footprint 50 μm by 10 μm, height 0.220 μm)
that is integrated in an acoustically resonant silicon-dioxide membrane (diameter
0.124 mm, height 2.5 μm). This ultrasound microphone has a minimal detec-
tion level (noise equivalent pressure) below 1 Pa which is on the same order of
magnitude as the state-of-the-art of piezo-electric based transducers [145]. The
microphone showed an acoustical resonance around 0.75 MHz with a -6 dB band-
width of 20% (Sec. 5.7).

The photonic micro-ring resonators were interrogated using a laser and a photo-
receiver. The wavelength of the laser was tuned to the flank of a resonance of
the ring resonator so that a shift in the resonance wavelength translates into a
modulation of the transmitted light. This system showed a minimal detection limit
of the wavelength shift (noise equivalent shift) of approximately 36 fm (bandwidth
25 kHz to 20 MHz, wavelength ∼1550 nm, Secs. 5.3, 5.8).

We have studied the most simple form of this microphone and there is a lot of
room for improvement of this sensor (Sec. 5.9). The acoustically resonant mem-
brane may be replaced by an optimized resonant structure, the photonic resonators
may be improved and more complex interrogation systems may be used. Next to
general improvements of the microphone, future research will focus at specific ap-
plications. Designs are always a trade-off between different characteristics. For
example, the sensor reported here has a very high sensitivity and a small size but
it has a poor bandwidth. The application decides which characteristics are impor-
tant and which are not. For application in medical intravascular echography it is
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necessary to increase the resonance frequency and the bandwidth of the acoustical
resonant structure [11].
A variety of small wavelength-division multiplexers (WDM) in SOI technology

have been reported the literature [1, 2]. However, to the best of our knowledge,
interrogation of multiple silicon ring-resonators via one or two optical fibers has
not been reported. This is probably because there was no interest, many research
has been performed to integrate the light source, detectors and electronics in the
same chip – this is exactly what we avoid [24, 56–61]. The largest bottleneck of
the multiplexer is the inaccuracy of the fabrication of the photonic circuit. On
the bright side, the requirements on this multiplexer are much lower than the re-
quirements for telecommunications. The multiplexer should take care that each
photonic resonator can be individually addressed using a specific wavelength but
this wavelength is not fixed. The interrogation system can find this specific wave-
length and tune to operation at this wavelength. A robust implementation could,
for example, use a photonic resonators with a small free-spectral-range (e.g, a long
ring circumference) combined with a multiplexer with a large channel spacing such
that each channel contains a few resonances of the photonic resonator. In that
configuration, the exact wavelength of the channels of the multiplexer is not impor-
tant as the photonic resonator will always have a resonance in that channel. The
semiconductor industry still develops rapidly by which the fabrication accuracy of
silicon photonic circuits will increase.
We have demonstrated the principle of a new type of microphone. Application

of this microphone will require packaging that is suited for specific applications.
It is possible to cut (dice) silicon chips precisely to the required dimensions. We
have used large fiber-array blocks to place the optical fibers above the out-of-
plane grating couplers. However, single fibers can also be cut under the angle
that is required to direct the light to the chip. Special fiber end-facets have been
developed for intravascular optical coherence tomography [162]. Another point to
consider is the price of the interrogation system. We have used a tunable external-
cavity laser that is versatile for laboratory-purposes but which has a price of 20
thousand euro. Interrogation of the microphone does not need this wide tuning
range and other specifications (e.g. absolute wavelength accuracy). Turn-key DFB
laser systems1 with a tunability of ∼1.7 nm are one order of magnitude cheaper
and a special designed laser driver could probably reduce the price by another
order of magnitude.

Characteristics and fabrication of silicon photonic ring resonators as
strain sensors in micro-mechanical systems.

