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 A B S T R A C T

Recent advancements in Markov chain Monte Carlo (MCMC) sampling and surrogate modelling have sig-
nificantly enhanced the feasibility of Bayesian analysis across engineering fields. However, the selection 
and integration of surrogate models and cutting-edge MCMC algorithms, often depend on ad-hoc decisions. 
A systematic assessment of their combined influence on accuracy and efficiency is notably lacking. The 
present work offers a comprehensive comparative study, employing a scalable case study in computational 
mechanics focused on the inference of spatially varying material parameters, that sheds light on the impact of 
methodological choices for surrogate modelling and sampling. We show that a priori training of the surrogate 
model introduces large errors in the posterior estimation even in low to moderate dimensions. We introduce 
a simple active learning strategy based on the path of the MCMC algorithm that is superior to all a priori 
trained models, and determine its training data requirements. We demonstrate that the choice of the MCMC 
algorithm has only a small influence on the amount of training data but no significant influence on the 
accuracy of the resulting surrogate model. Further, we show that the accuracy of the posterior estimation 
largely depends on the surrogate model, but not even a tailored surrogate guarantees convergence of the 
MCMC. Finally, we identify the forward model as the bottleneck in the inference process, not the MCMC 
algorithm. While related works focus on employing advanced MCMC algorithms, we demonstrate that the 
training data requirements render the surrogate modelling approach infeasible before the benefits of these 
gradient-based MCMC algorithms on cheap models can be reaped.
1. Introduction

In engineering mechanics, computational models, such as those 
based on the finite element method (FEM), are used to simulate the 
mechanical response of structures and, where required, the underlying 
material behaviour. The number of parameters for these models can be 
large, for instance if the material properties vary in space. These param-
eters often represent an internal state of the model that is difficult or 
impossible to measure directly. Therefore, an inverse problem must be 
solved to estimate these model parameters from indirect experimental 
measurements, commonly referred to as observations. In the nonelastic 
regime, these inverse problems are typically non-linear, non-convex, 
and ill-posed, but they can be regularised elegantly by adopting a 
Bayesian approach. This approach to inverse modelling employs Bayes’ 
theorem to update the distribution of the parameters based on the 
observed data (Dobrilla et al., 2023; Marsili et al., 2017). On the 
downside, Bayesian inverse modelling is computationally expensive, 
preventing its widespread application to large-scale problems. A good 
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overview of general constitutive model calibration methods is given 
in Römer et al. (2025), and for Bayesian methods specifically in Kiran 
et al. (2025).

Recent advancements in Markov chain Monte Carlo (MCMC) sam-
pling and surrogate modelling have substantially improved the appli-
cability of Bayesian analysis in these scenarios. Despite the potential 
of these innovations, the selection of surrogate models and integration 
with state-of-the-art MCMC algorithms often rely on ad-hoc choices. A 
systematic evaluation of their combined impact on overall performance 
remains scarce. This lack of clarity obscures the understanding of 
how each component impacts the overall effectiveness of the inference 
process. Addressing this gap, our study conducts a comparative anal-
ysis to elucidate the effects of the methodological decisions regarding 
surrogate modelling and sampling.

In Bayesian inference, a prior distribution for the parameters is 
assumed and combined with a likelihood function. The likelihood mea-
sures the agreement of the model predictions with the observed system 
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response. Following the Bayesian formalism, a posterior distribution 
for the parameters is obtained. For instance, when inferring material 
properties from measurements, the posterior distribution must be ap-
proximated due to the non-linear nature of the likelihood function, 
e.g. via sampling from the joint distribution of data and parameters. 
The Bayesian analysis via MCMC entails the following computational 
steps: Generating a new state, evaluating the forward model, computing 
the likelihood, and accepting or rejecting the proposal. The bottleneck 
of the sampling effort is the evaluation of the forward model, which, 
in case of FEM-based inverse modelling, is an expensive simulator 
that maps the parameters to the observables. The state generation 
and acceptance steps are implemented by the sampling algorithm and 
determine how often the model and likelihood must be evaluated. 
The most commonly used sampling algorithm is the random walk 
Metropolis (RWM) algorithm due to its simplicity and guaranteed 
asymptotic convergence (Mengersen and Tweedie, 1996). However, its 
sampling efficiency decreases with the dimensionality of the parameter 
space (Roberts and Rosenthal, 2001).

One way to reduce the number of costly forward passes is by 
employing sampling algorithms that more efficiently produce uncorre-
lated samples from the posterior distribution. The first-order Metropolis 
adjusted Langevin algorithm (Roberts and Stramer, 2002), Hamiltonian 
Monte Carlo (Duane et al., 1987), or their second-order manifold 
variants (Girolami and Calderhead, 2011), as well as piecewise de-
terministic Markov process based algorithms (Bierkens et al., 2019) 
maintain high sampling efficiency in high-dimensional settings. Empiri-
cal studies of their performance on engineering problems (Girolami and 
Calderhead, 2011; Chong and Lam, 2017; Goodman and Weare, 2010) 
suggests their theoretical performance in terms of convergence rates on 
canonical distributions (Gelman et al., 1997; Roberts and Rosenthal, 
1998) translates well to practical settings. However, these algorithms 
require the gradient of the log-joint density, or even higher derivatives 
thereof, quantities which are at best difficult to obtain for large scale 
FEM models. Ensemble-based methods (Ching and Chen, 2007; Lye 
et al., 2022; Straub and Papaioannou, 2015) perform well on certain 
classes of problems but still require at least (104) model evaluations 
to ensure convergent posterior statistics.

The other increasingly common strategy to reduce the computa-
tional cost of the sampling effort is the application of surrogate models. 
Surrogate models exploit the redundancy in the model predictions 
required for collecting posterior samples. Instead of running the expen-
sive simulator in each MCMC step, a cheap-to-evaluate surrogate model 
is trained on a small number of solver calls.

Such a surrogate model, is constructed in Hu et al. (2024), Thomas 
et al. (2022), Deveney et al. (2023). In Wu et al. (2020), e.g., a neural 
network surrogate is trained to replace an iterative mean-field ho-
mogenisation algorithm for material property inference in the presence 
of plastic deformations. All these approaches have in common that 
multiple models must be trained if the dataset consists of observations 
originating from fundamentally different conditions. The three distinct 
test scenarios in Wu et al. (2020) motivate the training of three neural 
networks to reduce the complexity of individual tasks. Further, the 
works employing polynomial chaos and Gaussian process (GP) models 
do not consider correlations between the outputs and train one model 
per scalar observation. While model training is typically not the com-
putational bottleneck in the settings we consider here, tweaking the 
hyperparameters for the individual models can be cumbersome and 
time-consuming for the analyst.

After the model is evaluated, its responses are funnelled into the 
likelihood function to produce a scalar measure for the agreements of 
observations and model predictions for a given parameter vector. This 
function can then be approximated by a single surrogate model (Chen 
et al., 2023; Drovandi et al., 2018; del Val et al., 2022). However, 
targeting the likelihood function also introduces certain complexities. 
The likelihood incorporates all model non-linearity at once and might 
be more difficult of a target than the individual model predictions. 
2 
Moreover, the likelihood has its own parameters, e.g. the observation 
noise, that one might be uncertain about. These parameters of the 
observation model can be inferred alongside the model parameters, but 
this increases the dimensionality of the input space for the surrogate 
model. Despite these challenges, we prioritise the likelihood approach 
in our study. This decision is driven by its broader applicability across 
various domains, as it allows for a more generalised framework for 
modelling in contrast to methods tailored to specific physical models. 
It should be noted that multi-fidelity MCMC (Zhang et al., 2018) and 
non-linear dimensionality reduction techniques (Dasgupta et al., 2024) 
have shown promising results for Bayesian inverse modelling. However, 
these methods come with their own set of modelling challenges and 
therefore remain beyond the scope of this work.

For any choice of surrogate model, training data selection is crucial 
for the accuracy of the approximation. Most commonly, an a priori 
strategy is employed. The training points are either sampled from the 
prior, generated by Latin hypercube sampling (Hu et al., 2024; Thomas 
et al., 2022; Wu et al., 2020; Chen et al., 2023), or spread out on a 
grid (del Val et al., 2022). These a priori strategies suffer from the 
curse of dimensionality, i.e. their performance degrades rapidly with 
increasing dimensionality of the parameter space.

The model accuracy is typically measured by the mean squared 
error (MSE) on a validation set. This set is generated with the same 
strategy as the training data. However, this MSE is not necessarily a 
good indicator of the quality of the surrogate model for a Bayesian anal-
ysis — the surrogate model is only required to be accurate in regions of 
high posterior density. Active learning strategies, such as Deveney et al. 
(2023), Kandasamy et al. (2015), Drovandi et al. (2018), Dinkel et al. 
(2024), probe the posterior distribution to collect more informative 
data points. Further, surrogate models are generally not only cheap to 
evaluate, but also cheap to differentiate, enabling the application of 
gradient-based sampling algorithms.

