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ARTICLE INFO ABSTRACT

Keywords: Recent advancements in Markov chain Monte Carlo (MCMC) sampling and surrogate modelling have sig-
Bayesian inference nificantly enhanced the feasibility of Bayesian analysis across engineering fields. However, the selection
Markov chain Monte Carlo and integration of surrogate models and cutting-edge MCMC algorithms, often depend on ad-hoc decisions.

Surrogate modelling
Gaussian process regression
Computational mechanics

A systematic assessment of their combined influence on accuracy and efficiency is notably lacking. The
present work offers a comprehensive comparative study, employing a scalable case study in computational
mechanics focused on the inference of spatially varying material parameters, that sheds light on the impact of
methodological choices for surrogate modelling and sampling. We show that a priori training of the surrogate
model introduces large errors in the posterior estimation even in low to moderate dimensions. We introduce
a simple active learning strategy based on the path of the MCMC algorithm that is superior to all a priori
trained models, and determine its training data requirements. We demonstrate that the choice of the MCMC
algorithm has only a small influence on the amount of training data but no significant influence on the
accuracy of the resulting surrogate model. Further, we show that the accuracy of the posterior estimation
largely depends on the surrogate model, but not even a tailored surrogate guarantees convergence of the
MCMC. Finally, we identify the forward model as the bottleneck in the inference process, not the MCMC
algorithm. While related works focus on employing advanced MCMC algorithms, we demonstrate that the
training data requirements render the surrogate modelling approach infeasible before the benefits of these
gradient-based MCMC algorithms on cheap models can be reaped.

1. Introduction overview of general constitutive model calibration methods is given
in Romer et al. (2025), and for Bayesian methods specifically in Kiran

In engineering mechanics, computational models, such as those et al. (2025).
based on the finite element method (FEM), are used to simulate the Recent advancements in Markov chain Monte Carlo (MCMC) sam-
mechanical response of structures and, where required, the underlying pling and surrogate modelling have substantially improved the appli-
material behaviour. The number of parameters for these models can be cability of Bayesian analysis in these scenarios. Despite the potential

large, for instance if the material properties vary in space. These param-
eters often represent an internal state of the model that is difficult or
impossible to measure directly. Therefore, an inverse problem must be
solved to estimate these model parameters from indirect experimental
measurements, commonly referred to as observations. In the nonelastic
regime, these inverse problems are typically non-linear, non-convex,
and 11.1-posed, but the}/ can be regu.larlsed elegan.t ly by adopting a’ ysis to elucidate the effects of the methodological decisions regarding
Bayesian approach. This approach to inverse modelling employs Bayes

theorem to update the distribution of the parameters based on the surrogate m(')dell’mg and samphr’lg. o .
observed data (Dobrilla et al., 2023; Marsili et al., 2017). On the In Bayesian inference, a prior distribution for the parameters is
assumed and combined with a likelihood function. The likelihood mea-

of these innovations, the selection of surrogate models and integration
with state-of-the-art MCMC algorithms often rely on ad-hoc choices. A
systematic evaluation of their combined impact on overall performance
remains scarce. This lack of clarity obscures the understanding of
how each component impacts the overall effectiveness of the inference
process. Addressing this gap, our study conducts a comparative anal-

downside, Bayesian inverse modelling is computationally expensive,
preventing its widespread application to large-scale problems. A good sures the agreement of the model predictions with the observed system
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response. Following the Bayesian formalism, a posterior distribution
for the parameters is obtained. For instance, when inferring material
properties from measurements, the posterior distribution must be ap-
proximated due to the non-linear nature of the likelihood function,
e.g. via sampling from the joint distribution of data and parameters.
The Bayesian analysis via MCMC entails the following computational
steps: Generating a new state, evaluating the forward model, computing
the likelihood, and accepting or rejecting the proposal. The bottleneck
of the sampling effort is the evaluation of the forward model, which,
in case of FEM-based inverse modelling, is an expensive simulator
that maps the parameters to the observables. The state generation
and acceptance steps are implemented by the sampling algorithm and
determine how often the model and likelihood must be evaluated.
The most commonly used sampling algorithm is the random walk
Metropolis (RWM) algorithm due to its simplicity and guaranteed
asymptotic convergence (Mengersen and Tweedie, 1996). However, its
sampling efficiency decreases with the dimensionality of the parameter
space (Roberts and Rosenthal, 2001).

One way to reduce the number of costly forward passes is by
employing sampling algorithms that more efficiently produce uncorre-
lated samples from the posterior distribution. The first-order Metropolis
adjusted Langevin algorithm (Roberts and Stramer, 2002), Hamiltonian
Monte Carlo (Duane et al., 1987), or their second-order manifold
variants (Girolami and Calderhead, 2011), as well as piecewise de-
terministic Markov process based algorithms (Bierkens et al., 2019)
maintain high sampling efficiency in high-dimensional settings. Empiri-
cal studies of their performance on engineering problems (Girolami and
Calderhead, 2011; Chong and Lam, 2017; Goodman and Weare, 2010)
suggests their theoretical performance in terms of convergence rates on
canonical distributions (Gelman et al., 1997; Roberts and Rosenthal,
1998) translates well to practical settings. However, these algorithms
require the gradient of the log-joint density, or even higher derivatives
thereof, quantities which are at best difficult to obtain for large scale
FEM models. Ensemble-based methods (Ching and Chen, 2007; Lye
et al., 2022; Straub and Papaioannou, 2015) perform well on certain
classes of problems but still require at least )(10*) model evaluations
to ensure convergent posterior statistics.

The other increasingly common strategy to reduce the computa-
tional cost of the sampling effort is the application of surrogate models.
Surrogate models exploit the redundancy in the model predictions
required for collecting posterior samples. Instead of running the expen-
sive simulator in each MCMC step, a cheap-to-evaluate surrogate model
is trained on a small number of solver calls.

Such a surrogate model, is constructed in Hu et al. (2024), Thomas
et al. (2022), Deveney et al. (2023). In Wu et al. (2020), e.g., a neural
network surrogate is trained to replace an iterative mean-field ho-
mogenisation algorithm for material property inference in the presence
of plastic deformations. All these approaches have in common that
multiple models must be trained if the dataset consists of observations
originating from fundamentally different conditions. The three distinct
test scenarios in Wu et al. (2020) motivate the training of three neural
networks to reduce the complexity of individual tasks. Further, the
works employing polynomial chaos and Gaussian process (GP) models
do not consider correlations between the outputs and train one model
per scalar observation. While model training is typically not the com-
putational bottleneck in the settings we consider here, tweaking the
hyperparameters for the individual models can be cumbersome and
time-consuming for the analyst.

After the model is evaluated, its responses are funnelled into the
likelihood function to produce a scalar measure for the agreements of
observations and model predictions for a given parameter vector. This
function can then be approximated by a single surrogate model (Chen
et al., 2023; Drovandi et al., 2018; del Val et al., 2022). However,
targeting the likelihood function also introduces certain complexities.
The likelihood incorporates all model non-linearity at once and might
be more difficult of a target than the individual model predictions.
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Moreover, the likelihood has its own parameters, e.g. the observation
noise, that one might be uncertain about. These parameters of the
observation model can be inferred alongside the model parameters, but
this increases the dimensionality of the input space for the surrogate
model. Despite these challenges, we prioritise the likelihood approach
in our study. This decision is driven by its broader applicability across
various domains, as it allows for a more generalised framework for
modelling in contrast to methods tailored to specific physical models.
It should be noted that multi-fidelity MCMC (Zhang et al., 2018) and
non-linear dimensionality reduction techniques (Dasgupta et al., 2024)
have shown promising results for Bayesian inverse modelling. However,
these methods come with their own set of modelling challenges and
therefore remain beyond the scope of this work.

For any choice of surrogate model, training data selection is crucial
for the accuracy of the approximation. Most commonly, an a priori
strategy is employed. The training points are either sampled from the
prior, generated by Latin hypercube sampling (Hu et al., 2024; Thomas
et al., 2022; Wu et al., 2020; Chen et al., 2023), or spread out on a
grid (del Val et al., 2022). These a priori strategies suffer from the
curse of dimensionality, i.e. their performance degrades rapidly with
increasing dimensionality of the parameter space.

The model accuracy is typically measured by the mean squared
error (MSE) on a validation set. This set is generated with the same
strategy as the training data. However, this MSE is not necessarily a
good indicator of the quality of the surrogate model for a Bayesian anal-
ysis — the surrogate model is only required to be accurate in regions of
high posterior density. Active learning strategies, such as Deveney et al.
(2023), Kandasamy et al. (2015), Drovandi et al. (2018), Dinkel et al.
(2024), probe the posterior distribution to collect more informative
data points. Further, surrogate models are generally not only cheap to
evaluate, but also cheap to differentiate, enabling the application of
gradient-based sampling algorithms.

The aforementioned works which focus on surrogate models for
Bayesian inference identify MCMC sampling as a bottleneck and employ
a variety of algorithms: RWM in Wu et al. (2020), del Val et al.
(2022); HMC or its No U-Turn (NUTS) variant (Deveney et al., 2023;
Hu et al., 2024; Thomas et al., 2022); TMCMC (Chen et al., 2023).
However, the specific choices are rarely justified or even commented
on. A good overview of the mix and match regarding surrogate and
sampling algorithm can be found in the review of Hou et al. (2021)
on Bayesian inference for building energy models. The review contains
an assessment both of surrogate models and sampling algorithms in
isolation, but does not cover the integration of both components into a
single framework. Especially for active learning strategies, the interplay
between the surrogate model and the sampling algorithm is crucial:
the sampler determines where the surrogate model is queried, and the
surrogate models in turn affects the acceptance probability, and the
subsequent proposal generation.

In this work, we investigate the interplay of surrogate modelling and
sampling algorithms for Bayesian inference. We focus on the inference
of material parameters in the non-linear regime of a computational
mechanics model. We introduce a scalable case study to create a
series of inference problems with comparable complexity but increasing
stochastic dimensionality. We employ a GP surrogate model for the
likelihood and propose to follow the MCMC chain to collect training
data. This form of active learning is based on uncertainty of the model
prediction, informing our choice of the GP as surrogate model. As we
will demonstrate in Section 5.3, active learning is a crucial component
of the framework, ruling out a priori trained surrogate models.