The relation between the deformation of the micro-ring resonator and the shift in
the resonance wavelengths was studied in a well-defined static mechanical setup.
Long racetrack resonators (1 mm long) were elongated in their long direction so
that the effects of the bends and couplers could be neglected. Depending on
the width of the waveguide and the orientation of the silicon crystal, the linear

1Vendors are, for example, Agilent (Santa Clara, California, USA), Thorlabs (Newton, New
Jersey, USA), and Yenista (Lannion, France).
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wavelength shift per applied strain varies between 0.5 and 0.75 pm/microstrain
for infrared light around 1550 nm wavelength. The influence of the increasing ring
circumference is about three times larger than the influence of the change in the
propagation speed of the light through the waveguide (effective index), and the
two effects oppose each other. The strong dispersion in silicon sub-wavelength
waveguides (400 nm by 220 nm) accounts for a decrease in sensitivity of about a
factor two (Ch. 4).

Fabrication of the microphone demonstrated successful integration of silicon
photonic circuits in silicon micro-mechanical systems. First the photonic res-
onators and photonic wiring were fabricated in a semi-industrial CMOS line (at
IMEC, Leuven, Belgium). The resulting SOI wafer consists of a thin silicon pho-
tonic circuit integrated in a 2.5 μm thick silicon-dioxide layer that is on top of a
250 μm thick silicon substrate. Second the membrane was fabricated by etching a
hole from the back-side of the wafer until the only the thin silicon-dioxide mem-
brane with integrated photonic resonator was left. This etching was done using
a Bosch etch process which is often used in silicon micro-machining technology
(Sec. 5.5).
We have measured the relation between the deformation of a ring resonator

and the resulting shift in its resonance frequencies and we have identified the
physical effects. What is missing is numerical simulations that predict the strain-
induced change of the effective index (i.e., the propagation speed of the light
through the waveguide). This change is not trivial to compute as (1) details of the
mechanical deformation of the waveguide are unknown because the cross-section
of the stiff silicon waveguide does not necessarily follow the surrounding silicon-
dioxide and (2) the small optical changes in the waveguide are difficult to compute
because the photo-elastic effect causes a non-homogeneous anisotropic refractive
index profile of the waveguide and its cladding. This thesis provides accurate
measurements to validate such simulations. Such simulations would lead to more
accurate simulations of the ultrasound microphone and thus to better designs.
It was beyond the scope of this thesis to study the application of photonic micro-

ring resonators in micro-mechanical systems other than ultrasound sensors. The
results and insights obtained in this thesis are of broader interest. For example,
researchers at TNO are studying the application of photonic micro-rings in the
cantilever a atomic force microscope (AFM). Such microscope scans a sample
with a micro-scale cantilever that is just above it. Traditionally, the deflection of
the cantilever is measured by aligning a free-space laser beam to the cantilever
and measuring the angle of the reflected beam. A strain sensor integrated in the
cantilever could remove the need of this free-space optical system.

Optical characteristics of silicon photonic micro-ring resonators: ex-
periments and theories

The optical characteristics of the micro-ring resonators and their components were
extensively studied. Different methods to characterize directional couplers (direct
and in ring-resonators) gave similar results. Most devices behaved as expected
but it is probably interesting to note that the fabricated waveguides were 10%
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smaller than designed. An interesting observation was that directional couplers
introduce a large coupling-induced phase delay when nearly all light couples from
one waveguide to the other. (See the abstract of Chapter 3 for more details.)
The devices characterized in this theses were fabricated in October 2011. At that

time, fabrication of silicon photonic integrated circuits for universities was offered
via the ePIXfab platform at IMEC (Leuven, Belgium) and at CEA-Leti (Grenoble,
France). Today more microelectronic research institutes offer this service (see foot-
note 1 on page 12). There is a trend towards standardized components (e.g., ring
resonators or multiplexers) that do not require the user to deliver a detailed design
of the component but rather a functional requirement which is translated into a
design by the fab. Currently early implementations of such standard components
are part of the design kits for ePIXfab. Next to this, the fabrication of photonic
integrated circuits benefits from the developments in the silicon semiconductor
industry. The first trials on IMEC’s newer 300 mm CMOS line outperformed the
accuracy of their 200 mm CMOS line that is currently used for the fabrication of
photonic circuits [163].
Most properties of silicon ring resonators and their components (waveguides

and directional couplers) can be computed using approximate analytical theories.
Many theories on integrated optics were originally derived for low-index-contrast
waveguides like optical fibers (Δn < 0.1). We reviewed and revised those theories
for application to silicon-on-insulator waveguides which have a very high index
contrast (Δn ≈ 2). This work was formulated such that it can be used in a
university course with only basic theory of electrodynamics as prerequisite (Ch. 2).
Analytical theories allow fast computation of the behavior of photonic devices

and circuits. This is especially important when circuits are designed that consist
of many devices. Moreover, we believe that analytical theories provide insight in
the physics of the system that is difficult to obtain with brute-force numerical
simulations.

