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Abstract 

Wave or vehicular action on an ice sheet as well as structural vibrations and thermally 

induced loading cause cyclic loading on an ice sheet. To better understand the effects of 

cyclic loading on the strength of sea ice, cyclic loading tests have been conducted at the 

University Centre in Svalbard (UNIS). In addition, the corresponding ice behaviour was 

modelled based on Cole (1995), thereby describing the viscoelastic response of saline ice 

subjected to a cyclic stress. The aim of this study was to design and execute a reproducible 

experimental campaign for saline ice subjected to a cyclic compression, and to model the 

stress-strain relationship of the ice. Specifically, the effects of frequency and displacement 

amplitude were studied. 

The laboratory-grown saline ice was frozen from a mixture of sea water and fresh water with 

a salinity of approximately 8. The structure was classified as S2 columnar ice through 

inspection of thin sections. The specimens were retrieved from horizontal and vertical 

cylindrical cores. The porosities of the specimens ranged from 22 to 34 ppt and the salinities 

from 2 to 4. The experiments were performed by applying a sinusoidal varying uniaxial 

displacement of one piston of the loading frame using a stepper engine. An initial 

compressive load (equivalent to 1 MPa) was reached by applying a constant strain rate. 

The model by Cole (1995) uses kinematics to describe the ice behaviour, which is explained 

by the line defaults in the ice lattice, so-called dislocations. The input parameters of the model 

are the central relaxation time of dislocation relaxation, the dislocation density and an 

empirically derived distribution factor. The model results were given by the amplitude and 

phase lag of the steady-state stress response for an applied sinusoidal strain. 

The experimental campaign proved to be reproducible and demonstrated the stress response 

of saline ice subjected to a cyclic compression well. However, some improvements of the 

experiments are recommended; most importantly, a higher resolution of the strain sensors and 

more stringent displacement control, such that the input strain can be defined. The results 

from the experiments furthermore showed a dependence of the energy dissipation on the 

loading frequencies, as well as a considerable influence of stress relaxation on specifically the 

first cycle of the tests. 

To compare the tests and the model, the strain signal was filtered to remove the influence of 

the strain sensor location. The parameter used to compare the experimental results to the 

model was the loss compliance, which describes the energy dissipation per load cycle and is 
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derived from the area per loop of the stress-strain curve. The loss compliance was compared 

to those modelled for parameters given in the literature per frequency. For all amplitudes and 

frequencies, the test results match well to the model results. Naturally, the viscoelastic model 

did not capture any of the non-linear phenomena that were observed in the experiments. A 

discernible trend was an apparent increase in the loss compliance for an increasing frequency 

or per consecutive test, which may be caused by an increase of the dislocation density.  

In conclusion, the experimental method provides a successful experimental campaign that 

demonstrates the energy dissipation per cycle. The model provides solid results for the steady-

state response of saline ice subjected to cyclic compression. 
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1. Introduction 

The United States Geological Survey estimates that about 30 % of the world’s undiscovered 

gas and 13 % of the world’s undiscovered oil is located in the area north of the Arctic circle 

(Gautier et al., 2009). While many Arctic onshore areas have already been explored, offshore 

exploration has been scarce so far. Considering that much of these potential gas and oil 

resources are located on continental shelves beneath less than 500 m of water, Arctic regions 

could become more prominent areas of (offshore) oil and gas production in the future, 

depending on technical and economic developments. For natural gas the prospects are 

interesting in particular, as the estimated energy-equivalents of gas are three times as large as 

for oil in the Arctic (Gautier et al., 2009). However, due to the decrease in oil and gas prices 

in recent years in combination with an increased focus of international politics on climate 

change mitigation policies Arctic resource discovery and development activities have been 

stalled lately (Gulas et al., 2017), but could possibly be revived with an increase in oil and gas 

prices, and a shift in global politics back to promoting non-renewable energy carriers.  

Even if Arctic offshore oil and gas exploration prove to be less popular than anticipated, it is 

still necessary to study the technical difficulties potential offshore infrastructures would 

encounter in these areas, whereby sea ice and its impact on such structures appears to be the 

biggest challenge of for operations in Arctic waters (Timco and Weeks, 2010). In addition, 

currently plans to develop wind farms in areas such as the Baltic Sea and the Great Lakes are 

under development (Hendrikse, 2017), which would also have to be technically prepared for 

potential confrontations with ice.  

The rheological properties of sea ice are poorly understood and very complex, and depend on 

many factors most importantly the microstructure of the ice. While model developments 

started by Sinha (1978) that relates stress exerted on the ice to the creep behaviour of the ice, 

said equations are primarily empirical, and a fundamental mechanistic description of the 

relationship between the two parameters (i.e. stress and strain) remains elusive. It was only 

until the late nineties that a study towards the cyclic loading response of sea ice was 

conducted (Dempsey, 2000). 

A more physics based model has been developed by Cole (1995) to relate the stress exerted 

on ice to the resulting, stress-controlled, deformation of said ice. These efforts were preceded 

by the findings of Mellor and Cole (1981) on the cyclic loading of ice. The stress-controlled 

tests on which this model is based are useful for elucidating the constitutive relation between 

the parameters (i.e. stress and the different types of strain) of sea ice. However, while the 
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developed equations successfully predict the ice deformation based on a certain (cyclic) stress 

exerted on the ice, it is not yet confirmed, whether they can be applied to the inverse 

relationship, i.e. predict the resulting stress when a certain strain is applied (in so-called 

strain-controlled tests). Therefore, this study tried to apply the model on results obtained from 

strain-controlled tests, to see if the inverse relationship holds. A reproducible experimental 

campaign was designed and reviewed  

The structure of this thesis is as follows. In chapter 2, a literature study is conducted to review 

the practical use of the findings of this work, to better understand the material, sea ice, the 

response of a material to a cyclic loading or strain and the model derived by Cole. In chapter 

3, the designed experimental method is elaborated on, from ice specimen production, to the 

cyclic compression tests, the characterization of the ice specimens and the data processing. 

The experiment design, the experimental results and the model predictions follow in chapter 

4. The conclusions and recommendations are given in the last chapter. 
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2. Theory of sea ice, viscoelasticity and the model of sea ice 

2.1. Sea ice 

2.1.1. Ice formation and growth 

The specimens used for the experiments were laboratory grown sea ice. An understanding of 

the sea ice growth as it occurs in nature is important to assess the quality of the laboratory 

growth method and to interpret the ice characteristics.  

Sea ice is mainly composed of solid ice (water ice), brine, gas and several types of solid salts. 

Different ice structures can result from environmental variations. The three most common 

structures are distinguished: granular, columnar and skeletal ice. A typical first year sea ice 

layer consists of an upper layer of granular ice, above a layer of columnar ice, above a skeletal 

layer (Erland M Schulson and Duval, 2009) as shown in Figure 2.1. 

 

Figure 2.1 Schematic summarizing the main ice textures,  growth conditions and  

timescales and typical winter temperature and salinity profiles for first-year sea ice  

(Thomas, 2016) 
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The initial ice formation, the so-called nucleation, occurs in the uppermost layer of the sea, 

since this process is greatly enhanced at the air-water interface compared to the bulk water 

(Shaw, Durant and Mi, 2005). Due to the faster transport of heat compared to ions in seawater 

this layer of the sea will have been lowered to or slightly below the freezing point, thus super 

cooled. In polar regions snow crystals are continuously deposited on the surface layer, 

constituting instant nuclei from which the ice crystals start growing (Weeks and Ackley, 

1982). In ice tanks the so-called water-spray method is commonly used to replicate this 

process, whereby water droplets are sprayed into the cold air and frozen before reaching the 

water surface, as introduced by Lavrov (1971).  

The granular layer of the ice is formed at the top and behaves usually uniform in all directions 

i.e. isotropic. Columnar ice is formed below this granular layer or even at the sea surface 

when the environmental conditions are calm. Columnar ice consists of columnar crystals 

located (nearly) over the entire depth of the ice layer. The growth direction of the crystals 

aligns with the direction of the heat flow, i.e. is vertical and behaves mechanically 

anisotropic.  

The focus of this study lies on the columnar layer. The granular layer and the skeletal layer 

are therefore not further discussed. The microstructure of the columnar layer is further 

explained in section 2.1.5. 

2.1.2. Ice density 

Knowledge of the density of sea ice is important, for the calculation of the porosity, which is 

explained in section 2.1.4. The density of first-year sea ice was collected and reviewed by 

multiple studies. The reported values vary over a wide range of 720 kg/m3 to 

940 kg/m3with an average of 910 Mg/m3. It was stated that a reasonable estimate for ice 

specimens of first-year sea ice should be 0.920 Mg/m3(Timco and Weeks, 2010).  

A commonly used method to estimate the ice density is the mass/volume method, where the 

mass is weighed on a scale and the volume follows from the dimensions measured with a 

caliper. This method may have a large measuring error so that a method for a more precise 

density value is required. The best available method to capture the ice density is the 

hydrostatic weighing method (Pustogvar and Kulyakhtin, 2016). For this method, the weight 

of the specimen in air is compared to the weight of the submerged specimen, whereby the 

density of the submerging fluid is known. The method has a 20 times lower measurement 

uncertainty (0.2 %) in comparison with the mass/volume method for ice specimens with 
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lengths and diameters of ~70 mm. The ice density in the hydrostatic weighing method is 

derived from: 

Where 𝑀𝑎𝑖𝑟 is the mass of the specimen in air, 𝑀𝑝𝑎𝑟 is the mass of the specimen submerged 

in paraffin and 𝜌𝑝𝑎𝑟 is the density of the paraffin. 

2.1.3. Ice salinity 

The bulk ice salinity, is the fraction by weight of the salts contained in a unit mass of ice. It is 

calculated as the ratio of grams per kilo seawater, yet no unit is assigned to the salinity. To 

measure bulk salinity, a core of sea ice is quickly contained and melted after its retrieval, after 

which a conductivity meter is used to calculate the salinity based on temperature and 

conductivity (Timco and Weeks, 2010).  

In first-year sea ice an often-observed ice salinity distribution is the C-shape profile, since the 

salt in the top layer is often trapped in closed voids due to the fast initial growth of the ice and 

whereas salts originally located within intermediate layers are transported downwards towards 

the ice-water interface. The movement of brine is due to the temperature gradient in the 

pocket. Brine drains through the brine channels, leaves the ice through the skeletal layer and 

therefore older ice contains less salt.  

Since older first-year ice has usually grown for a longer time, the ice thickness of first year 

sea ice is related to the bulk salinity of the ice. Kovacs (1996) combined thickness data from 

first-year sea ice and plotted the curve depicted in Figure 2.2. For an increasing ice floe 

thickness, the bulk salinity goes asymptotically towards a low value of around 5. Low salinity 

ice is easier to handle during experiments (discussed with Knut Høyland, 2016) 

 
𝜌𝑖𝑐𝑒 =

𝑀𝑎𝑖𝑟

𝑀𝑎𝑖𝑟 − 𝑀𝑝𝑎𝑟
𝜌𝑝𝑎𝑟 (2.1) 
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Figure 2.2 All Arctic and Antarctic first-year sea-ice bulk 

salinity vs. floe thickness data compiled from numerous 

sources (Kovacs, 1996) 

The salinity of sea water in open oceans is typically between 32 and 37 with local variations. 

Salinities in the Arctic can typically be lower (<30) with an associated sea ice salinity upon 

formation between 5 and 10 and as visible in Figure 2.2 decreasing in time. The sea water in 

the Baltic Sea is brackish (<24.7) and highly variable between 8 and 20. In the upper Bay of 

Bothnia the salinity is low but high enough to produce typical sea ice microstructure with an 

associated sea ice salinity (<2) (Granskog et al., 2006).  

2.1.4. Ice porosity 

The sea ice properties have been historically analysed with the brine volume and gas volume 

present within the ice. The total porosity, 𝜈𝑇 is the sum of the brine porosity,𝜈𝑏 , i.e. the 

volume of brine per unit volume, and the gas porosity, 𝜈𝑔, i.e. the volume of gas per unit 

volume present in the ice (Timco and Weeks, 2010). 

The knowledge of the total porosity of sea ice is important for interpreting its physical 

properties. The gas and brine porosities of sea ice, separately considered, are also important 

parameters, especially in case of low-salinity sea ice (Cox and Weeks, 1983). More specific to 

this work, the specimen porosities have an important influence on the anelastic behaviour of 

saline ice. A power law relationship with an exponent ≈ 2 was found during cyclic loading 

experiments between the later introduced loss compliance and the brine porosity. The brine 

porosity also has a complex effect on the elastic modulus of saline ice, whereas the effect of 

gas porosity on the elastic modulus is clear (Cole, 1998) and is not further implemented. 

 𝜈𝑇 = 𝜈𝑏 + 𝜈𝑔 [ppt] (2.2) 
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The porosity cannot easily be measured directly, but can be derived from the state parameters 

temperature, salinity and density, under the assumption that the pure ice, the brine and the 

solid salts exist in thermal equilibrium.  

The calculation of the total, gas and brine porosities of saline ice colder than −1.9℃ is 

described by Cox and Weeks (1983). The following parameters are needed: 

• ice density 𝜌𝑖: measured 

• ice salinity 𝑆𝑖: measured 

• Temperature 𝑇𝑖: measured 

Other parameters found in the equations are derived from tables and included in the 

temperature dependent variables 𝐹1 and 𝐹2 for which is referred to the works of Cox and 

Weeks (1983). 

The pure ice density, 𝜌𝑝𝑖 is found in Pounder (1965) as: 

Where the temperature, 𝑇, is given in ℃. All parameters are unique functions of temperature 

and therefore the brine (𝜂𝑏) and gas volume ratio (𝜂𝑎) can be written as: 

and 

where 𝑆𝑖 is the bulk salinity of the ice. The porosities are often denoted as 𝜈𝑎 = 1000𝜂𝑎 [ppt] 

and 𝜈𝑏 = 1000𝜂𝑏 [𝑝𝑝𝑡] , are often denotes with units as parts per thousand, for readability. 

The total porosity of the material is 𝜈𝑡 = 𝜈𝑎 + 𝜈𝑏. 

2.1.5. Microstructure of sea ice 

The microstructure of sea ice has a major influence on the mechanical behaviour of ice and is 

increasingly studied to understand the its relationship to the flow and fracture of ice (Cole, 

2001). In the following, the microstructure of ice grains and dislocations in the lattice, a large 

contributor to the anelastic behaviour, are explained. 

2.1.5.1. Ice grains 

The structure of pure ice is hexagonal (classified as Ih) and well established. During ice 

growth, the water molecules grow in a structure where the oxygen atoms of water molecules 

 𝜌𝑝𝑖 = 0.917 − 1.403 ∙ 10−4𝑇 = 0.9168 (1 − 1.53 ∙ 10−4𝑇) (2.3) 

 
𝜂𝑏 =

𝜌𝑖𝑆𝑖

𝐹1(𝑇)
 [−] (2.4) 

 
𝜂𝑎 = 1 −

𝜌𝑖

𝜌𝑝𝑖
+ 𝜌𝑖𝑆𝑖

𝐹2(𝑇)

𝐹1(𝑇)
 [−] (2.5) 
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connect with the hydrogen atoms of other water molecules. Due to the angle between the 

hydrogen atoms in a water molecule, the unit cell of ice has a tetrahedral structure, visible in 

Figure 2.3. Any type of ice is built from these units. The covalent bonds joining the oxygen 

atom to hydrogen atoms in a molecule are strong and the hydrogen bonds linking the 

molecules are weak resulting in a low, in comparison with metals, melting temperature of ice. 

 

Figure 2.3 Photograph of a ball and stick model of the crystal structure of ice (Ih). The larger 

balls represent oxygen and the smaller balls, hydrogen. The sticks represent hydrogen bonds 

between H2O molecules. The corners of the Ih unit cell are delineated by oxygen atoms 1, 2, 3, 7, 

21, 22, 23, 27. 

A hexagonal structure is characterized by a c-axis, normal to the basal plane (the hexagon). In 

Figure 2.5, the basal plane is denoted as 0001, the prism faces as 1010, 0110 and 1100 and are 

characterized as the a-axes. The c-axis is in the direction of 1120. The a-axes are in the basal 

plane and directed towards the different prism faces, see Figure 2.4. The crystals may grow 

slowly in the direction of the c-axis (S1 ice) or more rapidly from the prism faces (S2 ice), 

forming grains. The microstructure of ice floats can be classified with these terms. 



9 

 

 
Figure 2.4 C-axis and a-axes (Schulson and 

Duval, 2009) 

 

 

 

Figure 2.5 Miller-Bravais notation for planes in unit cell (Schulson and Duval, 2009)  

The bulk of ice throughout the thickness of the sheet is secondary ice (S). The preferred 

orientation of the individual grains conveys to the number: 1,2 or 3 and combined three 
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classes are identified: S1, S2 and S3. For the S1 class the c-axes are oriented mostly vertical, 

for the S2 class the c-axes are randomly oriented horizontally and for S3 ice the c-axis are 

oriented horizontal and aligned in a certain direction. The bubbly ice of glaciers and polar ice 

sheet formed by snow compression is usually the S1 class of ice and can be considered 

isotropic. Since the ice cover in the Arctic Ocean grows unidirectional, it is composed of 

columnar shaped grains. Its mechanical behaviour is considered anisotropic. 

There are two varieties of columnar ice: unaligned (S2) and aligned (S3). In the former, the 

ice properties in the horizontal plane are independent of the direction, since the c-axes of the 

crystals are oriented randomly (but directed horizontally; S2 ice). For the second variety (S3), 

the c-axes are aligned in one direction and the mechanical properties dependent on this 

direction (S3 ice). The mean current direction beneath the fast ice is believed to cause the 

strong c-axis alignment. For both varieties, the ice is mechanically anisotropic. (Timco and 

Weeks, 2010; Schulson and Duval, 2009; Weeks and Ackley, 1982). The alignment of the c-

axis can influence the effective modulus of first-year sea ice (Cole, Johnson and Durell, 

1996). 

