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Abstract

This research presents a framework for analysing the stability and control of discrete-event sys-
tems, specifically emphasising max-min-plus (MMP) and max-min-min-plus-scaling (MMPS)
systems. These systems are valuable modelling tools for various applications, including pro-
duction systems and urban railway traffic management, respectively. However, a critical
challenge in discrete-event systems is the lack of a generalised approach to assessing the sta-
bility of time signals, particularly in the context of MMPS systems. To address this challenge,
this research will use max-plus Lyapunov functions already used to study the buffer stability
in discrete-event switching-max-plus-linear (SMPL) systems.

This thesis provides a framework to use max-plus Lyapunov functions to determine buffer
stability of MMP and MMPS systems, focusing on their time signals. The max-plus Lyapunov
function uses a buffer for each pair of states. The system is considered stable if the difference
converges to the buffer levels for every pair of states. Given the structure of MMP and MMPS
systems, the difference between the states after one state update will often be bounded. To
determine this boundedness of the buffer levels, a novel concept of "fully correlated" MMP and
MMPS systems is introduced. Using the properties of fully correlated systems, an algorithm
is proposed to determine the buffer levels for both MMP and MMPS systems. We also derive
analytical methods using Markov properties to assess the additive eigenvalue of fully correlated
time-invariant monotonic MMPS systems. Using the property of fully correlatedness, it is also
derived that fully correlated time-invariant non-monotonic MMPS systems will always have
a bounded buffer and growth rate and can have multiple additive eigenvalues. The findings
show that fully correlated time-invariant systems consistently exhibit bounded growth rates.

In addition to providing theoretical insights, this study demonstrates the practical use of
max-plus Lyapunov functions as a control Lyapunov function (CLF) in model predicitive
control (MPC). A novel control technique is proposed to stabilise naturally unstable discrete-
event systems. This approach has been effectively applied to stabilise inherently unstable
discrete-event max-plus-linear (MPL) and MMP systems, indicating the practical significance
of the proposed framework.
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“Simplicity is the highest goal, achievable when you have overcome all difficulties.
After one has played a vast quantity of notes and more notes, it is simplicity that
emerges as the crowning reward of art.’
— Frédéric Chopin





Chapter 1

Introduction

1-1 Background

Systems and control is a diverse field with applications in all engineering domains. Besides,
engineering systems and control can also be found in biological and economic systems. Ex-
amples are how blood sugar and blood pressure are regulated in the human body or how
unemployment and inflation are controlled by governmental fiscal decisions[1]. While it may
not always be physically present, systems and control are all around us. One of the main
principles of systems and control is studying the behaviour of dynamical systems. To control
dynamical systems often, feedback is used to keep the states close to the desired value.
Stability is a crucial concept in systems and control. It can be characterized as the property
of a system that describes its ability to maintain a desired state or trajectory. There are
different notions of stability for dynamical systems. One of the most essential notions of
stability is Lyapunov stability.
There is significant interest in better understanding and controlling manufacturing processes
typically studied in disciplines such as Operations Research, and this has led to interdisci-
plinary research to study the control of discrete-event systems (DES) that cannot be described
by traditional differential or difference equations[1]. Events are considered to be sudden
changes in a process[2]. Examples of events are a train that departs from a station, a message
sent, and a product finished in a production line.
Often, models that describe the behaviour of a discrete event system are nonlinear in con-
ventional algebra. Max-plus algebra is a mathematical framework that uses the operations
maximum and addition. The maximum operator replaces the conventional plus, and the
plus operation replaces the conventional times operation. Using max-plus algebra, a class of
discrete-event systems (DES) can be described: max-plus linear discrete-event systems (DES).
These systems will be linear in the max-plus algebra[3]. Examples of MPL discrete-event sys-
tems are flow-shop scheduling problems and printers[4].
The modelling of discrete-event systems can be extended to model a larger class of systems. An
extension of max-plus-linear (MPL) systems are switching-max-plus-linear (SMPL) systems,
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2 Introduction

and such models extend the max-plus linear modelling framework by allowing changes in
synchronization and ordering constraints in the system evolution[5]. Another extension is
max-min-plus (MMP) systems, which are max-plus systems, described by the max and plus
operation, to which the min operation, being minimization, is added. Using MMP systems,
it is possible to model systems that experience synchronization and competition. Thus, a
larger class of problems can be modeled[2]. Finally, MMP systems can be extended with the
operation scaling, MMPS systems, which results in a hybrid discrete-event system.

