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Preface

To many a student, having to do a literature review is – simply put – a pain and something they dread.
Telling friends how I have started the work on this review before summer, I am often greeted with some-
what of a pitiful look. And, to be honest, I had not exactly been looking forward to it myself.

Luckily, things turned out quite different and I am happy with as well as proud of the report that currently
lies before you. Fellow students at Science Communication showed me how to best go about an as-
signment like this and even managed to get me to like doing these reviews. Browsing older or newer
reports or articles, coming across other researchers struggling with the same problem as yourself, or
having found a solution idea you so desperately needed turns out to be very rewarding! Most of the
days working on this review, I found myself going home feeling a little smarter and better understanding
the subject matter – aerodynamic flow models, solution methods and aerodynamic solver codes. I man-
aged to shine a light in (most of) these previously black boxes and uncovered similarities, differences
and trends. Particularly fascinating was to review how various researchers think about the use of these
models and tools in the conceptual design phase and how they see that field of engineering developing.
As you will more formally read in the introduction, these four topics form the pillars of this report.

Two other things about reading this report I would like to discuss in this preface. First of all: the report
is best viewed in colour. There are some figures so densely packed with information, that it was simply
impossible to not use colour to discern between different data sets. A further advantage is that reading
this document in colour makes the in-text citations stand out, so that it becomes much easier to skip
over the citation and quickly get back on track with the remainder of the sentence. It is hoped that this
improves the readability of the report and makes the citations distract as little as possible. Citations
form a second aspect relevant to discuss in this reading guide. Contrary to the numerical citations
customary in the aerospace industry (especially in publications by the American Institute of Aeronautics
and Astronautics), I have chosen for author-year-citations. I feel having this information in-text is a
massive benefit, as it immediately shows how recent (or old) a reference is (and, by extension, how
recent an idea or development is) and allows to identify authors throughout reading this report. Also,
some additional references are included that point to a more extensive discussion of the topic at hand.
In most of these cases, the citation also includes reference to a chapter, section or page, to help find the
relevant information sooner.

Last, I would like to take the opportunity to express my gratitude to a number of people – without whom
this review would not have been as complete, thorough or focused. First of all, thanks to Roelof Vos,
Maurice Hoogreef and Martijn Roeloefs for suggesting aerodynamic solvers to include. A second and
well-deserved word of appreciation goes out to Martijn, for his extensive and valuable feedback on an
earlier version of this report, which has especially helped me in further improving the various comparative
reviews. Last, I would like to thank Roderick Schildkamp, for pointing me to the wonderful book on com-
putational aerodynamics by Cummings et al.. It has helped solve many mysteries and was instrumental
in the aforementioned moments of increased understanding of the subject matter that is presented here.

Bram Peerlings
Delft, November 1, 2018

v





Summary

This literature study report is written in preparation for a subsequent graduation research project that aims
to develop a methodology for uncertainty quantification in (aerodynamic) models, in order to contribute to
improve decisions made in the conceptual aircraft design process. In the current text, the assumptions,
simplifications and limitations of various aerodynamic solvers have been investigated, as well as their
performance compared. Amore fundamental discussion of flowmodels (fromNavier-Stokes to Laplace’s
equation) and non-linear (FDM, FEM, FVM) and linear (LLT, VLM, panel methods) solution methods
precede an analysis of 11 solvers of different fidelity levels.

Of the two-dimensional codes, XFOIL (panel method and boundary layer model), VGK (full potential
FDM and BL model), MSES (Euler FVM and BL model) and ARC2D (thin-layer NS using FDM) were
investigated. In three dimensions, the research comprised vortex lattice methods VLM and Tornado,
VSAERO (panel method and BL model), MATRICS-V (full potential FVM and BL model) and SU2 (Euler,
inviscid NS and turbulent RANS using FVM or FEM). XFLR5 and Q3D, combining 2D boundary layer
models with 3D linear potential codes, were classified as ‘hybrid’ solvers and analysed. Given their
different flow models, these codes most notably vary in terms of including viscosity, the applicable Mach
number range and limitations to geometry modelling.

Unsurprisingly, it was concluded that the higher-fidelity codes generally match experimental results best.
In 2D codes, predicting shock strength and shock location were found to be most difficult. The 3D
codes mostly differentiated themselves based on the geometric detail that could be modelled. In this
case, higher-fidelity models more clearly outperformed lower-fidelity codes. Problems with accurately
predicting transition and separation (insofar supported by the computational tool in question) were – to
a greater or lesser extent – seen throughout the entire range of solvers considered.

The downside of these higher-fidelity codes is their increased computational cost – both directly in terms
of computer time and indirectly because of preparatory work, such as geometry modelling and mesh-
ing. Although various authors see application of more advanced CFD codes earlier in the (conceptual)
design process as a key towards enabling technologies such as early MDO, others believe conceptual
design should remain focused on the high-level parameters and not pay too much attention the details.
Also, scholars feel that current (drafting-based) CAD-software suitable for generating detailed enough
geometries required by advanced simulations are unsuitable for rapid design and iteration common in
conceptual design. In conclusion, it is felt a lower limit is set by the requirement that a solver should be
able to definitively distinguish between concepts and a (currently fairly stringent) upper limit by compu-
tational cost and geometry requirements.
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𝑢ᖣ Perturbation velocity-component in 𝑥-direction [m/s]
𝑢ፈፍፕ XFOIL Inviscid edge velocity distribution [m/s]
𝑢፝ MATRICS / -V [m/s]
𝑢∗፮ MATRICS / -V Velocity (in 𝑥-direction) at sonic shock piont [m/s]
𝑣 Velocity-component in 𝑦-direction [m/s]
𝑣ᖣ Perturbation velocity-component in 𝑦-direction [m/s]
V, 𝑉 Velocity [m/s]
𝑉ፌጻኻ MATRICS / -V Supersonic enclosure in the flow [-]
𝑉፨፮፭ Velocity at outflow boundary of computational

domain
[m/s]

𝑉፧ VSAERO Velocity normal to surface [m/s]
𝑤 Velocity-component in 𝑧-direction [m/s]
𝑤ᖣ Perturbation velocity-component in 𝑧-direction [m/s]

Greek symbols

Symbol Context Definition Unit
𝛼 Angle of attack [rad]
𝛼። Induced angle of attack [rad]
𝛽 Sideslip angle [rad]
𝛽ኼ SU2 Artificial compressibility parameter [-]
𝛽፰ MATRICS / -V Sideslip angle of the wake [rad]
𝛿 Nominal boundary layer thickness [m]
𝛿(𝑥, 𝑦) LST Vortex sheet strength [m/s]
𝛿∗ Boundary layer displacement thickness [m]
𝛿᎞ MATRICS / -V Boundary layer density thickness, 𝛿᎞ =

∫(𝜌፞ − 𝜌)/𝜌፞
[-]

𝛿። MATRICS / -V Boundary layer mass integral thickness, in 𝑥- (1)
or 𝑦-direction (2)

[-]

𝛿።፣ SU2 Kronecker delta function [-]
𝜖 Dissipation rate of turbulent kinetic energy [J/s]
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Symbol Context Definition Unit
𝜂 Thin shear layer coordinate (parallel to surface) [m]
Γ Circulation [-]
𝛾 Heat capacity ratio [-]
𝛾 SU2 Intermittency [-]
𝛾(𝑥, 𝑦) LLT, LST Vortex sheet strength [m/s]
𝛾ኺᑚ XFOIL Vortex strength at 𝛼 = 0° [m/s]
𝛾ዃኺᑚ XFOIL Vortex strength at 𝛼 = 90° [m/s]
Γ። VLM Horseshoe vortex strength on panel 𝑖 [m/s]
𝜆 Bulk viscosity coefficient [-]
𝜆 VGK Pressure gradient parameter [-]
𝜇 Molecular viscosity coefficient [Ns/m2]
𝜇 VSAERO Doublet singularity density [m2/s]
𝜇∗ SU2 Molecular viscosity coefficient [Ns/m2]
𝜇ፏ VSAERO Doublet singularity density pertaining to the point

P
[m2/s]

𝜇ፖ VSAERO Doublet singularity density pertaining to the wake
outer edge of the boundary layer

[m2/s]

𝜈 Kinematic viscosity coefficient, 𝜇/𝜌 [m2/s]
𝜔 Dissipation rate of turbulent kinetic energy per unit

energy
[1/s]

Ω SU2 Computational domain [-]
𝜙 Velocity potential [m2/s]
𝜙፥ VSAERO Lower surface velocity potential [m2/s]
𝜙፮ VSAERO Upper surface velocity potential [m2/s]
𝜌 Density [kg/m3]
𝜎 VSAERO Source singularity density [m2/s]
𝜏።፣ Stress in 𝑖-direction on a plane perpendicular to 𝑗 [N/m2]
𝜃 Boundary layer momentum thickness [m]
𝜃።፣ MATRICS / -V Boundary layer momentum integral thickness, in

𝑥, 𝑦-direction
[m]

𝜉 Vorticity [rad/s]
𝜉 Thin shear layer coordinate (perpendicular to

surface)
[m]

Common subscripts

Subscript Definition
0 Static
𝑑𝑦𝑛 Dynamic
𝑒 Edge of the boundary layer
𝑒𝑥𝑖𝑡 Exit of the wake
𝑖 Identifier (node, panel, ...)
𝑇𝐸 Trailing edge
𝑡𝑜𝑡 Total
𝑡𝑢𝑟𝑏 Turbulent
𝑥 In 𝑥-direction
𝑦 In 𝑦-direction
𝑧 In 𝑧-direction
∞ Freestream
∗ Sonic conditions (MATRICS / -V)



1
Introduction

Models come in a variety of shapes and sizes. Although all are aimed to describe the world around
us – or part thereof – their uses are vastly different, resulting in differences in model complexity and
uncertainty. Especially when using models for decision making, it is of utmost importance to be aware of
the inner workings, assumptions and methods, in order to also appreciate the output at its correct value.

This report will be a background text in a graduation research project regarding uncertainty quantification
in aerodynamic models applicable in conceptual design. It aims to answer two research questions:

1. Which (kind of) flow models, solution methods and combinations thereof (i.e, solvers) are suitable
for aerodynamic analysis in a conceptual design process?

2. What assumptions, simplifications and limitations are associated to these flow models, solution
methods and solvers?

In order to keep a broader scope, the order of answering these questions has been reversed. As such, the
current report first of all aims to provide an overview of the various types of aerodynamic flow models and
solutionmethods and present and discuss a number of solvers – implementations of (a) flowmodel(s) and
(a) solution method(s) into a software program. This presentation and subsequent discussion is intended
to shine a light on the ‘black boxes’ some of the solvers are and provide a concise, yet complete and well-
supported, overview of the underlying methods and mechanisms relied upon by a certain piece of code.
The second objective is to establish what (types of) models are relevant during conceptual design. Due
to time limitations, literature on the topic of uncertainty quantification – also relevant for the graduation
research project – will be reviewed as part of the main thesis work, building on e.g. Roelofs and Vos
(2018).

The remainder of the report is structured as follows. Chapter 2 presents a review of the various classes
of aerodynamic flow models. Chapter 3 treats methods used to solve these flow equations. Chapter 4,
then, takes a more detailed look at various implementations of these solutions methods. A discussion
concerning the applicability of various flow models, solution methods and aerodynamic solvers to aircraft
conceptual design is presented in Chapter 5. In Chapter 6, conclusions are drawn, with a discussion
following in Chapter 7. Based on this, Chapter 8, provides an outlook for the aforementioned graduation
research project for which this literature study serves as a basis.
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2
Overview of flow models

This chapter presents an overview of different aerodynamic flow models. In general, flows are governed
by three basic principles: the conservation of mass, momentum (an application of Newton’s Second Law,
𝐹 = 𝑚 ⋅ 𝑎) and energy. The way these laws of conservation are translated into equations – a continuity
equation, a momentum equation and an energy equation – however differs.

Figure 2.1 presents an overview of the models that will be treated in this chapter. The graphic serves
as a guideline and is structured as follows. Moving down the vertical axis, the number of assumptions
increases. This simplifies the flow model and reduces computational cost. Following the horizontal axis
to the right, the extent to which a flow model is driven by empirical models increases. This too decreases
computational cost.

At the top of the figure, various forms of the Navier-Stokes can be found, that differ by the extent to which
they resolve or model turbulence. Section 2.1 goes into further detail. Apart from the time-dependent
Navier-Stokes equations, that section pays most attention to their Reynolds-averaged counterparts,
which are – of the Navier-Stokes equations – the flow model most widely used in airplane aerodynamics
(Gerritsma, 2002; Elham, 2013). The Navier-Stokes equations are regarded as the highest fidelity flow
models in existence, classified level L3 (Gu et al., 2018; Ciampa et al., 2013; Jungo et al., 2018).

Moving down, one can either keep left and follow the inviscid flow track, or move right towards the
viscous thin-layer Navier-Stokes (TLNS) or boundary layer (BL) equations. As is further explained in
Sections 2.1.5 and 2.2, respectively, these introduce additional assumptions to make viscous simulation
available at relatively low cost. The boundary layer equations are often matched to an invsicid model
using viscous-inviscid interaction methods (also discussed in Section 2.2) to yield a solution that holds
inside as well as outside of the boundary layer. Although these flow models are not classified in terms of
fidelity level in any of the aforementioned publications, the current author feels they are best positioned
between levels L3 (the “most detailed representation of the physics phenomena”) and L2 (a “more de-
tailed representation of the physics phenomena”) (Jungo et al., 2018, p. 617) – given their additional
assumptions compared to L3-models. As such, there are classified level L2.5.

Found in level L2 are the Euler equations, treated in Section 2.3, derived from the Navier-Stokes equa-
tions but completely neglecting viscous effects. Assuming irrotational flow yields the full potential equa-
tion (discussed in Section 2.4), which can be further simplified by either linearising it to arrive at the
linearised potential or Prandtl-Glauert equation (in Section 2.5), or assuming incompressible flow. This
last assumption results in Laplace’s equation, which is treated in greater detail in Section 2.6. The full po-
tential equation, as well as its derivatives, are classified as level L1-models, indicating they are “physics
based analysis tools, based on a simplified representation of the physics phenomena” (Jungo et al.,
2018, p. 617, emphasis in original). L0, then, is formed by the purely empirical tools, on which some
words are spent in Section 2.7.

3
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Figure 2.1: Hierarchical overview of aerodynamic flow models, based on Jameson (2004, p. 11), Mariens (2012), Schmidt (2013), Gu et al. (2018), Cummings et al. (2015, p. 139), Gerritsma
(2002) in Elham (2013, p. 77), Anderson (2002) and Spalart (2000). Larger-size versions available through bram.peerlings.me/en/literature-study/ using password “AE4020-2018”

https://bram.peerlings.me/en/literature-study/
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2.1. Navier-Stokes equations
The Navier-Stokes equations represent the most accurate flow model that exists and describe viscous,
rotational and compressible flow. The Navier-Stokes equations themselves describe the conservation of
momentum – only one of the governing laws mentioned in the introduction of this chapter – and require
additional expressions for the conservation of mass and energy (the latter only in case of compressible
flow).

The Navier-Stokes equations are a set of non-linear partial differential equations. Multiple representa-
tions exist, with Anderson et al. (2009, Ch. 2) adhering to the form shown in Equation (2.1). (Other forms
are shown in e.g. Peyret and Viviand (1975).) These equations hold for a fixed-mass particle and are
shown in the conservation form. This means that they are based on the forces and accelerations acting
on a fixed point in the flow (Eulerian approach), rather than these acting on a particle moving with the
flow (Lagrangian approach) (Peyret and Viviand, 1975).

𝜕 (𝜌𝑢)
𝜕𝑡 + ∇ ⋅ (𝜌𝑢V) = −𝜕𝑝𝜕𝑥 +

𝜕𝜏፱፱
𝜕𝑥 +

𝜕𝜏፲፱
𝜕𝑦 + 𝜕𝜏፳፱𝜕𝑧 + 𝜌𝑓፱ (2.1a)

𝜕 (𝜌𝑣)
𝜕𝑡 + ∇ ⋅ (𝜌𝑣V) = −𝜕𝑝𝜕𝑦 +

𝜕𝜏፱፲
𝜕𝑥 +

𝜕𝜏፲፲
𝜕𝑦 +

𝜕𝜏፳፲
𝜕𝑧 + 𝜌𝑓፲ (2.1b)

𝜕 (𝜌𝑤)
𝜕𝑡 + ∇ ⋅ (𝜌𝑤V) = −𝜕𝑝𝜕𝑧 +

𝜕𝜏፱፳
𝜕𝑥 +

𝜕𝜏፲፳
𝜕𝑦 + 𝜕𝜏፳፳𝜕𝑧 + 𝜌𝑓፳ (2.1c)

The right-hand sides of these equations – one in each direction of a Cartesian coordinate system –
represent the sum of forces. The first term is the pressure force in a particular direction, the next three
terms are shear forces (the viscous terms) and the fifth and final term represents the body force. The
left-hand sides of Equation (2.1) represent force and acceleration. The shear stress components are
shown in Equation (2.2).

𝜏፱፱ = 𝜆∇ ⋅V + 2𝜇𝜕𝑢𝜕𝑥 (2.2a)

𝜏፲፲ = 𝜆∇ ⋅V + 2𝜇𝜕𝑣𝜕𝑦 (2.2b)

𝜏፳፳ = 𝜆∇ ⋅V + 2𝜇𝜕𝑤𝜕𝑧 (2.2c)

𝜏፱፲ = 𝜏፲፱ = 𝜇 (
𝜕𝑣
𝜕𝑥 +

𝜕𝑢
𝜕𝑦) (2.2d)

𝜏፱፳ = 𝜏፳፱ = 𝜇 (
𝜕𝑢
𝜕𝑧 +

𝜕𝑤
𝜕𝑥 ) (2.2e)

𝜏፲፳ = 𝜏፳፲ = 𝜇 (
𝜕𝑤
𝜕𝑦 +

𝜕𝑣
𝜕𝑧 ) (2.2f)

When these are substituted in Equation (2.1), the complete Navier-Stokes equations for Newtonian fluids
are obtained, as shown in Equation (2.3).

𝜕 (𝜌𝑢)
𝜕𝑡 + 𝜕 (𝜌𝑢

ኼ)
𝜕𝑥 + 𝜕

(𝜌𝑢𝑣)
𝜕𝑦 + 𝜕

(𝜌𝑢𝑤)
𝜕𝑧 =

− 𝜕𝑝𝜕𝑥 +
𝜕
𝜕𝑥 (𝜆∇ ⋅V + 2𝜇𝜕𝑢𝜕𝑥 ) +

𝜕
𝜕𝑦 [𝜇 (

𝜕𝑣
𝜕𝑥 +

𝜕𝑢
𝜕𝑦)] +

𝜕
𝜕𝑧 [𝜇 (

𝜕𝑤
𝜕𝑦 +

𝜕𝑣
𝜕𝑧 )] + 𝜌𝑓፱

(2.3a)
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𝜕 (𝜌𝑣)
𝜕𝑡 + 𝜕

(𝜌𝑢𝑣)
𝜕𝑥 + 𝜕 (𝜌𝑣

ኼ)
𝜕𝑦 + 𝜕

(𝜌𝑣𝑤)
𝜕𝑧 =

− 𝜕𝑝𝜕𝑦 +
𝜕
𝜕𝑥 [𝜇 (

𝜕𝑣
𝜕𝑥 +

𝜕𝑢
𝜕𝑦)] +

𝜕
𝜕𝑦 (𝜆∇ ⋅V + 2𝜇𝜕𝑣𝜕𝑦) +

𝜕
𝜕𝑧 [𝜇 (

𝜕𝑤
𝜕𝑦 +

𝜕𝑣
𝜕𝑧 )] + 𝜌𝑓፲

(2.3b)

𝜕 (𝜌𝑤)
𝜕𝑡 + 𝜕

(𝜌𝑢𝑤)
𝜕𝑥 + 𝜕

(𝜌𝑣𝑤)
𝜕𝑦 + 𝜕 (𝜌𝑤

ኼ)
𝜕𝑧 =

− 𝜕𝑝𝜕𝑧 +
𝜕
𝜕𝑥 [𝜇 (

𝜕𝑢
𝜕𝑧 +

𝜕𝑤
𝜕𝑥 )] +

𝜕
𝜕𝑦 [𝜇 (

𝜕𝑤
𝜕𝑦 +

𝜕𝑣
𝜕𝑧 )] +

𝜕
𝜕𝑧 (𝜆∇ ⋅V + 2𝜇𝜕𝑤𝜕𝑧 ) + 𝜌𝑓፳

(2.3c)

In order to be able to solve the Navier-Stokes equations, it is necessary to include a form of the continuity
equation, expressing conservation of mass. An example is shown in Equation (2.4) (Anderson et al.,
2009, Ch. 2):

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌V) = 0 (2.4)

Again, normalised with respect to the volume of the particle, this equation states that the sum of the time
rate of change of mass in a control volume and the mass flux through the boundary of that volume is
equal to 0.

If the density is not constant, another equation is required to solve the set: the energy equation. For a
fixed point in the flow, it is expressed as shown in Equation (2.5) (Anderson et al., 2009, Ch. 2).

𝜕
𝜕𝑡 [𝜌 (𝑒 +

𝑉ኼ
2 )] + ∇ ⋅ [𝜌 (𝑒 +

𝑉ኼ
2 V)] = 𝜌𝑞̇

+ 𝜕
𝜕𝑥 (𝑘

𝜕𝑇
𝜕𝑥 ) +

𝜕
𝜕𝑦 (𝑘

𝜕𝑇
𝜕𝑦) +

𝜕
𝜕𝑧 (𝑘

𝜕𝑇
𝜕𝑧 )

− 𝜕
(𝑢𝑝)
𝜕𝑥 − 𝜕

(𝑣𝑝)
𝜕𝑦 − 𝜕

(𝑤𝑝)
𝜕𝑧

+ 𝜕(𝑢𝜏፱፱)𝜕𝑥 +
𝜕(𝑢𝜏፲፱)
𝜕𝑦 + 𝜕(𝑢𝜏፳፱)𝜕𝑧

+
𝜕(𝑣𝜏፱፲)
𝜕𝑥 +

𝜕(𝑣𝜏፲፲)
𝜕𝑦 +

𝜕(𝑣𝜏፳፲)
𝜕𝑧

+ 𝜕(𝑤𝜏፱፳)𝜕𝑥 +
𝜕(𝑤𝜏፲፳)
𝜕𝑦 + 𝜕(𝑤𝜏፳፳)𝜕𝑧

+ 𝜌f ⋅V

(2.5)

The left-hand side expresses the (temporal and spatial) rate of change of energy of the element, consist-
ing of both internal and kinetic energy. On the right-hand side, 𝜌𝑞̇ is the rate of volumetric heating (given
by 𝑞̇) of the element (hence the multiplication with 𝜌). The second line is the thermal conduction through
all six faces of the element (in which 𝑘 is the thermal conductivity). Next, on the third line, the rate of
work done by pressure forces acting on the element is shown. The following three lines (with the 𝜏-terms)
represent the work done on the element by stress forces acting on the surface of the element. The last
line shows the body forces. The derivatives of 𝜏 liken the terms in Equation (2.1), but are multiplied with
the velocity components in the three dimensions (as work is force multiplied with displacement, and the
time derivative of work therefore is change in force multiplied with change in displacement, i.e., speed).
Furthermore, the shear stresses shown in Equation (2.2) can be used to further specify Equation (2.5).

The Navier-Stokes equations can also be written in vector form. In that case, the continuity, momentum
and energy equations are combined (from top to bottom) as shown in Equation (2.6) and Equation (2.7)
(Anderson et al., 2009, Ch. 2). These are still shown in conservation form.
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𝜕U
𝜕𝑡 +

𝜕F
𝜕𝑥 +

𝜕G
𝜕𝑦 +

𝜕H
𝜕𝑧 = J (2.6)

U =

⎛
⎜
⎜
⎜
⎜

⎝

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤

𝜌 (𝑒 + ፕᎴ
ኼ )

⎞
⎟
⎟
⎟
⎟

⎠

F =

⎛
⎜
⎜
⎜
⎜

⎝

𝜌𝑢
𝜌𝑢ኼ + 𝑝 − 𝜏፱፱
𝜌𝑢𝑣 − 𝜏፱፲
𝜌𝑢𝑤 − 𝜏፱፳

𝜌 (𝑒 + ፕᎴ
ኼ ) 𝑢 + 𝑢𝑝 − 𝑘

Ꭷፓ
Ꭷ፱ − 𝑢𝜏፱፱ − 𝑣𝜏፱፲ −𝑤𝜏፱፳

⎞
⎟
⎟
⎟
⎟

⎠

G =

⎛
⎜
⎜
⎜
⎜

⎝

𝜌𝑣
𝜌𝑢𝑣 − 𝜏፲፱

𝜌𝑣ኼ + 𝑝 − 𝜏፲፲
𝜌𝑣𝑤 − 𝜏፲፳

𝜌 (𝑒 + ፕᎴ
ኼ ) 𝑣 + 𝑣𝑝 − 𝑘

Ꭷፓ
Ꭷ፲ − 𝑢𝜏፲፱ − 𝑣𝜏፲፲ −𝑤𝜏፲፳

⎞
⎟
⎟
⎟
⎟

⎠

H =

⎛
⎜
⎜
⎜
⎜

⎝

𝜌𝑤
𝜌𝑢𝑤 − 𝜏፳፱
𝜌𝑣𝑤 − 𝜏፳፲

𝜌𝑤ኼ + 𝑝 − 𝜏፳፳
𝜌 (𝑒 + ፕᎴ

ኼ )𝑤 + 𝑤𝑝 − 𝑘
Ꭷፓ
Ꭷ፳ − 𝑢𝜏፳፱ − 𝑣𝜏፳፲ −𝑤𝜏፳፳

⎞
⎟
⎟
⎟
⎟

⎠

J =

⎛
⎜
⎜
⎜
⎜

⎝

0
𝜌𝑓፱
𝜌𝑓፲
𝜌𝑓፳

𝜌 (𝑢𝑓፱ + 𝑣𝑓፲ +𝑤𝑓፳) + 𝜌𝑞̇

⎞
⎟
⎟
⎟
⎟

⎠

(2.7)

Taken together, the five equations presented above (or their combination in vector form) can be used
to find flow properties (such as pressure and velocity) in viscous, rotational, unsteady, compressible
flows. However, only for a few particular types of flow – in which a various terms are equal to 0 – can
exact solutions be found. For other problems, numerical (and non-exact) solution methods have to be
applied1. These are the four varieties shown in Figure 2.1: direct numerical simulation (DNS), large eddy
simulation (LES), the unsteady Reynolds-averaged Navier-Stokes (URANS) equations and the steady
Reynolds-averaged Navier-Stokes (RANS) equations. The upcoming sections treat these in greater
detail.
1Although these are indeed solution methods and therefore might seem to belong in the chapter discussing those (Chapter 3), it
was decided to treat these here. Contrary to the solution methods discussed in the aforementioned chapter, the solution methods
discussed here truly change the problem, and not only the (numerical) approach with which to solve it.
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2.1.1. Direct numerical simulation (DNS)

DNS is the most accurate form (or solution method) for the Navier-Stokes equations. Although it is not
exact due to discretisation steps and possible numerical errors, the method does not average or neglect
any terms, or approximate these using (semi-)empirical relations (Ferziger and Perić, 2002, Sec. 9.2).
All turbulence is resolved. As such, it will not be surprising that the computational cost of DNS is very
high (Argyropoulos and Markatos, 2015) – so high that DNS is expected to only be ready for commercial
application after 2080 (Spalart, 2000)2. One reason for this is that the computational domain has to
be large enough to capture all the largest turbulent flow structures, yet fine enough to also resolve the
smallest ones.

2.1.2. Large eddy simulation (LES)

LES counters the problem of excessive computational cost by focusing on resolving only the large eddies
(determined by the size of a spatial filter), which are more energetic and therefore more important for the
transfer of mass, energy and momentum (Ferziger and Perić, 2002, Sec. 9.3). Smaller turbulence scales
are modelled by a (semi-)empirical turbulence model (discussed in greater detail in Section 2.1.6). This
is warranted as the large eddies are most influenced by the geometry of the problem, whereas smaller
scale turbulent structures are more universal and can therefore be described using subgrid scale models
(CFD Online, 2013; Blazek, 2007; Speziale, 1998), without sacrificing too much accuracy. The details
thereof are however beyond the scope of the current text. Ultimately, these simplifications reduce the
amount of required grid points, realising the reduction in computational cost (Blazek, 2007). Still, Spalart
(2000) expects readiness only after 20452.

Related to LES are detached eddy simulation (DES) and delayed detached eddy simulation (DDES), but
these variants are deemed too far out of scope to be treated in this text. Further information on these
can be found in e.g. Cummings et al. (2015, Sec. 8.10) and (Spalart, 2000).

2.1.3. Unsteady Reynolds-averaged Navier-Stokes equations (URANS)

Also somewhat related to LES are the unsteady Reynolds-averaged Navier-Stokes equations, some-
times also known as transient Reynolds-averaged Navier-Stokes equation (TRANS). The method was
developed from the desire to have a tool computationally less costly than LES, but one still able to capture
transient flow phenomena – which ‘ordinary’ (steady) RANS cannot do (Salim et al., 2011) as turbulence
models and closure relations are based on steady flows. Although a clear cut definition could not be
found in literature, the primary difference between steady and unsteady RANS in terms of (mathemat-
ical or numerical) implementation is the fact that steady RANS averages over the entire time interval,
whereas URANS does so over the interval of a single time step (Nanda, 2016). This yields a so-called
ensemble average3 (Nanda, 2016; Salim et al., 2011; Léonard et al., 2015). Whereas LES uses a spa-
tial filter to determine which turbulence is resolved and which is modelled, one might say that URANS
effectively uses a time-based filter.

Results obtained with URANS are varied. Some authors note it as an improvement (Iaccarino et al.
(2003) in case of modelling periodic vortex shedding, for example), whereas other flow phenomena (as
documented by e.g. Salim et al. (2011) and Léonard et al. (2015)) still require LES to be properly simu-
lated. Salim et al. (2011, p. 5) limit the applicability of URANS to “non-stationary flows such as periodic
and quasi-periodic flows involving deterministic structures”. Spalart (2000) mentions good results with
URANS for bluff bodies and similar flows.

2Assuming a 5-fold increase in computer power every 5 years.
3An ensemble average is what one would get if one would average all possible results of a simulation at a particular point in space.
This is different from a time average, where the quantities at a particular point in one simulation are averaged.
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2.1.4. Reynolds-averaged Navier-Stokes equations (RANS)

Even though LES and URANS all have brought down the computational cost of performing Navier-Stokes
simulations, these are still (prohibitively) high, especially at high Reynolds numbers (Blazek, 2007) and in
case of complex geometries (Ferziger and Perić, 2002). Elham (2013), citing Gerritsma (2002), notes that
the full Navier-Stokes equations and their solutionmethods are fundamental. Reynolds-averagedNavier-
Stokes (RANS) equations, on the other hand, further simplify the problem and make the solution method
available for practical purposes. In other words: airplane aerodynamics (Elham, 2013; Gerritsma, 2002).

Mathematically, the (steady) RANS equations can be derived by time-averaging4 the flow variables into
mean and time-dependent5 components (Blazek, 2007; Elham, 2013; Leschziner, 2010). This is the
so-called Reynolds decomposition, which splits up the problem into two parts. First is the averaged
part, of largest interest to engineers, which is numerically solved (Leschziner, 2010). Second is the
fluctuating part (i.e., turbulence), which becomes zero when time-averaged (Cummings et al., 2015).
This is replaced by a semi-empirical turbulence model that closes the RANS equations by providing a
value for the turbulent viscosity and describes the Reynolds stresses (a stress term added as a result of
Reynolds-averaging the Navier-Stokes equations) and the turbulent heat flux (Blazek, 2007) – features
previously described by the fluctuating parts of the NS equations.

The derivation of the three-dimensional RANS equations is quite lengthy and, as such, is not repeated
here. Cummings et al. (2015, Sec. 8.8) treat it for incompressible flow; Vos and Farokhi (2015, Sec. 2.6)
and Pletcher et al. (2012, Sec. 5.2) discuss the RANS-equations for compressible flow. Because both
velocity and density are Reynolds-decomposed in this case (and the two are co-dependent), a mass-
weighted averaging is used to keep the equations from getting overly complicated (Blazek, 2007; Wilcox,
2006). Details on that process can be found in the aforementioned works.

2.1.5. Thin-layer Navier-Stokes equations (TLNS)

Somewhat intermediate to the viscous Navier-Stokes equations in all its forms and the inviscid Euler
equations (treated in Section 2.3) are the thin-layer Navier-Stokes (TLNS) equations. These were de-
veloped using the same philosophy as the boundary layer equations (further discussed in Section 2.2),
in the sense that viscous effects parallel to the flow are neglected. This holds as long as the Reynolds
number is sufficiently high (𝑅𝑒 ≥ 10ኾ). As the pressure across the boundary layer (perpendicular to the
flow) is allowed to vary (something that is not the case when using boundary layer theory) (Baldwin and
Lomax, 1978), the TLNS equations can describe separated flow – as long as the separation is not too
massive (Pulliam, 1986). This is the major advantage compared to the boundary layer equations and
formed the reason for the development of the thin-layer approximation in the 1970s. This approximation
is formally defined (quoted from Pulliam (1986, p. 12) and Mouch and Lan (1993, p. 3)) as requiring that

• all body surfaces be mapped onto coordinate surfaces;
• grid spacing is clustered to the body surfaces such that sufficient resolution for a particular Reynolds
number is obtained; and

• all the viscous derivatives in the 𝜉 direction [parallel to the surface] are neglected, while the terms
in 𝜂 direction [perpendicular to the surface] are retained.

Sources provide different (and conflicting) information regarding the time-dependency of TLNS. Cum-
mings et al. (2015) on one hand (p. 139) indicate the TNLS equations follow from the RANS equations,
as does Gerritsma (2002), cited in Elham (2013, p. 77). On the other hand, when deriving the TNLS
equations (Cummings et al., 2015, p. 151) the time-dependent NS equations are used as starting point
– and not the Reynolds-averaged ones. This seems to correspond with Simpson (1989), discussing
unsteady TLNS solutions and also deriving the TLNS equations from the time-dependent NS equations,

4As the RANS equations are time-averaged, the ‘full’ Navier-Stokes equations are sometimes also referred to as the time-
dependent Navier-Stokes equations.

5The nameReynolds-averaged Navier-Stokes does not mean the Reynolds number is averaged. The number and these equations
are simply named after the same person.
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just as Pulliam (1986). Baldwin and Lomax (1978, p. 3), however, explicitly state that “[t]he equations
to be solved in a thin-layer approximation are based on the time-averaged or subgrid scale models of
the Navier-Stokes equations”, pointing to RANS. The fact that TLNS-solver ARC2D (the topic of Sec-
tion 4.1.4) uses turbulence models does the same.

