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A Survey on Machine Learning in Hardware Security

TROYA ÇAĞIL KÖYLÜ, CEZAR RODOLFO WEDIG REINBRECHT,
ANTENEH GEBREGIORGIS, SAID HAMDIOUI, and MOTTAQIALLAH TAOUIL,
Delft University of Technology, the Netherlands

Hardware security is currently a very influential domain, where each year countless works are published

concerning attacks against hardware and countermeasures. A significant number of them use machine learn-

ing, which is proven to be very effective in other domains. This survey, as one of the early attempts, presents

the usage of machine learning in hardware security in a full and organized manner. Our contributions in-

clude classification and introduction to the relevant fields of machine learning, a comprehensive and criti-

cal overview of machine learning usage in hardware security, and an investigation of the hardware attacks

against machine learning (neural network) implementations.
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1 INTRODUCTION

Ensuring the security of digital devices has become an important requirement [1]. As a result, great
attention was given to cybersecurity with a focus on software [2]. It was soon realized however
that attacking the hardware instead was much more rewarding, and consequently, security cannot
be attained without protecting the hardware. In light of this, many researchers started using tools
from other domains for improving attacks or countermeasures, as hardware security is a cat-and-
mouse game between them. Machine learning (ML) has proven to be one of the most prominent
such tools. This was to be expected, as machine learning has already achieved many tasks in other
domains (e.g., game playing [3] and carrying out daily conversations [4]). To what effect hardware
security researchers are using machine learning is however another issue. There is a need for a
complete overview that highlights missed opportunities.
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18:2 T. Ç. Köylü et al.

The existing reviews of machine learning for hardware security generally focus on specific
applications. In the works of Maghrebi et al. (2016) and Cagli et al. (2017), the authors investi-
gated machine learning in the context of profiling-based side-channel attacks [5, 6]. Picek et al.
(2018) also provided commentary in the same context [7]. Hettwer et al. (2020) expanded the cov-
erage to investigate the machine learning usage in the entirety of side-channel attacks [8]. The
work of Maes and Verbauwhede (2010) briefly mention the usage of machine learning in attacking
Physically unclonable function (PUF)s, whereas Rührmair and Sölter (2014) directly focus on that
topic [9, 10]. The survey of Rahman et al. (2018) dedicates a section to describe the role of machine
learning in physical inspection attacks (such as reverse engineering, side channel-analysis, and
fault injection) [11]. Likewise, Liu et al. (2020) dedicates a section on how approximate computing
techniques can improve machine learning-based hardware attacks such as Side-channel analy-
sis (SCA) and attacking PUFs [169]. On the countermeasure side, Huang et al. (2020) and Kundu
et al. (2021) provided surveys on machine learning algorithms used for detecting Hardware Trojan
(HT)s [12, 13]. The surveys that have holistic approaches are very few and they lack certain prop-
erties such as commentary on machine learning usage per case to guide future development. More
importantly, they are not complete about attacks against hardware that runs machine learning
(most prominently, neural networks) or countermeasures [14, 15]. This point is becoming more
and more important as machine learning algorithms are being increasingly used in safety-critical
applications, such as autonomous driving. Therefore, there is a need for a survey that not only
is complete; but also machine learning beginner friendly, guides the reader with each application
case, and presents future directions.

We address this by providing a comprehensive overview of machine learning algorithms used in
hardware security, as well as hardware security issues with machine learning applications, along-
side extensive commentary. In summary, the contributions of this paper are as follows:

• Providing an organized and comprehensive overview of the works that use machine learning
in hardware security.
• Extending the overview to cover the hardware attacks against neural networks.
• Highlighting important points and missed opportunities about the use of machine learning.
• Providing a classification and introduction to machine learning used in hardware security.

The rest of the paper is organized as follows. Section 2 provides a functional classification and in-
troduction to machine learning. Section 3 classifies the areas where machine learning is employed
in the context of hardware security. Section 4 discusses machine learning algorithms used in hard-
ware attacks, while Section 5 discusses machine learning algorithms used as countermeasures
against hardware attacks. Then, Section 6 describes hardware-based attacks and countermeasures
on neural networks. Finally, Section 7 concludes the paper by providing a summary and future
insights.

2 INTRODUCTION TO MACHINE LEARNING

Machine learning aims to improve an automated data processing task with experience [16]. This
experience is learned from training data, or more precisely, from the features of this data. The first
step of a machine learning algorithm is therefore the feature extraction phase, where meaningful
elements from the data are extracted. The second step is the training of the algorithm, which
is the learning of experience (training data). The final step is the evaluation. In this phase, the
performance of the algorithm is measured by using new data as input.

With this basis, many machine learning algorithms have been proposed. Figure 1 classifies them
and indicates the most popular algorithms [16, 17] that are also used in hardware security. The first
metric for classification in Figure 1 is based on the learning or training method. There are three
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Fig. 1. Classification of machine learning methods.

training strategies: supervised, unsupervised, and reinforced. The following subsections describe
these strategies, classify them further, and introduce examples of each class.

2.1 Supervised Learning

Supervised learning uses labeled data during training. This means that there is a teacher that pro-
vides the labels or desired states for the training data [18]. It is possible to further divide supervised
learning algorithms into two sub-classes, depending on whether an algorithm produces discrete
or continuous variables. The production of discrete variables is used for the classification or cat-
egorization of data. The production of continuous variables on the other hand is referred to as
regression, which is typically used for data prediction or function estimation. Table 1 summarizes
the examples of supervised algorithms, by also providing the data complexity they are most suit-
able to be used for. Each is also further described thereafter.

Discrete algorithms:

• N-nearest neighbors is a simple classification algorithm that classifies a data sample based on
N nearest data samples. The notion of distance is attained by a metric, such as the Euclidean
or Hamming distance [19]. The algorithm is suitable for non-complex classification tasks.
The performance of this algorithm mostly depends on the selection of N , where a too-small
number can miss the overall picture, while a too-large number would be too general for a
classification. A basic example is provided in Figure 2, where the black dot is classified into
the blue circle class, using N = 3 nearest neighbors (see the dotted circle). This is because
the three nearest instances consist of two blue circles and one red cross.
• Decision trees are classification algorithms that build a tree-like model on data. The leaves of

the decision tree are classes, and all other nodes are feature-based tests. Therefore, branches
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18:4 T. Ç. Köylü et al.

Table 1. Supervised Machine Learning Algorithms

name type complexity

N-nearest neighbors discrete simple

Decision trees discrete simple

Naïve Bayes discrete simple & complex

SVM discrete complex

Markov models discrete complex

MLP discrete & continuous simple & complex

CNN discrete & continuous complex

Linear and logistic regression continuous simple

Fig. 2. N-nearest neighbors classification example.

Fig. 3. Decision tree classification example.

connected to a node represent the possible outcomes of a feature test [20]. Decision trees
are suitable to classify simple data structures, but they suffer when the data is complex.
To obtain stronger classifiers, a common approach is to use multiple independent decision
trees and combine the result with a majority vote. This approach is called the decision forest.
An example of a simple decision tree is provided in Figure 3. Using this tree, a new day’s
weather can be classified by following the tests, based on the measurements of temperature
and humidity.
• Naïve Bayes is a probability-based classification algorithm. The algorithm assumes that there

is no correlation between the features of the data instances when the class information of
the instance is known (i.e., features are independent given class). Based on this assump-
tion, the algorithm uses the Bayes formula to determine which class that a data instance
x = [x0, . . . ,x j , . . . ,xN ] belongs to, as follows:

classx = arg max
i

n∏
j=1

P (x j |Ci )P (Ci ), (1)
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where Ci ’s are classes. While the independence assumption is rather strong and generally
inaccurate, the naïve Bayes classifier is observed to be useful in both simple and complex
data [21].
If desired, the naïve Bayes assumption can be replaced by a multivariate Gaussian model

distribution, which fits certain data more accurately (it is up to the designer to determine
the best assumption) [22]. The resulting classification algorithm becomes the following.

classx = arg max
i

pdfi (x )

=
1

(2π )n/2 | ΣΣΣi |1/2

∗ exp
(
− 1

2
(x − μi )T ΣiΣiΣi (x − μi )

)
,

(2)

where μ is the mean vector, ΣΣΣ is the covariance matrix, and pdf is the Probability density
function. These can be calculated using the same data points.
• Support vector machine (SVM) [23] is a linear classifier that aims to linearly separate data

into two different classes, by maximizing the separation as much as possible. Therefore, the
separation equation that should be maximized (with adjusting w ’s and b) is as follows:

yk [wTγ (xk ) + b] ≥ 1 − εk , (3)

where xk ’s are training instances andyk ’s are corresponding labels. εk is a compromise term,
that allows a less strict separation to limit outlier influence. Lastly,γ (.) is an implicit function
that maps the input to a higher dimension.
The maximization of the separation while attaining classification correctness can be ad-
dressed by the Lagrange multipliers method, which creates a dual problem in the form:

max
α

min
w,b,ε

L =
1

2
wTw

+
∑

k

αk (1 − yk (wTγ (xk ) + b) − 1 + εk )

−C
∑

k

εk .

(4)

Here,C is the trade-off parameter. Taking the partial derivatives of this equation (Lagrangian)
and equating to zero translates the dual problem into a quadratic programming problem. The
solution yields the following findings (as an overview):
– There is no need to select or calculate γ (.). Rather, a kernel is selected (linear, polynomial,

Radial basis function (RBF) etc.) in the form K (x ,xk ).
– xk ’s with nonzero αk ’s constitute support vectors.
– New data (z) can be classified as:

z =
∑

xk ∈S
αiyiK (z,xk ) + b . (5)

In this equation, S is the set of support vectors.
SVMs are used in many tasks. Although they are binary classifiers, multiclass classification
problems can also be addressed by SVMs [24]. Note that if the selected SVM kernels do not
create an adequate separation, SVM performance becomes limited.
• Markov models [25] are stochastic models to determine the likelihood of an event, given

some information about the preceding events. If the previous events can be known, the
modeling is referred to as not hidden. If the previous events can only be probabilistically
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18:6 T. Ç. Köylü et al.