The scaling operator may be included if external parameters rely on prior state or input values.
MMPS systems can also arise when examining the closed-loop setup of an MPL system with a
resudation or model predicitive control (MPC) controller[6]. Lastly, MMPS systems are very
suitable to approximate nonlinear (in max-plus algebra) discrete event functions. The theory
on the stability of MMPS systems is still in its early stages. In [7], two different methods are
presented to determine the additive eigenvalue (growth rate) of the time signals of MMPS
systems.

In Max-plus-algebraic hybrid automata: beyond synchronization and linearity [8], an ap-
proach is proposed that uses max-plus Lyapunov functions. It is possible to prove the stabil-
ity of the buffer levels of SMPL systems using the max-plus Lyapunov function. The buffer
level in discrete-event systems described in max-plus algebra is the time delay between the
occurrences of different events in either the same event cycle or consecutive ones [8]. This
research aims to give a methodology to prove the buffer stability of MMP and MMPS systems
using max-plus Lyapunov functions.

1-2 Problem description

For time-driven systems, stability can be characterized as the property of a system that
describes its ability to maintain a desired state or trajectory. The states of discrete-event
systems (DES) often represent time. As time is monotonically increasing, the states will
never converge to a certain point. Therefore, stability theory for conventional time-driven
systems is unsuitable for accessing the stability of DES.

The buffer level in discrete-event systems described in max-plus algebra is the time delay
between the occurrences of different events in either the same event cycle or consecutive ones
[8]. For SMPL systems, a method is derived to validate the stability of the buffer levels using
max-plus Lyapunov functions. As the introduction of minimization in MMP and scaling in
MMPS systems will be considered nonlinear in the max-plus algebra sense, the approach
presented in [8] has to be modified.

There is no established theory regarding the buffer stability of MMPS systems. Given that
these systems can simulate complicated DES, it would be advantageous to develop a means
of determining their buffer stability. Moreover, the existence of a stabilizing controller can be
proven through control Lyapunov function (CLF). Consequently, if we can devise a way to
utilize the max-plus Lyapunov function, it may also be feasible to use it for control purposes.
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1-2 Problem description 3

1-2-1 Research questions

• How can buffer stability be proven using Lyapunov or Lyapunov-like functions for dis-
crete event max-min-plus (MMP) systems?

– What kind of Lyapunov function can be used to determine the buffer stability of
a max-min-plus (MMP) system?

– Can we provide a generalized methodology to determine the buffer stability of
max-min-plus (MMP) systems?

• How can buffer stability be proven using Lyapunov or Lyapunov-like functions for the
time signals of discrete event max-min-min-plus-scaling (MMPS) systems?

– What kind of Lyapunov function can be used to determine the buffer stability of
a max-min-min-plus-scaling (MMPS) system?

– Can we provide a generalized methodology to determine the buffer stability of
max-min-min-plus-scaling (MMPS) systems?

– Is it possible to determine the additive eigenvalues (growth rates) for discrete-event
max-min-min-plus-scaling (MMPS) systems?

• Can max-plus Lyapunov Functions serve as Control Lyapunov Functions for Model
Predictive Control in Discrete-Event Systems?

– Can a generalized approach be developed to stabilize the buffers of unstable discrete-
event systems?

– Is it possible to utilize max-plus Lyapunov functions as control Lyapunov function
(CLF) to stabilize the buffer of unstable max-plus-linear (MPL) systems?

– Is it possible to utilize max-plus Lyapunov functions as control Lyapunov function
(CLF) to stabilize the buffer of unstable max-min-plus (MMP) systems?