2.1.5.2. Dislocations in ice 

A major cause for viscous and anelastic deformation in ice is the plane glide motion of 

dislocations, which is defined by Hondoh (2000) as: “the motion on a plane (glide plane) 

parallel to both the Burgers vector and the dislocation line”. The concepts of viscosity and 

anelasticity are explained in section 2.2.2. A dislocation is “a boundary lone of a region where 

part of the crystal has been displaced relative to another part” (Glen, 1974). The magnitude 

and direction of the lattice distortion, resulting from a dislocation in a crystal lattice, is 

represented by the Burgers vector, i.e. the material above the plane moves relative to the 

material below by an amount equal to the Burgers vector. One type of dislocations, a so-

called edge dislocation, or line dislocation, the lattice and the Burgers vector are displayed in 

Figure 2.6. An analogy to a dislocation is presented by Nowick and Berry (1972) who state 

that in principle a dislocation could be created by making a cut in the surface of a crystal, 

displacing the upper part by a distance 𝑏 and welding the material back together. 
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Figure 2.6 Edge dislocation in the lattice (Callister, 

2001) 

The motion of the line dislocations in ice, allows ice to deform under an applied stress. The 

lattice of ice consists of oxygen and hydrogen atoms, where for a ‘perfect lattice’ every 

oxygen atom is surrounded by four hydrogen atoms. The propagation of the dislocation 

results in an increase of the number of hydrogen atoms. The protons switch from oxygen 

atom, which remain in their tetrahedral coordination, with the surrounding oxygen atoms 

(Wilson and Marmo, 2000).  

The method to observe and study dislocations in ice is synchroton X-ray topography (Baker, 

2002). This method was first used on ice by R.W. Whitworth’s group in 1986 and was later 

used by Baker et al. (2000) to observe dislocation behaviour in polycrystalline ice under creep 

conditions. This behaviour was observed in the temperature range of 0 to -15°C, but not at 

colder temperatures. A frequently occurring load in naturally deforming ice is loading parallel 

to the basal plane, i.e. in horizontal direction for columnar ice. The grain boundaries were 

observed to be the only source of lattice dislocations, while nucleation mechanisms inside the 

grains were not important. Therefore, the dislocation motions were largely occurring at the 

grain boundaries. A photo of dislocations in ice, using X-ray topography is shown in Figure 

2.7. 
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Figure 2.7 Change of dislocations due to creep stress,  the blackening 

from before (a) the creep stress and after (b) is due to an increase in 

dislocation density (Baker, 2002). 

The number of dislocations in a material is called the dislocation density. It is expressed as 

the total dislocation length per unit volume. The units of the dislocation density are 

millimeters of dislocation per cubic millimeter. The dislocation densities of carefully 

solidified metal crystals are found close to 103 mm−2 and for heavily deformed metals at an 

order of 109 to 109 mm−2(Callister, 2001). For the deformation of ice, only the mobile 

dislocation density, thus the dislocations that move, are considered. For laboratory prepared 

saline ice this is in the order of 108 mm−2. However, note that this value is the value that is 

found by either X-ray topography, cyclic tests or a stress relaxation test (Cole, 1998). The 

dislocation density increases whenever stress is applied higher than approximately 0.3 MPa 

and is therefore influenced most importantly the stress history on the ice. 

In short, edge dislocations are a linear defect in the crystal structure of ice. The resistance to 

motion supports anelastic (delayed elastic) and viscous (delayed permanent, due to migration 

of dislocations) straining. The dislocations on basal planes are most important to explain 

anelastic and viscous behaviour. The dislocations are quantified in terms of dislocation 
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density: the length of dislocations per unit volume of material mm/mm3 or shortened to 

mm−2. 

2.2. Viscoelasticity 

From experiments, it was shown that sea ice exhibits high levels of anelastic behaviour under 

a high range of conditions (Cole and Durell, 1995). This section explains the different 

experiments that can be conducted, the concepts of anelasticity and viscoelasticity and 

response functions. All concepts are later used for the description of the model. 

2.2.1. Stress and strain 

The ice is tested for strength and stiffness by applying a cyclic compression to a test 

specimen. The change in length of the specimen per unit length may be given by the 

longitudinal strain 𝜀: 

where 𝐿 is the initial length of the specimen, 𝑙 the actual length, Δ𝐿 the change in length due 

to an applied load. The definition in Equation (2.6) is the engineering strain and later referred 

to as the strain. For small strains, 𝜀 < 0.01, the engineering strain is approximately equal to 

the true strain. In this work, a positive sign denotes a compressive strain. 

The axial force in the test specimen is 𝑁 [N] and it assumed an evenly distributed force over 

the cross-sectional area of the specimen. The intensity of the normal force per unit cross-

sectional area, 𝐴 [mm2], is the normal stress, later referred to as the stress 𝜎:  

Since the focus of this thesis is on the longitudinal change and the change of diameter is 

neglected, the equation for the nominal normal stress, or engineering stress is used. In this 

work, a positive sign denotes a compressive stress. 

To analyse the behaviour of a material under various levels of loading a stress-strain diagram 

is created, by plotting the stress on the vertical axis and the strain on the horizontal axis 

(Irgens, 2008). 

2.2.2. Viscoelasticity and anelasticity 

Most solid materials are described, for small strains, by Hooke’s law of linear elasticity: The 

strain is proportional to the stress and for one dimension Hooke’s law is: 

 
𝜀 =

𝐿 − 𝑙

𝐿
=

Δ𝐿

𝐿
 [−] (2.6) 

 
𝜎 =

𝑁

𝐴
 [MPa] (2.7) 

 𝜎 = 𝐸𝜀 (2.8) 
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with 𝐸 as Young’s, or elastic modulus. Inversely, Hooke’s law for elastic materials can be 

written as: 

where 𝐷 is the reciprocal of 𝐸 (𝐷 = 𝐸−1) and called the modulus of compliance, or simply 

the compliance (Nowick and Berry, 1972; Lakes, 2009) as the ratio of the strain to stress, not 

to be confused with the inverse of stiffness. 

A viscous fluid obeys: 

where the stress is proportional to the strain rate 𝜀̇ through the viscosity 𝜂. However, in reality 

all materials differ from the ideal elastic materials by, for example, both viscous-like and 

elastic characteristics. For viscoelastic materials, the relationship between stress and strain 

depends on time and the stress is a function of the strain and the strain rate.  

A subgroup of the viscoelastic materials is the anelastic solid: these have a unique 

equilibrium configuration and recover fully after removal of the load. To explain anelasticity 

first three postulated defining elastic are explained. 

The three postulates defining ideal elastic behaviour are implicit in Equation (2.10) and 

Equation (2.11): 

1. The strain response to each level of applied stress (or vice versa) has a unique 

equilibrium value. 

2. The equilibrium response is achieved instantaneously. 

3. The response is linear (e.g., doubling the stress doubles the strain). 

The consequence of condition 1 is the complete recoverability of the response upon the 

release of the applied stress or strain. If each of the conditions is lifted in various 

combinations, different behaviours result. If all conditions apply ideal elasticity is the case. If 

the condition of instantaneity is lifted, the behaviour known as anelasticity is produced. 

Anelasticity is a special case of linear viscosity for which both instantaneity and complete 

recoverability are lifted. Therefore anelastic behaviour is a type of mechanical behaviour 

described as ‘delayed elastic’, thus time dependent (Sinha, 1978), with the following three 

properties (Nowick and Berry, 1972). 

1. For every stress, there is a unique equilibrium value of strain and vice versa. 

 𝜀 = 𝐷𝜎 (2.9) 

 𝜎 = 𝜂𝜀̇ (2.10) 

 𝜎 = 𝜂𝜀̇ + 𝐸𝜀 (2.11) 
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2. The equilibrium response is achieved only after the passage of sufficient time. 

3. The stress-strain relationship is linear. 

The stress-strain curve of a linearly elastic material is a straight line with a slope proportional 

to the elastic modulus. During a constant strain rate, both time and strain increase together, 

therefore a linearly viscoelastic material shows a curved stress-strain curve (Lakes, 2009). 

2.2.3. Mechanical models and anelasticity 

The behaviour of a material governed by any differential stress-strain equation can be 

visualized using mechanical models consisting of Hookean springs and Newtonian dashpots 

in series or parallel. For an ideal elastic material, the appropriate model is the Hookean spring 

with the following relationship: 

Where the force 𝐹 is equivalent to the stress 𝜎, the displacement 𝑥 to the strain 𝜀 and the 

spring constant 𝑘 to the modulus 𝐸. Such a spring stores energy in a reversible way and 

returns to zero displacement when the force is removed. The second element, that needed to 

provide internal friction is the Newtonian dashpot, represented by a piston moving in an 

ideally viscous fluid, where 𝜎 = 𝜂𝜀̇ where 𝜂 is the viscosity of the dashpot. A dashpot alone 

represents a viscous liquid and needs to be combined with springs to describe solids. 

To form a model, mechanical elements may be combined either in series or in parallel. In 

series, the stresses per element (1 and 2) are equal, while the strains are additive. 

And for a parallel combination: 

The simplest models which combine more than one element are a spring and dashpot in 

parallel, is called the Kelvin-Voigt model, and a spring and dashpot in series called a Maxwell 

model. The properties of the Kelvin-Voigt and Maxwell model are shown in Figure 2.8. and 

Figure 2.9 respectively. 

 𝐹𝐾 = 𝑘𝑥 (2.12) 

 𝜀 = 𝜀1 + 𝜀2, 𝜎 = 𝜎1 = 𝜎2 (2.13) 

 𝜀 = 𝜀1 = 𝜀2 , 𝜎 = 𝜎1 + 𝜎2 (2.14) 
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Figure 2.8 Kelvin-Voigt model 

 

Figure 2.9 Maxwell model 

2.2.3.1. Kelvin-Voigt model 

In the Kelvin-Voigt model the spring is described for convenience by its compliant constant 

𝐷 = 𝐸−1. The viscosity 𝜂 is written as 𝜏/𝐷 with 𝜏 has dimensions of time. The spring and 

dashpot are placed parallel. 

The Kelvin-Voigt model exhibits the following features: no instantaneous deformation upon 

application of a stress, due to the dashpot, thus at 𝑡 = 0 the stress is sustained by the dashpot 

only. Over time, the dashpot will dissipate energy until as 𝑡 → ∞ the velocity is zero and thus 

the stress is completely taken by the spring. When the stress is released, the dashpot resists a 

sudden change. The spring maintains the stress, 𝜎0, and the dashpot must be subjected to a 

stress −𝜎0. Over time, the dashpot moves back into its original position until the stresses at 

both elements are zero.  

The differential equation for the Kelvin-Voigt model is derived using 𝜀1 = 𝐷𝜎1 for the spring 

and 𝜀2̇ = 𝐷𝜎2/𝜏 and the rules for parallel elements. Thus 𝜀1, 𝜀2, 𝜎1 and 𝜎2 are eliminated to 

obtain: 

2.2.3.2. Maxwell model 

In the Maxwell model, the spring is described by its stiffness or modulus 𝐸, and the in series 

placed dashpot by 𝜏𝐸.  

The qualitative features of a Maxwell model are as follows. Upon a sudden application of 

stress, the spring suffers an instantaneous strain. Over time linear viscous creep occurs due to 

the dashpot. In the case of a sudden application of strain, there will be an instantaneous stress 

in the spring and the dashpot will dissipate energy over time until full stress relaxation has 

occurred. The differential equation for the Maxwell model is derived using 𝜎1 = 𝐸𝜀1 and 

𝜎2 = 𝐸𝜏𝜀2̇ resulting in: 

 𝐷𝜎 = 𝜀 + 𝜏𝜀̇ (2.15) 

 𝜏𝜎̇ + 𝜎 = 𝜏𝑀𝜀̇ (2.16) 
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2.2.3.3. Standard Anelastic Solid 

These two models do not exactly describe the anelastic behaviour defined by the three 

conditions. The Kelvin-Voigt model does not respond immediately, whereas the Maxwell 

model does not return to its initial state after release of the stress or. Therefore, a three-

parameter model was considered: 

 

Figure 2.10 Standard Anelastic Solid 

The instantaneous elastic response characteristics of a crystal was added to the model by 

attaching a spring in series to a Kelvin-Voigt model, resulting in the so-called Standard 

Anelastic Solid or Zener model. The compliance of the spring in the Voigt unit is called 𝛿𝐷, 

the compliance of the spring in series is called 𝐷𝑈 and similarly to the Kelvin-Voigt model, 

the dashpot is described as function of the relaxation time 𝜏 and the compliance of its parallel 

spring as shown in Figure 2.10. 

The qualitative features of this model are as follows: Upon application of a stress at 𝑡 = 0, the 

extra spring immediately deforms and the Voigt unit remains unchanged due to the dashpot. 

Over time, the dashpot yields, while transferring stress to the parallel spring until the stress in 

the dashpot has completely vanished. At this point no further changes to the system occur 

with time. The strain per unit stress goes from the instantaneous, or un-relaxed, value 𝐷𝑈 to a 

final, or relaxed, value of 𝐷𝑅. The compliance of the in-series spring is 𝐷𝑈 and the combined 

compliance of both springs must be 𝐷𝑅. If compliance of the spring in parallel is called 𝛿𝐷, 

the relaxed 𝐷𝑅 is given by 𝐷𝑈 − 𝛿𝐷.  

Upon application of a strain 𝜀0, the spring in parallel will be extended and over time the 

dashpot will start to move until the stress in the dashpot is zero. The stress in the dashpot will 

move from 𝜀0/𝐷𝑈 to a final value of 𝜀0/(𝐷𝑈 + 𝛿𝐷). 

This model is capable of stress relaxation and creep behaviour. Its differential stress-strain 

equations follow from the relations 𝜀𝑎 = 𝐷𝑈𝜎𝑎, 𝜀𝑏 = 𝛿𝐷𝜎𝑏 and 𝜀𝑐̇ = 𝛿𝐷 𝜎𝑐/𝜏 and the rules 

for placing elements in series or parallel: 
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Where the stress and strains per element can be eliminated leading to: 

Where 𝐷𝑅 = 𝐷𝑈 + 𝛿𝐷. Both Figure 2.10 and Equation (2.18) represent the Standard Anelastic 

Solid (Nowick and Berry, 1972) . 

2.2.4. Quasi-static response functions 

Viscoelastic behaviour may be represented mathematically by a variety of functions of time 

and frequency. The dynamic modulus 𝐸∗(𝜈)1 and dynamic compliance 𝐷∗(𝜈); the relaxation 

function 𝐸(𝑡) and the creep function D(𝑡) Since the dynamic functions are regarded as most 

closely related to direct perception, these are useful to derive from the viscoelastic model to 

describe the behaviour (Lakes, 2009). 

An experiment for which the applied stress or strain is held for a period of time is termed 

quasi-static. For viscoelastic materials, the phenomena, among others, of creep and stress 

relaxation occur. Two phases, loading and recovery. 

2.2.4.1. Creep and stress relaxation 

In the creep experiment a constant stress 𝜎0 is applied abruptly at 𝑡 = 0 and held constant 

while the strain 𝜀 is observed. The experiment is mathematically described by: 

Where 𝐻(𝑡) is the unit step function, or Heaviside function defined as zero for 𝑡 less than zero 

and one for 𝑡 greater than zero. Different definitions for 𝐻(𝑡) exist (which include the jump 

discontinuity at 𝑡 = 0), but the given one explains its behaviour well enough for the timescale 

of this work: 

The strain, 𝜀(𝑡), of the viscoelastic material will increase over time with the following ratio: 

where 𝐷(𝑡) is called the creep compliance or simply the creep function. The stress input and 

strain response for several types of materials are shown in Figure 2.11. The release of the load 

                                                 
1 Different symbols for 𝐸 and 𝐽 are used in the literature. Since a notable part of this work refers to the work of 
Cole, the repective symbols of 𝑀 and 𝐷 are used for mentions of modulus and compliance. 

 𝜀 = 𝜀𝑎 + 𝜀𝑏 , 𝜀𝑏 = 𝜀𝑐 

𝜎 = 𝜎𝑎 = 𝐷𝑈
−1𝜀𝑎 = 𝜎𝑏 + 𝜎𝑐 = 𝛿𝐷−1(𝜀𝑏 + 𝜏𝜀𝑐̇) 

(2.17) 

 𝐷𝑅𝜎 + 𝜏𝐷𝑈𝜎̇ = 𝜀 + 𝜏𝜀̇ (2.18) 

 𝜎(𝑡) = 𝜎0𝐻(𝑡) (2.19) 

 𝐻(𝑡) = {
0, 𝑡 < 0
1, 𝑡 > 0

 (2.20) 

 
𝐷(𝑡) =

𝜀(𝑡)

𝜎0
 (2.21) 



19 

 

is included in this figure and explained later. The intercept of the creep curve on the strain 

axis is ascribed to instantaneous elasticity. The anelastic response would be similar to the 

viscoelastic curve, but during the recovery after enough passage of time the material goes 

back to its initial state, thus, when the strain response reaches zero. 

The stress history is the cause whereas the strain is the effect. The corresponding form of the 

strain response 𝐷(𝑡) = 𝑑(𝑡)𝐻(𝑡) with 𝑑(𝑡) as a function over the entire time scale. The 

physical concept of causality, where the effect does not precede the cause, leads to the 

functional form for 𝐷(𝑡). 

 
Figure 2.11 Creep and recovery.  Stress 𝝈 

and strain 𝜺 versus time 𝒕. Elastic 

aftereffect is included (Lakes, 2009) 

 
Figure 2.12 Stress relaxation 

and recovery (Lakes, 2009) 

In a stress relaxation test, the stress gradually decreases while the strain is held constant at 𝜀0. 

Thus, for a strain history: 

the stress in a viscoelastic material will decrease with the ratio: 

where 𝐸(𝑡) is called the relaxation modulus. For linear materials, this ratio is independent of 

the strain level, thus, 𝐸(𝑡) is a function of time alone. Figure 2.12 shows a stress relaxation 

test and the recovery phase. 