Further disagreement seems to exist on the necessity (or applicability) of a viscous-inviscid interaction
method (more thoroughly discussed in Section 2.2) in combination with TLNS. Pulliam and Steger (1978,
p. 2) state “[u]nlike boundary-layer theory the thin layer model avoids the difficulty of matching an invis-
cid layer with a viscous layer”, whereas Mouch and Lan (1993) report on doing exactly that (matching
ARC2D, discussed in Section 4.1.4, with panel code PMARC).

2.1.6. Turbulence modelling

As discussed in Section 2.1.4, RANS-simulations do not resolve turbulence, but model it. This is done by
any of a wide variety of turbulence models (Argyropoulos and Markatos, 2015) based on empirical data
(Cummings et al., 2015). The use of a turbulence model is to provide a value for the aforementioned
Reynolds stresses. This can be done directly – using Reynolds stress models (RSM) – or indirectly,
using the Boussinesq assumption (Wilcox, 2006). This assumption, stating that the Reynolds stress
scales with the average strain rate, can be used to relate the Reynolds stresses to to the mean flow
parameters (Vos and Farokhi, 2015; Cummings et al., 2015). This means that “the effect of turbulence
can be represented as an increased viscosity, [so that] the total viscosity is divided into a laminar [...]
and a turbulent [...] component” (Palacios et al., 2013, p. 15). In other words: the viscosity 𝜇 (part of
the stress components for the Navier-Stokes equation, shown in isolation in Equation (2.2) and in the 𝑥-,
𝑦- and 𝑧-equations in Equation (2.3)) is split up into a dynamic one, 𝜇፝፲፧, and a turbulent one, 𝜇፭፮፫፛, of
which the latter is obtained from the turbulence model (Palacios et al., 2013).

Blazek (2007, p. 56) describes the direct and indirect methods as second- and first-order closure mod-
els, respectively. The Reynolds-stress transport (RST) model and the algebraic Reynolds-stress (ARS)
model are examples of the more flexible – but also more complex – second-order methods. Although
better able to describe complex turbulent flow phenomena, these second-order methods also have some
numerical problems.

As such, first-order methods (also known as linear eddy-viscosity models or LEVMs) that adhere to
the Boussinesq assumption, are therefore more widely used in practice (Leschziner, 2010). Within this
group of models, there are zero-, one- and multiple-equation models that, as their names suggest, use
zero, one or multiple transport equations. Zero-equation models are completely empirical and cannot
describe history effects, leading to problems in case of separated flows. The one- and multiple-equation
models do take history effects into account. Well-known examples are the Spalart-Allmaras model (one-
equation, Spalart and Allmaras (1992)), the 𝑘 −𝜖-model (two-equation by Launder and Spalding (1974),
𝑘 for turbulent kinetic energy and 𝜖 for the dissipation rate thereof) and the 𝑘−𝜔-model (two-equation by
Wilcox (1988), 𝑘 again turbulent kinetic energy and𝜔 the dissipation rate per unit energy). Further details
of these methods will be discussed if and when relevant and are treated in the cited works. Besides,
Wilcox (2006) and Blazek (2007) can be used as references.

The turbulence models discussed in the previous paragraph are mostly applicable to higher Reynolds
number flows. In predicting flow properties near the wall, a region where viscous effects dominate the
flow (i.e., where the Reynolds number is lower), modified turbulence models have been proposed. Ar-
gyropoulos and Markatos (2015) review some of these. As they are deemed of little interest for the
applications considered here (transport aircraft), these models are not discussed further.

2.2. Boundary layer equations
Boundary layer equations (just like the thin-layer Navier-Stokes equations) are based on the notion that
at large enough Reynolds numbers, the effects of viscosity are only limited to a small region of the flow:
the boundary layer. The boundary layer and some of its properties are shown in Figure 2.2:
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where u = 0.99ue; here, Ue is the velocity at the outer edge of the boundary layer. 
In Figure 17.3, which illustrates the flow over a flat plate, the velocity at the edge of 
the boundary layer will be V00 ; that is, U e = V00 • For a body of general shape, U e 

is the velocity obtained from an inviscid flow solution evaluated at the body surface 
(or at the "effective body" surface, as discussed later). The quantity o is called the 
velocity boundary-layer thickness. At any given x station, the variation of u between 
y = 0 and y = 8, that is, u = u (y), is defined as the velocity profile within the 
boundary layer, as sketched in Figure 17.3. This profile is different for different x 
stations. Similarly, the flow temperature will change above the wall, ranging from 
T = Tw at y = 0 to T = 0.99Te at y = 8y. Here, 8r is defined as the thermal 
boundary-layer thickness. At any given x station, the variation ofT between y = 0 
and y = 87 , that is, T = T (y) , is called the temperature profile within the boundary 
layer, as sketched in Figure 17.3. (In the above, Te is the temperature at the edge of 
the thermal boundary layer. For the flow over a flat plate, as sketched in Figure 17 .3, 
Te = T 00 • For a general body, Te is obtained from an inviscid flow solution evaluated 
at the body surface, or at the "effective body" surface, to be discussed later.) Hence, 
two boundary layers can be defined: a velocity boundary layer with thickness 8 and 
a temperature boundary layer with thickness or. In general, or i= 8. The relative 
thicknesses depend on the Prandtl number: it can be shown that if Pr = I , then 
8 = 8r; if Pr > l, then 8T < 8; if Pr < I, then 8T > o. For air at standard conditions, 
Pr = 0. 71; hence, the thermal boundary layer is thicker than the velocity boundary 
layer, as shown in Figure 17.3. Note that both boundary-layer thicknesses increase 
with distance from the leading edge; that is, 8 = o(x) and or = or(x). 

The consequence of the velocity gradient at the wall is the generation of shear 
stress at the wall, 

(
au) 

Tw = jJ. ay w 
[17.1] 

where (au j oy)w is the velocity gradient evaluated at y = 0 (i.e., at the wall). Simi­
larly, the temperature gradient at the wall generates heat transfer at the wall, 

Figure 2.2: Boundary layer properties (Anderson, 2001, p. 790)

Starting from the Navier-Stokes equations, the boundary layer equations are found by dropping terms of
smaller orders of magnitude (and therefore of little importance to the final result) in order to create a set
of equations that is manageable. A key simplification is neglecting the viscous diffusion terms that are
seen parallel to the flow, as their contribution to the viscous effects is so low. Various types and forms of
boundary layer equations exists, for example differing between 2D or 3D, steady or unsteady flows, and
with or without the assumption of incompressible flow (Cummings et al., 2015, Sec. 3.13). A primary
assumption of all boundary layer models is that the pressure is constant normal to the wall, throughout the
thickness of the boundary layer. This assumption, however, makes boundary layer equations unsuited
for computation of separated flows (Cummings et al., 2015; Hassan and Munts, 2000).

Just as most forms of the Navier-Stokes equations, boundary layers need so-called closure relations to
be solved. These are empirical relations and can be compared conceptually to the turbulence models
treated in Section 2.1.6.

The coupling of the viscous boundary layer and inviscid flowmodel (often potential flow) is achieved using
a viscous-inviscid interaction (VII) method. This is an iterative process, as the location of the boundary
layer edge is initially unknown, as is the flow velocity at that edge. Of course, the flow speed of the
viscous and inviscid models have to be equal at that edge, in order to prevent shear stresses. Further
details of these interaction methods are provided if and where relevant. A more general description,
including a historical perspective, can be found in Lock and Williams (1987).

2.3. Euler equations
Whereas the NS equations and boundary layer equations model viscous effects, the Euler equations
assume inviscid flow. This means that Equations (2.1) and (2.3) are simplified to Equation (2.8), shown
below.

𝜕 (𝜌𝑢)
𝜕𝑡 + ∇ ⋅ (𝜌𝑢V) = −𝜕𝑝𝜕𝑥 + 𝜌𝑓፱ (2.8a)

𝜕 (𝜌𝑣)
𝜕𝑡 + ∇ ⋅ (𝜌𝑣V) = −𝜕𝑝𝜕𝑦 + 𝜌𝑓፲ (2.8b)

𝜕 (𝜌𝑤)
𝜕𝑡 + ∇ ⋅ (𝜌𝑤V) = −𝜕𝑝𝜕𝑧 + 𝜌𝑓፳ (2.8c)

As the derivation of the continuity equation does not depend on viscous effects, Equation (2.4) remains
unchanged. The energy equation, previously shown in Equation (2.5), does change. As such, an inviscid
formula can be derived, as done in Equation (2.9). Note that the terms describing thermal conductivity
also disappear, because of the definition of inviscid flow.
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𝜕
𝜕𝑡 [𝜌 (𝑒 +

𝑉ኼ
2 )] + ∇ ⋅ [𝜌 (𝑒 +

𝑉ኼ
2 )V] = 𝑝𝑞̇

− 𝜕
(𝑢𝑝)
𝜕𝑥 − 𝜕

(𝑣𝑝)
𝜕𝑦 − 𝜕

(𝑤𝑝)
𝜕𝑧

+ 𝜌f ⋅V

(2.9)

Although neglecting viscous effects might seem to limit applicability of the Euler equations substantially,
research has shown that outside the boundary layer, inviscid flow models are a good approximation
(Jameson, 2004).

2.4. Full potential equation
A further simplification to modelling flow is to assume the flow is irrational – something that generally
does not hold for the part of the flow domain downstream of a shock wave (Freestone, 2004). That
means that fluid particles are modelled as moving along a streamline without rotating or deforming. In
an irrotational flow, the vorticity 𝜉 – equal to ∇×V – is 0 (Anderson, 2001, pp. 145, 158). Combining this
with the notion that the curl of the gradient of a scalar function is zero yields Equation (2.10):

V = ∇𝜙 (2.10)

𝜙 is the velocity potential, here a function of 𝑥, 𝑦 and 𝑧. Writing this in scalar form yields Equation (2.11):

𝑢 = 𝜕𝜙
𝜕𝑥 (2.11a)

𝑣 = 𝜕𝜙
𝜕𝑦 (2.11b)

𝑤 = 𝜕𝜙
𝜕𝑧 (2.11c)

Assuming steady flow (meaning that flow properties, such as pressure and density, only depend on their
location in the flow), Equation (2.11) can then be substituted in the continuity equation (Equation (2.4),
with Ꭷ᎞

Ꭷ፭ = 0). Combining this with the momentum equation and assuming isentropic flow and zero
body forces yields the full potential equation (also known as non-linear potential equation) shown in
Equation (2.12) (Anderson, 2002, Ch. 8):

[1 − 1
𝑎ኼ (

𝜕𝜙
𝜕𝑥 )

ኼ
] 𝜕

ኼ𝜙
𝜕𝑥ኼ + [1 −

1
𝑎ኼ (

𝜕𝜙
𝜕𝑦 )

ኼ
] 𝜕

ኼ𝜙
𝜕𝑦ኼ + [1 −

1
𝑎ኼ (

𝜕𝜙
𝜕𝑧 )

ኼ
] 𝜕

ኼ𝜙
𝜕𝑧ኼ

− 2
𝑎ኼ (

𝜕𝜙
𝜕𝑥 )(

𝜕𝜙
𝜕𝑦 )

𝜕ኼ𝜙
𝜕𝑥𝜕𝑦 −

2
𝑎ኼ (

𝜕𝜙
𝜕𝑥 )(

𝜕𝜙
𝜕𝑧 )

𝜕ኼ𝜙
𝜕𝑥𝜕𝑧 −

2
𝑎ኼ (

𝜕𝜙
𝜕𝑦 )(

𝜕𝜙
𝜕𝑧 )

𝜕ኼ𝜙
𝜕𝑦𝜕𝑧 = 0

(2.12)

To remove the speed of sound 𝑎 from the equation, the energy equation is used. Given the assumptions
of no body forces and isentropic flow (i.e., adiabatic and reversible), it can be shown that the total enthalpy
along a streamline is constant (Anderson, 2002, Ch. 6). For a perfect gas, this allows for expressing 𝑎
fully in terms of constants and the velocity potential, as shown in Equation (2.13):

𝑎ኼ = 𝑎ኼጼ −
𝛾 − 1
2 [(𝜕𝜙𝜕𝑥 )

ኼ
+ (𝜕𝜙𝜕𝑦 )

ኼ
+ (𝜕𝜙𝜕𝑧 )

ኼ
] (2.13)
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Note that whereas previous sections dealt with sets of multiple equations, the full potential equation is a
single equation – combining the continuity, momentum and energy equations.

2.5. Linearised potential equation
Even though the full potential equation is a lot simpler than previous flow equations, the fact that it is
a non-linear partial differential equation makes it difficult to solve. Linearising the full potential equation
solves that problem (Anderson, 2002, Ch. 9). This is done by decomposing the velocity in an unperturbed
and a perturbed component.

Given a freestream velocity in 𝑥-direction, 𝑉፱ = 𝑉ጼ + 𝑢ᖣ, 𝑉፲ = 𝑣ᖣ and 𝑉፳ = 𝑤ᖣ, with 𝑢ᖣ, 𝑣ᖣ and 𝑤ᖣ de-
noting the perturbation velocities. These can be used to derive a perturbation velocity potential 𝜙 so
that (𝑥, 𝑦, 𝑧) = 𝑉ጼ𝑥 + 𝜙(𝑥, 𝑦, 𝑧). Substitution of this expression and multiplication by 𝑎ኼ transforms the
potential equation shown in Equation (2.12) into Equation (2.14). Note that time-derivatives of 𝜙 are
expressed as perturbation velocities.

[𝑎ኼ − (𝑉ጼ + 𝑢ᖣ)
ኼ] 𝜕𝑢

ᖣ

𝜕𝑥 + [𝑎
ኼ − 𝑣ᖣኼ] 𝜕𝑣

ᖣ

𝜕𝑦 + [𝑎
ኼ −𝑤ᖣኼ] 𝜕𝑤

ᖣ

𝜕𝑧

− 2 (𝑉ጼ + 𝑢ᖣ) 𝑣ᖣ
𝜕𝑢ᖣ
𝜕𝑦 − 2 (𝑉ጼ + 𝑢

ᖣ)𝑤ᖣ 𝜕𝑢
ᖣ

𝜕𝑧 − 2𝑣
ᖣ𝑤ᖣ 𝜕𝑣

ᖣ

𝜕𝑧 = 0
(2.14)

Similarly, Equation (2.13) can be rewritten as Equation (2.15):

𝑎ኼ = 𝑎ኼጼ −
𝛾 − 1
2 [2𝑢ᖣ𝑉ጼ + 𝑢ᖣኼ + 𝑣ᖣኼ +𝑤ᖣኼ] (2.15)

Substitution of Equation (2.15) into Equation (2.14) then yields Equation (2.16):

(1 − 𝑀ኼጼ)
𝜕𝑢ᖣ
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ᖣ
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ᖣ
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𝑉ኼጼ
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ᖣ

𝜕𝑧
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𝑉ጼ
)(𝜕𝑢
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(𝜕𝑤
ᖣ

𝜕𝑦 + 𝜕𝑣
ᖣ

𝜕𝑧 )]

(2.16)

In order to linearise Equation (2.16), only small perturbations are considered. This yields that for 0 ≤
𝑀ጼ ≤ 0.8 and𝑀ጼ ≥ 1.2, the second line of Equation (2.16) is small compared to the first term on the left
hand side and can thus be ignored. Similarly, for𝑀ጼ ≤ 5, the third and fourth line are small compared to
Ꭷ፯ᖤ
Ꭷ፲ and Ꭷ፰ᖤ

Ꭷ፳ , respectively, so that the former terms can also be ignored. Lastly, the term on the fifth and
sixth line is approximately zero. Therefore, the linearised potential equation reduces to Equation (2.17),
shown below:

(1 − 𝑀ኼጼ)
𝜕𝑢ᖣ
𝜕𝑥 +

𝜕𝑣ᖣ
𝜕𝑦 +

𝜕𝑤ᖣ
𝜕𝑧ᖣ = (1 −𝑀

ኼ
ጼ)
𝜕ኼ𝜙
𝜕𝑥ኼ +

𝜕ኼ𝜙
𝜕𝑦ኼ +

𝜕ኼ𝜙
𝜕𝑧ኼ = 0 (2.17)
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As shown before, Equation (2.17) is limited to small perturbations and can only be used outside transonic
and hypersonic flow regions. It is also known as the Prandtl-Glauert equation (Cummings et al., 2015).

2.6. Laplace’s equation
The full potential equation (discussed in Section 2.4) was linearised using perturbation velocities in Sec-
tion 2.5. However, if incompressible flow is assumed (valid for 𝑀ጼ < 0.3), the full potential equation
reduces to a partial differential equation that is linear in and of itself: Laplace’s equation.

The full potential equation was derived based on the continuity equation shown in Equation (2.4). For
steady flow, Ꭷ᎞Ꭷ፭ = 0 and for compressible flow, 𝜌 is constant such that ∇ ⋅ (𝜌V) = ∇ ⋅ V, which yields
Equation (2.18) (Anderson, 2001, Ch. 3):

∇ ⋅V = 0 (2.18)

Given Equation (2.11), this can be rewritten as Equation (2.19), which is Laplace’s equation:

𝜕ኼ𝜙
𝜕𝑥ኼ +

𝜕ኼ𝜙
𝜕𝑦ኼ +

𝜕ኼ𝜙
𝜕𝑧ኼ = ∇

ኼ𝜙 = 0 (2.19)

The same result can be achieved from Equation (2.12) by realising that 𝑎 → ∞ for incompressible flow
(Anderson, 2002, Ch. 8), causing the terms in square brackets to go to 1 and the terms on the second
line to go to 0. Also, as 𝑎 → ∞, 𝑀ጼ → 0, so that the term between brackets in Equation (2.17) becomes
equal to 1, also resulting in Equation (2.19).

Even though Laplace’s equation can also be derived from the linearised potential equation, it is important
to note that the assumption of small perturbations need not apply for Laplace’s equation. This assumption
was used to simplify Equation (2.16), but that simplification is not necessary for incompressible flow: all
these terms are multiplied with 𝑀ኼጼ, which – as shown in the previous paragraph – tends to 0 when 𝜌 is
constant.

As Laplace’s equation is linear and has exact solutions, it does not have to be discretised to be solved.
Solution methods for Laplace’s equation are discussed in Section 3.2.

2.7. Empirical methods
At the bottom right of Figure 2.1, empirical methods can be found. Although these do not model the
flow, they can be used to estimate aerodynamic performance (Gu et al., 2018) – which is what the
aforementioned flow models are ultimately used for in aerodynamic design. Empirical methods can be
used for rough estimates of properties like lift coefficient, drag coefficient, aerodynamic efficiency at the
complete aircraft (Gu et al., 2018) or system level (e.g. Roskam (1985)).

Various empirical methods exist. Well-known are the IHS Engineering Sciences Data Unit Aerospace
Package (ESDU, IHS) and the US Air Force data compendium or DATCOM (Hoak, 1978). Whereas the
DATCOM is focused on estimating stability and control derivatives, the ESDU spans much more topics,
ranging from atmospheric properties to structures and from drag estimation to power plant integration
effects. Empirical relations and reference data useful for conceptual aircraft design (weight estimation,
sizing, performance) can be found in many aircraft design textbooks, such as Roskam (1985), Torenbeek
(1982), Raymer (1992), Sadraey (2013) and Sforza (2014).
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Overview of solution methods

With the exception of empirical methods used for aerodynamic performance estimation, the flow models
treated in Chapter 2 only describe the flow. Although these equations ‘speak words’, as Anderson (2001)
reminds us, they do not readily show velocity and pressure distributions throughout the flow, let alone
aerodynamic force coefficients. In order to find these parameters, mathematical methods are applied to
find solutions to the flow models.

In general, two types of solution methods can be distinguished: non-linear and linear methods. These
are treated in Sections 3.1 and 3.2, respectively. Furthermore, Section 3.3 treats the topic of boundary
conditions, which are used to constrain the solution of the differential equations used. The discussion in
this chapter is mostly concerned with the underlying concepts – as Chapter 4 will show, various imple-
mentations exist of any of the methods shown here.

3.1. Non-linear solution methods
Non-linear solution methods are, as the name suggests, applied to solve non-linear flow models, such
as the RANS and Euler equations and the full potential equation. They split the fluid domain into a finite
number of elements to which the conservation laws (of mass, momentum and energy) are applied. Most
often, either finite volume (FVM), element (FEM) or difference (FDM) methods are used (Blazek, 2007;
Mariens, 2012).

3.1.1. Finite difference methods (FDM)

Finite difference methods are the oldest (Mariens, 2012; Bakker, 2006). They are based on a Taylor
series expansion (Anderson, 2001; Kuzmin; Blazek, 2007; Anderson et al., 2009) at each grid point or
node, where the partial derivatives in the flow model are replaced with (and therefore approximated by)
“algebraic difference quotients” (Anderson et al., 2009, p. 88). This yields a set of algebraic equations
that can be solved over the entire grid, providing field variables (such as pressure, density and velocity)
at the nodes. As the values at node 𝑖 are computed based on the values at node 𝑖 − 1, the grid needs
to be structured in a Cartesian coordinate system (Blazek, 2007). Furthermore, if the nodes are too far
apart, the conservation laws no longer hold. On the other hand, the method is easy to understand and
apply (Bakker, 2006).

15
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3.1.2. Finite element methods (FEM)

Finite element methods – best known from application in structural analysis problems, but also used
in fluid dynamics – take a different approach. First, a grid is generated, which can be structured or
unstructured (Anderson et al., 2009). Then, points are defined, which can lay inside an element or on
its boundary, at which the solution will be obtained. Next, so-called basis functions are chosen, that
determine the variation of the flow properties inside each element. Outside the element for which they
are defined, these basis functions are zero (Blazek, 2007). These can be linear or higher-order, but
their form has to be assumed up front (Anderson et al., 2009). Contrary to FDM and FVM approaches,
finite element methods solve an integral representation of the differential equation. (Blazek (2007) and
Anderson et al. (2009) further detail ways to obtain this integral form.) The major disadvantage of FEM is
increased computational cost and the fact that it less suited for turbulent flow (Bakker, 2006). Also, it is
deemed more difficult to understand conceptually. On the other hand, the accuracy that can be obtained
by FEM is unmatched by any of the other methods treated here. This can be explained by the fact that
FEM aims to solve an integral form of a PDE, rather than the PDE itself (Anderson et al., 2009, Ch. 10).

3.1.3. Finite volume methods (FVM)

Finite volumemethods are the last non-linear method discussed here andmight bemost closely related to
the physical phenomena observed in the flow. The discretisation step splits the flow field up into so-called
cells, which can lie in an structured or unstructured grid (Bakker, 2006). In addition to a computational
node placed in the centre of each cell, there are nodes on the boundaries. These nodes can then be
defined as the centre of a control volume. If the computational node is chosen, the cell acts as a control
volume; if a boundary node is chosen, the control volume is made by the union of adjacent cells, or a new
volume with the node as centre (Blazek, 2007). Ultimately, the conservation laws are directly applied to
the control volumes. An important advantage of actually solving for these conserved variables is that
discontinuities (such as shocks) do not form a problem for the finite volume method (Anderson et al.,
2009). Also, the FVM is generally considered more easy to understand as it more closely resembles the
physical problem, especially when compared to FEM. It is however not free from disadvantages, as it
is less accurate in viscous flow regions and higher order accuracy is difficult to obtain (Anderson et al.,
2009, Ch. 11). The first downside is caused by the lack of a FEM-like weak formulation that allows
higher-order derivatives to be translated into lower-order ones, the second by the fact that it is difficult to
implement curved boundaries in FVM, limiting most methods to piecewise constant or piecewise linear
functions. Still, the method is very popular today (Blazek, 2007).

3.2. Linear solution methods
Whereas flow models higher up the hierarchy shown in Figure 2.1 are non-linear, Laplace’s equation
(introduced in Section 2.6) is in fact linear. Because of this, well-known solutions to simpler flows can
be superimposed to find solutions to more complicated ones. Various so-called elementary solutions
(Anderson, 2001) (also known as singularities by Bertin and Cummings (2009) or basic solutions by
Katz and Plotkin (1991)) exist. They are schematically visualised in Figure 3.1 and listed below:

• uniform flow, coming from one direction at freestream velocity;
• source flow, emanating radially outward from a single point;
• doublet flow, a combination of two sources of equal but opposite strength, resulting in a “double-
lobed circular flow pattern” (Anderson, 2001, p. 223); and

• vortex flow, with concentric streamlines.

Of these four, only vortex flow produces lift. This can be explained by the fact that the circulation around
the streamline of a vortex flow is finite and the relation of circulation to lift by the Kutta-Joukowski theorem
shown in Equation (3.1):
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(a) Uniform flow (b) Source flow (c) Doublet flow (d) Vortex flow

Figure 3.1: Elementary flow solutions (Anderson, 2001)

𝐿 = 𝜌ጼ𝑉ጼΓ (3.1)

A line of vortices ‘behind’ each other (as a line perpendicular to a point on this page) is a vortex filament.
Vortex filaments have a constant strength Γ along its length and cannot end in a flow – but have to
continue to infinity, or form a closed loop (Anderson, 2001, Ch. 5). From Γ, the velocity can be found
using the Biot-Savart law (a solution to Laplace’s equation) and the lift follows from the Kutta-Joukowski
theorem.

Multiple linear solution methods exists and are discussed in the remainder of this section, which is again
largely based on Anderson (2001). The lifting line and lifting surface theory are treated in Section 3.2.1,
the vortex lattice method (VLM) in Section 3.2.2 and the panel method in Section 3.2.3. Ultimately,
however, all methods aims to find a singularity distribution (either vortices or a combination of basic
elements) such that particular boundary conditions are met. These are discussed further in Section 3.3.

3.2.1. Lifting line and lifting surface theory (LLT / LST)

In lifting line theory (LLT), the wing (or other lifting surface) is replaced by a bound (i.e., fixed in the flow,
rather than moving with it) vortex filament, spanning from wing tip to wing tip and located at the line
connecting the aerodynamic centres of the wing sections. As a vortex filament cannot end in the flow, it
is assumed the bound vortex gives rise to two free vortices at each of the wing tips. These free vortices
continue downstream to infinity and – together with the bound vortex – form a horseshoe vortex.

Yet, just a single horseshoe vortex is not able to properly describe the lift distribution. To solve this prob-
lem, multiple horseshoe vortices can be superimposed, as shown in Figure 3.2. If an infinite number of
horseshoe vortices is combined this way, the vortex distribution along the lifting line becomes continuous
(Γ(𝑦)) and the downstream vortices form a vortex sheet. From this vortex sheet, the lift distribution, lift
force and induced drag can be computed, as further detailed in Anderson (2001).

For straight wings (i.e., without sweep) with a moderate to high aspect ratio (above 4, as a general rule-
of-thumb (Anderson, 2001)), the lifting line theory provides reasonable results. However, the method is
not fit for use with other wing types and geometries. This is solved by placing an infinitesimal number
of lifting lines in chordwise direction to yield a vortex sheet. Its strength is given by 𝛾(𝑥, 𝑦). The trailing
vortices form another vortex sheet, with strength 𝛿(𝑥, 𝑦). Both 𝛾 and 𝛿 also depend on 𝑦 as multiple
horseshoe vortices are superimposed on each lifting line. These two vortex sheets form a lifting surface
over the wing. From the trailing edge onward, the trailing vortices extending to infinity form a wake vortex
sheet. This is known as the lifting surface theory (LST).

Following the Biot-Savart law, both the lifting surface and the wake vortex sheet induce a normal velocity
at every point on the wing, designated 𝑤(𝑥, 𝑦). The flow tangency boundary condition forces the sum
of 𝑤(𝑥, 𝑦) and the component of the freestream normal to the wing (a result of wing tip vortices, which
induce downwash and rotate the relative wind upward from the freestream direction) to be equal to zero.
This solution, then, again allows for finding the relevant aerodynamic variables.
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Figure 7.4 (a) Schematic trailing-vortex system. 

in the bound-vortex system depends on the spanwise variation in lift and, therefore, 
depends upon parameters such as the wing planform, the airfoil sections that make 
up the wing, the geometric twist of the wing, etc. 

Thus, as shown in Fig. 7.4a, if the strength of the vortex filaments in the bundle 
making up the bound-vortex system change by the amount ~r, a trailing vortex of 
strength ~r must be shed in the x direction. 

Thus, the vortex filaments that make up the bound-vortex system do not end in 
the fluid when the lift changes, but turn backward at each end to form a pair of vortices 
in the trailing-vortex system. For steady flight conditions, the starting vortex is left far 
behind, so that the trailing-vortex pair effectively stretches to infinity. The three-sided 
vortex, which is termed a horseshoe vortex, is presented in Fig. 7.4a. Thus, for practical 
purposes, the system consists of a the bound-vortex system and the related system of 
trailing vortices. Also included in Fig. 7.4a is a sketch of a symmetrical lift distribution, 
which the vortex system represents. 

A number of vortices are made visible by the condensation of water vapor in the 
flow over an F/A-18 Hornet in the photograph of Fig. 7.4b. The two streamwise vortices 
associated with the flow around the edges of the strakes are easily seen on either side 
of the fuselage. The flow around wing/strake configurations will be discussed further in 
Section 7.8, "Leading-Edge Extensions." In addition, streamwise vorticity filaments orig­
inating in the wing-leading-edge region can be seen across the whole wing. The stream­
wise condensation pattern that appears across the wing in Fig. 7.4b is not normally 

Figure 3.2: Superposition of a finite number of horseshoe vortices along the lifting line, showing the trailing-vortex system (Bertin
and Cummings, 2009, p. 324)

A limitation that holds both for the lifting line and lifting surface theory is that thin airfoils (or other lifting
surfaces) are assumed. The lift slopes are also considered to be linear, which only holds for small angles
of attack.

3.2.2. Vortex lattice method (VLM)

The vortex lattice method (VLM) takes a simpler approach to the same concept already used in the LST.
First, the surface is split up in quadrilateral panels. Then, a horseshoe vortex with strength Γ። is placed on
the quarter-chord line of each panel. The downstream trailing components of this vortex follow the edges
of the panel. This way, the entire surface is covered in horseshoe vortices, as visualised in Figure 3.3.
Using the Biot-Savart law and applying the flow tangency condition at control points at 75% of each
panel’s chord, the vortex strengths can be computed. These – in turn – can be used to compute lift and
induced drag.

Compared to the lifting surface theory, the vortex lattice method is simpler because the numerical solution
directly computes the unknown vortex strength Γ። (compare Figure 3.2, showing overlapping horseshoe
vortices, with Figure 3.3, without). Despite this, the underlying assumptions (thin airfoils at a small angle
of attack) have not changed, as the vortex filaments are placed on the local chord line (i.e., ‘inside’ the
body) Mariens (2012).

3.2.3. Panel method

Contrary to the methods presented above, the panel method has been extended for analysis of three-
dimensional geometries (Hess, 1988), such as thicker airfoils, fuselages, engine nacelles, and so on.
This can be seen in Figure 3.4, showing a panel representation of a McDonnell Douglas DC-10, and
in Figure 3.6, showing a less densely panelled generic transport aircraft. Since the 1960s, they have
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Figure 3.3: Distributed horseshoe vortices over a swept wing with 12 panels (Bertin and Cummings, 2009, p. 355)

seen widespread use (Schippers, 1988). As with the VLM, the geometry is covered in (quadrilateral or
triangular (Mason, 1995)) panels and a singularity (or distribution of identical or different singularities)
is added to each panel, based on the assumed flow type (lifting or non-lifting, linearly or quadratically
varying, etc.) at that panel. A set of equations can be set up and subsequently solved to find the
singularity strengths at each panel. These can in turn be used to find the velocity and pressure fields.

Cp 

I~ 
'~ 

~ 

~ 
lI'~ ~ ~ 

o 0.2 0.4 0.6 0.' 1.0 
til: 

- HESS 
---- VSAERO 

--Q4JN:WN4 
o EllI'£,"1oIlHT 

Fi'g. 6. Effect of alternate Kutta 
cond it ions. 

Appl1cat ions 

1.11 

~ 10" 

~ 10" 

i 10" 

10" 

173 

- - - - - SIMPUFIED ACCELERATION SCHEME 
-- GENERAUZED ACCELERATION SCHEME 
~-....:;=:.-- .. __ ... --_ .............. -.... -

10~0~~--7-----~--~-I~Z----~"~~~~ 

ITtRATlOH "-11 

Fig. 7. Convergence history for a 
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With the increases in panel number and the decreases in cost due to more 

efficient numerics and advanced in computing equipment, have come greatly 

increased utilization of the method by designers. Currently at Douglas 

Aircraft Company the panel method is used for a large case approximately a 

dozen times per day. Formerly the cost of providing input geometry for the 

program was the biggest cost associated with it. Accordingly, programs 

using interactive graphics have been developed that greatly reduce this 

cost. Typical geometries are shown in Figures 4 and 8. Similarly, inter­

preting the output from a case of several thousand panels is a formidable 

task. Graphics capabilities both black-and-white and colored have been 

developed to display, e.g. surface pressures, flow directions, and stream­

lines on complex three-dimensional configurations. 

Predictions of a panel method agree well with experiment over a wide range 

of flow conditions. The calculations of Figures 2 and 3 were corrected 

neither for viscosity nor compressibility. compressibility can be ignored 

for freestream Mach numbers below one-half. At higher Mach numbers well­

known compressibility corrections can be used to give the results validity 

Fig. 8. Paneling for a transport aircraft. Figure 3.4: Panelling of a McDonnell Douglas DC-10 jet transport, illustrating the ability of panel methods to accurately represent
three-dimensional geometries (Hess, 1988, p. 173)

3.3. Boundary conditions
As the physical flow models treated in Chapter 2 that are based on partial differential equations each
can describe a multitude of flows, boundary conditions have to be specified in order to ‘fix’ the solution.
It is therefore no surprise that different aerodynamic solvers employ different boundary conditions. This
is to a large extent caused by the type of partial differential equation that is used to describe the flow
(Cummings et al., 2015; Hirsch, 2007). Still, some underlying concepts are shared by all. These are
explained in this section, starting with boundary conditions at the far-field (‘infinity’) before moving on to
boundary conditions at the wall or surface. Lastly, some implementation aspects are discussed.
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3.3.1. Far-field boundary conditions

In most applications, the flow far away from the object of interest is at free stream conditions (Cummings
et al., 2015). Aligning the surface of interest with the 𝑥-axis, this means that the 𝑦- and 𝑧-components of
the velocity are zero and 𝑢 = 𝑉ጼ (Anderson, 2001). According to Anderson (2001) these conditions apply
both upstream and downstream (Bertin and Cummings (2009) seems to implicitly agree), Cummings
et al. (2015) proposes to only enforce this condition at the inflow boundary and to set 𝜕𝑉፨፮፭/𝜕𝑥 = 0 at
the outflow boundary. In viscous problems, the total temperature and total pressure are also specified
(Cummings et al., 2015; Hirsch, 2007). Rather than prescribing fixed conditions, Riemann invariants can
be used. This method relies on finding the characteristics of the flow near the boundary conditions, and
using these to find the actual values to be fixed at the boundary (Cummings et al., 2015) (see Anderson
(1995), Anderson (2001), Blazek (2007), Cummings et al. (2015) and Hirsch (2007)).