1-2-2 Approach

The first chapter of the thesis gives background information about systems and control,
stability and discrete-event systems (DES) and the importance of these subjects. The problem
description comprises the research questions and the approach applied in this thesis.

To properly grasp the concepts discussed in the background section, it is crucial to have
a solid understanding of the mathematics involved. As such, the second chapter begins
by defining important mathematical terms related to discrete-event systems (DES). The
chapter covers definitions of max-plus algebra and max-plus convex geometry. Furthermore,
it delves into the mathematical representation of max-plus-linear (MPL), switching-max-
plus-linear (SMPL), max-min-plus (MMP), and max-min-min-plus-scaling (MMPS) systems,
including the corresponding canonical forms and time invariance of MMPS systems.

The third chapter discusses the stability analysis of conventional time-driven systems and
discrete-event SMPL systems. We will use the notions of stability for discrete-event SMPL
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4 Introduction

as a basis to prove the stability of MMP and MMPS systems in the fourth chapter. This
concludes the literature section.

The fourth and fifth chapters present the contributions of this thesis. The fourth chapter
provides a framework for proving the stability of MMP and MMPS systems. We define fully
correlated MMP and MMPS to demonstrate buffer stability and prove their boundedness. We
will present an algorithm to find the buffer of fully correlated MMPS systems for the max-plus
Lyapunov function. Additionally, the chapter provides insights concerning the behaviour of
MMPS systems. This will focus on the growth rate (additive eigenvalue) of MMPS systems.
For both MMP and MMPS systems, we provide examples using Matlab simulations. All the
optimizations from the examples are performed using Yalmip and Gurobi.

The fifth chapter explores using max-plus Lyapunov functions as cost functions for model
predicitive control (MPC). The chapter provides two examples which show promising results
in stabilizing inherent unstable discrete-event systems. We give a general approach that can
be applied to discrete-event systems. The approach is validated by stabilizing an unstable
MPL and MMP system. This is done by simulating the system in Matlab, with and with-
out disturbance. The final two chapters present the main conclusions, contributions, and
recommendations for future research.

1-3 Outline

The first chapter presents the introduction with a background, problem description and out-
line. The second chapter provides the mathematical background of discrete-event systems
from the literature. The third chapter will give the stability theory of conventional time-
driven systems and discrete-event switching-max-plus-linear (SMPL) systems from the liter-
ature. The fourth and fifth chapters present the contributions of this thesis. Chapter four
introduces a framework for proving the stability of max-min-plus (MMP) and max-min-min-
plus-scaling (MMPS) systems, which is accompanied by analytical solutions for the addi-
tive eigenvalue of MMPS systems. Chapter five presents a model predicitive control (MPC)
method that uses max-plus Lyapunov functions as a control Lyapunov function (CLF). Fi-
nally, the last two chapters provide the main conclusions, contributions, and recommendations
for future research.
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Chapter 2

Discrete-Event Systems

This chapter explores discrete event systems’ characteristics and mathematical representa-
tions. We discuss the importance of max-plus algebra and max-plus convex geometry. Ad-
ditionally, we define several systems, including max-plus-linear (MPL), switching-max-plus-
linear (SMPL), max-min-plus (MMP), and max-min-min-plus-scaling (MMPS) systems. We
explore canonical forms and the property of time invariance for MMPS systems. This chapter
lays the foundation for understanding discrete event systems’ principles, representations, and
characteristics and prepares for deeper explorations for stability analysis and control.

2-1 Discrete event systems

Discrete event systems are dynamic systems where state updates occur at events. An ex-
ample of such events is in production lines, where changes in product status are registered
as events. These systems describe man-made systems like production lines, railway systems,
etc. They consist of a finite number of resources like processors, memories, communication
channels, and machines, which are processed by a certain amount of users, such as jobs,
packets, and manufactured objects. The system can be expressed using the important terms
synchronization and concurrency. Synchronization requires the availability of resources or
users simultaneously, while competition occurs when some users must choose among several
resources[9].
Suppose the processing times in a system depend on external parameters or previous values
of the state and input. In that case, such a system can be written as a max-plus-linear
parameter-varying (MP-LPV) system, which is equivalent to an MMPS system [4].