 𝜀(𝑡) = 𝜀0𝐻(𝑡) (2.22) 

 
𝐸(𝑡) =

𝜎(𝑡)

𝜀0
 (2.23) 
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2.2.4.2. Prediction of recovery from relaxation 𝐸(𝑡) 

The creep and relaxation tests describe the response of the material under a step signal. For 

the response to any stress or strain history, the Boltzmann superposition principle is used 

where the effect of a combination of causes is the summation of individual causes. Therefore, 

first the recovery response, following the removal of the stress or strain, is elaborated on. 

The removal of the stress or strain can be mathematically defined by a unit box function. This 

function is described in terms of Heaviside functions below. The response of a material to an 

arbitrary load or strain history is required. The constitutive equations incorporate all possible 

responses.  

For an arbitrary time at which a jump occurs the Heaviside function can be described as: 

The Heaviside function can be used to describe a box function 𝑢(𝑡) by superposition of a step 

up at time 𝑎 followed by a step down at time 𝑏: 

And expressed in Heaviside functions: 

Thus, for an assumed strain history of 𝜀0 from 𝑡 = 0 until 𝑡 = 𝑡1 may be written as: 

The response, from the Boltzmann superposition principle is as shown Figure 2.11,  

2.2.5. Prediction of response to arbitrary strain history 

For a stress relaxation test the strain response is thus 𝜎(𝑡) = 𝑀(𝑡)𝐻(𝑡). Recovery, the 

response following the removal of the strain, leads to a step down in the strain. For a stress 

relaxation where the constant strain is 𝜀0 at 𝑡 = 0 and the strain is removed at 𝑡 = 𝜏 described 

as: 

The stress response is: 

 𝐻(𝑡 − 𝑎) = {
0, 𝑡 < 𝑎
1, 𝑡 > 𝑎

 (2.24) 

 
𝐻𝑎𝑏(𝑡) = {

0,
1,
0,

   
𝑡 < 𝑎

𝑎 < 𝑡 < 𝑏
𝑡 > 𝑏

 (2.25) 

 𝐻𝑎𝑏(𝑡) = 𝐻(𝑡 − 𝑎) − 𝐻(𝑡 − 𝑏) (2.26) 

 𝜀(𝑡) = 𝜀0[𝐻(𝑡) − 𝐻(𝑡 − 𝑡1)] (2.27) 

 𝜎(𝑡) = 𝜀0[𝐸(𝑡) − 𝐸(𝑡 − 𝑡1)] (2.28) 

 𝜀(𝑡) = 𝜀0[𝐻(𝑡) − 𝐻(𝑡 − 𝑡1) (2.29) 

 𝜎(𝑡) = 𝜀0[𝐸(𝑡) − 𝐸(𝑡 − 𝑡1)] (2.30) 
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Now for an arbitrary strain history the response to a time segment can be computed. The 

segment runs from 𝑡 − 𝜏 to time 𝑡 − 𝜏 + Δ𝑡, where 𝜏 is the same as 𝑡1. This segment of strain 

history can be written as: 

𝜀(𝑡) = 𝜀(𝜏)[𝐻(𝑡 − 𝜏) − 𝐻(𝑡 − 𝜏 + Δ𝜏] 

The change in stress at time 𝑡 due to the strain pulse is: 

Since 
𝑑𝐸(𝑡−𝜏)

𝑑𝜏
= lim

Δ𝜏→0
[𝐸(𝑡 − 𝜏) − 𝐸(𝑡 − 𝜏 + Δ𝜏)] and the entire strain history can be 

decomposed in these pulses the stress at any time 𝑡 is the sum of the effects of these pulses. 

Due to causality principle, only the influence of the pulses before the present time are 

included. With the limit applied the summation of the stress responses converges to an 

integral, the Boltzmann superposition integral: 

and similarly, for a given stress history the strain response is: 

These integrals are considered the mathematical description of linear viscoelastic behaviour. 

They can be used to derive the dynamic functions. 

2.2.6. Dynamic response functions 

The response of a viscoelastic material to a sinusoidal load is referred to as dynamic. The 

dynamic behaviour of saline ice is of interest in this work. The oscillatory stress and strain 

histories are represented by sinusoid functions. For example, a stress history denotes as: 

in which 𝜎0 is the amplitude, 𝜔 is the angular frequency and 𝑡 is time. Since the sine function 

repeats every 2𝜋 radians, the time required to complete a cycle is obtained from 𝜔𝑇 = 2𝜋, 

where 𝑇 is the period (𝑇 = 2𝜋/𝜔). The inverse of the period, the number of cycles per second 

(or Hertz) is called the frequency denoted as 𝑓. Similarly, a cyclic strain history is represented 

as: 

where 𝜀0 is the strain amplitude. 

 𝑑𝜎(𝑡) = 𝜀(𝜏)[𝐸(𝑡 − 𝜏) − 𝐸(𝑡 − 𝜏 + Δ𝜏)] (2.31) 

 
𝜎(𝑡) = ∫ 𝐸(𝑡 − 𝜏)

𝑑𝜀(𝑡)

𝑑𝜏
𝑑𝜏

𝑡

−∞

 (2.32) 

 
𝜀(𝑡) = ∫ 𝐷(𝑡 − 𝜏)

𝑑𝜎(𝑡)

𝑑𝜏
𝑑𝜏

𝑡

−∞

 (2.33) 

 𝜎(𝑡) = 𝜎0 sin(𝜔𝑡) (2.34) 

 𝜀(𝑡) = 𝜀0 sin(𝜔𝑡) (2.35) 
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In a viscoelastic material, stress and strain have the same period, but may be out of phase. The 

representation of the phase shift is through the phase angle 𝜙. Thus, for a sinusoid sin (𝜔𝑡) 

the phase shifted sinusoid is sin (𝜔𝑡 + 𝜙). A different notation of the sinusoidal functions is 

the complex exponential notation with a history defined as exp(𝑖𝜔𝑡) and a response of 

exp (𝑖(𝜔𝑡 − 𝜙)). 

2.2.6.1. Phase lag and amplitude 

The dynamic response functions can be derived from the requirement of linearity of the 

stress-strain relations. If a stress, periodic in time, is imposed on the system, the phase lag and 

amplitude of the strain behind the stress is determined. The stress is written as: 

where 

ratio 𝜀(𝑡)/𝜎(𝑡) is a complex quantity, which is now called dynamic compliance 𝐷∗(𝜔), also 

known as the frequency response function, with dynamic referring to the sinusoidal load and 

compliance to the ratio between the strain and the stress. For an ideal elastic material, the ratio 

𝜀0/𝜎0 gives the elastic compliance 𝐷. For a purely viscous material the phase angle is 𝜋/2 

and the ratio 𝜀0/𝜎0 gives the viscosity. However, for a viscoelastic material, the 𝜙 is neither 

zero nor 𝜋/2 , such that the ratio is a complex quantity called the complex compliance or 

dynamic compliance 𝐷∗(𝜔), a function of 𝜔, thus, 

Where |𝐷|(𝜔) = 𝜀0/𝜎0 is the absolute dynamic compliance.  

2.2.6.2. In-phase and out-of-phase component 

Rewriting the strain response in Equation (2.37) gives: 

where 𝜀1 is the amplitude of the component of 𝜀1 in phase with the stress and 𝜀2 the 

component out-of-phase. The ratio 𝜎(𝑡)/𝜀(𝑡) is now calculated and two new terms are 

introduced: 

 𝜎(𝑡) = 𝜎0exp (𝑖𝜔𝑡) (2.36) 

 𝜀(𝑡) = 𝜀0 exp(𝑖(𝜔𝑡 − 𝜙)) (2.37) 

 
𝐷∗(𝜔) ≡

𝜀(𝑡)

𝜎(𝑡)
= |𝐷|(𝜔) exp(−𝑖𝜙(𝜔)  (2.38) 

 𝜀(𝑡) = (𝜀1 − 𝑖𝜀2) exp(𝑖𝜔𝑡) (2.39) 

 𝜀1 = 𝜀0 cos 𝜙 (2.40) 

 𝜀2 = 𝜀0 sin 𝜙  (2.41) 

 
𝐷∗(𝜔) ≡

𝜀(𝑡)

𝜎(𝑡)
=

𝜀1

𝜎0
− 𝑖

𝜀2

𝜎0
= 𝐷1(𝜔) − 𝑖𝐷2(𝜔) (2.42) 
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Where 𝐷1(𝜔) is called the storage compliance and 𝐷2(𝜔) is the loss compliance for reasons 

later explained. The two equations for the dynamic compliance in Equation and Equation are 

equivalent for the following properties of the compliances: 

The relationship between the different forms is given below: 

A visual representation of the parameters above is given in Figure 2.13. 

 

Figure 2.13 The phase relationships between the 

stress, strain and complex compliance. (Nowick 

and Berry, 1972) 

and the strain response to a stress history is: 

or in complex notation 

In a similar way for moduli: 

Thus the complex compliance 𝐷∗(𝜔) and 𝑀∗(𝜔) are reciprocals: 

 𝐷1(𝜔) = |𝐷| cos(𝜙) (2.43) 

 𝐷2(𝜔) = |𝐷| sin(𝜙) (2.44) 

 |𝐷|2 = 𝐷1
2 + 𝐷2

2 (2.45) 

 tan 𝜙 = 𝐷2/𝐷1 (2.46) 

 cos 𝜙 = 𝐷1/ |𝐷| (2.47) 

 sin 𝜙 = 𝐷2/|𝐷| (2.48) 

 𝜀(𝑡) = 𝜎0(𝐷1 sin(𝜔𝑡) − 𝐷2 cos(𝜔𝑡)) (2.49) 

 𝜀(𝑡) = 𝜎0(𝐷1 − 𝑖𝐷2) exp(𝑖𝜔𝑡) (2.50) 

 𝑀∗(𝜔) ≡
𝜎

𝜀
= |𝑀|(𝜔) exp(𝑖𝜙(𝜔)) (2.51) 

 𝑀∗(𝜔) ≡
𝜎

𝜀
= 𝑀1(𝜔) + 𝑖𝑀2(𝜔) (2.52) 

 𝑀∗(𝜔) = [𝐷∗(𝜔)]−1            |𝑀|(𝜔) = [|𝐷|(𝜔)]−1 (2.53) 
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2.2.6.3. Dynamic response derivation 

Properties of dynamic functions can be derived from the stress history: 

using the Boltzman superposition integral: 

The creep function, 𝐷(𝑡) is decomposed into the instantaneous modulus, or unrelaxed 

compliance 𝐷𝑈 and the equilibrium compliance 𝐷̂(𝑡) = 𝐷(𝑡) − 𝐷(∞). 

The stress history is substituted in the Boltzmann superposition integral and the decomposed 

creep functions: 

A new time variable 𝑡′ = 𝑡 − 𝜏 is substituted and Eulers formula is applied leading to: 

Thus, if the stress is sinusoidal in time the strain is as well, but they are no longer in phase. If 

we choose to rewrite the stress strain relationship 𝜀(𝑡) as: 

we find 𝐷1 and 𝐷2 as: 

2.2.6.4. Interrelation between storage and loss compliance 

A relation between the storage and loss compliance is proposed by Kronig and Kramer and 

known as the Kramers-Kronig relations (Lakes, 2009): 

and  

 𝜎 = 𝜎0 exp(𝑖𝜔𝑡) (2.54) 

 
𝜀(𝑡) = ∫ 𝐷(𝑡 − 𝜏)

𝑑𝜎(𝜏)

𝑑𝜏
𝑑𝜏

𝑡

−∞

 (2.55) 

 𝐷(𝑡) = 𝐷𝑈 + 𝐷̂(𝑡) (2.56) 

 
𝜀(𝑡) = 𝐷𝑈𝜎0 exp(𝑖𝜔𝑡) + 𝑖𝜔𝜎0 ∫ 𝐷̂(𝑡 − 𝜏) exp(𝑖𝜔𝑡) 𝑑𝜏

𝑡

−∞

 (2.57) 

 
𝜀(𝑡) = 𝜎0 exp(𝑖𝜔𝑡) (𝐷𝑈 + 𝜔 ∫ 𝐷̂(𝑡′) sin(𝜔𝑡′)𝑑𝑡′ +

∞

0

+ 𝑖𝜔 ∫ 𝐷̂(𝑡′) cos(𝜔𝑡′) 𝑑𝑡′
∞

0

) 

(2.58) 

 𝜀(𝑡) = 𝐷∗(𝜔)𝜎(𝑡) = (𝐷1 + 𝑖𝐷2)𝜎(𝑡) (2.59) 

 
𝐷1(𝜔) = ℜ(𝐷∗(𝜔)) = 𝐷𝑈 + 𝜔 ∫ 𝐷̂(𝑡′) sin(𝜔𝑡′)𝑑𝑡′

∞

0

 (2.60) 

 
𝐷2(𝜔) = ℑ(𝐷∗(𝜔) = 𝜔 ∫ 𝐷̂(𝑡′) cos(𝜔𝑡′) 𝑑𝑡′

∞

0

 (2.61) 

 
𝐷1(𝜔) − 𝐷𝑈 =

2

𝜋
∫ 𝐷2(𝛼)

∞

0

𝛼𝑑𝛼

𝛼2 − 𝜔2
  (2.62) 
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2.2.7. Stress-strain curves of dynamic experiments 

The relation between 𝜎(𝑡) and 𝜀(𝑡), based on a strain history of 𝜀(𝑡) = ε0 sin(𝜔𝑡) and a 

stress response of 𝜎(𝑡) = 𝜀0(𝐸1 sin(𝜔𝑡) + 𝐸2 cos(𝜔𝑡), is represented by an ellipse equation 

(Irgens, 2008). The strain history and stress response are changed to: 

When the two equations are squared and summed up the following ellipse equation is the 

result: 

The resulting curve is presented in Figure 2.14. The area inside the curve represents the 

dissipation of mechanical energy per unit volume and during one period. The width at the 

mean stress, 𝐷2𝜀0, and the height at the mean strain are equivalent to the energy dissipation. 

The following relations are used to calculate the loss compliance and storage from the loops. 

And the equations for the loss and storage compliance are: 

The loop width, height and amplitudes and equations are displayed in Figure 2.14. 

 
𝐷2(𝜔) =

2𝜔

𝜋
∫ [𝐷1(𝛼) − 𝐷𝑈]

𝑑𝛼

𝜔2 − 𝛼2

𝜔

0

 (2.63) 

 𝐸2𝜀(𝑡) = 𝐸2𝜀0 sin(𝜔𝑡) , (𝜎(𝑡) − 𝐸1) = 𝐸2𝜀(𝑡) (2.64) 

 (𝜎(𝑡) − 𝐸1𝜀(𝑡))2 + (𝐸2𝜀(𝑡))2 = (𝐸2𝜀0)2 (2.65) 

 ℎ𝑒𝑖𝑔ℎ𝑡 = 𝐸2𝜀0 (2.66) 

 𝑤𝑖𝑑𝑡ℎ = 𝐷2𝜎0 (2.67) 

 
𝐷1 =

𝜀0

𝜎0
cos 𝜙 =

𝜀0

𝜎0

 𝐸1

|𝐸|
    (2.68) 

 
𝐷2 =

𝜀0

𝜎0
sin 𝜙 =

𝜀0

𝜎0

 𝐸2

|𝐸|
    (2.69) 
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Figure 2.14 Stress-strain curve (Irgens, 2008) 

 

2.3. Model of saline ice subjected to cyclic loading 

The constitutive behaviour of saline ice was shown to be composed of largely elastic and 

anelastic components by Cole and Durell (1995). For the high levels of anelasticity a model 

was developed by Cole (1995) to completely describe the anelastic component of strain when 

a cyclic stress is applied. The dominant deformation mechanisms in the regime where creep 

occurs, but without microcracking, are the dislocation relaxations and grain boundary 

relaxations. The influence of the dislocation relaxation is largest for the frequency range of 

interest in this study (Cole and Durell, 1995). Therefore, this study focusses on the dislocation 

relaxations. 

Dislocation science of metals have received a lot of attention. Since the 1970s some of this 

knowledge is applied to ice by Weertman, Traetteberg, Duval and others. First the single 

crystals were researched and then also polycrystalline ice. For saline water the first efforts 

into a physics based model for the anelastic straining was made by Cole (1991). 

2.3.1. Grain boundary anelasticity 

Grain boundary anelasticity was observed in laboratory prepared fresh water ice and saline ice 

(Cole and Durell, 1995) and in field obtained glacier cores . The associated internal friction 

peak occurs under a 1 Hz forced oscillation, thus for this frequency the anelasticity is most 

notable. The grain size seems to affect the internal friction. Using dynamic experiments, this 

peak was not shown for single grain experiments, thus it was concluded the relaxation peak 

occurs at grain boundaries (Nakamure and Abe, 1979). 
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2.3.2. Dislocation-based anelasticity 

Creep recovery tests showed a large anelastic component in the strain response of fresh-water 

polycrystalline ice, with the ratio of anelastic to elastic strain ranging from 10 (Cole 1991) to 

60 (Duval, 1978). The rise of the internal friction, causing an anelastic component, of fresh-

water single crystals was linked by Vaissoille, Mai and Perez (1978) to the increase of the 

measured dislocation density. The experiments of Cole and Durell (1995) quantified the 

activation energy, a measure for the threshold energy to engage a of groups of dislocations to 

influence the anelastic behaviour.  

A method to quickly identify the anelastic component is by applying a cyclic load and 

measuring the strain. The observations of these experiments showed that the activation energy 

of the process in saline and fresh water ice are approximately the same. 