3.3.2. Surface boundary conditions

Moving to the object that is in the flow, the viscosity of the flow determines which boundary conditions
are applicable. If viscosity is completely neglected, there is no physical principle that makes flow ‘stick’
to the surface. If the wall is solid, there is no mass flowing through the wall, such that the velocity must
be tangent to the surface at all points – leading to the name of wall tangency or flow tangency condition
(Anderson, 1995). It means that, assuming a fixed, rigid and solid surface, Equation (3.2) holds at the
surface (Blazek, 2007).

V ⋅ n = 0 (3.2)

V is the velocity vector; n the surface normal. In case of potential flow, Equation (3.2) can be rewritten
to Equation (3.3) (Anderson, 2001):

V ⋅ n = (∇𝜙) ⋅ n = 0 (3.3)

As n ≠ 0, Equation (3.3) can only be satisfied if the change in potential normal to the surface is 0 or –
equivalently – if the change in stream function (indicated by 𝜑) along the surface (measured by 𝑠) is 0,
as shown in Equation (3.4) (Anderson, 2001):

𝜕𝜙
𝜕𝑛 = 0 (3.4a)

𝜕𝜑
𝜕𝑠 = 0 (3.4b)

Physically, it ensures that the surface is a stream line of the flow (Anderson, 2001). This situation is
sketched in Figure 3.5. If the surface is porous (or modelled as such, for example in case of an inlet or
exhaust) or a boundary layer model is coupled, a non-zero normal velocity is allowed.

In linear potential flows (governed by Laplace’s equation, as discussed in Section 2.6), boundary condi-
tions determine the distribution of singularity strengths (Bertin and Cummings, 2009). The Kutta condition
– stating 𝛾ፓፄ = 0 – prescribes that for bodies with a sharp trailing edge, the stagnation point is at that
trailing edge so that the flows coming from the upper and lower surfaces join smoothly. In panel methods,
the strength of the source distribution is bounded being equal to the normal velocity to the panel surface.
The vortex strengths in a VLM code can be found by having them satisfy the flow tangency boundary
condition.

Contrary to the inviscid case, viscous flow does stick to the surface due to shear stresses at the wall.
This is modelled using the so-called no-slip boundary condition, that dictates all velocity components
at the wall to be zero (Blazek, 2007). As viscosity also brings possible heat transfer effects, a second
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Figure 3.18 

FUNDAMENTALS OF INVISCID, INCOMPRESSIBLE FLOW 

Boundary conditions at infinity and on a body; inviscid 
flow. 
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ay ax 

Equations (3.4 7a and b) are the boundary conditions on velocity at infinity. They 
apply at an infinite distance from the body in all directions, above and below, and to 
the left and right of the body, as indicated in Figure 3. 18. 

3.7 .2 WALL BOUNDARY CONDITIONS 

If the body in Figure 3.18 has a solid surface, then it is impossible for the flow to 
penetrate the surface. Instead, if the flow is viscous, the influence of friction between 
the fluid and the solid surface creates a zero velocity at the surface. Such viscous 
flows are discussed in Chapters 15 to 20. In contrast, for inviscid flows the velocity 
at the surface can be finite, but because the flow cannot penetrate the surface, the 
velocity vector must be tangent to the surface. This "wall tangency" condition is 
illustrated in Figure 3.18, which shows V tangent to the body surface. If the flow is 
tangent to the surface, then the component of velocity normal to the surface must be 
zero. Let n be a unit vector normal to the surface as shown in Figure 3.18. The wall 
boundary condition can be written as 

V · n = ('V</J) • n = 0 [3.48a] 

or a<P = o 
an 

Equation (3.48a or b) gives the boundary condition for velocity at the wall ; it is 
expressed in terms of </J. If we are dealing with 1/1 rather than </J, then the wall 
boundary condition is 

[3.48c] 

209 

Figure 3.5: Surface and far-field (following Anderson’s notion of outflow velocity equal to ፕᐴ) boundary conditions on an airfoil in
inviscid flow (Anderson, 2001, p. 209)

boundary condition is required. This can either be a prescribed wall temperature or a specified heat flux
normal to the surface. For adiabatic flows, this is zero. At the edge of a viscous boundary layer, 𝑦 tends
to ∞, 𝑢 = 𝑈፞ and ℎ = ℎ፞, to ensure no step discontinuities from the viscous to the inviscid flow domain
(Anderson, 2001).

Boundary conditions that prescribe a particular value to one of the dependent variables along the bound-
ary (such as the temperature requirement) are Dirichlet boundary conditions. Neumann boundary con-
ditions, on the other hand, define the value of the derivative of a dependent variables (such as the heat
flux). Combinations also exist, which are called Robin boundary conditions (Cummings et al., 2015).
Neumann boundary conditions are often used for analysis problems where the value of certain quanti-
ties of interest on the boundary is unknown. Dirichlet conditions, on the other hand, are often regarded
as design conditions. Using these, it is possible to find a boundary (such as an airfoil shape) that satisfies
a prescribed flow.

3.3.3. Numerical implementation

Given the fact that surface conditions prescribe the flow parallel or perpendicular to the surface, it is
of crucial importance that the control points (illustrated in Figure 3.6) at which the boundary layers are
applied coincide with the actual boundary of the surface (Anderson, 2001). To make this more straight-
forward, coordinate transformations are often applied. This can entail a transformation of the grid (as
is done for thin-layer Navier-Stokes, discussed in Section 2.1.5), but it is also possible to transform the
boundary conditions. The fact that boundary conditions are applied at each control point also explains
part of the steep rise of computational cost with an increasing amount of panels or grid points.

Control point for application 
of boundary condition 

Figure 3.6: Panel representation of an airplane, showing a single control point for boundary layer application. Adapted from Bertin
and Cummings (2009, p. 350)
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Similarly, when modelling the far-field boundary conditions, one of the major challenges is determining
how far is far enough. Imposing far-field boundary conditions too close to the object of interest reduces
accuracy or effectively invalidates the solution, but taking more distance than necessary increases the
size of the computational domain – and thereby computational cost (Thomas and Salasf, 1986). The
type of flow also steers this choice, because information propagation is different (more wide-spread) in
subsonic flow than in supersonic flow (Cummings et al., 2015).

A more elaborate discussion of the numerical implementation of various boundary conditions can be
found in Blazek (2007, Ch. 8), Cummings et al. (2015), Ferziger and Perić (2002), Hirsch (2007), Moran
(1984) and Katz and Plotkin (1991).



4
Overview of solvers

Chapter 2 treated models to describe the flow and Chapter 3 discussed the concepts behind some
popular solution methods to these flow models. However, just as there were multiple solution methods
for a particular flow model, there are multiple variants or implementation of a particular solution method.
These implementations, referred to as aerodynamic solvers or just solvers, are the subject of the current
chapter.

It is split up in three sections. Section 4.1 treats solvers used for two-dimensional cases: infinite wings
and airfoils. Section 4.2 discusses solvers that are three-dimensional in nature. As some solvers com-
bine two- and three-dimensional computations, ‘hybrid’ or 2.5D solvers also exist. These tools are the
subject of Section 4.3. The subsections discussing 2D and 3D solvers first treat the flow model. If appli-
cable, this subsection is further split to discuss separate inviscid and viscous routines, and their coupling.
Boundary layer transition and separation – if applicable – are also treated. Then, the solution procedure
is discussed, mostly dealing with relevant numerical details. Boundary conditions are either treated in
the flow model or solution method parts, depending on which is most applicable. Finally, some words are
spent on the type and format of the output, as well as reported results obtained with the program under
consideration, often in comparison to other simulation methods or wind tunnel results1. The subsections
pertaining to hybrid solvers are split up into two, discussing the two- or three-dimensional aspects of the
program. A comparative review highlighting the main similarities and differences of the methods of a
particular type (2D, 3D or hybrid) is found at the end of each section (Section 4.1.5, Section 4.2.6 and
Section 4.3.3, respectively).

Table 4.1 provides a more detailed overview of the solvers considered in this chapter, split in the 2D /
3D / hybrid-categories introduced before. The first group of columns shows when the solver was first
developed, which flow model and solution method(s) are used and whether it supports analysis and/or
design use. The second group shows to what extent viscosity is included and whether the solver is limited
(or best suited to) a particular Mach or Reynolds number range. Please note Mach number ranges are
to be read as “up to”. The third set of columns show the distribution (e.g. open source or commercial, the
latter giving a cost advantage but a possible quality disadvantage (Vogeltanz, 2015)), a reference to the
primary publication of the method and the amount that publication has been cited (in Google Scholar) –
to provide an indication of popularity of the solver. The last column shows the section and page number
in the current text where the solver is further detailed.

Table 4.2 shows which flow model(s) – in rows – and solution method(s) – in columns – are used in each
of the solvers. For clarity, two- and three-dimensional solvers are separated, with the intermediate hybrid
solvers included in both groups.

1Validation based on experimental results might seem best, but if a method makes particular assumptions that make it fundamen-
tally different from the experiment, the comparison is unfair.
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Table 4.1: Overview of solvers (Mariens et al., 2014; Deperrois, 2011b; Drela and Youngren, 2010; Drela, 2007; Maskew, 1982a; Mariens, 2012; Freestone, 2004; Drela, 1994; Atkin and Gowree,
2012; Florjancic, 2015; Myers, 2012; Palacios et al., 2013; Drela, 1989)

Solver Year Model Method Use Viscosity Mach ≤ Reyn. Distribution Publication Cited Section
2D XFOIL 1986 Laplace 2D panel Analysis

+ design
Optional
(BL + VII)

0.7 “low” Open
source

Drela (1989) 1529 4.1.1,
p. 26

VGK 1970s Full
potential

FDM Analysis Optional
(BL + VII)

Sub-
sonic2

Commercial
/ academic

Freestone (2004) 8 4.1.2,
p. 30

MSES 1994 Euler FVM Analysis
+ design

Optional
(BL + VII)

Tran-
sonic

“low” Commercial
/ academic

Drela (1990) 134 4.1.3,
p. 37

ARC2D 1984 Euler,
TLNS

FDM Analysis Optional Commercial
(US)

Pulliam (1984) 151 4.1.4,
p. 39

3D AVL 1988 Laplace VLM Analysis User-
input

0.6 Open
source

953 4.2.1,
p. 45

Tornado 2001 Laplace VLM Analysis No Open
source

Melin (2000) 232 4.2.2,
p. 46

VSAERO 1982 Laplace 3D panel Analysis Yes (BL +
VII)

Sub-
sonic

Commercial Maskew (1982b) 67 4.2.3,
p. 49

MATRICS
/ -V

1986 /
1992

Full
potential

FVM Analysis No / Yes
(BL + VII)

Tran-
sonic

“high” van der Vooren
et al. (1986) /
van der Wees
and van Muijden
(1992)

2 / 6 4.2.4,
p. 53

SU2 2012 Euler,
RANS,
laminar
NS

FVM / FEM Analysis
+ design

Optional Hyper-
sonic

Open
source

Palacios et al.
(2013)

225 4.2.5,
p. 59

Continued on next page

2Flow solutions for locally supersonic flows closely correspond to reality, as long as the Mach number of the flow directly upstream of the shock does not exceed 1.3 (Freestone, 2004).
3Number of search results for Scopus-query TITLE-ABS-KEY(AVL or “Athena Vortex Lattice”) ANDTITLE-ABS-KEY(a*foil ORwingORa*planeORa*craft OR aerial or aero* or Drela), 17/08/2018.
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Table 4.1: Overview of solvers (Mariens et al., 2014; Deperrois, 2011b; Drela and Youngren, 2010; Drela, 2007; Maskew, 1982a; Mariens, 2012; Freestone, 2004; Drela, 1994; Atkin and Gowree,
2012; Florjancic, 2015; Myers, 2012; Palacios et al., 2013; Drela, 1989) – continued

Solver Year Model Method Use Viscosity Mach ≤ Reyn. Distribution Publication Cited Section
H
yb
rid XFLR5 2003 Laplace 2D panel +

LLT / VLM /
3D panel

Analysis
+ design

Optional
(BL + VII)

0.7 “low” Open
source

Deperrois
(2011b)

18 4.3.1,
p. 67

Q3D 2012 Laplace
(+ Full
potential
/ Euler)

2D panel +
VLM

Analysis Optional
(BL + VII)

Tran-
sonic

Mariens et al.
(2014)

21 4.3.2,
p. 69

Table 4.2: Combinations of flow model(s) – in rows – and solution method(s) – in columns – used in solvers

2D 3D

FDM FEM FVM LLT VLM Panel FDM FEM FVM LLT VLM Panel

Navier-Stokes

Laminar NS SU2 SU2

RANS SU2 SU2

TLNS ARC2D

Boundary
layer

VGK
Q3D

Q3D XFOIL
XFLR5
Q3D

MATRICS-V VSAERO

Euler ARC2D MSES SU2 SU2

Full potential VGK MATRICS / -V

Laplace XFOIL XFLR5 AVL
Tornado
XFLR5
Q3D

VSAERO
XFLR5
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4.1. Two-dimensional solvers
This section treats two-dimensional solvers. These are called two-dimensional as they model an infinite
wing and effects such as crossflow or tip vortices are thereby neglected. 2D solvers are used for analysis
(and/or design) of airfoils. Contrary to most three-dimensional programs, discussed in Section 4.2, 2D
codes often include a viscous component. This is because 2D boundary layers are much easier to solve
than 3D boundary layers.

In the next few sections, the programs XFOIL (Section 4.1.1), VGK (Section 4.1.2), MSES (Section 4.1.3)
and ARC2D (Section 4.1.4) are treated in further detail. Section 4.1.5 provides a comparative review of
these solvers.

4.1.1. XFOIL

XFOIL was developed in 1986 by Mark Drela and Harold Youngren at MIT (Drela and Youngren, 2013a,
2001). It is a very popular command-line operated 2D “inviscid linear-vorticity panel method” with an
optional boundary layer model based on source distributions in order to model viscous effects on the
potential flow (Drela, 1989, p. 1). The code includes a Karman-Tsien compressibility correction to pro-
vide more accurate results at higher subsonic Mach numbers. The program is particularly suited to low
Reynolds number4 airfoils, which is why it is often used for design and analysis (the program supports
both) of unmanned or micro aerial vehicles (e.g. Ahn and Lee (2012)).

A user manual to the current version (6.9) is available (Drela and Youngren, 2001). In addition, Drela
(1989) outlines the theoretical formulations of XFOIL. Unless indicated otherwise, the information in the
remainder of this section is based on these references.

Flow model
XFOIL includes both an inviscid and a viscous formulation, treated in the following sections.

Inviscid formulation
The inviscid flowfield is composed from a freestream flow, a vortex sheet (on the surface of the airfoil)
and a source sheet (on both the surface of the airfoil and the wake). The vortex strength on each panel
varies linearly, whereas the source strengths on the airfoil are constant per panel. In the wake, the
source strengths vary linearly. The panels themselves are flat, with the amount user-specified (default
160) and more panels placed in regions of higher curvature. The trailing edge gap is closed by a vertical
panel, on which a source and a vortex singularity are placed. The Kutta condition (𝛾ፓፄ = 0) is modelled
as 𝛾ኻ + 𝛾ፍ = 0, with 𝛾ኻ and 𝛾ፍ corresponding to the TE-most point on the upper and lower surface,
respectively. If the trailing edge is sharp (i.e., without trailing edge gap), the aforementioned procedure
will not work and the Kutta condition is applied by summing the weighted averages of the three TE-most
vortices on both surfaces. Figure 4.1 illustrates this.
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Figure 1: Airfoil and wake paneling with vorticity and source distributions, with trailing edge detail. 

2 Inviscid Formulation 

Numerous two-dimensional panel methods have been developed in the past [8,9,10], all being more or 
less successful for inviscid analysis of arbitrary airfoils. The present linear-vorticity stream.function for­
mulation is designed specifically for compatibility with an inverse mode, and for a natural incorporation 
of viscous displacement effects. 

A general two-dimensional inviscid airfoil flowfi.eld is constructed by the superposition of a freestream 
flow, a vortex sheet of strength "Y on the airfoil surface, and a source sheet of strength u on the airfoil 
surface and wake. The streamfunction of this configuration is given by 

w(x, y) = UooY - VooX + _!_ I "'f(S) ln r(.Sj x, Y) ds + _!_ I U(S) O(s; x, Y) ds 
2~ 2~ 

(1) 

where s is the coordinate along the vortex and source sheets, r is the magnitude of the vector between 
the point at .s and the field point x, y , () is the vector's angle, and u 00 = q00 cos a , v00 = q00 sin a are the 
freestream velocity components. 

The airfoil contour and wake trajectory are discretized into flat panels, with N panel nodes on 
the airfoil, and Nw nodes on the wake as shown in Figure 1. Each airfoil panel has a linear vorticity 
distribution defined by the node values "Yi (1 ::; i::; N). Each airfoil and wake panel also has a constant 
source strength Ui (1::; i::; N+Nw-1) associated with it. These source strengths will be later related 
to viscous layer quantities . 

A panel of uniform source strength uTB and vortex strength "YTm must be also be placed across the 
airfoil trailing edge gap if it has a finite thickness. For smooth fl.ow off the trailing edge, the trailing 

edge panel strengths uT1!1 , "YTm , must be related to the local airfoil surface vorticity by 

(2) 

where s is the unit vector bisecting the trailing edge angle, and i is the unit vector along the trailing 
edge panel as shown in Figure 1. 

For the airfoil with flat panels, equation (1) evaluates to the following expression for the streamfunc­

tion at any field point x, y. 

• 
W(x, y) 

1 N+N.,,-1 

- UooY - VooX + 4- L we; (X, Y) 2ui 
~ i=l 

l N-1 

+ 
4

~ ~ wr(x,y) bi+i + "Yi) + wr(x, Y) bi+i - "Yi) 

+ 4~(WN(X,Y)lsxil + wJ,+(x,y)ls • il)b1-"YN) 

2 

(3) 

Figure 4.1: Airfoil and wake panels in XFOIL, showing panel numbering and singularity distributions (Drela, 1989, p. 2)

Inviscid vortex strengths are found by combining vorticity distributions at freestream angles of attack of
4Definitions what ‘low’ is, however, differ substantially. Drela (1989) describes these as ጾ ኺ.኿ ⋅ ኻኺᎸ, others range from ‘below ኻኺᎷ’
to ‘ኻኺᎸ and higher’ (Morgado et al., 2016; Mushynski and Jon, 2017; Castegnaro, 2017; Fernandes et al., 2014; Van Treuren,
2015).
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0° and 90°, calculated by XFOIL itself, as shown in Equation (4.1):

𝛾። = 𝛾ኺᑚ cos 𝛼 + 𝛾ዃኺᑚ sin 𝛼 (4.1)

Viscous formulation
The viscous calculation method is largely identical to an earlier code called ISES, also developed by
Drela (Drela and Giles, 1987a; Giles and Drela, 1987), improved with a new boundary layer formulation
for blunt trailing edges. The methodology implemented in both codes, documented in Drela and Giles
(1987b), is a two-equation integral formulation, based on dissipation closure. Although integral formu-
lations (solving one or more ODEs) are usually regarded as less accurate than formulations based on
differential techniques (solving a set of PDEs), the former are easier to solve and less computationally
expensive – an important asset to an iterative design tool. The two equations used in the XFOIL code
are shown in Equations (4.2) and (4.3):

𝑑𝜃
𝑑𝜉 + (2 + 𝐻 −𝑀

ኼ
፞ )

𝜃
𝑢፞
𝑑𝑢፞
𝑑𝜉 =

𝐶፟
2 (4.2)

𝜃𝑑𝐻
∗

𝑑𝜉 + [2𝐻∗∗ + 𝐻∗ (1 − 𝐻)] 𝜃𝑢፞
𝑑𝑢፞
𝑑𝜉 = 2𝐶ፃ − 𝐻∗

𝐶፟
2 (4.3)

Equation (4.2) shows the von Kármán momentum integral equation; Equation (4.3) the kinetic energy
shape parameter equation, derived in Drela (1985). In this set of equations, 𝐻∗ (the kinetic energy shape
parameter), 𝐻∗∗ (the density shape parameter), 𝐶፟ (the skin friction coefficient) and 𝐶ፃ (dissipation co-
efficient) are unknown, but assumed dependent on 𝐻፤ (the kinematic shape parameter with constant
density across the boundary layer), 𝑀፞ (Mach number at the end of the boundary layer) and 𝑅𝑒᎕ (mo-
mentum thickness Reynolds number). 𝐻፤ is related to the regular shape parameter 𝐻 and 𝑀፞ as given
in Equation (4.4) (Whitfield, 1978)5:

𝐻፤ =
𝐻 − 0.290𝑀ኼ፞
1 + 0.113𝑀ኼ፞ (4.4)

Laminar flow In laminar flow, straight-line approximations to the Falkner-Skan one-parameter profile
family are used to establish 𝐻∗ = 𝐻∗(𝐻፤), 𝐶፟ = 𝐶፟(𝐻፤ , 𝑅𝑒᎕) and 𝐶ፃ = 𝐶ፃ(𝐻∗, 𝐻፤ , 𝑅𝑒᎕), further detailed
in Drela and Giles (1987b) (Coder and Maughmer, 2014). An expression for 𝐻∗∗ is derived by Whitfield
(1978, Eq. (46)) (using the symbol 𝐻᎑∗∗ ) for a turbulent flow, but is also used in the laminar case as “𝐻∗∗
has a fairly small effect in transonic flows and is negligible at low subsonic speeds” (Drela and Giles,
1987b, p. 1349). It is shown in Equation (4.5):

𝐻∗∗ = ( 0.064
𝐻፤ − 0.8

+ 0.251)𝑀ኼ፞ (4.5)

Turbulent flow For turbulent flows, different closure relations are used, based on Swafford (1980, Eqs.
(12), (30)). These hold for a separated, turbulent boundary layer and assume a smooth, impermeable
and adiabatic wall. With this approach, 𝐻፤ becomes a function of 𝑅𝑒᎕, 𝐻፤ itself and 𝐻ኺ, a function of 𝑅𝑒᎕.
The contributions to dissipation of the wall layer (scaling with 𝐶፟) and the wake layer (scaling with 𝐶Ꭱ)
are summed in 𝐶ፃ. As the Reynolds stresses respond somewhat slower to changing conditions, a lag
is introduced using the rate equation shown in Equation (4.6). This equation, used in XFOIL, is different
from the one used in ISES (documented in Drela and Giles (1987b)) and has yielded better lift and drag
predictions near stall conditions (Drela, 1989).

5Whitfield (1978) uses the symbol ፇᒉ∗ for ፇ and ፇ̄ for ፇᑜ. Equation (4.4) is obtained by rewriting Equation (44) in Whitfield (1978)
for ፇ̄.
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𝛿
𝐶Ꭱ
𝑑𝐶Ꭱ
𝑑𝜉 = 5.6 (√𝐶Ꭱᐼᑈ −√𝐶Ꭱ) + 2𝛿 (

4
3𝛿∗ [

𝐶፟
2 − (𝐻፤ − 16.7𝐻፤

)
ኼ
] − 1

𝑢፞
𝑑𝑢፞
𝑑𝜉 ) (4.6)

Since version 6.99, the shear lag constant (5.6) and weight (6.7) can be user-adjusted (Drela and Youn-
gren, 2013b).

Transition The transition point is predicted based on Orr-Sommerfeld spatial amplification theory.
Whereas the full 𝑒፧ method (van Ingen, 1956) assumes transition to occur when the most unstable
Tollmien-Schlichting wave has grown by a factor of 𝑛 (in case of XFOIL, the default value is 9, yield-
ing 𝑒ዃ ≈ 8100), XFOIL uses an envelope method (van Ingen, 2008; Lasauskas and Naujokaitis, 2009;
Morgado et al., 2016). This does not track the amplification of individual Tollmien-Schlichting waves, but
gives the total amplification at a point – that is, the amplitude of the frequency that is most amplified at
that location. It is computationally less expensive than the full method, but also somewhat less accurate
(Dini et al., 1992).

The actual growth is modelled by Equation (4.7), in which the terms on the right hand side of the equation
are empirically determined from solutions to Orr-Sommerfeld equation (first term) and from properties of
the Falkner-Skan family of profiles (second term) (Drela and Giles, 1987b; Drela, 1989). These expres-
sions are shown in Drela and Giles (1987b, Eqs. (29), (32)-(35)).

𝑑𝑛̃
𝑑𝜉 =

𝑑𝑛̃
𝑑𝑅𝑒᎕

(𝐻፤) ⋅
𝑑𝑅𝑒᎕
𝑑𝜉 (𝐻፤ , 𝜃) (4.7)

𝑛̃ is the logarithm of the amplification factor. Rather than directly integrating 𝑑𝑛̃ with respect to 𝑑𝜉,
Equation (4.7) is discretized and solved for 𝑛̃, which is treated as a boundary layer variable.

Besides transition, XFOIL is able tomodel separation (Drela, 1989; Fernandes et al., 2014). This includes
separation bubbles.

Wake Only turbulent wakes are considered, as laminar wakes do not occur in the flows considered
(Drela and Giles, 1987b). In ISES, the wake consists of two boundary layers without wall shear (Drela
and Giles, 1987a). XFOIL, however, treats the wake “as one viscous layer so that only one 𝜃 and one
𝛿∗ variable is present at each wake station” (Drela, 1989, p. 7). Initial momentum and displacement
thicknesses are found by summing the upper and lower trailing edge values. 𝐶Ꭱ is obtained by taking a
𝜃-weighted average of upper and lower surface values.

Viscous / inviscid coupling
At the core of the viscous-inviscid interaction method used in XFOIL are two separate flow regimes,
discussed in the previous sections, that meet at the boundary layer edge (indicated with subscript ( )፞).
At the airfoil surface, 𝑢፞ is set equal to the vorticity (𝛾 on the suction side, −𝛾 on the pressure side) at
each panel. In the wake, 𝑢፞ is equal to the gradient of the stream function component normal to the
wake. With the notion that the strength of the source is equal to the gradient of the mass defect at each
panel, 𝑢፞ can be expressed as shown in Equation (4.8):

𝑢፞ᑚ = 𝑢ፈፍፕᑚ +
ፍዄፍᑨዅኻ

∑
፣዆ኻ

𝑑።፣𝑚፣ ; 1 ≤ 𝑖 ≤ 𝑁 + 𝑁፰ (4.8)

In this equation, 𝑢ፈፍፕᑚ is the edge velocity distribution without viscous effects, 𝑑።፣ is the mass-influence
matrix (determined by the geometry of the airfoil and wake, as well as freestream angle of attack) and𝑚፣
the mass defect at panel 𝑗. 𝑁 and 𝑁፰ are the number of grid points on the airfoil and wake, respectively.
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Solution procedure
Solving the viscous system of equations requires finding values for 𝜃, 𝛿∗ and a third variable – 𝐶Ꭱ in
case of turbulent flows, 𝑛̃ in case of a laminar boundary layer. The corresponding three coupled and
non-linear equations are the momentum equation (Equation (4.2)), the kinetic energy shape parameter
equation (Equation (4.3)) and either the lag equation shown in Equation (4.6) (turbulent case) or the
amplification equation shown in Equation (4.7) (laminar case). Discretisation is done using two-point
central differencing (Drela, 1989), or a hybrid between that and backward Euler in case of Equation (4.3),
due to numerical difficulties otherwise coming into play (Drela and Giles, 1987b). The transition interval
is treated as two subintervals, with the boundary layer variables obtained through interpolation of the
values at neighbouring grid points. Right after transition, √𝐶Ꭱ is set to 70% of its equilibrium value.

Shifting attention to the coupled inviscid / viscous system, the fact that Equation (4.8) is an explicit ex-
pression forms a solvable set of equations when combined with Equations (4.2), (4.3) and (4.6) or (4.7).
It is solved by a full Newton method, which yields fast solution times given the regular grids used.

Output
XFOIL output consists of pressure distributions and polars, the latter specifying lift coefficient, drag co-
efficient (total and pressure drag, such that friction drag can be readily computed as 𝐶ፃᑗ = 𝐶ፃ − 𝐶ፃᑡ),
moment coefficient and transition locations on the top and bottom surface. Both pressure distribution and
polars can be shown on screen and written to file. XFOIL also provides some basic graphing capabilities,
with the ability to save plots to file.

Results
The accuracy of XFOIL is well recognised (Morgado et al., 2016; Selig, 2003) and the program has
proven its performance (Ben Mosbah et al., 2016; Madsen and Filippone, 1995; Coutu et al., 2010) as
an “excellent airfoil design and analysis tool”, which is substantially easier to use than more complex
CFD-codes (Morgado et al., 2016, p. 212). The transition from laminar to turbulent flow is well-predicted
(Ben Mosbah et al., 2016). Bodling et al. (2017, p. 11) however note that XFOIL assumes instantaneous
transition, whereas higher-order methods show transition behaviour over a finite distance. Nevertheless,
a comparison with experimental results of a NACA 0012 profile shows XFOIL predicting the pressure
distribution “remarkably well”. Despite these results, others (using a NACA 4415 airfoil) note a 10%
difference between experimental and computer pressure values (Popov et al., 2009).

In describing separation, various authors note some shortcomings to the program. The separation point
predicted by XFOIL does not always match higher-fidelity codes, which causes XFOIL to predict the
stall angle less accurately (Ahn and Lee, 2012). In Venters and Helenbrook (2013) and Maughmer and
Coder (2010), separation is predicted later than it occurs in experiments. Accuracy in the stalled regime
is therefore also reduced (de Oliveira et al., 2012; Lasauskas and Naujokaitis, 2009; Fuglsang et al.,
2016). Compared to experiments and/or more advanced solvers, accurate predictions are observed for
the linear part of the lift, drag and moment polars (Ahn and Lee, 2012; Coder and Maughmer, 2014;
Ferrer and Munduate, 2009; Lasauskas and Naujokaitis, 2009), although Castegnaro (2017) notes a
general overprediction of 𝑐፥, which reduces with increasing Reynolds number. Multiple authors agree on
the notion that 𝑐፥,፦ፚ፱ is regularly overpredicted, as illustrated in Figure 4.2 (Coder and Maughmer, 2014;
Venters and Helenbrook, 2013; Lasauskas and Naujokaitis, 2009; Fuglsang et al., 2016; Maughmer
and Coder, 2010). Vaithiyanathasamy et al. (2018) explain this behaviour by the fact that the empirical
closure relations used by XFOIL assume equilibrium flow and therefore are not suited for describing the
complex vortex shedding behaviour observed in separated flow. Related to this are some concerns of
underpredicted values for 𝑐፝, especially (but not strictly limited to) thicker airfoils, such as those used
in wind turbines (Ramanujam et al., 2016; Kirk et al., 2014; Maughmer and Coder, 2010). In case of
a NACA 633-418 airfoil, a 12% underprediction at the minimum drag point was observed (Ramanujam
et al., 2016). This is supposedly caused by the limitations of the viscid-inviscid interaction method,
underpredicting the boundary layer momentum thickness.



30 4. Overview of solvers

much better than OVERFLOW in predicting the break in linearity.
PROFIL predicts the pitching moment to be more negative than was
measured but does accurately predict when the curve deviates from
the linear region.

C. PSU 94-097

ThePSU94-097 airfoil was designed for use as awinglet airfoil for
high-performance sailplanes [34]. Its design was motivated by the
observation that a winglet does not operate the same as a wing and
that an airfoil specifically tailored for this purpose should result in
performance gains. The PSU 94-097 was designed to have a high-
maximum-lift coefficient along with low-drag performance over the
entire operating range. The desired Reynolds-number range of this
airfoil is from 0.07 × 106 (winglet tip in low-speed flight) to 1.0 ×
106 (winglet root in high-speed flight).
In Fig. 8, the Pennsylvania State University wind-tunnel mea-

surements for R � 0.24 × 106 are compared with those predicted
by the theoretical methods. All three methods again agree well with
the experiment in the linear region of the lift curve. XFOIL and
OVERFLOW overpredict and PROFIL slightly underpredicts the
maximum lift coefficient, with PROFIL being the most accurate
of the three for this quantity. For the drag coefficient, both XFOIL
and PROFIL agree reasonably well with each other and with the
experiment, although both tend to underpredict the drag coefficient at
the higher lift coefficients of the low-drag region. As with the E 387
predictions, PROFIL slightly underpredicts the lift coefficient for the
upper corner of this region, whereas OVERFLOW captures the lift
coefficient of the corner well but significantly overpredicts the drag
coefficient. The smearing effect in the OVERFLOW predictions is

very similar for the E387 and PSU 94-097, suggesting a Reynolds-
number effect. Unlike the E 387 case, OVERFLOWmispredicts the
drag-coefficient behavior at the lower corner of the low-drag region
for the PSU 94-097. In this case, OVERFLOW has the low-drag
region beginning more abruptly and at a lower lift coefficient than is
observed in the wind-tunnel results. The pitching-moment predic-
tions show that XFOIL and OVERFLOW both do a very good job
over the entire range, whereas PROFIL shows some slight deviations.
A curiosity of the PROFIL predictions is that they agree very well
when the airfoil is operating below the low-drag region, yet less so in
the low-drag region. This may be a result of the lack of interaction
between the boundary layer and the outer-flow in the PROFIL
solution.

D. HTR1555

The HTR1555 was designed by the U.S. Army Aeroflightdy-
namics Directorate (AFDD) for the inboard rotor airfoil for a military
heavy tiltrotor [35]. Although this airfoil was developed using a
version of the PROFIL code (which was used to design every other
airfoil in this study), it is unique in that it was the only airfoil that was
designed through the use of a numerical optimizer. The airfoil design
is intended to operate at lowMach numberswith a desiredmaximum-
lift coefficient of 2.0 and low drag at near zero-lift coefficients.
The aerodynamic characteristics forR � 2.0 × 106 as predicted by

the theoretical methods employed here are compared in Fig. 9 with
those measured experimentally. XFOIL showed the best overall
agreement with the experiment for the lift, as it captured both the
zero-lift angle of attack and nonlinearities very well up to stall.
OVERFLOW predicted a slightly more negative zero-lift angle of
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Figure 4.2: Comparison of lift and drag coefficient for the HTR 1555 inboard rotor airfoil (at ፑ፞ ዆ ኼ.ኺ ⋅ ኻኺᎸ) as predicted by XFOIL
and found in experiment, illustrating good agreement on the linear part of the lift slope, the overprediction of maximum lift coefficient
and the underprediction of drag coefficient by XFOIL (Coder and Maughmer, 2014, p. 188), experimental data from Maughmer
and Somers (2007)

4.1.2. Viscous Garabedian and Korn (VGK)

VGK (short for viscous Garabedian and Korn, after Garabedian and Korn (1971)) is a “computational
method for determining two-dimensional transonic attached flow past a lifting aerofoil immersed in a
subsonic freestream” (Freestone, 2004, p. 6). It includes both inviscid and viscous formulations and
although the program is limited to single-element airfoils, it can also be used for analysis of airfoils with
deflected control surfaces. Furthermore, the code predicts the effects of shock waves. The program is an
implementation of the full potential equations for steady compressible flow, which are solved using a finite
difference method. VGK has been developed by the Royal Aircraft Establishment / Defence Evaluation
and Research Agency (RAE / DERA), but is currently commercially licensed by QinetiQ (QinetiQ). First
publications about the program stem from 1996 (Freestone, 2004), although Atkin and Gowree (2012)
state development goes back to the late 1970s and reports from the 1980s indeed also mention the
program (Blockley and Hodges, 1982).