The aforementioned works which focus on surrogate models for 
Bayesian inference identify MCMC sampling as a bottleneck and employ 
a variety of algorithms: RWM in Wu et al. (2020), del Val et al. 
(2022); HMC or its No U-Turn (NUTS) variant (Deveney et al., 2023; 
Hu et al., 2024; Thomas et al., 2022); TMCMC (Chen et al., 2023). 
However, the specific choices are rarely justified or even commented 
on. A good overview of the mix and match regarding surrogate and 
sampling algorithm can be found in the review of Hou et al. (2021) 
on Bayesian inference for building energy models. The review contains 
an assessment both of surrogate models and sampling algorithms in 
isolation, but does not cover the integration of both components into a 
single framework. Especially for active learning strategies, the interplay 
between the surrogate model and the sampling algorithm is crucial: 
the sampler determines where the surrogate model is queried, and the 
surrogate models in turn affects the acceptance probability, and the 
subsequent proposal generation.

In this work, we investigate the interplay of surrogate modelling and 
sampling algorithms for Bayesian inference. We focus on the inference 
of material parameters in the non-linear regime of a computational 
mechanics model. We introduce a scalable case study to create a 
series of inference problems with comparable complexity but increasing 
stochastic dimensionality. We employ a GP surrogate model for the 
likelihood and propose to follow the MCMC chain to collect training 
data. This form of active learning is based on uncertainty of the model 
prediction, informing our choice of the GP as surrogate model. As we 
will demonstrate in  Section 5.3, active learning is a crucial component 
of the framework, ruling out a priori trained surrogate models.

Using this set of problems we investigate the following aspects of 
surrogate accelerated Bayesian inference: (i) How does the choice of 
data collection strategy impact the accuracy of the surrogate model? 
(ii) Do superior MCMC algorithms construct better surrogate models? 
(iii) After training the surrogate model, how does the sampling al-
gorithm for the generation of posterior samples impact accuracy and 
performance?
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2. Background

2.1. Computational mechanics

This section presents a brief introduction to computational mechan-
ics. The deformation of the body within the domain D with boundary 
B is governed by the equilibrium equation, which can be written as
∇ ⋅ 𝝈 = 𝟎 for 𝒙 ∈ D , (1)

𝒖(𝒙, 𝑡) = 𝒖̂(𝒙, 𝑡) for 𝒙 ∈ B, (2)

where 𝝈 is the stress tensor and inertia effects and external forces are 
assumed to be negligible. The boundary conditions in Eq. (2) enforce 
a displacement 𝒖̂ at the boundaries of the domain. The kinematics of 
the deformation are described by the displacement field 𝒖(𝒙). Assuming 
small strains, the strain tensor 𝜺 is given by 

𝜺 = 1
2
(

∇𝒖 + (∇𝒖)⊤
)

. (3)

This kinematic relation must be linked to the equilibrium equation in 
Eq. (1). The constitutive model  relates the stresses to the strains and 
a local material parameter 𝛽: 
𝝈 = (𝜺, 𝛽). (4)

Here, 𝛽 denotes a (fixed) material parameter. It is distinct from internal, 
history–dependent state variables (e.g. plastic strain, damage) whose 
evolution is prescribed by the constitutive model. These states are 
therefore not inferred directly; their evolution laws are then fully 
dictated by 𝛽. Often, the local parameter value is expressed in terms of 
a set of global parameters 𝜽 ∈ R𝑑 and the location 𝒙, e.g. 𝛽 = 𝛽(𝒙,𝜽) =
𝜃0 + 𝒙 ⋅ 𝜃1.

Substituting Eq. (4) into Eq. (1) gives 
∇ ⋅ ( (𝜺, 𝛽)) = 𝟎, (5)

which together with Eq. (3) can be solved for the displacement field 
𝒖(𝒙) and yields the forward model (𝜽). While the extension to the 
multi-parameter case is straightforward, we will focus on the scalar case 
here for simplicity.

The choice of constitutive model — be it linear or non-linear, isotro-
pic or anisotropic, and dependent or independent of time — hinges on 
the specific material and its regime of deformation. Irrespective of the 
clarity in the nature of the chosen constitutive model, a persistent chal-
lenge lies in the inherent uncertainty of material parameters (Rappel 
et al., 2019, 2020). These parameters, crucial for accurately predicting 
material behaviour, are often not directly measurable but must be 
inferred from experimental data. The task of inferring these parameters 
frames the inverse problem associated with the forward model .

2.2. Random fields and their discretisation

Acknowledging the lack of total control over manufacturing pro-
cesses or the inherent randomness of the material itself, the assumption 
of homogeneous material properties is generally not justified. In many 
applications, material properties can vary significantly across different 
regions of a part and exhibit randomness under repeated production. 
We are, therefore, interested not just in inferring global material pa-
rameters but also how they vary throughout D . However, there is 
typically some structure to the randomness that we need to consider 
when inferring the spatial distribution of material properties.

A useful way to capture this spatial variability is through random 
fields, which provide a framework for describing quantities that vary 
both in space and with some inherent randomness. More specifically, a 
random field is a collection of random variables associated with points 
in a physical space, 𝑥 ∈ D ⊂ R𝐷. For simplicity, we can think of a 
random field as a function 𝛽(𝒙) that assigns random values to each point 
𝒙 in the domain.
3 
Many physical quantities, such as material properties, can be mod-
elled as Gaussian random fields. This means that any set of values 
the field takes at different points, 𝛽(𝒙1),… , 𝛽(𝒙𝑘) for 𝒙1,…𝒙𝑘 ∈ D , 
follows a multivariate normal distribution. This type of field is fully 
described by two key statistical properties: (i) the mean function 𝜇𝛽 (𝒙), 
which describes the average value of the field at each point, and (ii) 
the covariance function 𝐶𝛽 (𝒙,𝒙

′), which tells us how values at different 
points are correlated based on their distance apart.

In practice, the field is expressed as a truncated series expansion 
in terms of a set of deterministic basis functions 𝜙𝑖(𝒙) with random 
coefficients 𝜃𝑖. By cutting off the series expansion at a finite number of 
terms 𝑑, we obtain a finite-dimensional approximation of the random 
field: 

𝛽(𝒙) ≈ 𝛽(𝒙,𝜽) = 𝜇𝛽 (𝒙) +
𝑑
∑

𝑖=1
𝜙𝑖(𝒙)𝜃𝑖. (6)

The expansion effectively amounts to a separation of the physical 
and the stochastic domain Sudret and Kiureghian (2000). Since all 
randomness is now contained in the coefficients 𝜽 ∈ R𝑑 , inferring the 
random field reduces to inferring 𝜽.

Expansions encountered in related works employ a basis of polyno-
mials (Deveney et al., 2023; Marzouk and Najm, 2009), wavelets (Nouy 
and Maître, 2009), B-splines (Vigliotti et al., 2018), or Gaussian-process 
shape functions (Li and Kiureghian, 1993). The optimal expansion in 
terms of the total mean squared error of the truncation compared to the 
full sum is the Karhunen-Loève (KL) expansion. It is the eigenfunction 
expansion of the covariance function of the random field (Ghanem 
and Spanos, 1991). For a Gaussian random field, the KL expansion 
coefficients 𝜽 are i.i.d. standard normal random variables. For the other 
expansions, the coefficients are normally distributed but correlated.

We opt for a radial basis function (RBF) expansion. The basis is 
given by 

𝜙𝑖(𝒙) = exp
(

− 1
2𝑙2

‖𝒙 − 𝒄𝑖‖2
)

, (7)

where 𝒄𝑖 are the centres of the RBFs and 𝑙 is the length-scale. Each 
basis function 𝜙𝑖 reaches its maximum at 𝒄𝑖 and decays with increasing 
distance from the centre. This choice is not optimal in terms of the total 
mean squared error for a given number of basis functions. However, it 
has a clear advantage for defining a sequence of comparable inference 
problems: the RBF expansion leads to a parameterisation of the field 
where all coefficients have a similar influence on the global system 
response. On the other hand, the ordering of the eigenfunctions of the 
KL expansion according to their eigenvalues ensures that the model is 
most sensitive to changes in the first few coefficients. Furthermore, we 
circumvent the need to solve the associated eigenvalue problem.