2.3.3. Dislocations under quasi-static stress conditions 

From dislocation mechanics, it is known that the total strain, 𝜀𝑑 in a single grain due to 

displacement of the dislocation depends on the orientation factor, which relates the 

displacement direction compared to the microstructure of the specimen: 

where 𝜌 is the mobile dislocation density in reciprocal square meters, Ω is an orientation 

factor that converts the background normal stress to the average resolved shear stress on the 

basal plane (Ω = 1/𝜋 ≈ 0.32 for a horizontal specimen from S2 ice), 𝑏 is the magnitude of 

the Burgers vector (4.52 × 10−10 m). The Burgers vector represents both the direction and 

length of a dislocation, as shown in Figure 2.6. The distance, 𝑥𝑑 travelled by one dislocation 

under a quasi-static stress 𝜎 is: 

where 𝐾 is the restoring stress constant (0.07 Pa). The strain in Equation (2.70) with Equation 

(2.71) substituted can be divided by the quasi-static stress, which results in: 

where 𝛿𝐷𝑑 is called the strength of the dislocation relaxation and is later used in the 

derivation of the response to a cyclic loading (Cole, 1995).  

 𝜀𝑑 = 𝜌Ω𝑏𝑥𝑑  [−] (2.70) 

 
𝑥𝑑 =

𝑏

𝐾
𝜎 (2.71) 

 𝜀𝑑

𝜎
=

𝜌Ω𝑏2

𝐾
= 𝛿𝐷𝑑 (2.72) 
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2.3.4. Motion of dislocation under sinusoidal stress 

The movement of dislocations from one low energy position to another was described by 

Nowick and Berry (1972) as a hysteresis phenomenon, the dependence of the state of the 

system on its history. An analytical expression for the oscillation of a dislocation in ice is 

developed by Cole and Durell (1995). This expression is similar to the works of Weertman, 

(1955) for metal single crystals of Kressel and Brown, (1967) for lattice defects in nickel. 

Joncich, (1976) links the formulas of Weertman to dislocations in predeformed ice. 

The oscillation of the dislocation under a certain applied stress, subjected to lattice drag and a 

restoring stress component is expressed as: 

where 𝑥 is the displacement of one dislocation (superscript d is not included for readability), 

𝐶 the temperature dependent dislocation drag (i.e. damping), 𝐾 is the restoring stress acting in 

opposition to the dislocation (i.e. stiffness), 𝑏 is the Burgers vector, 𝜎0 is the maximum cyclic 

shear stress resolved on the slip plane (with the subscript 0 denoting an amplitude), 𝜔 is the 

angular frequency and 𝑡 is the time (Cole, 1995). 

The drag term 𝐵 was estimated from the velocity of dislocations determined by Whitworth 

(1978) . An estimate of temperature dependence of the drag term 𝐵 is 

With 𝑘 is the Boltzmann constant (8,617 343 × 10−5 eV/K), and the activation energy 𝑄 [eV] 

and the term 𝐵0 [Pa s] derived from experiments on single ice crystals. This equation pertains 

to basal slip in pure ice and is expected to be independent of the microstructure (Cole, 1995). 

For dislocation relaxation the values of 𝐵0 = 1.205 × 10−9 Pa s and 𝑄 = 0.55 eV are used. 

This drag term is relates to basal slip in pure ice and is independent of the microstructure. It is 

dependent of the temperature and the activation energy of the mechanism: 

The restoring stress term K, which relates the stress to the displacement, lumps together the 

effects of several physical processes: dislocation-dislocation interactions, dislocation-obstacle 

interactions, elastic anisotropy and line tension. An independent assessment of 𝐾 is not 

possible, but can be found from an experimental campaign, which the following section 

describes. 

The solution to the homogeneous solution 𝐵𝑥̇ + 𝐾𝑥 = 0, may be be derived as: 

 𝐵𝑥̇ + 𝐾𝑥 = 𝑏𝜎0sin (𝜔𝑡) (2.73) 

 
𝐵 = 𝐵(𝑇) = 𝐵0 exp (

𝑄

𝑘𝑇
) [s−1] (2.74) 
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For the derivation of particular solution Equation (2.73) is rewritten as: 

and a particular solution of the form assumed as: 

in which 𝑋𝐶 and 𝑋𝑆 are constants, multipliers of respectively the cosine and sine function (as 

denoted with the subscripts). The particular solution represents the steady forced vibrations. 

To determine these constants, equation (2.77) is substituted in the differential equation (2.76), 

leading to:  

and 

The general solution of Equation (2.76), is the sum of the solution of the homogeneous 

equation and the particular solution: 

which results in: 

The initial conditions of 𝑥 = 0 at 𝑡 = 0 give: 

In Equation (2.81), the first term is the transient term due to the homogeneous equation, thus, 

a property of the system and the second term the steady-state term due to the particular 

solution, thus, to the load applied. The steady-state term consists of a sine and cosine 

function, of which the coefficients are respectively proportional to the stiffness and the 

dampening of the system. The cosine coefficient, 𝑋𝑐, when plotted as a function of 𝜔 

describes a peak. The frequency at which the peak occurs, i.e. the central frequency, depends 

on the ratio between 𝐾 and 𝐵. Two peaks for two trivial ratios between 𝐾 and 𝐵 are plotted in 

Figure 2.15. 

 
𝑥ℎ(𝑡) = 𝑋𝑒−

𝐾
𝐶

𝑡
 (2.75) 

 
𝑥̇ +

𝐾

𝐵
𝑥 =

𝑏𝜎0

𝐵
sin(𝜔𝑡) (2.76) 

 𝑥𝑝(𝑡) = 𝑋𝐶 cos(𝜔𝑡) + 𝑋𝑆 sin(𝜔𝑡) 

𝑥̇(𝑡) = −𝜔𝑋𝐶 sin(𝜔𝑡) + 𝜔𝑋𝑆 cos(𝜔𝑡) 
(2.77) 

 
𝑋𝐶 = −

𝑏𝜎0

𝐾2 + 𝐵2𝜔2
𝐵𝜔 (2.78) 

 
𝑋𝑆 =

𝑏𝜎0

𝐾2 + 𝐵2𝜔2
𝐾 (2.79) 

 𝑥(𝑡) = 𝑥ℎ(𝑡) + 𝑥𝑝(𝑡) (2.80) 

 
𝑥(𝑡) = 𝑋𝑒−

𝐾
𝐵

𝑡 +
𝑏𝜎0

𝐾2 + 𝐵2𝜔2
(𝐾 sin(𝜔𝑡) − 𝐵𝜔 cos(𝜔𝑡)) (2.81) 

 
𝑋 =

𝑏𝜎0

𝐾2 + 𝐵2𝜔2
𝐵𝜔 (2.82) 
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Figure 2.15 Two peaks for two combinations of B and K. The central frequency of the 

left peak equals 𝝎𝟎 =
𝑲

𝑩
=

𝟏

𝟐𝟎
= 𝟓 × 𝟏𝟎−𝟐 𝐫𝐚𝐝/𝐬 and of the right peak 𝝎𝟎 =

𝑲

𝑩
=

𝟏

𝟐
=

𝟓 × 𝟏𝟎−𝟏 𝐫𝐚𝐝/𝐬 

 
Figure 2.16 Two sine coefficients for two combinations of B and K. 

The ratio between 𝐾 and 𝐵 can be expressed as the relaxation time 𝜏 = 𝐵/𝐾, which is 

compliant to the central frequency of the peak. For clarity, the sine coefficient is plotted in 

Figure 2.16 and the stress-displacement curves of the central frequency of the right-hand peak 

for both ratios are plotted in Figure 2.17. The stress signal given is 𝜎 = sin(𝜔𝑡), the resulting 

displacements are described as: 𝑥 = 0.5 sin(𝜔𝑡) − 0.5 cos(𝜔𝑡) and 𝑥 = −0.1 cos(𝜔𝑡). The 

following remarks can be made: 

• For frequencies, much lower than the central frequency, damping of system has a very 

small influence and the steady-state response is in-phase 

• For the central frequency, the loop width of the stress-strain curve is the largest 

• For frequencies above the central frequency the phase difference is 90° and has a 

smaller amplitude. 
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Figure 2.17 Stress-displacement curves for central frequency of 

the right-hand peak of the cosine coefficient 

Substitution of the relaxation time into Equations (2.81) and (2.82) leads to: 

where 𝜏𝜔/(1 + (𝜏𝜔)2, the so-called Debye term, can be recognized in the transient term and 

the cosine coefficient, which will prove useful later.  

The term 𝑏𝜎/𝐾 can be also recognized, which was used in Equation (2.72) to relate the 

motion of a dislocation under a quasi-static stress to the strain, through the dislocation 

density. An interim expression for the steady-state strain response in an ice specimen, due to 

cyclic loading, with Equation (2.72) substituted in equation (2.83) leads is:  

Provided that 𝐵 is found from independent experiments and the central frequency of the 

relaxation peak is found through the cyclic experimental campaign, 𝐾 can be found 

subsequently. The experimental campaign by Cole and Durell (1995) found a value for 𝐾 of 

0.07, from the central frequency of their loss compliance found in the experiments. 

2.3.5. Aggregate behaviour of dislocations in a large number of grains and loss 

compliance 

With the above derived equations for the dislocation relaxation in a single grain and grain 

boundary, the polycrystalline material behaviour is not yet completely described, apart from 

the central relaxation frequency. The material consists of a large number of grains that are all 

physically attached to each other and interact with each other in the specimen. This is referred 

 
𝑥 = 𝑋 exp (−

𝑡

𝜏
) +

𝑏𝜎

𝐾

(sin(𝜔𝑡) − 𝜏𝜔 cos(𝜔𝑡))

1 + (𝜏𝜔)2
 (2.83) 

 
𝑋 =

𝑏𝜎

𝐾

𝜏𝜔

1 + (𝜏𝜔)2
 (2.84) 

 
𝜀𝑑,𝑖𝑛𝑡𝑒𝑟𝑖𝑚 = 𝜌Ω𝑏

𝑏𝜎

𝐾

(sin(𝜔𝑡) − 𝜏𝜔 cos(𝜔𝑡))

1 + (𝜏𝜔)2

= 𝛿𝐷
(sin(𝜔𝑡) − 𝜏𝜔 cos(𝜔𝑡))

1 + (𝜏𝜔)2
 

(2.85) 
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to as a coupled relaxation problem, the relaxation of each grain is influenced by the speed of 

its neighbours. The loss function derived in Equation (2.78) arrives at the so-called Debye 

relaxation, which employs a single relaxation time. To account for the relaxation time of each 

grain and thereby find a loss compliance that reflect the experimental observations a peak 

broadening term 𝛼𝑑 is introduced (Cole, 1995). A similar approach is used by Lakki et al. 

(1993) to model the internal friction of another polycrystallic material. The peak broadened, is 

the loss compliance as described by Equation (2.78). The term is used by replacing the Debye 

term, 𝜏𝜔/(1 + (𝜏𝜔)2) in Equation (2.78) with: 

The peak broadening effect of 𝛼𝑑 is shown in Figure 2.18. For a value of 𝛼𝑑 = 1, Equation 

(2.86) reduces to the Debye term. However, for a lower value of 𝛼𝑑, the integral value of the 

function remains the same, but the described peak broadens hence 𝛼𝑑 is called the peak 

broadening term.  

 
Figure 2.18 The cosine coefficients, described by Equation (2.78) and Equation (2.79)  

When the above described replacement of the Debye term, or peak broadening is applied to 

Equation (2.78), the cosine coefficient of the steady-state strain due to the dislocation 

relaxation 𝐷2
𝑑, or loss compliance due to dislocation relaxation, is: 

Where 𝛼𝑑 is the peak broadening factor, found from experiments, 𝑠 = ln (𝜏𝑑𝜔) and 𝛿𝐷𝑑  sets 

the magnitude of the dislocation relaxation.  

To find the value of 𝛼𝑑 Equation (2.87) is compared to the loss compliance as function of 

𝜔 found in the experiments by Cole and Durell (1995). The value of 𝛼 resulted from a least-

 𝛼

2
sech(𝛼 ln(𝜏𝜔)) =

𝛼

2
∙

2

exp 𝛼 ln(𝜏𝜔) + exp(−𝛼 ln(𝜏𝜔))
 (2.86) 

 
𝐷2

𝑑 = 𝛼𝑑𝛿𝐷𝑑
1

exp(𝛼𝑑𝑠) + exp(−𝛼𝑑𝑠)
 (2.87) 
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square analysis. An example of this analysis is shown in Figure 2.19 where 𝛿𝐷𝑑 =

1.4 × 10−9 Pa−1, 𝛼𝑑 = 0.53 𝐾𝑑 = 0.07 Pa.  

  
Figure 2.19 Loss compliance as function of frequency including data points (Cole, 1995) 

The equation for the loss compliance takes the polycrystalline material into account. As 

described in Section 2.2.6.3, the loss compliance is only the imaginary part of the complex 

compliance, 𝐷∗(𝜔) = 𝐷1(𝜔) − 𝑖𝐷2(𝜔). The storage compliance for an anelastic solid can be 

derived from the loss compliance, using the Kramers-Kronig relations, as shown in section 

2.2.6.4. These relations were employed in (Cole, 1995) to obtain the following storage 

compliance: 

Where 𝐷𝑈
𝑑 is the unrelaxed compliance of the elastic modulus, a value of 9.0 GPa is employed 

for ice. The contribution of 𝐷1
𝑑 relates to the steady-state response proportional to the total 

amount of stiffness in the material. 

2.3.6. Loss and storage compliance 

The above derivation lead to the loss and storage compliance of the dislocation relaxation. 

The grain boundary relaxation is implemented as well and both relaxation mechanisms are 

expected to operate simultaneously, so 𝐷1 = 𝐷1
𝑑 + 𝐷1

𝑔𝑏
 and 𝐷2 = 𝐷2

𝑑 + 𝐷2
𝑔𝑏

 where: 

 
𝐷1

𝑑(𝜔) = 𝐷𝑈
𝑑 +

2

𝜋
∫ 𝐷2

𝑑𝑑[ln(𝜏𝑑𝜔)]
+∞

ln (𝜏𝜔)

 (2.88) 

 
𝐷1

𝑑(𝜔) = 𝐷𝑢
𝑑 + 𝛿𝐷𝑑 (1 −

2

𝜋
tan−1[exp(𝛼𝑑 ln(𝜏𝑑𝜔))]), (2.89) 

 
𝐷1

𝑑(𝜔) = 𝐷𝑢
𝑑 + 𝛿𝐷𝑑 (1 −

2

𝜋
tan−1[exp(𝛼𝑑𝑠𝑑)]), 

𝐷1
𝑔𝑏(𝜔) = 𝐷𝑢

𝑔𝑏
+ 𝛿𝐷𝑔𝑏 (1 −

2

𝜋
tan−1[exp(𝛼𝑔𝑏𝑠𝑔𝑏)]), 

(2.90) 
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where 𝑠𝑔𝑏 = ln(𝜏𝑔𝑏𝜔), 𝛼𝑔𝑏 is the peak broadening term of the grain boundary relaxation, 

𝛿𝐷𝑔𝑏 is the relaxation strength of the grain boundary relaxation. 𝐷𝑈
𝑔𝑏

 is the unrelaxed 

compliance of the elastic modulus, shown here so that the derivation is correct in case only 

grain boundary relaxation occurs. However, in the model, this contribution can be accounted 

for only once.  

The storage and loss compliance are used for the steady-state strain response, 𝜀: 

for a given cyclic stress history. 

The values for the parameters of the grain boundary relaxation were given by (Cole, 1995). 

These values are used in the model of this work, but have a very small contribution since the 

frequencies tested are an order lower the central relaxation frequency for this mechanism. 

Thus, the strain related to this relaxation mechanism is small and primarily in phase with the 

applied stress. The pre-exponential term of the central relaxation time 𝜏𝑔𝑏 = 𝐵𝑔𝑏/𝐾𝑔𝑏 was 

identified as 8 × 10−28, the activation energy 𝑄𝑔𝑏 is 1.32 eV, the peak broadening factor 𝛼𝑔𝑏 

is 0.6 and 𝛿𝐷𝑔𝑏 is 3 × 10−11 Pa−1. An overview of the all equations used in the model, the 

parameters and implementation of these to compare the model predictions to the experiments 

are explained in Section 4.4. 

 

  

𝐷2
𝑑(𝜔) = 𝛼𝑑𝛿𝐷𝑑

1

exp(𝛼𝑑𝑠𝑑) + exp(−𝛼𝑑𝑠𝑑)
 

𝐷2
𝑔𝑏

(𝜔) = 𝛼𝑔𝑏𝛿𝐷𝑔𝑏
1

exp(𝛼𝑔𝑏𝑠𝑔𝑏) + exp(−𝛼𝑔𝑏𝑠𝑔𝑏)
 

 𝜀 = 𝜎0(𝐷1 sin(𝜔𝑡) − 𝐷2 cos(𝜔𝑡)) (2.91) 
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3. Experimental methods of ice production, characterization, 

cyclic tests and data processing 

The experiments were conducted in the Cold Laboratory at the University Centre in Svalbard, 

UNIS. The ice production method is based upon the experiments of Wu, Chang, & 

Schwarz(1976) and the experiments by Bueide (2014), which were conducted in the same 

cold laboratory as this study. The cyclic compression test method and test matrix were based 

upon the method of Cole & Durell (1995).  

3.1. Ice specimen production 

The specimen production is visualized in fig FF. Room temperature in the UNIS cold 

laboratory can be maintained within the range of −20℃ to +5℃ (±1℃) (but below −15℃ 

the temperature was less stable (±3℃)). Ice was grown on four occasions up to a thickness of 

25 cm at minimum and 44 undamaged cores were retrieved 11 of which were drilled 

horizontally.  

3.1.1. Production of cores 

The production of horizontal and vertical cores from a laboratory grown sheet of ice is 

illustrated in Figure 3.1. The ice was made from a mix of ¼ filtered local sea water (retrieved 

from Adventfjorden, Svalbard) and ¾ tap water (retrieved from a local meltwater lake) in a 

500 mm wide, 1000 mm long and 1250 mm deep, cleaned tank, see Figure 3.2. The bulk 

salinity of the water in the tank was approximately 8, measured with a conductivity meter 

(Cond 3210 SET 1 incl. Tetracon® 325 manufactured by WTW, Germany). 