In addition to the commercial license, the software and extensive documentation is also available through
IHS ESDU (data items 96028, 96029, 97030, 98031, 99032, 01033 and 03015) (Freestone, 2004, 2010,
2011, 1998, 1999, 2001; Innes et al., 2004), of which especially Freestone (2004) and Freestone (2010) (a
report on the underlying principles and a MS-DOS user manual) have proven insightful. Unless indicated
otherwise, the information in the remainder of this section is based on these two references.

Flow model
Although VGK was developed for viscous analysis, it also contains an inviscid module. Both, together
with their coupling, are treated in the next sections. As the flow is modelled using the full potential
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equation (assuming irrotational flow), the program is limited to small shocks. According to Freestone
(2004), the results are valid for flows in which the Mach number just before the shock wave is lower than
1.3, a number also identified by Holst (2000) as a limiting value for potential theory. Any shocks are
assumed to be isentropic.

Inviscid formulation
As VGK solves the full (non-linearised) potential equation, there are no elemental flows from which the
inviscid flowfield can be made up. Instead, the full potential equation is simply solved on the grid, dis-
cussed later in this section. In order to fix the solution, a boundary condition is set that enforces a
non-zero normal velocity at the inviscid surface, to allow for the growth of the boundary layer. Also, a
jump in velocity is set across the streamline dividing the viscous and inviscid regions.

Viscous formulation
In the viscous formulation, five boundary layer parameters are computed. These are the boundary-layer
thicknesses 𝛿 (thickness, only in case of a turbulent boundary layer), 𝛿∗ (displacement thickness) and
𝜃 (momentum thickness), the transformed boundary layer shape parameter 𝐻̄ and the local skin friction
coefficient 𝑐፟. These values are found for both surfaces (upper and lower), as well as in the wake. The
methods employed to find these parameters differ between the cases of laminar and turbulent flows.

The overall drag is determined from either a near-field or a far-field approach. The former method is
based on summing the drag contributions from the surface pressures and the surface shear stresses,
whereas the latter adds viscous and wave-drag contributions. The viscous drag coefficient is determined
from the momentum thickness of the wake, the wave drag is calculated using either of two methods (the
first-order method or the improved method), documented in Lock (1995). Normally, the far-field method
is more accurate, due to the difficulty associated with accurately determining the surface pressure. How-
ever, for flows with significant wave drag, the wave drag determination might yield greater inaccuracies.

Laminar flow The laminar boundary layer is calculated using the method of Thwaites (1949), start-
ing from the stagnation point, where the momentum thickness can be fixed. Thwaites focuses on an
approximation of the skin friction and momentum or displacement thickness, rather than on the velocity
distributions. Derivations can be found in Moran (1984, Sec. 7.5) or Vos and Farokhi (2015, Sec. 6.5.2),
but the result of the method is Equation (4.9a), which can be related to a newly defined pressure gradient
parameter in Equation (4.9b). This can then be used to compute the shear stress parameter and shape
factor through empirical relations (Vos and Farokhi, 2015).

𝜃 = √0.45𝜈𝑢ዀ፞ ∫
፱

ኺ
𝑢኿፞𝑑𝑥 (4.9a)

𝜆 = 𝜃ኼ
𝜈
𝑑𝑢፞
𝑑𝑥 (4.9b)

This method is however an incompressible method. Using the Stewartson-Illingworth transformation
(Stewartson, 1949), the real (compressible) problem can be transformed into an incompressible one,
such that application of the aforemetioned method is warranted – also if density cannot be assumed
constant. This transformation itself, however, is only applicable to boundary layers that are thermally
insulating, or in which the viscosity varies as the absolute temperature and the Prandtl number of the
flow is unity (Stewartson, 1949). These limitations are therefore also applicable to problems analysed in
VGK.

Turbulent flow The turbulent boundary layer is analysed in VGK using the ‘lag-entrainment’ method,
which holds for two-dimensional, axisymmetric, adiabatic and compressible flow (Green et al., 1977,
1973). Entrainment is the process in which flow from outside the (turbulent) boundary layer moves
inside the boundary layer – causing it to grow – due to turbulent mixing (Head, 1958; Moran, 1984). This
method consists of solving three simultaneous (ordinary) differential equations: the momentum-integral



32 4. Overview of solvers

and entrainment equations are the same used in the method from which the current method was derived
(Head, 1958); a new ‘lag’-equation is derived from the turbulent kinetic energy equation (which, in turn,
follows from the Navier-Stokes equations (Green et al., 1977)).

Transition There is no transition model incorporated in VGK. Instead, the transition location is user-
specified on both surfaces. An exception to this is the situation in which laminar separation is predicted,
based on the local skin-friction coefficient reducing below a threshold value of 2 ⋅ 10ዅዀ. In that case, a
transition to turbulent flow is assumed to occur at that point – if the flow was not already turbulent at this
location due to a user-specified transition location upstream.

When the above threshold is reached, separation is also assumed, as true separation calculations are
beyond the capabilities of the program. For separated flow, the local skin-friction coefficient is fixed at the
threshold value, in order to allow the attached-flow boundary-layer calculation to continue to the trailing
edge of the surface. If this happens, it is noted in the log file. The results should not be substantially
impacted if this artificial skin-friction coefficient is set at only one or two grid points. (BVGK, which is a
further development based on VGK, is able to deal with separation, as long as these regions are small.)

Wake The wake is formed by the extension of the upper and lower surface boundary layers, that join
downstream from the trailing edge. A boundary condition prescribes a jump in velocity across the dividing
streamline to allow for wake thickness and curvature. Rather than determining the exact location of the
wake far downstream and calculating the relevant parameters at that location, VGK approximates these
values by computing them at the grid line(s) running downstream from the trailing edge. This is based on
the assumption made in the program that variations of Mach number and pressure along such a grid line
correspond to these same variations along the wake. Contrary to in the boundary layer, the skin friction
coefficient in the wake is 0.

Viscous / inviscid coupling
VGK employs a so-called direct method of coupling the viscous and inviscid flow elements, as described
in Lock andWilliams (1987). Although its name might suggest otherwise, this viscous-inviscid interaction
method too is an iterative procedure. It starts by estimating the source strength at a particular grid point,
from which a velocity gradient can then be computed. This velocity gradient, in turn, is used to compute
the development of the boundary layer, from which a boundary layer growth rate can be determined. This
is then fed back to the inviscid computation, which is restarted. The scheme reaches convergence when
the difference between the boundary layer interface location estimated by the two calculation methods
(inviscid and viscous) is diminished.

Solution procedure
Rather than taking a rectangular grid, VGK maps the infinite flow region outside the profile conformally
onto the inside of a circle (Catherall et al., 1969; Blockley and Hodges, 1982). This mapping is not exact,
as the grid points are an interpolation between the coordinates of the airfoil being analysed. Given
enough grid points, the differences between the original geometry and the interpolation are small. Still,
these differences might reduce accuracy of the boundary conditions at the airfoil surface. The number of
grid points can be user-specified. Figure 4.3 shows the physical and computing planes, illustrating the
conformal mapping.

The partially-conservative finite difference equations are solved using a relaxation method (Collyer and
Lock, 1978). In each new iteration, the potential at the grid points is recalculated and compared with the
previous value, until the difference is sufficiently small. The relaxation factor, which is a setting that can
be adjusted by the user, controls the convergence rate. The flow solution is deemed converged when
the grid differences (or residuals) are so small that further updates to the grid values do not substantially
impact the value of the flow parameters in the solution. Central differencing is used or subsonic regions;
backward differencing for supersonic part of the flow.
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n =1

m = 81

m = 1
m = 161

m increasing

(a) Physical plane

m = 81 corresponds to θc = �

n = 1, corresponds to r = 1 and transformed aerofoil
(n = 31 corresponds to origin and physical 'infinity')

m increasing

(b) Computing plane (radial lines omitted near origin for clarity)

Figure 4.3: Physical and computing planes in VGK (Freestone, 2004, p. 7)

Output
The output of VGK is saved in binary files, as documented in Freestone (2010). Both a brief and a full
version of the results are available. The brief version consists of a pressure distribution, lift, drag and
moment coefficients for a specified angle of attack. In case the lift coefficient is fixed, the output includes
the corresponding angle of attack. In the inviscid case, the drag coefficient is the pressure drag coef-
ficient, whereas in the viscous formulation, the skin friction drag, the viscous drag coefficient (obtained
using the far-field method discussed earlier) and the two wave drag coefficients are also included.

The full output adds to this the first- and second-order derivatives of the airfoil geometry (𝑑𝑧/𝑑𝑥 and
𝑑ኼ𝑧/𝑑𝑥ኼ), a set of coordinates in the physical and computing planes, the value of 𝑝/𝑝ኺ (local static
pressure of freestream stagnation pressure) and the local Mach number at the edge of the boundary-
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layer 𝑀፞. Besides these values on the airfoil surface, they are output for the wake – separately for the
upper and lower surface. In viscous runs, VGK also saves upper and lower surface boundary layer data
(shape factor, displacement thickness, momentum thickness, local skin-friction coefficient and, in case
of a turbulent one, boundary layer thickness) to the full results file.

Results
Blockley and Hodges (1982, p. 7) described VGK as the “most accurate viscous transonic flow method
currently available” and quote Ashill and Weeks (1978) reporting on good agreement between computa-
tional and experimental results. Although the method has been improved upon a number of times since
then (Atkin and Gowree, 2012; Blockley and Hodges, 1982), results obtained using the original VGK
method still have good accuracy, as long as the applicable flow type and domain (attached boundary
layer, 𝑀 < 1.3) are respected (Padulo et al., 2009; Freestone, 2004). Due to the viscous-inviscid inter-
action method, VGK is limited in accurately describing separated flow (i.e. the post-stall region) (Atkin
and Gowree, 2012). The theory document itself (Freestone, 2004) supports these conclusions – both the
accuracy at lower Mach numbers and the rising inaccuracy at higher speeds. Atkin and Gowree (2012)
state the lag-entrainment method employed by VGK matches more advanced RANS turbulence models
in describing the history effects in turbulent boundary layers and VGK even outperforms current (2012)
RANS-codes in predicting the flows around the stagnation point.

Some results from the comparisons with experimental data are shown in Figure 4.4. In case of two drag
computed drag values computed by VGK (corresponding to the first-order or the improved method),
these have been averaged. Figure 4.4a shows incidence angle underpredicted at equal lift coefficient –
equivalent to the overprediction of lift at constant incidence angle resulting from the Euler-comparison.
Similarly, Figure 4.4b shows an underprediction of pitching moment coefficient and Figure 4.4c shows
that drag coefficient is underpredicted too. These three graphs, all from the same set of experiments
with largely comparable supercritical, 14% thick airfoils with forced transition at 0.05𝑐 show the errors
reduce with increasing Reynolds number (dashed lines versus dotted lines). This can be explained
by the fact that with increasing Reynolds number, flow separation is prevented or delayed. If the lift
coefficient increases, the absolute deviation in incidence angle increases, whereas it decreases in a
relative sense. Differences with respect to drag and moment coefficients are largely unaffected by lift
coefficient or incident angle. In all cases shown in these figures, the strength of shock waves was slightly
underpredicted, and their location somewhat aft. Other than that, pressure distribution predictions are in
good agreement, with the exception of some airfoil parts facing rearward or trailing edge separation.

Figure 4.4d shows a different result: less consistent underprediction of 𝑐፝ and an increasing error with
higher 𝑐፥. This might be caused by the lower Reynolds number (𝑅𝑒 = 3⋅10ዀ) or the thinner (12.3% versus
14%) airfoil. Figures 4.4e and 4.4f show the difference in drag coefficient compared to that Boeing A4
supercritical airfoil, compared to lift coefficient and Mach number. Both generally indicate overprediction
of drag, which seems to worsen with increasing 𝑐፥ – especially at higher Mach numbers (Figure 4.4e).
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Figure 4.4: Comparison of incidence angle, moment coefficient and drag coefficient as predicted by VGK and found in experiment.
Data computed from Freestone (2004, Sec. 6), experiment identifiers unchanged.
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Figure 4.4: Comparison of incidence angle and drag coefficient as predicted by VGK and found in experiment. Data computed
from Freestone (2004, Sec. 6), experiment identifiers unchanged. – continued
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4.1.3. MSES

MSES (Analytical Methods, 2018a; MIT Technology Licensing Office, 2018; Drela, 1994, 1990) is a 2D
airfoil design and analysis tool, available under a commercial licence and as open source program for
research purposes (Florjancic, 2015). The program is an updated version of the ISES code (Greer
et al., 2000) and uses an Euler flow model, solved using a finite volume method, allowing it to perform
computations at transonic Mach numbers so it can predict “transitional separation bubbles, shock waves,
trailing edge and shock-induced separation” (Drela, 1994, p. 1). The code is built for the design and
analysis of multi-element airfoils, but can also be used for single-element profiles. As XFOIL, MSES was
developed by Mark Drela and Harold Youngren at MIT and has been around since at least 1994 (Drela,
1994), with methodological papers going back to 1990 (Drela, 1990).

A user manual to the current version (3.05) is available (Drela, 2007). Unless indicated otherwise, the
information in the remainder of this section is based on that reference.

Flow model
The flow model closely follows the XFOIL code, described in Section 4.1.1, with the difference that MSES
solves the Euler equations (Section 2.3) rather than using a potential method. It supports analysis using a
Neumann boundary condition and design efforts using a Dirichlet boundary condition (Drela, 1994; Giles
and Drela, 1987). Far-field boundary conditions follow from the method of characteristics and allow for
representing an airfoil in a wind-tunnel (solid wall) or freejet (constant pressure outer surfaces), or in
isolation (Drela, 1990; Giles and Drela, 1987).

Inviscid formulation
The software uses a finite-volume discretisation which is solved on an “intrinsic streamline grid” (Drela,
1994, p. 1). The conservative formulation makes sure that shocks are treated properly (Giles and Drela,
1987). The equations solved are the steady forms (i.e., partial derivatives with respect to 𝑡 are zero) of
Equation (2.4) (continuity equation), Equation (2.8) (momentum equation, without body forces, i.e. 𝑓፱, 𝑓፲
and 𝑓፳ equal to 0) and Equation (2.9) (energy equation) (van Craenenbroeck, 2016).

Viscous formulation
The model and computations used for describing the boundary layers and wake (two-equation integral
formulation, based on dissipation closure) are very similar – if not partially identical – to the viscous
formulation in XFOIL and ISES (Drela and Youngren, 2001; Drela and Giles, 1987a). The flow solution
in the viscous domain is obtained by solving Equations (4.2) (von Kármán momentum integral equation),
(4.3) (kinetic energy shape parameter equation) and a rate equation depending on the flow domain (van
Craenenbroeck, 2016; Merchant and Drela, 1996)6.

Laminar flow In laminar flow, the Falkner-Skan one-parameter profile family is used. This is further
described in Section 4.1.1 and in even greater detail in Drela (1985, Sec. 6.2).

Turbulent flow In turbulent flow, the shear lag equation shown in Equation (4.10) is used (van Crae-
nenbroeck, 2016).

𝜕
𝐶Ꭱ
𝑑𝐶Ꭱ
𝑑𝜉 = 4.2 (√𝐶Ꭱፄፐ −√𝐶Ꭱ) + (

2𝛿
𝑢፞
𝑑𝑢፞
𝑑𝜉 )፞፪

− (2𝛿𝑢፞
𝑑𝑢፞
𝑑𝜉 ) (4.10)

This seems a hybrid of the equations used in Drela and Giles (1987b, Eq. (22)) (used in XFOIL, Equa-
tion (4.6)) and the lag equation by Green et al. (1977, Eq. (21)). It adopts the shear lag constant (4.2)
from Drela and Giles (1987b), but replaces the second right-hand term by the term found in Green et al.
(1977).

6Merchant and Drela (1996, Eq. (3)) lack multiplication of ፝ፇ∗/፝᎛ with ᎕. Based on other references (e.g. van Craenenbroeck
(2016) and Drela and Giles (1987b)) this is assumed to be a mistake.



38 4. Overview of solvers

Transition MSES uses the same envelope method for transition prediction as XFOIL and ISES (Coder
et al., 2014; Drela, 2003; Lasauskas, 2005), described in Section 4.1.1. In version 3.00, the program
was extended to include the full 𝑒፧-method for transition prediction (Drela, 2003), in contrast to XFOIL.
However, as this was not “deemed reliable enough” (Drela, 2013), the solution is still obtained using the
envelope method7 – with the full 𝑒፧ method running in the background, so that the program is able to
show what the individual frequencies would have been if the full 𝑒፧ method was used (Lasauskas, 2005).

Viscous / inviscid coupling
The viscous-inviscid interaction is achieved via the displacement thickness (Drela, 1994; van Craenen-
broeck, 2016). The wall boundary condition is adjusted to allow for this (Giles and Drela, 1987). The
viscous and inviscid flows are solved simultaneously in one set of equations, circumventing the need for
back-and-forth iteration (Florjancic, 2015).

Solution procedure
MSES uses a finite volume discretisation on a grid that conforms to the inviscid streamlines of the flow
(themselves computed using a 2D panel method) (Florjancic, 2015). Grid spacing can be user-specified,
but is smaller in regions of high curvature by default (Drela, 2007). The set of equations describing the
flow is solved using the global Newton method, further described in van Craenenbroeck (2016) and Drela
(1985).

Coefficients of pressure and friction forces in 𝑥 and 𝑦 direction are found using direct integration over the
surface. Summation over all the elements then yields lift, skin friction drag and pitching moment. The
total viscous drag is subsequently found by looking at the momentum defects in the wake, computed
using Equation (4.11).

𝐶ፃᑧ =
2

𝜌ጼ𝑉ኼጼ
∑[𝜌፞ᑖᑩᑚᑥ𝑢ኼ፞ᏡᏴᏥᏰ𝜃፞፱።፭ (

𝑝ጼ
𝑝፞ᑖᑩᑚᑥ

)
ፇᑒᑧᑘ/᎐ፌᎴᐴ

] (4.11)

The elements with subscript ( )፞፱።፭ are the wake exit quantities. 𝐻ፚ፯፠ is the average shape factor, taking
the average of the shape factors at the end of the wake (𝐻፞፱።፭) and at the freestream (𝐻ጼ).

The wave drag is found as the momentum defect of the streamtubes in the part of the flow that is inviscid.
To this, the static and dynamic pressure at the wake exit are isentropically extrapolated to find their
values at free-stream conditions. Integration over all streamtubes (with a massflow 𝑑𝑚̇), as shown in
Equation (4.12), yields the wave drag.

𝐶ፃᑨ =
2

𝜌ጼ𝑉ኼጼ
∫(𝑉ጼ − 𝑞ዄጼ) 𝑑𝑚̇ (4.12)

The total drag is the sum of the viscous drag given by Equation (4.11) and the wake drag by Equa-
tion (4.12). Substraction of the skin friction drag (obtained from surface integration) then yields the
pressure drag. This is deemed more accurate than finding the pressure drag directly from the surface
pressures (Drela, 2007).

Output
As MSES was not available in the period this literature study was conducted, no information on the type
and format of the output generated by the code is available at this time.

7The developer’s documentation, (Drela, 2013) in this case, is regarded as the leading source. Nevertheless, some authors (e.g.
Driver and Zingg (2007), Maughmer and Coder (2010) and Coder et al. (2014)) report using MSES with the full ፞ᑟ method.
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Results
Although possibly not as popular and widely used as XFOIL, MSES is a widely accepted (Chaparro
et al., 2017) and described as an “excellent tool for the development of single and multi-element airfoil
geometries” (Martin and Simpson, 2006, p. 374). Citing Rumsey and Slotnick (2014), Florjancic (2015)
reports that higher-fidelity codes do not necessarily yield better 𝑐፥,፦ፚ፱-predictions. Published results
show mixed support for this claim. When compared to CFL3D (2D RANS with S-A turbulence model)
and OVERFLOW (3DRANS), some note excellent agreement in terms of predicted pressure distributions
(Fujiwara et al., 2016) and (the linear part of) the lift slope (Coder et al., 2014). On the other hand,
Leifsson et al. (2014) did find differences between MSES and FLUENT (10 drag counts lower in MSES;
5 lift counts higher in MSES). Greer et al. (2000) report a 26% difference in computed lift coefficient
between MSES and a time-accurate laminar Navier-Stokes analysis (Tatineni and Zhong, 1998).

Comparing with experimental data, Fujiwara et al. (2016) observed little difference between theory and
experiment, with the exception of a slightly underpredicted shock strength and slightly forward expected
shock location. Coder et al. (2014) report an overprediction of lift (𝑐፥ , 𝛼-curve, 𝑐፥,ᎎ዆ኺ and 𝑐፥,፦ፚ፱), increas-
ing at higher Reynolds numbers, as do Maughmer and Coder (2010). In these and other studies, 𝑐፦ is
often slightly underpredicted (independent of 𝑅𝑒), and 𝑐፝ is mostly underpredicted, too (Florjancic, 2015;
Omar et al., 1973; Syms, 2006). Coiro et al. (2009) also note a tendency of MSES to over-estimate
lift performance in cases of larger gaps between parts of a multi-element airfoil. The overly optimistic
𝑐፥-values might be explained by the simplified 𝑒፧-envelope transition model (Syms, 2006; Lasauskas,
2005).

4.1.4. Ames Research Center 2D (ARC2D)

ARC2D (short for Ames Research Center 2D) (National Aeronautics and Space Administration) and its
3D counterpart ARC3D are two high-fidelity aerodynamic solvers developed by NASA (Ames Research
Center) in the 1980s (Pulliam, 1984, 1986). The software is based on AIR2D, which was developed
by Steger in 1976 (Pulliam, 1986). The program is suited for both viscous (using Navier-Stokes) and
inviscid (using Euler) as well as steady and unsteady problems (Pulliam, 1986). The flow models are
solved with a finite difference method using the implicit approximation algorithm of Beam and Warming
(1976). Since its inception, the code has seen various upgrades (Pulliam and Steger, 1985; Pulliam,
1986) and has more recently been used as a basis for the CFD solver OVERFLOW, also developed by
NASA (Cummings et al., 2015).

A user manual nor a current version number or program could be obtained, but Pulliam (1986) provides
an description of the theoretical foundations of an early version of the software. It is however unknown
to what extent this still holds for current versions of the program. Still, lacking any other means, the
information in this section is based on the aforementioned reference, unless indicated otherwise.

Flow model
Most literature discussing ARC2D state its basis is formed by a RANS solver (McCroskey et al., 1986;
Guzel et al., 2005; Yoo et al., 1990). Pulliam (1986) however does not make this explicit and shows a
derivation of the flow model used in ARC2D based on the time-dependent NS equations, without time-
averaging these. Similarly, Yoo et al. (1990) and Pulliam and Vastano (1993) discuss using the “full”
Navier-Stokes code. Still, as turbulence models are discussed, it will be assumed that ARC2D is RANS-
based. Another point of confusion arose where most publications mention the thin-layer approximation
made in the code (Pulliam, 1986; McCroskey et al., 1986; Yoo et al., 1990). McCroskey et al. (1986) and
Pulliam (1986), however, also mention an Euler implementation (obtained by neglecting viscous terms
in the RANS equations, without making the thin-layer approximation), whereas Yoo et al. (1990) and
Pulliam (1986) discuss a regular (without thin-layer approximation) Navier-Stokes option as well.

Besides steady problems, time accurate methods can be employed to solve transient problems (Pul-
liam, 1986, p. 14), not unlike the possibilities offered by URANS (Section 2.1.3). In order to capture
shocks accurately, the software uses the strong conservation form of these equations. This is shown in
Equation (4.13):
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𝜕
𝜕𝑡Q+ 𝜕

𝜕𝑥E+
𝜕
𝜕𝑦F = 𝑅𝑒

ዅኻ ( 𝜕𝜕𝑥Ev +
𝜕
𝜕𝑦Fv) (4.13)

In this equation, the vectorsQ (state variables),E,F,Ev andFv are defined as shown in Equation (4.14):
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The first row forms the continuity equation, the second and the third the momentum equation in 𝑥- and
𝑦-direction and the last one the energy equation. Besides the regular variables density, pressure, veloc-
ities, internal energy, and shear stresses, they include the dynamic viscosity 𝜇 (comprised of a constant
viscosity and a turbulent eddy viscosity), the Prandtl number 𝑃𝑟, the ratio of specific heats 𝛾 and the speed
of sound 𝑎. The fact that these equations (especially the right-hand side) cannot be readily rewritten to
the (two-dimensional versions) of Equations (2.1), (2.4) and (2.5) (neglecting kinetic energy and body
forces) presented in Section 2.1 is explained by non-dimensionalisation performed by Pulliam (1986, pp.
6-7) and the equation of state shown in Equation (4.15), relating density and pressure:

𝑝 = (𝛾 − 1) (𝑒 − 12𝜌 (𝑢
ኼ + 𝑣ኼ)) (4.15)

As a next step, the above equations in Cartesian coordinates are transformed to a curvilinear coordinate
system, with one axis parallel (𝜉) and one axis perpendicular (𝜂) to the body surface, as shown in (the
left side of) Figure 4.5 (Pulliam and Steger, 1985; Pulliam, 1986, 1993). This makes it very easy to apply
the thin-layer approximation, by simply neglecting viscous terms with 𝜉-derivatives.

Inviscid formulation
The inviscid formulation is obtained by neglecting all viscous terms in the Navier-Stokes equations, yield-
ing the Euler equations. In the set of equations presented earlier, this is achieved by settingEv = Fv = 0.

Viscous formulation
The viscous formulation uses the complete set of equations presented in Equations (4.13) and (4.14). It
supports both laminar and turbulent flow (McCroskey et al., 1986).

Laminar flow In case of laminar flow, the turbulent eddy viscosity contained in the dynamic viscosity
𝜇 (in the energy equation of Equation (4.13)) is set to 0.

Turbulent flow When turbulent flow is modelled, a turbulence model is used to find a value for the
turbulent eddy viscosity, that is part of the dynamic viscosity 𝜇 contained in the partial differential equation
describing the flow.

In Pulliam (1986), the turbulence model by Baldwin and Lomax (1978) gets most attention. It was specif-
ically developed for use with the TLNS equations and has as an advantage that it “eliminates the need for
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Figure 1: Ġeneralized Curvilinear Coordinate Transformations.

The transformations are chosen so that the grid spacing in the curvilinear space is
uniform and of unit length, see Figure 1. This produces a computational space ξ and η
which is a rectangular domain and which has a regular uniform mesh so that standard
unweighted differencing schemes can be used in the numerical formulation. The original
Cartesian space will be referred to as the physical domain. Typically there will be a one to
one correspondence between a physical point in space and a computational point, except
for regions where there are singularities or cuts due to the topology. In those cases it may
be necessary to map one physical point to many computational points (this usually occurs
at computational boundaries). With this construction we can produce one computational
code for a wide variety of physical geometries and grid systems.

Chain rule expansions are used to represent the Cartesian derivatives ∂x and ∂y of
Equation 2.1 in terms of the curvilinear derivatives where in matrix form
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∂τ

∂ξ

∂η


 (3.2)

Applying Equation 3.2 to the Navier-Stokes equations, Equation 2.1, we have

∂τQ + ξt∂ξQ + ηt∂ηQ + ξx∂ξE + ηx∂ηE + ξy∂ξF + ηy∂ηF =
Re−1 (ξx∂ξEv + ηx∂ηEv + ξy∂ξFv + ηy∂ηFv) (3.3)

Figure 4.5: Coordinate transformation in ARC2D (Pulliam and Steger, 1985; Pulliam, 1986, 1993, p. 15, 8, 693)

finding the edge of the boundary layer and thus remove one of the sources of arbitrariness and potential
error” (Baldwin and Lomax, 1978, p. 7). In addition, the Baldwin-Barth turbulence model (one-equation,
based on the 𝑘 − 𝜖 model) (Baldwin and Barth, 1991), several variations of the Spalart-Allmaras (S-A)
model (Spalart and Allmaras, 1992) and a wide variety of two-equation models are supported (Pulliam,
1986; Mayda and van Dam, 2005).

Transition Although ARC2D supports both laminar and turbulent flow, transition modelling is not in-
cluded in the software. Transition locations hence have to be specified by the user (McCroskey et al.,
1986).

Viscous / inviscid coupling
No viscous / inviscid coupling seems to be required by ARC2D (Pulliam and Steger, 1978). However, in
at least one study, researcher have used the program in conjunction with an inviscid solver (Mouch and
Lan, 1993).

Solution procedure
In Pulliam (1986), most attention is paid to the numerical algorithm used by ARC2D. It is an “implicit
approximate factorization finite difference scheme” (Pulliam, 1986, p. 15), which can be first or second-
order accurate in time, based on the work by Beam and Warming (1976). Central order finite differences
are used to find the derivatives in space (Pulliam, 1986; Venkateswaran et al., 2003). Nonlinear stability
is obtained using explicit and implicit artificial dissipation terms. In case of steady-state calculations, the
algorithm is sped up using a time step that can vary with space. In case time-accurate solutions are
required (for unsteady or transient problems), a second-order accurate dual time-stepping algorithm is
used (Pulliam, 1993; Mayda and van Dam, 2005). In a later development effort, further detailed and
quantified by Pulliam and Steger (1985), a number of improvements to the algorithm originally imple-
mented in ARC2D was made. Changes include incorporating of a mesh refinement sequence (so that
an approximate solution can first be obtained on a coarser grid, then interpolated to a finer grid and sub-
sequently refined), a reduction of (computationally expensive) matrix inversion work and improvements
to robustness. These all increase convergence rates, reducing computational cost. Mayda and van Dam
(2005) note in general the program is optimised for computational efficiency. The structured grids allow
the program to make use of parallel processing ability, as is found in CRAY supercomputers.

The flow equations are solved on a structured grid using either a C- or O-topology (Guzel et al., 2005;
Mayda and van Dam, 2005). Low Mach-number preconditioning improves the quality of low speed flows
solved using the compressible equations incorporated in ARC2D (Mayda and van Dam, 2005), although
this also seems to negatively impact robustness of the solver (Venkateswaran et al., 2003).
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Output
As ARC2D was not available in the period this literature study was conducted, no information on the type
and format of the output generated by the code is available at this time.

Results
Pulliam (1986) himself already summarised a number of validatory studies, comprising a number of differ-
ent types of airfoils as well as inlets (Chaussee and Pulliam, 1980), cascades (Steger and Pulliam, 1980)
and cylinders (Pulliam and Steger, 1980). Limiting the present discussion to airfoils, various authors note
generally good prediction of pressure coefficient curves (Pulliam, 1986; Lall et al., 1995). Most problems
there are found at the leading edge, where the suction peak is sometimes overpredicted (Maksymiuk
and Pulliam, 1987; Guzel et al., 2005), and in shock regions. Shock locations are sometimes predicted
too far forward or too far back (Maksymiuk and Pulliam, 1987), or overexpansion is expected but not
seen in experimental results (Kaul and Nguyen, 2014; Harris, 1981). Separation is a third phenomenon
with which ARC2D has some difficulties, most notably (as is often the case) near or at the trailing edge
(Steger, 1977; Maksymiuk and Pulliam, 1987).

This obviously also has an impact on lift prediction. Most publications comparing ARC2D to other codes
or experimental results describe close to very close agreement in the linear part of the lift curve (Barth
et al., 1985; Maksymiuk and Pulliam, 1987; Guzel et al., 2005; Pulliam et al., 1986; Mouch and Lan,
1993; Mayda and van Dam, 2005), sometimes outperforming more recent solvers such as OVERFLOW
(Kaul and Nguyen, 2014), as shown in Figure 4.6. If discrepancies arise, they mostly concern an over-
prediction of lift (Mayda and van Dam, 2005; Yoo et al., 1990; Pulliam, 1986). McCroskey et al. (1986,
p. 9), comparing numerical data with a host of experimental results, goes as far as concluding that the
“numerical results presented in this paper [obtained using ARC2D] are as accurate as contemporary
experimental measurements”. However, predicting stall and post-stall (lift) characteristics is more trou-
blesome (Guzel et al., 2005; Yoo et al., 1990; Mayda and van Dam, 2005). In various experiments by
Guzel et al. (2005), maximum lift coefficient predictions are still reasonably accurate, but are predicted
at a higher angle of attack than measured. Also, lift is expected to decrease more gradually than seen
in experiments. Pulliam et al. (1986), as well as Maksymiuk and Pulliam (1987), Mouch and Lan (1993),
Mayda and van Dam (2005), relate this to the turbulence model (often Baldwin-Lomax).

7 Figures

Figure 1: VCCTEF deployed on a generic transport model (GTM).
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Figure 2: Variation of Cl with AoA for the NACA0021 airfoil - comparison of experiment and CFD simula-
tions.
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(a) Lift coefficient versus angle of attack
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Figure 3: Drag polar plot for the NACA0021 airfoil: comparison of experiment and CFD simulations.
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Figure 4: Variation of Cp for AoA of 1.49 deg for the NACA0021 airfoil: comparison of experiment and CFD
simulations.
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(b) Lift coefficient versus drag coefficient

Figure 4.6: Comparison of experimental and numerical results for a NACA0012 airfoil, illustrating ARC2D performance (Kaul and
Nguyen, 2014, pp. 10-11). Kaul and Nguyen (2014) state these results are from a NACA0021 airfoil, but as both Harris (1981)
and Maksymiuk and Pulliam (1987) have used a NACA0012 airfoil, it is assumed that the 0021-designation in Kaul and Nguyen
(2014) is erroneous.