Using this set of problems we investigate the following aspects of
surrogate accelerated Bayesian inference: (i) How does the choice of
data collection strategy impact the accuracy of the surrogate model?
(ii) Do superior MCMC algorithms construct better surrogate models?
(iii) After training the surrogate model, how does the sampling al-
gorithm for the generation of posterior samples impact accuracy and
performance?
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2. Background
2.1. Computational mechanics

This section presents a brief introduction to computational mechan-
ics. The deformation of the body within the domain 2 with boundary
% is governed by the equilibrium equation, which can be written as

V.6=0 forx € 9, (€H)

u(x,t) = a(x,1) forx € A, (2)

where o is the stress tensor and inertia effects and external forces are
assumed to be negligible. The boundary conditions in Eq. (2) enforce
a displacement & at the boundaries of the domain. The kinematics of
the deformation are described by the displacement field u(x). Assuming
small strains, the strain tensor ¢ is given by

£= % (Vu+ (Vu)T) . 3

This kinematic relation must be linked to the equilibrium equation in
Eq. (1). The constitutive model C relates the stresses to the strains and
a local material parameter f:

6 =C(e, p). G

Here, f denotes a (fixed) material parameter. It is distinct from internal,
history—dependent state variables (e.g. plastic strain, damage) whose
evolution is prescribed by the constitutive model. These states are
therefore not inferred directly; their evolution laws are then fully
dictated by . Often, the local parameter value is expressed in terms of
a set of global parameters § € R? and the location x, e.g. f = f(x,0) =
0y +x - 6.
Substituting Eq. (4) into Eq. (1) gives

V- (C(ep) =0, (5)

which together with Eq. (3) can be solved for the displacement field
u(x) and yields the forward model M(0). While the extension to the
multi-parameter case is straightforward, we will focus on the scalar case
here for simplicity.

The choice of constitutive model — be it linear or non-linear, isotro-
pic or anisotropic, and dependent or independent of time — hinges on
the specific material and its regime of deformation. Irrespective of the
clarity in the nature of the chosen constitutive model, a persistent chal-
lenge lies in the inherent uncertainty of material parameters (Rappel
et al., 2019, 2020). These parameters, crucial for accurately predicting
material behaviour, are often not directly measurable but must be
inferred from experimental data. The task of inferring these parameters
frames the inverse problem associated with the forward model M.

2.2. Random fields and their discretisation

Acknowledging the lack of total control over manufacturing pro-
cesses or the inherent randomness of the material itself, the assumption
of homogeneous material properties is generally not justified. In many
applications, material properties can vary significantly across different
regions of a part and exhibit randomness under repeated production.
We are, therefore, interested not just in inferring global material pa-
rameters but also how they vary throughout 2. However, there is
typically some structure to the randomness that we need to consider
when inferring the spatial distribution of material properties.

A useful way to capture this spatial variability is through random
fields, which provide a framework for describing quantities that vary
both in space and with some inherent randomness. More specifically, a
random field is a collection of random variables associated with points
in a physical space, x € 2 c RP. For simplicity, we can think of a
random field as a function f§(x) that assigns random values to each point
x in the domain.
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Many physical quantities, such as material properties, can be mod-
elled as Gaussian random fields. This means that any set of values
the field takes at different points, f(x,),...,f(x;) for x,,...x, € 2,
follows a multivariate normal distribution. This type of field is fully
described by two key statistical properties: (i) the mean function u4(x),
which describes the average value of the field at each point, and (ii)
the covariance function C;(x, x’), which tells us how values at different
points are correlated based on their distance apart.

In practice, the field is expressed as a truncated series expansion
in terms of a set of deterministic basis functions ¢;(x) with random
coefficients 6;. By cutting off the series expansion at a finite number of
terms d, we obtain a finite-dimensional approximation of the random
field:

d

px) ~ B(x,0) = uyx) + Y, ,(x)0;. (6)
i=1

The expansion effectively amounts to a separation of the physical

and the stochastic domain Sudret and Kiureghian (2000). Since all

randomness is now contained in the coefficients 8 € R?, inferring the

random field reduces to inferring 6.

Expansions encountered in related works employ a basis of polyno-
mials (Deveney et al., 2023; Marzouk and Najm, 2009), wavelets (Nouy
and Maitre, 2009), B-splines (Vigliotti et al., 2018), or Gaussian-process
shape functions (Li and Kiureghian, 1993). The optimal expansion in
terms of the total mean squared error of the truncation compared to the
full sum is the Karhunen-Loéve (KL) expansion. It is the eigenfunction
expansion of the covariance function of the random field (Ghanem
and Spanos, 1991). For a Gaussian random field, the KL expansion
coefficients 6 are i.i.d. standard normal random variables. For the other
expansions, the coefficients are normally distributed but correlated.

We opt for a radial basis function (RBF) expansion. The basis is
given by

¢i(x) = exp <—2—;2||x—0,-||2>, )

where ¢; are the centres of the RBFs and / is the length-scale. Each
basis function ¢; reaches its maximum at ¢; and decays with increasing
distance from the centre. This choice is not optimal in terms of the total
mean squared error for a given number of basis functions. However, it
has a clear advantage for defining a sequence of comparable inference
problems: the RBF expansion leads to a parameterisation of the field
where all coefficients have a similar influence on the global system
response. On the other hand, the ordering of the eigenfunctions of the
KL expansion according to their eigenvalues ensures that the model is
most sensitive to changes in the first few coefficients. Furthermore, we
circumvent the need to solve the associated eigenvalue problem.

Given that the random field is characterised by a squared expo-
nential covariance function, employing a linear model with RBFs and
appropriately setting the RBF length-scale produces a similar covari-
ance structure. It converges to the desired covariance in the limit of
infinitely many basis functions (Rasmussen and Williams, 2006, p. 84).
Note that an RBF model with length-scale / produces a covariance
function with effective length-scale # = \/El (Mackay, 1998). For
simplicity, we choose the prior of the weights to be i.i.d Gaussian,
ie. O ~ N(O, o—gl ). It is convenient to store the basis functions in a
feature vector ¢(x) = [¢;(x),...,¢p,(x)]". The prior mean of the RBF
expansion then reads:

E[A(x, 0)] = E [1y(x) + $(x)76] = py(x) + p()TE[O] = py(x), ®)

showing the desired mean can be achieved by setting y; = uy. The
covariance of the RBF expansion is given by:

cov(f(x, 0), f(x", 0)) = E[(B(x, 0) — us(x))(B(x", ) = up(x'))] )
=E[¢(x)T00T p(x")] = p(x)T d(x")o3. (10)
The variance consequently is

;%) = $(x) P(x)oy. an
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Fig. 1. Discretisation of the random field with increasing amount of radial basis functions. The variance of the fields is shown in the top row. The banded

covariance structure is displayed in the bottom row.

The prior variance of the weights o-g can be set to match the variance
of the random field of interest. It is then given by

o2

2 s
07 Sup {(p0 TP x € T} (12
where the denominator scales the maximum variance of the RBF ex-
pansion to the desired variance of the random field.

The random field parameters, i.e. its mean Hps variance o2, and
effective length-scale ¢, can be inferred along the coefficients 0 in a
hierarchical Bayesian model. We assume to have prior knowledge of the
problem that we can use to set these hyperparameters, as hierarchical
modelling is not the focus of this study.

Fig. 1 shows the discretisation of a random field on a one-dimensi-
onal domain & with varying amounts of basis functions. As the number
of basis functions increases, the variance of the field approaches a con-
stant value throughout the domain. The banded covariance structure
on the far right of the figure is well approximated by the RBF model.
We can see that the expansion produces a stationary random field
that converges in variance and length-scale to the infinite-dimensional
random field.

2.3. Bayesian inference for random fields

Our PDE model M maps material parameters § € R¢ to an output
y € R", ie. y = M(B(-,0)) = M(6). The inverse problem is concerned
with inferring these model parameters from observation data y. In
mechanics, the observation data y typically comprises noisy measure-
ments of the displacement field u and the reaction forces f, i.e. y =
[a’, fT]T. For a Bayesian approach to inverse problems, the parameters
and the data are represented as random vectors and equipped with
a probability measure, see Stuart (2010) for a detailed description.
The prior distribution for the parameters p(6) expresses all knowledge
available on the parameters 0 prior to seeing any data. The likelihood
function p(y|60) expresses how well the model prediction matches the
observed data for a given realisation of the parameter vector 6. In our
case, the likelihood is a function of the model M and takes the form

p(310) = p(FIM(6)), 13)

and is induced by the data-generation mechanism: measurements equal
the model response plus noise. We assume additive noise that is inde-
pendent of 6, capturing the uncertainty in y:

y=M(@O) +e€ 14

where ¢ € R™ is the noise random vector. In this work, the noise
vector is assumed to follow a zero-mean Gaussian distribution with
covariance matrix ¥, € R"™". More specifically, each data point
comprises displacement and force observations f and u, respectively,
which come from measuring devices with distinct noise levels for ¢,
and e;. Extending Eq. (14) to the multi-output case, we have

F=r+e f- 15)
Assuming no correlation between the two types of observations, their
joint likelihood takes the form
0 ]) : 16)
Zsf

([7lle) = (17

where the covariance structures X, and X, of the displacement and
force observations, respectively, are known a priori.

It should be noted that the i.i.d. noise model choice is based on the
assumption that we exactly know the physics of the problem, i.e. there
is no model misspecification, and that our measurement devices show
no spatial or temporal correlation. This simplification is justified for
the scope of this study, as it investigates aspects of the Bayesian
inference workflow other than the definition of the likelihood function.
In practice, however, a more complex observation model that reflects
all sources of uncertainty, as outlined in Simoen et al. (2013), should be
employed. Otherwise, the inference might yield overconfident posterior
beliefs about the parameters governing the random field, which can be
misleading in a subsequent decision-making process.

Finally, we can apply Bayes’ theorem to obtain the density of the
parameters 6 conditioned on the observations y, which reads

i=u+e,,

>
M(0), [ 0

likelihood  prior

ylo 2]
woly) = LA an
——
posterior ~—~—

model evidence
where the denominator on the right hand side is the so-called evidence.

This normalising constant can be obtained by marginalising out the
parameters:

P(3) = /]R P310p(O)0. 18)

With a few exceptions, the integral in Eq. (18) is intractable. While
the evidence can be approximated via numerical methods such as
Monte Carlo simulation, it is notoriously hard to compute accurately.
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More efficiently, we can draw samples directly from the unnormalised
posterior distribution via MCMC methods. For the latter approach, we
only need to know the posterior distribution up to a proportionality
constant, hence no need to obtain the evidence. We can draw samples
from the posterior despite only having access to the joint distribution
of data and parameters:

p(01y) «x p(¥,0) = p(y10)p(6). (19)

2.4. Markov chain Monte Carlo methods

MCMC methods are a class of algorithms used to sample from a
probability distribution from which direct sampling is difficult, hence
they are suitable for Bayesian inference in computational mechanics.
A Markov chain that has the desired distribution as its equilibrium
distribution is constructed and its states are recorded. The more steps
the chain takes, the more the distribution of the states of the chain
converges to the target distribution.

2.4.1. Random walk Metropolis algorithm

The RWM algorithm is based on a random walk in the state space,
determined by a proposal distribution to generate new states. In the
subsequent Metropolis correction, the proposed state is either accepted
so that the chain moves, or rejected so that the chain stays in place.
This correction is essential for the convergence of the chain to the
target distribution and is a core building block for many other MCMC
algorithms.