Given that the random field is characterised by a squared expo-
nential covariance function, employing a linear model with RBFs and 
appropriately setting the RBF length-scale produces a similar covari-
ance structure. It converges to the desired covariance in the limit of 
infinitely many basis functions (Rasmussen and Williams, 2006, p. 84). 
Note that an RBF model with length-scale 𝑙 produces a covariance 
function with effective length-scale 𝓁 =

√

2𝑙 (Mackay, 1998). For 
simplicity, we choose the prior of the weights to be i.i.d Gaussian, 
i.e. 𝜽 ∼  (𝟎, 𝜎2𝜃𝑰). It is convenient to store the basis functions in a 
feature vector 𝝓(𝒙) = [𝜙1(𝒙),… , 𝜙𝑑 (𝒙)]𝖳. The prior mean of the RBF 
expansion then reads: 
E[𝛽(𝒙,𝜽)] = E

[

𝜇𝛽 (𝒙) + 𝝓(𝒙)𝖳𝜽
]

= 𝜇𝛽 (𝒙) + 𝝓(𝒙)𝖳E[𝜽] = 𝜇𝛽 (𝒙), (8)

showing the desired mean can be achieved by setting 𝜇𝛽 = 𝜇𝛽 . The 
covariance of the RBF expansion is given by:
cov(𝛽(𝒙,𝜽), 𝛽(𝒙′,𝜽)) = E[(𝛽(𝒙,𝜽) − 𝜇𝛽 (𝒙))(𝛽(𝒙′,𝜽) − 𝜇𝛽 (𝒙′))] (9)

= E[𝝓(𝒙)𝖳𝜽𝜽𝖳𝝓(𝒙′)] = 𝝓(𝒙)𝖳𝝓(𝒙′)𝜎2𝜃 . (10)

The variance consequently is 
𝜎2(𝒙) = 𝝓(𝒙)𝖳𝝓(𝒙)𝜎2. (11)
𝛽 𝜃
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Fig. 1. Discretisation of the random field with increasing amount of radial basis functions. The variance of the fields is shown in the top row. The banded 
covariance structure is displayed in the bottom row.
The prior variance of the weights 𝜎2𝜃 can be set to match the variance 
of the random field of interest. It is then given by 

𝜎2𝜃 =
𝜎2
𝛽

sup
{

𝝓(𝒙)𝖳𝝓(𝒙),𝒙 ∈ D
} . (12)

where the denominator scales the maximum variance of the RBF ex-
pansion to the desired variance of the random field.

The random field parameters, i.e. its mean 𝜇𝛽 , variance 𝜎2𝛽 , and 
effective length-scale 𝓁, can be inferred along the coefficients 𝜽 in a 
hierarchical Bayesian model. We assume to have prior knowledge of the 
problem that we can use to set these hyperparameters, as hierarchical 
modelling is not the focus of this study.

Fig.  1 shows the discretisation of a random field on a one-dimensi-
onal domain D with varying amounts of basis functions. As the number 
of basis functions increases, the variance of the field approaches a con-
stant value throughout the domain. The banded covariance structure 
on the far right of the figure is well approximated by the RBF model. 
We can see that the expansion produces a stationary random field 
that converges in variance and length-scale to the infinite-dimensional 
random field.

2.3. Bayesian inference for random fields

Our PDE model  maps material parameters 𝜽 ∈ R𝑑 to an output 
𝒚 ∈ R𝑚, i.e. 𝒚 = (𝛽(⋅,𝜽)) = (𝜽). The inverse problem is concerned 
with inferring these model parameters from observation data 𝒚̃. In 
mechanics, the observation data 𝒚̃ typically comprises noisy measure-
ments of the displacement field 𝒖 and the reaction forces 𝒇 , i.e. 𝒚̃ =
[𝒖̃𝖳, 𝒇̃𝖳]𝖳. For a Bayesian approach to inverse problems, the parameters 
and the data are represented as random vectors and equipped with 
a probability measure, see Stuart (2010) for a detailed description. 
The prior distribution for the parameters 𝑝(𝜽) expresses all knowledge 
available on the parameters 𝜽 prior to seeing any data. The likelihood 
function 𝑝(𝒚̃|𝜽) expresses how well the model prediction matches the 
observed data for a given realisation of the parameter vector 𝜽. In our 
case, the likelihood is a function of the model  and takes the form 
𝑝(𝒚̃|𝜽) = 𝑝(𝒚̃|(𝜽)), (13)

and is induced by the data-generation mechanism: measurements equal 
the model response plus noise. We assume additive noise that is inde-
pendent of 𝜽, capturing the uncertainty in 𝒚̃: 
𝒚̃ = (𝜽) + 𝝐 (14)
4 
where 𝝐 ∈ R𝑚 is the noise random vector. In this work, the noise 
vector is assumed to follow a zero-mean Gaussian distribution with 
covariance matrix 𝜮𝜖𝜖 ∈ R𝑚×𝑚. More specifically, each data point 
comprises displacement and force observations 𝒇 and 𝒖, respectively, 
which come from measuring devices with distinct noise levels for 𝝐𝑢
and 𝝐𝑓 . Extending Eq. (14) to the multi-output case, we have 

𝒖̃ = 𝒖 + 𝝐𝑢, 𝒇̃ = 𝒇 + 𝝐𝑓 . (15)

Assuming no correlation between the two types of observations, their 
joint likelihood takes the form 

𝑝
([

𝒖
𝒇

]

|

|

|

|

𝜽
)

= 
([

𝒖
𝒇

]

|

|

|

|

(𝜽),
[

𝜮𝑢𝑢 𝟎
𝟎 𝜮𝑓𝑓

])

, (16)

where the covariance structures 𝜮𝑢𝑢 and 𝜮𝑓𝑓  of the displacement and 
force observations, respectively, are known a priori.

It should be noted that the i.i.d. noise model choice is based on the 
assumption that we exactly know the physics of the problem, i.e. there 
is no model misspecification, and that our measurement devices show 
no spatial or temporal correlation. This simplification is justified for 
the scope of this study, as it investigates aspects of the Bayesian 
inference workflow other than the definition of the likelihood function. 
In practice, however, a more complex observation model that reflects 
all sources of uncertainty, as outlined in Simoen et al. (2013), should be 
employed. Otherwise, the inference might yield overconfident posterior 
beliefs about the parameters governing the random field, which can be 
misleading in a subsequent decision-making process.

Finally, we can apply Bayes’ theorem to obtain the density of the 
parameters 𝜽 conditioned on the observations 𝒚̃, which reads 

𝑝(𝜽|𝒚̃)
⏟⏟⏟
posterior

=

likelihood
⏞⏞⏞
𝑝(𝒚̃|𝜽)

prior
⏞⏞⏞
𝑝(𝜽)

𝑝(𝒚̃)
⏟⏟⏟

model evidence

, (17)

where the denominator on the right hand side is the so-called evidence. 
This normalising constant can be obtained by marginalising out the 
parameters: 

𝑝(𝒚̃) = ∫R𝑑
𝑝(𝒚̃|𝜽)𝑝(𝜽)𝑑𝜽. (18)

With a few exceptions, the integral in Eq. (18) is intractable. While 
the evidence can be approximated via numerical methods such as 
Monte Carlo simulation, it is notoriously hard to compute accurately. 
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More efficiently, we can draw samples directly from the unnormalised 
posterior distribution via MCMC methods. For the latter approach, we 
only need to know the posterior distribution up to a proportionality 
constant, hence no need to obtain the evidence. We can draw samples 
from the posterior despite only having access to the joint distribution 
of data and parameters: 
𝑝(𝜽|𝒚̃) ∝ 𝑝(𝒚̃,𝜽) = 𝑝(𝒚̃|𝜽)𝑝(𝜽). (19)

2.4. Markov chain Monte Carlo methods

MCMC methods are a class of algorithms used to sample from a 
probability distribution from which direct sampling is difficult, hence 
they are suitable for Bayesian inference in computational mechanics. 
A Markov chain that has the desired distribution as its equilibrium 
distribution is constructed and its states are recorded. The more steps 
the chain takes, the more the distribution of the states of the chain 
converges to the target distribution.

2.4.1. Random walk Metropolis algorithm
The RWM algorithm is based on a random walk in the state space, 

determined by a proposal distribution to generate new states. In the 
subsequent Metropolis correction, the proposed state is either accepted 
so that the chain moves, or rejected so that the chain stays in place. 
This correction is essential for the convergence of the chain to the 
target distribution and is a core building block for many other MCMC 
algorithms.

Suppose we have a function 𝑓 (𝜽) that is proportional to our target 
distribution 𝑝(𝜽|𝒚̃). In our case, this function is the joint distribution 
of parameters and data 𝑝(𝒚̃,𝜽). Once the data is observed, the joint 
distribution essentially becomes a function of the parameters 𝜽 only. 
Given the current state 𝜽𝑛, a move to 𝜽∗ is proposed according to the 
proposal distribution 𝑞(𝜽∗|𝜽𝑛). Next, the Metropolis–Hastings ratio is 
calculated as 

𝑟(𝜽𝑛,𝜽∗) = 𝑓 (𝜽∗)𝑞(𝜽∗|𝜽𝑛)
𝑓 (𝜽𝑛)𝑞(𝜽𝑛|𝜽∗)

. (20)

The move from 𝜽𝑛 to 𝜽∗ is then accepted with probability 
𝑎(𝜽𝑛,𝜽∗) = min

(

1, 𝑟(𝜽𝑛,𝜽∗)
)

. (21)

If the proposal distribution 𝑞(𝜽∗,𝜽𝑛) is symmetric — the normal dis-
tribution is a common choice — the ratio simplifies to the Metropolis 
ratio 

𝑟(𝜽𝑛,𝜽∗) = 𝑓 (𝜽∗)
𝑓 (𝜽𝑛)

, (22)

also reflected in the algorithms name.
The Gaussian proposal mechanism can then be written as 

𝜽∗ = 𝜽𝑛 + 𝑠
√

𝑴𝒛𝑛, (23)

where 𝑴 is a positive semi-definite preconditioner matrix which de-
fines the covariance of the proposal distribution, 𝒛𝑛 is a vector of 
i.i.d. standard normal random variables, and 𝑠 is the proposal variance 
controlling the step size. The corresponding proposal distribution then 
is 
𝑞(𝜽∗|𝜽𝑛) =  (𝜽∗|𝜽𝑛, 𝑠2𝑴). (24)

The performance of the algorithm can be significantly improved by 
setting 𝑴 to the sample covariance. The sample covariance can ei-
ther be estimated from a preliminary run of the algorithm or with a 
Laplace approximation of the posterior. The proposal covariance can 
also be adapted continuously during runtime, as long as the level of 
adaptation is vanishing with the number of iterations (Roberts and 
Rosenthal, 2007). Because diminishing adaptiveness is difficult to prove 
in practice, we set the proposal covariance to the sample covariance 
only once after the first 5000 MCMC-steps. Until then, we use the prior 
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covariance as preconditioner. This version of the RWM algorithm serves 
as the baseline MCMC algorithm in our study.