2-2 Max-plus algebra

Max-plus algebra consists of two operations: max-plus addition (⊕) and multiplication (⊗).
The zero element is defined as ϵ = −∞ where Rϵ = R ∪ {ϵ}. The unit element is 1 = 0. The
two operations are equivalent to:
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6 Discrete-Event Systems

a⊕ b = max(a, b) (2-1)
a⊗ b = a+ b (2-2)

For a, b ∈ Rϵ. When describing n-dimensional vectors or m × n-matrices this is defined
respectively as Rn

ϵ and Rm×n
ϵ . A matrix element is denoted with i and j, the same as the

classical algebraic definition. Matrix operations in max-plus algebra are equivalent to:

(A⊕B)ij = aij ⊕ bij = max (aij , bij) (2-3)

(A⊗ C)ij =
n⊕

k=1
aik ⊗ ckj = max

k
(aik + ckj) (2-4)

The max-plus identity matrix I ⊗
n has zeros on the diagonal and all non-diagonal elements

are equal to ϵ[8].

Definition 2.1 (Min-plus algebra, [8]). The min-plus algebra, Rmin = (R⊤,⊕′,⊗′), defined
as a dual of the max-plus algebra acting on the set R⊤ = R∪{+∞}, is also a tropical semiring.
The zero element is ⊤ = +∞ and the unit element is 1. The vector and matrix operations
are defined analogously as in the max-plus algebra.

Definition 2.2 (Regularity, [2]). A matrix A ∈ Rn×m
ϵ is called regular if A contains at least

one finite element in each row.

Definition 2.3 (Irreducibility, [2]). The term irreducibility for max-plus algebra is a graph-
theoretical concept. Let a graph G = (N ,D) denote a graph with node set N and arc set D.
For i, j ∈ N , node j is said to be reachable from node i, denoted as iRj, if there exists a path
from i to j. A graph G is called strongly connected if for any two nodes i, j ∈ N , node j is
reachable from node i. A matrix A ∈ Rn×n

ϵ is called irreducible if its communication graph
G(a) is strongly connected. If a matrix is not irreducible, it is called reducible.

2-2-1 Max-plus convex geometry

The max-plus convex geometry is a basis for proving the stability of discrete event SMPL in
[8], which is described in section 3-2. This section gives max-plus analogues to linear spaces,
convex sets, and cones.

Definition 2.4 (Supremum norm, [8]). Let x ∈ Rn
ϵ . The max-plus algebra is equipped with

the conventional l∞ norm defined as:

||x||∞ = max
i∈n
|xi| = max(max

i∈n
(xi),max

j∈n
(−xj)) (2-5)

The metric induces by l∞ norm is denoted as d(x, y) = ||x− y||∞.
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2-2 Max-plus algebra 7

Definition 2.5 (Max-plus Hilbert projective metric, [8]). The max-plus Hilbert projective
(semi) norm in max-plus algebra is defined as:

||x||P = max
i∈n

(xi)−min
j∈n

(xj), x ∈ Rn (2-6)

∥A∥P = max
{
∥[A]·i∥p | i ∈ m

}
, A ∈ Rn×m. (2-7)

The max-plus Hilbert projective (semi-) norm induces the max-plus Hilbert projective (pseudo-
) metric as dH(x, y) = ∥x − y∥P for x, y ∈ Rn. The projective norm satisfies the triangle
inequality, definiteness and absolute homogeneity.
Definition 2.6 (Open ball (projective norm), [8]). An open ball with radius δ > 0 and with
center {λ+ x} with λ ∈ R, with respect to the max-plus Hilbert projective norm is defined as:

Bδ(x) := {y ∈ Rn| ||y − x||P < δ} (2-8)