Suppose we have a function f(0) that is proportional to our target
distribution p(0|y). In our case, this function is the joint distribution
of parameters and data p(y,0). Once the data is observed, the joint
distribution essentially becomes a function of the parameters 6 only.
Given the current state 6", a move to 0" is proposed according to the
proposal distribution ¢(6*|0"). Next, the Metropolis—Hastings ratio is
calculated as

_ S(0")q(6"|6")

r(0",0") = . (20)
/(6"q(6"16%)

The move from 6" to 6* is then accepted with probability

a(0",6*) = min (1,(0",6%)) . (21)

If the proposal distribution ¢(6*,6") is symmetric — the normal dis-
tribution is a common choice — the ratio simplifies to the Metropolis
ratio

"
O, 6) = L (Gn), (22)
VACH!
also reflected in the algorithms name.
The Gaussian proposal mechanism can then be written as
0" =0"+sVMz", (23)

where M is a positive semi-definite preconditioner matrix which de-
fines the covariance of the proposal distribution, z" is a vector of
i.i.d. standard normal random variables, and s is the proposal variance
controlling the step size. The corresponding proposal distribution then
is

q(6%10™) = N'(6*10", s> M). 24)

The performance of the algorithm can be significantly improved by
setting M to the sample covariance. The sample covariance can ei-
ther be estimated from a preliminary run of the algorithm or with a
Laplace approximation of the posterior. The proposal covariance can
also be adapted continuously during runtime, as long as the level of
adaptation is vanishing with the number of iterations (Roberts and
Rosenthal, 2007). Because diminishing adaptiveness is difficult to prove
in practice, we set the proposal covariance to the sample covariance
only once after the first 5000 MCMC-steps. Until then, we use the prior
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covariance as preconditioner. This version of the RWM algorithm serves
as the baseline MCMC algorithm in our study.

High acceptance rates can be achieved by reducing the variance of
the proposal distribution, but this can lead to slow exploration of the
state space. Conversely, a high variance can lead to fast exploration,
but with a low acceptance rate. It is, therefore, important to choose
the step size s in a way that balances these two aspects. However, Gel-
man et al. (1997) have shown that the proposal variance s must be
scaled with the state space dimensionality d according to O(d~') to
achieve the optimal acceptance rate of 0.234. Hence, if d is large, the
transitions are small and the algorithm shows poor mixing and slow
convergence. Nonetheless, this poor scaling with d is one of the main
motivations to opt for gradient-based MCMC algorithms, such as the
Metropolis-adjusted Langevin algorithm (MALA).

We constantly monitor the acceptance rate and adjust the step size
s to achieve the algorithm’s optimal acceptance rate. To this end, the
acceptance rate of the previous interval is determined every 500 MCMC
steps. The step size s is then either increased or decreased by 10%, if
the acceptance rate is below 0.2 or above 0.3, respectively. If the rate
is within the desired range, the step size is kept constant.

2.4.2. Metropolis-adjusted Langevin algorithm

The Langevin algorithm (Roberts and Stramer, 2002) derives its
proposal mechanism from a discretised Langevin diffusion. It can be
seen as a random walk with a drift term that is proportional to the
gradient of the log-density. While the continuous Langevin diffusion has
the targeted log-density as its stationary distribution, its discretisation
introduces a bias. The Metropolis-adjusted Langevin algorithm (MALA)
corrects for this bias by adding a Metropolis—Hastings correction to the
mechanism.

The proposal mechanism of the MALA is given by

2
6 =0"+ %Mvm O +sVMz". (25)
which gives rise to the Gaussian proposal distribution
2
qO6* 10" = N <9*|0" + %Mvm fem, s2M> . (26)

The MALA proposal is similar to the RWM proposal Eq. (24), but
has the additional drift term which is proportional to the gradient of
the unnormalised log-density In f(0"). Note that proposal distribution
is non-symmetric in 0" and 6*. Hence, the Metropolis-Hastings ratio
does not simplify to the ratio of the densities and has to be computed
according to the general formula in Eq. (20).

As for the RWM algorithm, the preconditioner matrix M is set to
the sample covariance after the first 5000 MCMC-steps. Similarly, the
step size s is adaptively tuned during runtime to achieve the optimal ac-
ceptance rate of 0.574 (Roberts and Rosenthal, 1998). Only, the target
interval for the acceptance rate is set to [0.55,0.6] for the MALA. The
MALA is known to be more efficient than the RWM algorithm for high-
dimensional state spaces, as it can exploit the gradient information to
make larger steps in the direction of the mode of the target distribution.

2.5. Gaussian process surrogate model

We employ a GP surrogate model to approximate the likelihood
function £(0) in order to reduce the computational cost associated
with likelihood evaluations in the many MCMC iterations. From a
mathematical angle, a GP is a collection of random variables, any finite
number of which have a joint Gaussian distribution:

L~ N (L]0,K(O,0))), 27

where a zero mean is assumed before seeing any data. The covariance
matrix K(@, 0) is the collection of the kernel function on all input pairs,
i.e. K;; = k(6;,0;) The matrix specifies the similarities in the output £
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based on their input @. The kernel in this case is chosen as the squared
exponential kernel (Rasmussen and Williams, 2006), given by

1
k(0.0') = o} exp (—Eue—e’uZ). (28)

The GP variance of controls the magnitude of the fluctuations

around the mean function, and its length scale # controls the smooth-
ness of the function. We assume the relationship of input and output
of our training data to be of the form n, = £(6;) + ¢;, where L£(0) is
the likelihood function and ¢; is i.i.d. noise with variance 2. Although
the training data originates from noise-free simulations, we admit a
noise term 621 for numerical stability and model flexibility. We denote
K(0,0%) the covariance matrix between the training and test points,
and K(0*, 0%) the covariance matrix between the test points. We can
then write the joint distribution over the training output n and new
predictions L* at locations @ as

2
[n] N <0’ [K(@,@)+an1

K(©.0%)
o K(0*.0) ] ) (29)

K(©7*,0%

Applying Bayes’ formula, the predictive distribution of the test output
L* = L(O0%) given the training data Dgp = (@, n) is then given by

Ln.0,0" ~ N (L"|u*, %), (30)
u = K(0*,0)(K(@©,0)+021) 'n,
3* = K(0",0%) - K(0%,0) (K(0,0) +0I)” K(0,0).

The predictive mean p* is our best guess about the function val-
ues at the test points, and the predictive variance X* quantifies our
uncertainty about these predictions.

We determine the GP model hyperparameters — the process vari-
ance a?, the noise variance 62, and the length scale # — via empirical
Bayes for computational efficiency. For this, we maximise the marginal
likelihood of the training outputs n given the training input ©. The
marginal likelihood p(r)|trf2, 62,¢) and its logarithm L are given by

palo?, o2, £) = / Pl L.l )L, @1)
L=In p(r]|0'f2, aﬁ, 7). (32)

Instead of maximising the marginal likelihood directly, we maximise
the log marginal likelihood Eq. (32) to avoid numerical issues. The asso-
ciated optimisation problem is solved with the BFGS algorithm (Fletcher,
2000).

3. MCMC-guided active learning

In this section, we introduce an algorithm that employs MCMC-
guided sampling as a straightforward active learning strategy for con-
structing surrogate models. This approach leverages the predictive
uncertainty inherent in the GP surrogate model, coupled with the
trajectory of the MCMC algorithm, drawing inspiration from the active
learning framework presented in Rocha et al. (2021).

Initially, we generate a set of N, samples from the posterior dis-
tribution using the forward model. This set forms the initial training
dataset for our GP surrogate model. Upon this dataset, we fit the GP
model by estimating its hyperparameters and record the initial log
marginal likelihood, denoted as L,4. After the initialisation phase is
completed, the MCMC algorithm generates new proposals based on the
GP model. Denoting k(0*) the covariance vector between the training
data and the new point 6%, and K the covariance matrix of the training
data, the predictive variance of the GP model at 6 is given by

VIL(O*)] = k(0",0%) — k()T (K +021) " k(6). (33)

If this variance remains below a specified threshold y,, we accept the
GP’s prediction at 6* and proceed without further action. Conversely, if
the predictive variance exceeds the variance threshold y,, we resort to
evaluating the forward model y* = M(6*) and compute the likelihood
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L(6%) to obtain a new observation. We will refer to y, as the reject
threshold. This observation is then used to update our training dataset.

Following the addition of new data, we update the GP’s posterior
covariance matrix and recalculate the log marginal likelihood, denoted
as L, If the ratio |Lnew/Ly,| €xceeds a predetermined threshold y; , this
indicates a significant change in the model’s understanding, prompt-
ing a re-estimation of the GP hyperparameters based on the updated
dataset. We will thus refer to y; as retrain threshold. The process
iterates until the end of the burn-in phase N, is reached, at which point
the GP model’s hyperparameters are fixed. These parameters have a
significant impact on the model’s predictive accuracy and their choice
is therefore investigated in Section 5.2.

Replacing the forward model with the GP surrogate model leads to
a modified proposal distribution Eq. (26) for the MALA:

2
j(0*10) =N <6*|9” + %M‘IVG (E [£(6M)] +1np6")) ,s2M> . (34)

Here, the gradient of the log-likelihood is computed using the mean of
the GP posterior E[L(6")]. We also need to add the contribution of the
log-prior In p(60"). The modified MALA acceptance probability is then
given by:

(35)

E |L£(6F 0")d(0* 0"
6(9",9*)=min<1,exp( [£©67)]) p©)3(6"| )>.

exp (E [£(0")]) p(0")3(0"16%)

The proposal for the RWM algorithm Eq. (24) remains the same, as
it does not depend on the forward model. However, the acceptance
probability Eq. (21) is modified to account for the GP surrogate model:

(36)

E |£(0* o*
&(9",e*>=min<1 w>

“exp (E [£0M)]) p6")

Note that we need to exponentiate the GP prediction in Egs. (34) and
(36), as we trained the GP on the log-likelihood. The MCMC algorithm
incurs a bias from the surrogate model in the acceptance probabilities
Eq. (35) and (36). The quantification of this bias and its impact on the
posterior estimation is at the heart of this work.

As the GP model refines its accuracy with the incorporation of
new data, we anticipate a reduction in predictive variance, signalling
an enhanced model fidelity. Consequently, the need to resort to the
computationally expensive forward model diminishes. This strategy
ensures that new data points are strategically added to the model’s
training set, particularly focusing on regions yet to be explored by the
MCMC algorithm, without changing the response surface in regions
that have been visited in previous steps. The active learning strategy
is described in detail in Algorithm 1.

4. Case study

In this section, we introduce a scalable case study to elucidate
the effects of the methodological decision on surrogate modelling and
sampling. First and foremost, the problem must be computationally
inexpensive. Since we cannot obtain an analytical posterior, we need
the capability to brute-force approximate this distribution via long runs
of MCMC to obtain a reference solution. Additionally, the problem
should closely resemble a real-world scenario. To this end, we introduce
a one-dimensional bar with length L = 1 m and constant cross-sectional
area A = 1 m?, depicted in figure Fig. 2.

4.1. Material model

To make things more challenging, we introduce a simple non-
linear constitutive model and a spatially varying initial stiffness. It is
adopted as a fast and pragmatic choice, but nevertheless without loss
of generality. The constitutive model is given by

a(e):r(E—H)(l—exp(—é))+Ha 37)
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u(0,t) =0
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u(l,t) = a(1,¢)

H

N

Fig. 2. Schematic representation of the one-dimensional bar problem. Dirichlet boundary conditions are enforced at the left and right boundaries.