High acceptance rates can be achieved by reducing the variance of 
the proposal distribution, but this can lead to slow exploration of the 
state space. Conversely, a high variance can lead to fast exploration, 
but with a low acceptance rate. It is, therefore, important to choose 
the step size 𝑠 in a way that balances these two aspects. However, Gel-
man et al. (1997) have shown that the proposal variance 𝑠 must be 
scaled with the state space dimensionality 𝑑 according to (𝑑−1) to 
achieve the optimal acceptance rate of 0.234. Hence, if 𝑑 is large, the 
transitions are small and the algorithm shows poor mixing and slow 
convergence. Nonetheless, this poor scaling with 𝑑 is one of the main 
motivations to opt for gradient-based MCMC algorithms, such as the 
Metropolis-adjusted Langevin algorithm (MALA).

We constantly monitor the acceptance rate and adjust the step size 
𝑠 to achieve the algorithm’s optimal acceptance rate. To this end, the 
acceptance rate of the previous interval is determined every 500 MCMC 
steps. The step size 𝑠 is then either increased or decreased by 10%, if 
the acceptance rate is below 0.2 or above 0.3, respectively. If the rate 
is within the desired range, the step size is kept constant.

2.4.2. Metropolis-adjusted Langevin algorithm
The Langevin algorithm (Roberts and Stramer, 2002) derives its 

proposal mechanism from a discretised Langevin diffusion. It can be 
seen as a random walk with a drift term that is proportional to the 
gradient of the log-density. While the continuous Langevin diffusion has 
the targeted log-density as its stationary distribution, its discretisation 
introduces a bias. The Metropolis-adjusted Langevin algorithm (MALA) 
corrects for this bias by adding a Metropolis–Hastings correction to the 
mechanism.

The proposal mechanism of the MALA is given by 

𝜽∗ = 𝜽𝑛 + 𝑠2

2
𝑴∇ ln 𝑓 (𝜽𝑛) + 𝑠

√

𝑴𝒛𝑛. (25)

which gives rise to the Gaussian proposal distribution 

𝑞(𝜽∗|𝜽𝑛) = 
(

𝜽∗|𝜽𝑛 + 𝑠2

2
𝑴∇ ln 𝑓 (𝜽𝑛), 𝑠2𝑴

)

. (26)

The MALA proposal is similar to the RWM proposal Eq. (24), but 
has the additional drift term which is proportional to the gradient of 
the unnormalised log-density ln 𝑓 (𝜽𝑛). Note that proposal distribution 
is non-symmetric in 𝜽𝑛 and 𝜽∗. Hence, the Metropolis–Hastings ratio 
does not simplify to the ratio of the densities and has to be computed 
according to the general formula in Eq. (20).

As for the RWM algorithm, the preconditioner matrix 𝑴 is set to 
the sample covariance after the first 5000 MCMC-steps. Similarly, the 
step size 𝑠 is adaptively tuned during runtime to achieve the optimal ac-
ceptance rate of 0.574 (Roberts and Rosenthal, 1998). Only, the target 
interval for the acceptance rate is set to [0.55, 0.6] for the MALA. The 
MALA is known to be more efficient than the RWM algorithm for high-
dimensional state spaces, as it can exploit the gradient information to 
make larger steps in the direction of the mode of the target distribution.

2.5. Gaussian process surrogate model

We employ a GP surrogate model to approximate the likelihood 
function (𝜽) in order to reduce the computational cost associated 
with likelihood evaluations in the many MCMC iterations. From a 
mathematical angle, a GP is a collection of random variables, any finite 
number of which have a joint Gaussian distribution: 

 ∼  (|𝟎,𝑲(𝜣,𝜣)) , (27)

where a zero mean is assumed before seeing any data. The covariance 
matrix 𝑲(𝜣,𝜣) is the collection of the kernel function on all input pairs, 
i.e. 𝐾 = 𝑘(𝜽 ,𝜽 ) The matrix specifies the similarities in the output 
𝑖𝑗 𝑖 𝑗
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based on their input 𝜣. The kernel in this case is chosen as the squared 
exponential kernel (Rasmussen and Williams, 2006), given by 

𝑘(𝜽,𝜽′) = 𝜎2f exp
(

− 1
2𝓁2

‖𝜽 − 𝜽′‖2
)

. (28)

The GP variance 𝜎2f  controls the magnitude of the fluctuations 
around the mean function, and its length scale 𝓁 controls the smooth-
ness of the function. We assume the relationship of input and output 
of our training data to be of the form 𝜂𝑖 = (𝜽𝑖) + 𝜖𝑖, where (𝜽) is 
the likelihood function and 𝜖𝑖 is i.i.d. noise with variance 𝜎2n . Although 
the training data originates from noise-free simulations, we admit a 
noise term 𝜎2n𝑰 for numerical stability and model flexibility. We denote 
𝑲(𝜣,𝜣∗) the covariance matrix between the training and test points, 
and 𝑲(𝜣∗,𝜣∗) the covariance matrix between the test points. We can 
then write the joint distribution over the training output 𝜼 and new 
predictions ∗ at locations 𝜣∗ as 
[

𝜼
∗

]

∼ 
(

𝟎,
[

𝑲(𝜣,𝜣) + 𝜎2n𝑰 𝑲(𝜣,𝜣∗)
𝑲(𝜣∗,𝜣) 𝑲(𝜣∗,𝜣∗)

])

. (29)

Applying Bayes’ formula, the predictive distribution of the test output 
∗ = (𝜣∗) given the training data GP = (𝜣, 𝜼) is then given by
∗

|𝜼,𝜣,𝜣∗ ∼ 
(

∗
|𝝁∗,𝜮∗) , (30)

𝝁∗ = 𝑲(𝜣∗,𝜣)
(

𝑲(𝜣,𝜣) + 𝜎2n𝑰
)−1 𝜼,

𝜮∗ = 𝑲(𝜣∗,𝜣∗) −𝑲(𝜣∗,𝜣)
(

𝑲(𝜣,𝜣) + 𝜎2n𝑰
)−1 𝑲(𝜣,𝜣∗).

The predictive mean 𝝁∗ is our best guess about the function val-
ues at the test points, and the predictive variance 𝜮∗ quantifies our 
uncertainty about these predictions.

We determine the GP model hyperparameters — the process vari-
ance 𝜎2f , the noise variance 𝜎2n , and the length scale 𝓁 — via empirical 
Bayes for computational efficiency. For this, we maximise the marginal 
likelihood of the training outputs 𝜼 given the training input 𝜣. The 
marginal likelihood 𝑝(𝜼|𝜎2f , 𝜎2n ,𝓁) and its logarithm 𝐿 are given by

𝑝(𝜼|𝜎2f , 𝜎
2
n ,𝓁) = ∫ 𝑝(𝜼|, 𝜎2n )𝑝(|𝜎

2
f ,𝓁)𝑑, (31)

𝐿 = ln 𝑝(𝜼|𝜎2f , 𝜎
2
n ,𝓁). (32)

Instead of maximising the marginal likelihood directly, we maximise 
the log marginal likelihood Eq. (32) to avoid numerical issues. The asso-
ciated optimisation problem is solved with the BFGS algorithm (Fletcher
2000).

3. MCMC-guided active learning

In this section, we introduce an algorithm that employs MCMC-
guided sampling as a straightforward active learning strategy for con-
structing surrogate models. This approach leverages the predictive 
uncertainty inherent in the GP surrogate model, coupled with the 
trajectory of the MCMC algorithm, drawing inspiration from the active 
learning framework presented in Rocha et al. (2021).