Fig. 4. Graphical representation of HMM.

Fig. 5. The artificial neuron.

inferred via auxiliary information (called observations) rather, the model is referred to as
hidden. Hidden Markov model (HMM)s are generally used in sound and language process-
ing, where previous events cannot be known directly. A graphical examination is provided in
Figure 4. In the figure, s denotes the states. As apparent, these are not disclosed, so the infor-
mation about them comes from observations o. Here, pq denotes the probability of a certain

observation to occur, given a state. Lastly, ps denotes the probability of state transitions.
In light of this, the three main components that construct an HMM are the initial state con-
dition probabilities (π ), observation matrix (OOO), and the state transition matrix (AAA); which
contain all the aforementioned probabilities. When these elements are known or estimated,
a number of questions can be answered by an HMM, where one of the most relevant for tasks
like sound processing is “What is the most likely sequence of states given the observations?”.
A solution for this problem is provided by the well-known iterative Viterbi algorithm [26].
• Artificial neural network (ANN)s are complex structures based on the artificial neuron of

the McCulloch-Pitts model [27], illustrated in Figure 5. This basic representation shows the
processing of the input vector x . First, its dot product is taken with the weight vector w .
The result is provided to a non-linear function f (e.g., Sigmoid, Hyperbolic tangent (tanh),
Rectified linear function (ReLU)). This function produces the outputy. In a biological context,
this model imitates the nonlinear firing behavior of neurons. The learning is achieved by
modifying w with training data.
This neuron is used as a basis and many of them are connected with each other to form an
ANN. With appropriate architectures and training strategies, many tasks have been achieved
by using ANNs. Some examples of ANNs are given in the following.
• Multilayer perceptron (MLP) (see Figure 6 for a typical example) is an ANN that is composed

of multiple layers of neurons: a neuron in one layer is connected to all of the neurons in the
previous and the next layer, but is not connected with the neurons in the same layer. Most
typically, an MLP is:
– Consisting of an input, multiple hidden, and an output layer.
– Used for supervised classification.
– The number of output neurons is equal to the number of classification classes.
– Trained by the backpropagation method [28].
The backpropagation method aims to adjust the weights of the neurons in the network.
This is achieved by first calculating the error between the input and the desired output via
a loss function, during the training phase. The contribution to this error from individual
weights is limited by adjusting them in the direction of the negative error gradient. As
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Fig. 6. A typical Multilayer perceptron.

this process is propagated from the outer layers to the inner ones, the learning method is
referred to as backpropagation.
• Recurrent neural network (RNN) [29] is a neural network with “memory”. This is attained

with feedback loops on neurons. With these feedback loops, the previous decision affects
the next operation. RNNs are appropriately used for tasks that are sequential in nature,
such as speech, text, and the like.
RNN efficiency can drop when the task requires a lot of time steps back in time. Many
improvements were proposed to address this issue, with the most popular one being
the Long short-term memory (LSTM). This architecture augments RNN by introducing
specialized gates to process the flow of data [30].
• Hopfield networks [31] are memory recall structures. In essence, when a pattern is provided

to this network, it tries to associate it with the closest learned pattern. It does this iteratively:
at each iteration, this network updates the bits of the input, until two subsequent states
are equal. The bitwise update formula for the modern Hopfield network is provided in the
following [32].

ξt+1[l] = sgn

⎡
⎢
⎢
⎢
⎢
⎣

N−1∑
i=0

F
(
xT

i ξ
(l+ )
t

)
−

N−1∑
i=0

F
(
xT

i ξ
(l− )
t

)⎤⎥
⎥
⎥
⎥
⎦

. (6)

Here, ξt [l] is the lth bit of the state at time t (where the state is equal to the input at t = 0)

and xi ∈ [0,N ) are learned patterns. Furthermore, ξ (l+ )
t and ξ (l+ )

t only differ at bit l , where

ξ (l+ )
t [l] = 1 and ξ (l− )

t [l] = −1. In this equation, the function F determines how many patterns
the network can learn and how accurately it can recall them. It is common to select it as a
polynomial (e.g., F(a) = a3) or exponential (i.e., F(a) = exp(a)).
While they are not used as prominently as other neural networks, (modern) Hopfield
networks can accomplish many tasks. Most commonly, they are used in image-processing
tasks, such as reconstructing images with distortions [33] or generating images from text
descriptions [34].
• Convolutional neural network (CNN) [35] is an ANN with a higher number of layers (thus,

the association with the term deep learning). Some layers are specialized for visual tasks,
such as image classification and object recognition. A CNN includes a couple of fundamental
layer types (typically in the order presented): convolutional, pooling, nonlinearity, and fully
connected/dense.
– Convolutional layer: This layer can be inspected in two aspects: functional and structural.

Functionally, this layer accomplishes filtering between the input and its learned filters
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18:8 T. Ç. Köylü et al.

(different kernels), and as filtering refers to convolution, it is called the convolutional
layer. The functional output of this layer is feature maps that the proceeding layers can
learn from. Structurally, this layer is formed by a notion called weight sharing. In this
layer, different neurons use the same weights to simulate a convolution. When the weight
updates are calculated in the training phase, these updates are aggregated and applied
the same for the shared weights.

– Pooling layer: This layer only compresses the output of the earlier layers. Over a grid of
selected size (e.g., 4 × 4), it averages or takes the maximum value. So the grid is expressed
by a single number. Note that there is no learning in this layer.

– Nonlinearity layer: Simulating the nonlinear firing behavior of a biological neuron, this
layer maps its input to an output based on the selected nonlinear function. These are
commonly Sigmoid, ReLU, or tanh. There is no learning also in this layer.

– Fully connected layer: This layer is the standard MLP layer. Found in the last part of a
CNN, this structure accomplishes the final classification. An important observation here
is that, due to the earlier layers (especially the pooling layer), the input to this layer has a
much smaller dimension than its original form. This effective feature reduction is the key
point of effectiveness of CNNs against issues like the vanishing gradient in deep neural
architectures [36].

Continuous algorithms:

• Linear [37] and Logistic regression (LR) [38] are two regression methods. They both aim to
explain the relation between input and output of the form f (x ) = y, by fitting a line or curve
using {x ,y} pairs in the training data. The main difference between them is what they use
to fit. The fitting function that the linear regression uses is given in the following:

y = αx + β . (7)

Whereas the logistic regression curve is;

y =
1

1 + e−(α+βx )
. (8)

For a better understanding, these techniques can be thought of as a single neuron, where
the nonlinear function is replaced with either a linear or logistic function. The training pro-
cedure sets the values of α ’s and β ’s. For this, gradient descent can be used: it is not called
backpropagation as there are no previous layers. Lastly, the limitations of this technique are
analogous to using few neurons in an MLP. If the data is complex, the performance is poor.

2.2 Unsupervised Learning

Unsupervised learning uses unlabeled data in contrast to supervised learning. This means such
machine learning algorithms should directly decide to use the properties of the provided data
without the existence of a “teacher” [39]. For this reason, there is no great distinction between
training and evaluation phases in unsupervised learning. It is possible to subdivide these kinds
of algorithms into two: clustering and feature reduction. Clustering is the task of categorization
without known labels and feature reduction is the task of reducing the dimension of the data for
more effective and efficient processing. Its well-known methods are summarized in Table 2 and
detailed in the following.

• K-means clustering [40] is a two-step iterative clustering algorithm. In the first step,K cluster
centers are selected such that they minimize the Euclidean distance/sum of squares within a
cluster. In the second step, the K clusters are reformed by assigning the closest instances to
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Table 2. Unsupervised Machine Learning Algorithms

name type complexity

K-means clustering simple

Gaussian processes clustering simple

NN clustering simple & complex

PCA feature reduction simple & complex

Genetic algorithms feature reduction simple & complex

(Stacked) Autoencoder feature reduction complex

Deep belief network feature reduction complex

Fig. 7. Sample univariate Gaussian distribution.

the newly selected centers. The iterations continue until an adequately small sum-of-squares
value is obtained, or the change between iterations is very small. The end product of this
algorithm is data that is separated overK clusters. The limitations of this method arise when
the processed data cannot be characterized by their average.
• Gaussian processes [41] assume that the investigated data follows one or a combination of

Gaussian distribution(s) (here, we refer to using the Gaussian distribution for machine learn-
ing tasks as Gaussian processes). A simple example of data with one dimension (univariate)
is illustrated in Figure 7. In the figure, the curve shows the ratio of data instances that fall
under it. As can be seen in the figure, most of these instances fall near the mean μ, with a
spread of standard deviation σ , two parameters that characterize a Gaussian. More complex
Gaussians can be attained by considering multidimensional data (multivariate Gaussian) or
assuming that the data is distributed by superimposed Gaussians rather than one (Gaussian
mixture). The calculation of these parameters was already discussed in naïve Bayes.
Although the assumption that a collection of data is distributed by a Gaussian will not per-
fectly hold most of the time, still, this modeling can be used for clustering. This is done by
first calculating the mean and the standard deviation of the data. When a new data instance
arrives, the probability that this instance(x ) belongs to this distribution is found using the

pdf formula fμ,σ (x ) =
1

σ
√

2π
exp{−0.5(

x − μ
σ

)2}. This enables the assignment of data points

to different classes of data.
• Principal component analysis (PCA) [42] is the task of projecting multidimensional data

into a smaller dimension, where it is easier to process or separate. The aim is to find or-
thogonal components that the data has the most variance. To this end, the calculation of
the projection (vectors) includes the calculation of eigenvectors of the covariance matrix
across dimensions. A couple of these eigenvectors are then selected, which correspond to
the highest eigenvalues. This number of selections determines the new reduced number of
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18:10 T. Ç. Köylü et al.