Algorithm 1 MCMC-guided active learning for GP surrogate model
construction. Depending on the choice of the algorithm, the proposal
density §(6*|6") in Line 5 is either given by Eq. (24) for the RWM
algorithm or Eq. (34) for the MALA. Similarly, the acceptance probably
@ in Line 17 is given by Eq. (36) (RWM) or Eq. (35) (MALA).
1: Initialise N, samples from the posterior using the forward model to
obtain initial dataset Dgp = {(6y), L(6y)), ..., (O, E(GNO))}

2: Estimate hyperparameters on Dgp and record Ly
3 ne0
4: while n < N, do
5: Generate new point 6" from the proposal distribution §(6*|6")
6: if V[L(6%)] < 7, then
7: Accept GP prediction for £(6%)
8: else
9: Evaluate forward model y* = M(6*), compute likelihood
L£(6")
10: Update training dataset Dgp < Dgp U (6%, L(6"))
11: Update GP’s posterior covariance matrix and compute L,
12: if |Lnew/Lya| > 77, AND n < Ny then
13: Re-estimate GP hyperparameters and update L,.,,
14: Lold - Lnew
15: end if
16: end if
17: if 40",6%) > u ~ U(0, 1) then
18: 0! — o
19: else
20: ol — o
21: end if

22: ne—n+1
23: end while

This model, characterised by its initial stiffness E, its terminal stiffness
H, and its rate parameter r, mimics nonlinear material behaviour
during plastic deformation. It does so without necessitating the compu-
tational burden associated with tracking the evolution of plastic strain.
Note that this simplification is only reasonable for the monotonic load-
ing considered in this study. We thereby embed additional non-linearity
into the system without the exhaustive computational requirements
typical of a complete plasticity model.

Fig. 3(a) illustrates the stress-strain relationship for different val-
ues of the material parameters. The material model’s non-linearity is
evident, with the stress—strain curve exhibiting a distinct hardening
behaviour. After initial numerical testing, no single parameter stood
out as comparatively more challenging to infer, except for a hardening
modulus H close to zero. We, therefore, focus exclusively on the initial
stiffness E in the subsequent analysis to ensure a consistent comparison
across the different methods at fixed H and r. The spatially varying
initial stiffness § = E = E(x) ~ E(x,0) is hence the unknown field to
be inferred.

4.2. Sequence of inverse problems
We define a sequence of inverse problems by considering different

stochastic discretisations of the spatially varying initial stiffness. Taking
the spatial correlation of the RBF discretisation into account, further

additions of basis functions are expected to yield diminishing gains of
information for a given random field. As the RBFs with centres close
to one another are expected to correlate, their inference will be less
challenging. We adapt the length scale of the random field, and thereby
the complexity of the inference problem, according to the number of
terms in the random field expansion, as demonstrated in Fig. 4. In
other words, we must infer a random function with an expected number
of zero crossings proportional to the number of free parameters. We
also increase the amount of displacement data to ensure that the
observations-to-parameters ratio remains constant. This ensures any
difference in inference performance as the dimensionality of the latent
space increases can be ascribed to the dimensionality and not to the
complexity of the inferred behaviour.

To enforce positivity of the stiffness field, we parameterise it via a
log-field. Let E(x) denote the Gaussian log-stiffness field and E(x, 6) its
RBF discretisation. We then define the corresponding stiffness fields by
exponentiation, E(x) = exp(E(x)) and E(x,0) = exp{ E(x,0))(in MPa).
Consequently, if Ii“(x) is Gaussian, E(x) is log-normal pointwise. The
explicit relations are:

E(x) =exp (E(x)) s (38)

d
E(x,6) = exp (E(x,0)) = exp < HEX) + Y &, (x)6',-> , (39)
i=1

where p;(x) is the mean of the underlying normal distribution. We
set the random field parameters to uz(x) = 8, o6y = 0.1 to mimic
an elastoplastic polymer used as matrix material in fibre reinforced
composites (Melro et al., 2013), and fix / = 15/4. The corresponding
marginal distribution is depicted in Fig. 3(b) and the random field
realisations for different numbers of RBFs and respective length scales
are shown in Fig. 4. The goal is then to find the posterior distribution
of the coefficients 0 of the underlying Gaussian random field, which
can then be transformed to the posterior of the parameter field with
help of Eq. (39). We fix the remaining parameters to H = 100 MPa and
r=0.01.

In our fictitious experiment, we enforce Dirichlet boundary condi-
tions on the left and right boundaries as follows:

u(0,1) =0, (40)
u(l,t)=t for te€l0,T]. (41)

The displacement of the right boundary increases linearly with pseudo
time ¢ and the final time is set to 7 = 0.1s. We sample the ground
truth from the prior distribution (see Eq. (39) and Fig. 4) and solve the
forward problem. To generate the observations, we record the displace-
ments at a number of locations and the reaction force at the far right
boundary at N;=5 distinct times t;€0.02s, 0.04s, 0.06s, 0.085s and 0.1s.
The number of recorded displacements per time t; is set to N; =
[3d/4], where [-] denotes the closest integer. This means there are fewer
measurement locations x; than parameters to infer. These locations are
spread uniformly within the domain 2.

We then synthesise measurements from the recorded displacements
and forces according to our observation model Eq. . We assume uncor-
related Gaussian noise, i.e. X, = 021 and X, = a?l , with respective
standard deviations ¢, = 0.001m and o, = 1 MN. This virtual experi-
ment is conducted only once per given ground truth. The displacements
and forces are stacked, i.e. u = [u(x, 1y), u(x;, ty), ... ,u(xNi, th)] and f =
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Fig. 3. (a) Non-linear material model with parameters H = 250 MPa and r = 0.01. (b) Marginal distribution of the log-normal field E(x).
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Fig. 4. Random field realisations of the spatially varying initial stiffness for different numbers of RBFs and respective length scales. The blue lines depict different
generations of the ground truth, which is sampled from the prior distribution. The dashed black lines represent the centres of the RBFs.

v S, - The full observation vector § = [, fT]T then comprises
a total of m = N; - (N; + 1) scalar observations. The goal is now to infer
the parameters of a matching discretisation of the random field from
these noisy observations.

Remark. The actual stiffness field may not lie in the RBF span used for
inference in practice, a situation which we do not treat systematically
here. When the mismatch is small, Bayesian inference remains robust:
the posterior balances data fit with prior regularisation and concen-
trates near the best in-span approximation. Practical remedies include
a full Bayesian approach with a shrinkage prior on 0 (Green, 1995),
Bayesian model selection to choose the basis dimension (Uribe et al.,
2020), or fitting a model discrepancy term (Kennedy and O’Hagan,
2001). However, these strategies come at a high computational cost
and remain beyond the scope of this work.

4.3. Wasserstein distance

So far, we have introduced a scalable case study, two MCMC al-
gorithms (RWM and MALA) to solve the inverse problems, and a
GP surrogate model that can facilitate this process. To understand
the impact of the methodological decisions on the inference process,
we must compare the resulting approximate posterior distributions.

However, neither our reference posterior nor the approximation from
the surrogate-model-assisted inference are available in analytical form,
but instead are represented with samples from MCMC simulations.
We must therefore find a suitable metric to compare these empirical
distributions. The Wasserstein distance between two distributions is
the minimum effort required to morph one into the other. This metric
is particularly advantageous for empirical distributions, such as those
represented by MCMC samples, because it can be directly applied to
point clouds without requiring the distributions to be expressed in a
functional form.

Other metrics, such as the Kullback-Leibler divergence or the total
variation distance inherently require at least one of the distributions to
be functionally described. To use these metrics in the given settings,
one must approximate the empirical distribution using kernel density
estimation or another density estimation technique, which introduces
additional complexity and uncertainty into the analysis. In contrast, the
Wasserstein distance directly considers the actual distances between
points avoiding the pitfalls associated with density estimation. For our
case study, we specifically employ the Wasserstein 2-distance, which is
the square root of the optimal transport cost, and denote it as W, in
the following.
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The Wasserstein 2-distance W, (P, Q) between two continuous dis-
tributions P and Q on a metric space X is defined as:

1
_ : 2 2
%(RQ)—(ye}r(l’f)’Q) /X el dy(x,w) , 42)

where I'(P, Q) is the set of all joint distributions on XxX with marginals

P and Q. In case of empirical distributions represented by an equal

amount of samples N, the Wasserstein 2-distance reduces to:
1

1 Niotal 2
Wz<P,Q>=<N )y ||x,-—y,f<,~)||2> , “3)

total ;=

where x; and y; are the samples from the distributions P and Q, respec-
tively, and z is the permutation that minimises the square distance.

5. Results

In this section, we present the results for the case study. We first
demonstrate the inference on the bar problem in general. Next, we
validate the active learning approach on the five-dimensional problem
and compare it to the a priori training strategies. Finally, we look at
the impact of the MCMC algorithm on the surrogate model construction
and on the efficiency and accuracy of the inference.

5.1. Reference solution

We first demonstrate the inference process on the one-dimensional
bar problem with varying dimensionality of the unknown field. Fig.
5 shows the ground truth — a sample from the prior — alongside
the prior and posterior distributions of the initial stiffness. All results
are obtained using the RWM algorithm exclusively relying on the FEM
model throughout the MCMC run. In these and all other runs, a total
of 200000 MCMC samples were generated for each run, with the first
5000 samples discarded as burn-in. Further, each chain was thinned by a
factor of 40 to ensure uncorrelated posterior samples. This yields a total
of 4500 samples per posterior distribution, keeping the cost of comput-
ing the Wasserstein distance manageable. The posterior distributions
of the initial stiffness are in good agreement with the ground truth
in all scenarios presented in Fig. 5, underscoring the efficacy of the
Bayesian approach. Further, the true fields are well contained within
the 95% credible interval of the posterior. This consistency indicates a
robust and meaningful quantification of the uncertainty, affirming the
reliability of our inference process. With this non-linear, yet scalable
sequence of inverse problems at hand, we now turn our attention to
the many modelling choices in surrogate model assisted inference.

5.2. Active learning validation

Before diving into the comparison of the various training strategies,
we must first validate the active learning approach.

5.2.1. Influence of active learning parameters

We use the 5-dimensional problem to study the influence of the
active learning parameters, namely, the number of pretrain steps N,
the reject threshold y,, and the retrain threshold y;. Every setting
is repeated 10 times with different random seeds to account for the
stochastic nature of the MCMC algorithm. The GP hyperparameter
optimisation is performed 200 times with different initialisations to
ensure convergence to the global minimum. The result of a grid search
over these parameters is shown in Fig. 6. The Wasserstein 2-distance
with respect to the reference solution from Section 5.1 is used as a
metric to evaluate the accuracy of the active learning approach. While
there is little variance in the results in Figs. 6(a) and 6(b), the results
in Figs. 6(c) and 6(d) show the impact of the initial training points N:
the more training points, the smaller the approximation error. It also
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becomes clear that the retrain threshold y; only has a minor impact on
the accuracy of the inference.