Initially, we generate a set of 𝑁0 samples from the posterior dis-
tribution using the forward model. This set forms the initial training 
dataset for our GP surrogate model. Upon this dataset, we fit the GP 
model by estimating its hyperparameters and record the initial log 
marginal likelihood, denoted as 𝐿old. After the initialisation phase is 
completed, the MCMC algorithm generates new proposals based on the 
GP model. Denoting 𝒌(𝜽∗) the covariance vector between the training 
data and the new point 𝜽∗, and 𝑲 the covariance matrix of the training 
data, the predictive variance of the GP model at 𝜽∗ is given by 
V[(𝜽∗)] = 𝑘(𝜽∗,𝜽∗) − 𝒌(𝜽∗)⊤

(

𝑲 + 𝜎2n𝑰
)−1 𝒌(𝜽∗). (33)

If this variance remains below a specified threshold 𝛾v, we accept the 
GP’s prediction at 𝜽∗ and proceed without further action. Conversely, if 
the predictive variance exceeds the variance threshold 𝛾v, we resort to 
evaluating the forward model 𝒚∗ = (𝜽∗) and compute the likelihood 
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(𝜽∗) to obtain a new observation. We will refer to 𝛾v as the reject 
threshold. This observation is then used to update our training dataset.

Following the addition of new data, we update the GP’s posterior 
covariance matrix and recalculate the log marginal likelihood, denoted 
as 𝐿new. If the ratio |𝐿new∕𝐿old| exceeds a predetermined threshold 𝛾L, this 
indicates a significant change in the model’s understanding, prompt-
ing a re-estimation of the GP hyperparameters based on the updated 
dataset. We will thus refer to 𝛾L as retrain threshold. The process 
iterates until the end of the burn-in phase 𝑁b is reached, at which point 
the GP model’s hyperparameters are fixed. These parameters have a 
significant impact on the model’s predictive accuracy and their choice 
is therefore investigated in Section 5.2.

Replacing the forward model with the GP surrogate model leads to 
a modified proposal distribution Eq. (26) for the MALA: 

𝑞(𝜽∗|𝜽) = 
(

𝜽∗|𝜽𝑛 + 𝑠2

2
𝑴−1∇𝜽

(

E
[

(𝜽𝑛)
]

+ ln 𝑝(𝜽𝑛)
)

, 𝑠2𝑴
)

. (34)

Here, the gradient of the log-likelihood is computed using the mean of 
the GP posterior E[(𝜽𝑛)]. We also need to add the contribution of the 
log-prior ln 𝑝(𝜽𝑛). The modified MALA acceptance probability is then 
given by: 

𝑎̃(𝜽𝑛,𝜽∗) = min

(

1,
exp

(

E
[

(𝜽∗)
])

𝑝(𝜽∗)𝑞(𝜽∗|𝜽𝑛)

exp
(

E
[

(𝜽𝑛)
])

𝑝(𝜽𝑛)𝑞(𝜽𝑛|𝜽∗)

)

. (35)

The proposal for the RWM algorithm Eq. (24) remains the same, as 
it does not depend on the forward model. However, the acceptance 
probability Eq. (21) is modified to account for the GP surrogate model: 

𝑎̃(𝜽𝑛,𝜽∗) = min

(

1,
exp

(

E
[

(𝜽∗)
])

𝑝(𝜽∗)

exp
(

E
[

(𝜽𝑛)
])

𝑝(𝜽𝑛)

)

. (36)

Note that we need to exponentiate the GP prediction in Eqs.  (34) and 
(36), as we trained the GP on the log-likelihood. The MCMC algorithm 
incurs a bias from the surrogate model in the acceptance probabilities 
Eq. (35) and (36). The quantification of this bias and its impact on the 
posterior estimation is at the heart of this work.

As the GP model refines its accuracy with the incorporation of 
new data, we anticipate a reduction in predictive variance, signalling 
an enhanced model fidelity. Consequently, the need to resort to the 
computationally expensive forward model diminishes. This strategy 
ensures that new data points are strategically added to the model’s 
training set, particularly focusing on regions yet to be explored by the 
MCMC algorithm, without changing the response surface in regions 
that have been visited in previous steps. The active learning strategy 
is described in detail in Algorithm 1.

4. Case study

In this section, we introduce a scalable case study to elucidate 
the effects of the methodological decision on surrogate modelling and 
sampling. First and foremost, the problem must be computationally 
inexpensive. Since we cannot obtain an analytical posterior, we need 
the capability to brute-force approximate this distribution via long runs 
of MCMC to obtain a reference solution. Additionally, the problem 
should closely resemble a real-world scenario. To this end, we introduce 
a one-dimensional bar with length 𝐿 = 1m and constant cross-sectional 
area 𝐴 = 1m2, depicted in figure Fig.  2.

4.1. Material model

To make things more challenging, we introduce a simple non-
linear constitutive model and a spatially varying initial stiffness. It is 
adopted as a fast and pragmatic choice, but nevertheless without loss 
of generality. The constitutive model is given by 

𝜎(𝜀) = 𝑟(𝐸 −𝐻)
(

1 − exp
(

− 𝜀)) +𝐻𝜀. (37)

𝑟
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Fig. 2. Schematic representation of the one-dimensional bar problem. Dirichlet boundary conditions are enforced at the left and right boundaries.
 

Algorithm 1 MCMC-guided active learning for GP surrogate model 
construction. Depending on the choice of the algorithm, the proposal 
density 𝑞(𝜽∗|𝜽𝑛) in Line 5 is either given by Eq. (24) for the RWM 
algorithm or Eq. (34) for the MALA. Similarly, the acceptance probably 
𝛼̃ in Line 17 is given by Eq. (36) (RWM) or Eq. (35) (MALA).
1: Initialise 𝑁0 samples from the posterior using the forward model to 
obtain initial dataset GP = {(𝜽0,(𝜽0)),… , (𝜽𝑁 ,(𝜽𝑁0

))}
2: Estimate hyperparameters on GP and record 𝐿old
3: 𝑛 ← 0
4: while 𝑛 < 𝑁total do
5:  Generate new point 𝜽∗ from the proposal distribution 𝑞(𝜽∗|𝜽𝑛)
6:  if V[(𝜽∗)] < 𝛾v then
7:  Accept GP prediction for (𝜽∗)
8:  else
9:  Evaluate forward model 𝒚∗ = (𝜽∗), compute likelihood 

(𝜽∗)
10:  Update training dataset GP ← GP ∪

(

𝜽∗,(𝜽∗)
)

11:  Update GP’s posterior covariance matrix and compute 𝐿new
12:  if |𝐿new∕𝐿old| > 𝛾L AND 𝑛 < 𝑁b then
13:  Re-estimate GP hyperparameters and update 𝐿new
14:  𝐿old ← 𝐿new
15:  end if
16:  end if
17:  if 𝑎̃(𝜽𝑛,𝜽∗) > 𝑢 ∼  (0, 1) then 
18:  𝜽𝑛+1 ← 𝜽∗

19:  else
20:  𝜽𝑛+1 ← 𝜽𝑛

21:  end if
22:  𝑛 ← 𝑛 + 1
23: end while

This model, characterised by its initial stiffness 𝐸, its terminal stiffness 
𝐻 , and its rate parameter 𝑟, mimics nonlinear material behaviour 
during plastic deformation. It does so without necessitating the compu-
tational burden associated with tracking the evolution of plastic strain. 
Note that this simplification is only reasonable for the monotonic load-
ing considered in this study. We thereby embed additional non-linearity 
into the system without the exhaustive computational requirements 
typical of a complete plasticity model.

Fig.  3(a) illustrates the stress–strain relationship for different val-
ues of the material parameters. The material model’s non-linearity is 
evident, with the stress–strain curve exhibiting a distinct hardening 
behaviour. After initial numerical testing, no single parameter stood 
out as comparatively more challenging to infer, except for a hardening 
modulus 𝐻 close to zero. We, therefore, focus exclusively on the initial 
stiffness 𝐸 in the subsequent analysis to ensure a consistent comparison 
across the different methods at fixed 𝐻 and 𝑟. The spatially varying 
initial stiffness 𝛽 = 𝐸̂ = 𝐸̂(𝑥) ≈ 𝐸(𝑥,𝜽) is hence the unknown field to 
be inferred.

4.2. Sequence of inverse problems

We define a sequence of inverse problems by considering different 
stochastic discretisations of the spatially varying initial stiffness. Taking 
the spatial correlation of the RBF discretisation into account, further 
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additions of basis functions are expected to yield diminishing gains of 
information for a given random field. As the RBFs with centres close 
to one another are expected to correlate, their inference will be less 
challenging. We adapt the length scale of the random field, and thereby 
the complexity of the inference problem, according to the number of 
terms in the random field expansion, as demonstrated in Fig.  4. In 
other words, we must infer a random function with an expected number 
of zero crossings proportional to the number of free parameters. We 
also increase the amount of displacement data to ensure that the 
observations-to-parameters ratio remains constant. This ensures any 
difference in inference performance as the dimensionality of the latent 
space increases can be ascribed to the dimensionality and not to the 
complexity of the inferred behaviour.