 

Figure 3.1 Methods for producing ice cores , resulting in horizontal (H) and vertical (V) cores 

The tank is the FRYSIS, built by the Fellesverkstedet NTNU, Norway. The inside walls and 

floor of the tank are made of steel are insulated. To prevent ice growth from the walls, inside 

the steel walls and at the bottom three groups of heating cables, again two in the walls and 
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one in the bottom, warm the water. Three thermometers are installed in the tank walls to 

measure water temperature, two in the walls and one in the bottom (Myklebust, 2014). The 

heaters are controlled with an on-off feedback control system, located in the control room. 

When the temperature measured per thermometer goes below the set point, the corresponding 

heater is turned on. The set points were the freezing temperature of the water. The top heating 

element was partly exposed to air and not able to maintain the temperature. 

 
Figure 3.2 FRYSIS tank during filling 

phase 

The air temperature was gradually reduced from room temperature to−20 ℃. Nucleation was 

induced by seeding (the water-spray method), a now commonly used method to simulate 

natural growing conditions. All the water in the tank was regularly stirred and the temperature 

was measured using a handheld thermometer (the TFX 410-1 Pt1000, manufactured by Ebro, 

Germany) until the whole water column reached the freezing temperature, which was 

calculated from salinity using the UNESCO formula. The top layer of newly-formed slush 

was removed to clean the surface of ice and the water surface was seeded with ice crystals 

using a spray bottle filled with 0 ℃ distilled water. The tank was covered for 12 hours to 

prevent influence of the wind generated by the air conditioning units until a thin sheet of ice 

was formed. Afterwards the cover was removed and the sheet of ice was directly exposed to 

the air temperature. The room temperature varied between −20 ℃ and−15 ℃ due to the 

defrost cycles of the air conditioning units for 7-10 days (the air conditioning units were 

repaired at a later stage and the temperature was more stable afterwards). The produced ice 
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was later classified as S2 columnar ice by visual inspection of the thin sections produced from 

the sheet of ice. 

 
Figure 3.3 Cavities in sheet of ice in tank after drilling cores 

After the desired ice thickness was reached, cores were drilled using a Kovacs Mark III 

Coring system with an inner diameter of 7.5 cm powered by an electrical drill. To ease the 

start of drilling by softening the top layer the cold lab temperature was increased to −10 ℃. 

For the vertical cores, see Figure 3.3, a pre-cut in the surface was carved with a knife before 

using the core barrel to drill and take out the ice cores. The pre-cut prevented the core barrel 

to change the initial drilling location. The distance to the walls and the length of the vertical 

cores were measured with a folding rule. The ice blocks in between the outer and center 

vertical cores were cut out with a manual ice saw. The cut was prepared by drilling holes 

along the line, to ease the manual cutting. The ice block was lifted from the sheet of ice and 

horizontal cores were drilled in the original length direction of the tank. Subsequently, the 

lengths of the horizontal cores and the depths within the ice at which they were retrieved were 

measured. This method was also used to retrieve cores from the sea ice near Svea, Svalbard, 

as shown in Figure 3.4. These cores can be used to compare the response of laboratory 

prepared specimens to field obtained specimens, but were not used for this thesis. 

All cores were photographed, wrapped in plastic foil, put into a Ziploc bag, labelled and 

stored in Zarges boxes in the cold storage room at UNIS (room temperature: −20℃). Lab and 

field observations of ice with salinities are rarely in excess of a salinity of 20 has shown to 

effectively exclude gravity drainage of brine (Cox and Weeks, 1986). It is therefore safe to 

assume that for these cores with salinities of maximum 4, gravity drainage did not occur. To 

further prevent brine drainage of the specimens, the horizontal cores were stored vertically 

and the vertical cores were stored horizontally, a method commonly applied at UNIS. All 

cores were named as follows: 
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𝐼𝑆0𝑎 − 𝑆𝑏𝑏 − 𝑐 

With 𝑎 indicating the sheet of ice the core originated from (𝐼𝑆), 𝑏𝑏 the number of the 

specimen (𝑆) and 𝑐 whether it was a horizontal (𝐻) or vertical (𝑉) specimen.  

 
Figure 3.4 Coring system and retrieved blocks of sea ice (Svea, 

Svalbard) from which horizontal cores were drilled 

The ice blocks in between the drill holes in the centre were cut out and used to make 

indicative salinity profiles and thin sections. The ice block for the salinity profile was cut in 

slices of 5 cm thickness with a hand saw, melted and measured with the conductivity meter. 

The ice blocks intended for thin sections were stored and thin sections were produced at a 

later stage. 

3.1.2. Specimen preparation 

After storage of the cores in the cold storage the specimens were prepared in the cold lab as 

illustrated in Figure 3.5. 

 

Figure 3.5 Method for preparing the instrumented ice specimens from the cores 
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To cut all the cores into specimens with the same length, the cores were cut in a custom saw 

box, see Figure 3.6. This box which employs two connected circular saws at a fixed distance 

(175 mm) which is operated manually by rotating a steering wheel knob connected to a 

flywheel. 

 
Figure 3.6 Saw box  used for cutting 

specimens with parallel faces and normal to 

the longitudinal axis 

The remaining top and bottom parts were used to make thin sections. Each specimen was 

placed into a system of custom steel clamps, see Figure 3.7, consisting of two end caps and a 

Teflon lined mantle (the center piece). The specimen was frozen to the clamps, by adding 

fresh water to each end and placing the specimen in the end cap. The mantle supports the 

upper end cap and aligns the specimen vertically until the specimen was fixed to the end caps. 

The inside height between the bottom and upper clamp, with the mantle in place, is 182 mm.  
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Figure 3.7 Two end caps and one 

mantle  showing the inside of the 

system. During operation two 

mantles were applied 

Upon removal from the cold storage the cores had a temperature of −20℃ and all 

compression tests were conducted at a temperature of −10 ℃, so the specimens were put in 

the clamp system fifteen hours before the compression tests started to equilibrate to the set 

temperature. The mantle of the clamps was removed two hours before the cyclic compression 

tests. Specimens for which the compression tests lasted longer than a day were put in a plastic 

bag to minimize sublimation of the ice. Prior to the compression tests the diameter of the 

specimen below and above respectively the upper and lower end cap were measured using a 

caliper. 

3.2. Cyclic compression tests 

Five prepared specimens were used for cyclic compression tests. First, some triangular cyclic 

loading experiments were conducted with the field compression rig KOMPIS (built by 

Fellesverkstedet NTNU, Norway), a custom build mobile uni-axial compression test machine. 

To increase control and sensor accuracy, the laboratory loading frame, KNEKKIS (built by 

Fellesverkstedet NTNU, Norway) was used for the main set of experiments. 

3.2.1. Triangular cyclic loading experiments 

KOMPIS consists of a fixed top plate and a movable bottom plate. An electric motor, with an 

adjustable number of rotations per minute, moves the lower plate through a gearbox with a 

fixed gear ratio. The system, see Figure 3.8., is built into a metal box that allows for 

transportation, therefore used as a mobile compression rig.  
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Figure 3.8 KOMPIS , with clockwise from the 

specimen: draw wire sensor, control box, 

electrical engine, load cell and newly installed 

strain sensor. 

The driving system is designed to compress ice cores to failure, with a length of 175 mm, at a 

strain rate of 10−3 𝑠−1 (an important strain rate since it governs the transition of ductile to 

brittle behaviour (Schulson, 1990). A lower rate is possible, but the gear system does typically 

not deliver enough force to compress a specimen. The loading direction of KOMPIS is 

controlled by a manual switch. The three settings are moving up, not or down. The distance of 

the bottom to the top plate is measured with a draw-wire displacement sensor. The load is 

measured with a load cell in the bottom plate. The voltages of the displacement sensor and 

load cell are logged with an external datalogger and stored directly on an attached computer. 

The calibration factors for the sensors are −0,05015 𝑚𝑚/𝑚𝑉 and 49,425 𝑘𝑁/𝑚𝑉, 

respectively. The maximum sampling frequency of this logger is 52 Hz. 

3.2.2. Sinusoidal compression experiments 

KNEKKIS is the fixed uni-axial compression machine (10 ton maximum load) with a built-in 

load cell in the cold lab. An external set of sensors was used for measuring the strain and load 

on the specimen. The fine control of the compression allows for a sinusoidal compression of 

the specimen. 

3.2.2.1. Loading frame 

KNEKKIS, shown in Figure 3.9 consists of a fixed top plate and a moveable bottom plate 

placed inside a frame. A stepper motor moves the bottom plate. The stepper motor can be 
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controlled without a feedback sensor, but a load can be used as feedback. The ratio of steps to 

the nominal (predicted value without other factors influencing it) displacement of the bottom 

plate is 7015 𝑠𝑡𝑒𝑝𝑠/𝑚𝑚. Due to the discrete number of motor steps the resolution of the 

nominal displacement, 𝑑𝑛𝑜𝑚𝑖𝑛𝑎𝑙 is 143 𝑛𝑚. Control software is written in LabView. 

The stiffness of the loading frame was last tested in-house in 2013, by compressing a steel 

bar. Under the assumption that the steel bar was incompressible, the deformation of the frame 

was approximated by the curve as a function of the force 𝐹 represented by eqn (3.1).  

The stiffness of this loading frame is approximately 109 𝑘𝑁/𝑚𝑚, which is stiffer than 

regular test machines used in rock mechanics (Kolari, 2016). The non-linear stiffness was 

discussed in the theory.  

The measured parameter is the force through the load cell. The load cell, with a loading range 

and maximum load capacity of 100 𝑘𝑁, is located in the bottom plate and the calibration 

factor is 9.81 𝑁/𝑉. Both the motor steps and the load were recorded in LabView. The non-

linear stiffness of the loading frame was taken into account by subtracting the frame 

displacement from the nominal displacement. To calculate the strain in a specimen, the initial 

nominal displacement at the moment of starting a test must be set to zero. Practically, this 

correction leads to difficulties measuring small strains. Strain in the sample was not directly 

measured by KNEKKIS. 

 𝑑𝑓𝑟𝑎𝑚𝑒 = 0.06 ∗ 𝐹0.6 (3.1) 



43 

 

 
Figure 3.9 KNEKKIS 

3.2.2.2. External sensors 

The external set of sensors include a strain sensor, the Averaging Axial Extensometer, 

manufactured by Epsilon technology corp, and a 10 t transducer (or load cell), manufactured 

by Nordisk Transducer Teknik. The datalogger, manufactured by Campbell Scientific, is built 

into a PeliCase 1600, manufactured by Peli Products. The software was programmed in-house 

using the PC200W datalogger software, by Campbell Scientific. 

The strain sensor has a gauge length of 50.00 mm and a travel of +/- 6.00 mm and can be used 

in temperatures ranging from -40°C to 100°C. The strain sensor is mounted on a specimen 

and for ice specimens a drop of fresh water is used to secure the contact points of the sensor 

to the specimen. The contact points were on the centre line of the specimen. When the sensor 

is mounted the Zero Pins were removed and strain data was logged continuously. The load 

cell was placed on top of the specimen. The datalogger stores the signals of the sensors, 

battery voltage and time stamp of every record with a sampling frequency of 50 Hz, for which 

an hour of data can be stored on the internal memory card, before a transfer to a computer is 

necessary. An ice specimen placed intro KNEKKIS with installed external sensor is shown in 

Figure 3.10. 
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Figure 3.10 Ice specimen placed in KNEKKIS with 

installed strain sensor and load cell (E. Salganik) 

3.2.2.3. Control of stepper engine 

The control software can execute different loading profiles, or modes. The following modes 

were used: 

• Manual mode: A slider defines the up- or downwards velocity of the bottom plate, 

ranging from -35 to 35 mm/min. 

• Constant Strain Rate: The velocity of the bottom plate is defined as well as the 

deformation or force limit which leads to a stop of this mode or a switch to the cyclic 

mode. 

• Cyclic mode: The peak-to-peak amplitude and the period of a cosine function are 

defined. The cosine function starts when the test is started (𝑡 = 0). The mean of the 

cosine function is the force limit defined plus the amplitude. This signal is then the 

input for the stepper engine. 

For a typical cyclic experiment, consecutively the constant strain rate and cyclic mode were 

used. The constant strain rate and the force limit were defined after which cyclic mode was 

executed. An example of the stepper signal send to KNEKKIS is shown in Figure 3.11. All 

used experiment parameters (the test matrix) are explained in the following section. The 

cyclic mode developed for this experimental campaign and the performance of this system is 

discussed later. 
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Figure 3.11 Input signal and force , the constant rate mode is the diagonal 

from t=0 until the force limit (4.2 kN) is reached. The cyclic mode is started 

subsequently with a peak to peak amplitude of 100 𝝁𝒎 (701 steps) and a 

period of 100 seconds. Note the delay in the system to switch between modes. 

The input signal of the cyclic mode is defined by two experiment parameters: the peak-to-

peak amplitude, 𝐴𝑝2𝑝 [𝜇𝑚], and the period, 𝑇 [𝑠]. The nominal displacement, 𝑑, of the piston 

as a function of these parameters is: 

With 𝑡 is time in seconds. Note that no displacement and time offset are defined. The 

displacement offset is defined by the initial load and the time offset depends on the time 

passed since movement of the plate was initiated. The velocity, 𝑑̇, of the plate is this function 

is: 

The amplitude of the velocity is the maximum velocity of the plate: 

The maximum strain rate as a function of the cyclic mode parameters is: 

 
𝑑 =

𝐴𝑝2𝑝

2
sin (

2𝜋𝑡

𝑇
) [𝑚𝑚] (3.2) 

 
𝑑̇ =

𝜋𝐴𝑝2𝑝

𝑇
cos (

2𝜋𝑡

𝑇
)  [

𝑚𝑚

𝑠
] (3.3) 

 
𝑑̇𝑚𝑎𝑥 =

𝜋𝐴𝑝2𝑝

𝑇
  [

𝑚𝑚

𝑠
] (3.4) 

 
𝜀𝑚̇𝑎𝑥 =

𝑑̇𝑚𝑎𝑥

𝐿0
 [𝑠−1] (3.5) 
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3.2.3. Experimental parameters 

Two main types of experiments were conducted in KNEKKIS, mostly cyclic compression 

tests and a few stress-relaxation tests per specimen. Before these tests per specimen and per 

day were conducted the prepared specimen was placed in KNEKKIS and strain data was 

recorded. To measure the influence of the load cell it was placed on top of the specimen after 

fifteen minutes and was not removed until end of all experiments during a day. In between 

days (periods in which tests were performed) the load cell was removed from the specimen. 

Both horizontal and vertical cores were tested. Emphasis is put onto the research on 

horizontal cores, due to the dislocation motion is in this direction.  

Two types of cyclic tests were conducted. The regular cyclic tests, for which the frequency 

and amplitude were changed per test and the observation test, for a lower initial load and a 

fixed amplitude and period. The observation test was used to check whether the dislocation 

density had changed, without influencing this parameter of the ice. The constant strain rate 

and cyclic mode of KNEKKIS were subsequently used for each cyclic test. The constant 

strain rate was set to 1,05 mm/min, corresponding to a strain rate of 10−4 𝑠−1 of the 

specimen. The force limit, after which the cyclic mode was initiated, was set to 4.2 kN for the 

regular tests and 0.8 kN for specimen observation tests, corresponding to stresses of 1.0 MPa 

and 0.2 MPa, respectively. 

The peak-to-peak amplitude and the frequency were changed per regular cyclic test. The 

requirement for the amplitudes was to not loose contact of the specimen and the upper plate of 

KNEKKIS, given an initial stress of 1.0 MPa in the specimen. The requirement that dictates 

the lower limit was the measurability of the strain. The range of periods was chosen to 

compare the results with existing literature on the frequency dependence with a slight focus 

on the higher frequencies. For each combination of the amplitude and period the number of 

cycles were defined. The test matrices per core direction are listed in Figure 3.12 and Figure 

3.13. All entries were attempted, but not necessarily successfully. Before and after every row, 

thus, amplitude, a specimen observation test, with a small amplitude of 0,02 mm and a period 

of 10 seconds was performed. After every experiment, the specimen is relaxed for twenty 

minutes before a new test starts. 
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Specimen 

 

Vertical 
  

              

Double amplitude 
[μm] 

20 100 20   50 20 200 20 

              

Initial load 
[N] 

4200 4200 4200 4200 4200 4200 4200 
            

  
                          

Period 
[𝑠] 

10 1000 333 100 33 10 10 333 100 33 10 10 333 100 33 10 10 

                                  

Min. cycles 
[−] 

5 2 5 5 5 10 5 5 5 5 5 5 5 5 5 5 5 

Order of experiments → 

Figure 3.12 Test matrix for cyclic compression experiments on specimens from the vertical cores 

Specimen Horizontal 
  

              

Double amplitude 
[μm] 

20 100 20 50 20 200 20 

              

Initial load 
[N] 

800 4200 800 4200 800 4200 800 
              

                                

Period 
[𝑠] 

10 10000 1000 333 100 33 10 10 1000 333 100 33 10 10 1000 333 100 33 10 10 

                                        

Min. cycles 
[−] 

5 2 2 5 5 5 10 5 2 5 5 5 5 5 2 5 5 5 5 5 

Order of experiments→ 

Figure 3.13 Test matrix for cyclic compression experiments on specimens from the horizontal cores 
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For every specimen stress relaxation tests were performed at different initial stress levels and 

durations. The same constant rate mode was used, but the cyclic amplitude was set to zero. 

After release of the specimen, it was relaxed for half an hour before commencing the next 

test.  

After every test, during the relaxation period, the data from the external datalogger was 

collected from the laboratory. During the tests, the laboratory was not entered. The name of 

the data was named with the main variables: specimen name and direction (H for horizontal 

and V for vertical), test number, amplitude [𝜇𝑚], period [s] and switch force [N]. This name 

is later used for data processing and to refer to tests performed. An example of the test name 

is shown below. 

𝐼𝑆02𝑆06𝐻 − 02 − 100𝑚𝑢𝑚 − 10000𝑠 − 4200𝑁 

All tests that were performed are listed in Table 4.6. Starting times were logged independently 

and can be found in Appendix A. 