The reject threshold y, emerges as the dominant factor when com-
paring the results of Fig. 6(a) - Fig. 6(d), each of which represent a
different value of y,. No matter the number of initial MCMC steps N, or
the retrain threshold y; , the accuracy of the active learning approach
clearly depends on the reject threshold y,. These results also suggest
that the active learning approach is robust with respect to the initial
hyperparameter estimation, as the Wasserstein 2-distance appears to
be stable across the different values of the retrain threshold. We set the
active learning parameters to Ny = 20, y; = 2.5, and 7, € {1.0,5.0,20.0}
for the remaining experiments.

5.3. Online vs offline learning

This section explores the training strategies for surrogate models,
specifically contrasting the online active learning approach with con-
ventional offline a priori methods. In a priori learning, the training
dataset is predetermined before the inference process begins, without
considering the data observed during this process. We examine three
predominant strategies for compiling this dataset:

+ Grid: the training data forms a structured grid;

» LHS: the training data is uniformly distributed and sampled ac-
cording to a Latin hypercube design (McKay et al., 1979);

* Prior: the training data is sampled from the prior distribution of
the material parameters.

Despite the simplicity of sampling from the Gaussian prior, both Grid
and LHS strategies encounter an implementation challenge due to the
prior’s infinite support. Attempting to impose a uniform distribution
across this boundless domain inherently results in an improper dis-
tribution with zero density, rendering traditional sampling methods
impractical. To address this, we implement a cutoff mechanism to
define a finite bounding box in the latent space, enabling meaningful
sampling for Grid and LHS methods. We set this cutoff at three standard
deviations from the prior mean in each dimension, prioritising com-
prehensive coverage over the prior’s support. Although this approach
may slightly compromise predictive accuracy within the denser regions
of the prior, it significantly enhances model performance in instances
where a notable discrepancy exists between the prior and posterior
distributions. The active learning approach of Section 3, on the other
hand, dynamically adjusts the training dataset based on the observed
data, thereby adapting to the posterior distribution. Therefore, it self-
determines the amount and location of the training data points. All four
sampling strategies are depicted in Fig. 7.

We now want to compare the accuracy of the surrogate models
trained with the four different training data collection strategies. To
this end, we consider the range of latent space dimensionalites d €
{2,3,4,5} and the associated inverse problems. For the a priori learning
approaches, we set the number of training data points to N,
5¢ for an even coverage in all directions. The GP-hyperparameters
are estimated and fixed for the subsequent inference process. Each
setting is repeated 10 times with different ground truths to account
for the stochastic nature of the training process and the MCMC. The
GP hyperparameter optimisation is performed 20 times with different
initialisations.

Fig. 8 presents the outcomes of our comparative analysis between
active learning and a priori training data collection strategies. We
observe that for a latent space with dimensionality of d = 2 and
d = 3, the performance across all strategies is relatively similar, albeit
with grid sampling showing a slight disadvantage. This parity shifts
as we move to higher dimensions (¢ = 4 and d = 5), where the
active learning strategy outperforms the a priori methods. Moreover,
a priori learning approaches demonstrate a broader variance in ap-
proximation error; some iterations are nearly as effective as active
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Fig. 5. Posterior realisations of the spatially varying initial stiffness E for different numbers of RBFs and respective length scales. The shaded areas represent the
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estimate of the scattered data in log-space. The offline learning approaches each get N,

according to Algorithm 1.

learning, while others fall markedly short. This variability is largely
attributable to the spatial distribution of training data points with
respect to regions of high posterior probability. In lower-dimensional
spaces, the probability of a priori training data aligning with these
critical regions remains high. However, as the dimensionality increases,
the likelihood of such fortuitous alignment decreases significantly. This
diminishing probability underlies the observed trends in approximation
error: outcomes are either closely aligned with those of the active
learning approach or significantly divergent, with few instances falling
in between. These results underscore the increasing advantage of ac-
tive learning in higher-dimensional spaces, attributed to its strategic
adaptability in navigating the complexities introduced by the curse of
dimensionality.

The trends observed with the exponential increase in number of
training points can be further corroborated by setting the number of
training data points to be as similar as possible for all strategies, as
determined by the active learning approach. For this purpose, we set
the number of training data points to N, = [{/Nyinar1? for the a
priori learning approaches, where [-] denotes smallest integer greater
than the argument. This is slightly favourable for the a priori learning
approaches, as Ny, > Nyunar- Nonetheless, the active learning
now clearly outperforms the a priori approaches for all latent space
dimensionalities. Results can be seen in Fig. 9.

As to why the a priori learning approaches perform worse than the
active learning approach, it is helpful to inspect the different posteriors
resulting from a single run with d = 5 in Fig. 10. The regions close
to the boundaries are well represented by the LHS surrogate model in
Fig. 10(b), whereas the inner part of the domain exposes a significant
approximation error compared to the AL solution Fig. 10(a). This
discrepancy is further highlighted in the pair plots of the first two latent
variables in the bottom row (Figs. 10(c) and 10(d)). The posterior from
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= 5¢ training data, while the active learning approach gathers data

rain

the AL surrogate model is in good agreement with the FEM posterior.
The training data samples are concentrated in regions of high posterior
probability, as indicated by their darker colours.

On the contrary, the LHS surrogate model fails to match the refer-
ence posterior, as illustrated by the misalignment of the red and cyan
samples in Fig. 10(d). A closer look at the training data reveals the
shortcoming of the LHS strategy: while the 2-dimensional projection
suggest a good coverage of the latent space, the samples are not
concentrated in regions of high posterior density. Only a handful of
points ended up in the region of interest, leading to a poor approxima-
tion of the posterior distribution. This misalignment is naturally more
pronounced in higher-dimensional settings, but can already introduce
large approximation errors for a latent space dimensionality as low as
d=3.

5.4. Performance and accuracy comparison

After exposing the deficiencies of the a priori training data col-
lection strategies, we settle on the active learning approach for the
remainder of the experiments. In this section, we consider the MALA
alongside the RWM algorithm, and compare their impact on surrogate
model construction, sampling efficiency, and accuracy. We investigate
the performance of the MALA and the RWM algorithm across a range
of latent space dimensionalities, from d = 2 to d = 15. Every setting
was repeated with 50 different ground-truth realisations (Fig. 4) to
account for the inherent randomness of the MCMC algorithms. The
GP hyperparameter optimisation is performed 50 times with different
initialisations.
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Fig. 9. Approximation error of the training data collection strategies for a range of latent space dimensionalities. The violins stem from a kernel density estimate
of the scattered data in log-space. All strategies get the same amount of training data, as determined by the active learning approach.
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5.4.1. Surrogate model construction

We begin by evaluating the number of training data points across
various latent space dimensions and for three distinct reject thresholds
7, Since the proposal mechanism of the sampling algorithms drives the
training data acquisition, the MALA and the RWM algorithm construct
different surrogate models.

The MALA requires fewer training data points than the RWM algo-
rithm across all latent space dimensionalities (Fig. 11) under stringent
uncertainty requirements. With the added value of the gradient in-
formation, the MALA generates more informative proposals, which
are more likely to be accepted. Therefore, the MALA requires fewer
steps to generate sufficient training data for the surrogate model. The
MALA advantage regarding the training data is persistent across all d,

13

European Journal of Mechanics / A Solids 117 (2026) 106015

MH
1071t MALA o
eo @O
o
1072
o~
= 103 . ** ==
ee
107 2%
105 % #
2
2 3 4 5 6 7 8
d
(b) Wy for v, = 1.0
s MH o
1071t MALA
o
o g B 8
—2 o o
10 o O
= 103 ; E B <+
o © +
8
%
10—5 gi
2 3 4 5 6 7 8
d
(d) Wy for ~, = 5.0
Em VH
1071 mEm MALA
o fo)
1072 o) §
~ o
= 103 g gt ©
10~ +
107> s
2 3 4 5 6 7 8
d

(f) Wy for ~, = 20.0

(left column) and Wasserstein 2-distance W, (right column) for the RWM algorithm and the MALA across a range of

shown by the constant offset to RWM in log-space. The slopes of both
algorithms, however, are similar, indicating that they are subject to the
curse of dimensionality in a similar manner.

The right column of Fig. 11 details the accuracy of the inferences.
Under strict uncertainty controls (y, = 1.0), both RWM and MALA
achieve similar levels of accuracy in approximating the posterior dis-
tribution. Outliers below the trend line in Fig. 11(a) correspond to the
outliers with high W, in Fig. 11(b), highlighting the tradeoff between
accuracy and efficiency. These outliers suggest a superior robustness of
active learning with the RWM, as they exclusively occurred with the
MALA.

With looser uncertainty requirements these outliers become more
prevalent (Figs. 11(c) and 11(d)) and eventually they become the norm
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Fig. 12. Level of adaptation of the MCMC algorithms RWM in Fig. 12(a) and MALA in Fig. 12(b). Each bar represents the number of new data points collected
within intervals of 2000 MCMC steps, averaged over 50 realisations. The latent space dimensionality is colour coded.

(Figs. 11(e) and 11(f)). What happens in these MALA runs is that the
initial MCMC samples are too far removed from the posterior’s high-
density regions. These samples then poorly represent the likelihood’s
complexity, potentially leading to an overestimated GP length scale and
an overly confident surrogate model that ceases to collect more training
data. While the RMW algorithm encounters the same issue, it is less
pronounced due to the more exploratory nature of the random walk
proposal: eventually the algorithm moves towards the high-density
regions of the posterior by chance, leading to further collection of
training data. The MALA, however, is misled by an erroneous surrogate
model and its poor approximation of the gradient and cannot correct
itself.

To summarise the findings, the RWM algorithm and the MALA per-
form similarly both in terms of the number of training data points and
the accuracy of the inference when strong requirements are imposed on
the uncertainty in the surrogate model. When the uncertainty tolerance
is relaxed, the RWM still produces accurate surrogates, underlining its
superior robustness, while the accuracy of the surrogates trained with
the MALA deteriorates.

5.4.2. Adaptation of the surrogate model

While the MCMC algorithms are guaranteed to converge to the
distribution given by the surrogate model, the surrogate model itself
must also converge to the true likelihood function. To investigate the
level of adaptation of the surrogate model, we analyse the number of
new data points collected throughout the MCMC chain. Fig. 12 shows
the rate of data points collected per interval of 2000 MCMC steps for the
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RWM (Fig. 12(a)) and MALA (Fig. 12(b)) algorithms, averaged over 50
MCMC chains each. The cumulative number of data points collected for
both algorithms is shown in Fig. 12(c) and Fig. 12(d). Three conclusions
can be drawn: (i) the rate of training data collection decreases in all
cases, (ii) the rate is higher for the RMW algorithm than for the MALA,
(iii) the rate depends on latent space dimensionality—the higher the
dimensionality, the more data points are needed at all stages of the
chain. Even though the rate reduces to one new data point per 2000
MCMC steps towards the end of the d 10 case, this dependence
suggests a stationary surrogate model becomes more difficult to obtain
with increasing latent space dimensionality.