To enforce positivity of the stiffness field, we parameterise it via a 
log-field. Let ̂̄𝐸(𝑥) denote the Gaussian log-stiffness field and 𝐸̄(𝑥,𝜽) its 
RBF discretisation. We then define the corresponding stiffness fields by 
exponentiation, 𝐸̂(𝑥) = exp

( ̂̄𝐸(𝑥)
) and 𝐸(𝑥,𝜽) = exp

(

𝐸̄(𝑥,𝜽)
)

(in MPa). 
Consequently, if ̂̄𝐸(𝑥) is Gaussian, 𝐸̂(𝑥) is log-normal pointwise. The 
explicit relations are:

𝐸̂(𝑥) = exp
(

̂̄𝐸(𝑥)
)

, (38)

𝐸(𝑥,𝜽) = exp
(

𝐸̄(𝑥,𝜽)
)

= exp

(

𝜇𝐸̄ (𝑥) +
𝑑
∑

𝑖=1
𝜙𝑖(𝑥)𝜃𝑖

)

, (39)

where 𝜇𝐸̄ (𝑥) is the mean of the underlying normal distribution. We 
set the random field parameters to 𝜇𝐸̄ (𝑥) = 8, 𝜎𝜃 = 0.1 to mimic 
an elastoplastic polymer used as matrix material in fibre reinforced 
composites (Melro et al., 2013), and fix 𝑙 = 1.5∕𝑑. The corresponding 
marginal distribution is depicted in Fig.  3(b) and the random field 
realisations for different numbers of RBFs and respective length scales 
are shown in Fig.  4. The goal is then to find the posterior distribution 
of the coefficients 𝜽 of the underlying Gaussian random field, which 
can then be transformed to the posterior of the parameter field with 
help of Eq. (39). We fix the remaining parameters to 𝐻 = 100MPa and 
𝑟 = 0.01.

In our fictitious experiment, we enforce Dirichlet boundary condi-
tions on the left and right boundaries as follows:
𝑢(0, 𝑡) = 0, (40)

𝑢(1, 𝑡) = 𝑡 for 𝑡 ∈ [0, 𝑇 ]. (41)

The displacement of the right boundary increases linearly with pseudo 
time 𝑡 and the final time is set to 𝑇 = 0.1 s. We sample the ground 
truth from the prior distribution (see Eq. (39) and Fig.  4) and solve the 
forward problem. To generate the observations, we record the displace-
ments at a number of locations and the reaction force at the far right 
boundary at 𝑁𝑗 =5 distinct times 𝑡𝑗 ∈ 0.02 s, 0.04 s, 0.06 s, 0.08 s and 0.1 s.
The number of recorded displacements per time 𝑡𝑗 is set to 𝑁𝑖 =
[3𝑑∕4], where [⋅] denotes the closest integer. This means there are fewer 
measurement locations 𝑥𝑖 than parameters to infer. These locations are 
spread uniformly within the domain D .

We then synthesise measurements from the recorded displacements 
and forces according to our observation model Eq. . We assume uncor-
related Gaussian noise, i.e. 𝜮𝑢𝑢 = 𝜎2𝑢𝑰 and 𝜮𝑓𝑓 = 𝜎2𝑓 𝑰 , with respective 
standard deviations 𝜎𝑢 = 0.001m and 𝜎𝑓 = 1MN. This virtual experi-
ment is conducted only once per given ground truth. The displacements 
and forces are stacked, i.e. 𝒖 = [𝑢(𝑥 , 𝑡 ), 𝑢(𝑥 , 𝑡 ),… , 𝑢(𝑥 , 𝑡 )] and 𝒇 =
0 0 1 0 𝑁𝑖 𝑁𝑗
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Fig. 3. (a) Non-linear material model with parameters 𝐻 = 250MPa and 𝑟 = 0.01. (b) Marginal distribution of the log-normal field 𝐸(𝑥).
Fig. 4. Random field realisations of the spatially varying initial stiffness for different numbers of RBFs and respective length scales. The blue lines depict different 
generations of the ground truth, which is sampled from the prior distribution. The dashed black lines represent the centres of the RBFs.
[𝑓0,… , 𝑓𝑁𝑗
]. The full observation vector 𝒚̃ = [𝒖𝖳,𝒇𝖳]𝖳 then comprises 

a total of 𝑚 = 𝑁𝑗 ⋅ (𝑁𝑖 +1) scalar observations. The goal is now to infer 
the parameters of a matching discretisation of the random field from 
these noisy observations.
Remark. The actual stiffness field may not lie in the RBF span used for 
inference in practice, a situation which we do not treat systematically 
here. When the mismatch is small, Bayesian inference remains robust: 
the posterior balances data fit with prior regularisation and concen-
trates near the best in-span approximation. Practical remedies include 
a full Bayesian approach with a shrinkage prior on 𝜽 (Green, 1995), 
Bayesian model selection to choose the basis dimension (Uribe et al., 
2020), or fitting a model discrepancy term (Kennedy and O’Hagan, 
2001). However, these strategies come at a high computational cost 
and remain beyond the scope of this work.

4.3. Wasserstein distance

So far, we have introduced a scalable case study, two MCMC al-
gorithms (RWM and MALA) to solve the inverse problems, and a 
GP surrogate model that can facilitate this process. To understand 
the impact of the methodological decisions on the inference process, 
we must compare the resulting approximate posterior distributions. 
8 
However, neither our reference posterior nor the approximation from 
the surrogate-model-assisted inference are available in analytical form, 
but instead are represented with samples from MCMC simulations. 
We must therefore find a suitable metric to compare these empirical 
distributions. The Wasserstein distance between two distributions is 
the minimum effort required to morph one into the other. This metric 
is particularly advantageous for empirical distributions, such as those 
represented by MCMC samples, because it can be directly applied to 
point clouds without requiring the distributions to be expressed in a 
functional form.

Other metrics, such as the Kullback–Leibler divergence or the total 
variation distance inherently require at least one of the distributions to 
be functionally described. To use these metrics in the given settings, 
one must approximate the empirical distribution using kernel density 
estimation or another density estimation technique, which introduces 
additional complexity and uncertainty into the analysis. In contrast, the 
Wasserstein distance directly considers the actual distances between 
points avoiding the pitfalls associated with density estimation. For our 
case study, we specifically employ the Wasserstein 2-distance, which is 
the square root of the optimal transport cost, and denote it as 𝑊2 in 
the following.
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The Wasserstein 2-distance 𝑊2(𝑃 ,𝑄) between two continuous dis-
tributions 𝑃  and 𝑄 on a metric space  is defined as: 

𝑊2(𝑃 ,𝑄) =
(

inf
𝛾∈𝛤 (𝑃 ,𝑄)∫×

‖𝑥 − 𝑦‖2 𝑑𝛾(𝑥, 𝑦)
)

1
2
, (42)

where 𝛤 (𝑃 ,𝑄) is the set of all joint distributions on × with marginals 
𝑃  and 𝑄. In case of empirical distributions represented by an equal 
amount of samples 𝑁total, the Wasserstein 2-distance reduces to: 

𝑊2(𝑃 ,𝑄) =

(

1
𝑁total

𝑁total
∑

𝑖=1
‖𝑥𝑖 − 𝑦𝜋(𝑖)‖

2

)

1
2

, (43)

where 𝑥𝑖 and 𝑦𝑖 are the samples from the distributions 𝑃  and 𝑄, respec-
tively, and 𝜋 is the permutation that minimises the square distance.

5. Results

In this section, we present the results for the case study. We first 
demonstrate the inference on the bar problem in general. Next, we 
validate the active learning approach on the five-dimensional problem 
and compare it to the a priori training strategies. Finally, we look at 
the impact of the MCMC algorithm on the surrogate model construction 
and on the efficiency and accuracy of the inference.

5.1. Reference solution

We first demonstrate the inference process on the one-dimensional 
bar problem with varying dimensionality of the unknown field. Fig. 
5 shows the ground truth — a sample from the prior — alongside 
the prior and posterior distributions of the initial stiffness. All results 
are obtained using the RWM algorithm exclusively relying on the FEM 
model throughout the MCMC run. In these and all other runs, a total 
of 200000 MCMC samples were generated for each run, with the first 
5000 samples discarded as burn-in. Further, each chain was thinned by a 
factor of 40 to ensure uncorrelated posterior samples. This yields a total 
of 4500 samples per posterior distribution, keeping the cost of comput-
ing the Wasserstein distance manageable. The posterior distributions 
of the initial stiffness are in good agreement with the ground truth 
in all scenarios presented in Fig.  5, underscoring the efficacy of the 
Bayesian approach. Further, the true fields are well contained within 
the 95% credible interval of the posterior. This consistency indicates a 
robust and meaningful quantification of the uncertainty, affirming the 
reliability of our inference process. With this non-linear, yet scalable 
sequence of inverse problems at hand, we now turn our attention to 
the many modelling choices in surrogate model assisted inference.

5.2. Active learning validation

Before diving into the comparison of the various training strategies, 
we must first validate the active learning approach.