Just as with lift, Kaul and Nguyen (2014) (as well as Potapczuk (1988) in comparision to Bragg et al.
(1985)) mostly note good agreement between experimental and simulated drag polars. Most other stud-
ies reviewed that compare drag values, however, signify overprediction (Pulliam, 1986; Mouch and Lan,
1993) – sometimes up to an almost constant offset of 20 to 25 counts (Yoo et al., 1990). As with most
solvers, accurate moment predictions are most difficult, as there is no ‘easy’ linear range. The trends
are mostly captured quite well (Potapczuk, 1988), but offsets are sometimes observed (Mouch and Lan,
1993; Guzel et al., 2005; Yoo et al., 1990).
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An interesting study by Mayda and van Dam (2005) has compared performance of the code to a host
of experimental results of a SC1095 helicopter blade section (Bousman, 2003), especially in terms of
dependence of Mach number. The large amount of experimental data is scattered and make direct
comparisons somewhat more difficult, but the computed relations between Mach number and lift curve
slope, zero lift drag coefficient and pitching moment coefficient fit well. A negative spike in the pitching
moment curve slope at zero lift is captured by ARC2D, both coupled to the S-A as well as the Baldwin-
Barth turbulence models, although the value of the spike is predicted by both models as more dramatic
than it was measured. Drag divergence is especially well predicted (within one standard deviation of the
experimental mean), as well as the lower part of the drag polar. A study into the behaviour of turbulence
models specifically (Cebeci-Smith and Johnson-King) by Lall et al. (1995) showed good agreement in
terms of pressure distribution, but noted some discrepancies in predicted skin friction coefficient at the
first 30% of the airfoil chord.

4.1.5. Comparative review

Even though the four solvers discussed in this section all are two-dimensional and include viscous effects
in their flow predictions, there are some important differences. Most prominent is the Mach regime.
Whereas XFOIL is strictly limited to subsonic flows (preferably incompressible, otherwise approximated
using a compressibility correction), VGK is able to handle some small shocks (as long as 𝑀 < 1.3 just
upstream, using a compressible-to-incompressible transformation) and MSES is specifically designed
for transonic flow. ARC2D on the other hand has most problems with low speed (𝑀 < 0.3) flows, but is
not limited on the higher end of the Mach scale. With respect to suitability for analysis of multi-element
airfoils, VGK also forms a middle ground between XFOIL (not supported) and MSES (fully supported)
in allowing control surface deflection. Although no research publications were found in which ARC2D
was used for a multi-element airfoil, the flow model used in the code makes no assumptions invalidating
that use. A clear distinction between the two codes by Drela (XFOIL and MSES) and VGK and ARC2D
is found in terms of support for inverse design, for which VGK and ARC2D are not equipped. Similarly,
XFOIL and MSES are targeted specifically at low Reynolds numbers applications – although in the range
between 1 and 5 million, all solvers have been used.

In terms of solution method, the four codes are all different. XFOIL uses a 2D panel method, using flat
panels, and hence requires a sufficient amount of panels to properly represent the airfoil shape. VGK
takes a finite different approach on a circular grid. Again, airfoil representation is not absolute, as the
program defines grid points based on an interpolation of profile coordinates. MSES, an Euler code, uses
a finite volume discretisation on a grid based on the inviscid streamlines. ARC2D solves the flow model
using a finite difference method on a structured body-conformal grid.

A more detailed look at the flow model highlights some important differences between the capabilities of
XFOIL and MSES on one hand, and VGK and ARC2D on the other. First of all, neither VGK nor ARC2D
include a model predicting transition (from laminar to turbulent flow), but rely on the user to specify a
transition point. VGK does not officially support separated flow. It is predicted based on a hard-coded
value for local skin friction coefficient. When that value is obtained, turbulent flow is assumed from that
point onward and the skin friction coefficient for the downstream part of the flow over the airfoil is set
to the fixed value. Due to ARC2D using the thin-layer NS rather than the boundary layer equations,
separation is supported. XFOIL and MSES employ an envelope version of the well-known 𝑒፧ method
to estimate a transition location, with the difference that MSES also computes the result of the complete
𝑒፧ method for validation purposes and XFOIL does not. In describing the boundary layer, VGK uses the
method of Thwaites (1949) for the laminar part and a lag-entrainment method by Green et al. (1973) for
the turbulent flow domain. XFOIL and MSES use very similar methods for both laminar and turbulent
flow, using straight-line approximations to the Falkner-Skan one-parameter profile as closure relations
in the laminar part of the boundary layer, and two slightly different (Equations (4.6) and (4.10)) shear-lag
equations in the turbulent domain. To couple the viscous and inviscid domain, all boundary layer solvers
use a viscous-inviscid interaction method. In Euler-mode, ARC2D only performs an inviscid analysis,
but if the RANS equations are selected, the domain is simulated as fully viscous – preventing the need
for a VII method.
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The output presented by XFOIL and VGK solvers is comparable, showing pressure distributions and
lift, drag and moment coefficients. XFOIL adds to this transition locations and some plotting capability,
VGK boundary layer information (edge Mach number, thicknesses and skin friction coefficients) and
coordinates of the physical and computational planes. A comparison with MSES and ARC2D could not
be made at this time, due to unavailability of the code.

Compared to higher-order methods and experimental results, none of the programs perform especially
poorly, but contrasts can nonetheless be observed. XFOIL generally overpredicts lift coefficient and
underpredicts drag coefficient, especially at higher angles of attack where separation occurs. In the linear
range of the lift polar, good agreement is observed. That is also the case for ARC2D and VGK. Although
that latter program too suffers from overprediction of lift and underprediction of drag (ARC2D generally
overpredicts drag), especially the errors in drag prediction are on average lower than the descrepancies
between XFOIL and experimental results. MSES is again very comparable to XFOIL, possibly even
slightly less accurate in solving problems for which both codes are applicable (i.e., single-element airfoils
at lowMach numbers) (Maughmer and Coder, 2010). Lift is over- and drag is underpredicted. For MSES,
Syms (2006) argues the overprediction of lift coefficient is related to the simplified 𝑒፧ model. As that is
shared between MSES and XFOIL, this might also explain the deviations observed in that latter code.
Ramanujam et al. (2016) explain the too low drag and too high lift coefficients by the viscous / inviscid
interaction method, which becomes more problematic with increasing profile thickness. In the analysis
of ARC2D, various authors blame the turbulence model for the discrepancies between predicted and
measured aerodynamic coefficients. An interesting contrast is observed in the fact that larger Reynolds
numbers decrease the error in case of VGK, but yield larger differences in case of XFOIL and MSES. It is
hypothesised that the explicit focus of these latter methods on lower Reynolds number flows might come
at the cost of somewhat reduced performance at higher Reynolds numbers. ARC2D was not analysed
in this regard. VGK and MSES share the fact that shocks strengths are computed to be slightly lower
than measured in experiments. VGK predicts the shock location a bit aft, and in contradiction, MSES
predicts it slightly in front of the true location. ARC2D holds the middle ground, with some reports of
shocks estimated too far aft, and other cases in which they are computed too far forward.

XFOIL, VGK and MSES are all command-line tools (FORTRAN or MS-DOS) and are equally easy (or
difficult) to use. Between XFOIL and MSES, there is a lot of overlap and similarity, owing to the shared
developer. The precise workings of either code are scattered over a host of publications (not all of them
formatted very well) and information is sometimes contradictory7. This can also be said for ARC2D. In
contrast, documentation for VGK is an extensive set of well-referenced reports, often including numerous
validation cases. By this, it seems that XFOIL and MSES have seen longer periods of intermittent and
not overly coordinated development, whereas VGK feels more complete.
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4.2. Three-dimensional solvers
This section discusses three-dimensional solvers. They model a complete wing and/or aircraft body and
as such address topics as lift distribution, tip vortices and stability and control derivatives. Compared
to two-dimensional solvers, effects such as spanwise flow and various three-dimensional transition trig-
gers (cross-flow, attachment-line and centrifugal instability) further complicate the flow models (Vos and
Farokhi, 2015). Contrary to the two-dimensional codes treated in Section 4.1, all but one of the 3D
solvers discussed here serve a pure analytical purpose and do not offer design capabilities.

In the next few sections, the programs AVL (Section 4.2.1), Tornado (Section 4.2.2), VSAERO (Sec-
tion 4.2.3), MATRICS and MATRICS-V (Section 4.2.4) and SU2 (Section 4.2.5) are treated in further
detail. Section 4.2.6 provides a comparative review of these solvers.

4.2.1. Athena Vortex Lattice (AVL)

The Athena Vortex Lattice method (AVL8) is a VLM originally developed in 1988 by MIT’s Mark Drela and
Harold Youngren (Drela and Youngren, 2017), based on codes developed for NASA (e.g. Lamar (1976)
and Miranda et al. (1977)) (Drela and Youngren, 2010). The current major release (v3) stems from 2002
and can be considered a completely new version with little traces to aforementioned classic codes (Drela
and Youngren, 2017, 2010). Literature describes AVL as an “extended” vortex lattice method (Jagdale
et al., 2009; Raghunath et al., 2014), designed for low Reynolds number flows (Thomas and Richardson,
2012). Indeed, the program goes beyond the classical VLM realm in providing the capability of modelling
slender bodies using a combination of a source and a doublet filament – the slender-body method (Rose
et al., 2012; Katz and Plotkin, 1991) – although experience with this is limited and users should proceed
with caution (Drela and Youngren, 2010). Also, AVL supports control surfaces and deflections, including
the option of having more than one at a particular wing section (e.g. a combination of a flap and an
aileron). Flexible surface control surfaces can be implemented too, with the deflection being linearly
interpolated between two points where it is specified.

A user manual to the current version (3.30) is available (Drela and Youngren, 2010). Unless indicated
otherwise, the information in the remainder of this section is based on that reference.

Flow model
As any VLM, AVL is an inviscid method. It assumes quasi-steady flow, therefore neglecting unsteady vor-
ticity shedding. Also, small angles of attack and sideslip (roughly 15° (Thomas and Richardson, 2012))
are assumed (Dantsker and Vahora, 2018). Compressibility is taken into account using the Prandtl-
Glauert correction (√1 −𝑀ኼጼ), deemed valid up to a wing-perpendicular Mach number of 0.6. Further-
more, AVL assumes thin airfoils and an associated lift slope of 2𝜋 – unless specified otherwise by the
user, e.g. using values obtained from wind tunnel test or viscous foil calculations. Similarly, each section
can be assigned a 𝑐፥/𝑐፝-polar, by defining the lift and drag coefficients at the point just before the drag
rise due to negative or positive stall, and at minimum drag (Drela and Youngren, 2017, cdcl.f). AVL
then connects these points with two parabolic curves (Drela and Youngren, 2010). The downstream
legs of the horseshoe vortices extend parallel to the 𝑥-axis, regardless of possible sideslip. Drag can
be predicted using surface force integration or a far-field Trefftz-plane analysis. In terms of boundary
conditions, flow tangency is enforced on the airfoil camber line (Drela and Youngren, 2010) and zero
mass flux through both the airfoil, wake and possible body surface (Miranda et al., 1977).

Solution procedure
As with other discretised methods, the panelling has a substantial influence on the quality of the computa-
tional result. AVL allows for defining the number of panels in spanwise, chordwise and lengthwise (along
the body-axis) direction, in a equidistant or (co)sine-spacing. Combinations thereof are also possible,

8Not to be confused with CFD and other simulation tools developed by the Austrian company of the same name (AVL LIST GmbH,
2018).
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but by default, cosine spacings are used for spanwise and chordwise panel distributions. This results in
tighter spacing at the leading and trailing edges of a wing and at the wing tips.

Output
Output control for AVL is very similar to XFOIL. Output can be shown on screen or written to file or, in some
cases, shown in graphical format. It first of all consists of forces acting on the individual surfaces, strips or
vortex panels. Each panel is specified in terms of its index and location in the 𝑥, 𝑦, 𝑧-plane and a number
of geometric parameters (such as average chord) are given. Additionally, the output file contains the
contributions to aerodynamic coefficients by the considered panel. Moving to the strips (a set of panels
between the leading and trailing edge), AVL saves chord length, surface area, local incidence angle, local
lift (𝑐 ⋅ 𝑐፥), location of the centre of pressure and the well-known aerodynamic characteristics. Another
command sums these forces for an entire surface (such as a half-wing or vertical stabiliser) and their
contributions to aerodynamic quantities of interest: lift, drag (user-specified viscous, induced, and total),
side-force andmoment (roll, pitch and yaw) coefficients. A total force output file yields these quantities for
the full aircraft. Two more output files show the stability derivatives and body-axis derivatives, including
those corresponding to surface deflections.

Results
Although its not as popular as XFOIL, AVL too is a widely used program (Lee et al., 2017). Owing to
its ability to compute stability derivatives, the program is often used to investigate flight dynamics (Rose
et al., 2012; Lykins et al., 2011; Thomas and Richardson, 2012). Publications focus largely on smaller
air vehicles, being either scale models (Thomas and Richardson, 2012) or UAVs or MAVs (Guo et al.,
2011; Boschetti et al., 2010; Salichon and Tumer, 2013).

Abundant validation data, however, is unfortunately not easily found. This might be – at least to some
extent – be explained by the fact that AVL is an inviscid method, whereas viscosity cannot be removed
from (wind tunnel) experiments and these comparisons would therefore be unfair. Despite this difficulty,
some experiments provide some details on the performance of AVL. Lykins et al. (2011, p. 6) compared
eigenmode responses for a 1/3 scale acrobatic aircraft and noted the program provides “reasonable
estimates” for parameters of interest. For the short period and Dutch roll AVL generally underpredicts
the natural frequency (with error margins ranging from less than 1% to 32%) and underpredicts9 damping
ratio (errors between 5% and 37%). The roll mode time constant is accurately predicted. Relatively good
agreement was found in terms of lift and drag predictions, especially at smaller angles of attack (the
design range of the program (Dantsker and Vahora, 2018)) and positive lift coefficients, but somewhat
less so for pitching moment (Boschetti et al., 2010; Lee et al., 2017). Results are shown in Figure 4.7
(Boschetti et al., 2010). This might be explained by a lack of viscous effects in the AVL program (Dantsker
and Vahora, 2018). Genco and Altman (2009, p. 11) concluded “good agreement” between theoretical
computations and experimentally obtained induced drag coefficients for a boxwing plane at 𝑅𝑒 = 1 ⋅ 10኿,
Dantsker and Vahora (2018) have observed an underprediction of 𝐶ፃ. Finally, a comparison of AVL and
Cart3D shows the aerodynamic influence matrices10 obtained by the two programs to be very similar
(Gary and McDonald, 2014).

4.2.2. Tornado

Tornado (Melin and Berard) is a vortex lattice method built in MATLAB (The MathWorks, 2017), first
presented in 2000 and released in 2001 (Melin, 2000, 2015a). The code was developed in a study
investigating whether “it would be possible to code a vortex lattice method fast enough for real time ap-
plication”11 (Melin, 2000, p. 2), but has seen further development since with the current version released
in 2010 (Melin, 2015a). The implementation is largely based on Moran (1984).

9Although the text describes overprediction, the values computed by AVL are in all cases lower than the ones obtained from flight
tests.

10“The AIC contains the partial derivatives of local sectional lift at M sections with respect to N basis function weights.” (Gary and
McDonald, 2014, p. 2)

11With “real time application”, the author meant application in an aircraft or flight simulator (Melin, 2000, pp. 2, 7).
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Tables 2 and 3 show the aerodynamic characteristics 
and stability coefficients achieved by the Athena Vortex 
Lattice and PAN AIR, respectively. Figures 8-15 show 
the variations of the stability coefficients and other 
characteristics as a function of the non-dimensional 
height above ground respect to data computed by PAN 
AIR (Fig. 8) and AVL (Figs. 9-15) in free flight. 
Numerical anomalies were encountered in a calculation 
attempted with ze less than 0.577 using AVL. It was felt 

that this problem was probably caused by the close proximity of the actual and image model vortex wakes.  
The values computed herein demonstrate that the ground effect has a strong influence on the longitudinal 

stability coefficients. When the airplane approaches the ground CLα and CLδe increase, CMα, CMδe and CDα reduce, 
while CLq and CMq do not experiment changes. The pitching moment coefficient is less than zero at each height 
above ground and the location of the stick fixed neutral point (ho) increases in ground effect. The values of static 
height stability (HS) computed by AVL and PAN AIR are positive and they decrease with ground proximity. This 
means that the airplane nose-down pitching motion exceeds the stabilizing influence of CLz, and this must be more 
unstable when it approaches the ground. However, the value of the static height stability calculated by PAN AIR at 
ze=1.077 is negative, indicating that the airplane is statically stable at this height.  

The lateral-directional stability coefficients present a few variations with ground effect. When the airplane 
reaches a ze=0.577, CYβ and Cℓδa decrease slightly, Cnp reduces 344.4%, and CYp augments 16.6%. CYδa increases 
25% when the non-dimensional height above ground is equal to 1.077, and 107.5% when ze=0.577. The values of 
Cℓβ and Cnβ are independent of ze and criterions for the lateral and directional static stability are satisfied (Cℓβ<0, 
Cnβ>0). 

Figure 5. Lift coefficient as a function of angle of
attack in free flight.  

 
Figure 7. Pitching moment coefficient as a function 
of angle of attack in free flight.  

Figure 6. Lift coefficient as a function of induced
drag coefficient in free flight. 

Table 1. Aerodynamic data achieved by PAN AIR 
and Athena Vortex Lattice out-of-ground effect.  

 PAN AIR Athena Vortex 
Lattice 

CLα, rad-1 4.274 4.813 
CLo 0.309 0.312 
k 0.049 0.0506 

CMα, rad-1 –2.750 –2.773 
CMo –0.009 –0.100 

 

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
A

ug
us

t 1
5,

 2
01

8 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
0-

29
3 

(a) Lift coefficient versus angle of attack
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(b) Lift coefficient versus induced drag coefficient
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(c) Pitching moment versus angle of attack

Figure 4.7: Comparison of aerodynamic coefficients as predicted by AVL (labelled ATHENA) and PAN AIR (Boschetti et al., 2010,
p. 7)

A user manual to the current version (135) is not available. A manual corresponding to the version of
Tornado release in 2001, is currently labelled as “obsolete” (Melin, 2015b). As such, the remainder of
this section is based on the original publication (Melin, 2000), unless indicated otherwise. It is however
uncertain to what extent this information is still applicable to the current version of the program.

Flow model
Being a VLM, Tornado does not take viscous effects into account and is hence limited to the linear part
of the lift curve. The code includes some experimental functions to generate a Trefftz-plane analysis
and perform some viscous corrections. According to Ajaj et al. (2014, p. 1001), this includes a “semi-
empirical component build-up method” by Cavallo (1966) used to estimate parasitic drag. A Prandtl-
Glauert compressibility correction can be used to improve results at higher Mach numbers (Martindale
et al., 2010).

Tornado furthermore assumes zero thickness of wings, although sweep, taper, dihedral and twist angles
are supported (on each wing section, with the amount of sections being user-defined), as are control
surface deflections and multiple wings (e.g. a main wing and an empennage). Although camber is
supported, the boundary condition that allows for determining vortex strength is applied at the chord line.
No flow perpendicular to the panel is allowed. Tornado deviates from Moran (1984) in modelling the
wake such that it is aligned with the free-stream, rather than having it continue in chordwise direction,
similar to Eppler (1997). This is allowed by using a system of vortex slings instead of horseshoe vortices
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(Yerly, 2016; González R. et al., 2010; Cárdenas et al., 2009; Melin, 2000). These slings are made up
of not one but three chordwise components (per side, yielding a total of seven instead of three vortex
components), one for the main element, one for a possible control surface and one for the wake. A
comparison is shown in Figure 4.8. The code uses a linear distribution of vortex strengths on each panel
(Lee and Visser, 2016).

62 
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(31)  

 

 Tornado is organized in three subroutines, preprocessor, solver, and post processor. The 

preprocessor builds the model geometry from the user input. A lattice mesh is built before 

solving any forces and moments. Tornado generates the lattice mesh similar a VLM, vortex-

slings are used instead of the traditional horse-shoe vortices to enable the freestream to follow 

the wake which allows for flapped elements. The procedure works the same way as the horse-

shoe with the exception the legs of the shoe are flexible, and consist of seven, rather than three 

vortices of equal strength [34]. The extra four vortices occur with two vortices on the flapped 

panel, and two as the trailing wake as seen in Figure 51 below. 

 

Figure 51. Tornado vortex slings (left) and typical VLM horseshoe vertices. [36] 

 Tornado varies from traditional VLM by aligning the panel angle with the mean camber 

line so the unit normal is perpendicular to the mean camber line as seen in Figure 52 below [34].  

Figure 4.8: Comparison between a vortex sling as applied in Tornado (left) and a horseshoe vortex as applied in most other VLMs
(right) (Yerly, 2016)

Improved codes exist that make it possible to model non-slender bodies and include viscous effects (Da
Ronch et al., 2011, 2010).

Solution procedure
The solution procedure employed by Tornado is quite straightforward. During geometry input, one of var-
ious mesh options (linear, spanwise half-cosine, spanwise half-cosine and chordwise cosine, spanwise
cosine, chordwise cosine, 3rd order centerpacking) can be selected. Following this, the influence of every
vortex at every control point is computed, after which the flow tangency boundary condition is applied.
Using Guassian elimination, the vortex strengths are subsequently found. This is then used to calculate
the vortex flow at each vortex’ spanwise midpoint. Summing the vortex flow and the uniform free-stream
flow yields the complete flow field. Forces are then found using the Kutta-Joukowski theorem.

Stability derivatives are computed using a central-difference approximation at the flight condition of in-
terest. This is more accurate than the more common way, based on a parameter sweep.

Output
Tornado generates extensive graphical output, plotting local lift coefficient, span load, shear force, wing
bending moment, local pressure difference and flow speeds, besides various geometry plots. In case
of a parameter sweep analysis, the code outputs various polars (lift coefficient versus drag coefficient,
angle of attack and moment coefficient) as well as the stability derivatives with respect to the chosen
parameter.

The results of analyses of a single flight condition can also be exported to a text-file, showing force (lift,
drag and normal, as well as 𝑥, 𝑦 and 𝑧), and moment (pitch, yaw and roll) coefficients, and derivatives
with respect to the angles of attack and sideslip, and pitch, roll and yaw rate. Control surface deflections
and their effect on force and moment coefficients are also included. For all span stations, 𝑦-location,
force per meter and local lift coefficient are saved to file, too. Results from a parameter sweep cannot
be written to file, although computations can of course be saved to MATLAB-files.

Results
Similar to AVL, publications reporting on research conducted using Tornado often deal with smaller scale
aircraft (González R. et al., 2010; Cárdenas et al., 2009). Many publications furthermore concern mor-
phing structures or flexible aircraft, ideas gaining more and more attention (Yaman et al., 2015), such as
span morphing (Ajaj et al., 2012, 2014; Xia et al., 2014) and active camber control (Yerly, 2016; Yerly
et al., 2016; Martindale et al., 2010).

Only a few authors compare the results obtained with Tornado to higher-fidelity CFD computations or
experimental data, although Melin (2000) included some validation results in the thesis describing the
development of the VLM solver. This shows that, compared to Prandtl’s lifting line theory, Tornado un-
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derpredicts (5% to 10%) lift slope for flat plates with varying aspect ratios. Compared to AVL and CMARC
(a panel method), computations for a Cessna 172 yield comparable results (Manzi, 1998), although dif-
ferences (such as steeper lift and pitching moment slopes) are visible.

Errors in lift slope estimation are confirmed by Martindale et al. (2010) (1% error) and Yerly (2016),
most notably at higher angles of attack. Due to the limitations of the Prandtl-Glauert compressibility
correction, lift estimation accuracy also worsens in the transonic regime (Da Ronch et al., 2010). In the
linear region, the lift slope matches well with higher fidelity codes (Da Ronch et al., 2010, 2011). Due
to the lack of viscous effects, the stall angle cannot be accurately predicted. For this same reason,
drag is underpredicted (Yerly, 2016; Martindale et al., 2010). (Yerly (2016) therefore also notes limited
applicability of Tornado for low Reynolds numbers.) Including 2D viscous data notably improves these
results (Yerly et al., 2016), as illustrated in Figure 4.9.

A. Validation of Aerodynamic Sources

This section summarizes predictions of aerodynamic loads based on several aerodynamic options and wind
tunnel experimental data published by the manufacturer.1

1. Low Speed Aerodynamics

Predictions of lift and pitching moment coefficients are illustrated in Fig. 8. A significant change in the
force slope is observed between 10.0◦ and 15.0◦ in the experimental data set. The moment coefficient is also
non-linear above the static stall. Numerical predictions of the lift coefficient in Fig. 8(a) were obtained with
TORNADO. The data set labelled as ”TORNADO Baseline” is based on the original formulation of the
VLM, which predicts a linear increase in the aerodynamic coefficients for increasing angle of attack. Then,
the option to add a viscous correction was used and the corresponding data set is referred to as ”TORNADO
Viscous”. The stall prediction is based on informations of CLα

and CL 0. The two numerical data sets start
to diverge at around 10.0◦, with the viscous calculation underpredicting the static stall. Fig. 8(b) illustrates
for the pitching moment coefficient the effect of modelling the fuselage with sink/source singularities in the
TORNADO calculations. The resulting effect of including the fuselage is to offset the predictions obtained
for the Wing-Vertical-Horizontal tail ”WVH” configuration (see Fig. 5(a) for the geometry) by a certain
amount. Although the overall agreement is improved over the range in the angle of attack for the Fuselage-
Wing-Vertical-Horizontal tail ”FWVH” configuration (see Fig. 5(b) for the geometry), a poorer agreement
is achieved at low angles of attack.

One example illustrating the authority of the control surfaces deflection is provided in Fig. 9. Numerical
calculations were obtained using TORNADO with the viscous correction switched off and the clean config-
uration of lifting surfaces. The outboard elevator was deflected. The comparison between numerical and
experimental data sets is reasonable. The slope of the force coefficient is slightly underpredicted, while a
good prediction is provided for the moment coefficient.
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Figure 8. Prediction of lift and pitching moment coefficients for several values of angle of attack at Mach
number of 0.15

2. High Speed Aerodynamics

Fig. 10 shows the lift curve slope produced by the various fidelity aerodynamic models. The Euler results
show the closest correlation to the B747–100 published data. The actual values and the curve slope compare
well to experimental values. DATCOM shows comparable lift-curve slope, with the actual values slightly
less than experimental data. However, as the Mach number increases, DATCOM results begin to fall away
from experimental results. TORNADO results without compressibility correction remain constant through
all Mach numbers, and the offset from experimental data increases because of the more influential effect of
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Figure 4.9: Comparison of lift coefficient variation with angle of attack as predicted (inviscid and viscous) by Tornado and found in
experiment (Da Ronch et al., 2010, p. 10)

The accuracy of various stability and control derivatives or control surface effectiveness is of course
also affected by inaccuracies in the estimation of the primary forces. Although the differences between
various publications are too large to draw well-supported conclusions, authors report differences ranging
from only a few percent to a few dozen (Martindale et al., 2010; Yerly, 2016; Da Ronch et al., 2010).
The trends computed by the VLM are however generally accurate, such that various authors at least find
Tornado suitable for trend analysis (Yerly, 2016; Yerly et al., 2016; Martindale et al., 2010) or accept the
predictions made by the program “within certain error bounds” (Lee and Visser, 2016, p. 1).

4.2.3. Vortex Separation Aerodynamics (VSAERO)

VSAERO (Analytical Methods, 2018b; Analytical Methods), or Vortex Separation Aerodynamics Program
in full (Ghaffari, 1988; Margason et al., 1985; Lednicer and Gilchrist, 1991) is a linear potential flow
aerodynamic solver (Mariens, 2012; Strang et al., 1985; Nathman and Mccomas, 2008) that can be
used to calculate “nonlinear aerodynamic characteristics of arbitrary configurations” (Maskew, 1987, p.
0). It combines an inviscid potential flow and a boundary layer model using a Morino-type panel method
(Maskew, 1982b; Letcher Jr., 1989; Morino et al., 1975). It was originally developed in the 1980s for
NASA by Analytical Methods, Inc., focusing on the analysis of high-lift configurations, but has since then
been commercialised and seen wider applications (Lord and Zysman, 1986). Within NASA, VSAERO
has been succeeded by PMARC (Panel Method Ames Research Center) (National Aeronautics and
Space Administration, 1994).

A user manual to the current version is not available, but its original setup is relatively well documented
in a user manual (Maskew, 1982b) and theory document (Maskew, 1987). It is unknown as to what



50 4. Overview of solvers

extent these documents still hold for newer versions of the program. Still, lacking any other means, the
information in the remainder of this section is based on these references, unless indicated otherwise.

Flow model
The program uses quadrilateral panels and places doublet (representing changes in potential) and source
(representing changes in normal velocity-component) singularities on these panels, with strengths con-
stant on each panel. As such, it is a so-called low order method (Maskew, 1987; Lednicer and Gilchrist,
1991) in which the potential is piecewise smooth. (VSAERO v7.0 is a multi-order method (Nathman,
2005).) Various external Neumann boundary conditions, describing a solid boundary without wall transpi-
ration (𝑉ፍ = 0), a boundary layer using the transpiration technique (Dvorak et al., 1977b) or a steady sur-
face (velocity along the surface 𝑉ፒ = 0), can be used to directly solve for the unknown source strengths;
an internal Dirichlet boundary condition yields the doublet strengths. Planes of symmetry can be used to
lower computational cost, as well as to analyse ground effect influences (Maskew, 1987; Ghaffari, 1988).

Using the Prandtl-Glauert transformation, VSAERO can be used for analysis of higher subsonic flows
(Strang et al., 1985; Margason et al., 1985), suggesting using the critical Mach number as an upper limit
(Lord and Zysman, 1986). Other sources mention a selection of compressibility corrections, of which the
Karman-Tsien is the default (Lord and Zysman, 1986).

Inviscid formulation
In the code, it is assumed that viscous and rotational effects are solely present in the boundary layer, with
the area outside that being modelled as inviscid as well as incompressible flow. The velocity potential is
assumed to satisfy Laplace’s equation (Maskew, 1987, p. 3)12. Inside the cross-section being analysed,
it is assumed that the potential (and velocity) are equal to the free-stream potential and velocity. This
minimises the jumps from the inner to the outer flow, yielding lower singularity strengths, which makes the
success and accuracy of a solution less dependent on large numbers of panels. Coming from Laplace’s
equation shown in Equation (2.19), the doublet density is solved by Equation (4.16):

4𝜋𝜇 = 𝜙 = 𝜙 − 𝜙ጼ (4.16)

The source distribution, then, is given by Equation (4.17):

4𝜋𝜎 = 𝑉ፍ − n ⋅Vጼ =
𝜕
𝜕𝑠 (𝑉 𝛿

∗) + 𝑉፧ − n ⋅Vጼ (4.17)

The potential field is then described by Equation (4.18), yielding the description show in Equation (4.19)
for the velocity field (obtained by taking the gradient from the potential field).

𝜙ፏ =∬
ፒ
𝜇n ⋅ ∇ (1𝑟 )𝑑𝑆 + 𝐾𝜇ፏ +∬ፒ

𝜎
𝑟 𝑑𝑆 +∬ፖ

𝜇ፖn ⋅ ∇ (1𝑟 )𝑑𝑊 + 𝜙ጼᑇ (4.18)

VP = −∬
ፒ
𝜇∇ [n ⋅ ∇ (1𝑟 )] 𝑑𝑆 −∬ፒ

𝜎∇(1𝑟 )𝑑𝑆 −∬ፖ
𝜇ፖ∇ [n ⋅ ∇ (

1
𝑟 )] 𝑑𝑊 +Vጼ (4.19)

In these equations, the integrals over 𝑆 are over the body surface; the integrals over 𝑊 correspond to
the wake. 𝑃 indicates an arbitrary position in the flow field, 𝑑𝑆 the area of a panel and 𝑟 the distance
between these. n is the normal vector (to 𝑑𝑆) and 𝐾, finally, is a factor depending on the location of point
𝑃.
12Khalid et al. (1997) andGhaffari (1988) also explicitly name Laplace’s equation, the topic of Section 2.6, as the inviscid flowmodel.
Strang et al. (1985, p. 2), on the other hand, discusses “the assumptions of small velocity perturbations”, which corresponds to
the linearised potential equation, discussed in Section 2.5.
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For thin (𝑡/𝑐 < 0.01) or “wing-like” surfaces that are “remote from the area of interest” (Maskew, 1987,
p. 13), additional simplifications are made. These parts are represented as open surfaces, such that the
source term 𝜎 disappears from Equation (4.18) to yield Equation (4.20), with 𝜇 = 1/(4𝜋) (𝜙ፔ − 𝜙ፋ) (i.e.,
the total jump in potential across the sheet):

𝜙ፏ =∬
ፒ
𝜇n ⋅ ∇ (1𝑟 )𝑑𝑆∬ፖ

𝜇ፖn ⋅ ∇ (1𝑟 )𝑑𝑊 + 𝜙ጼᑇ (4.20)

Similarly, Equation (4.19) reduces to Equation (4.21):

VP = −∬
ፒ
𝜇∇ [n ⋅ ∇ (1𝑟 )] 𝑑𝑆 −∬ፖ

𝜇ፖ∇ [n ⋅ ∇ (
1
𝑟 )] 𝑑𝑊 +Vጼ (4.21)

Viscous formulation
For the boundary layer analysis, two methods are included. One gives characteristics of the boundary
layer along computed surface streamlines (Dvorak et al., 1977a). This method can be applied to bodies
and wings and covers surface curvature effects as well as convergence and divergence of streamlines,
under the assumption of flow that is locally axisymmetric.

In case of large cross flow, however, this method can be expected to break down, leading to another
method (Dvorak et al., 1977b) which is mainly applied on wings. This second method does include a
cross-flow model. It divides the span into a strips, each modelled as a separate infinite wing. The bound-
ary layer development on each strip is computed using Dvorak and Woodward (1974), along streamlines
from the stagnation point to the trailing edge. These calculations are based on the correlations between
boundary layer parameters at the stagnation line (shape factor, momentum thickness and skin friction
coefficient) and states (laminar or turbulent) on one hand, and a Reynolds-number like parameter 𝐶∗,
shown in Equation (4.22), on the other (Cumpsty and Head, 1967; Bradshaw, 1971; Cumpsty and Head,
1969).

𝐶∗ = 𝑉ኼ/ (𝜈𝑑𝑈𝑑𝑠 ) (4.22)

For values of 𝐶∗ lower than 0.135 ⋅ 10኿, the flow is found laminar; otherwise it is turbulent. For unswept
wings, two-dimensional correlations – rather than the one presented in Equation (4.22) – are used as
input for the boundary layer calculation process. Both boundary layer codes output separation locations.

Laminar flow Both Dvorak et al. (1977a) and Dvorak et al. (1977b) (the ‘cross flow method’) use the
same set of laminar equations, based on Curle (1967) and Thwaites (1949), with only momentum thick-
nesses at the stagnation point slightly varying. Dvorak et al. (1977a) use 𝜃ኺ = √0.0604/𝑑𝑈/𝑑𝑥, based
on a bluff body, Dvorak et al. (1977b) include the kinematic viscosity 𝜈 and use 𝜃ኺ = √0.0855𝜈/𝑑𝑈/𝑑𝑥.
Given the regularly low value of 𝜈, the momentum thickness at the stagnation point predicted by Dvorak
et al. (1977b) will be much smaller than the one computed using Dvorak et al. (1977a).