5.4.3. Sampling performance given a trained surrogate model

Finally, we compare the sampling accuracy and efficiency of the
RWM algorithm and the MALA when using the same surrogate model.
In this case, we are using the one constructed by the RWM algorithm
with y, = 1.0 and prohibit further training data collection. The numer-
ical experiment is repeated for the same 50 distinct realisations of the
inverse problem per latent space dimensionality as in Section 5.4.1.
There is no clear difference in accuracy of the posterior approximation
between the MALA and the RWM algorithm for any given dimension-
ality. Fig. 13 shows the Wasserstein 2-distance across a range of latent
space dimensionalities.

Starting from d = 10, we observe an increasing number of out-
liers with high W, values. These outliers represent chains that have
completely diverged from regions with high posterior density. These
chains navigated to largely unexplored regions of the parameter space,
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as indicated by the large predictive variance encountered during the
respective MCMC run. Runs with at least one occurrence of a maximum
predictive variance five times larger than y, are marked with a cross,
which match well with the outliers in Fig. 13. This phenomenon occurs
for both algorithms, but is more pronounced for the RWM algorithm.
It underscores the shortcomings of a priori trained surrogate models in
high-dimensional settings, as even a model tailored to a given posterior
cannot guarantee the accuracy of the inference.

6. Conclusions

In this research, we have examined the integration of surrogate
modelling with Markov chain Monte Carlo (MCMC) sampling tech-
niques to improve the efficiency of Bayesian model calibration. We
introduced a simple, scalable one-dimensional bar problem equipped
with a non-linear constitutive model and spatially varying stiffness.
The stiffness field is discretised with radial basis functions, the number
of which can be adapted to control the dimensionality of the latent
space. This problem serves as our test bed to explore the impacts of
various methodological decisions associated with MCMC and surrogate
applications.

We employed a Gaussian Process (GP) surrogate model to approx-
imate the log likelihood function and evaluated several traditional
a priori training strategies: Latin hypercube sampling, uniform grid
sampling, and sampling from the prior distribution. Furthermore, we
proposed an active learning strategy that adaptively selects training
data points based on the MCMC path, leveraging the GP model’s inher-
ent uncertainty quantification capabilities. Our findings underscore the
limitations of traditional a priori methods and demonstrate the superi-
ority of active learning in balancing computational costs with accuracy,
particularly for problems with higher stochastic dimensionality.

Comparative analysis of the random walk Metropolis (RWM) and
Metropolis-adjusted Langevin algorithm (MALA) in terms of surro-
gate model construction, sampling efficiency, and inference accuracy
revealed that both algorithms perform comparably under stringent
surrogate model uncertainty requirements. The increased sampling
efficiency of the MALA was beneficial for the training of the surrogate
model. The higher quality of the MALA samples lead to the construction
of a surrogate model with similar accuracy to the RWM algorithm, but
with fewer FEM model evaluations. However, under relaxed conditions,
accuracy was better maintained with the RWM algorithm than with
the MALA, underscoring the robustness of the RWM algorithm. When
a predefined surrogate model was used, the choice of the sampling
algorithm did not affect inference accuracy. However, there is a notable

15

European Journal of Mechanics / A Solids 117 (2026) 106015

chance for both algorithms to depart from the regions of high surrogate-
model certainty and accuracy. These divergent chains could not return
to the high-density regions, even for surrogate models tailored to the
posterior distribution, which further emphasised the shortcomings of a
priori training.

This study suggest that related works (Deveney et al., 2023; Hu
et al., 2024; Thomas et al., 2022; Chen et al., 2023) incorrectly identify
the MCMC algorithm as a bottleneck in the inference process. The in-
tensive training data requirements for constructing a surrogate model in
high-dimensional scenarios render the MCMC-with-surrogate approach
impractical before any significant benefits of advanced sampling algo-
rithms can be realised. With a hypothetical simulator that takes 10 min
to run, the compilation of the training dataset for a 15-dimensional
latent space would require roughly 70 days. Any gains in sampling
efficiency from advanced MCMC algorithms would be overshadowed
by the prohibitive costs of surrogate model construction. This finding
is at odds with common practice, where engineers often put signifi-
cant resources into the integration and analysis of advanced MCMC
algorithms. This study clearly suggests prioritising the surrogate model
construction over the choice of sampling algorithm. Further research
into multi-fidelity MCMC schemes that exploit a hierarchy of models
with varying complexity (Zhang et al., 2018; Meng, 2020; Kennedy
and O’Hagan, 2000; Torzoni et al., 2023) and nonlinear dimensionality
reduction techniques (Dasgupta et al., 2024) could provide viable
strategies to mitigate the curse of dimensionality.

CRediT authorship contribution statement

Leon Riccius: Writing — original draft, Visualization, Validation,
Software, Methodology, Investigation, Conceptualization. Iuri B.C.M.
Rocha: Writing — review & editing, Supervision, Methodology, Con-
ceptualization. Joris Bierkens: Writing — review & editing, Method-
ology. Hanne Kekkonen: Writing — review & editing, Methodology.
Frans P. van der Meer: Writing — review & editing, Supervision,
Conceptualization.

Code availability

The code used in this study is available at github.com/SLIMM-Lab/
mcmc-with-surrogates.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This work is supported by the TU Delft Al Labs programme through
the SLIMM lab.

Data availability

Data will be made available on request.


https://github.com/SLIMM-Lab/mcmc-with-surrogates.git
https://github.com/SLIMM-Lab/mcmc-with-surrogates.git
https://github.com/SLIMM-Lab/mcmc-with-surrogates.git

L. Riccius et al.

References

Bierkens, J., Fearnhead, P., Roberts, G., 2019. The Zig-Zag process and super-efficient
sampling for Bayesian analysis of big data. Ann. Statist. 47, 1288-1320.
http://dx.doi.org/10.1214/18-A0S1715, URL: https://projecteuclid.org/journals/
annals-of-statistics/volume-47 /issue-3/The-Zig-Zag-process-and-super-efficient-
sampling-for-Bayesian/10.1214/18-A0S1715.full.

Chen, Z., Jin, P., Li, R., Qi, Y., Cai, G., 2023. Parameter identification of elastoplastic
model for CuCrZr alloy by the neural network-aided Bayesian inference. Fatigue
Fract. Eng. Mater. Struct. 46, 2319-2337. http://dx.doi.org/10.1111/ffe.14000,
URL: https://onlinelibrary.wiley.com/doi/10.1111/ffe.14000.

Ching, J., Chen, Y.-C., 2007. Transitional Markov chain Monte Carlo method for
Bayesian model updating, model class selection, and model averaging. J. Eng. Mech.
133, 816-832.

Chong, A., Lam, K.P., 2017. A comparison of MCMC algorithms for the Bayesian
calibration of building energy models for building simulation 2017 conference.
In: Building Simulation Conference Proceedings. vol. 2, pp. 582-591. http://dx.
doi.org/10.26868/25222708.2017.336.

Dasgupta, A., Patel, D.V., Ray, D., Johnson, E.A., Oberai, A.A., 2024. A dimension-
reduced variational approach for solving physics-based inverse problems using
generative adversarial network priors and normalizing flows. Comput. Methods
Appl. Mech. Engrg. 420, 116682, URL: https://linkinghub.elsevier.com/retrieve/
pii/S0045782523008058.

Deveney, T., Mueller, E.H., Shardlow, T., 2023. Deep surrogate accelerated delayed-
acceptance Hamiltonian Monte Carlo for Bayesian inference of spatio-temporal heat
fluxes in rotating disc systems. SIAM/ASA J. Uncertain. Quantif. 11, 970-995, URL:
https://epubs.siam.org/doi/10.1137/22M1513113.

Dinkel, M., Geitner, C.M., Rei, G.R., Nitzler, J., Wall, W.A., 2024. Solving Bayesian
inverse problems with expensive likelihoods using constrained Gaussian processes
and active learning. Inverse Problems 40, 095008. http://dx.doi.org/10.1088/1361-
6420/ad5eb4, URL: https://iopscience.iop.org/article/10.1088/1361-6420/ad5eb4.

Dobrilla, S., Lunardelli, M., Nikoli¢, M., Lowke, D., Rosié, B., 2023. Bayesian inference
of mesoscale mechanical properties of mortar using experimental data from a
double shear test. Comput. Methods Appl. Mech. Engrg. 409, 115964, URL: https:
//linkinghub.elsevier.com/retrieve/pii/S0045782523000877.

Drovandi, C.C., Moores, M.T., Boys, R.J., 2018. Accelerating pseudo-marginal MCMC
using Gaussian processes. Comput. Statist. Data Anal. 118, 1-17.

Duane, S., Kennedy, A., Pendleton, B.J., Roweth, D., 1987. Hybrid Monte Carlo.
Phys. Lett. B 195, 216-222, URL: https://linkinghub.elsevier.com/retrieve/pii/
037026938791197X.

Fletcher, R., 2000. Practical methods of optimization. Pr. Methods Optim. URL: https:
//onlinelibrary.wiley.com/doi/book/10.1002/9781118723203.

Gelman, A., Gilks, W.R., Roberts, G.O., 1997. Weak convergence and optimal
scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 7, 110-120,
URL: https://projecteuclid.org/journals/annals-of-applied-probability /volume-
7 /issue-1/Weak-convergence-and-optimal-scaling-of-random-walk-Metropolis-
algorithms/10.1214/aoap/1034625254.full.

Ghanem, R.G., Spanos, P.D., 1991. Stochastic Finite Elements: A Spectral Approach.
Springer New York, New York, NY, URL: http://link.springer.com/10.1007/978-1-
4612-3094-6.

Girolami, M., Calderhead, B., 2011. Riemann manifold langevin and Hamiltonian
Monte Carlo methods. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 123-214, URL:
www.ucl.ac.uk/statistics/.

Goodman, J., Weare, J., 2010. Ensemble samplers with affine invariance. Commun.
Appl. Math. Comput. Sci. 5, 65-80.

Green, P.J., 1995. Reversible jump Markov chain Monte Carlo computation and
Bayesian model determination. Biometrika 82, 711, URL: https://www.jstor.org/
stable/2337340?origin=crossref.

Hou, D., Hassan, I, Wang, L., 2021. Review on building energy model calibration
by Bayesian inference. Renew. Sustain. Energy Rev. 143, 110930, URL: https:
//linkinghub.elsevier.com/retrieve/pii/S1364032121002239.

Hu, Y., Abuseada, M., Alghfeli, A., Holdheim, S., Fisher, T.S., 2024. Surrogate-
accelerated Bayesian framework for high-temperature thermal diffusivity charac-
terization. Comput. Methods Appl. Mech. Engrg. 418, 116459. http://dx.doi.org/
10.1016/j.cma.2023.116459.

Kandasamy, K., Schneider, J., Péczos, B., 2015. Bayesian active learning for posterior
estimation. In: IJCAI International Joint Conference on Artificial Intelligence. vol.
2015-Janua, pp. 3605-3611.

Kennedy, M.C., O’Hagan, A., 2000. Predicting the output from a complex computer
code when fast approximations are available. Biometrika 87, 1-13.