Final words

In this thesis, we demonstrated that silicon micro-ring resonators can be employed
to sense mechanical properties such as strain or ultrasound. We demonstrated a
new type of microphone that has a detection limit (NEP) on the same order of
magnitude as the state of the art of piezo-electric ultrasound transducers. We
believe that this new photonic microphone is a breakthrough for ultrasound array
technology. First because optical multiplexing allows simultaneous reading of mul-
tiple microphones via one optical fiber and second because the silicon-on-insulator
technology allows simultaneous cost-effective fabrication of multiple microphones
and their photonic wiring.
This thesis is relevant for the scientific community as it includes new understand-

ing of the physics of silicon photonic ring resonators and their components: analyt-
ical theories, measurements that demonstrate a previously unobserved phase delay
in silicon directional couplers, and characterization of the physical effects that play
a role when a ring resonator is deformed. Technological progress was made in the
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design, fabrication and characterization of the microphone in silicon-on-insulator
technology.
We believe that this thesis can lead to better and possible cheaper ultrasonic

images. Society will benefit from such images via, for example, better diagnoses
of medical problems or better inspection of industrial plants.





Appendix

A
Silicon-dioxide cladding
deposition with PECVD

The silicon-dioxide top cladding of the photonic chips was deposited using plasma
enhanced chemical vapor deposition (PECVD). We used the Plasmalab 80+
PECVD system of Oxford Instruments GmbH (Wiesbaden, Germany), incorporat-
ing: full-diameter gas inlet shower-head, Edwards EH250/E2M40 pumping system,
4000C table with ”PID” controller, 30/300 W 13.56 MHz solid state R.F. gener-
ator, digital close-coupled automatic impedance matching unit, and automatic
process pressure control unit. We used the process parameters that was provided
by the supplier:

100% SiH4 flow 8.5 sccm,
N2 flow 162.5 sccm,
N2O flow 710 sccm,
Pressure 1000 mTorr,
R.F. power 20 Watts @ 13.56MHz,
Temperature 300-4000C,

with the following process characteristics:

Deposition rate > 50 nm/min,
Refractive index typically 1.46-1.47.

The deposition was performed in the Kavli NanoLab Delft (joint laboratory of
Delft University of Technology and TNO).
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B
Photos of strain
characterization setup

Figure B.1: Overview of the setup for the characterization of the influence of strain
on photonic integrated circuits (see Sec. 4.4.1). Front view. Rack on the left-hand-
side contains the equipment including Yokogawa optical spectrum analyzer (OSA,
on top), two Thorlabs piezo-drivers and one Newport linear stage driver (on the
bottom). Setup is built on a optical table (Newport). Microscope is placed above
the chip in the setup. Zoom-in of the setup is shown in Fig. B.2.
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(a) Side view

(b) Front view

Figure B.2: Setup for applying strain and automated optical measurements. (a)
side view, see Fig. 4.3. Tool for applying strain (metal) is mounted on a base plate
(metal). Rectangular photonic chip (blue-ish) is loaded in the top of the tool. Lever
is the rod on the right-hand-side of the tool. Automated strain application (blue
load cell on a linear stage) is also mounted on the base plate. (b) Front view. Middle
column from bottom to top: automated linear stage (black), manual rotation stage
(metal), base plate (metal), tool for applying strain (metal), elbow-shaped fiber
holders (black), microscope objective (black). Left and right columns from bottom
to top: thin manual linear stages (black), height adjustment block (metal), precise
x,y,z-stages (black), tilt stage (black), elbow-shaped fiber holders.
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C
Photos of ultrasound
characterization setup