Fig. 8. A basic autoencoder.

dimensions. The projection is achieved by taking the dot product between the original data
and calculated projection vectors.
• Genetic algorithms [43] are based on evolution and natural selection. Genetic algorithms for

feature reduction comprise of the following steps, given a dataset that each instance contains
multiple features and an assessment criterion like classification accuracy.
– Construct an initial population, i.e., each member of the population contains which data

features to select and which not to select.
– Assess their fitness, i.e., determine which feature selections lead to better performance.

This performance assessment can be done in a multitude of ways, where some can be
supervised and some unsupervised.

– Select the best-performing feature selection instances for future generations, i.e., natural

selection.
– Apply mutations to and cross-overs between the selected instances and add the new fea-

ture selections to the set.
– Repeat the steps except the first one until a stopping criterion is met.
The stopping criteria can for example be reducing the number of features to a certain value
without sacrificing too much performance.
• Autoencoders [44] are neural networks that aim to first encode and then decode data. The

aim is to minimize the difference between the original data and the decoded version. This
compressed version is reduced in the number of features and can be used in other ma-
chine learning tasks. This is illustrated in Figure 8, where L < K . Common autoencoder
usage includes using many layers for compression and decompression to obtain a deep-
stacked autoencoder, adding noise to input data, and evaluating performance for a denoised
decompression.
• Deep belief network (DBN)s [45] appear exactly the same as MLPs architecturally. Function-

ally, however, they are formed by connecting multiple Restricted boltzmann machine (RBM)s
sequentially. Each RBM is a two-layered network that is trained in an unsupervised manner
to translate (forward pass) and reconstruct (backward pass) its input. After this layer-by-
layer training, DBN is complemented by a fully connected output layer, which is fine-tuned
(training of only certain layers) to associate inputs to labels.

2.3 Reinforcement Learning

Reinforcement learning can be considered as a middle ground between supervised and unsuper-
vised learning. It tackles the problem of being able to learn an optimal-like behavior as an agent
via trial-and-error, in a dynamic environment [46]. This type of learning is especially used in
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Table 3. Reinforcement Learning
Machine Learning Algorithm

name type complexity

Q-learning – complex

Fig. 9. Classification hardware security based on machine learning usage.

game-playing (such as backgammon or checkers) and in robot-environment interaction scenarios.
Its well-known method is indicated in Table 3 and detailed in the following.

• Q-learning provides an algorithm for the question of determining the optimal set of actions
in a particular environment. The methodology includes a Q-function (also referred to as the
Bellman Equation) that defines the reward of an action in a state as the sum of the immediate
reward and the cumulative reward of following the optimal actions after the current action.
Regarding this formulation, it provides a learning algorithm that learns the values required
by the Q-function. This corresponds to the finding of the optimal strategy [16].

3 CLASSIFICATION OF MACHINE LEARNING FOR HARDWARE SECURITY

In this survey, we investigate the studies that use machine learning for hardware security in two
groups: hardware attacks and countermeasures. This is illustrated in Figure 9. The attacks use
machine learning as an analysis tool to obtain a secret from a target device. The first phase of
such an attack is the data collection from the device. This data is modeled offline, using a machine
learning algorithm. Examples that use this methodology include side-channel analysis (Section 4.1)
and attacks against PUFs (Section 4.2). Side-channel analysis can be further subdivided into two:
power analysis (indicated by 1 on Figure 9) and sound analysis (2). Section 4 elaborates on these
attacks.

The second group consists of countermeasures against hardware attacks. The use of machine
learning for countermeasures is more varying compared to attacks; from offline tools to online
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Fig. 10. A general side-channel analysis setup.

Table 4. Summary of Machine Learning-based SCA Studies

Study SCA Method aim ML tool

[48] power (1) key leak SVM

[49] power (1) key leak MLP

[50] power (1) mask removal ANN

[5] power (1) key leak CNN

[6] power (1) key leak CNN

[51] power (1) key leak autoencoder + CNN

[52] power (1) key leak CNN, MLP, LSTM

[53] power (1) key leak CNN, MLP

[54] power (1) key leak CNN

[83] power (1) key leak MLP

[55] sound (2) typing reconstruction MLP

[56] sound (2) typing reconstruction k-means + HMM, LDA,
Gaussian process, MLP

[57] sound (2) printing reconstruction HMM

detectors (i.e., a machine learning algorithm constantly working to detect attacks). Example
countermeasures include side-channel analysis prevention, HTs, fault injection, and JTAG-based
attack detection. Side-channel analysis prevention can be investigated in two groups as active
(1) and passive (2). We can likewise investigate HT detection in four groups: reference-based de-
tection (1), reference-free detection with side-channel fingerprinting (2), reference-free detection
using image or signal properties (3), and reference-free detection using graph theory (4). Section 5
discusses these countermeasures further.

4 MACHINE LEARNING BASED HARDWARE ATTACKS

In this section, we first present side-channel attacks in Section 4.1. Next, we present the attacks
on PUFs in Section 4.2.

4.1 Side-channel analysis

SCA exploits physical characteristics of a device (e.g., power consumption, sound emission, tem-
perature) to obtain a secret [82] as illustrated in Figure 10. There are two main use cases of machine
learning tools in the context of side-channel analysis in the literature. The vast majority of studies
focus on breaking cryptographic algorithms by analyzing the power consumption of the device,
while there are some studies that try to reconstruct information using the emitted sound.

These studies are summarized in Table 4 and discussed in detail in two subsections next.

4.1.1 Power (Side-channel) Analysis. Power analysis aims to obtain a secret by modeling the
power consumption of the device. In order to be clear in our explanation, we first provide back-
ground information about the power analysis techniques that led to the usage of machine learning.
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Background on power analysis. A first power analysis study is presented by Kocher
et al. (1999). In this study, the authors presented two approaches: simple and differential fault
analysis [84].

Simple power analysis (SPA) is based on the direct interpretation of the recorded power trace.
A common example is the power analysis of the Square-and-multiply (SaM) algorithm. This iter-
ative algorithm squares a number in each iteration and makes an additional multiplication based
on the bit in consideration. As the additional multiplication uses more power, it is possible to de-
code the key bits at each iteration. However, this decoding is only possible when the trace is not
overshadowed by noise.

To consider the noisy case, the authors presented Differential power analysis (DPA). DPA col-
lects a number of traces instead of one and calculates the average. The average power consumption
is assumed to be different for different key values. For instance, this technique can be used to leak
information from Data encryption standard (DES). In DES, one bit of the final round left inter-
mediate depends on an unknown subkey, with other known bits that can be observed from the
ciphertext. The value of this bit and the contributing subkey are obtainable with power analysis,
as it is inputted to an XOR gate.

The need to improve upon DPA is based on the premise that averaging does not enable the
complete usage of information embedded in a power trace. The resulting next step of power anal-
ysis introduces the first hints of machine learning: the Template attack (TA) [47]. Labeled as “the
strongest form of a side-channel attack in an information theoretical sense”, TA introduces pro-
filing (i.e., recording many traces) to model the noise under the effect of subkeys by multivariate
Gaussian variables, rather than eliminating it by averaging. The end product model enables the
calculation of the probability of subkey assumptions, where the highest one is selected. Detailed
steps of the attack are as follows [85]:

• A noise-induced power measurement for each of the K situations (or subkeys) is assumed
to be a multivariate Gaussian model.
• I points of interest are selected in power traces (for example, with the sum of differences

method) - that will constitute the I independent variables in the model.
• Multivariate probability density function (PDF) is constructed by calculating K mean

vectors and K covariance matrices using the I points.
• When testing a new trace, the probability of each I is calculated by using each of the K pdfs.

The probabilities that belong to the same K are then combined/added.
• K that corresponds to the highest value is selected as the probable situation - for instance,

the subkey being equal to a value.

Introduction of the effective TA provided a reference for power side-channel analysis. After
this point, the proceeding studies always provided comparisons with TA, where it is not trivial to
significantly improve upon. The hopes for improvement shifted to using other machine learning
algorithms that do not rely on the bounding Gaussian variables for modeling. The first studies in
this respect used SVM and MLP.

Power analysis with machine learning. Hospodar et al. (2011) used SVM as a first example of
machine learning-based power analysis [48]. Their aim was to determine whether an S-Box output
of the Advanced encryption standard (AES) [86] has a Hamming weight that is odd/even, greater
than four; or the fourth bit is zero or one, using S-Box power measurements. To this end, first,
they reduced the number of features from the power trace to two by using three-dimensionality
reduction methods, such as PCA. They consequently trained an SVM on a collection of traces
using the reduced features. The results neither provide a significant improvement over TA, nor a
full AES key recovery. Moreover, the authors did not elaborate on the dimensionality reduction
aspect. For example, it is not clear why the authors used only two features.
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Another such example that used MLP for power side-channel analysis is provided by Martinasek
and Zeman (2013) [49]. In addition to S-Box, this study also included the add round key operation
in power measurements in order to recover a subkey. Accordingly in the training phase, they
averaged collected power traces for a subkey (for all possible subkeys) and provided them to a three-
layered perceptron. To test a new power trace, they used the trained MLP. The highest activation
in the output layer provides the subkey prediction of the neural network. Like the previous case,
the results of this study did not provide a significant improvement over TA. However this time, a
machine learning algorithm managed to map power traces to whole subkeys.

A final example of using ANNs for DPA is provided by Gilmore et al. (2015) [50]. Here, the
authors target masked (protected) AES implementations. On collected traces, they first use PCA
to reduce data dimension and then use an ANN to select 50 features. They show that key recovery
from these features is equivalent to key recovery from unprotected AES.