Definition 2.7 (Open ball (infinity norm), [4]). An open ball of radius δ > 0 centered at x
with respect to the infinity norm is defined as:

Bδ(x) := {y ∈ R| ||y − x||∞ < δ} (2-9)

Definition 2.8 (Max-plus cones, [8]). A subset W ⊆ Rn
ϵ is said to be a max-plus cone if it

is closed under addition (⊕) of its elements and under multiplication (⊗) with scalars in Rϵ:

λ⊗ u⊕ µ⊗ v ∈ W (2-10)

∀u, v ∈ W and λ, µ ∈ Rϵ. The subset W is said to be a convex max-plus cone if (2-10) holds
∀u, v ∈ W and λ, µ ∈ Rϵ such that λ⊕ µ = 1.
Definition 2.9 (Finitely generated max-plus cones, [8]). A max-plus span, span⊕, is defined
analogously to conventional algebra. A max plus cone W ⊆ Rn

ϵ is a finitely generated max-plus
cone if there exists a set of vectors W = {w1, w2, ..., wm} such that:

W = span⊕(W ) =
{

m⊕
i=1

αi ⊗ wi|αi ∈ Rϵ

}
(2-11)

Definition 2.10 (Kleene cones, [8]). A Kleene cone is a max-plus cone generated as a max-
plus column span of a Kleene star matrix.

A Kleene cone has the property that it is also convex in the Euclidean sense. A max-plus
cone bounded in the max plus Hilbert projective norm is Euclidean convex if and only if it
is generated as the max-plus column span of a Kleene star matrix. It can be noted that
Bδ = span⊕(K(δ)) where

K(δ) =


0 −δ · · · −δ

−δ . . . . . . ...
... . . . . . . −δ
−δ . . . −δ 0

 (2-12)

is a Kleene-star matrix with finite columns[8].
Definition 2.11 (Max-plus C-set, [8]). A max-plus C-set is a subset K ⊆ Rn such that it
is a finitely generated max-plus cone and convex cone and bounded in the max-plus Hilbert
projective norm.
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8 Discrete-Event Systems

2-2-2 Max-plus-linear (MPL) systems

Definition 2.12 (Max-plus linear systems, [10]). Discrete-event systems with only synchro-
nization and no concurrency can be modelled by a max-plus-algebraic model of the following
form[9]:

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k),
y(k) = C ⊗ x(k)

(2-13)

with A ∈ Rn×n
ε , B ∈ Rn×m

ε and C ∈ Rl×n
ε where m is the number of inputs and l the number

of outputs. A discrete-event system that can be modelled by (2-13) will be called a max-plus-
linear time-invariant discrete-event system or MPL system for short.

2-2-3 Switching-max-plus-linear (SMPL) systems

Definition 2.13 (Switching-max-plus-linear (SMPL) systems, [8]). Switching max-plus-linear
(SMPL) systems can be described with the following dynamics:

x(k) = f(l(k), x(k − 1), u(k), r(k))
l(k) = ϕ(l(k − 1), x(k − 1), u(k), v(k), w(k))
y(k) = h(l(k), x(k), u(k), r(k))

(2-14)

The functions f(·) and h(·) are max-plus linear and describe the state update and the output
of the system. The function ϕ(·) encodes the switching mechanism of the state dynamics.

2-3 Max-min-plus (MMP) systems

We have already discussed the zero elements of max-plus (ϵ) and min-plus algebra (⊤). The
complete set is defined as Rc = R ∪ {∞} ∪ {−∞} (complete). The following conventions are
introduced 0 · ϵ = 0, 0 · ⊤ = 0 and ⊤ + ϵ = 0. To refer to either Rϵ, R⊤, R or Rc often R is
used[4].

Definition 2.14 (Max-min-plus (MMP) systems, [2]). MMP systems are described by ex-
pressions in which the three operations, minimization, maximization, and addition, appear.
They can be viewed as an extension of max-plus expressions in that minimization has been
added as a possible operation.