Turbulent flow Whereas the laminar boundary layer equations are largely identical, the computation
methods used for analysis of turbulent boundary layers differ substantially. Dvorak et al. (1977a) use a
two-dimensional method by Nash and Hicks (1968) based on momentum equations and a skin friction
relation by Coles (1956). Dvorak et al. (1977b) and Dvorak andWoodward (1974), instead, use a method
by Cumpsty and Head (1967) that is suitable for infinite swept wing three dimensional boundary layers.
This difference results in the (in)ability of analysing cross flow, discussed previously.

Transition Just as the laminar flow computations are identical, the translation location is predicted
using the same approach. Instability curves are used to find the neutral stability point (Smith, 1957;
Smith and Gamberoni, 1956), which is the point from which small disturbances in the boundary layer are
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amplified. Transition curves then predict the transition location (Granville, 1953). The initial transition
shape factor is given by Coles (1953), laminar separation and reattachment relations follow from Gaster
(1967). Especially these last relations are not exact, having been determined based on empirical data.

Wake VSAERO uses a thin wake model and neglects entrainment in the wake. This explains why
no source term for the wake is present in Equation (4.18). A boundary condition ensures the wake is
aligned with the local flow and “the wake doublet distribution is constant along mean streamlines in the
wake surface” (Maskew, 1987, p. 7).

Viscous / inviscid coupling
Both viscous models used in VSAERO feed transpiration source values back to the inviscid potential flow
calculation in order to model the displacement effect of the boundary layer. This is computationally more
efficient than updating the geometry with the displacement thickness (Dvorak and Woodward, 1974).

Solution procedure
The flow equations described in the previous section are solved on quadrilateral panels, with their control
points at the centre of the corner points of the panel. On these panels, the flow model is discretised,
yielding a set of linear equations that is subsequently solved. This solution gives the doublet distribution,
from which the streamlines can then be determined. Given the fact that VSAERO uses a Morino-type
panel method, the doublet distribution is found from the value of potential influence coefficients, whereas
other panel methods often use velocities (Margason et al., 1985; Johnson and Rubbert, 1975; Morino
et al., 1975). Also, the surface singularity distributions are an input to the wake-shape calculation. This
is an iterative process, where the wake is re-panelled in each run.

The viscous part starts with the surface flow solution, from which a boundary layer displacement thick-
ness at each panel is found. This is fed into another iterative loop. Too large differences from the values
obtained in a previous iteration result in an update to the wake, as discussed in the previous paragraph.
Separation is determined based on “a vanishingly small skin friction coefficient (in the direction of the ex-
ternal streamline)” (Maskew, 1987, p. 58). Induced drag was originally found using pressure integration,
but as of version 7 of VSAERO, a Trefftz-plane analysis has been implemented (Nathman, 2005). This
was already suggested some 15 years earlier by Letcher Jr. (1989).

When both iterative loops (the potential flow and the boundary layer) have converged, an optional off-
body analysis is performed. Ultimately, the output results are determined and shown to the user.

Output
As VSAERO was not available in the period this literature study was conducted, no information on the
type and format of the output generated by the code is available at this time.

Results
In the 1980s, VSAERO was one of the most widely used panel codes in US industry (Lord and Zys-
man, 1986), with Troeger and Selby (1998, p. 184) citing Henne (1990) stating the program has seen
such extensive use, the “designation of well-proven design tool” is warranted. Authors stipulate the low
computational cost (Strang et al., 1985; Straathof et al., 2010; Straathof and van Tooren, 2011) (also
in comparison to other panel methods), making it suitable for use during preliminary design, providing
quick performance estimates and assisting in screening efforts (Lord and Zysman, 1986; Khalid et al.,
1997). Straathof and van Tooren (2011) have used a more recent version (v7.1, 2005) in an optimisation
framework. Nathman (2006) has coupled VSAERO (v7.0, May 2003) to a structural analysis program,
using it to investigate oscillatory motion.

Given the wide use, it is unsurprising that various in-depth comparisons and validation studies are re-
ported in literature. The aforementioned theory document also includes a validation section and con-
cludes that computational results closely resemble experimental values, in case of isolated wings or
bodies, wing-body combinations and nacelles. Most literature notes good agreement between theoreti-
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cal and experimental results (Troeger and Selby, 1998; Khalid et al., 1997; Ghaffari, 1988; Filippone and
Selig, 1998; Lednicer and Gilchrist, 1991), in terms of pressure distributions and lift, drag and pitching
moment coefficients. In Nathman and Mccomas (2008), lift is slightly underpredicted; Margason et al.
(1985) note overprediction, either by a constant offset or increasing with 𝛼. The fact that VSAERO is
essentially an incompressible method is clearly observed in studies investigating performance at higher
subsonic Mach numbers. Lord and Zysman (1986) noted poorer performance at𝑀ጼ = 0.8. From aMach
number of 0.6, the increase in lift due to Mach number is underpredicted (Margason et al., 1985). Pre-
dicting separation is challenging at times, resulting in discrepancies between predicted and measured
trailing edge pressure distributions, especially outboard (Margason et al., 1985)13 and computed and
measured high-𝛼 lift coefficients (Filippone and Selig, 1998). Estimations of spanwise load distributions
are better towards the root than the tip (Margason et al., 1985) and tip separation was determined difficult
to predict (Filippone and Selig, 1998; Strang et al., 1985; Troeger and Selby, 1998).

Whereas Troeger and Selby (1998) argue the observed discrepancies in pressure distribution can be
attributed to the inviscid simulation environment (in this research, the boundary layer module was not
used), in which separation is not predicted but instead fixed at the trailing edge, the more complex
geometry caused by trailing edge movables, might have also complicated matters14. Strang et al. (1985)
assign blame to the discontinuities in potential between the panels – a direct result of the low-order
method. Increasing the number of panels can circumvent these discontinuities and make the lower-
order methods perform as well as higher-order codes, but comes at additional cost. The importance
of proper panelling is stressed by others, too (Maskew, 1987; Lord and Zysman, 1986). Despite this,
Letcher Jr. (1989) obtained reasonably accurate predictions of lift and pitching moment coefficients, even
at lower panel densities.

Another problem that can be solved by increasing the amount of panels is inaccurate drag predictions
seen in earlier versions of VSAERO (Letcher Jr., 1989; Nathman, 2005; Troeger and Selby, 1998; Led-
nicer and Gilchrist, 1991). Before v7.0, the induced drag was computed based on pressure integration.
A substantial improvement was made when a Trefftz-plane analysis (a far-field approach) was added to
the software (in v7.0), yielding much improved estimations for induced drag (Nathman, 2005)15.

4.2.4. MATRICS / -V

MATRICS (an acronym forMulti-component Aircraft TRansonic Inviscid Computation System) andMATRICS-
V (sometimes also stylised as MATRICSV) are inviscid and viscous flow solvers developed by the Dutch
National Aerospace Laboratory (NLR) (van der Vooren et al., 1986; van der Vooren and van der Wees,
1991; van der Wees and van Muijden, 1992; van der Wees et al., 1993). MATRICS uses a full poten-
tial flow model, which MATRICS-V extends with a viscous unsteady integral boundary layer formulation.
Both tools are intended for analysis of the transonic flow about wing/body configurations and (inverse)
wing design purposes (van der Wees et al., 1993) and utilise a finite volume method. Computational
effort is reduced by only modelling a semi-configuration, which is mirrored in the 𝑥𝑧-plane. As such, it
cannot handle non-zero sideslip values (Elham, 2013).

A user manual to the current version is not available, but the four previously cited publications document
the original setup of the programs. It is unknown as to what extent these documents still hold for current
versions of the program. Especially since all publications speak of the software being in development,
this is an important concern. Still, lacking any other means, the information in the remainder of this
section is based on these references, unless indicated otherwise.

13Most likely due to low quality printing and/or digitising, the different series in the graphs presenting measurement data are
virtually indiscernible. The remarks based on this paper are based on the accompanying text. It has to be noted, though, that
the conclusion drawn is substantially milder, noting that “[i]n general, the total lift, pressures, and spanwise loads predicted by
the five methods agree well with experiment.” (Margason et al., 1985, p. 6).

14On the other hand, if VSAERO was indeed originally developed for analysis of high-lift configurations, as Lord and Zysman
(1986) note, it seems unlikely the program should struggle with this geometry.

15Nathman is the director of software development of Analytical Methods, Inc., the company developing VSAERO.
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Flow model
Whereas MATRICS only includes an inviscid solver, MATRICS-V adds to this an integral boundary layer
model (Mariens et al., 2014; Elham and van Tooren, 2014; Elham et al., 2014). In that case, the boundary
layer is only modelled on the wing and wake and not on the body.

Inviscid formulation
The inviscid formulation found in MATRICS is “based on a fully conservative finite-volume scheme for the
full-potential equation in strong conservation form” (van der Vooren and van der Wees, 1991, p. 869).
Including artificial viscosity through the fluxes 𝑃, 𝑄 and 𝑅 (functions of density, Mach number, velocity,
strain and mesh size in 𝑥, 𝑦 and 𝑧-direction, as documented in van der Vooren and van der Wees (1991,
Eq. (5))) to smear out discontinuities (in the form of shock waves) in the flow yields Equation (4.23), with
the velocity components defined by Equation (2.11):

(𝜌𝑢 + 𝑃)፱ + (𝜌𝑣 + 𝑄)፲ + (𝜌𝑤 + 𝑅)፳ = 0 (4.23)

In this equation, the density 𝜌 is given by Equation (4.24), in which 𝑉 is the norm of the velocity vector:

𝜌 = (1 + 𝛾 − 12 𝑀ኼጼ [1 − 𝑉ኼ])
Ꮃ
ᒈᎽᎳ

(4.24)

As the artificial viscosity is unequal to zero in subsonic parts of the flow, only supersonic/supersonic
shock waves are smeared out completely. In case of supersonics/subsonic shocks, a “true discontinuity
with sonic conditions on its upstream side” is formed, labelled a ‘shock reminder’ (van der Vooren, 1989).

The total inviscid pressure drag is found from summing the induced drag, wave drag and spurious drag,
and is second-order accurate with respect to mesh size and fourth-order with respect to the magnitude of
disturbance velocities (van der Vooren and van der Wees, 1991). The first drag contribution is computed
using a Trefftz-plane (assuming small disturbances therein) and performing the integration shown in
Equation (4.25):

𝐷። =
1
2𝜌ጼ∫ፒᑋ

(𝑣ኼ +𝑤ኼ) 𝑑𝑆 (4.25)

The second contribution (wave drag) is the sum of the Garabedian wave drag (Garabedian, 1976;
Garabedian and McFadden, 1982) and the ‘shock remainder’ (i.e., the remaining flow disturbance left
after a shock wave has been smoothed out by artificial viscosity, as described earlier) wave drag, listed
in Equation (4.26).

𝐷፰ᐾ = ∫ፕᑄᐳᎳ,ᑢᑤᐲᎲ
(𝑃̄𝑢፱ + 𝑄̄𝑢፲ + 𝑅̄𝑢፳) 𝑑𝑉 (4.26a)

𝐷፰ᑤᑣ = ∫ፒᑊ
[(𝑝፝ + 𝑝∗፮) 𝑛፱ + 𝜌፝𝑞፧፝ (𝑢፝ − 𝑢∗፮)] 𝑑𝑆 (4.26b)

The spurious drag contribution, then, is formed by Equation (4.27). This is identical to Equation (4.26a),
with the exception that 𝑞፬ (the local acceleration) is now larger than 0. This spurious drag component is
an artificial one that is created by the artificial viscosity discussed previously.

𝐷፬ = ∫
ፕᑄᐳᎳ,ᑢᑤᐳᎲ

(𝑃̄𝑢፱ + 𝑄̄𝑢፲ + 𝑅̄𝑢፳) 𝑑𝑉 (4.27)



4.2. Three-dimensional solvers 55

Whether an additional term representing the excess mass drag should be included in the equation for
spurious drag depends on whether a fully conservative scheme is used16. If there is, Equation (4.27)
stands as is. If not, Equation (4.28) should be added to Equation (4.27). This represents excess mass
created in the non-conservative case. In the fully conservative case, the mass that is created as a result
of the artificial viscosity is negated by the removal of this mass in the shock remainders, leading the term
to equate to 0 (Elham, 2013; van der Vooren, 1989; Ross, 1987; Garabedian, 1976).

𝐷፬,፦ = ∫
ፒᑊ
Δ𝑀̄ (𝑢∗፮ − 𝑢ጼ) 𝑑𝑆 (4.28)

In a completely inviscid analysis without boundary layer model, a zero normal velocity (flow tangency
condition) is enforced on the wing surface and in the symmetry plane (van derWees, 1985). If a boundary
layer is present, the wall boundary condition is such that mass flux through the wing surfaces is allowed.
Continuing the boundary layer downstream to form the wake, the displacement effect is realised using
jumps in normal flux. In the far-field, the perturbation potential is set to 0. An exception to this forms the
downstream far-field (the Trefftz-plane) in which “the curvature of the perturbation potential is set to zero
in the direction of the streamwise grid lines” (van der Wees et al., 1993, p. 3).

Viscous formulation
The steady boundary layer equations, obtained from integration of the unsteady formulation, used in
MATRICS-V are based on Myring (1970) (quoted in Smith (1972) and Chow (1985)). With the addition
of time-dependent terms (first line in each of the subsequent momentum equations) and the use of first
order integral thicknesses, the boundary layer equations from Myring can be integrated in 𝑧-direction
(i.e., normal to the wing surface or wake centreline). The pressure is eliminated from the equation using
the momentum equation in 𝑧-direction. This can be done as the three-dimensional problem is formulated
as two-dimensional (van der Wees et al., 1993), leaving only momentum equations in 𝑥- and 𝑦-directions
as shown in Equation (4.29) (van der Wees and van Muijden, 1992)17:

1
𝑞፞
𝜕𝛿ኻ
𝜕𝑡 −

𝑢፞
𝑞ኼ፞
𝜕𝛿᎞
𝜕𝑡 + (

1
𝑞ኼ፞ [1 − 𝑀

ኼ
፞ ] 𝛿ኻ +

𝑢፞
𝑞ኽ፞𝑀

ኼ
፞𝛿᎞)

𝜕𝑞፞
𝜕𝑡

+ 1
ℎኻ
𝜕𝜃ኻኻ
𝜕𝑥 + 𝜃ኻኻ (

2 −𝑀ኼ፞
ℎኻ

1
𝑞፞
𝜕𝑞፞
𝜕𝑥 +

1
𝐽
𝜕
𝜕𝑥 [

𝐽
ℎኻ
] + 𝑘ኻ)

+ 1
ℎኼ
𝜕𝜃ኻኼ
𝜕𝑥 + 𝜃ኻኼ (

2 −𝑀ኼ፞
ℎኼ

1
𝑞፞
𝜕𝑞፞
𝜕𝑦 + 1𝐽

𝜕
𝜕𝑦 [

𝐽
ℎኼ
] + 𝑘ኽ)

+ 𝛿ኻ (
1
ℎኻ
1
𝑞፞
𝜕𝑢፞
𝜕𝑥 + 𝑘ኻ

𝑢፞
𝑞፞
) + 𝛿ኼ (

1
ℎኼ
1
𝑞፞
𝜕𝑢፞
𝜕𝑦 + 𝑘ኼ

𝑣፞
𝑞፞
+ 𝑘ኽ

𝑢፞
𝑞፞
)

+ 𝜃ኼኼ𝑘ኼ =
1
2𝐶፟ኻ

(4.29a)

16This is not immediately clear from the cited references. Van der Vooren and van der Wees (1991) discuss this term in one
breakdown (Fig. 1), but later on define the ፃᑤ as shown in Equation (4.27) without any explanatory remarks. It also is not part of
van der Vooren and van der Wees (1991, Eq. (9)), in which the right-hand terms describe induced drag, the drag associated to
the shock remainder shown in Equation (4.26b), and the summation of Equations (4.26a) and (4.27).

17Van der Wees and van Muijden (1992) use overbars to indicate values at the edge of the boundary layer, whereas in this text,
the subscript ( )ᑖ is used, consistent with earlier notations. Furthermore, the term Ꭷ᎑ᒖ (density) in Equation (4.29a) originally
read Ꭷ᎑ᑡ (pressure) in van der Wees and van Muijden (1992, Eq. 11). As this is not defined, and as the same time-dependent
term appears in Equation (4.29b), this is assumed erroneous and corrected in the current text.
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1
𝑞፞
𝜕𝛿ኼ
𝜕𝑡 −

𝑣፞
𝑞ኼ፞
𝜕𝛿᎞
𝜕𝑡 + (

1
𝑞ኼ፞ [1 − 𝑀

ኼ
፞ ] 𝛿ኼ +

𝑣፞
𝑞ኽ፞𝑀

ኼ
፞𝛿᎞)

𝜕𝑞፞
𝜕𝑡

+ 1
ℎኻ
𝜕𝜃ኼኻ
𝜕𝑥 + 𝜃ኼኻ (

2 −𝑀ኼ፞
ℎኻ

1
𝑞፞
𝜕𝑞፞
𝜕𝑥 +

1
𝐽
𝜕
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𝐽
ℎኻ
] + 𝑙ኽ)

+ 1
ℎኼ
𝜕𝜃ኼኼ
𝜕𝑥 + 𝜃ኼኼ (

2 −𝑀ኼ፞
ℎኼ

1
𝑞፞
𝜕𝑞፞
𝜕𝑦 + 1𝐽

𝜕
𝜕𝑦 [

𝐽
ℎኼ
] + 𝑙ኼ)

+ 𝛿ኼ (
1
ℎኼ
1
𝑞፞
𝜕𝑣፞
𝜕𝑦 + 𝑙ኼ

𝑣፞
𝑞፞
) + 𝛿ኻ (

1
ℎኻ
1
𝑞፞
𝜕𝑣፞
𝜕𝑥 + 𝑙ኻ

𝑢፞
𝑞፞
+ 𝑙ኽ

𝑣፞
𝑞፞
)

+ 𝜃ኻኻ𝑙ኻ =
1
2𝐶፟ኼ

(4.29b)

In these equations, 𝑢 and 𝑣 are velocities in 𝑥- and 𝑦-direction (chordwise and spanwise, respectively),
with 𝑞 indicating the total velocity (as in Equation (4.24)). 𝑀፞ is the Mach number at the edge of the
boundary layer. 𝐶፟ኻ and 𝐶፟ኼ are skin friction coefficients in 𝑥- and 𝑦-directions. 𝐽 is the Jacobian of the
transformation from the physical domain to the computational domain, ℎኻ and ℎኼ are metric coefficients
of the (𝑥, 𝑦) coordinate system, 𝑘። and 𝑙። (with 𝑖 ∈ 1, 2, 3) are functions thereof as defined in Smith (1972,
App. A). 𝛿 without subscript indicates the boundary layer thickness, 𝛿 with subscript represents the mass
integral thickness and 𝜃 with subscript is the momentum integral thickness (Chow, 1985). In the latter two
cases, subscripts determine the direction in the (𝑥, 𝑦) axis system. 𝛿᎞, finally, is the density thickness,
defined as the integral ∫(𝜌፞ − 𝜌)/𝜌፞ over the boundary layer (van der Wees and van Muijden, 1992).

The system is completed by the entrainment equation shown in Equation (4.30), an extension of the
equation put forward by Houwink and Veldman (1984), based on Green et al. (1977). 𝐶ፄ is the entrain-
ment coefficient, representing the non-dimensional rate of mass flow change in the boundary layer.

1
𝜌፞𝑞፞𝐽

(𝜌፞𝐽
𝜕
𝜕𝑡 (𝛿 − 𝛿᎞) − 𝐽

𝜌፞
𝑞፞
𝑀ኼ፞ (𝛿 − 𝛿᎞)

𝜕𝑞፞
𝜕𝑡 +

𝜕
𝜕𝑥 [

𝜌𝐽
ℎኻ
(𝑢፞𝛿 − 𝑢፞𝛿ኻ)] +

𝜕
𝜕𝑦 [

𝜌𝐽
ℎኼ
(𝑣፞𝛿 − 𝑞፞𝛿ኼ)])

= 1
𝑞፞
(𝑢፞ℎኻ

𝜕𝛿
𝜕𝑥 +

𝑣፞
ℎኼ
𝜕𝛿
𝜕𝑦 − 𝑤፞ +

𝜕𝛿
𝜕𝑡 ) = 𝐶ፄ

(4.30)

The non-dimensional mass flux through the wing and wake surfaces, then, is given by Equation (4.31),
based on Chow (1985). This represents the displacement effect the boundary layer has on the inviscid
flow.

𝑆 = 1
𝜌፞𝑞፞𝐽

(𝜌፞𝐽
𝜕𝛿᎞
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𝑀ኼ፞𝛿᎞
𝜕𝑞፞
𝜕𝑡 +

𝜕
𝜕𝑥 [

𝜌፞𝐽
ℎኻ
𝑞፞𝛿ኻ] +

𝜕
𝜕𝑦 [

𝜌፞𝐽
ℎኼ
𝑞፞𝛿ኼ]) (4.31)

The density is eliminated from these equation using the Crocco relation (Cebeci and Smith, 1974) and
with a set of empirical two-dimensional closure relations for attached and separated flow (Cousteix, 1987;
Cousteix and Houdeville, 1981; Green et al., 1977; Houwink and Veldman, 1984). Van der Wees and
van Muijden (1992, p. 3) note that these relations are supposed to be replaced by “more physical closure
relations and velocity profile families”, but it is unknown if, when and how this change was implemented.
These relations are used to reduce the number of unknowns to four: the streamwise momentum integral
thickness 𝜃ኻኻ, the transformed boundary layer shape factor 𝐻፞, the total velocity 𝑞፞ and the crossflow
factor 𝐶, given by Equation (4.32):

𝐶 = sgn(𝛽፰)√−𝜃ኼኼ
𝛿ኻ

(4.32)

Elham (2013) indeed describes that the laminar closure relations used in MATRICS-V are the Falkner-
Skan relations, as given by Cousteix (1987). In the turbulent case, the shape-factor relation is changed



4.2. Three-dimensional solvers 57

based on the lift-off formulation by le Balleur (1981), the results by Melnik and Brook (1985) regarding
separated flow, the skin friction relation by Swafford (1980, 1983) (also used by XFOIL) and corrections
for low-Reynolds number applications by Bandyopadhyay (1992). As not all of these references appear
in any of the four primary publications cited at the beginning of this sub-section, it is unclear when and
in what final form these relations were implemented in MATRICS-V.

Boundary conditions are applied to set all derivatives in the local sweep direction at the wing root to zero.
Van der Wees et al. (1993) furthermore note that no downstream boundary conditions are applied, as
to not influence the upstream dependency of the flow characteristics, although van der Wees and van
Muijden (1992) describe that for all quantities a zero gradient condition is enforced in chordwise direction.
Both sources also mention “zero derivatives in the local sweep direction” at the wing tip (van der Wees
et al., 1993, p. 3), referring to Cross (1979), but as that reference could not be accessed, it could not
be confirmed whether the derivatives are enforced at a zero value, or that no derivatives are prescribed
and all are left free.

Transition Neither van der Wees and van Muijden (1992) nor van der Wees et al. (1993) explicitly dis-
cern between a laminar and a turbulent flow model (Elham (2013) does), but note that the initial condi-
tions of the turbulent boundary layer (which are governed by the laminar boundary layer) are given by the
BOLA-2D solver (used in direct mode), another boundary layer model developed by NLR (de Bruin and
de Boer, 1982). This is used to generate the laminar quasi-two-dimensional flow present at the leading
edge of the wing, leading to the hypothesis that BOLA-2D solves the laminar problem and the afore-
mentioned equations are solely used for turbulent computations. Mariens et al. (2014) state MATRICS-V
includes two transition options, but van der Wees et al. (1993, p. 3) and Elham (2013) only discuss that
“an extended Granville criterion [...] has been implemented to test on possible transition”, referring to
Cousteix (1987).

Mild separation of the turbulent boundary layer (BOLA-2D assumes attached flow) is allowed (although
Mariens et al. (2014) talk of the “capability to model considerable boundary layer separation”), in which
a so-called interaction law prevents breakdown of the boundary layer formulation. This interaction law,
which adjusts the edge velocity of the inviscid part of the flow in order to obtain a convergent numerical
solution, is slightly modified from Williams (1989) and shown in Equation (4.33). According to van der
Wees and van Muijden (1992), it has no effect on the final solution, as it is in correction form.

𝜕𝑞፞
𝜕𝑠 −

𝑞፞𝜋
𝛽Δ𝑥𝑆 = (

𝜕𝑞፞
𝜕𝑠 )

፤
− 𝑞፤፞𝜋
𝛽፤Δ𝑥𝑆

፤ (4.33)

Viscous / inviscid coupling
MATRICS-V uses a viscous-inviscid interaction method. In the laminar flow region, the inviscid flow
properties are computed by specifying a source of strength 𝑆 on the wing. Sources are also located on
the wake and a velocity jump across the wake is prescribed.

The viscous computation is obtained quasi-simultaneously (Lock and Williams, 1987), in which the in-
viscid wall velocity is prescribed (Elham, 2013). A correction for curvature effects of the boundary layer
is included. In the iterative process, boundary layer computations yield an updated source strength and
velocity jump, which is then fed back to the inviscid calculations until convergence is obtained.

Solution procedure
The computational domain in MATRICS / -V is composed of a main grid and several smaller sub grids of
C-O topology (Elham, 2013). The coarser main grid takes care “of the efficient gross interaction between
the various aircraft components” (van der Vooren et al., 1986, p. 4); the subgrids yield detailed solutions
for the different components of interest (e.g., wing, nacelle, body, pylon). Conformity of the component
boundary on the sub grid is stringent, whereas this requirement is somewhat more relaxed on the main
grid. The main grid is generated using MATGRID (Tysell and Hedman, 1988). Over the cut in the C-
O topology that extends from the wing tip, normal and potential flux are prescribed using a boundary
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condition (van der Wees et al., 1993).

The potential equation is discretised on a curvilinear coordinate system. This is second-order accurate
almost everywhere, except in supersonic regions, where first-order accuracy is obtained (van der Wees
et al., 1993). The grids are made up of cubical cells defined by their corner-point coordinates, and for
each of which, the velocity disturbance potential is computed in the corner points. Trilinear interpolation
is used to determine intermediate values.

A so-called non-linear FAS (full approximation storage) multigrid method is selected to solve the flow
model, with the ILU/SIP (incomplete lower upper decomposition / strongly implicit procedure) smoothing
algorithm (Meijerink and van der Vorst, 1977; Stone, 1968). The idea behind the multigrid method is to
reduce computational effort by solving the flow model on successively finer grids, using the information
obtained on coarser grids. In the MATRICS / -V code, these coarser grids are obtained by removing
every other grid point on the finer grid. FAS, specifically, is suited for non-linear problems as this scheme
is able to transfer the nonlinearities to the coarser grids through re-discretization (Blazek, 2007). Further
details of the ILU/SIP smoothing algorithm, which go beyond the scope of the current text, are available
in van der Wees (1985), Stone (1968) and Meijerink and van der Vorst (1977); its implementation is most
extensively discussed in van der Vooren et al. (1986).

A dummy gridpoint approach (described in (van derWees et al., 1983)) is used to implement the boundary
conditions that are not of the Dirichlet-type. This makes the application of the boundary conditions not
completely exact (van der Wees et al., 1983).

Output
As neither MATRICS nor MATRICS-V was available in the period this literature study was conducted, no
information on the type and format of the output generated by the codes is available at this time.

Results
Only very little publications using MATRICS or MATRICS-V could be found. Elham and van Tooren
(2016) use it to validate another aerodynamic solver (Q3D, treated in Section 4.3.2), but do not dis-
cuss the accuracy or performance of MATRICS-V itself. These validation results are scarce, but not
entirely absent. Van der Vooren et al. (1986) compare the inviscid solver MATRICS to a higher order
panel method by Roberts (documented in Sytsma et al. (1979)) and observe excellent agreement in the
prediction of pressure distribution, which only show small differences near the tip and the trailing edge.
These deviations are caused by (unspecified) discrepancies in the implementation of the Kutta condition,
dissimilar spanwise grid distributions and a contrasting treatment of the wing tip.

Elham (2013), citing van Muijden et al. (1996), compares pressure distributions obtained by MATRICS-V
for a DLR-F4 wing-body combination to these obtained in wind tunnel experiments (shown in Figure 4.10)
and wind tunnel and flight test results of a Fokker 100 wing-body combination (these latter two also docu-
mented in van derWees et al. (1993)). The smallest errors are found in the F4 case, with only someminor
discrepancies in terms of predicted shock location at the outboard wing sections. In the Fokker tests,
some inequality in shock location is predicted for the wind tunnel experiments, whereas the flight test
comparison shows more notable differences in upper surface pressure distribution upstream of the shock
wave. The sensitivity of the computations with respect to shock wave strength and location is also noted
in van der Vooren et al. (1986), showing that the amount of artificial viscosity, the use of a freestream-
consistent computational scheme and the size of the computational domain also notably impact their
accurate prediction. R. Vos (personal communication, July 13th, 2018) has noted that MATRICS-V pro-
duces best results when Fokker 100-like wing-body configurations are analysed.

Validation of derivative results (such as lift, drag and pitchingmoment estimations) could not be found, but
the generally accurate estimations of pressure distributions discussed before instil trust. This especially
holds for lower subsonic speeds, where shock waves do not yet play an important role – and possible
errors in their estimation have a less severe impact on the results.
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E.5. Validation 253

Figure E.4: Comparison of computed and measured chordwise pressure distribution
on four wing sections of the DLR-F4 wing-body configuration ( [18]).

Figure 4.10: Comparison of pressure coefficients of a DLR-F4 wing-body configuration as predicted by MATRICS-V and found in
experiment, illustrating MATRICS-V performance (Elham, 2013, p. 253)

4.2.5. Stanford University Unstructured (SU2)

Rather than a program intended solely for CFD purposes, SU2 (also stylised as SU2, short for Stanford
University Unstructured) is a “computational analysis and design package that has been developed to
solvemultiphysics analysis and optimization tasks using unstructuredmesh topologies” (Economon et al.,
2016b, p. 828). It was launched in 2012 (Myers, 2012) and has reached version 6.0.0 in early 2018
(su2code, 2018). The program is modular in set-up and applicable to various partial differential science
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and engineering problems. At the core is a Reynolds-averaged Navier-Stokes solver.

Corresponding to this modular set-up, SU2 can solve the full (laminar) and Reynolds-averaged (turbu-
lent) Navier-Stokes equations as well as the Euler equations using FVM and FEM solvers, or a combina-
tion thereof (in case of multiphysics problems). Included tools for adjoint-based sensitivity analysis and
uncertainty quantification make the suite suitable for design optimisation problems (Kiyici and Aradag,
2015; Munguía et al., 2017; Kusch et al., 2018; Yang and da Ronch, 2018), in addition to the analysis
capabilities offered. SU2 is an open-source program that originated at the Aerospace Design Laboratory
at Stanford University and to which various institutions around the world currently contribute, amongst of
which Delft University of Technology (Economon et al., 2016b; Palacios et al., 2013; Vitale et al., 2015;
Pini et al., 2017). Focus in this section is on the workings and capabilities of SU2 as a CFD analysis tool.

Online documentation is available through the website of the project, but is mostly geared towards users
and developers of the program (SU2, 2018). Palacios et al. (2013), Palacios et al. (2014) and Economon
et al. (2016b) provide details on the code philosophy, as well as the underlying physical and mathematical
models contained in it. Unless indicated otherwise, the information in the remainder of this section is
based on these three academic references.

Flow model
The basis of SU2 is formed by a RANS solver. By default, this models viscous, compressible turbulent
flow. Using artificial compressibility, the equations can be modified to be applicable to incompressible
flow. The compressible RANS equations can also be simplified by disabling turbulence modelling (yield-
ing laminar Navier-Stokes equations) or neglecting viscosity altogether (resulting in an Euler model).
These four implementations are further detailed below. In all cases, the problem under consideration is
expressed as a partial differential equation of the form shown in Equation (4.34):

𝜕
𝜕𝑡U+ ∇ ⋅ Fc − ∇ ⋅ Fv = Q in Ω, 𝑡 > 0 (4.34)

In this equation, U is the state vector and Fc and Fv represent the convective and viscous fluxes,
respectively.

Table 4.3 shows which boundary conditions are supported in the RANS solver – in compressible and
incompressible flows. In the Euler solver, a flow tangency boundary condition is also available.

Inviscid formulation
In case of the fully invsicid formulation, Equation (4.34) is used with Fc as given in Equation (4.35) and
Fv = 0.

Viscous formulation
Viscous and compressible flow is modelled using Equation (4.34). The state vector is given as U =
(𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝜌𝐸)ፓ18 and Fc

i
and Fv

i
as shown in Equation (4.35):
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(4.35)

18Palacios et al. (2013) uses ፯Ꮃ, ፯Ꮄ and ፯Ꮅ for the velocity components here indicated ፮, ፯ and ፰. ፕ is used to represent the total
flow velocity, designated ፯ in the original source.
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Table 4.3: Boundary conditions supported by the compressible and incompressible RANS solver in SU2 (Palacios et al., 2013;
Economon et al., 2016b)

Boundary condition Compressible solver Incompressible solver
Wall symmetry � �
No-slip wall (adiabatic) � �
No-slip wall (isothermal) �
Far-field boundaries �
Near-field boundaries �
Inlet boundaries (stagnation prescribed) � �
Inlet boundaries (mass flow prescribed) � �
Inlet boundaries (supersonic conditions
prescribed)

�
Outlet boundaries (back pressure prescribed) � �
Periodic boundaries �
Nacelle inflow boundaries (fan face Mach
number prescribed)

�
Nacelle exhaust boundaries (total nozzle
temperature and pressure prescribed)

�

Upon substitution into Equation (4.34), the first row forms the continuity equation, the second, third and
fourth rows together represent the conservation of momentum (in the three Cartesian components) and
the fifth row is the energy equation.

In the incompressible formulation, these definitions change to the ones shown in Equation (4.36), corre-
sponding to a state vectorU = (𝑝, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤)ፓ. With the assumption of constant density, the system has
one less unknown and therefore one less equation. Although the model still includes (turbulent) viscosity,
the artificial compressibility (Chorin, 1997) with parameter 𝛽 limits the use of the model to steady-state
flow.
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(4.36)

In these vector definitions, 𝛿።፣ is the Kronecker delta function (equal to 1 if 𝑖 = 𝑗, 0 otherwise), 𝐻 the
enthalpy, 𝐶፩ the specific heat at constant temperature and 𝑇 the temperature itself. 𝜏።፣ are the viscous
stresses, computed using Equation (4.37):

𝜏።፣ = 𝜇፭፨፭ (𝜕፣Vi + 𝜕።Vi −
2
3𝛿።፣∇ ⋅V) (4.37)

The two forms of 𝜇፭፨፭, representing the viscosity, are defined in Equation (4.38) and follow the Boussinisq
hypothesis introduced in Section 2.1.4 (Wilcox, 2006; Blazek, 2007; Palacios et al., 2013).