To improve the performance, researchers started to look into different machine learning algo-
rithms. In the 2010s, there was a resurgence of deep learning. Especially CNNs gained importance,
with their remarkable success with image processing. Accordingly, power side-channel analysis
researchers started to use CNNs, instead of earlier examples of SVMs and MLPs. One of the earliest
such studies was provided by Maghrebi et al. (2016) [5]. In this study, the aim was to obtain several
S-Box outputs from the first round of AES algorithms with different levels of protection. The com-
parison with TA reveals that the performance increased with using deep learning for profiling,
where CNN is observed to have a good performance overall. Cagli et al. (2017), in a later study,
paired data augmentation techniques with CNN to improve profiling [6]. Data augmentation is
used to increase the amount of training data by using the already available data. In this study, the
authors generated new data by adding distorting effects (like random delays and clock jitter) on
top of traces. The experiments against AES implementations with software and hardware counter-
measures showed that the resulting CNN is robust and successful. In a study by Kwon et al. (2020),
the authors used an autoencoder to eliminate the noise and hinder the obfuscation effects from
the collected power traces. When this was used as a preprocessing technique, it was seen that the
power analysis effectiveness was improved [51]. Maghrebi (2020) investigated the performances of
MLP and LSTM in addition to a CNN for DPA attack against AES. His results on the DPA Contest
V2 dataset [87] show that while all three machine learning methods are effective in leaking the key,
CNN outperforms the other two [52]. Das et al. (2019) successfully performed cross-device power
analysis (profiling and attack traces are obtained from different devices) using a deep MLP [83].
Finally, Maghrebi (2019) investigated the practicality of deep learning-based power analysis under
different realistic conditions [88].

Today, state of the art in power side-channel analysis is to use CNNs in profiling, where many
researchers are attracted to use this method. This actuality is the focus of investigation in a study by
Picek et al. (2018) [7]. In this study, the authors questioned the merits of using CNNs in the context
of power analysis. In the case of DES, CNN performs well compared to other machine learning
algorithms; especially in some specific conditions regarding feature size, dataset size, protection
level, and so on. However, simpler techniques such as a random forest could perform similarly
or even better when the dataset size is small or data contains a high level of noise. As the CNN
performance is not consistently better, always using a machine learning algorithm for visual tasks
in analyzing power measurements is questionable.

As a final angle, a study by Timon (2019) shows that it is even possible to use a deep MLP or CNN
architecture (for desynchronized traces) to leak key information for the non-profiled attack (i.e.,
there is a limited number of power traces available to the attacker). They achieve this by training
on the limited number of trace-key guess pairs and selecting the key that results in the best training
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performance [53]. In a similar manner, Mukhtar et al. (2020) also investigated the performance of
CNN with a limited number of traces of cryptosystems with SCA countermeasures. This study
shows that while using more data and features benefits the classification, it is certainly possible to
use limited data in the attack [54].

4.1.2 Sound Analysis. Sound analysis is another type of side-channel analysis where machine
learning is commonly employed. The aim of the sound analysis is to reconstruct a secret from the
emitted sound of an I/O device. Examples are provided by Asonov and Agrawal (2004), Zhuang
et al. (2009), and Backes et al. (2010) [55–57]. The studies by (Asonov and Agrawal (2004) and
Zhuang et al. (2009) dealt with sounds emitted from keyboards to construct typed letters, and the
study by Backes et al. (2010) dealt with printer sounds to reconstruct printed documents. All these
studies follow the same three-step procedure of feature extraction, training, and evaluation; which
are described below.

• Feature extraction. All these studies extracted their features from the frequency domain,
where keyboard-based studies used individual letters, and the printer-based study used
whole words. For obtaining these features; Asonov and Agrawal (2004) used peak frequen-
cies, Zhuang et al. (2009) used cepstrum bands, and Backes et al. (2010) used sub-bands. Cep-
strum bands are a variation of the sub-bands technique, as cepstrum bands have a different
way of aggregating the information in a particular sub-band [89].
• Training. In the training phase, (Asonov and Agrawal (2004) used an MLP, where the previ-

ously obtained letter sound features are used for training by backpropagation. The case of
Zhuang et al. (2009) is more complex, as the authors used both unsupervised and supervised
recognition. In the unsupervised part, they first performed K-means clustering, which is fol-
lowed by an HMM. In clustering, they separated different letters into different clusters with-
out any labeling. The conversion of clusters into letter labels is then achieved by the HMM.
The supervised part used either a neural network, Linear discriminant analysis (LDA), or a
Gaussian mixture; where labels determined by the unsupervised part are supplied alongside
the letter features. This supervised part is intended to improve the unsupervised part. Lastly,
Backes et al. (2010) constructed a dictionary from the word sound features. To increase the
accuracy, an HMM is additionally constructed on triple word frequencies. This HMM is used
to link the gap between the decision coming from the dictionary and how likely it is in the
confines of the language.
• Evaluation. In the evaluation phase, these studies use their methods to obtain secrets.

(Asonov and Agrawal (2004) extended their success in identifying keyboard letters to iden-
tifying ATM and telephone pads. Furthering this, Zhuang et al. (2009) showed that they can
even reconstruct texts. They also reported that their method works better in identifying
meaningful words, rather than random letters. Finally, Backes et al. (2010) attained high doc-
ument reconstruction accuracy when they constructed their HMM using a domain-related
corpus, rather than a general one. However, their applicability is very limited. Their method
only works when using a specific (and older) type of printer, and the recording device that
records the printer sounds should be very close to the printer.

To the knowledge of the authors, there are no further improvements in this area of sound side-
channel analysis. This is particularly interesting, since there have been many improvements in
speech processing and recognition. In other domains, many researchers use RNNs for this task.
Furthermore, a specific RNN architecture called LSTM is shown to be very successful in recogniz-
ing speech with a large vocabulary [90]. Therefore, sound side-channel analysis can be revisited
for much further improvements, especially for the equipment used today.
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Fig. 11. Functional representation of a delay based (strong) arbiter PUF [91].

Table 5. Summary of Machine Learning-based Attacks on PUFs Studies

Study Target PUF Aim ML tool

[58] normal/XOR/feed-forward arbiter, challenge-response logistic regression,
lightweight secure, RO modelling evaluation strategies

[59] arbiter challenge-response MLP, SVM
modelling

[60] RO challenge-response MLP, SVM,
modelling logistic regression

4.2 Attacks on PUFs

PUFs are security primitives that map a set of input (challenge) to a unique set of output (response).
Process variations in each device enable this function [91]. PUFs can be grouped into two: weak
and strong. The difference between them is the number of challenge-response pairs. The weak
PUFs feature a very limited number of pairs, thus they must be hidden from outside access [58].
Strong PUFs on the other hand, feature a lot of publicly available pairs.

To understand why strong PUFs can disclose their challenge-response pairs, consider the strong
arbiter PUF in Figure 11. In this type of PUF, the challenges (indicated by ci s in the figure) deter-
mine the path that the signals will take. The signal, x , is divided into two parts and enters a race,
upon the paths determined by the challenges. The first arriving signal part will determine the re-
sponse r to be zero or one. Given a challenge, a PUF will always give the same response. While
this unpredictability made it hard to model the challenge-response behavior of arbiter PUFs be-
fore, people soon realized that using machine learning is an effective strategy. Such studies are
summarized in Table 5 and discussed in detail afterward.

Rührmair et al. (2010), Hospodar et al. (2012), and (Kumar and Niamat (2018) provided impor-
tant examples of such attacks [58–60]. The main difference between these studies is the PUFs that
they attack. Rührmair et al. (2010) proposed mathematical models for multiple PUFs: arbiter, XOR
arbiter, feed-forward arbiter, lightweight secure, and Ring oscillator (RO). For instance, they pro-
posed a linear delay model for the arbiter PUF. On the other hand, Hospodar et al. (2012) worked
on an actual CMOS arbiter PUF, and Kumar and Niamat (2018) targeted widely used RO-PUF. Their
three-stage machine learning procedures are quite similar, as described below.

• Feature extraction. In all studies, the features are the challenges and the labels are their re-
sponses. Naturally, Rührmair et al. (2010) obtained these from their mathematical models,
while Hospodar et al. (2012) obtained these from the Integrated circuit (IC)s. As Kumar and
Niamat (2018) also used an FPGA implementation of RO-PUFs, their challenge-response data
also comes from real hardware.
• Training. Rührmair et al. (2010) used logistic regression and evolution strategies (this method

can be considered similar to genetic algorithms). To train logistic regression, they used
challenge-response pairs. For evolution strategies, they created random delay vectors and
evaluated them on how well they captured the challenge-response behavior. The vectors
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Table 6. Summary of Machine Learning-based SCA Prevention Studies

Study Type Prevented Attacks Aim ML tool

[61] active (1) Flush+Reload preventing cache Gaussian process,
leakage MLP

[62] active (1) Flush+Reload, preventing cache logistic regression,
Flush+Flush leakage SVM, LDA

[63] active (1) Flush+Reload, preventing cache naïve Bayes,
Flush+Flush, leakage MLP
Prime+Probe

[99] active (1) Flush+Reload, preventing cache MLP
Prime+Probe leakage

[100] active (1) Flush+Reload, preventing cache MLP
Flush+Flush, leakage
Prime+Probe

[101] active (1) Flush+Reload, preventing cache Gaussian process
Flush+Flush, leakage
Prime+Probe

[64] passive (2) DPA preventing key MLP
leakage

that succeed are evolved. Hospodar et al. (2012) used MLP and SVM; whereas Kumar and
Niamat (2018) used logistic regression, SVM, and MLP.
• Evaluation. All studies successfully use their machine learning models to predict a suffi-

ciently correct number of responses from unseen challenges, thus breaking the security of
PUFs. Additionally, both Hospodar et al. (2012) and Kumar and Niamat (2018) found out that
MLP generally performs better in attacking compared to other machine learning methods
they tested.