To assess the stiffness and compliance of KNEKKIS, the cyclic tests were also carried out 

using an aluminium specimen. The aluminium specimen is a 175 mm tall tube. An important 

assumption is that the specimen responds linear in the same range of force applied as on the 

ice specimen. The test matrix for the aluminium is shown in Figure 3.14. 

Specimen   Aluminium 
  

          

Double amplitude 
[𝜇𝑚] 

20 200 20 100 20 

          

Initial load 
[𝑁] 

800 4200 800 4200 800 
          

                        

Period 
[𝑠] 

10 10000 1000 333 100 33 10 10 1000 333 100 33 10 10 

                            

Cycles 5 2 2 5 5 5 10 5 2 5 5 5 5 5 

Order of experiments → 

Figure 3.14 Test matrix for aluminium specimen 

3.3. Ice specimen characterization 

After the cyclic compression tests, the specimens were characterized by measuring their 

density, salinity and by preparing thin sections. The mid-section of each specimen was cut 

from the clamps and these properties were subsequently retrieved. The process for the 

specimen characterization is illustrated in Figure 3.15. 
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Figure 3.15 Visualization of process to characterize the ice specimens 

3.3.1. Temperature, Salinity and Density  

Early tests showed that a period of 12 hours is sufficient for the specimen to equilibrate from 

the storage temperature of −20℃ to the temperature in the cold lab of −10℃. The common 

method to measure temperature in a specimen is to drill a hole and measure the temperature 

inside the specimen with a handheld thermometer. Since each specimen was tested for a 

timespan ranging from about 12 hours to multiple days in an environment with a constant 

temperature, this method was not applied, due to the changes of the specimen. Instead, it was 

assumed that the temperature of the specimen would remain constant at −10℃. 

The dimensions of the specimens were measured with a caliper. The weight was measured 

with a scale with a precision of 0,1 g. The scale allows for both weighing on top or hanging a 

specimen from the device. The volume of the mid-section of the specimen was measured 

using the hydrostatic weighing method described by (Pustogvar and Kulyakhtin, 2016). The 

mid-section was subsequently weighed dry and hanging below the scale, submerged. The 

submersion liquid of choice was paraffin with 𝜌 = 823 𝑘𝑔/𝑚3. The density of the paraffin at 

the lab temperature was assessed by weighing 250 ml of paraffin.  

After cutting the slices used for thin sections from the mid-section, the residual pieces of ice 

for the production of thin sections were used to measure the salinity. The pieces were melted. 

The conductivity meter was cleaned consecutively with tap water and demineralized water, 

before measuring the specimen. 

The three parameters temperature, bulk salinity, and density were used to calculate the brine 

porosity, air porosity and total porosity, using the equations in Section 2.1.4 
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3.3.2. Crystallography 

A method to assess the crystallography is to make thin sections. A method to do so was 

suggested and discussed with David M. Cole (CRREL, USA), and adapted to the equipment 

available at UNIS. Square glass plates, sanding paper, an electrical heating pad (the VMS-A, 

manufactured by VWR), a mobile band saw, water bottle, microtome (manufactured by Leitz 

Wetzlar) and a polarizer (type 010195, manufactured by W. Ludolph, Germany) were used in 

the process. 

Thin sections of both the original ice and the tested specimens were made to classify the ice 

structure to determine the grain sizes. The here applied method to produce thin sections 

described below was modified from Sinha’s method (Sinha, 1977), to produce sections at a 

higher rate, and was assumed to be adequate for the purpose of this study, since the sections 

were not inspected by microscope. The thin sections were prepared at -20 °C as the increased 

hardness of the ice at this colder temperature facilitates the procedure. 

A slice, horizontal or vertical, was cut, after which the saw marks were sanded off the cleanest 

looking face. The glass plate was heated on the heater and the sanded face of the slice was 

frozen onto the glass plate. Saline meltwater formed around the specimen was removed using 

a paper tissue and a freshwater dam was applied, using the water bottle, around the specimen 

to prevent radial brine drainage from the specimen. The freezing process of the slice to the 

glass plate was accelerated by placing the glass on a solid piece of cold steel (the tank). The 

glass plate was attached to the microtome by creating a vacuum under the plate. Excess ice 

was shaved off until a thin layer of ice, i.e. the resulting thin section, was left on the glass 

plate. The thin section was examined and photographed under cross-polarized light. The 

alignment of the c-axis was assessed by rotating the specimen and comparing the darkness of 

the grains, i.e. the darkness of the grains was used as an indicator for the direction of the c-

axis. The order of grain size was calculated by dividing the section area by the number of 

grains. 

3.4. Data processing 

The force and strain recorded with the external sensors were used to analyze the compliances 

and moduli of the ice. To analyze the loops the time series were filtered. The performance of 

the control system was analyzed using the motor steps and force recorded with KNEKKIS. 

3.4.1. Initial processing 

The stress was calculated by dividing the load onto the specimen by the average area of the 

specimen, calculated from the mean diameter of the specimen. The stress signal was used to 
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define the intervals of the constant rate mode and the cyclic mode. The constant interval was 

defined from the start of the stress until a sudden change in stress. The interval in which the 

jump or drop of the controlled stepper signal (and thereby stress) occurred was excluded from 

the processed data file. The cyclic interval was bracketed by the end of this jump and the 

release of the specimen at the end of the test. Three time series datasets were constructed 

using stress and strain data processed using three different filtering methods. 

3.4.2. Filter external sensor data 

The stress and especially the strain signal contained instrumental noise, which was 

smoothened using a third order Butterworth type filter with a low pass frequency. Slower 

trends in the stress and strain signals were filtered with a high pass filter.  

The focus of this work lies with the response of the material to the controlled frequencies. 

Therefore, the low pass filter frequency was scaled with the loading frequency. The scale 

factor was determined by visually assessment of the resulting smoothened signal. This filter 

was applied to the full dataset for each experiment (i.e. set of parameters) and, for a second 

dataset, to the cyclic interval separately. The method described by the manual of the strain 

sensor, to remove the initial offset of the strain sensor was not accurate enough for the low 

strains applied, so the low pass-filtered strain data was corrected to the strain recorded at the 

time right before the load was applied to the specimen. 

3.4.3. Gauge length influence 

Early tests showed a trend in the strain measured by the external strain sensor. This trend 

resembles the strain of a creep tests. Assuming the stepper signal provides a sinusoidal motion 

to the bottom plate (this assumption was justified by performing the same experiments on a 

linear, homogeneous material, see results), the specimen should undergo a similar straining 

profile. The external sensor measures just the centre section of the ice. A strain signal 

removed from this creep, which still has the same phase lag (essential to elucidate the 

anelastic behaviour), can be simulated to represent the full height of the specimen by applying 

a high-pass filter. The high-pass filter frequency was similarly scaled with the loading 

frequency, applied on the cyclic interval and included in the third data file 

3.4.4. Loop analysis 

Each loop of the smoothed cyclic data was analysed separately, i.e. the width (𝜀𝑤) and height 

(𝜎ℎ) of each loop was determined, and subsequently used to calculate the loss and storage 

compliance. Furthermore, the effective modulus was calculated for each loop.  



52 

 

To obtain the separate loops, the time series data had to be split up after each period (i.e. 

cycle). The first quarter of the first cycle of each experiment was thereby not used, since the 

filtering of the data led to an artificial jump in that part of the time series. 

 Subsequently, the maximum, minimum and mean stress and strain values were determined 

for each loop. From these values, the width and height of the loop were determined. For the 

loop width, the strain values closest to the mean stress were determined for each half of the 

loop, for the loop height the stress values closest to the mean strain. 

The loss compliance (𝐷2) was calculated from the loop width and stress amplitude as shown 

in Equation (3.6). The storage compliance (𝐷1) was calculated from the loop width, stress (𝜎0) 

and strain amplitude (𝜀0) as shown below: 

And similarly, for the loss and storage modulus: 

The effective modulus was determined from the tangent to the curve at the point of the mean 

stress, an adaptation of the formula used by Cole, Johnson and Durell (1998). Since each loop 

passes the mean stress twice, the mean of the tangents was determined to be the effective 

modulus of the whole loop.  

 

  

 𝐷2 =
𝜀𝑤

𝜎0
 (3.6) 

 

𝐷1 = √(
𝐷2𝜎0

𝑀2𝜀0
)

2

− (𝐷2)2  (3.7) 

 𝑀2 =
𝜎ℎ

𝜀0
 (3.8) 

  

𝑀1 = √(
𝑀2𝜀0

𝐷2𝜎0
)

2

− (𝑀2)2 (3.9) 
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4. Experimental results, model predictions and discussion 

The results of the specimen production, the experiments review and the compression tests are 

presented in this section. The results are interpreted and discussed and the model results are 

compared to the experimental results.  

4.1. Specimen production 

In this section the results of the specimen production experiments are presented. First the 

production of the ice sheets is elaborated on, then the extraction of cores, the choice of 

specimens and their parameters. 

4.1.1. Characteristics of ice sheet 

Four ice sheets were produced in the FRYSIS. Each tank was filled with approximately 100 

litre of tap sea water with a salinity of 33 and 300 litre of tap water, resulting in a water 

mixture with a measured salinity of 8.2 ± .2. The sheet thickness and growth time of each 

sheet are shown in Table 4.1.  

Table 4.1 Thickness and growth time f each sheet, thickness measurement based on the shortest 

core length, growth time recorded from moment of seeding to drilling 

Ice sheet 
Thickness 

[cm] 
Growth time 

[days] 
IS01 21 9 

IS02 23 8 

IS03 25 10 

IS04 28 10 

The temperature in the cold laboratory was not very stable. For each ice sheet the growth 

conditions were therefore slightly different, resulting in the different growth times per sheet 

thickness. A difference of the set temperatures of the heating walls compared to the water 

temperatures was also present. For more control of the growth conditions, these thermometers 

should be calibrated with the water temperatures. However, in this work, focus was put on 

growing ice with a S2 structure and not on the exact same growth conditions. The thin 

sections of IS01, showed no clear S2 structure, as visible in Figure 4.1. This ice sheet and the 

cores drilled are therefore excluded from further analysis. The other ice sheets have shown a 

S2 structure.  
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Figure 4.1 Thin sections from first sheet of ice with a horizontal (left) 

thin section and vertical (right) thin section. The vertical thin section 

was taken near the top of the ice layer. A columnar structure is 

recognized in the vertical thin section  

 

 
Figure 4.2 Salinity profiles three sheets of ice . Top layer has 

the same salinity for each sheet 

For the sheets 2,3 and 4, salinity profiles were made from the block cut in between the core 

cavities, shown in Figure 4.2. The average salinity throughout the height of the salinity profile 

was respectively 2.5, 2.4 and 3.0. Compared to regular sea ice found in the Arctic this is 

relatively low, but the values compare well to the sea ice found in the Baltic Sea. Especially 

in IS03 a typical C-shape profile can be recognized, most likely caused by brine drainage to 

the bottom and brine capture in the top layer. This is an indication that the production of 

columnar sea is comparable to naturally occurring sea ice growth. Further research with thin 

sections can confirm this. The salinity in the top layer of all sheets of ice was 2.7. 
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4.1.2. Extracted cores 

A total of 48 cores were drilled from the 3 sheets of ice. A small number of cores was 

severely damaged during the process as shown inTable 4.2. The damaged cores were 

excluded from further analysis. 

Table 4.2 Number of cores and their condition 

  IS02 IS03 IS04 Total 

Good samples no flaws 
Horizontal 3 4 4 11 

Vertical 11 12 10 33 

Samples with flaws 
Horizontal 0 1 1 2 

Vertical 1 0 1 2 

The distance from the walls of each cores was measured and is visualized in Figure 4.3. The 

larger blocks of ice in between the core locations were used for horizontal specimens. The 

choice of drilling locations improved towards the later sheets of ice. The main challenge that 

drove this development was cutting the blocks of ice used for the horizontal specimens. 

Working in a relatively narrow tank with steel walls does not allow the use of mechanical 

cutting, so all cutting was done by hand. The duration of cutting one block was approximately 

three hours.  

The setup of core locations for IS02 was sufficient for the collection of vertical cores. Cutting 

the horizontal block took approximately five hours. The block (approximately 40 kg) was 

lifted from the sheet of ice using a combination of levers, support beams and ratchet straps. 

Due to the size and weight of the block, it was jammed during the lift operation. For IS03 and 

IS04 the size of the horizontal block was reduced by dividing it in two blocks weighing each 

less than 20 kg. Cutting of these blocks took each approximately two hours. For IS03 and 

IS04 the ratio between the clearance at the sides of the blocks and the dimensions of the block 

was increased. Due to this and the reduced weight, the blocks were not jammed in the sheet of 

ice and were easier to remove. The double column of cores in the centre of IS04 allowed for 

thin sections and salinity profiles taken from the centre of the sheet of ice. 
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Figure 4.3 Core locations in tank per ice sheet 

4.1.3. Specimen characteristics 

4.1.3.1. Dimensions specimens 

During the final phase of production of cores, it was decided to reuse the cores per cyclic 

experiment based on reports in literature (Cole and Durell, 1995), thus a surplus of cores was 
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drilled. Five cores were selected to use for cyclic compression tests. The substantial number 

of cores produced allowed for a careful selection of cores. Thde selection criterion was the 

straightness of the core. The coring method often resulted in bent cores. The straightness of 

the cores was visually estimated and the straightest specimens were chosen. The dimensions 

of the specimens are listed in Table 4.3. 

Table 4.3 Specimen dimensions 

Specimen 
Length 

[mm] 

Diameter 

top [mm] 

Diameter 

Center 

[mm] 

Diameter 

bottom 

[mm] 

Area** 

[mm2] 

IS02S05V 173 73.5 - 75.8 4377 

IS02S06V 174 73.5 73.7 77.0 4387 

IS03S03V 172 73.9 - 74.7 4336 

IS03S15H*** 174* 73.3/71.4 - 73.1/70.5 4208/3953 

IS03S16H 174* 72.3 - 72.5 4117 

ALU 155 82.0**** - 90.0**** 1081 

* Not measured, but assumed from saw box dimensions 

** Calculated from average diameter 

*** First diameter measured on 8/12/2016, second diameter on 13/12/2016 

**** Inner or outer diameter of aluminium tube 

The diameters of the specimens differ slightly from each other, due to the measurement 

method and because the specimens were not milled to a fixed diameter. The changing 

diameter of specimen IS03S15H is probably caused by sublimation of the ice over the five 

days in between the measurements. The diameter of IS02S06V is slightly larger than the inner 

diameter of the core, which might be a result of ice freezing to the side after the sample had 

fallen through the hole in the tank. The variation in diameters results in a 10% difference 

between the largest and smallest area. The area influences the applied stress on the specimen, 

i.e. the switch load. To apply the same stress for all specimens, a constant area for all 

specimens can be important. However, since these tests are strain controlled, it is not of 

utmost importance. 

The different diameters of sample IS03S15H are the result of the longer test period for this 

sample. After storing the sample wrapped in the cold laboratory for a weekend, the diameter 

was reduced by a few mm. Since this reduction resulted in an area change of 3.1%, the new 

measurements are included in the processed data. 
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The ratio of the cross-sectional areas of the aluminium tube to the average cross-sectional area 

of the ice specimens is approximately 4.0. This ratio can be used to compare the stresses of 

the aluminium to the ice specimen, since the same input parameters (force) were used. 

4.1.3.2. Temperature, Salinity, Density and porosities 

The temperature of the cold lab, the density and salinity of the specimens were measured. The 

porosities were computed. The results are listed in Table 4.4. 

Table 4.4 Density, salinity and porosities 

Specimen Tests 

Density 

[𝐤𝐠/𝐦𝟑] 

Specimen 

salinity 

[−] 

Porosities measured at 

−𝟏𝟎℃ 

[%] 
air brine total 

IS02S06V All 910.2 2.4 1.2 1.3 2.5 

IS03S03V All 910.3 1.9 1.1 1.0 2.2 

IS02S05V All 909.3 1.9 1.2 1.0 2.3 

IS03S15H 01-18 903.1 2.2 2.01 0.71 2.81 

IS03S15H 18-41 903.1 2.2 1.9 1.2 3.1 

IS03S16H All 903.2 2.6 2.0 1.4 3.4 

1 Temperature during tests was −20℃ 

2 Calculated for the mean diameter 

The available height between the top and bottom plate of the clamps is 186 mm. However, no 

exact height measurement was possible for the different specimen. The external strain sensor 

measures the strain for an original height of 50.0 mm. The clamps are filled with fresh water 

to freeze the samples to them. Therefore, the contributing height to the total strain in the ice is 

not defined.  

The temperature was accidentally set to -20°C for two days, resulting in a change of the 

porosity.  

4.1.3.3. Microstructure 

Four thin sections are presented in Figure 4.4. All originate from ice sheet 3, of which the 

horizontal cores were used for the cyclic experiments 
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Figure 4.4 Thin sections of ice sheet 3 

The structure of the specimens is classified as S2 ice. The direction of the grains, thus the 

basal planes are oriented vertical. The basal dislocations have the largest influence on the 

orientation factor. The c-axes of the specimens were unaligned. The grain sizes are in the 

order for which the model was validated.  
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4.2. Materials and methods review 

4.2.1. Methods 

The experimental method was refined during the campaign and all improvements 

implemented were described in section 3. More improvements were identified after the 

experimental campaign.  

4.2.1.1. Mode switch jump 

The mode switch jump describes an observed phenomenon, where the load or displacement 

jumped to another value when the mode was switched from CSR to Cyclic. The displacement 

that is used as input was defined by the initial load, initial velocity, displacement amplitude 

and the period. However, the time offset of the signal was variable with the current control 

system, since the time between the start of movement of the plates and the contact with the 

specimen is not specified. This has led to jumps in the input signal and force when changing 

modes. As the material cannot adjust its strain instantaneous, the resulting strain offset is not 

known. 

4.2.1.2. Displacement profiles 

The displacement profiles applied could be improved. Several combinations of experimental 

parameters prove not to be practical. 