𝜇፭፨፭ = 𝜇፝፲፧ + 𝜇፭፮፫፛ (4.38a)

𝜇∗፭፨፭ =
𝜇፝፲፧
𝑃𝑟 ፲፧

+ 𝜇፭፮፫፛
𝑃𝑟፭፮፫፛

(4.38b)
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Laminar flow If turbulence modelling is disabled, a laminar (full) Navier-Stokes solution is obtained.
In this case, the relations in Equation (4.35) still hold, with the difference that the last term in Fv

i
only

depends on laminar stresses, as 𝜇፭፮፫፛ tends to 0 and 𝜇፭፨፭ thereby reduces to 𝜇፝፲፧. This dynamic
viscosity follows from Sutherland’s law (assuming an ideal gas, 𝜇፝፲፧ can be written as a function of
temperature, a reference viscosity and a constant (White, 1991)).

Turbulent flow If a turbulent solution is sought, 𝜇፭፮፫፛ is given by a turbulence model. The SU2 code
includes two of these: the one-equation Spalart-Allmaras (S-A) model (Spalart and Allmaras, 1992) and
the Menter shear stress transport (SST) model (Menter, 1993). The latter is a two-equation model that
combines the 𝑘 − 𝜔- and the 𝑘 − 𝜖-models mentioned in Section 2.1.6. The 𝑘 − 𝜔 model is used for the
inner 50% of the boundary layer and (a 𝑘 −𝜔 representation of) the 𝑘 − 𝜖-model is gradually blended in
towards the boundary layer edge, combining the advantages (near-wall accuracy of 𝑘−𝜔, independence
of free-stream of 𝑘 − 𝜖) of both (Menter, 1993).

Transition Transition is predicted by the 𝛾 − 𝑅𝑒᎕፭−S-A-model (Medida and Baeder, 2011b,a). It is
an application of the previously developed 𝛾 − 𝑅𝑒᎕፭-model by Langtry and Menter (2009), which was
developed for the SST model by Menter (1993), to the Spalart-Allmaras turbulence model. Both are
correlation-based models that use the intermittency 𝛾 (0 for laminar, 1 for turbulent) to control the ‘pro-
duction’ of turbulent kinetic energy in the turbulence model. Intermittency starts to grow from the critical
Reynolds number 𝑅𝑒᎕፜, which thereby determines the transition (onset) location (Medida and Baeder,
2011a).

Viscous / inviscid coupling
No inviscid / viscous coupling is incorporated in SU2, as the flow models are inherently viscous (NS and
RANS) or inviscid (Euler).

Solution procedure
Just as SU2 includes various options of representing the flow, the suite offers a number of solution
procedures. First of all, the models can be solved using either finite volume or finite element methods.
Unstructured two- as well as three-dimensional meshes are supported, meaning elements can take the
shape of triangles or rectangles, or tetrahedrons, hexahedrons, and so on. For dynamic problems, such
as flow simulations about an extending or retracting high-lift system, the governing equations can be
expressed in a special Arbitrary-Lagrangian-Eulerian form and mesh nodes can rotate and translate in
time.

Space integration is performed using either of a number of centred or upwind methods in case of the
convective fluxes, such as JST (Jameson et al., 1981) and Roe (Roe, 1981). Both convective as well
as viscous fluxes are computed at the edge midpoints. Possible source terms are assumed piecewise
constant. Time integration can be implicit (using an implicit Euler scheme) or explicit (using a Runge-
Kutta method). Local time stepping is used in steady simulations to speed up convergence. In unsteady
simulations, a dual time-stepping method is used to improve high-order accuracy in time.

A number of other convergence acceleration strategies is implemented, among which a nonlinear multi-
grid method (introduced at the end of Section 4.2.4), so-called linelet preconditioning (transforming a sys-
tem to make it more suitable for numerical simulation) and Roe-Turkel low Mach number preconditioning.
This last strategy makes it possible to solve (nearly) incompressible problems using solution methods
that were developed for compressible flows, something that is not automatically the case because stan-
dard discretisation methods incorrectly scale the artificial viscosity with Mach numbers reducing to 0,
resulting in excess artificial viscosity in the lower Mach number regime.

The ability to solve multi-physics problems in SU2 is also directly employed by the RANS solver. The
mean flow properties are computed separately from the turbulence model and coupled afterwards.
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Output
Because of time constraints, no simulations were performed using SU2, such that the type and format of
the output generated by the code could not be inspected. Based on literature, it is however noted that a
separate software program (such as Tecplot) is required to display the (numerical) data output by SU2.

Results
Even though the software has only been around for a few years, the number of citations of the first
publication (Palacios et al., 2013), displayed in Table 4.1, provides an indication of the use. With respect
to the other methods presented in the current section, the citation amount might be increased because
of the wide area of problems SU2 is applicable too. Indeed, Palacios et al. (2013) present validation
results ranging from analysis of wings to plasma streams, and from optimisation studies of airfoils to
rotor geometries. SU2 is also recognised by parties researching organic Rankine cycles for power power
generation (Keep et al., 2017). This section is limited to a discussion of results of aerodynamic airfoil,
wing and aircraft analyses.

There are multiple validation efforts found in literature in that subset of possibilities. Palacios et al. (2014,
p. 33) themselves have published a wealth of verification and validation results, some of them also found
in Palacios et al. (2013) and Economon et al. (2016a), concluding “excellent agreement with both the
available experimental data and numerical simulations results from well-established computational tools
developed at NASA”. In three unit tests (a flat plate, a bump in a channel and a square cylinder), good
results were obtained. Using the SST turbulence model, the numerical scheme (1st order Roe or 2nd
order Roe with Venkatakrishnan-limiter (Palacios et al., 2014)) was of larger influence than when using
the S-A model, with the first-order scheme performing best.

Moving to airfoils, Palacios et al. (2014) shows more accurate results for a symmetrical than for a cam-
bered airfoil, both tested at 𝑅𝑒 ≈ 1 ⋅ 10ዀ and low speeds. Pressure coefficient predictions are slightly off
at higher angles of attack, yielding errors in the estimation of aerodynamic performance. The authors
note the convective numerical method and turbulence model do influence the prediction of skin friction.
In a comparison with experimental data of a multi-element (slat, main element and flap) airfoil (Chin et al.,
1993) at a higher Reynolds number, good agreement was observed, but some larger discrepancies in
the flow over the slat were found: the pressure drop over the top surface is overpredicted. Lift coeffi-
cients match experimental results very well in the linear region (𝛼 ≤ 15°), but also quite good agreement
(8% underprediction at most) is observed at and slightly beyond stall. Good stall predictions are also
observed by Velázquez et al. (2017), although the lift coefficient is underestimated. Vaithiyanathasamy
et al. (2018) noted an overprediction of 𝑐፩ in high-𝛼 inviscid simulations at lower Reynolds numbers, but
otherwise good results. SU2 is able to generally predict transition accurately, but somewhat too early at
angles of attack above 5° (Shengjun et al. (2016), comparing with experimental data from Klausmeyer
and Lin (1997)). Performance in the transonic domain was validated by comparison with experimental
results of a RAE 2822 supercritical airfoil (Palacios et al., 2014). This found good agreement in all cases
and showed S-A predicting the shock location better than SST (estimating it some 0.05𝑐 more forward).
In one case, small discrepancies near the leading edge suction peak were found, as well as a slight
overprediction of pressure over the top surface. The numerical scheme (Roe versus JST) improved the
accuracy of the shock location estimation. In the second case, the shock location was predicted perfectly,
but in the third, a larger difference was observed. Also, massive detachment resulted in an inaccurate
upper surface pressure prediction.

Three-dimensional wings were also tested in SU2 by Palacios et al. (2014). It shows very good agree-
ment between SU2 results and a simulation in DLR’s Tau-code on a DLR-F6. Little (if any) differences
were found between SU2 using SST or S-A turbulence models. The SU2 overpredicted 𝐶ፋ in comparison
to the experiment by about 5% and at more outboard wing stations, the code had difficulty predicting the
correct shock location (again, predicting it too much forward) and (to a lesser extent) shock strength. The
close match between the S-A- and SST-models was also found in case of an ONERA M6. In that case,
substantially bigger errors were found, showing SU2 struggling with accurately predicting a double shock
on the upper surface. Contrary to the F6-case, estimations at inboard stations were now better than at
outboard stations. Economon et al. (2016b, p. 841) noted “excellent agreement for the first two-thirds
of the pressure signature, but some small disprepancies [...] at the end of the signature” of a Lockheed
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Martin 1021 supersonic concept, tested at 𝑀ጼ = 1.6. Little difference was found between simulations in
SU2 and OVERFLOW and wind tunnel experiments conducted on the NASA Common Research Model
(Palacios et al., 2015). The discrepancies that were found, mostly concern estimating the shock loca-
tions. Compared to experiment, both codes reported higher pressure coefficients on the upper surface.
The errors were again largest at outboard sections.

Testing complete UAV-configurations, Vogeltanz (2015) found the numerical scheme to be of important
influence. In one test, JST outperformed Roe. Although both schemes overpredicted the lift slope, Roe
consistently overpredicted drag and underpredicted lift-to-drag ratios over 𝛼 = 3°. In another test, the
results were however reversed. There, JST structurally underpredicted the drag coefficient by some 50%,
whereas Roe matched it closely up to 𝛼 = 3°, before deviating to an underprediction of 10%. In predicting
lift coefficients, there is no method that clearly outperforms the other – each were found to have their
sweet spots in the 𝛼 -range. The authors hypothesize the Reynolds numbers (first test at 𝑅𝑒 = 1.7 ⋅ 10ዀ;
second at 𝑅𝑒 = 2.82 ⋅ 10኿) are the main reason for the different accuracy by the two schemes and note
testing imperfections (such as wind tunnel asymmetries and small differences in model geometry) might
have caused some of the errors between simulated and experimental results.

4.2.6. Comparative review

Similar to the four two-dimensional solvers compared in Section 4.1.5, all but one of the four fidelity levels
(discussed in the introduction of Chapter 4) are presented, ranging from simple vortex lattice methods
to a panel method and more advanced full potential and RANS solvers. Unsurprisingly, the largest
differences are found between these fidelity levels – with commonalities found in different programs of
the same level.

Starting with the VLMs (AVL and Tornado), it can be noted that their use cases and applicability are sim-
ilar. Both are limited to thin wings (or, put differently: neglect thickness) and support modelling bodies
(yielding much improved derivatives with respect to the sideslip angle (Martindale et al., 2010)), limited to
slender bodies in AVL. Multiple control surfaces can be modelled on each half-wing, just as models can
include more than one lifting surface (e.g. a wing and a horizontal tailplane). Both codes include exten-
sive panelling or meshing options. The vortices and wake show some differences. Whereas AVL uses
traditional three-part horseshoe vortices and models the wake extending in chordwise direction, Tornado
uses vortex slings consisting of seven filaments, allowing the wake to continue in freestream direction.
The codes furthermore distinguish themselves in drag estimation, by including user-input viscous polar
data (AVL) or estimating parasitic drag based on a semi-empirical method (Tornado). A Trefftz-plane
analysis to find induced drag is included in both, but AVL also offers a (often less accurate) computation
based on surface forces. Their ability to estimate stability and control derivatives – Tornado using central-
differencing, AVL using a parameter sweep – results in extensive use of both programs in control and
stability design and analysis, especially of UAVs. Tornado furthermore sees much use in the analysis of
morphing structures. In the linear range of the lift curve, predictions of both codes are generally good, but
substantial errors can be seen at higher angles of attack. The moment coefficient prediction is further off,
possibly due to the fact that viscous effects are not included (Dantsker and Vahora, 2018). Especially in
case of Tornado, the results obtained in literature differ a lot, making it hard to validate these beyond the
(overall well-predicted) trends. For that reason, AVL seems the more accurate and trustworthy program.
Being built in FORTRAN, it is also quicker than Tornado (in MATLAB), although the latter program might
be considered more user-friendly.

Compared to the two VLMs, the 3D panel method VSAERO is still linear, but allows for modelling ar-
bitrary bodies (such as wing-body combinations or complete aircraft). This comparison can be seen in
Figure 4.11. VSAERO includes two boundary layer methods, one that follows the computed surface
streamlines, another which also supports crossflow. Transition is based on empirical methods (insta-
bility and transition curves). Despite the relatively small increase in computational cost from the VLM
programs, results are more accurate. Earlier versions suffered from inaccurate drag predictions, but
with the recent introduction of the Trefftz-plane analysis (also seen in AVL and Tornado), this short-
coming has been resolved. Lift, however, is mostly overpredicted – sometimes by a constant offset,
sometimes due to a slightly different lift slope than observed in results from higher-order codes or wind
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tunnel experiments. The largest errors are at higher angles of attack, but in the linear range of the lift
curve, results are generally good. Especially noteworthy is the improvement of moment coefficient pre-
diction compared to the previous VLM codes. Most problems that are noted in validation or verification
results in literature concern the trailing edge region and outboard stations, where separation plays a more
dominant role. According to Strang et al. (1985), this is a direct result of the piecewise constant poten-
tial and can be solved by increasing the number of panels (increasing computational cost). The linear
potential flow model is limited to bounds given by compressibility corrections (Prandtl-Glauert, possibly
also Karman-Tsien – different sources provide different accounts) and indeed performs poorer at higher
subsonic Mach numbers (𝑀 = 0.8).
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potential fields are computed. The pressure field can then be calculated from an appropriate pressure–velocity 
relationship, and forces and moments calculated by pressure integration.22-24 In order to improve the accuracy of the 
induced drag calculation, the version A502i can calculate it by Trefftz plane analysis.20,25 The PAN AIR pilot code 
and later versions have been used and validated to compute aerodynamic forces and moments, and pressure 
distribution on arbitrary configurations in free flight,23,24 and validated against experimental data to calculate the 
influence of ground proximity on a single wing.26 A complete discussion of the method may be found in Ref 27. 

The Athena Vortex Lattice is a code capable of solving the non-viscous flowfield around the aerodynamic 
configurations which consists mainly of thin lifting surfaces at small angles of attack and sideslip. The lifting 
surfaces are represented as single-layer vortex sheets, discretized into horseshoe vortex filaments.21 At a specific 
control point, the velocities induced by each horseshoe vortex are calculated by the law of Biot–Savart. A set of 
linear algebraic equations for the horseshoe-vortex strengths is obtained when all control points on the wing are 
summed, satisfying the boundary condition of no flow through the wing. The wing circulation and the pressure 
differential between the upper and lower surfaces are connected to the vortex strengths. The forces are obtained by 
integration of the pressure differentials.28,29 AVL could also model slender bodies via source and doublet filaments,
and force and moment predictions are consistent with slender-body theory.25 Athena Vortex Lattice assumes quasi-
steady flow and treats the compressibility using the Prandtl-Glauert transformation.21

To verify the capability of PAN AIR and Athena to simulate ground effect, a rectangular wing with similar
aspect ratio and airfoil section of the ANCE wing with no twist was tested using both codes at eight different
distances above ground (ze equal to 0.1, 0.16667, 0.25, 0.5, 1.0, 1.5, 2.0, and 2.5), and in free flight.  

The ground effect is simulated by PAN AIR and AVL through the use of the method of images. The ground 
plane is represented by an image of the paneled geometry, placed and oriented as though it is reflected on the surface
of the ground,6 so that, the ground plane does not have normal velocity, only tangential component. 

The semi-span wing simulated by PANAIR is divided in 979 panels, and consists of five surface networks 
defined as indirect condition on impermeable thick surface and four wake surface networks. The wing simulated by 
AVL has a vortex lattice with 920 control points, twenty lattice chordwise divisions and forty-six spanwise divisions 
in a cosine distribution. The Mach number was equal to 0.15 for both simulations.  

A. Simulation the Flowfield around the ANCE
The potential flowfield around the airplane was simulated by PANAIR and AVL codes. Using both codes, the 

airplane was modeled excluding the landing gear and the camera due to the fact that the contribution of these 
components to inviscid forces and moments is assumed negligible.  

The geometry simulated in PANAIR consists of 3,009 panels, representing the half of the airplane. The geometry 
was divided in twenty-seven surface networks; twenty-two are defined as indirect condition on impermeable thick
surface (for lifting surfaces). Four are defined as direct condition on impermeable thick surface (for non-lifting 
surface), and one as base surface condition. There are seventeen wake surface networks to perform the Kutta 
condition (zero vorticity at trailing-edges and body bases).20 Figure 2 shows the paneled geometry of the ANCE 
used in the analysis. Flow symmetry condition is imposed to obtain the complete flowfield, pressure and forces. The 
method of images is used to simulate the ground plane. Lift, induced drag and pitching moment coefficients were 
obtained at 0.15 Mach number, at different angles of attack and different non-dimensional heights above ground.

The stability coefficients were computed by the AVL code. The vortex lattice geometry of the ANCE has 1,160 
horseshoe vortices, and this was divided in fourteen surfaces and two bodies. The booms were modeled as slender
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Figure 4.11: Comparison between geometric representations using a 3D panel method (PAN AIR; left) and a vortex lattice method
(AVL; right) (Boschetti et al., 2010, p. 5)

Whereas VSAERO has grown popular and widely used, MATRICS-V as well as its inviscid counterpart
MATRICS only appear in a few publications. Documentation is also limited. The most important dif-
ference compared to VSAERO is the fact that not Laplace’s equation, but the full (non-linear) potential
equation is used, solved using a finite volume method. This makes the software suitable for analysis of
transonic flows. The model is however limited to steady boundary layers and uses empirical (Falkner-
Skan) closure relations to solve these equations, hinting that these might be replaced with more physics-
based relations in the future. It is unknown whether this change has been made. Similarly, it is unknown
if and to what extent transition is predicted. Various sources contradict each other on this topic. The
code uses subgrids coupled via a coarser main grid to reduce required computation time. Unfortunately,
a direct result of the low number of publications using MATRICS / -V, validation is difficult. The results that
are reported (pressure distributions) show generally good agreement and point to the program having
some difficulty with accurately predicting the shock location.

Generally most accurate results are obtained with SU2, a combined (Reynolds-averaged or laminar time-
dependent) Navier-Stokes and Euler solver, employing finite volume or finite element methods to obtain
a solution. Given this choice of flow model, no viscous-inviscid interaction methods are required, yielding
a much more integrally physics-based (as well as elegant) calculation. Both the Spalart-Alarmas as well
as the Menter SST turbulence model are included. Despite its novelty, the program has been used
extensively for a wide range of analysis and design (which is also supported by the suite) problems in
and out of the aerospace community. Generally good results are obtained, with an important advantage
of SU2 being its ability to model stall and separation much better than any of the other codes treated in
this section. Still, the best agreement is obtained at low to moderate angles of attack. The problems that
are observed in literature often concern the prediction of the shock location (SU2 regularly estimates it
somewhat more forward) and the pressure distribution over the upper surface, which is overpredicted on
more than one occasion. Like VSAERO, accuracy is in most cases lower at sections further outboard
than inboard. Results at lower Reynolds numbers are of poorer quality.

Unsurprising, the results show that higher-order CFD tools provide better results than do lower-fidelity
codes, or are applicable to a wider range of flow types. In some cases, the geometry or flight conditions
under consideration might limit the options to choose from. However, this analysis also shows that higher
fidelity comes at a price. First, there is a direct penalty, as most advanced solvers come at an increased
computational cost. An inconvenience for a one-time analysis, but an important problem in case of an
optimisation study or an analysis over a wide range of conditions. (Given this, it is unsurprising that much
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more studies into stability and control characteristics can be found that use a VLM or panel method, than
one of the higher-order codes.) Second, there is an indirect price, in terms of requirements on the user
and the geometry under analysis. In some SU2 validation studies, the choice of turbulence model of
numerical scheme was shown to impact the result. Often only a little, but sometimes substantially. For
cases where reference data is not available, the knowledge of CFD-experts is required to properly set
up and execute a simulation, making it much more difficult for (conceptual) aircraft designers to perform
an analysis themselves.
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4.3. Hybrid two-/three-dimensional solvers
This section treats hybrid solvers. This term is used to indicate a combination of a two- and a three-
dimensional solver. Oftentimes, the 2D code is used for viscous analysis of the airfoil(s) – something
considerably easier than viscous analysis of a 3D object – which is then included in the 3D analysis
of the wing or aircraft body. Some hybrid solvers truly combine two (or more) existing codes (such as
Q3D, the subject of Section 4.3.2, which adds XFOIL, VGK or MSES to AVL), whereas others (such as
XFLR5, treated in Section 4.3.1) have some components developed independently. Any of these ‘base
codes’ used in the programs discussed in this section have been treated in full in one of the preceding
parts of this chapter. A comparative review of the hybrid solvers treated in this section is provided in
Section 4.3.3.

Although both XFLR5 and Q3D are (relatively) recent developments, the technique of combining 2D and
3D models has been used for much longer (e.g. Mouch and Lan (1993), combining ARC2D with a panel
code PMARC).

4.3.1. XFLR5

XFLR5 (Deperrois, 2018) is a more recent program than most others treated in this review, having been
under continuous development since 2003 (Deperrois, 2003). It adds to the exact codebase of XFOIL a
graphical user interface and full wing and aircraft design and analysis tools, based on lifting line theory,
vortex latticemethod or a 3D panel method. The code assumes linear independence between the viscous
and inviscid analyses, such that viscous 2D data can be added to inviscid 3D results to get more realistic
results (Meschia, 2008; Dantsker and Vahora, 2018). This assumption especially holds for non-planar
geometries, wings with low aspect ratio and wings with high sweep angles (or combinations thereof)
(Deperrois, 2011b) and although not theoretically established, this approach has been validated using
other CFD codes and wind tunnel experiments (Deperrois, 2011b).

A usermanual to the current version is not available, but Deperrois (2011b) provides some documentation
for version 6.03 over the program. Based on the release notes (Deperrois, 2003) of the current version
(6.42), most of that document pertaining tomodelling and solutionmethods still seems to be valid. Hence,
unless indicated otherwise, the information in the remainder of this section is based on that reference.

Two-dimensional solution
As the 2D methods and outputs are identical to those found in XFOIL (but only have been translated
from FORTRAN to C++ (Deperrois, 2011b; Rajagopal and Ganguli, 2011)), the governing equations and
solution methods for that code, described in Section 4.1.1, also hold for XFLR5.

Three-dimensional solution
XFLR5 encompasses a lifting line method, a vortex lattice method and a 3D panel method. These are
treated in this section.

Lifting line method
The lifting line theory incorporated in XFLR5 is a non-linear lifting line method and a strict implementation
of Sivellis and Neely (1947) (Deperrois, 2011b; Dantsker and Vahora, 2018). Compared to the linear
lifting line theory presented in Section 3.2.1, it works from the notion that the trailing vortices shed from
the lifting line generate a velocity component perpendicular to the free-stream direction. This yields an
induced angle of attack, which in turn makes the effective angle of attack different from the geometric
angle of attack. That same effective angle of attack also depends on the 2D section lift coefficient,
resulting in two equations that need to be solved simultaneously. Given the fact that (section) lift curves
are non-linear (especially at higher angles of attack), finding a solution becomes an iterative process.
Despite this improvement (or rather: extension) compared to the linear LLT, the limitations of the LLT
discussed in Section 3.2.1 (e.g., limited to straight wings with 𝐴𝑅 > 4) still hold. XFLR5 however does
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take a possible dihedral angle into account when computing the pitching moment coefficient. Wing twist
or washout is modelled by adjusting the local angle of attack (Deperrois, 2011b).

Vortex lattice method
The vortex lattice method is a straightforward implementation of the theory presented in Section 3.2.2,
with the exception of the option of using ring (or quad) vortices rather than horseshoe vortices. In that
case, only the vortices located behind the trailing edge extend downwards to infinity, with the vortices on
the surface area forming a closed loop, as shown in Figure 4.12a. The (normal) horseshoe implemen-
tation is shown for comparison in Figure 4.12b. According to Katz and Plotkin (1991), the ring vortex
method is somewhat simpler from a programming point of view. Deperrois (2011b, p. 30) notes that the
results of the two methods are “close if not identical in most cases”.

 

(a) Ring or quad vortices (b) Horseshoe vortices

Figure 4.12: Vortex lattice method implementations, adapted from Deperrois (2011b)

As a VLM does not take thickness into account, the vortices are located on the mean camber line at 25%
of the panel chord. A control point at which a flow tangency is applied is located at 75% of the panel chord
(Deperrois, 2011b). In order to combine the inviscid VLMwith viscous 2D airfoil data, the VLM routine first
computes the relevant aerodynamic coefficients by integrating the surface forces (at 75% of the panel
chord (Rajagopal and Ganguli, 2009)) and then uses the calculated lift coefficient to find a corresponding
(possibly interpolated) viscous drag coefficient. Contrary to in the LLT case, twist or washout is modelled
as a modification to the wing section, applied at the quarter-chord point. Furthermore, whereas the non-
linear LLT allowed for capturing stall, this is not possible in VLM, limiting its results to the (relatively) linear
range of the lift slope (Dantsker and Vahora, 2018).

Panel method
As explained in Section 3.2.3, and as is the case in XFLR5, the panel method makes it possible to model
the wing as a thick surface. In XFLR5, the 3D panel method is based on themethod presented in Maskew
and Katz (1987), the VSAERO theory document.

Panels are flat, meaning that all four corners are in the same plane. Singularities (doublets and sources)
are positioned on the wing upper and lower surfaces. The wake is also panelled (up to a length 100 times
the mean aerodynamic chord), with doublets applied to these panels. The doublet strength is set equal
to the difference between the strengths of the upper and lower doublets of the corresponding wing strip,
as the wake cannot sustain load. A Dirichlet boundary condition is used (as of version 6.39 (Deperrois,
2003)), as it outperformed the Neumann boundary condition. This sets the velocity potential on the inside
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of the surface to 0, equating the internal and (external) freestream potential.

The way the wing is modelled in the current version of XFLR5 depends on whether a single wing or a
complete aircraft is analysed. In the former case, the wing is modelled as a thick surface, in the latter
case, the fuselage is modelled as a thick surface and the wings are assumed to be thin surfaces. In
that case, a vortex lattice method is used to find the aerodynamic properties of the wing, rather than the
doublet model proposed in Maskew and Katz (1987).

Output
The 2D output is exactly similar to XFOIL, discussed in Section 4.1.1. Output of the three-dimensional
analysis consists of polars (on screen, as well as in the form of data exports), showing combinations of
angle of attack or sideslip, force (lift, induced drag, viscous drag, total drag, normal force) and moment
(pitch, roll, induced yaw, viscous yaw and total yaw) coefficients. The dynamic pressure and transition
location is also available. Stability derivatives are not automatically computed, but can be generated if
the wing mass and inertia are specified.

Results
As the 2D analysis uses XFOIL, critiques shared on the viscous results by that program, discussed at the
end of Section 4.1.1, of course also hold for XFLR5. These concern problems with predicting separation
and under-prediction of the drag coefficient of thicker airfoils. Some studies only use the 2D capabilities
of the program (Müller et al., 2012), possibly because the graphical user interface that XFOIL itself is
lacking. Many of the use cases include UAVs or MAVs (Hassanalian and Abdelkefi, 2017), enthusiast
projects (especially sailplanes, (Meschia, 2008)) and stability analyses (Kurukularachchi et al., 2016).

Looking at the complete program, numerous publications comparing XFLR5 results with data from higher-
fidelity methods or wind tunnel campaigns show experimental trends are generally matched (Deperrois,
2011b). Drag is underestimated in multiple cases (Deperrois, 2011b, 2009; Deepa et al., 2016)19, possi-
bly due to the 2D-to-3D extrapolation. Lift predictions were found to be similar to experimental and other
computational results (Dantsker and Vahora, 2018), with Deperrois (2009) having obtained the best esti-
mates with the LLT-model. Counsil and Goni Boulama (2008), having compared XFLR5 to DNS-results,
furthermore observe overpredictions of lift values, especially at higher angles of attack (𝛼 ≥ 4°). The
panel method is best in predicting moment trends. From these results, it was concluded that the LLT-
method is best for lift prediction and the VLM for all other predictions, showing at least as good results
as the panel method (Deperrois, 2009, 2011b). Especially at higher angles of attack, the panel method
loses accuracy (Deperrois, 2009). Another publication compared phugoid and Dutch roll characteristics
to AVL and experimental data (again from a sailplane model), noting inconclusive results (Deperrois,
2011a). All in all, XFLR5 gives a “fairly accurate idea on the aerodynamic characteristics of the configu-
ration” (Deepa et al., 2016, p. 9), furthermore noting that its accuracy “coupled with its ease of use and
speed” make it an “effective tool for preliminary analysis of any design”.

4.3.2. Quasi-three-dimensional aerodynamic solver (Q3D)

Q3D, short for quasi-three-dimensional aerodynamic solver, was born out of the need for an accurate
as well as fast method for conceptual wing design and evaluation and developed at Delft University of
Technology (Mariens, 2012; Mariens et al., 2014). It combines two-dimensional viscous airfoil data (from
a 2D solver) with an inviscid three-dimensional method (AVL) in order to evaluate full wing aerodynamic
forces, similar to Cosyn and Vierendeels (2006).

A user manual is not available. As such, the remainder of this section is based on the original publications
(Mariens, 2012; Mariens et al., 2014).

19Deperrois (2009) used XFLR5 v4.09, which employs a near-field drag estimation method. From v4.13, a far-field analysis is
done (Deperrois, 2011b). As such, the it is unsure to what extent these results reflect the performance of current versions of the
program.
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Two-dimensional solution
What tool is used for the two-dimensional analysis depends on the flow regime. In subsonic flow, XFOIL
(version 6.97) is used, whereas in transonic flow, use is made of either VGK or MSES. As the latter
is based on the Euler equations it is more accurate in case of shocks, but this capability comes at an
increased computational cost.

In any case, the 2D analysis is performed on a wing section normal to the sweep line (Mariens, 2012,
pp. 44-45).

Three-dimensional solution
AVL is used for the three-dimensional analysis. As the details of that program are treated in Section 4.2.1,
they are not repeated here.

Solution procedure
As Q3D combines various other programs, it does not add any new flow modelling equations, instead, it
solely adds a way to combine the 2D and 3D information (Mariens, 2012; Mariens et al., 2014).

1. The spanwise lift distribution (for a particular angle of attack 𝛼 and 3D lift coefficient 𝐶ፋ) is computed
using AVL. Induced drag is calculated using a Trefftz plane analysis.

2. Aerodynamic characteristics of various 2D wing sections are computed using an extended form of
strip theory (also known as the blade element method (Mariens, 2012)) in the following manner:
(a) The lift distribution obtained in step 1 is interpolated to find the local lift coefficient (𝑐፥ᐴ) at a

specific section. This will be used for subsonic wing analysis.
(b) The chord-wise geometry and aerodynamic characteristics per section (“freestream”) are

translated to geometry and aerodynamic characteristics normal to the sweep line (or shock
line) (“normal”). In this transformation, taper is also taken into account. The resulting pa-
rameters are used for transonic wing analysis.

(c) The induced angle of attack is determined. Based on an initial assumption for 𝛼።, the ef-
fective 𝐶፥, Mach and Reynolds number values are computed from the values normal to the
sweep or shock line. These are subsequently fed to an airfoil analysis tool (depending on
flow regime), which outputs values for effective angle of attack and drag coefficient. From
geometry, an updated induced angle of attack can be computed. This process is iterated
until the value found for induced angle of attack has converged.

(d) With the induced angle of attack obtained in step 2c, the effective drag coefficient can be
translated into a normal drag coefficient, consisting of a profile (friction and pressure drag,
including wave drag) and induced drag component. The latter is neglected (as this will more
accurately – far-field rather than near-field analysis – follow from the VLM), the first (viscous)
component is taken on to the next step.

(e) The friction and pressure drag coefficients are translated back into a freestream drag coef-
ficients.

The profile drag coefficients are integrated over the span to yield a 3D profile drag coefficient.
3. The 3D profile drag coefficient in step 2 and the induced drag coefficient computed in step 1 are

then summed to find the total wing drag coefficient. The lift coefficient from step 1 is accepted as
the wing lift coefficient.

As the authors also note, the panelling (for the VLM) and sectioning (for the blade element method)
have an impact on the situation. Based on multiple analyses with varying grid sizes, Mariens (2012)
concluded 24 spanwise and 13 chordwise panels are sufficient for the VLM calculations, and 8 wing
sections are sufficient for the strip theory (Mariens et al., 2014). It is unclear whether these values are
optimal irrespective of geometry size.
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Output
As Q3D was not available in the period this literature study was conducted, no information on the type
and format of the output generated by the code is available at this time. It is however deemed likely
that the 3D information largely follows the AVL output format, with 2D data output closely resembling
information content and formatting by the viscous analysis code utilised.

Results
Results obtained with the program described here20 at both low and higher speeds, comparing the per-
formance of Q3D to VSAERO and (in the transonic case) MATRICS-V, are described by Mariens (2012)
and Mariens et al. (2014). At lower speeds, lift was found to be slightly overpredicted compared to exper-
iment (caused by AVL, according to Mariens (2012)) in a consistent fashion, leading to the hypothesis
that a fixed-value correction might be used to improve the accuracy. In contrast, drag was underes-
timated. The error was largest at lower or negative angles of attack and a more detailed comparison
with MATRICS-V showed Q3D predicting profile drag too high and induced drag too low – the latter in-
creasingly so at higher angles of attack. This is shown in Figure 4.13. Mariens et al. (2014) found no
consistent under- or overprediction of drag, with average errors limited to 1%. In that study, the induced
drag was found to be predicted very well, with profile drag being overpredicted (as in Mariens (2012))
and skin friction drag underpredicted. This might be explained by the fact that Q3D estimates transition
to take place a little more downstream than MATRICS-V, resulting in a larger part of the boundary layer
being laminar, associated to lower drag.