The effectiveness of these machine learning algorithms nearly made the strong PUFs useless [92].
This has forced the researchers to seek other solutions in accomplishing PUF-based authentication,
such as using weak PUFs instead [93–96].

Interestingly, researchers have found another way to design PUF-like devices lately: by using
machine learning algorithms. Sankhe et al. (2019) used a CNN to learn the fingerprints of radio
devices, which is then used to identify each one [97]. Chatterjee et al. (2018) likewise used a simple
three-layer ANN to authenticate radio systems through their wireless signals [98].

5 MACHINE LEARNING BASED HARDWARE COUNTERMEASURES

In the following subsections, machine learning-based hardware countermeasures are examined.
First, Section 5.1 presents SCA prevention. Second, Section 5.2 presents HT detection. Thereafter,
Section 5.3 presents fault injection detection. Finally, Section 5.4 presents JTAG-based attack
detection.

5.1 Side-channel analysis Prevention

In the literature, there are two ways to prevent SCA using machine learning: active and passive.
These studies are summarized in Table 6 and further explained in their sections.

5.1.1 Active SCA Prevention. Active prevention includes the usage of detectors. Chiappetta et al.
(2016), Mushtaq et al. (2018), and Wang et al. (2021) provided such studies [61–63]. All are based
on detecting cache-based attacks. A cache-based SCA is executed in either of the two styles: trace
or time-driven. An attacker observes cache hit/miss activity to conduct a trace-driven attack or ob-
serves the execution time (thus the number of cache misses) to conduct a time-driven attack [102].
All - Chiappetta et al. (2016), Mushtaq et al. (2018), and Wang et al. (2021) - aimed to detect
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time-driven attacks. Namely, Chiappetta et al. (2016) aimed to detect an attack called Flush+Reload,
Mushtaq et al. (2018) aimed to detect Flush+Flush in addition, and Wang et al. (2021) aimed to de-
tect Prime+Probe further in addition (similar/related work by Wang are also provided in [99–101]).

Flush+Reload flushes data in particular memory locations. Then, the attack accesses the data
from the same locations and measures the access time. If the access time is relatively small, it means
that another process (victim) accessed this data earlier [103]. A stealthier Flush+Flush does not
access the memory directly. It measures the timing difference when flushing a particular memory
element, which gives information on whether that element was cached or not [104]. In contrast,
Prime+Probe does not flush but rather fills certain caches and then waits for the victim process
to operate. Afterward, the attack accesses the same locations and measures the time differences
in retaining them. If some lines take more time to load, it means that the victim process has used
these caches earlier [105].

To detect these attacks, all studies use the following similar three-step procedure, which we
describe below.

• Feature extraction. To detect spy processes that attempt the aforementioned attacks, all stud-
ies proposed using data from hardware counters. For Chiappetta et al. (2016), the data con-
sists of cache accesses per process. For Mushtaq et al. (2018), it additionally consists of cache
misses, total number of CPU cycles, and number of branch mispredictions per process. Wang
et al. (2021) used 16 values such L1/L2/L3 hits and misses during operation.
• Training. To determine whether a process is “spy” or not, Chiappetta et al. (2016) used Gauss-

ian distribution and MLP. Mushtaq et al. (2018) used three machine learning algorithms for
the same task: logistic regression, SVM, and LDA - which is originally a dimensionality re-
duction method. Wang et al. (2021) used naïve Bayes, in addition to an MLP.
• Evaluation. The results obtained by Chiappetta et al. (2016) shows that MLP adequately de-

tects spy processes that use Flush+Reload, while outperforming the Gaussian distribution.
However, the Gaussian distribution approach produced results faster. In the case of Mush-
taq et al. (2018), LDA outperformed the other two machine learning algorithms and also was
able to adequately detect both Flush+Reload and Flush+Flush for AES and Rivest–Shamir–
Adleman cryptosystem (RSA) processes. Results of Wang et al. (2021) show a trade-off be-
tween naïve Bayes and MLP: the latter achieved a better attack detection rate, while the
former achieved less latency.

All these studies illustrated the effectiveness of using machine learning methods as online clas-
sifiers in software. A work preceding Wang et al. (2021) from the same authors also showed that
a similar technique can be used to detect the dangerous Spectre attack that exploits leaking cache
information by exploiting speculative branching [106, 107]. On the other hand, in all these studies
a trade-off was made between using effective machine learning algorithms and the performance
overhead that they create.

5.1.2 Passive SCA Prevention. Passive prevention against side-channel analysis is obtained by
obfuscating the side-channel leakage, using machine learning. Aljuffri et al. (2020) proposed to
replace the S-Box with a neural network in AES implementations. This breaks the linear correlation
between the processed bits in S-Box and consumed power [64]. Their three-step procedure is as
follows.

• Feature extraction. The feature extraction of this study is trivial, as they want to obtain the
input-output behavior of an S-Box with a neural network. Thus, the features of the network
are all 256 8-bit numbers, and their labels are their S-Box mappings.
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Fig. 12. A general representation of HTs [109].

Table 7. Summary of Machine Learning-based HT Detection Studies

Study Type Detection Medium ML tool

[65] reference-based (1) power traces SVM

[66] reference-based (1) netlist SVM

[67] reference-free (2) power traces PCA

[68] reference-free (2) power traces PCA + SVM

[69] reference-free (3) circuit image SVM

[70] reference-free (3) netlist K-means

[71] reference-free (4) netlist SVM

[72] reference-free (4) RTL design CNN

• Training. To obtain this mapping, the authors trained an MLP. Then, they validated whether
all inputs are mapped to the correct output.
• Evaluation. For evaluation, they employed their trained MLP in a software AES implementa-

tion. They used two common side-channel attacks of DPA and Correlation power analysis
(CPA) [108]. Evaluation results show that they were able to protect a secure AES implemen-
tation against these attacks.

This study is important in terms of exploring different use areas of machine learning for hard-
ware security. Moreover, this study highlights a completely different aspect of machine learning.
Therefore, investigating the nonlinearity of neural networks for developing countermeasures on
top of their data analysis capabilities can be very beneficial. On the other hand, this method incurs
a high latency (75 times slower than plain AES) in software and potentially a high overhead in
hardware. Thus, there is clearly a need for performance or cost improvement while investigating
this aspect of neural networks.

5.2 Hardware Trojan Detection

HT is a malicious circuit modification, as illustrated in Figure 12. An entity in the manufacturing
chain can insert an HT to an IC with the aim of monitoring, modifying, or disabling its operation.
An HT can either be always active or wait for a specific set of inputs to activate. In the latter case,
the trigger logic activates the HT once it receives those input(s). Once triggered, the payload logic
starts working, which hinders the reliability and security of the IC.

We can investigate the techniques that protect against this malicious modification in two main
groups: reference-based and reference-free HT detection. Reference-free methods on the other
hand do not rely on such a set. Reference-free detection can be further grouped into side-channel
fingerprinting, image & signal-based feature extraction, and graph-based feature extraction. The
studies that fall into those four categories are summarized in Table 7.

5.2.1 Reference-based Detection. A reference-based method requires a set of identical ICs that
are known to be HT-free. This set of golden ICs is used for feature extraction. In this survey, we

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 2, Article 18. Publication date: May 2023.



18:20 T. Ç. Köylü et al.

investigate two reference-based studies by Iwase et al. (2015) and Hasegawa et al. (2016) [65, 66].
Their three-step procedure of feature extraction, training, and evaluation are as follows:

• Feature extraction. To extract features, Iwase et al. (2015) first measured the power consump-
tion of the devices. These traces were then transformed into the frequency domain. Resulting
Discrete Fourier transform (DFT) values were directly used as features. Hasegawa et al. (2016)
on the other hand, did not require a working IC to obtain features. They used the nets in a
netlist to extract features such as fan-ins, number of flip-flop inputs and outputs, and so on.
• Training. Both studies used an SVM to differentiate between ICs that do and do not contain

an HT. Additionally, Hasegawa et al. (2016) noted that the number of HT nets available to
them was very scarce. This can be problematic during training; as SVM will prioritize to
classify more numerous no HT cases correctly, at the expense of HT cases (this phenomenon
is referred to as the class imbalance problem [110]). To counter this, they experimented with
some data augmentation techniques.
• Evaluation. Iwase et al. (2015) reported their performance against 13 circuits that were imple-

mented using FPGA, where 12 contain different HT types and one does not contain any HT.
They successfully classified all. Hasegawa et al. (2016) reported their performance against in-
dividual nets. When they used an augmentation technique called dynamic weighting, which
eliminates identical net instances and replicates HT nets to attain balance in amount, they
were able to detect nearly all HT nets. However, they misclassified some normal nets as HT.

5.2.2 Side-channel Fingerprinting-based Detection. It is apparent that reference-based tech-
niques are effective in detecting HTs. They obtain features from devices that are known to include
HT or not and use supervised learning for effect. However, obtaining such a reference set is hard.
Therefore, other methods are used to avoid this. One such method is referred to as side-channel
fingerprinting [67, 68]. This method creates an IC model using side channels; such as power usage,
temperature, electromagnetism, and path delay. Muehlberghuber et al. (2013) and Liu et al. (2014)
proposed to use machine learning to statistically establish a side-channel fingerprint that ICs with-
out HTs are expected to match [67, 68]. The three-step procedure of these studies is as follows.