An MMP function can be defined by (the symbol | stands for ’or’ and is recursive):

f := xi|α|fk ⊕ fl|fk ⊕′ fl|fk ⊗ fl (2-15)

with i ∈ {1, ..., n}, α ∈ R and where fk and fl are MMP functions as well.

Definition 2.15 (Conjunctive normal form (MMP), [2]). The conjunctive normal form can
be represented as:

f = f1 ⊕′ f2 ⊕′ · · · ⊕′ fp (2-16)

for some finite p ∈ N and where each fi is a max-plus expression.
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2-4 Max-min-plus-scaling (MMPS) systems 9

Using identities:

a⊕ (b⊕ c) = a⊕ b⊕ c,
a⊕′ (b⊕′ c

)
= a⊕′ b⊕′ c,

c⊕ (a⊕′ b) = (c⊕ a)⊕′ (c⊕ b),
c⊕′ (a⊕ b) =

(
c⊕′ a

)
⊕
(
c⊕′ b

)
,

(2-17)

each max-min-plus expression f can be transformed in conunctive normal form.

2-3-1 Bipartite systems

Definition 2.16 (Bipartite systems, [2]). A bipartite system is an MMP system characterized
by two matrices B ∈ Rn×m

ϵ and C ∈ Rm×n
⊤ , such that

x(k + 1) = B ⊗ y(k), y(k + 1) = C ⊗′ x(k) (2-18)

The system matrices are assumed to be regular.

Definition 2.17 (Irreducible pair, [2]). The matrix pair (B,C) is irreducible if no permuta-
tions σ of n and τ of m exist such that

B(σ, τ) =
(
B11 B12
ϵ B22

)
, C(τ, σ) =

(
C11 ⊤
C21 C22

)
,

where

• the sizes of Bij and C⊤
ji , i, j ∈ 2, are identical (the submatrices Bii and Cjj are not

necessarily square), and

• B11 and C22 are regular. Otherwise, the pair (B,C) is reducible.

Theorem 2.1 (Existence eigenvalue and eigenvector of bipartite system, [2]). Consider the
regular bipartite system (2-18). If the matrix pair (B,C) is irreducible, then an (additive1)
eigenvalue (with corresponding additive eigenvector) exists.

2-4 Max-min-plus-scaling (MMPS) systems

Definition 2.18 (Max-min-plus-scaling (MMPS) function, [11]). Max-min-plus-scaling func-
tions consist of four operations: max, min, plus and scaling. It can be defined by (the symbol
| stands for ’or’ and is recursive):

f := xi|α|fk ⊕ fl|fk ⊕′ fl|fk ⊗ fl|β · fk, (2-19)

with i ∈ {1, ..., n}, α ∈ R, β ∈ R and where fk and fl are MMPS functions as well.
1See definition 2.19.
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10 Discrete-Event Systems

An MMPS system can be described as:

x(k + 1) =Mx(x(k), u(k), d(k))
y(k) =My(x(k), u(k), d(k))

Mc(x(k), u(k), d(k)) ≤ c
(2-20)

with states x(k), inputs u(k) and disturbances d(k)[12]. The term (2-20) is for constrained
MMPS systems. When absent, the system will be an unconstrained MMPS system. Mx,My

andMc are MMPS expressions. The classes of Max-plus linear parameter varying (Max-Plus
LPV) systems and MMPS systems coincide[4].

Definition 2.19 (Additive eigenvalue, additive eigenvector, [7]). The system x(k) = f(x(k−
1)), k ∈ Z+, where f : Rn → Rn is said to have an additive eigenvalue if there exists a real
number λ ∈ R and a vector v ∈ Rn such that

f(v) = v + λ. (2-21)

The scalar λ is called an eigenvalue, and the vector v is called a corresponding eigenvector.

As we use conventional algebraic eigenvalues in this thesis, we will refer to additive eigenvalues
and additive eigenvectors for MMPS systems as λg and vg.

2-4-1 Canonical forms of MMPS systems

The canonical form of an MMPS system is rewriting it in a standard way while preserving
the behaviour of the system. The following canonical forms coincide with MMPS systems.