54 Chapter 4. Quasi-3D aerodynamic solver

−4 −2 0 2 4 6 8 10 12
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

α [deg]

C
L
[-
]

 

 

Experimental data
Quasi−3D
VSAERO
MATRICSV

Figure 4-13: CL − α curve of the NACA 24-30-0 wing
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Figure 4-14: CD − α curve of the NACA 24-30-0 wing

Table 4-2: Error analysis of different aerodynamic solver for the wing drag coefficient of the tapered
NACA 24-30-0 wing

Experimental Quasi-3D VSAERO MATRICSV

CL CD CD
∆CD CD

∆CD CD
∆CD

(×1000) (×1000) (×1000)

-0.129 0.0104 0.0072 -3.226 0.0060 -4.403 - -
0.013 0.0094 0.0060 -3.420 0.0052 -4.147 0.0079 -1.467
0.156 0.0104 0.0068 -3.627 0.0065 -3.931 0.0091 -1.315
0.298 0.0136 0.0098 -3.837 0.0097 -3.906 0.0128 -0.853
0.439 0.0199 0.0154 -4.462 0.0153 -4.573 0.0191 -0.769
0.580 0.0279 0.0240 -3.899 0.0231 -4.705 0.0284 0.532
0.718 0.0390 0.0351 -3.920 0.0330 -5.966 - -
0.855 0.0530 0.0483 -4.667 0.0455 -7.490 - -
0.990 0.0693 0.0649 -4.445 0.0617 -7.602 - -

Jan Mariens Wing Shape Multidisciplinary Design Optimization

(a) Lift coefficient versus angle of attack
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(b) Drag coefficient versus angle of attack

Figure 4.13: Comparison of aerodynamic coefficients for a NACA 24-30-0 wing at subsonic speed as predicted by Q3D, VSAERO
and MATRICS-V and found in experiment, illustrating Q3D performance (Mariens, 2012)

Transonic performance was validated as well, with fixed transition at 0.05𝑐. Q3D using MSES found
a slight overprediction of drag coefficient up to 𝑀 ≈ 0.75, turning to a substantial underprediction in
the transonic regime (further increasing with growing Mach number). This last observation is consistent
with data presented in Section 4.1.3. The behaviour is more clearly visible at higher 𝐶ፋ-values. The
results obtained using Q3D with VGK are largely consistent with the data from Q3D-MSES at subsonic
speeds, but VGK performs better at higher Mach numbers. Shock locations are predicted best at mid-
span sections of the half-wing by both 2D codes. The shock location is estimated too much forward near
the root and too far rearward near the tip when compared to MATRICS-V, most likely due to the inability
of Q3D to model 3D root and tip effects. Similar to in the lower Mach regime, Q3D (regardless of the
2D solver) overpredicts 𝐶ፋ at a given 𝛼 in transonic flow. Overall, the error is limited to 2% compared to
MATRICS-V, as long as the freestream flow velocity does not surpass the drag divergence Mach number
(Mariens et al., 2014).

20Another Q3D-method, proposed by Elham (2015), is discussed in e.g. Elham and van Tooren (2016) and van den Kieboom and
Elham (2018). This extends the current tool using MATRICS-V to further improve the drag estimation.
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4.3.3. Comparative review

Despite the fact that XFLR5 and Q3D are both codes in a relatively small niche of aerodynamic solvers
and the accuracy of their results does not seem vastly different, there are a number of important distinc-
tions. Most prominent is the fact that Q3D, owing to its inclusion of 2D viscous solvers VGK (Section 4.1.2)
and MSES (Section 4.1.3), is able to generate a reasonable estimate of aerodynamic quantities of in-
terest at higher subsonic Mach numbers. Accuracy is substantially worse when compared to speeds
below 𝑀 ≈ 0.75, but XFOIL – on which XFLR5 is based – is overall limited to Mach numbers lower than
0.7. Interestingly, Q3D coupled to VGK provides more accurate results than when paired to MSES at
higher speeds, even though MSES was designed for a wider Mach range. Consistent with the individual
reviews of these latter two solvers, Q3D has difficulties with accurately predicting the shock location.
This is most notable at the root and tip, where 3D effects not modelled by Q3D, play a role.

Another contrast is the fact that Q3D performs all three-dimensional calculations using AVL (a VLM),
whereas XFLR5 provides users the additional option of choosing a lifting line theory or panel method
computation. This difference is less relevant in practice than it might seem in theory, as the overall best
results in XFLR5 are obtained when the VLM is used. An exception to this is the notion that Deperrois
(2011b) documented slightly more accurate lift predictions were obtained using LLT. The panel method
adds little value.

As stated previously, reasonable to good accuracy is obtained using both programs, although much less
validation cases were available for Q3D than for XFLR5. From the results, it shows XFLR5 underpre-
dicts drag and slightly overpredicts lift and Q3D follows these trends, with somewhat larger errors in lift
prediction. Mariens et al. (2014) hypothesise the discrepancy in drag coefficient is caused by a slight
error in the prediction of transition location. This might also play a role with XFLR5, as many of the 2D
analysis tools share the same methods for estimating transition. Q3D performs better at lower speeds
than at higher speeds, with the overall error (in comparison to MATRICS-V) reducing from 2% to 1%.



5
Applicability to conceptual design

The previous three chapters presented various (types of) flow models, solution methods and aerody-
namic solvers – at varying levels of fidelity. It will come as no surprise that each flow model and asso-
ciated solution method has its own place during the aircraft design process. Some lower-fidelity models
might not provide the answers aerodynamicists are looking for in more detailed design phases, whereas
computationally expensive RANS simulations might be too slow and costly for use in conceptual design
(Mariens et al., 2014). Thanks to the advances made in computer technology and processor speed,
however, computational limitations are not as limiting as they once were. Especially with respect to the
conceptual design phase, this results in heated discussion: does the fact that we can also mean we
should use higher fidelity models in early design?

This chapter aims to answer that question – or at least present arguments from different sides of the
debate. As conferences and publications show, it has not yet been settled. First, arguments in favour of
early use of higher fidelity models are treated; followed by arguments against. Then, some barriers are
discussed that stand in the way of successful implementation of these more advanced methods. Last,
the debate is summarised and a conclusion is drawn, providing a solid foundation for selecting which
solvers will be subject of the thesis work succeeding this present report.

Higher fidelity models are a key design technology
Proponents of using higher fidelity models in early design phases name three arguments. First of all,
researchers feel that it is a “key design technology” (Sinsay and Nuñez, 2010, p. 1) for preventing cost
and schedule overruns, by reducing risk and uncertainty early on (Kroo, 2004; Carty, 2002). Second,
Ciampa et al. (2013) note that empirical or lower-order models might not be suited for analysis of new
technologies and novel configurations, that have to be evaluated using physics-based models. Third,
scholars see it as a necessity for making early multidisciplinary design optimisation (MDO) possible
(Suwarantana and Rodriguez, 2011; McMasters and Cummings, 2004; Carty, 2002; Jameson, 1999).
Performing MDO-studies before major decisions are made provides more design freedom to the opti-
miser and might allow exploiting synergies that would have otherwise been left unused. Also, Gu et al.
(2018, p. 12) expect this to “minimize the redesign activities” later on.

Higher fidelity models transform conceptual design into detailed design
This expectation is exactly opposite of Raymer’s outlook (Raymer, 2002). He argues that if, for example,
not all regulations and requirements are properly implemented in the computer system, its proposed con-
figuration might need substantial manual adjustments that result in a design “different from and probably
worse than” what the optimiser proposed (Raymer, 2002, p. 35). Including all these details in the op-
timiser takes additional time and furthermore makes the software less generically applicable, such that
development costs (time and money) can no longer be spread over an entire aircraft portfolio.
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In his doctoral dissertation (Raymer, 2002), he further raises some more fundamental critiques, articu-
lating that some detailed information (e.g. airfoil shapes) required for proper high-fidelity (CFD) analysis
simply has no place in conceptual design, which focuses on determining parameters like the twist and
camber distribution. Including these additional parameters would essentially transform the conceptual
design process towards a preliminary or even detailed design effort. He argues that optimisation efforts
in this first design phase should focus on higher-level parameters, such as wing loading and major plan
form parameters (fuselage fineness and wing aspect ratio, for example). In later stages, when the design
becomes more detailed (including thickness distributions of structural members, for example), optimisa-
tion can also focus on more detailed aspects of the design (such as the aforementioned airfoil shapes).
In the opinion of Raymer (2002, p. 17), “everything-optimization” is not only infeasible, but also undesir-
able, as it takes up a lot of time (setting up and executing an optimiser and understanding its results) that
is much better spent on exploring other or additional design alternatives. Fitting with that the remark “[i]t
may be hard [...] for engineers to interpret the huge volumes of data generated by these methods in a
way that will provide them with the insights needed to enable better designs” Jameson (2003, pp. 6-7).
Although this concern was voiced about anticipated increased use of LES and DNS in aircraft design in
general, the principle can be easily translated to conceptual design.

An argument that was not uncovered in the (aeronautical) literature reviewed but that the present author
feels important to mention is the possibly false sense of security or accuracy provided by more detailed
output of higher-fidelity analysis models. This can be likened to information bias, in which it is felt that
more information is better. Pro-innovation bias (newer is better, overvaluing of the usefulness of some-
thing, while under-appreciating its costs) and zero-risk bias (aiming to prevent uncertainty at all cost)
also come to mind as possible risks or downsides.

Barriers for higher fidelity models in conceptual design
The barrier of lengthy set-up processes and computationally expensive runs is also voiced in a group of
publications that seem not yet determined on an answer to the question raised in the introduction of this
chapter. Sinsay and Nuñez (2010), for example, signify that only very few conceptual designs ever see
the light of day and pose the question whether it is cost efficient to invest so much computational effort in
high risk design attempts. Cummings et al. (2015, p. 265) state that lower-fidelity, linear methods “can
be invaluable in conducting conceptual design trade studies to begin the process of identifying feasible
aircraft configurations”.

Sinsay and Nuñez, as well as Ghosh et al. (2014), Gu et al. (2018), Suwarantana and Rodriguez (2011)
and Haimes and Drela (2012), however observe a more fundamental barrier for implementation of higher
fidelity models in conceptual design, noting that higher fidelity analysis tools require higher fidelity design
input, such as a precise definition of the aircraft wetted area. Without these, quality of the analysis will
be severely compromised. (As the saying goes: garbage in, garbage out.) As discussed, however,
this detailed geometric information is not always available during conceptual design (Raymer, 2002;
Jameson, 1999), nor is it easy to generate in that phase. Conceptual designers are often not well-
enough equipped to handle the CAD-software to produce these detailed geometries. Onemight solve this
problem by including specialists to make the CAD-models, but this potentially slows down the conceptual
design process and introduces the risk of miscommunication (between designer and CAD-specialist),
resulting in models that do not represent what the designer (or design team) had in mind (Suwarantana
andRodriguez, 2011). Even if CAD-proficiency grows and specialists might no longer be required, current
drafting-based methods make it difficult to make even simple adjustments – of which there will be many
during conceptual design – to a model. This is wonderfully illustrated in the top half of Figure 5.1. This
difficulty results in high cost or a premature design freeze to prevent these costs, but putting an immediate
halt to all design work (Suwarantana and Rodriguez, 2011). Regeneration of grids further adds to the
cost (Raymer, 2002).

These problems might be (partially) solved with parametric design methods and tooling, which allow ge-
ometries to be adapted more easily (as shown in the lower half of Figure 5.1) and might require less
operator skill (Belie, 1993; Haimes and Drela, 2012; Carty, 2002; Koning, 2010; Suwarantana and Ro-
driguez, 2011; Giesing and Barthelemy, 1998; Jameson, 1999). However, even then the process should
be able to keep up with the pace of conceptual design (Suwarantana and Rodriguez, 2011). Parametric
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Figure 5.1: Traditional (drafting) versus parametric design, illustrating the incompatibility of drafting with automated design (Belie,
1993, p. 5)

design tooling could even fully close the loop, such that automated design, analysis, (multidisciplinary)
optimisation, re-design and iteration can be achieved. Although various authors have proposed such
tooling, industry application is still low (Haimes and Drela, 2012).

Right fidelity
Sinsay and Nuñez (2010) make that the present author feels is one of the most compelling arguments
in this discussion by introducing the term right-fidelity, making the question of “what is the right tool for
the job?” explicit. Sinsay and Nuñez (2010, p. 4) define right-fidelity as “where the band of uncertainty
is small enough to definitively distinguish between concepts” and note that it is impossible to universally
define what ‘right’ is.

Given the arguments presented earlier in this chapter, it is proposed to see right-fidelity as a lower limit
to guide the selection of minimum fidelity level. Time and cost available can be used as upper limits.
This yields three possibilities, as visualised in Figure 5.2 and discussed below.

lower limit

upper limit

(a) Lower limit equal to upper limit

lower limit

upper limit

(b) Lower limit above upper limit

lower limit

upper limit

(c) Lower limit below upper limit

Figure 5.2: Possible combinations of lower and upper fidelity limits
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• Lower limit is equal to upper limit (Figure 5.2a)
If the lower and upper limits are equal, the limits readily give the fidelity level.

• Lower limit is above upper limit (Figure 5.2b)
If the lower limit is above the upper limit, the problem is ‘underconstrained’. In this case, it is pro-
posed to set the fidelity level at the lower limit, saving cost.

• Lower limit is below upper limit (Figure 5.2c)
If the lower limit is above the upper limit, no applicable fidelity limit can be found. Here, it is
proposed to either postpone the analysis or selection to a later design stage, or to separate the
analysis from the main design process. In both cases, the upper limit (dictated by time and cost
constraints) can be set higher.

Especially given the high model requirements made by more advanced analysis, the upper limits will
often be fairly stringent. This even more so holds for conceptual design.

The different combinations displayed in Figure 5.2 indeed make it impossible to universally select what
(kind of) solvers are and what (kind of) solvers are not suitable for application in conceptual aircraft
design. However, if the lower limit dictates the use of solvers using flow models from fidelity level L3
(time-dependent and Reynolds-averaged Navier-Stokes equations, as shown in Figure 2.1), a postponed
or separated analysis is likely most applicable. This also goes in case three-dimensional solvers using
flow models from level L2 (Euler equations) or the intermediate level L2.5 (thin-layer Navier-Stokes and
boundary layer equations) are required. The rationale of limiting this restriction to three-dimensional
solvers is the higher computational cost and the difficulties in modelling various three-dimensional effects
in boundary layer models. Hybrid methods are viewed as an excellent way of including relevant (two-
dimensional) viscous effects in three-dimensional analyses.



6
Conclusions

This literature review set out to provide an overview of aerodynamic flow models, mathematical solution
methods and aerodynamic solvers, and discuss the applicability of these to aircraft conceptual design.
The insights obtained are to serve as foundation for a subsequent graduation research project into un-
certainty quantification of aerodynamic models used in conceptual design.

Starting with the aerodynamic models that describe the flow and its characteristics, it was established that
the insurmountable computational cost of the most advanced models (the time-dependent Navier-Stokes
equations) makes these inappropriate for application during any stage of (industrial) aircraft design. Aim-
ing to reduce the computational cost to manageable proportions, it was found that either assumptions can
be made to simplify the flow model, or physical models can be (partially) traded for empirical relations.
The former track yields (in order of decreasing accuracy or fidelity level) the inviscid Euler equations
and the irrotational (full) potential equation, followed by either the linearised potential equation (assum-
ing small disturbances) or Laplace’s equation, which is inherently linear and assumes incompressible
flow. The latter and increasingly empirical track includes various ways of resolving or modelling the
Navier-Stokes equations (direct numerical simulation, large eddy simulation and unsteady and steady
RANS), the thin-layer Navier-Stokes equations and the classical boundary layer equations. The latter
can be coupled to an inviscid solution using viscous-inviscid interaction methods, allowing an analysis
that describes the flow domain inside as well as outside the boundary layer.

In case of a linear flow model, a complete solution can be found by finding a (linear) combination of
various elementary solutions, ‘fixed’ by the boundary conditions that are applied to it (such as the flow
tangency condition). Multiple methods exist, that mostly differ by the extent to which they can model
geometric features. Lifting line and lifting surface theory, as well as vortex lattice methods, are limited
to thin wings. Panel methods, on the other hand, are able to represent thickness. Non-linear methods,
being finite difference, finite element or finite volume methods, solve the flow model on a particular type
of grid. FDM are oldest and most traditional, and are limited to structured grids. FEM and FVM grids
do not need to be structured, but are more complex and (especially in case of FEM) are deemed more
difficult to understand. Again, (far-field and surface) boundary conditions are used to find the solution
applicable to the particular situation under investigation.

Combining flow models and solution methods yields solvers, of which 11 have been analysed. Suit-
able for two-dimensional airfoil analysis are XFOIL, VGK (viscous Garabedian and Korn), MSES and
ARC2D (Ames Research Center 2D); aimed at three-dimensional analysis are AVL (Athena Vortex Lat-
tice), Tornado, VSAERO (Vortex Separation Aerodynamics), MATRICS / -V and SU2 (Stanford University
Unstructured) and a combination of two- and three-dimensional ‘hybrid’ solvers is found in XFLR5 and
Q3D (quasi-three-dimensional aerodynamic solver). They are visualised in Figure 6.1. Besides showing
what flow model(s) and solution method(s) are incorporated in each of these solvers, the figure shows
the fidelity level of the flow models and some characteristics of the codes.
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Based on the reviewed literature comparing computational and experimental results, it can be concluded
that higher-fidelity codes yield most accurate flow predictions. Despite this fact, it is too easy to always
argue the “bigger is better” case. Of the 2D codes, for example, only XFOIL and MSES are able to predict
transition, andMSESwas sometimes found less accurate in parts of theMach regimewhere other solvers
(XFOIL and VGK) are also applicable. Furthermore, VGK accuracy improves with increasing Reynolds
number, whereas the opposite was found to be true for XFOIL and MSES. Errors are attributed to the
transition model (𝑒፧ envelope method) in case of XFOIL and MSES and to the turbulence model in
case of ARC2D. All solvers struggle with accurately predicting the location and strength of shock waves.
Largely because of the differences is geometry modelling features of the 3D codes, performance and
quality in this case is more closely correlated with fidelity level. AVL was found to be more accurate
and trustworthy than Tornado, but (also because of the possibility of modelling viscous flows) VSAERO,
MATRICS-V and SU2 outperform these VLM codes. All programs however struggle with accurately
predicting separation to a greater or lesser extent, which especially influences accuracy at higher angles
of attack. In a comparison of the hybrid solvers, it was found that both yield results having reasonable to
good accuracy.

Especially in a time- and resource-constrained process as aircraft conceptual design, there are more
requirements than performance and possibility. It was found that whereas some solvers are very well
documented and often used (yielding a lot of validation results and reference applications), others are
only seldom employed and have their inner workings spread out over a multitude of publications. More
importantly to the decision maker in industry is the fact that higher-fidelity codes always come at an
increased computational cost, in terms of computer time as well as due to higher input-quality require-
ments. Besides this objective difference, it was concluded that scholars also disagree philosophically.
Whereas some see early application of higher-fidelity model as enabler for technologies (such as early
MDO) that will cut cost and reduce risk, others feel that conceptual design should be that: conceptual,
explorative and iterative, and dealing with high-level parameters. In conclusion, it is proposed to use
the lowest-fidelity model that is able to definitively distinguish between two designs. If the cost of using
a model of that fidelity level is too high, it is felt the decision can better be postponed to a later design
stage (in which more resources are available) or be separated from the primary design process.





7
Discussion

Even though all research questions and goals set forward in the introduction have been answered and
achieved, it is relevant to reflect on these results. That is done is this chapter – divided into two sections.
Section 7.1 discusses limitations of this review; Section 7.2 lists a number of recommendations for the
future. These recommendations are on a fairly high level and are aimed at further improving the field
of computational aerodynamics, both with regard to research efforts and to industrial application. An
outlook to the proposed graduation research project following this literature study is not included in this
chapter, but given its own and follows as Chapter 8.

7.1. Limitations of current research
Besides the fact that some flow models, solution methods or solvers are not treated (or only shortly
mentioned) in this literature review, there are a number of limitations to this research.

First of all, and unsurprising for a literature study, all information presented here is based on published
literature. This means that all source material is at best ‘second hand’, possibly third or fourth. The
academic peer review process of course is a guarantee for the quality of the referenced works, but this
can hardly be absolute. Point in case are a few instances were conflicting information was found, for
example on the workings of a solver code. In situations as these, the most reputable source (determined
based on e.g. best-known author, most closely affiliated to the program being discussed ormost citations)
was used and footnotes that show (and possibly explain) the conflict were included. Also related to this
is the fact that only public or academic resources were used, as possibly more recent user manuals to
commercial software were unavailable during this project. Still, it is possible this causes some information
in this report to be (partially) out of date. All these cases have been indicated in the text.

Second, the current author feels the need to mention he is mostly self-taught in the topics treated in this
literature review (such as computational fluid dynamics, viscous flow modelling and numerical schemes)
– largely so as a result of writing this very text. Still, it is possible that some nuances might have been
deemed less relevant than they truly are and therefore left out of this report, or vice versa.

7.2. Recommendations for future research and development
Having completed this literature review, the present author feels there are three important ways in which
the field of computational aerodynamics can be further improved.

A first opportunity for improvement is to tackle the problem of inaccessible, unstructured and inconsistent
documentation of some aerodynamic solvers. Students, researchers and industry professionals use
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these tools and should be able to easily identify the inner workings of a black box. Only that understanding
can guarantee that tools are only used in a situation where they are applicable and valid and that tools
are used in the right way. This can be as simple as a clear definition on what a “low” Reynolds number
exactly is, or as complicated as what compressibility correction or closure relation is incorporated in
a particular piece of software. It was found that these aforementioned issues are mostly observed in
open-source software, such as with XFOIL, MSES and AVL. In contrast, VGK and to a lesser extent
also VSAERO, come with a wealth of reports extensively documenting not only its use, but also the
underlying theory. The structured development of SU2 – to which a large amount of researchers around
the world contribute, but which is still organised and documented well – nonetheless shows this goal can
be achieved.

Related to the previous recommendation is the second one: to stimulate structured analyses and reviews
of results obtained using particular aerodynamic codes. Cited in this report are a host of publications
comparing solvers, but meta-reviews bundling a number of these publications have not been found. In
contrast, the Cochrane library provides professionals in health care with systematic reviews aimed to
“identify, appraise and synthesize all the empirical evidence that meets pre-specified eligibility criteria to
answer a specific research question” (Cochrane Library, 2018), promoting evidence-based practice. It
is felt that both end users as well as developers of aerodynamic codes could benefit from such practise,
since it can both identify the most suitable tool for the job and highlight differences that might inspire
further development.

The third and final recommendation is to maintain and further stimulate the development and use of
standard validation cases, as are for example established in AIAA workshops (e.g. Maksymiuk and
Pulliam (1987)). This decreases the effort with which various codes can be compared – with each other
and with experimental results. This recommendation is consistent with Pulliam et al. (1983) proposing
using a number of airfoils as standard test cases.
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Research outlook

This chapter looks ahead to the graduation research project for which this literature study forms a ba-
sis. The research will address the challenge of making better decisions in aircraft conceptual design.
As the project integrates Aerospace Engineering and Science Communication, the topic will have two
focus points. One perspective is mostly technological and sets out to develop a methodology for un-
certainty quantification in (aerodynamic) models used in conceptual design. Another is largely socio-
psychological, investigating ways how to properly assess the uncertainty, how to make better decisions
using that information and how to better support that decision making process. The entire research
project will be focused of technology assessment in the context of Project MANTA using the Aircraft
Design Initiator – a conceptual aircraft design tool developed at Delft University of Technology.

Given the topic of this literature review, this chapter is concentrated on the technological perspective.
Section 8.1 presents the proposed research goal and research question, followed by Section 8.2 dis-
cussing the methodology. Section 8.3 shows a planning of the research to be carried out.

8.1. Research goal and questions
The goal of the research project is to make a contribution towards providing decision makers with a
usable assessment of epistemic model uncertainty of the Aircraft Design Initiator and the impact thereof
on its output, by developing a bottom-up methodology to quantify model uncertainty in aircraft conceptual
design, by studying the effects of different assumptions on relevant model output of various aerodynamic
analysis methods relevant in the conceptual design phase.

The proposed research question and sub-questions are defined as follows.

How can model uncertainty be quantified, assessed and propagated bottom-up, i.e., starting
from model(ling) assumptions, simplifications and limitations?

a. Which (kind of) flow models, solution methods and combinations thereof (i.e, solvers) are suit-
able for aerodynamic analysis in a conceptual design process

b. Which criteria are relevant for the comparison of different (aerodynamic) analysis models in a
conceptual design process?

c. What assumptions, simplifications and limitations are associated to these models, solution
methods and solvers andwhat (predictable and unpredictable) uncertainties in themodel output
do these introduce?

d. How do different (types of) model uncertainties propagate through the Aircraft Design Initiator,
thereby (possibly) influencing the output uncertainty?

83
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Research question a has been answered by this literature review, as well as the first part of research
question c.

8.2. Methodology
In order to answer the research questions and achieve the research goal, the following methodology is
proposed. This heavily builds upon the information presented in the current report and contains three
major steps, dealing with uncertainty quantification, uncertainty propagation and methodology validation.

Uncertainty quantification
The influence of particular assumptions and simplifications will be investigated by comparing the results
of a number of aerodynamic analyses by four two-dimensional solvers: XFOIL, VGK, MSES and ARC2D.
Depending on research progress, 2D Euler-simulations using SU2 (using a FEM and/or FVM) can be
added, in order to try to isolate the influence of non-linear solution method. The choice to start with two-
dimensional solvers is based on their easier flowmodels, given that 3D-effects are not included. Also, the
current selection of codes is felt to be better available as well as better documented than an equivalent set
of 3D solvers. This experiment aims to answer the second part of research question c. Relevant criteria
for comparison (research question b) will be established prior to starting the experiments. Based on the
publications reviewed in the current report, most attention will most likely go to pressure distributions and
polars of lift, drag and pitching moment coefficients.

Which assumptions or modelling differences can be investigated using which comparison of codes is
shown in Table 8.1. The numbering indicates prioritisation, concentrating on establishing the influence
of differences between flow models rather than solution methods. The suffixes i or v that are added to
the case number indicate whether the comparison will be viscous, inviscid or both.

Table 8.1: Prioritised testing matrix, showing which insights about assumptions or modelling differences are gained from compar-
isons

VGK MSES ARC2D Euler-SU2

XFOIL 1-i: incompressible
flow

4-i: incompressible,
irrotational flow

5-i/v: panel vs. FDM
VGK 2-i: irrotational flow

MSES 3-v: BL vs. TLNS
6-v: FVM vs. FDM

ARC2D
Euler-SU2 7-i: FVM vs. FEM

The desire to also compare computational results with experimental data drives the choice for geometries
and flow conditions, for which the viscous transonic airfoil (VTA) workshop, associated to the AIAA 25th
Aerospace Sciences Meeting, will serve as a basis (Holst, 1988; Maksymiuk and Pulliam, 1987). Two
well-known reference airfoils will be investigated: the symmetrical NACA 0012 profile and the supercrit-
ical RAE 2822 airfoil. A third airfoil will be selected later on, depending on a research focus into either
wingtip devices or morphing trailing edges (two research interests in Project MANTA). Corresponding
to the VTA results, the airfoils will be tested at freestream Mach numbers of 0.55 and 0.799. Added to
that is a test case at a lower speed, 𝑀ጼ ≈ 0.3 – the limit of the incompressible flow assumption. As
not all solvers support transition modelling, this will be forced at a given chordwise position. A benefit
of partially replicating the VTA results is the availability of a substantial amount of reference information
that can be used to solve possible problems in the proposed research.

Depending on research progress, additional Mach numbers (intermediate as well as higher transonic)
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can be added to better investigate Mach number trends, which are expected to be highly non-linear. The
selected chord length (again, depending on the focus on either wingtip devices or morphing wings) in
combination with different flight speeds will determine the Reynolds number. Depending on research
progress, additional Reynolds numbers might be investigated. Investigating additional Mach numbers
will be given priority over researching the effect of Reynolds number.

This step will be aided by a literature review of uncertainty quantification methods, building on e.g.
Roelofs and Vos (2018), and a literature review on different ways of visualising uncertainty.

Uncertainty propagation
Uncertainty propagation in the Aircraft Design Initiator (research question d) is the second set of exper-
iments to be conducted. An aerodynamic solver is embedded in the program, but (as the N2-diagram
shown in Figure 8.1 shows) certainly not isolated. Rather, it is part of various iteration loops, indeed
raising the question how the output propagates throughout the program – and how downstream pro-
cesses (and/or parameters) are influenced by uncertainties in aerodynamic output. It might for instance
be that aerodynamic uncertainties introduce uncertainties in weight and performance estimation (Jame-
son, 2003), but another possibility is that uncertainties are (partially) reduced because of the iterative
nature of the program.

Figure 8.1: N2-diagram of the Aircraft Design Initiator, showing component dependencies and iteration loops (Vos, 2016)

A more detailed experimental plan will be determined with the help of specialists of the Aircraft Design
Initiator.

Methodology validation
As methodology development will be conducted using two-dimensional codes, three-dimensional codes
can be used for validation purposes. Adhering to the case numbering from Table 8.1, the following
equivalent 3D-tests can be conducted with the solvers that were investigated in this literature review.

1. VSAERO vs. MATRICS-V
2. Euler-SU2 vs. MATRICS-V
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3. No equivalent comparison possible
4. VSAERO vs. Euler-SU2
5. No equivalent comparison possible
6. No equivalent comparison possible
7. Euler-SU2 vs. Euler-SU2

Additionally, it is interesting to test the developed methodology on its ability to quantify the additional
uncertainty introduced when replacing a panel method (e.g. VSAERO or XFLR5) by a vortex lattice
method (e.g. XFLR5 or AVL) or a code using lifting line theory (XFLR5). Given the larger differences be-
tween geometry modelling abilities between the 3D-solvers (compared to 2D-codes) and the associated
increases in computational cost, especially this factor is very relevant in conceptual design.

8.3. Planning
Figure 8.2 shows a preliminary timeline of the proposed graduation research project. It includes both
the technological (Aerospace Engineering) perspective and the socio-psychological (Science Commu-
nication) perspective. In total, 57 ECs (equivalent to approximately 1600 hours or 200 days) is available
for this project. 20 ECs (70 days) are shared between Aerospace Engineering and Science Communi-
cation; with 15 ECs (52 days) specifically dedicated to Science Communication and 22ECs (78 days) to
Aerospace Engineering. Report writing is not included as separate task, but will be done throughout the
project.

As can be seen in the figure, the work is planned to be completed in 163 days, of which (33 + 25 + 15
+ 5 =) 78 are assigned to Aerospace Engineering (AE), (20 + 15 =) 35 to Science Communication (SC)
and (20 + 35 - 5 =) 50 to the combination of the two. The fact that these numbers do not add up to the
‘budgets’ presented in the previous paragraph can be explained by earlier completion of an extensive
literature study into decision quality and factors influencing that (15 days; SC) and substantial research
into and reporting on items (such as research set-up, context and background) not covered in any of the
other tasks (22 days, AE + SC).



8.3.Planning
87

ID Task Name Work Duration Start Finish

1 1 Group decision making analysis 20 days 4 wks Mon 5‐11‐18 Fri 30‐11‐18
2 1.1 Recapping literature study results on 

(influences on) group decision quality
2 days 0,4 wks Mon 5‐11‐18 Tue 6‐11‐18

3 1.2 Analysis of decision making in Project 
MANTA

5 days 1 wk Wed 7‐11‐18 Tue 13‐11‐18

4 1.3 Determining critical factors in decision 
making processes in Project MANTA

8 days 1,6 wks Wed 14‐11‐18 Fri 23‐11‐18

5 1.4 Literature study on uncertainty 
visualisation and processing

5 days 1 wk Mon 26‐11‐18 Fri 30‐11‐18

6 2 Uncertainty quantification 33 days 6,6 wks Mon 3‐12‐18 Wed 16‐1‐19
7 2.1 Literature study on model uncertainty 

quantification
5 days 1 wk Mon 3‐12‐18 Fri 7‐12‐18

8 2.2 Assessment / comparison criteria 
selection

3 days 0,6 wks Mon 10‐12‐18 Wed 12‐12‐18

9 2.3 Model comparison 25 days 5 wks Thu 13‐12‐18 Wed 16‐1‐19
10 3 Uncertainty propagation 25 days 5 wks Thu 17‐1‐19 Wed 20‐2‐19
11 3.1 Literature study on uncertainty 

propagation and/in ADI
10 days 2 wks Thu 17‐1‐19 Wed 30‐1‐19

12 3.2 Uncertainty propagation in ADI 15 days 3 wks Thu 31‐1‐19 Wed 20‐2‐19
13 4 Uncertainty quantification methodology 

development and validation
15 days 3 wks Thu 21‐2‐19 Wed 13‐3‐19

14 4.1 Development / formalisation 5 days 1 wk Thu 21‐2‐19 Wed 27‐2‐19
15 4.2 Validation 10 days 2 wks Thu 28‐2‐19 Wed 13‐3‐19
16 5 Decision support system development 15 days 6 wks Thu 14‐3‐19 Wed 24‐4‐19
17 5.1 Decision support system 

design/development
10 days 4 wks Thu 14‐3‐19 Wed 10‐4‐19

18 5.2 Decision support system validation 5 days 2 wks Thu 11‐4‐19 Wed 24‐4‐19
19 6 Socio‐technical integration methodology 

development and validation
20 days 8 wks Thu 14‐3‐19 Wed 8‐5‐19

20 6.1 Development / formalisation 15 days 6 wks Thu 14‐3‐19 Wed 24‐4‐19
21 6.2 Validation 5 days 2 wks Thu 25‐4‐19 Wed 8‐5‐19
22 7 Review, finalisation, graduation 35 days 8 wks Thu 9‐5‐19 Wed 3‐7‐19
23 7.1 Green light paper writing 5 days 1 wk Thu 9‐5‐19 Wed 15‐5‐19
24 7.2 Draft report submission 0 days 0 days Wed 15‐5‐19 Wed 15‐5‐19
25 7.3 Visualisation and layouting 5 days 1 wk Thu 16‐5‐19 Wed 22‐5‐19
26 7.4 Green Light Review 0 days 0 days Wed 29‐5‐19 Wed 29‐5‐19
27 7.5 Feedback incorporation 15 days 3 wks Thu 30‐5‐19 Wed 19‐6‐19
28 7.6 Final report submission 0 days 0 wks Wed 19‐6‐19 Wed 19‐6‐19
29 7.7 Thesis defence preparation 10 days 2 wks Thu 20‐6‐19 Wed 3‐7‐19
30 7.8 Thesis defence 0 days 0 wks Wed 3‐7‐19 Wed 3‐7‐19
31 8 Kick‐Off 0 days 0 wks Mon 12‐11‐18 Mon 12‐11‐18
32 9 Mid‐Term Review 0 days 0 wks Mon 4‐2‐19 Mon 4‐2‐19

SC

AE

AE

AE

SC
50%

50%
AE+SC

50%
50%

AE+SC
AE
Draft report subm.

Green light

Final report subm.

Defense
Kick-off

Mid-term

29 5 12 19 26 3 10 17 24 31 7 14 21 28 4 11 18 25 4 11 18 25 1 8 15 22 29 6 13 20 27 3 10 17 24 1 8 15 22 29
Nov '18 Dec '18 Jan '19 Feb '19 Mar '19 Apr '19 May '19 Jun '19 Jul '19 Au

Figure 8.2: Graduation research project planning
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