• Feature extraction. Features used by Muehlberghuber et al. (2013) were power traces taken
from actual chips that perform AES. These traces were then averaged for chips and the
absolute difference traces from this mean are used as features. Liu et al. (2014) assumed that
a golden/true Spice-level simulation model is available. Using this model, golden devices
were simulated using the Monte Carlo method [111]. Simply explained, many devices were
generated from a golden one by introducing random process variations. Simulated values of
power consumption were used as side-channel features.
• Training. Both studies used PCA in classification. Muehlberghuber et al. (2013) used PCA on

sample points selected from mean power traces, and reduced them to a single dimension.
This enabled them then to construct a histogram, using all the power measurements of a
chip. Liu et al. (2014) on the other hand, used PCA to reduce the dimension of power traces
to train an SVM.
• Evaluation. Muehlberghuber et al. (2013) identified chips with HTs using the histogram of

power measurement values. If a chip’s values presented high variance, they concluded that it
contains HT. By this method, they managed to group all chips successfully. The SVM used by
Liu et al. (2014) however performed poorly in detecting chips with HTs. They consequently
included Process control monitor (PCM) features (features obtained from the fabricated sili-
con) in their methodology, which increased the performance.
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5.2.3 Image & signal-based Feature Extraction. Other methods to avoid a reference set include
image processing [69] and extracting signal properties in a netlist [70]. Bao et al. (2014) and Salmani
(2017) provided examples of these methods. The only difference between these studies is the way
that they extracted their features. Their otherwise similar three-step procedure is as follows.

• Feature extraction. Image processing-based study by Bao et al. (2014) proposed to extract
features during the reverse engineering after the imaging step (that is preceded by the steps
of decapsulation and delayering). The images of the IC are consequently divided into grids.
The content of these grids is compared to the grids of a golden image. The differences (such
as area, the position of centroids, etc.) are taken as features. Salmani (2017) on the other
hand, calculated the controllability and observability values for all signals in a netlist and
used them as features.
• Training. The machine learning model used by Bao et al. (2014) is a one-class SVM. As there

is no reference set, they made the assumption that most of the features were coming from
HT-free instances. They used the SVM to put a boundary to encompass these training sam-
ples. Salmani (2017), by using unsupervised k-means clustering, also removed the need for
a reference set. He divided the signals into three.
• Evaluation. Bao et al. (2014) classified an IC instance as normal if it fell inside their SVM

boundary, and containing HT otherwise. For specific parameters (e.g., grid size) they ob-
tained high accuracies in benchmark circuits with three different types of HTs. Salmani
(2017) labeled the cluster with small features as genuine, and the cluster with the larger as
HT related. This enabled him to achieve a perfect classification.

5.2.4 Graph-based Feature Extraction. A last line of research in using machine learning algo-
rithms for detecting HTs without a reference set is to treat the design as a graph and extract
features accordingly. Yu et al. (2020) treated the gate-level netlist as a directed graph [112], while
Yasaei et al. (2021) treated the Register-transfer level (RTL)-level design as such [71, 72]. Their
three-step procedure is as follows.

• Feature extraction. To extract features, first Yu et al. (2020) converted the gate-level netlist into
a directed graph. Each node represents an instance (such as input, flip-flop, or various gates)
and the directed edges indicate connections as well as the direction of signal flow. Then,
they represented the sub-path information in this graph as features. Each of their features is
a seven-element set (when the graph search depth is four) that contains node types in a path.
Yasaei et al. (2021) on the other hand parsed the RTL design code to produce directed flow
graphs, which connect each output signal to the input signal(s). Thereafter, they processed
each node to generate vectors that contain related spatial information, which they used as
features.
• Training. Yu et al. (2020) trained an SVM on their training set, by both using and not using

class balancing - assigning more importance to the features that are taken from a HT infected
circuit, as they are much smaller in number. Yasaei et al. (2021) used a CNN (also referred
to as Graph neural network (GNN) as it acts upon a graph) to classify HT infected circuits,
with also balancing both non-infected and infected classes.
• Evaluation. The results of Yu et al. (2020) show that class balancing creates a trade-off. When

it was applied, more HT cases were detected but some uninfected cases were also classified
as HTs, which is usually not acceptable. Yasaei et al. (2021) tested their CNN with benchmark
circuits, such as ones implementing AES and RSA. Their detection results show that using
a CNN for HT detection is a viable strategy, as it is not only able to work reference-free, but
it is also able to detect unknown HTs.
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Fig. 13. (a) Normal, (b) faulty operation; where the aim of the attacker is to change the output of the device,
by injecting faults during the operation.

Table 8. Summary of Machine Learning-based Fault Injection
Detection Studies

Study Device Information Medium ML tool

[73] swarm bots sensors MLP

[74] FPGA sensors naïve Bayes, LR,
SVM, MLP

[75] robot sensors decision tree

[76] robot swarm simulation PCA

[77] water level sensor MLP
sensor

[78] robots sensors, commands, decision tree
feedback

[79] water tanks sensors RNN

[80] processor instructions RNN

[120] processor instructions Hopfield
network

While being mostly trivial, the machine learning usage in these studies illustrates the effec-
tiveness of machine learning in many tasks. Furthermore, researchers relied on machine learning
to make HT detection more practical, as they removed the reference sets. One point of under-
exploration however, is using Neural network (NN)s that are proven to be very successful in vi-
sual tasks. For example, there are very few works that explore CNNs for detecting HTs in circuit
images [113].

5.3 Fault Injection Detection

Fault injection is the act of creating deliberate faults in hardware; in order to either affect the
functionality of devices or steal data from them. This is illustrated in Figure 13. The means of
fault injection includes (among others) voltage underfeeding [114], clock glitching [115], heating
[116], using Electromagnetic (EM) waves [117], or lasers [118]. These techniques result in different
effects on a device; ranging from data misreads, instruction skips, or misinterpretations to memory
corruptions [119]. This can result in a faulty output, making the malicious goals of fault injection
possible. The studies that use machine learning to detect injected faults are summarized in Table 8
and they are detailed below.
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The first two studies use the sensor information to detect faults. Christensen et al. (2008) is
based on hardware fault detection in autonomous robots through sensor data, where the faults are
directly injected into the wheel structure of a swarm intelligence bot. They injected two types
of faults: stuck-at-zero (corresponds to the abrupt stopping of a wheel) and stuck-at-constant
(corresponds to the constant movement of a wheel at a particular speed) [73]. Shrivastwa et al.
(2021) used digital sensors that are sensitive to environmental changes (such as clock/power varia-
tions and temperature) and injections such as laser and EM. They fed this data into an AI module,
which decides if there is a fault attack on an FPGA board [74]. The three-step procedure of the two
studies for detecting fault attacks is as follows.

• Feature extraction. Christensen et al. (2008) proposed to use various sensor data as features;
the first type of sensor they obtain data from is infrared, which deals with light and prox-
imity. This data is simple enough to be directly processed. The second data is from the cam-
era, which provides a stream of colored images. These images were pooled (see CNNs in
Section 2). That is, the image was divided into slices, and a slice was represented by a single
number that indicates the distance to the closest object in the slice. Shrivastwa et al. (2021)
used 16 timing sensors placed in an FPGA that runs AES. They recorded these sensor values
as features during runs with and without faults, also noting the method of fault injection
(clock glitching and EM).
• Training. Christensen et al. (2008) used a machine learning method referred to as time-delay

NN [121]. This is a regular MLP, but a specific input contains current data as well as past
data. As they dealt with swarm robots, which can work together in different environments
to accomplish different tasks, they trained their network based on features for a particular
situation. On the other hand, Shrivastwa et al. (2021) used two linear (Gaussian naïve Bayes,
which assumes that the features follow a Gaussian distribution, affecting probabilities in the
Bayes formula accordingly, and logistic regression) and two non-linear classifiers (SVM and
MLP), which they trained with the extracted features belonging to both classes.
• Evaluation. The results of Christensen et al. (2008) show that they could effectively detect

faults in a range of swarm configurations. Shrivastwa et al. (2021) found out that naïve Bayes
performs the best in fault detection, which achieved >90% fault detection rate with 0 false
alarms for most of the cases. Furthermore, this classifier is able to adequately differentiate
between clock and EM attacks.

The importance of these studies is that they accomplish online fault detection (while the devices
are in use). Similar studies include Stavrou et al. (2014) that detects faults in robots using a decision
tree on sensor readings [75], Khaldi et al. (2017) that used PCA to detect faults in a simulated robot
swarm [76], and Jäger et al. (2014) that used a time-delay MLP to detect faults in sensors [77].
Here, the usage of a time-delay NN as an alternative to RNNs is also an interesting choice, as it
can reduce the latency introduced by the latter. Khalastchi et al. (2017) used unsupervised pattern
detection in robotics to label a large collection of the sensor, measurement, and actuator feedback
datasets as faulty or not. They trained a (supervised) decision tree based on this labeling. Their
results show that this is an effective approach [78].

The second line of studies used RNNs to detect faults instead. The first such study is Przystalka
(2008), where the author used an RNN to detect faults occurring in the water-level control system of
multiple water tanks [79]. The second study Köylü et al. (2020) is ours, where we used a hardware
RNN to detect faults in processor instructions of software RSA [80]. The three-step procedure of
these studies is as follows.