5.2.1. Influence of active learning parameters
We use the 5-dimensional problem to study the influence of the 

active learning parameters, namely, the number of pretrain steps 𝑁0, 
the reject threshold 𝛾v, and the retrain threshold 𝛾L. Every setting 
is repeated 10 times with different random seeds to account for the 
stochastic nature of the MCMC algorithm. The GP hyperparameter 
optimisation is performed 200 times with different initialisations to 
ensure convergence to the global minimum. The result of a grid search 
over these parameters is shown in Fig.  6. The Wasserstein 2-distance 
with respect to the reference solution from Section 5.1 is used as a 
metric to evaluate the accuracy of the active learning approach. While 
there is little variance in the results in Figs.  6(a) and 6(b), the results 
in Figs.  6(c) and 6(d) show the impact of the initial training points 𝑁0: 
the more training points, the smaller the approximation error. It also 
9 
becomes clear that the retrain threshold 𝛾L only has a minor impact on 
the accuracy of the inference.

The reject threshold 𝛾v emerges as the dominant factor when com-
paring the results of Fig.  6(a) - Fig.  6(d), each of which represent a 
different value of 𝛾v. No matter the number of initial MCMC steps 𝑁0 or 
the retrain threshold 𝛾L, the accuracy of the active learning approach 
clearly depends on the reject threshold 𝛾v. These results also suggest 
that the active learning approach is robust with respect to the initial 
hyperparameter estimation, as the Wasserstein 2-distance appears to 
be stable across the different values of the retrain threshold. We set the 
active learning parameters to 𝑁0 = 20, 𝛾L = 2.5, and 𝛾v ∈ {1.0, 5.0, 20.0}
for the remaining experiments.

5.3. Online vs offline learning

This section explores the training strategies for surrogate models, 
specifically contrasting the online active learning approach with con-
ventional offline a priori methods. In a priori learning, the training 
dataset is predetermined before the inference process begins, without 
considering the data observed during this process. We examine three 
predominant strategies for compiling this dataset:

• Grid: the training data forms a structured grid;
• LHS: the training data is uniformly distributed and sampled ac-
cording to a Latin hypercube design (McKay et al., 1979);

• Prior: the training data is sampled from the prior distribution of 
the material parameters.

Despite the simplicity of sampling from the Gaussian prior, both Grid 
and LHS strategies encounter an implementation challenge due to the 
prior’s infinite support. Attempting to impose a uniform distribution 
across this boundless domain inherently results in an improper dis-
tribution with zero density, rendering traditional sampling methods 
impractical. To address this, we implement a cutoff mechanism to 
define a finite bounding box in the latent space, enabling meaningful 
sampling for Grid and LHS methods. We set this cutoff at three standard 
deviations from the prior mean in each dimension, prioritising com-
prehensive coverage over the prior’s support. Although this approach 
may slightly compromise predictive accuracy within the denser regions 
of the prior, it significantly enhances model performance in instances 
where a notable discrepancy exists between the prior and posterior 
distributions. The active learning approach of Section 3, on the other 
hand, dynamically adjusts the training dataset based on the observed 
data, thereby adapting to the posterior distribution. Therefore, it self-
determines the amount and location of the training data points. All four 
sampling strategies are depicted in Fig.  7.

We now want to compare the accuracy of the surrogate models 
trained with the four different training data collection strategies. To 
this end, we consider the range of latent space dimensionalites 𝑑 ∈
{2, 3, 4, 5} and the associated inverse problems. For the a priori learning 
approaches, we set the number of training data points to 𝑁train =
5𝑑 for an even coverage in all directions. The GP-hyperparameters 
are estimated and fixed for the subsequent inference process. Each 
setting is repeated 10 times with different ground truths to account 
for the stochastic nature of the training process and the MCMC. The 
GP hyperparameter optimisation is performed 20 times with different 
initialisations.

Fig.  8 presents the outcomes of our comparative analysis between 
active learning and a priori training data collection strategies. We 
observe that for a latent space with dimensionality of 𝑑 = 2 and 
𝑑 = 3, the performance across all strategies is relatively similar, albeit 
with grid sampling showing a slight disadvantage. This parity shifts 
as we move to higher dimensions (𝑑 = 4 and 𝑑 = 5), where the 
active learning strategy outperforms the a priori methods. Moreover, 
a priori learning approaches demonstrate a broader variance in ap-
proximation error; some iterations are nearly as effective as active 
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Fig. 5. Posterior realisations of the spatially varying initial stiffness 𝐸 for different numbers of RBFs and respective length scales. The shaded areas represent the 
95% credible intervals of their respective distribution.

Fig. 6. Accuracy of the active learning approach on the 5 dimensional problem for different values of the reject threshold 𝛾v in subfigures (a)–(d). Each subfigure 
shows the Wasserstein 2-distance 𝑊2 between the reference and approximate posterior distribution for different values of the retrain threshold 𝛾L. The number 
of initial training data 𝑁0 is colour coded.
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Fig. 7. Visualisation of the training data for the 2-dimensional problem. The left subplot shows the training data for the active learning approach, while the 
remaining subplots show the training data for the a priori learning approaches.
Fig. 8. Approximation error of the training data collection strategies for a range of latent space dimensionalities. The half-violins stem from a kernel density 
estimate of the scattered data in log-space. The offline learning approaches each get 𝑁𝑡𝑟𝑎𝑖𝑛 = 5𝑑 training data, while the active learning approach gathers data 
according to Algorithm 1.
learning, while others fall markedly short. This variability is largely 
attributable to the spatial distribution of training data points with 
respect to regions of high posterior probability. In lower-dimensional 
spaces, the probability of a priori training data aligning with these 
critical regions remains high. However, as the dimensionality increases, 
the likelihood of such fortuitous alignment decreases significantly. This 
diminishing probability underlies the observed trends in approximation 
error: outcomes are either closely aligned with those of the active 
learning approach or significantly divergent, with few instances falling 
in between. These results underscore the increasing advantage of ac-
tive learning in higher-dimensional spaces, attributed to its strategic 
adaptability in navigating the complexities introduced by the curse of 
dimensionality.

The trends observed with the exponential increase in number of 
training points can be further corroborated by setting the number of 
training data points to be as similar as possible for all strategies, as 
determined by the active learning approach. For this purpose, we set 
the number of training data points to 𝑁train = ⌈

𝑑
√

𝑁train,AL⌉
𝑑 for the a 

priori learning approaches, where ⌈⋅⌉ denotes smallest integer greater 
than the argument. This is slightly favourable for the a priori learning 
approaches, as 𝑁train ≥ 𝑁train,AL. Nonetheless, the active learning 
now clearly outperforms the a priori approaches for all latent space 
dimensionalities. Results can be seen in Fig.  9.

As to why the a priori learning approaches perform worse than the 
active learning approach, it is helpful to inspect the different posteriors 
resulting from a single run with 𝑑 = 5 in Fig.  10. The regions close 
to the boundaries are well represented by the LHS surrogate model in 
Fig.  10(b), whereas the inner part of the domain exposes a significant 
approximation error compared to the AL solution Fig.  10(a). This 
discrepancy is further highlighted in the pair plots of the first two latent 
variables in the bottom row (Figs.  10(c) and 10(d)). The posterior from 
11 
the AL surrogate model is in good agreement with the FEM posterior. 
The training data samples are concentrated in regions of high posterior 
probability, as indicated by their darker colours.

On the contrary, the LHS surrogate model fails to match the refer-
ence posterior, as illustrated by the misalignment of the red and cyan 
samples in Fig.  10(d). A closer look at the training data reveals the 
shortcoming of the LHS strategy: while the 2-dimensional projection 
suggest a good coverage of the latent space, the samples are not 
concentrated in regions of high posterior density. Only a handful of 
points ended up in the region of interest, leading to a poor approxima-
tion of the posterior distribution. This misalignment is naturally more 
pronounced in higher-dimensional settings, but can already introduce 
large approximation errors for a latent space dimensionality as low as 
𝑑 = 3.

5.4. Performance and accuracy comparison

After exposing the deficiencies of the a priori training data col-
lection strategies, we settle on the active learning approach for the 
remainder of the experiments. In this section, we consider the MALA 
alongside the RWM algorithm, and compare their impact on surrogate 
model construction, sampling efficiency, and accuracy. We investigate 
the performance of the MALA and the RWM algorithm across a range 
of latent space dimensionalities, from 𝑑 = 2 to 𝑑 = 15. Every setting 
was repeated with 50 different ground-truth realisations (Fig.  4) to 
account for the inherent randomness of the MCMC algorithms. The 
GP hyperparameter optimisation is performed 50 times with different 
initialisations.
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Fig. 9. Approximation error of the training data collection strategies for a range of latent space dimensionalities. The violins stem from a kernel density estimate 
of the scattered data in log-space. All strategies get the same amount of training data, as determined by the active learning approach.

Fig. 10. Comparison of the surrogate models trained with the active learning and LHS strategies for a realisation of the problem with a 5-dimensional latent 
space. The top row shows the true, prior, and posterior fields, while the bottom row shows the pair plots of the first two latent space parameters. The training 
data are colour coded—the darker the colour, the higher the posterior density.
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Fig. 11. Number of FEM model calls 𝑁train (left column) and Wasserstein 2-distance 𝑊2 (right column) for the RWM algorithm and the MALA across a range of 
latent space dimensionalities 𝑑 for different reject thresholds 𝛾v.
5.4.1. Surrogate model construction
We begin by evaluating the number of training data points across 

various latent space dimensions and for three distinct reject thresholds 
𝛾v. Since the proposal mechanism of the sampling algorithms drives the 
training data acquisition, the MALA and the RWM algorithm construct 
different surrogate models.