The external strain sensor used, was not able to identify the strain when the double amplitude 

was smaller than 50 𝜇m, further explained in Section 4.2.2.4. The test matrix was followed 

regardless, resulting in a number of tests which were not possible to process properly. For all 

experiments, filters were applied to reduce the noise of the stress and strain measurements.  

The tests that combine a high amplitude and a low period, proved to be useless as well. The 

specimen would not relax fast enough to maintain a load; thus, the specimen was released 

every cycle. These experiments have not been included in the analysis. 

The compressive experiments include stress relaxation of the specimen, which must be either 

subtracted or filtered, to analyse the steady state behaviour. For an easier assessment of the 

steady state behaviour a cyclic compression-tension experiments can be conducted. With 

these experiments, the viscous deformation can be identified. 

4.2.1.3. Temperature measurement 

The temperature of the specimen was not measured, but assumed based on the room 

temperature. This was justified for this work. The commonly used method (drilling a hole in 

the specimen and measuring the inside temperature with a thermometer) destroys the 

specimen and it makes them useless for more experiments. A suggested method to measure 
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the temperature is by the use of a thermal imaging sensor. Using this method, the temperature 

of a specimen can be measured at any given time, however it is uncertain if these sensors can 

measure the temperature inside the specimen. 

4.2.1.4. KOMPIS cyclic loading method 

The triangular compression tests were conducted using KOMPIS. The preliminary results 

made evident that the available equipment was not suitable to obtain results that could be 

straightforwardly compared to the model predictions. 

A structural issue of KOMPIS was the low range of loading rates that could be applied to the 

ice sample. KOMPIS is designed to move the plate on 1500 rotations per minute (rpm), which 

resulted in a strain rate of the specimen of 10. The gearbox could not provide enough force to 

strain the specimen on a lower rpm. Because of the low range of velocities, the obtained low 

range of frequencies could not be applied while remaining in a low-stress regime. 

 

Figure 4.5 Recorded stress for triangular load on specimen IS1S08-03 

The frequency was controlled by manually operating the control switch and lead to a release 

of the specimen and irregular cyclic per2.7iods as shown in Figure 4.5. As a result, the peak 

loads per cycle changed from cycle to cycle as shown in Figure 4.6 
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Figure 4.6 Period per cycle by manual operation of KOMPIS  

The strain of the whole specimen was measured with the draw wire. This direct measurement 

of the strain can be very useful, as discussed in Section 4.2.1.2. However, the resolution of the 

draw wire was too low to measure the strain in the specimen (see Figure 4.7), which rendered 

this strain sensor useless. An improvement to the strain measurement was applied after the 

experimental campaign of this work, by installing a linear variable differential transformer 

(LVDT). 

 

Figure 4.7 Strain for KOMPIS test 
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The triangular cyclic loading method might prove valuable for future cyclic loading 

experiments, if the problems concerning the control and the gearbox are addressed. The ease-

of-use and mobility of the method are valuable qualities for field applications. 

4.2.1.5. Thin section production 

The adopted method to produce thin sections reduced the production time significantly. The 

method is recommended to use for quick production of thin section, when the thin sections are 

not analysed by microscope. This method provided good enough thin sections to assess the 

columnar structure and grain sizes. 

4.2.1.6. Filters 

The low pass frequency filter performed well to reduce noise from the cyclic part of the tests. 

However, they could not handle sudden changes, such as mode switches or tests where the 

upper plate lost contact with the specimen. The low-pass frequency was dependent on the 

natural frequency and the performance of this frequency was visually assessed from the stress.  

The start of the cyclic part is problematic for using the low-pass filter. Low-pass filters 

appeared to be not suitable for the higher periods (1000 and 333 seconds) due to their inability 

to smoothen parts with creep. Calculations based on test with low-pass filters exclude 

therefore the first ten percent of the cycle. Problems occurred also in the very last part, again 

especially for the higher periods (1000 and 333 seconds). However, this part is usually not 

part of any cycles anymore and thus negligible. For lower periods, the switch from constant 

rate mode to cyclic mode is more fluent in comparison to the input period as shown in Figure 

4.8. 

 

Figure 4.8 Filter performance for first 10% of the first cycle 
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The low pass filter frequency scaled with the frequency at which the cyclic test was 

performed. For the tests with an initial load of 4.2 kN, a scale factor of 5 provided smooth 

results. Smoothness was determined by visual observation, was determined visually, but a 

least-square analysis could be conducted to further improve the results. The low pass filter 

frequency for the observation tests with a low amplitude (20 𝜇𝑚) and at an initial load of 

0.8 kN was scaled with a factor 2. A significant amount of information was lost, thus the 

findings with regards to these filtered files are treated carefully. 

A scaling factor of 1/3 was applied to the loading frequency to obtain the high pass filter 

frequency.  

4.2.2. Materials 

4.2.2.1. Loading frame 

When the stepper engine, the controlled parameter, applies a load not just the specimen is 

loaded. The frame, the load cell and the endcaps are also compressed. For the experiments, 

the load cell and the end caps were assumed to be incompressible since only relatively low 

forces were applied (not higher than 10 kN). The frame however has shown some self-

deformation in previous tests. It is also not known if the frame has a frequency dependent 

stiffness. 

To predict the stresses resulting from a strain input with any model, it is important to know 

what the input strain is. The input strain amplitude results from the peak to peak amplitude for 

the stepper engine used for the experiment. Two types of experiment can be used to compare 

the input parameters to the resulting strain in the specimen: 

1. Compression of incompressible steel beam, conducted in 2013 

2. Compression of aluminium specimen, assumed the material behaves linear 

homogeneous elastic over its length under the load conditions applied 

The compression tests on ice cannot be used for the stiffness of KNEKKIS, since the strain 

contributing height of the specimen is not well defined due to the use of end caps. 

With the self-deformation of KNEKKIS as a function of the load and the load - a result of the 

stiffness of KNEKKIS - the stiffness of KNEKKIS is non-linear, thus the resulting input 

strain for a material (that is not assumed infinitely stiff) cannot be predicted by just this 

knowledge. The self-deformation is often included for tests, if the self-deformation is much 

lower than the deformation of the specimen. The displacement is than corrected by 

substituting the self-deformation. Since the self-deformation for the low loads is relatively 
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high for the amplitudes used as input (see Table 4.5), this approach was not applicable for this 

work. 

With the current setup, where the strain sensor measures the center section of the material, no 

definite answer on the stiffness of KNEKKIS can be given. However, when using the strain 

measured in the strain sensor a stress should be possible to predict with a model. 

The measured strain double amplitude can be compared to the respective input parameter. 

Major assumption: homogeneous elastic material, thus, strain measured in the middle can be 

used to calculate strain over the full length of the specimen: 

where 𝑑𝑘𝑛𝑒 is the displacement of the bottom plate, 𝐴𝑝2𝑝 the double amplitude used as the 

input, 𝑑𝑒𝑥𝑡 the projected displacement of the bottom plate, 𝜀𝑒𝑥𝑡 the strain measured by the 

external sensor and 𝑙𝑠𝑝𝑒𝑐 the length of the specimen. With the given assumptions, the 

approximately 90% of the input strain is lost due to the stiffness of the frame. For the 

validation of the model it is therefore important not to use the input parameter, but the 

measured parameter. 

Table 4.5 Frame deformation 

Experiment 

peak-to-peak 

amplitude 

strain 

𝜀𝑝2𝑝,𝑒𝑥𝑡 

[-] 

Ratio 
𝜀𝑝2𝑝,𝑒𝑥𝑡

𝜀𝑝2𝑝,𝑖𝑛
 

[%] 

Assumed 

specimen 

deformation 

𝒅𝒆𝒙𝒕 

[𝝁𝒎] 

Frame 

deformation 

𝒅𝒌𝒏𝒆 

[𝝁𝒎] 

ALU-02-200mum-

1000s-4200N 
9.31E-05 7.2% 14.4 185.6 

ALU-03-200mum-

333s-4200N 
1.04E-04 8.0% 16.1 183.9 

ALU-04-200mum-

100s-4200N 
1.04E-04 8.1% 16.2 183.8 

ALU-05-200mum-

33s-4200N 
1.59E-04 12.4% 24.7 175.3 

ALU-10-100mum-

333s-4200N 
5.41E-05 8.4% 8.4 91.6 

ALU-11-100mum-

100s-4200N 
5.18E-05 8.0% 8.0 92.0 

ALU-12-100mum-

33s-4200N 
5.00E-05 7.8% 7.8 92.2 

ALU-13-100mum-

10s-4200N 
4.61E-05 7.1% 7.1 92.9 

 𝑑𝑘𝑛𝑒 = 𝐴𝑝2𝑝 − 𝑑𝑒𝑥𝑡 = 𝐴𝑝2𝑝 − 𝜀𝑒𝑥𝑡𝑙𝑠𝑝𝑒𝑐 (4.1) 
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The main problem is the self-deformation of the frame and not well known for these relatively 

low stresses. To avoid the problem only strain in the specimen itself was measured, which 

was the focus of this work anyways.  

To allow for a better controlled strain input several solutions are suggested.  

The deformation between plates can be measures as well as the plate deformation. Tests on 

similar specimens of ice can be performed to retrieve a new calibration factor, i.e. number of 

steps compared to plate deformation. Since the stiffness of the frame is nonlinear load 

dependent, this calibration factor should be tested for the load range applied. Therefore, 

multiple calibration tests per experimental campaign recommended 

A more permanent solution, without the need for calibrations, might be to expand the control 

system in a way that the measured deformation can be used as a new input, providing a closed 

feedback loop. 
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Figure 4.9 Effective modulus per half loop, calculated at mean 

stress of the loop 

The stiffness of the aluminium specimen is relatively stable per strain amplitude as shown in 

Figure 4.9. 

The stress plot, see Figure 4.8, is a typical result from the tests on aluminium since the system 

is strain controlled as described in and no stress reduction occurs during the different tests. 

For the 10 seconds period a bit of creep is visible in the first cycle. It is not clear whether this 

creep results from creep in the frame or creep in the specimen. 

Stress relaxation tests at different initial stresses can provide an answer to whether this 

influences the duration and intensity of the creep. 

4.2.2.2. End caps 

The end caps were a valuable piece of new equipment for compression tests under low 

stresses. A slow stress increase was observed when a small displacement was applied to the 
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specimen. The specimen was less than half an hour prior to this test clamped. The fresh water 

applied to freeze the specimen to the clamp was not frozen yet. To prevent this from having 

an influence on the actual experiments, a specimen must be frozen into end caps well before 

compression test commences.  

The end caps provided a proper alignment of the specimen, relatively independent of the 

quality (parallel faces and normal to the longitudinal axis) of the cuts. Another advantage of 

the end caps is the range of specimen heights that can be used. Within a reasonable range the 

operational height between the plates of KNEKKIS remained the same. 

Disadvantages of the end caps were the following. The fastening system (water in the end 

caps) caused a variable height of fresh water ice between the specimen and the specimen. The 

interference of this extra connection to the end caps is unknown. The strain measurement was 

not influenced, but it is unknown what happens to the sample between the sensor and the end 

of the sample.  

A more practical disadvantage is the removal of the specimen from the end caps. A significant 

amount of height is lost when the specimen is cut from the end caps. A reduction of the height 

of the end caps, while maintaining the height of the mantle might solve this. Top and bottom 

of specimen cannot be retrieved without warming up end caps. Irregularities in the diameter 

of the specimen can influence alignment of specimen. 

4.2.2.3. Load cells 

Two load cells are used to measure the applied force, one built into Knekkis, one external 

load cell. The performance of the two varies slightly.  

The signal of the Knekkis and external load cell, without a load applied, vary respectively 

with +/- 2 N around -1 N and with +/- 40 N around +10 N. With the peak load of an order of 5 

kN, resulting in a 0.2% error, no corrections are made to the mean values of the load cells. 

A low-pass filter is applied to remove the noise in the signal of the external load cell. The 

load cell was however precise enough to  

The precision of the Knekkis load cell is high enough to identify the steps of the Knekkis 

engine, as visible in Figure 4.10. 
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Figure 4.10 Stepper input and load measurement 

 

4.2.2.4. Strain sensor 

A significant amount of noise was visible in the strain signals. The noise proved to be too 

large to analyse the observation test. However, for larger amplitudes the used sensor provided 

good results. The difference is shown in Figure 4.11 and Figure 4.12. 

 
Figure 4.11 Raw strain of cyclic loading test, with filtered signals 
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Figure 4.12 Unfiltered stress and strain measured in observation test 

4.3. Compression experiments 

In total 121 compression experiments in KNEKKIS were performed, of which 74 were 

executed on vertical specimens and 60 on horizontal specimens. The complete list of 

experiments, with their relative experimental parameters, is shown in Table 4.6.  

Not all specimens are further discussed in this study as earlier specimen were used to improve 

the experimental set-up. The experiments on specimen IS03S16H were analysed. The 

anelastic component due to dislocation relaxation was expected to be larger for horizontal 

specimens, since the orientation factor is larger (see section 2.3.3). The first 18 experiments 

on the other horizontal specimen, IS03S15H were performed either without external strain 

sensor or at a different temperature than −10℃. The subsequent tests were conducted 

according to the test matrix. For these experiments, the stress history on the specimens was 

not completely known and the influence of this on the dislocation density is unclear. It is 

therefore not further analysed.  

First the general characteristics of a cyclic loading experiment are analysed. The cyclic 

compression tests on specimen IS03S16H are then qualitatively analysed, whether they can be 

used to analyse the loss compliance. The frequency dependence of the loss compliance is 

compared to the model prediction. 
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Table 4.6 All compression experiments performed in KNEKKIS. The label  

IS02S06V IS03S03V IS02S05V IS03S15H IS03S16H 
IS02S06V-01-100mum-10s-4200N 

IS02S06V-02-100mum-30s-4200N 

IS02S06V-03-100mum-10s-4200N 

IS02S06V-04-100mum-30s-4200N 

IS02S06V-05-100mum-100s-4200N 

IS02S06V-06-100mum-333s-4200N 

IS02S06V-07-100mum-1000s-4200N 

IS02S06V-08-20mum-10s-4200N 

IS02S06V-09-50mum-333s-4200N 

IS02S06V-10-50mum-100s-4200N 

IS02S06V-11-50mum-33s-4200N 

IS02S06V-12-50mum-10s-4200N 

IS02S06V-13-20mum-10s-4200N 

IS02S06V-14-0mum-s-4200N 

IS02S06V-15-20mum-10s-4200N 

IS02S06V-16-20mum-333s-4200N 

IS02S06V-17-20mum-100s-4200N 

IS02S06V-18-20mum-33s-4200N 

IS02S06V-19-20mum-10s-4200N 

IS02S06V-20-500mum-333s-4200N 

IS02S06V-21-200mum-333s-4200N 

IS02S06V-22-200mum-100s-4200N 

IS02S06V-23-20mum-10s-4200N 

 

IS03S03V-01-20mum-10s-4200N 

IS03S03V-02-100mum-1000s-4200N 

IS03S03V-03-100mum-333s-4200N 

IS03S03V-04-100mum-100s-4200N 

IS03S03V-05-100mum-33s-4200N 

IS03S03V-06-100mum-10s-4200N 

IS03S03V-07-20mum-10s-4200N 

IS03S03V-08-50mum-333s-4200N 

IS03S03V-09-50mum-100s-4200N 

IS03S03V-10-50mum-33s-4200N 

IS03S03V-11-50mum-10s-4200N 

IS03S03V-12-20mum-333s-4200N 

IS03S03V-13-20mum-100s-4200N 

IS03S03V-14-20mum-33s-4200N 

IS03S03V-15-20mum-10s-4200N 

IS03S03V-16-200mum-333s-4200N 

IS03S03V-17-100mum-10s-4200N 

IS03S03V-18-0mum-0s-4200N 

IS02S05V-1-0mum-s-100N 

IS02S05V-2-20mum-10s-4200N 

IS02S05V-3-100mum-1000s-4200N 

IS02S05V-4-100mum-333s-4200N 

IS02S05V-5-100mum-100s-4200N 

IS02S05V-6-100mum-33s-4200N 

IS02S05V-7-100mum-10s-4200N 

IS02S05V-8-20mum-10s-4200N 

IS02S05V-9-50mum-333s-4200N 

IS02S05V-10-50mum-100s-4200N 

IS02S05V-11-50mum-33s-4200N 

IS02S05V-12-50mum-10s-4200N 

IS02S05V-13-20mum-10s-4200N 

IS02S05V-14-20mum-333s-4200N 

IS02S05V-15-20mum-100s-4200N 

IS02S05V-16-20mum-33s-4200N 

IS02S05V-17-20mum-10s-4200N 

IS02S05V-18-200mum-333s-4200N 

IS02S05V-19-200mum-100s-4200N 

IS02S05V-20-200mum-33s-4200N 

IS02S05V-21-0mum-s-4200N 

IS02S05V-22-0mum-s-2100N 

IS02S05V-23-0mum-s-1000N 

 

IS03S15H-1-0mum-s-1000N 

IS03S15H-2-0mum-s-2100N 

IS03S15H-3-0mum-s-4200N 

IS03S15H-4-20mum-10s-800N 

IS03S15H-5-50mum-1000s-4200N 

IS03S15H-6-50mum-333s-4200N 

IS03S15H-7-50mum-100s-4200N 

IS03S15H-8-50mum-33s-4200N 

IS03S15H-9-50mum-10s-4200N 

IS03S15H-10-20mum-10s-4200N 

IS03S15H-11-0mum-s-500N 

IS03S15H-12-20mum-10s-4200N 

IS03S15H-13-20mum-333s-4200N 

IS03S15H-14-20mum-100s-4200N 

IS03S15H-15-20mum-33s-4200N 

IS03S15H-16-20mum-10s-4200N 

IS03S15H-17-100mum-1000s-4200N 

IS03S15H-18-100mum-333s-4200N 

IS03S15H-19-20mum-10s-4200N 

IS03S15H-20-20mum-10s-800N 

IS03S15H-21-50mum-1000s-4200N 

IS03S15H-22-50mum-333s-4200N 

IS03S15H-23-20mum-10s-800N 

IS03S15H-24-50mum-1000s-4200N 

IS03S15H-25-20mum-10s-800N 

IS03S15H-26-50mum-1000s-4200N 

IS03S15H-27-50mum-333s-4200N 

IS03S15H-28-50mum-100s-4200N 

IS03S15H-29-50mum-33s-4200N 

IS03S15H-30-50mum-10s-4200N 

IS03S15H-31-20mum-10s-800N 

IS03S15H-32-100mum-1000s-4200N 

IS03S15H-33-100mum-333s-4200N 

IS03S15H-34-100mum-100s-4200N 

IS03S15H-35-100mum-33s-4200N 

IS03S15H-36-100mum-10s-4200N 

IS03S15H-37-20mum-10s-800N 

IS03S15H-38-0mum-s-0N 

IS03S15H-39-20mum-10s-800N 

IS03S15H-40-200mum-1000s-4200N 

IS03S15H-41-0mum-s-4200N 

IS03S16H-01-20mum-10s-800N 

IS03S16H-02-100mum-10000s-4200N 

IS03S16H-03-100mum-1000s-4200N 

IS03S16H-04-100mum-333s-4200N 

IS03S16H-05-100mum-100s-4200N 

IS03S16H-06-100mum-33s-4200N 

IS03S16H-07-100mum-10s-4200N 

IS03S16H-08-20mum-10s-800N 

IS03S16H-09-20mum-10s-800N 

IS03S16H-10-50mum-1000s-4200N 

IS03S16H-11-50mum-333s-4200N 

IS03S16H-12-50mum-100s-4200N 

IS03S16H-13-50mum-33s-4200N 

IS03S16H-14-50mum-10s-4200N 

IS03S16H-15-20mum-10s-800N 

IS03S16H-16-200mum-1000s-4200N 

IS03S16H-17-200mum-333s-4200N 

IS03S16H-18-200mum-100s-4200N 

IS03S16H-19-0mum-s-4200N 
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4.3.1. General characteristics of the cyclic straining experiments 

The result of a cyclic compression experiment is shown in Figure 4.13. The stress and strain 

are noise filtered. The strain shows a slow increase during the test. This may be explained by 

the creep of the specimen and the control mode. The stepper signal is the controlled value and 

during the experiment creep of the specimen occurs. This creep behaviour is filtered with the 

low-pass filter, as shown in section 4.2.1.6. The stress is slowly decreasing over time, 

showing stress relaxation. The stress relaxation is explained by the compression of the 

specimen. To reduce the creep and stress relaxation behaviour a different displacement profile 

could be used. A cyclic displacement in which the mean displacement is zero, thus 

compression and tension alternate. 