• Feature extraction. Przystalka (2008) used sensor readings coming from water tanks, such
as water levels, thresholds, and the like. In total, they use 10 such values at a time. They
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Fig. 14. Simplified JTAG boundary scan unit architecture.

have nine labels, where the first one is the normal conditions and the other eight are
faults/problems: leakage from a tank, measurement errors, and so on. In Köylü et al. (2020),
we extracted the features from non-faulty RSA decryptions. More specifically, we extracted
the (11 control bits) of the instructions of these decryptions. Next, we grouped these instruc-
tions into a sequence of five and assigned the sixth instruction as the label.
• Training. Przystalka (2008) trained an RNN consisting of three layers, where only the second

layer features feedback connections. The aim of the training is to make it detect not only the
existence of a fault, but also the type of fault. In Köylü et al. (2020), we likewise trained
an RNN with three layers, where the recurrent neurons are found in the second layer. This
network learned to predict the sixth instruction when five previous are supplied. To elaborate
further, after training, the RNN was able to produce a probability for all instructions that can
follow the five previous ones. To establish a threshold to determine a faulty instruction, we
calculated the lowest probability assigned to a correct instruction.
• Evaluation. Przystalka (2008) evaluated their network in two scenarios: (i) none or only one

fault exists, and (ii) none or two faults exist at once. Their results show that RNN was able to
improve the fault detection results, obtaining a good performance in both scenarios. In Köylü
et al. (2020), we injected different faults into the instruction buffer to measure our detection
performance. Any instruction that has a lower expectance probability was classified as a
fault. Results show that we were able to detect effective faults that change the instructions
to another in a near-perfect manner during the operation, while raising zero false alarms.
However, detecting single-bit faults proved to be challenging.

There are a couple of important points here, especially arising from our study. First, we used
a neural network as an online detector in hardware, showcasing such potential despite certain
drawbacks (lower performance with bit faults and high hardware overhead compared to a RISC-
V core). In Köylü et al. (2022), we further added the capability of correcting instruction faults
by using a Hopfield network [120]. Second, we used a feedback architecture (an RNN), which is
generally overlooked in favor of sequential architectures (e.g., MLP). Finally, this study also shows
how using machine learning can provide flexibility, as we can protect multiple implementations
by just loading different weights to the neural network before the operation.

5.4 JTAG-based Attack Detection

JTAG [122] boundary-scan architecture is developed to provide a scan path for ICs, which enables
better testing. An example is illustrated in Figure 14. However, it also introduces a number of
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Table 9. Summary of Machine Learning-based JTAG Attack
Detection Studies

Study Prevented Attack(s) ML tool

[81] reverse engineering random forest, SVM

vulnerabilities in ICs. This is because JTAG enables access or control of some signals that are only
intended for testing purposes [123]. To protect against potential attacks, a number of countermea-
sures were proposed, with each bringing their trade-offs. One such countermeasure is to disable
the JTAG scan chain after manufacturing. However, this limits the in-field testability. Thus, us-
ing machine learning-based methods offers a new alternative to this limitation. One study that
explored this is summarized in Table 9 and explained further below.

Ren et al. (2018) proposed using machine learning detectors in hardware to detect when the scan
chain is being accessed for malicious purposes [81]. Their three-step procedure is as follows.

• Feature extraction. The authors proposed to use the scan chain instructions as features. They
constructed two feature sets: the first one consists of instruction opcode, the number of
clock cycles required, and whether the instruction and the transition are valid (as a flag); the
second one consists of the opcodes of four recent instructions.
• Training. They used two different machine learning algorithms in this study: random forest

and SVM. They also implemented a non-machine learning detector for comparison.
• Evaluation. The final evaluation is accomplished in hardware during operation. The imple-

mentation of these hardware machine learning detectors was made at the RTL level. The tree
units that constitute the random forest are implemented in parallel and each has a memory,
where their trained parameters are loaded from the main memory during power-up. The
classification is made after a majority vote from the results of the tree units. In a similar
manner, the SVM unit has also a memory to hold the trained parameters. For efficiency, a
lookup table is used to implement the nonlinear RBF kernel. The evaluation results show
that especially SVM provided a good detection of attacks. However, it introduced a large
hardware overhead.

The results of this study are important in the future of hardware security and its relation to
machine learning. First, it shows that machine learning can be effectively used as an online detector
in hardware. This is typically not explored in other fields, especially in HT detection. Second, it
also shows the main limitation of such an approach: the overhead. However, some of the same
authors also presented a study where they reduced the number of features without significantly
affecting the random forest classification accuracy of internal JTAG-based attacks [124].

6 TARGETING MACHINE LEARNING ALGORITHMS: ATTACKS AND

COUNTERMEASURES AGAINST NEURAL NETWORKS

Machine learning algorithms, especially neural networks, are increasingly being used in safety-
critical applications. One very relevant example is self-driving cars, where neural networks are
used for both detecting objects on the road [125] and taking decisions [126, 127]. Thus, both at-
tacks against the hardware that runs them and corresponding countermeasures are already being
researched. The following subsections focus on these in the context of NNs.

6.1 Attacks Against NNs

Regardless of whether an NN is being run in software or as a hardware accelerator, a hardware
attack against them has either of the two objectives: information leaking (e.g., stealing training
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data, reverse engineering the architecture, obtaining weight values) or denial of correct service.
These goals can be obtained by the following attack techniques.

Side-channel analysis. As in SCA in general, a number of techniques have been demonstrated
to leak NN information. These include EM emanations, power readings, and using cache informa-
tion. By leaking the information from these channels of a microprocessor, Batina et al. (2019) recov-
ered the supplied inputs for an MLP [128]. On the other hand, Batina et al. (2018), Liu and Srivastava
(2020), and Jeon et al. (2021) used side-channel information to obtain the parameters of MLPs and
other networks: weight values, number of layers, neurons, and so on [129–131]. Likewise, Wei
et al. (2018) and Yu et al. (2020) targeted ANN accelerators to obtain input and architecture/weight
information of the NNs [132, 133].

It is apparent that this field of study of leaking NN information is in its infancy, i.e., there is a lot
more area of exploration. Especially, realistic threat models are not established. This stems from
the fact that most widely used NN architectures are available to everybody; such as AlexNet [134]
and GoogleNet [135]. Likewise, leaking the input of an NN is a valid goal for a very limited number
of cases when the input is sensitive: medical data, privacy-sensitive survey information, and others.
However, in these cases, there are already solutions that enable users to provide the data to an NN
in encrypted form [136]. Thus, simply leaking these encrypted inputs will not provide any benefits
to an attacker. The studies in this field should either evolve to break encrypted inputs or motivate
the applicable situations.

HT. Being invasive, HTs can be used for both information leaking and denial of a correct oper-
ation when they are placed in NN accelerators. Although not explored explicitly, HTs can be used
to leak sensitive information about the NN, such as weight values [109].

There are however studies that explicitly illustrate how HTs can be used for misclassifications.
(Clements and Lao (2018) and Clements and Lao (2019) both inject HTs into NN accelerators. Their
aim is the same, i.e., creating misclassifications with minimal hardware footprints. When triggered,
they perturb the operation by perturbing the neuron calculations [137] or the ReLU activation
function calculation [138].

The previous two studies work very similarly to fault injection when the HT is activated. How-
ever, being integrated with the accelerator, they bring more possibilities. Ye et al. (2018) and Liu
et al. (2020) use this property, where they completely change the output when triggered via certain
inputs [139, 140]. This line of studies is more effective to realize the full power of putting malicious
circuits in an NN accelerator.

Fault injection. Similar to HTs, fault injection enables an attacker to realize both attack goals
(information leak and denial of correct operation). Considering the first goal, Breier et al. [141]
used bit-flips to determine the parameter values of the last hidden layer of a network [141].

The second goal of denying a correct operation using fault injection is much more investigated.
First, it is possible to inject faults into the input, making the NN decision faulty. While this is
not explored explicitly, the concept of providing synthetic inputs that cannot be distinguished
by eye but result in a very different decision exists (i.e., adversarial inputs) [142]. Second, a very
common approach is to inject faults into the parameters: weights, biases, activation functions, and
the like. Breier et al. (2018) used laser injections to a microcontroller and corrupted the calculation
of activation functions (ReLU, softmax, Sigmoid, and tanh) [143]. Li et al. (2017) simulated fault
injections (bit-flips) into the datapath and buffers [144]. Finally, Rakin et al. (2019) again used bit-
flips, this time targetting the Dynamic random access memory (DRAM), where the weight values
of the NN are typically stored [170]
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Fig. 15. Countermeasure categorization for protecting NNs from fault injection attacks.

This field of study, especially using fault attacks to deny the correct operation, is very relevant
today. Causing misclassifications on an NN that is used for object detection in a self-driving car
can easily cause accidents. Thus, this field will expand with the discovery of new attack tech-
niques and hardware vulnerabilities that enable injecting faults remotely, such as the Rowhammer
attack [145].

6.2 NN Countermeasures

Despite the long prominence of NNs, protecting them against hardware attacks did not receive the
same attention. In the following, we will list the countermeasures against the attacks mentioned
above. However, as countermeasures for NNs is not an established field, there are no explicit studies
that link all attack techniques to a countermeasure. For these cases, we will still note if an existing
countermeasure can be applied.

Side-channel analysis. To the authors’ knowledge, there are no explicit studies that propose
specific countermeasures to prevent SCA-based information leakage from neural networks. The-
oretically, the widely investigated SCA countermeasures can also be used to protect NNs. These
include obfuscation and balancing of side channels, such as the power consumption [146]. How-
ever, obfuscation and balancing are algorithm-specific techniques that are widely available for
cryptosystem implementations, but not for NN implementations. Thus, there is a need for devel-
oping these protections for NNs, when the NN as an Intellectual property (IP) has to be protected.

HT. There are two possible ways to counter an HT inserted into the circuit of an NN accelerator:
detection or countering the effect. In case the HT provides a backdoor for information leak, the
only possible way is to use the already established HT prevention and detection techniques for
digital circuits, with also using machine learning in various stages of detection [109].

To counter the effects (i.e., perturbations) of HTs on NNs, fault detectors or redundant mecha-
nisms can be used. Further discussion on this is reserved for the fault injection part.