Kennedy, M.C., O’Hagan, A., 2001. Bayesian calibration of computer models. J. R.
Stat. Soc. Ser. B Stat. Methodol. 63, 425-464, URL: https://onlinelibrary.wiley.
com/doi/full/10.1111/1467-9868.00294, https://onlinelibrary.wiley.com/doi/abs/
10.1111/1467-9868.00294.

Kiran, R.P., Das, A., Bansal, S., 2025. A state-of-the-art review of Bayesian finite element
model updating techniques for structural systems. Probabilistic Eng. Mech. 80,
103761.

Li, C.-C., Kiureghian, A.D., 1993. Optimal discretization of random fields. J. Eng. Mech.
119, 1136-1154. http://dx.doi.org/10.1061/(ASCE)0733-9399(1993)119:6(1136),
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%281993%
29119%3A6%281136%29.

16

European Journal of Mechanics / A Solids 117 (2026) 106015

Lye, A., Cicirello, A., Patelli, E., 2022. An efficient and robust sampler for Bayesian
inference: Transitional ensemble Markov chain Monte Carlo. Mech. Syst. Signal
Process. 167, 108471.

Mackay, D.J.C., 1998. Introduction to Gaussian processes. In: Neural Networks
and Machine Learning. Barber and Williams, URL: http://www.cs.toronto.edu/
~radford/.

Marsili, F., Croce, P., Friedman, N., Formichi, P., Landi, F., 2017. Seismic reliability
assessment of a concrete water tank based on the Bayesian updating of the finite
element model. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B: Mech. Eng.
3, URL: https://asmedigitalcollection.asme.org/risk/article/3/2/021004/369959/
Seismic-Reliability-Assessment-of-a-Concrete-Water.

Marzouk, Y.M., Najm, H.N., 2009. Dimensionality reduction and polynomial
chaos acceleration of Bayesian inference in inverse problems. J. Com-
put. Phys. 228, 1862-1902, URL: https://linkinghub.elsevier.com/retrieve/pii/
50021999108006062.

McKay, M.D., Beckman, R.J., Conover, W.J., 1979. A comparison of three methods
for selecting values of input variables in the analysis of output from a computer
code. Technometrics 21, 239, URL: https://www.jstor.org/stable/1268522?0origin=
crossref.

Melro, A.R., Camanho, P.P., Pires, F.M.A., Pinho, S.T., 2013. Micromechanical analysis
of polymer composites reinforced by unidirectional fibres: Part I-Constitutive
modelling. Int. J. Solids Struct. 50, 1897-1905.

Meng, X., 2020. A composite neural network that learns from multi-fidelity data:
Application to function approximation and inverse PDE problems. Karniadakis /
J. Comput. Phys. 401, 109020, URL: www.elsevier.com/locate/jcp.

Mengersen, K.L., Tweedie, R.L., 1996. Rates of convergence of the Hastings and
Metropolis algorithms. Ann. Statist. 24, 101-121, URL: https://projecteuclid.
org/journals/annals-of-statistics/volume-24/issue-1/Rates-of-convergence-of-the-
Hastings-and-Metropolis-algorithms/10.1214/a0s/1033066201.full.

Nouy, A., Maitre, O.P.L.,, 2009. Generalized spectral decomposition for stochastic
nonlinear problems. J. Comput. Phys. 228, 202-235, URL: https://linkinghub.
elsevier.com/retrieve/pii/$0021999108004737.

Rappel, H., Beex, L.A., Hale, J.S., Noels, L., Bordas, S.P., 2020. A tutorial on Bayesian
inference to identify material parameters in solid mechanics. Arch. Comput.
Methods Eng. 27, 361-385.

Rappel, H., Beex, L.A., Noels, L., Bordas, S.P., 2019. Identifying elastoplastic parameters
with Bayes’ theorem considering output error, input error and model uncertainty.
Probabilistic Eng. Mech. 55, 28-41.

Rasmussen, C.E., Williams, C.K.I., 2006. Gaussian Processes for Machine Learning. MIT
Press, pp. I-XVIII, 1-248, URL: www.GaussianProcess.org/gpml.

Roberts, G.O., Rosenthal, J.S., 1998. Optimal scaling of discrete approximations to
langevin diffusions. J. R. Stat. Soc. Ser. B Stat. Methodol. 60, 255-268, URL:
https://academic.oup.com/jrsssb/article/60,/1/255/7083121.

Roberts, G.O., Rosenthal, J.S., 2001. Optimal scaling for various Metropolis-
Hastings algorithms. 16, (ISSN: 0883-4237) pp. 351-367, URL: https:
//projecteuclid.org/journals/statistical-science/volume-16/issue-4/Optimal-
scaling-for-various-Metropolis-Hastings-algorithms/10.1214/ss/1015346320.full,
https://projecteuclid.org/journals/statistical-science/volume-16/issue-4/Optimal-
scaling-for-various-Metropolis-Hastings-algorithms,/10.1214/ss/1015346320.short.

Roberts, G.O., Rosenthal, J.S., 2007. Coupling and ergodicity of adaptive Markov
chain Monte Carlo algorithms. J. Appl. Probab. 44, 458-475, URL: https://www.
cambridge.org/core/product/identifier/50021900200117954/type/journal_article.

Roberts, G.O., Stramer, O., 2002. Langevin diffusions and Metropolis-Hastings al-
gorithms. Methodol. Comput. Appl. Probab. 2002 4:4 4, 337-357, URL: https:
//link.springer.com/article/10.1023/A:1023562417138.

Rocha, LB., Kerfriden, P., van der Meer, F.P., 2021. On-the-fly construction of
surrogate constitutive models for concurrent multiscale mechanical analysis through
probabilistic machine learning. J. Comput. Phys.: X 9, 100083.

Romer, U., Hartmann, S., Troger, J.-A., Anton, D., Wessels, H., Flaschel, M.,
Lorenzis, L.D., 2025. Reduced and all-at-once approaches for model cali-
bration and discovery in computational solid mechanics. Appl. Mech. Rev.
77, URL: https://asmedigitalcollection.asme.org/appliedmechanicsreviews/article/
77/4/040801/1201974/Reduced-and-All-At-Once-Approaches-for-Model.

Simoen, E., Papadimitriou, C., Lombaert, G., 2013. On prediction error correlation in
Bayesian model updating. J. Sound Vib. 332, 4136-4152, URL: https://linkinghub.
elsevier.com/retrieve/pii/S0022460X13002514.

Straub, D., Papaioannou, 1., 2015. Bayesian updating with structural reliability methods.
J. Eng. Mech. 141, 04014134.

Stuart, A.M., 2010. Inverse problems: A Bayesian perspective. Acta Numer. 19, 451-459,
URL: https://doi.org/10.1017/50962492910000061.

Sudret, B., Kiureghian, A.D., 2000. Stochastic finite element methods and reliability: a
state-of-the-art report. URL: https://books.google.nl/books?id=PNNztgAACAAJ.
Thomas, A.J., Barocio, E., Bilionis, I., Pipes, R.B., 2022. Bayesian inference of fiber
orientation and polymer properties in short fiber-reinforced polymer composites.
Compos. Sci. Technol. 228, 109630, URL: https://linkinghub.elsevier.com/retrieve/

pii/S0266353822003724.

Torzoni, M., Manzoni, A., Mariani, S., 2023. A multi-fidelity surrogate model for
structural health monitoring exploiting model order reduction and artificial neural
networks. Mech. Syst. Signal Process. 197, 110376, URL: http://creativecommons.
org/licenses/by/4.0/.