The MALA requires fewer training data points than the RWM algo-
rithm across all latent space dimensionalities (Fig.  11) under stringent 
uncertainty requirements. With the added value of the gradient in-
formation, the MALA generates more informative proposals, which 
are more likely to be accepted. Therefore, the MALA requires fewer 
steps to generate sufficient training data for the surrogate model. The 
MALA advantage regarding the training data is persistent across all 𝑑, 
13 
shown by the constant offset to RWM in log-space. The slopes of both 
algorithms, however, are similar, indicating that they are subject to the 
curse of dimensionality in a similar manner.

The right column of Fig.  11 details the accuracy of the inferences. 
Under strict uncertainty controls (𝛾v = 1.0), both RWM and MALA 
achieve similar levels of accuracy in approximating the posterior dis-
tribution. Outliers below the trend line in Fig.  11(a) correspond to the 
outliers with high 𝑊2 in Fig.  11(b), highlighting the tradeoff between 
accuracy and efficiency. These outliers suggest a superior robustness of 
active learning with the RWM, as they exclusively occurred with the 
MALA.

With looser uncertainty requirements these outliers become more 
prevalent (Figs.  11(c) and 11(d)) and eventually they become the norm 
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Fig. 12. Level of adaptation of the MCMC algorithms RWM in Fig.  12(a) and MALA in Fig.  12(b). Each bar represents the number of new data points collected 
within intervals of 2000 MCMC steps, averaged over 50 realisations. The latent space dimensionality is colour coded.
(Figs.  11(e) and 11(f)). What happens in these MALA runs is that the 
initial MCMC samples are too far removed from the posterior’s high-
density regions. These samples then poorly represent the likelihood’s 
complexity, potentially leading to an overestimated GP length scale and 
an overly confident surrogate model that ceases to collect more training 
data. While the RMW algorithm encounters the same issue, it is less 
pronounced due to the more exploratory nature of the random walk 
proposal: eventually the algorithm moves towards the high-density 
regions of the posterior by chance, leading to further collection of 
training data. The MALA, however, is misled by an erroneous surrogate 
model and its poor approximation of the gradient and cannot correct 
itself.

To summarise the findings, the RWM algorithm and the MALA per-
form similarly both in terms of the number of training data points and 
the accuracy of the inference when strong requirements are imposed on 
the uncertainty in the surrogate model. When the uncertainty tolerance 
is relaxed, the RWM still produces accurate surrogates, underlining its 
superior robustness, while the accuracy of the surrogates trained with 
the MALA deteriorates.

5.4.2. Adaptation of the surrogate model
While the MCMC algorithms are guaranteed to converge to the 

distribution given by the surrogate model, the surrogate model itself 
must also converge to the true likelihood function. To investigate the 
level of adaptation of the surrogate model, we analyse the number of 
new data points collected throughout the MCMC chain. Fig.  12 shows 
the rate of data points collected per interval of 2000 MCMC steps for the 
14 
RWM (Fig.  12(a)) and MALA (Fig.  12(b)) algorithms, averaged over 50 
MCMC chains each. The cumulative number of data points collected for 
both algorithms is shown in Fig.  12(c) and Fig.  12(d). Three conclusions 
can be drawn: (i) the rate of training data collection decreases in all 
cases, (ii) the rate is higher for the RMW algorithm than for the MALA, 
(iii) the rate depends on latent space dimensionality—the higher the 
dimensionality, the more data points are needed at all stages of the 
chain. Even though the rate reduces to one new data point per 2000 
MCMC steps towards the end of the 𝑑 = 10 case, this dependence 
suggests a stationary surrogate model becomes more difficult to obtain 
with increasing latent space dimensionality.

5.4.3. Sampling performance given a trained surrogate model
Finally, we compare the sampling accuracy and efficiency of the 

RWM algorithm and the MALA when using the same surrogate model. 
In this case, we are using the one constructed by the RWM algorithm 
with 𝛾v = 1.0 and prohibit further training data collection. The numer-
ical experiment is repeated for the same 50 distinct realisations of the 
inverse problem per latent space dimensionality as in Section 5.4.1. 
There is no clear difference in accuracy of the posterior approximation 
between the MALA and the RWM algorithm for any given dimension-
ality. Fig.  13 shows the Wasserstein 2-distance across a range of latent 
space dimensionalities.

Starting from 𝑑 = 10, we observe an increasing number of out-
liers with high 𝑊2 values. These outliers represent chains that have 
completely diverged from regions with high posterior density. These 
chains navigated to largely unexplored regions of the parameter space, 



L. Riccius et al. European Journal of Mechanics / A Solids 117 (2026) 106015 
Fig. 13. Accuracy of the approximate inference when the RWM algorithm 
and the MALA use the same surrogate model, across a range of latent space 
dimensionalities. The crosses in indicate the outliers with predicive variance.

as indicated by the large predictive variance encountered during the 
respective MCMC run. Runs with at least one occurrence of a maximum 
predictive variance five times larger than 𝛾v are marked with a cross, 
which match well with the outliers in Fig.  13. This phenomenon occurs 
for both algorithms, but is more pronounced for the RWM algorithm. 
It underscores the shortcomings of a priori trained surrogate models in 
high-dimensional settings, as even a model tailored to a given posterior 
cannot guarantee the accuracy of the inference.

6. Conclusions

In this research, we have examined the integration of surrogate 
modelling with Markov chain Monte Carlo (MCMC) sampling tech-
niques to improve the efficiency of Bayesian model calibration. We 
introduced a simple, scalable one-dimensional bar problem equipped 
with a non-linear constitutive model and spatially varying stiffness. 
The stiffness field is discretised with radial basis functions, the number 
of which can be adapted to control the dimensionality of the latent 
space. This problem serves as our test bed to explore the impacts of 
various methodological decisions associated with MCMC and surrogate 
applications.

We employed a Gaussian Process (GP) surrogate model to approx-
imate the log likelihood function and evaluated several traditional 
a priori training strategies: Latin hypercube sampling, uniform grid 
sampling, and sampling from the prior distribution. Furthermore, we 
proposed an active learning strategy that adaptively selects training 
data points based on the MCMC path, leveraging the GP model’s inher-
ent uncertainty quantification capabilities. Our findings underscore the 
limitations of traditional a priori methods and demonstrate the superi-
ority of active learning in balancing computational costs with accuracy, 
particularly for problems with higher stochastic dimensionality.

Comparative analysis of the random walk Metropolis (RWM) and 
Metropolis-adjusted Langevin algorithm (MALA) in terms of surro-
gate model construction, sampling efficiency, and inference accuracy 
revealed that both algorithms perform comparably under stringent 
surrogate model uncertainty requirements. The increased sampling 
efficiency of the MALA was beneficial for the training of the surrogate 
model. The higher quality of the MALA samples lead to the construction 
of a surrogate model with similar accuracy to the RWM algorithm, but 
with fewer FEM model evaluations. However, under relaxed conditions, 
accuracy was better maintained with the RWM algorithm than with 
the MALA, underscoring the robustness of the RWM algorithm. When 
a predefined surrogate model was used, the choice of the sampling 
algorithm did not affect inference accuracy. However, there is a notable 
15 
chance for both algorithms to depart from the regions of high surrogate-
model certainty and accuracy. These divergent chains could not return 
to the high-density regions, even for surrogate models tailored to the 
posterior distribution, which further emphasised the shortcomings of a 
priori training.

This study suggest that related works (Deveney et al., 2023; Hu 
et al., 2024; Thomas et al., 2022; Chen et al., 2023) incorrectly identify 
the MCMC algorithm as a bottleneck in the inference process. The in-
tensive training data requirements for constructing a surrogate model in 
high-dimensional scenarios render the MCMC-with-surrogate approach 
impractical before any significant benefits of advanced sampling algo-
rithms can be realised. With a hypothetical simulator that takes 10 min 
to run, the compilation of the training dataset for a 15-dimensional 
latent space would require roughly 70 days. Any gains in sampling 
efficiency from advanced MCMC algorithms would be overshadowed 
by the prohibitive costs of surrogate model construction. This finding 
is at odds with common practice, where engineers often put signifi-
cant resources into the integration and analysis of advanced MCMC 
algorithms. This study clearly suggests prioritising the surrogate model 
construction over the choice of sampling algorithm. Further research 
into multi-fidelity MCMC schemes that exploit a hierarchy of models 
with varying complexity (Zhang et al., 2018; Meng, 2020; Kennedy 
and O’Hagan, 2000; Torzoni et al., 2023) and nonlinear dimensionality 
reduction techniques (Dasgupta et al., 2024) could provide viable 
strategies to mitigate the curse of dimensionality.
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