Fault injection. In contrast to other attack techniques, NN countermeasures against fault in-
jection attacks are the most developed, partly because preventing fault attacks is synonymous
with preventing faults. We can investigate them in two categories: intrinsic and extrinsic [147].
Figure 15 illustrate the groups, as well as redundancy, which can be applied both intrinsically and
extrinsically.
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The intrinsic countermeasures rely on the inherent fault-tolerant mechanisms of NNs. Some
network architectures can tolerate faults better, such as Hopfield networks with their feedback
mechanisms [148]. Some can be made more tolerant through various training practices. Ito and
Takanami (1997) injected faults into some neuron outputs during each training iteration [149]. An-
other way is to use custom training algorithms for fault tolerance. Tan and Nanya (1994) proposed
a learning algorithm that minimizes the number of essential links (i.e., weights which cause a
significant change in the output if perturbed) through the objective function, thus making the
trained network more tolerant to random faults [150]. Similarly, Mak et al. (2011) introduced two
functions to measure training error, for faults that cause neuron and weight disconnections [151].
The learning algorithm proposed by Cavalieri and Mirabella (1999) on the other hand aims to
balance the absolute weight values during training, in order to prevent faults in very large weight
values affecting performance significantly [152]. Finally, Su et al. (2016) proposed to use the Genetic
algorithm (GA) technique to make fault tolerance assessments between multiple training opera-
tions, using performance under faults (i.e., perturbations in parameters) [153]. A final example of
using the training to generate a more fault-tolerant NN was presented by Xia et al. (2017), where
they only write large enough weight updates to the Resistive random access memory (RRAM) to
increase memory lifetime, as well as introduce remapping of stored values in case of faults, to
make the NN implementation more tolerant against faults [171].

Another way of making NN implementations more resistant to faults is to evaluate their param-
eters post-training. Neti et al. (1992) introduced a formula to determine (and further to optimize)
the fault tolerance of an NN given its weights [154]. Similarly, Sum et al. (2006) provided a function
to evaluate the prediction accuracy under faults given the architecture, trained weights, and the
training set [155]. Lastly, Reagen et al. (2018) provided a framework that injects fault to determine
the negative impact on a Deep neural network (DNN) [156].

The final way of applying intrinsic countermeasures is to apply intrinsically redundant mecha-
nisms, i.e., augmenting the NN architecture. Emmerson and Damper (1993) and Phatak and Koren
(1995) replicated the last hidden layer neurons by making adjustments to preserve the correctness
of the result [157, 158]. Similarly, Medler and Dawson (1994) replicated the structure of hidden-
to-output layers, which are then connected to final output units [159]. All these methods achieve
the same goal: increasing the attack surface so that faults do not cause misclassifications as easily.
While these methods were proposed for basic MLP (before the deep learning era), they are still ap-
plicable to deeper DNN architectures, as most of them include standard/dense hidden and output
layers. However, DNNs that are commonly used today have much more layers that precede those
dense layers, where fault injections create significant problems [147]. This issue can be generalized
to all intrinsic protections, which do not enable the protection of selected elements or the whole
network [160].

This issue with intrinsic protections brought the necessity of applying extrinsic countermea-
sures, i.e., considering NNs as a part of a system and protecting accordingly. The first way to attain
this is by shielding, i.e., meshes that cover the circuit from EM-based fault attacks. The second way
to attain this is by using sensors, such as voltage and temperature to detect sudden changes [119].
The third way, which can be more specialized for protecting NNs is to use detectors. Wang et al.
(2020) proposed to learn the layer-wise neuron activation rate when normal inputs are provided.
Thereafter, they were able to differentiate adversarial/faulty inputs from the changes in the ac-
tivation rates [142]. Our work, (Köylü et al. (2021)) expanded upon this idea by presenting two
types of neuron activation rate-based detectors against faults that affect NN weights and biases. In
this work, we proposed to check a reference input-output pair periodically to eliminate persistent
faults, in addition to monitoring layer activation rates to detect temporary faults [147].
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While the aforementioned methods are effective, the most effective extrinsic countermeasure
is applying Dual modular redundancy (DMR) for fault detection [161] and Triple modular redun-
dancy (TMR) for correction [162]. However, DMR or TMR for software NN applications create
x2/x3 latency and x2/x3 overhead for hardware accelerators. Thus, applying selective redundancy
by using inherent properties of NNs is an emerging field of study. Such a study was provided by
Li et al. (2019), where they introduced a method to determine the importance of neurons to se-
lectively protect against faults. Their method consists of assigning neuron importance from the
absolute summation of the weights that leave it [163]. Venkataramani et al. (2014) and our work
(Köylü et al. (2022)) proposed to use a more sophisticated backpropagation algorithm to calculate
neuron importance instead, by using a subset of the training data [160, 164]. Here, Venkataramani
et al. (2014) used the average updates over the subset; whereas in Köylü et al. (2022), we used ab-
solute summation and variance. We further proposed selective granularity: the ability to protect
individual weights/biases, neurons, or layers. In addition to this, Ruospo et al. (2022) proposed to
prune unimportant neurons to minimize the added overhead [165]. Finally, Schorn et al. (2020)
proposed to use the layer-wise propagation algorithm [166], which calculates the importance of a
neuron from the importance of neurons that are connected to it in the proceeding layers. It deter-
mines the last layer neuron references from their outputs after an inference operation [167]. Thus,
this method also requires a portion of the dataset to construct these values.

This field of selective redundancy using inherent NN properties is very promising: it aims to
achieve the effectiveness of DMR/TMR more efficiently. However, all of the aforementioned studies
use some kind of heuristics to determine important weights and neurons. Current approaches have
already started to become incremental, rather than significant improvements. This improvement
can be achieved by theoretically proposing methods that aim to achieve maximal fault tolerance.

7 CONCLUSION

This survey presented a literature cover on hardware security in the context of machine learning.
To our knowledge, this is the most complete overview of this topic; as we covered all attack, coun-
termeasure, and threat/protection of NN angles. Additionally, one of our main aims was to address
what is possible, in addition to what exists. We hope that this survey guides hardware security en-
gineers in using machine learning, and attracts AI engineers to hardware security as a potential
field of operation.

In the remainder of this section, we first provide a summary of each hardware security subsec-
tion (Section 7.1). Then, we provide future directions for machine learning in hardware security
(Section 7.2).

7.1 Summary

The following is a brief summary of each hardware security subsection.

• Side-channel analysis: SCA is probably the hardware security area with the most reliance
on machine learning. Aside from a couple of sound-based studies that rely on outdated equip-
ment (i.e., old keyboards and printers), this is mainly due to power SCA. The use of deeper
ANNs (i.e., CNNs) has made it possible to break cryptosystem keys in various circumstances.
The issue here is, this CNN usage heavily relies on external trends. There is a need to find
more suitable algorithms that infer cryptographic keys from power traces.
• Attacks on PUFs: Use of machine learning had a drastic effect on the development of PUFs.

Modeling of the challenge-response behavior using machine learning algorithms made it
hard to rely on strong PUF-based security. Thus, weak PUFs and making them more reliable
and secure gained much more importance.
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• Side-channel analysis prevention: Most of the focus in this area is on detecting infor-
mation leaks through caches. Use of machine learning algorithms on auxiliary information
such as the number of cache accesses or CPU clock cycles helped to detect the most preva-
lent attacks. There is also a newly emerging area in SCA prevention: using neural networks
for obfuscation.
• Hardware Trojan detection: Another area with a high level of reliance on machine learn-

ing is HT detection. Existing work demonstrates the effectiveness of machine learning algo-
rithms on various types of features (e.g., image or netlist-based) in detecting these malicious
circuits. Furthermore, machine learning also helps with cases when there is no reference set
of trusted devices.
• Fault injection detection: Most of the earlier work in this domain was on robotics. These

works used machine learning algorithms to determine when there are faults, by investigating
data coming from various sensors. In the last years, we introduced another line of studies
in this domain: using machine learning algorithms as hardware modules to detect faults in
processor instructions.
• JTAG-based attack detection: There is only one study that used machine learning to de-

tect JTAG-based attacks. Moreover, this study is one of the first instances to use a machine
learning algorithm in hardware, as an online detector.
• Attacks against NNs: Except for some work about leaking ANN information like architec-

ture and weight values, the most relevant threat in this domain is injecting faults to make
the inference faulty. This can cause devastating results, such as accidents in the case of au-
tomated driving.
• NN countermeasures: Accordingly, most of NN countermeasures focus on protecting NNs

from fault attacks. Earlier works investigated the inherent fault tolerance of NNs. Later work
proposed external protection such as detectors, sensors, and applying DMR/TMR. Lately,
using inherent NN properties to apply selective redundancy gained recognition, but still has
unexplored potential.

7.2 Future Directions

In this section, we highlight re-occurring themes in the subsections summarized in the previous
Section 7.1, in order to provide future directions.

The first common theme in machine learning usage for many hardware security domains is
the reliance on external trends and missing other potential. The most prominent example is using
visual task-oriented CNNs for processing time-series power traces in DPA, due to the recent fame
of these networks. A natural next step in DPA however is to explore networks that can explain
time-series data better, such as an RNN [168]. Another example is for HT detection. In this domain,
very few examples explore DNNs that are very successful in visual tasks. Thus, hardware security
engineers should consider exploring or developing machine learning algorithms that fit the task,
rather than using what is popular or most available.

The second theme is only using machine learning as an offline data processing tool. As this sur-
vey illustrates, machine learning is indeed very effective to be used as such. However, domains like
automated driving show us that there is great potential in using machine learning algorithms as
online decision tools. We believe that cache attack prevention methods and our work on detecting
instruction faults [80] illustrated this potential. However, an essential challenge in online usage is
the latency and area overheads these algorithms incur.

The third and final theme is not updating previous ideas. Studies have illustrated the successful
usage of machine learning in decoding text from keyboard and printer sounds. However, these
are for outdated hardware and there are no novel studies for newer equipment. This is a missed
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opportunity because of the following: (i) machine learning algorithms had a very significant per-
formance increase since, and (ii) there are many more devices leaking information in the current
Internet of things (IoT)-era
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