Figure C.1: Overview of the setup for the characterization of the photonic ultra-
sound microphone. On the top shelf: laser (left) and arbitrary waveform generator
(AWG, middle). Water basin is placed on the right-hand-side of the table. In this
photo, the chip microphone is not mounted in an U-frame but in a movable frame.
The U-frame in the water basin is for to measure the speed of sound. The light
from the fiber passes the manual variable attenuator (MVA, in the pinkish foam on
the left of the table), then the polarization control (three black paddles), then the
chip microphone (in water basin), then it ends in the photo-diode (black box on the
corner of the optical breadboard on the table).
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Figure C.2: U-frame with the photonic chip microphone on a brass rod (left) and
traditional piezo-electric ultrasound transducer (right). Optical fibers leave the chip
on the left-hand-side and on the right-hand-side.

Figure C.3: Top-view of the water basin with the U-frame with the photonic chip
microphone (right) and traditional ultrasound transducer (left). The pole sticking
from above into the water is a thermometer.
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D
Fabrication of the
membrane

This appendix describes the procedure that was used for the fabrication of mem-
brane. The photonic circuitry was first fabricated in silicon-on-insulator (SOI)
technology using wafer-scale CMOS fabrication. Hereafter, we etched the mem-
branes from the back of these wafers using processes that are typical in MEMS
fabrication (Fig. D.1). The fabrication of the membrane was performed in the Van
Leeuwenhoek Laboratory (joint laboratory of Delft University of Technology and
TNO).
The fabrication of the photonic circuitry was done by IMEC via the ePIXfab

platform (see Sec. 3.3 and Sec. 5.5). This circuitry has typical dimensions that are
two orders of magnitude smaller than the membranes. At IMEC, the substrate of
the wafer was thinned to a thickness of 250 μm. This is a non-standard procedure
and we gratefully acknowledge IMEC for making this possible. In this fabrication
process, many photonic chips are fabricated simultaneously on a single wafer. Our
chips have a size of 12.7 mm by 6.3 mm and they are spaced with a horizontal pitch
of 25.870 mm and a vertical pitch of 13.850 mm. According to our specifications,
the wafer was diced at IMEC into dies of 2 by 4 chips so that the dies are 51.740 mm
by 55.400 mm. This is the minimal die size that we could handle in the mask
aligner (2”). The layout of the wafer is shown in Fig. D.2.
The fabrication process is based on optical lithography with back-side alignment

and deep reactive ion etching (DRIE). A Bosch etching process was used to etch
the hole from the backside of the silicon wafer. This is a DRIE process that
alternates repeatedly between plasma etching and passivisation. This process was
developed to etch deep with a high aspect ratio. We etched the silicon with sulfur

Si (250 μm)

Si (0.220 μm)
SiO2 (0.5 μm)

SiO2 (2 μm)
Figure D.1: Sketch of the micro-
phone. The circular membrane is
etched from the back of the wafer
die and the photonic circuitry is in-
side the membrane.
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dicing line
chip

Figure D.2: Layout of the wafer with chips. The dicing lines for the first dicing are
indicated. Wafer has a diameter of 200 mm.

hexafluoride (SF6) which etches silicon at a much higher rate than silicon dioxide.
This allowed us to use the SiO2 membrane as etch-stop. In our cleanroom, the etch
rate was unstable because it critically depends on how well the fresh etchant is able
to enter the hole. This etch rate depends on parameters such as the position of the
die in the chamber and the application of the thermal joint compound. Precise
etching of the membrane was achieved by alternating etching and inspection of
the etch dept until the membrane had reached the desired depth.
We performed the following steps to fabricate the membranes: (1) deposit

500 nm SiO2 at the top-side of the die, (2) deposit 2500 nm SiO2 on the back-side
of the die as hard mask for the etching, (3) spin photoresist at the back-side of
the die, (4) define the patterns in the photoresist using optical lithography and
develop the photoresist, (5) etch through the photoresist and the SiO2 hard-mask,
(6) saw the dies into individual chips and (7) etch through the silicon substrate.
The dicing of the chips is done after the lithography but before the etching of the
membranes because some of the membranes broke as when we tried to saw a die
with multiple chips into smaller dies.
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Optical mask
CHIP + resist

markers

Resist illumination

markers

Optical mask
CHIP + resist

markers

Optical mask
CHIP + resist

Alignment viewing

markers

Resist illumination

1. Schematics of mask aligner 2. Align mask to cross-hair on PC screen

3. Align chip to cross-hair on PC screen 4. Illumination of resist

PC screen step 2 PC screen step 3

Figure D.3: Steps of the back-side aligment process: (1) schematics of the mask
aligner, (2) align mask to cross-hair on PC screen, (3) align chip to cross-hair on
PC screen and (4) illumination of the photoresist. Lower two photos show the PC
screen in steps (2) and (3).
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5 mm 10 mm