Definition 2.20 (Conjunctive MMPS systems (cMMPS), [4]). Conjunctive MMPS systems
describe a state-space model of the form:

x(k) = min
i=1,...,K

max
j=1,...,ni

(αT
i,jp(k) + βi,j) (2-22)

for some integers K,n1, ..., nK vectors αi,j and real numbers βi,j.

Definition 2.21 (Disjunctive MMPS systems (dMMPS), [4]). Disjunctive MMPS systems
describe a state-space model of the form:

x(k) = max
i=1,...,L

min
j=1,...,mi

(σT
i,jp(k) + ρi,j) (2-23)

for some integers L,m1, ...,mL, vectors σi,j, and real numbers ρi,j.

Definition 2.22 (Kripfganz MMPS systems (kMMPS), [4]). Kripfganz MMPS systems de-
scribe a state-space model of the form:

x(k) = max
i=1,...,M

(µT
1,ip(k) + ν1,i)− max

j=1,...,K
(µT

2,jp(k) + ν2,j) (2-24)

for some integers L,m1, ...,mL vectors µi,j, and real numbers νi,j.
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2-4 Max-min-plus-scaling (MMPS) systems 11

Definition 2.23 (ABC canonical form, [7]). Consider the following system:

x(k + 1) = C ⊗′ (B ⊗ (A · x(k))) (2-25)

The system is an MMPS system in the conjunctive ABC canonical form 2.

2-4-2 Time invariance for MMPS systems

Definition 2.24 (Additive homogeneous system, [6]). Consider an MMPS system x(k) =
f(p(k)); the system is said to be additive homogeneous if the function f : P → Rn has the
following property :

f(p+ λ) = f(p) + λ, ∀λ ∈ R (2-26)

Definition 2.25 (Partly additive homogeneous system, [6]). Now we consider an MMPS
system that is split p ∈ {p1, p2} where p1 ∈ Rn1 and p2 ∈ Rn2 with the functions f1 :
Rn1 × Rn2 → Rn1 and f2 : Rn1 × Rn2 → Rn2. The system is said to be a partly additive
homogeneous system if the following holds:

[
f1(p1 + λ, p2)
f2(p1 + λ, p2)

]
=
[
f1(p1, p2) + λ
f2(p1, p2)

]
, ∀λ ∈ R (2-27)

2-4-3 Time invariance for time and quantity signals

Consider an MMPS system that only has time signals xt = ft(pt(k)). The system will be
time-invariant if a shift in the signal pt will result in a shift in the value of the state.

xt(k) = ft(pt(k)) (2-28)
xt(k) + τ = ft(pt(k) + τ) (2-29)

Thus, such an MMPS system will be time-invariant if the system is additive homogeneous.
Consider an MMPS system with the split p ∈ {pt, pq} dividing the time and quantity signals.

x(k) =
{
xt(k) = ft(pt(k), pq(k))
xq(k) = fq(pt(k), pq(k))

(2-30)

The MMPS system is said to be time-invariant if the system is partly additive homogeneous.
The term of the system that should be additive homogeneous is the term with the time signals
[4]. [

ft(pt + λ, pq)
fq(pt + λ, pq)

]
=
[
ft(pt, pq) + λ
fq(pt, pq)

]
, ∀λ ∈ R (2-31)

Lemma 2.2 (Time-invariance for MMPS systems in ABC conjunctive form, [7]). An MMPS
in ABC-canonical form is homogeneous/time-invariant iff ∑

j ai,j = 1, ∀i where ai,j are the
entries of A.
Lemma 2.3 (Monotonic MMPS system, [7]). An MMPS in ABC-canonical form is mono-
tonic when ai,j ≥ 0, ∀i, j where ai,j are the components of A.