The stress-strain curve is plotted in Figure 4.14. The shift of the loops to the right is caused by 

the creep and the shift downwards by the stress relaxation. The loop width and height are 

clearly visible and can be estimated to obtain the loss function. 

 

 

Figure 4.13 Noise filtered stress and strain time series for test IS03S16H-17 

 a 
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Figure 4.14 Loops for experiment IS03S16H-17 

4.3.2. Qualitative analysis of experiments 

Not all experiments proved to be meaningful to estimate the loop characteristics. The loops of 

each experiment are reviewed and marked whether they are further analysed in Table 4.7. All 

loops of specimen IS03S16H can be found in Appendix C 

Table 4.7 Qualitative analysis of the compression tests on specimen IS03S16H 

Experiment name Used Explanation 

IS03S16H-01-20mum-10s-800N no Too small strain for loop analysis 

IS03S16H-02-100mum-10000s-4200N yes Creep dominated 

IS03S16H-03-100mum-1000s-4200N yes Fast unloading, clear loops 

IS03S16H-04-100mum-333s-4200N yes Drop in force, clear loops 

IS03S16H-05-100mum-100s-4200N yes Drop in force, clear loops 

IS03S16H-06-100mum-33s-4200N yes Clear loops 

IS03S16H-07-100mum-10s-4200N yes Clear loops 

IS03S16H-08-20mum-10s-800N no No strain measurement 

IS03S16H-09-20mum-10s-800N no Too small strain for loop analysis 

IS03S16H-10-50mum-1000s-4200N yes Clear loops 

IS03S16H-11-50mum-333s-4200N yes Clear loops 

IS03S16H-12-50mum-100s-4200N yes Large relaxation in first cycle 

IS03S16H-13-50mum-33s-4200N yes Stress and strain reached steady-

state (asymptotic) 

IS03S16H-14-50mum-10s-4200N yes Clear loops 

IS03S16H-15-20mum-10s-800N no Too small strain for loop analysis 

IS03S16H-16-200mum-1000s-4200N yes Clear loops 

IS03S16H-17-200mum-333s-4200N yes Clear loops 
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IS03S16H-18-200mum-100s-4200N yes Release of specimen 

IS03S16H-19-0mum-0s-4200N yes Stress relaxation test 

Furthermore, a jump in force was noticed during the mode switch. At lower frequencies, these 

appeared as a stress relaxation test, but whereas for higher frequencies the stress relaxation is 

more of a direct drop of force. The cause remains unclear, but has an influence on the shape 

of the first loop. Since the focus is on the steady state behaviour of the material, the first loop 

is ignored in the further analysis.  

4.3.3. Effect of number of cycles on anelastic behaviour 

It is not yet known if the number of loops has an influence on the effective modulus or the 

loss compliance. The number of loops can be of importance for the choice of the loop to 

analyse. The effective modulus was determined from the noise filtered data file. 

 

Figure 4.15 Effective moduli determined per half loop 

The effective modulus was determined for each crossing of the mean stress, hence two moduli 

per loop were determined. As shown in Figure 4.15, a difference between consecutive half 

loop moduli is visible. However, the effective modulus was relatively stable over time, after 

the first loop. 
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The loss compliances were derived from the detrended data files and are shown as a function 

of the loop number in Figure 4.16. The loss compliances are relatively stable for loop 

numbers greater than 3.  

 
Figure 4.16 Loss compliance as function of loop number 

4.4. Model predictions compared to experimental results 

This work employs a model for the anelastic response of saline ice based on grain boundary 

relaxation. The parameters referring to this relaxation are denoted with a gb in superscript and 

dislocation relaxation with d in superscript. The latter dominates the behaviour for the 

experiments conducted, due to the strength of the relaxation being an order of magnitude 

higher. Here an overview of the input parameters required and model equations. The model is 

written in MATLAB and the code is found in Appendix B. 

4.4.1. Input parameters 

The required parameters to run the model are the experimental parameters, see Table 4.8, and 

the specimen parameters. Both the strain response to a cyclic stress history or the stress 

response to a cyclic strain history can be computed with this model. 
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Table 4.8 Experimental parameters 

Symbol Name  𝐔𝐧𝐢𝐭  

1/𝑓 Period  [Hz]  

𝜎0 Stress amplitude  [MPa]  

𝑛 Number of loops  [−]  

𝜀0 Strain amplitude  [−]  

The model evaluates the stress response when zero is assigned to 𝜎0. In Table 4.9 the 

specimen specific parameters are listed. The values assigned to the dislocation relaxation 

parameters are based on (Cole, 1995). The temperature was for this experimental campaign 

not changed. 

Table 4.9 Specimen parameters 

Symbol Name Value Unit 

𝑇 Temperature −10 ℃ 

𝛼𝑑 Peak broadening factor dislocation relaxation 0.53 − 

𝐾𝑑 Stress restoring term 0.07 Pa 

𝛿𝐷𝑑 Strength of dislocation relaxation 1.4 × 10−9 Pa−1 

𝛼𝑔𝑏 Peak broadening factor grain boundary relaxation 0.6 − 

𝐵0/𝐾𝑔𝑏 Pre-exponential term 8 × 10−28 s−1 

𝑄𝑑 Activation energy dislocation relaxation 𝑒𝑉 eV 

In Table 4.10 the specimen parameters that should remain constant are given. 

Table 4.10 Constants 

Symbol Name Value Unit 

𝑏 Burgers vector 4.52 × 10−9 [−] 
𝐸𝑈 Elastic modulus ice 9.0 GPa 

𝐵0 Constant in drag term 1.205 × 10−9 Pa s 

𝑄 Activation energy grain boundary  1.32 eV 

𝑘 Boltzmann constant 8.617 × 10−5 eV K−1 

 

4.4.2. Implementation of model 

The input parameters are all used in the equations. A cyclic stress or strain history is applied 

to the model. The loss, 𝐷2 and storage compliance 𝐷1 are calculated regardless of the type of 

input. When a stress history is given, 𝐷1 and 𝐷2 are used to calculate the strain response. 

However, the compliant complex modulus is derived, for a given strain history is given, the 

stress response is calculated.  

For the comparison of the model predictions with the experimental data the strain amplitude 

measured by the external strain sensor is used. 
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4.4.3. Comparison of stress response as function of time 

The experimentally obtained stress response of the material as a result of a cyclic strain 

history with a period of 100 s is shown in Figure 4.17. The model prediction of this 

experiment is shown in Figure 4.18. The stress amplitudes of both experiments are of 

approximately the same order. The phase difference seems to be of the same order of 

magnitude, but the time series are not the best instrument to assess the phase difference. The 

model prediction gives the steady-state response to a sinusoidal input, thus transient effects 

were not modelled.  

 
Figure 4.17 Experimental results 

 
Figure 4.18 Model prediction repeated to show multiple 

cycles 
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4.4.4. Comparison of stress-strain curves 

The stress-strain curves of the detrended experimental results are compared to a model 

prediction of the curve. The axes of the pair of figures have the same scale in Table TT.  

For the experiment with a period of 10 000 s not enough cycles were performed to get to a 

steady state. In these experiments creep and stress relaxation seem to have a large influence 

on the results. The loop is closed when the period is 1000 s. The amplitudes are in the same 

range, however the area of the loops of the model prediction is smaller. The model is linear; 

thus it is not possible to simulate non-linearity. Two cycles are still not sufficient to see if the 

loops change over time. The first cycle of the experiments is heavily influenced by stress 

relaxation. To assess the stability of the loop shape at least two subsequent cycles are 

recommended. 

The stress-strain curve of the experiments with a period of 333 s and 100 s matched well with 

the model predictions.  

Table 4.11 Experimental and modelled stress-strain curves 

Experimental results Model prediction 
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80 

 

4.4.5. Dynamic compliances as function of frequency 

The loss and storage compliance as a function of the frequency is plotted in Figure 4.19. In 

the figure, the loss compliance and storage of each loop of the experiments are plotted in the 

same graph. The loss compliance model prediction shows the same trend and magnitude as 

the experimental data points. The storage compliance resembles the data points for the double 

amplitude of 100 𝜇𝑚 as shown in Figure 4.20. However, for the other amplitudes the model 

storage compliance is higher than the data points, especially for higher frequencies. 

 

 
Figure 4.19 Loss and storage compliance of the model prediction and the 

experimentally obtained data points 
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Figure 4.20 Loss and storage compliance of the model prediction and the 

experimentally obtained data points with a double amplitude of 

𝟏𝟎𝟎 𝝁𝒎. 
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5. Conclusions and recommendations 

5.1. Conclusions 

A successful experimental campaign on the cyclic straining of laboratory prepared sea ice was 

designed and conducted. A complete description of the experimental campaign is included in 

the work resulting in a reproducible method. 

The model implemented, which was originally derived for stress control, was shown to be 

also useful for strain-controlled experiments by employing the reciprocal relation between the 

complex compliance and complex modulus. 

The modelled steady-state response to a stress history or strain history matched well with the 

experimental observations, for both the individual experiments as the frequency dependence 

of the storage and loss compliance.  

5.2. Recommendations for future work 

5.2.1. Suggested improvements to experiments 

No meaningful observation tests could be conducted with the current equipment, and 

therefore no precise measurements of the dislocation densities could be made. A strain sensor 

with a higher resolution is thus recommended. It is further recommended to assess the 

stiffness of the loading frame during these cyclic loading tests by using a calibrated specimen. 

Control of the time-offset in the sinusoidal function for the stepper signal would be 

advantageous to prevent load and displacement jumps. 

It is worth mentioning, that the development of the experiments was performed parallel to the 

assessment of their results, and therefore only the last specimen proved to be useful, with full 

control of stress history and temperature. If the described experimental campaign is to be 

repeated, more meaningful results are expected. 

5.2.2. Suggested improvements to model 

To improve the predictive merit of the model it would be beneficial if the model parameters 

were derived from the ice microstructure and not simply determined from literature 

Furthermore, a study of the transient behaviour of the model could potentially illuminate 

further response characteristics, as could model studies with changing dislocation densities. 
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Appendix A1 – Code for model 

%% Model 
% 26/07/2017 
% 
clear all 
close all 

  
%% Experimental parameters 
period = 100; %[s] period 
s_0 = 0; %[Pa] input stress amplitude 
n = 3; % [-] number of loops 
e_0 = .95E-4; %[-] input strain amplitude 

  

%% Check for input and response 
M = {'Stress','[MPa]';'Strain','[-]'}; 

  
if e_0==0 
    in_0=s_0; 
    exp_nr = 1; 
else 
    in_0=e_0; 
    exp_nr = 2; 
end 

  

  
%% Specimen parameters 
T_C = -10; %[C] 
% dislocation relaxation 
parameters = {'HOF1',1.4E-9,.53,.07;'HOF2',1.4E-9,.53,.07; 
    'HOP2',1.4E-9,.55,.05;'PL19',1.8E-9,.59,.07}; %[name,dD,alpha,K] 
specimen = 2; 
alpha_d = parameters{specimen,3}; %[-] 
K = parameters{specimen,4}; %[-] 
dD_d = parameters{specimen,2}; %[m-2] 

  
% grain boundary relaxations 
dD_gb = 3E-11; %[Pa] 
alpha_gb = 0.6;%[-] 
Q_gb = 1.32; %[eV] 
pre_exp = 8E-28; 

  
%% calculated parameters 
% experiment 
w = 2*pi./period; %[rad/s] angular frequency 
f = 1./period; %[Hz] frequency 
fs = 20; %[Hz] "sampling" frequency 
t  = linspace(0,period*n,fs*n*period); % [s] timearray 
input = imag(in_0*exp(1i*w*t)); % [MPa] timeseries input signal 
T = 273.15+T_C; %[K] 

  
% constants 
k = 8.617E-5; 
Mu = 9E9; %[Pa] unrelaxed modulus 
O = pi^-1; % value for horizontal values 
b = 4.52E-10; 
B_0 = 1.205E-9; 
Q = 0.55; 
rho = dD_d*K/(O*b^2); 



 

  
% equations for all parameters of compliances 
B_d = B_0*exp(Q/(k*T)); 
B_gb = pre_exp*exp(Q_gb/(k*T)); 
tau_d = B_d/K; 
tau_gb = B_gb/K; 
si_d  = log(tau_d*w); 
si_gb = log(tau_gb*w); 
% dD_d = D*O*b^2/K; 
Du_d = 1/Mu; 
Du_gb = 1/Mu; 

  
% parameters for loss and storage compliance plot 
f2 = logspace(-7,3,100); 
w2 = 2*pi*f2; 

  
%% Dynamic compliances 
% per experiment 
[D1_d,D2_d] = compliances(Du_d,dD_d,alpha_d,si_d); 
[D1_gb,D2_gb] = compliances(Du_gb,dD_gb,alpha_gb,si_gb); 
D1 = D1_d+D1_gb-Du_d; 
D2 = D2_d+D2_gb; 
D_im = D1-1i*D2; 

  
% as function of f 
si_d2 = log(tau_d*w2); 
si_gb2 = log(tau_gb*w2); 
[D1_d2,D2_d2] = compliances(Du_d,dD_d,alpha_d,si_d2); 
[D1_gb2,D2_gb2] = compliances(Du_gb,dD_gb,alpha_gb,si_gb2); 

  
%% stress and strain functions 
output = imag(in_0*((D_im)^(-2*exp_nr+3))*exp(1i*w*t)); 

  
if exp_nr ==1 
    stress = input; 
    strain = output; 
else 
    stress = output; 
    strain = input; 
end 

  
%% plot signals 
figure(1) 
subplot(2,1,1) 
plot(t,input) 
subplot(2,1,2) 
plot(t,output) 

  
figure(2) 
plot(strain,stress) 

 

  



 

Appendix A2 – Function for dynamic compliances 

function [ D1,D2 ] = compliances( Du,dD,alpha,s ) 
%UNTITLED Summary of this function goes here 
%   Detailed explanation goes here 
D1  = Du + dD.*(1-(2/pi).*atan(exp(alpha.*s))); 
D2  = alpha.*dD.*1./(exp(alpha.*s)+exp(-alpha.*s)); 

  

  
end 

 

 

  



 

Appendix B – Start times IS03S16H 

 

 

  

Experiment Start time 
IS03S16H-01-20mum-10s-800N 9:57 

IS03S16H-02-100mum-10000s-4200N 10:18 

IS03S16H-03-100mum-1000s-4200N 16:15 

IS03S16H-04-100mum-333s-4200N 17:15 

IS03S16H-05-100mum-100s-4200N 18:10 

IS03S16H-06-100mum-33s-4200N 18:39 

IS03S16H-07-100mum-10s-4200N 19:03 

IS03S16H-08-20mum-10s-800N 19:25 

IS03S16H-09-20mum-10s-800N 10:53 

IS03S16H-10-50mum-1000s-4200N 11:40 

IS03S16H-11-50mum-333s-4200N 12:40 

IS03S16H-12-50mum-100s-4200N 13:36 

IS03S16H-13-50mum-33s-4200N 14:10 

IS03S16H-14-50mum-10s-4200N 14:44 

IS03S16H-15-20mum-10s-800N 15:11 

IS03S16H-16-200mum-1000s-4200N 15:36 

IS03S16H-17-200mum-333s-4200N 16:38 

IS03S16H-18-200mum-100s-4200N 17:33 

IS03S16H-19-0mum-s-4200N  



 

Appendix C – Stress-strain curves specimen IS03S16H 

  

  

  



 

  

  

  

  



 

  

  

  

  



 

  

  

  

  



 

  

  

  

 

  



 

 