Figure D.4: Mask for the fabrication of the membranes. The border is such that
the die of 2 by 4 chips fits exactly in this border. This can be used for coarse
alignment. The membranes are hardly visible in this scale but the locations of the
membranes are indicated by the light-green circles. The other features are markers
for alignment.
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100 μm

220 μm

20 μm

20 μm 20 μm

(a)

(c)

(b)

Figure D.5: Details of the mask for the fabrication of the membranes. Black is
the optical mask. Cyan is the marker that is the 220 nm high silicon layer of the
photonic cicruitry at the top of the die. (a) Alignment marker. The large squares
are there so that the markers are easier to find when operating the mask aligner.
The seven small squares below the marker indicate the position of the marker on
the mask. (b) Membrane. Same scale as (a). (c) Zoom-in of the marker at the top
of the die (in the same layer as the photonic circuitry).

D.1 Optical lithography with back-side alignment

Figure D.3 explains the procedure for aligning the lithographic mask to the other
side of the die. First, the lithographic mask is aligned to cross-hairs that are visible
on the PC screen. Then the chip is placed below the mask with the photonic
circuitry facing down (step 2). Note that a transparent chuck should be used
to position the chip here. Now the chip is aligned to the cross-hairs on the PC
screen. Using this procedure, the optical mask is effectively aligned to the photonic
circuitry that is on the other side of the chip.
The mask that is used in the optical lithography is shown in Figs. D.4 and

D.5. The mask contains a large border that indicates the outline of the chip for
coarse alignment. The mask contains markers to align this mask to the photonic
circuitry at the top of the die. The camera view in the mask aligner is magnified
using objective lenses. In the back-side alignment mode, the objectives have a
fixed zoom. This limits the field of view and also limits the focal depth. This
makes it difficult to find the alignment markers. To solve this issue, the alignment
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markers contain large square blocks (0.220 mm by 0.220 mm) so that the markers
are still visible when the chip is not in focus.

D.2 Recipe for fabrication of the membranes

• Equipment

– Plasma-enhanced chemical vapor deposition (PECVD). Plasmalab 80+
PECVD system from Oxford Instruments GmbH (Wiesbaden, Ger-
many)

– Deep reactive-ion-etcher (DRIE). Adixen AMS-100 from Adixen / Pfeif-
fer Vacuum GmbH (Asslar, Germany)

– Mask aligner with option for back-side alignment. EVG 620 mask
aligner from EVG Group (St.Florian am Inn, Austria)

– Wafer dicer. DAD 3320 from Disco (Tokyo, Japan)
– Laser confocal microscope. LEXT from Olympus (Tokyo, Japan)

• Start

– Dies of photonic circuitry in SOI technology (51.740 mm by 55.400 mm).
– Layers top-to-bottom: protective resist layer, 220 nm thick silicon layer

with photonic circuitry, 2 μm thick silicon-dioxide BOX layer, 250 μm
thick silicon substrate.