http://dx.doi.org/10.1214/18-AOS1715
https://projecteuclid.org/journals/annals-of-statistics/volume-47/issue-3/The-Zig-Zag-process-and-super-efficient-sampling-for-Bayesian/10.1214/18-AOS1715.full
https://projecteuclid.org/journals/annals-of-statistics/volume-47/issue-3/The-Zig-Zag-process-and-super-efficient-sampling-for-Bayesian/10.1214/18-AOS1715.full
https://projecteuclid.org/journals/annals-of-statistics/volume-47/issue-3/The-Zig-Zag-process-and-super-efficient-sampling-for-Bayesian/10.1214/18-AOS1715.full
https://projecteuclid.org/journals/annals-of-statistics/volume-47/issue-3/The-Zig-Zag-process-and-super-efficient-sampling-for-Bayesian/10.1214/18-AOS1715.full
https://projecteuclid.org/journals/annals-of-statistics/volume-47/issue-3/The-Zig-Zag-process-and-super-efficient-sampling-for-Bayesian/10.1214/18-AOS1715.full
http://dx.doi.org/10.1111/ffe.14000
https://onlinelibrary.wiley.com/doi/10.1111/ffe.14000
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb3
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb3
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb3
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb3
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb3
http://dx.doi.org/10.26868/25222708.2017.336
http://dx.doi.org/10.26868/25222708.2017.336
http://dx.doi.org/10.26868/25222708.2017.336
https://linkinghub.elsevier.com/retrieve/pii/S0045782523008058
https://linkinghub.elsevier.com/retrieve/pii/S0045782523008058
https://linkinghub.elsevier.com/retrieve/pii/S0045782523008058
https://epubs.siam.org/doi/10.1137/22M1513113
http://dx.doi.org/10.1088/1361-6420/ad5eb4
http://dx.doi.org/10.1088/1361-6420/ad5eb4
http://dx.doi.org/10.1088/1361-6420/ad5eb4
https://iopscience.iop.org/article/10.1088/1361-6420/ad5eb4
https://linkinghub.elsevier.com/retrieve/pii/S0045782523000877
https://linkinghub.elsevier.com/retrieve/pii/S0045782523000877
https://linkinghub.elsevier.com/retrieve/pii/S0045782523000877
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb9
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb9
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb9
https://linkinghub.elsevier.com/retrieve/pii/037026938791197X
https://linkinghub.elsevier.com/retrieve/pii/037026938791197X
https://linkinghub.elsevier.com/retrieve/pii/037026938791197X
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118723203
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118723203
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118723203
https://projecteuclid.org/journals/annals-of-applied-probability/volume-7/issue-1/Weak-convergence-and-optimal-scaling-of-random-walk-Metropolis-algorithms/10.1214/aoap/1034625254.full
https://projecteuclid.org/journals/annals-of-applied-probability/volume-7/issue-1/Weak-convergence-and-optimal-scaling-of-random-walk-Metropolis-algorithms/10.1214/aoap/1034625254.full
https://projecteuclid.org/journals/annals-of-applied-probability/volume-7/issue-1/Weak-convergence-and-optimal-scaling-of-random-walk-Metropolis-algorithms/10.1214/aoap/1034625254.full
https://projecteuclid.org/journals/annals-of-applied-probability/volume-7/issue-1/Weak-convergence-and-optimal-scaling-of-random-walk-Metropolis-algorithms/10.1214/aoap/1034625254.full
https://projecteuclid.org/journals/annals-of-applied-probability/volume-7/issue-1/Weak-convergence-and-optimal-scaling-of-random-walk-Metropolis-algorithms/10.1214/aoap/1034625254.full
http://link.springer.com/10.1007/978-1-4612-3094-6
http://link.springer.com/10.1007/978-1-4612-3094-6
http://link.springer.com/10.1007/978-1-4612-3094-6
http://www.ucl.ac.uk/statistics/
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb15
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb15
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb15
https://www.jstor.org/stable/2337340?origin=crossref
https://www.jstor.org/stable/2337340?origin=crossref
https://www.jstor.org/stable/2337340?origin=crossref
https://linkinghub.elsevier.com/retrieve/pii/S1364032121002239
https://linkinghub.elsevier.com/retrieve/pii/S1364032121002239
https://linkinghub.elsevier.com/retrieve/pii/S1364032121002239
http://dx.doi.org/10.1016/j.cma.2023.116459
http://dx.doi.org/10.1016/j.cma.2023.116459
http://dx.doi.org/10.1016/j.cma.2023.116459
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb19
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb19
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb19
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb19
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb19
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb20
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb20
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb20
https://onlinelibrary.wiley.com/doi/full/10.1111/1467-9868.00294
https://onlinelibrary.wiley.com/doi/full/10.1111/1467-9868.00294
https://onlinelibrary.wiley.com/doi/full/10.1111/1467-9868.00294
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00294
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00294
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00294
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb22
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb22
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb22
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb22
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb22
http://dx.doi.org/10.1061/(ASCE)0733-9399(1993)119:6(1136)
https://ascelibrary.org/doi/abs/10.1061/%2528ASCE%25290733-9399%25281993%2529119%253A6%25281136%2529
https://ascelibrary.org/doi/abs/10.1061/%2528ASCE%25290733-9399%25281993%2529119%253A6%25281136%2529
https://ascelibrary.org/doi/abs/10.1061/%2528ASCE%25290733-9399%25281993%2529119%253A6%25281136%2529
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb24
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb24
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb24
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb24
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb24
http://www.cs.toronto.edu/~radford/
http://www.cs.toronto.edu/~radford/
http://www.cs.toronto.edu/~radford/
https://asmedigitalcollection.asme.org/risk/article/3/2/021004/369959/Seismic-Reliability-Assessment-of-a-Concrete-Water
https://asmedigitalcollection.asme.org/risk/article/3/2/021004/369959/Seismic-Reliability-Assessment-of-a-Concrete-Water
https://asmedigitalcollection.asme.org/risk/article/3/2/021004/369959/Seismic-Reliability-Assessment-of-a-Concrete-Water
https://linkinghub.elsevier.com/retrieve/pii/S0021999108006062
https://linkinghub.elsevier.com/retrieve/pii/S0021999108006062
https://linkinghub.elsevier.com/retrieve/pii/S0021999108006062
https://www.jstor.org/stable/1268522?origin=crossref
https://www.jstor.org/stable/1268522?origin=crossref
https://www.jstor.org/stable/1268522?origin=crossref
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb29
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb29
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb29
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb29
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb29
http://www.elsevier.com/locate/jcp
https://projecteuclid.org/journals/annals-of-statistics/volume-24/issue-1/Rates-of-convergence-of-the-Hastings-and-Metropolis-algorithms/10.1214/aos/1033066201.full
https://projecteuclid.org/journals/annals-of-statistics/volume-24/issue-1/Rates-of-convergence-of-the-Hastings-and-Metropolis-algorithms/10.1214/aos/1033066201.full
https://projecteuclid.org/journals/annals-of-statistics/volume-24/issue-1/Rates-of-convergence-of-the-Hastings-and-Metropolis-algorithms/10.1214/aos/1033066201.full
https://projecteuclid.org/journals/annals-of-statistics/volume-24/issue-1/Rates-of-convergence-of-the-Hastings-and-Metropolis-algorithms/10.1214/aos/1033066201.full
https://projecteuclid.org/journals/annals-of-statistics/volume-24/issue-1/Rates-of-convergence-of-the-Hastings-and-Metropolis-algorithms/10.1214/aos/1033066201.full
https://linkinghub.elsevier.com/retrieve/pii/S0021999108004737
https://linkinghub.elsevier.com/retrieve/pii/S0021999108004737
https://linkinghub.elsevier.com/retrieve/pii/S0021999108004737
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb33
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb33
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb33
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb33
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb33
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb34
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb34
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb34
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb34
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb34
http://www.GaussianProcess.org/gpml
https://academic.oup.com/jrsssb/article/60/1/255/7083121
https://projecteuclid.org/journals/statistical-science/volume-16/issue-4/Optimal-scaling-for-various-Metropolis-Hastings-algorithms/10.1214/ss/1015346320.full
https://projecteuclid.org/journals/statistical-science/volume-16/issue-4/Optimal-scaling-for-various-Metropolis-Hastings-algorithms/10.1214/ss/1015346320.full
https://projecteuclid.org/journals/statistical-science/volume-16/issue-4/Optimal-scaling-for-various-Metropolis-Hastings-algorithms/10.1214/ss/1015346320.full
https://projecteuclid.org/journals/statistical-science/volume-16/issue-4/Optimal-scaling-for-various-Metropolis-Hastings-algorithms/10.1214/ss/1015346320.full
https://projecteuclid.org/journals/statistical-science/volume-16/issue-4/Optimal-scaling-for-various-Metropolis-Hastings-algorithms/10.1214/ss/1015346320.full
https://projecteuclid.org/journals/statistical-science/volume-16/issue-4/Optimal-scaling-for-various-Metropolis-Hastings-algorithms/10.1214/ss/1015346320.short
https://projecteuclid.org/journals/statistical-science/volume-16/issue-4/Optimal-scaling-for-various-Metropolis-Hastings-algorithms/10.1214/ss/1015346320.short
https://projecteuclid.org/journals/statistical-science/volume-16/issue-4/Optimal-scaling-for-various-Metropolis-Hastings-algorithms/10.1214/ss/1015346320.short
https://www.cambridge.org/core/product/identifier/S0021900200117954/type/journal_article
https://www.cambridge.org/core/product/identifier/S0021900200117954/type/journal_article
https://www.cambridge.org/core/product/identifier/S0021900200117954/type/journal_article
https://link.springer.com/article/10.1023/A:1023562417138
https://link.springer.com/article/10.1023/A:1023562417138
https://link.springer.com/article/10.1023/A:1023562417138
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb40
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb40
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb40
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb40
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb40
https://asmedigitalcollection.asme.org/appliedmechanicsreviews/article/77/4/040801/1201974/Reduced-and-All-At-Once-Approaches-for-Model
https://asmedigitalcollection.asme.org/appliedmechanicsreviews/article/77/4/040801/1201974/Reduced-and-All-At-Once-Approaches-for-Model
https://asmedigitalcollection.asme.org/appliedmechanicsreviews/article/77/4/040801/1201974/Reduced-and-All-At-Once-Approaches-for-Model
https://linkinghub.elsevier.com/retrieve/pii/S0022460X13002514
https://linkinghub.elsevier.com/retrieve/pii/S0022460X13002514
https://linkinghub.elsevier.com/retrieve/pii/S0022460X13002514
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb43
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb43
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb43
https://doi.org/10.1017/S0962492910000061
https://books.google.nl/books?id=PNNztgAACAAJ
https://linkinghub.elsevier.com/retrieve/pii/S0266353822003724
https://linkinghub.elsevier.com/retrieve/pii/S0266353822003724
https://linkinghub.elsevier.com/retrieve/pii/S0266353822003724
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

L. Riccius et al.

Uribe, F., Papaioannou, I., Betz, W., Straub, D., 2020. Bayesian inference of ran-
dom fields represented with the Karhunen-Loéve expansion. Comput. Methods
Appl. Mech. Engrg. 358, 112632, URL: https://linkinghub.elsevier.com/retrieve/
pii/S004578251930516X.

del Val, A., Maitre, O.P.L,, Magin, T.E., Chazot, O., Congedo, P.M., 2022. A
surrogate-based optimal likelihood function for the Bayesian calibration of catalytic
recombination in atmospheric entry protection materials. Appl. Math. Model. 101,
791-810.

Vigliotti, A., Csanyi, G., Deshpande, V.S., 2018. Bayesian inference of the spatial
distributions of material properties. J. Mech. Phys. Solids 118, 74-97.

17

European Journal of Mechanics / A Solids 117 (2026) 106015

Wu, L., Zulueta, K., Major, Z., Arriaga, A., Noels, L., 2020. Bayesian inference of non-
linear multiscale model parameters accelerated by a deep neural network. Comput.
Methods Appl. Mech. Engrg. 360, URL: www.sciencedirect.comwww.elsevier.com/
locate/cma.

Zhang, J., Man, J., Lin, G., Wu, L., Zeng, L., 2018. Inverse modeling of hydrologic
systems with adaptive multifidelity Markov chain Monte Carlo simulations.
Water Resour. Res. 54, 4867-4886, URL: https://onlinelibrary.wiley.com/
doi/full/10.1029/2018WR022658, https://onlinelibrary.wiley.com/doi/abs/10.
1029/2018WR022658, https://agupubs.onlinelibrary.wiley.com/doi/10.1029/
2018WR022658.


https://linkinghub.elsevier.com/retrieve/pii/S004578251930516X
https://linkinghub.elsevier.com/retrieve/pii/S004578251930516X
https://linkinghub.elsevier.com/retrieve/pii/S004578251930516X
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb49
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb49
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb49
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb49
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb49
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb49
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb49
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb50
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb50
http://refhub.elsevier.com/S0997-7538(26)00001-X/sb50
http://www.sciencedirect.comwww.elsevier.com/locate/cma
http://www.sciencedirect.comwww.elsevier.com/locate/cma
http://www.sciencedirect.comwww.elsevier.com/locate/cma
https://onlinelibrary.wiley.com/doi/full/10.1029/2018WR022658
https://onlinelibrary.wiley.com/doi/full/10.1029/2018WR022658
https://onlinelibrary.wiley.com/doi/full/10.1029/2018WR022658
https://onlinelibrary.wiley.com/doi/abs/10.1029/2018WR022658
https://onlinelibrary.wiley.com/doi/abs/10.1029/2018WR022658
https://onlinelibrary.wiley.com/doi/abs/10.1029/2018WR022658
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018WR022658
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018WR022658
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018WR022658

	Integration of active learning and MCMC sampling for efficient Bayesian calibration of mechanical properties
	Introduction
	Background
	Computational mechanics
	Random Fields and their Discretisation
	Bayesian Inference for Random Fields
	Markov Chain Monte Carlo Methods
	Random Walk Metropolis Algorithm
	Metropolis-Adjusted Langevin Algorithm

	Gaussian Process Surrogate Model

	MCMC-guided active learning
	Case study
	Material Model
	Sequence of Inverse Problems
	Wasserstein Distance

	Results
	Reference Solution
	Active Learning Validation
	Influence of Active Learning Parameters

	Online vs Offline Learning
	Performance and Accuracy Comparison
	Surrogate Model Construction
	Adaptation of the Surrogate Model
	Sampling Performance Given a Trained Surrogate Model


	Conclusions
	CRediT authorship contribution statement
	Code Availability
	Declaration of competing interest
	Acknowledgements
	Data availability
	References