• Cleaning

– Clean chip with acetone a few minutes to remove resist
– Rinse with acetone
– Rinse with IPA (Isopropyl alcohol)
– Dry with nitrogen gun

• PECVD SiO2 500 nm on front-side (waveguide cladding)

– PECVD program silicon oxide 300 degrees C, see Appendix A
– Soft pump 60 seconds
– PECVD 7.5 minutes

• Cleaning

– Clean chip with acetone a few minutes
– Rinse with acetone
– Rinse with IPA
– Dry with nitrogen gun

• PECVD SiO2 2500 nm back-side (hard mask)

– PECVD program silicon oxide 300 degrees, see Appendix A
– Soft pump 60 seconds
– PECVD 37.5 minutes

• Spin photoresist

– Spin primer HMDS; 3000 rpm, 2 minutes hotplate; 175 degrees C
– Spin photoresist AZ5214; 1500 rpm; soft bake 30 minutes in oven at 90

degrees C (layer thickness 2.4 um)
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– Leave the chip for one day

• Lithography

– Backside alignment procedure described in Sec. D.1.
– Mask aligner EVG 620
– Exposure 8 seconds
– Develop 150 seconds in MF321 (Micropozit); 30 seconds in H2O
– Hard bake 30 minutes in oven at 120 degrees C

• Etching I: Opening of the hard mask.

– Before the thermal joint compound was applied, AZ5214 photoresist
was used as protection layer. Use a swab to apply the AZ5214 on the
device side of the phtonic chip in SOI technology. Next bake substrate
in oven for 15 minutes at 90 degrees C. Cool down and apply the thermal
joint compound with a swab. Stick the chip on a 4 inch wafer with a 2
μm thick oxide layer.

– Opening oxide hard-mask

∗ Adixen AMS-100 etcher with recipe Oxide Etchen VII (Sec. D.3)
∗ Duration 14+1 minutes

– Photoresist removal

∗ Adixen AMS-100 etcher with recipe Clean recipe (Sec. D.3)
∗ Duration 8 minutes

• Dicing

– Using DAD 3320 wafer dicer
– Saw the die in individual chips. The horizontal size of the chip-die

was chosen such that the out-of-plane grating couplers are 6 mm from
the edge of the chip-die. This size is nessecary for the pyrex fiber-chip
coupling block that was used (see Sec. 5.5). The vertical size of the die
was chosen such that the membrane is approxiately in the center of the
chip-die.

• Etching II: Etching the silicon hole

– Adixen AMS-100 etcher with recipe Silicon etching (Sec. D.3)
– Apply thermal joint compound using the description in Etching I.
– The etch rate is unstable. Therefore we consecutively etched and in-

spected the depth of the etched hole. Etch rate depends on the diameter
of the hole so different membranes need to be checked individually.

– Inspection of the etched depth using the LEXT laser confocal micro-
scope.

– Note that the etch rate depends on the diameter of the hole.
– Typical example of the etch process (hole diameters 100 μm and

120 μm)
First step 40 minutes etch → depth 196 μm; etch rate 5.0 μm/minute
Second step 13 minutes etch → depth 248 μm; etch rate 3.9 μm/minute
Third step 7 minutes etch → oxide layer visible
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– Gently remove thermal joint compound with a clean room clove sucked
with IPA. Dry with nitrogen gun.

D.3 Recipes for deep reactive-ion-etcher Adixen AMS-100

D.3.1 Recipe for etching silicon-dioxide (Oxide etsen VII)

Temperature SH 0 degrees C,
Position SH 200 mm,
Pressure 2.6E-3 mbar position 100%,
RF1 2500 W,
SH RF2 300 W,
Bias 37.5 V,
Gas flow C4F8 20 sccm,

H2 100 sccm,
CH4 10 sccm,

Etch rate Oxide 216 nm/min,
Etch rate AZ5214 131 nm/min.

D.3.2 Recipe for photoresist removal (Clean receipt)

Temperature SH 10 degrees C,
Position SH 120 mm,
Pressure 8E-2 mbar position 12.7%,
RF1 2000 W,
SH RF2 30 W,
Bias 37.5 V,
Gas flow O2 200 sccm,
Cleaning rate photoresist 196 nm/min.

D.3.3 Bosch etching recipe for silicon (Silicon etching)

Temperature SH 10 degrees C,
Position SH 200 mm,
Etch pulse SF6, 200 sccm, 7 sec,
Passivation pulse C4F8 100 sccm, 2 sec,
RF1 2000 W,
Position 25%,
LF2 80 W;

High power 80W; High time 10 msec;
Low power 0W; Low time 90 msec,

Etch rate AZ5214 40-50 nm/min,
Etch rate Oxide 26 nm/min.
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ASE Amplified spontaneous emission
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