2The notation for the ABC canonical form in [7] differs from this one due to a change in notation during
the thesis.
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12 Discrete-Event Systems

2-5 Conclusion

This chapter explored discrete-event systems, including their characteristics and algebraic
representations. Discrete-event systems are dynamic systems where state updates occur at
events. Examples of how they manifest in real-world scenarios are production lines and railway
systems. These systems consist of a finite number of resources and users, and their behaviour
can be described through the concepts of synchronization and concurrency.

We studied the algebraic framework of max-plus algebra, with operations of max-plus addition
and multiplication. We also discussed different important concepts of max-plus algebra. The
chapter explored max-plus convex geometry, a foundation for establishing the stability of
discrete-event switching-max-plus-linear (SMPL) systems, which will be discussed in section
3-2. Various geometric concepts were discussed, such as the supremum norm, max-plus Hilbert
projective metric, and max-plus cones.

Furthermore, we discussed the representation of max-plus-linear (MPL), switching-max-plus-
linear (SMPL), max-min-plus (MMP) and max-min-min-plus-scaling (MMPS) systems. For
MMP systems, we discussed bipartite systems for which the buffer stability will be proven
in chapter four. For MMPS systems, we examined different canonical forms —conjunctive,
disjunctive, Kripfganz, and ABC—that help standardize their representation while preserving
their behaviour. Lastly, we discussed the notions of time invariance and monotonicity for
MMPS systems. We examined how time invariance can be interpreted in the context of time
and quantity signals within MMPS systems.

In conclusion, this chapter has comprehensively overviews discrete-event systems, max-plus
algebra, max-plus convex geometry and MPL, SMPL, MMP, and MMPS systems. These
concepts lay the foundation for understanding the behaviour and analysis of discrete-event
systems.
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Chapter 3

Stability Analysis

This chapter presents stability analysis for time-driven and discrete-event SMPL systems. It
covers Lyapunov stability, positive invariant sets, local stability and ultimate boundedness.
The second part presents a stability analysis for SMPL systems. It discusses redefined notions
of stability based on conventional stability theory to determine stability for SMPL systems.

3-1 Stability analysis of time-driven systems

3-1-1 Lyapunov’s Method

Consider the autonomous system ẋ = f(x) and let this be a locally Lipschitz function defined
over a domain D ⊂ Rn, which contains the origin, and f(0) = 0. Let V (x) be a continuously
differentiable function defined over D such that the conditions in equations (3-1) and (3-2)
hold.

V (0) = 0 and V (x) > 0 ∀ x ∈ D with x ̸= 0 (3-1)
V̇ (x) ≤ 0 ∀ x ∈ D (3-2)

Then, the origin is a stable equilibrium point of ẋ = f(x). Moreover, if

V̇ (x) < 0 ∀x ∈ D with x ̸= 0, (3-3)

then the origin is asymptotically stable. Furthermore, if D = Rn, equations (3-1) and (3-2)
hold ∀ x ̸= 0, and V (x) is radially unbounded:

||x|| → ∞ ⇒ V (x)→∞, (3-4)

then the origin is globally asymptotically stable[13].
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14 Stability Analysis

Definition 3.1 (Exponential stability, [13]). Let f(x) be a locally Lipschitz function defined
over the domain D ⊂ Rn, which contains the origin and let f(0) = 0. Let V (x) be a continu-
ously differentiable function defined over D such that equations (3-5) and (3-6) hold.

k1||x||a ≤ V (x) ≤ k2||x||a (3-5)
V̇ (x) ≤ −k3||x||a (3-6)

For all x ∈ D, where k1, k2, k3 and a are positive constants. Then the origin is an exponen-
tially stable equilibrium point of ẋ = f(x). If the assumptions hold globally, the origin will be
globally exponentially stable.

3-1-2 Lyapunov Function, discrete-time

Consider the autonomous discrete-time system x(k+1) = f(x(k)). Now consider a Lyapunov
function V : Rn → R, which is defined and continuous on the state space. The discrete-time
derivative is equal to the difference between the discrete-time Lyapunov function.

∆V (x(k)) = V (k + 1)− V (k) (3-7)

If the condition f(0) = 0 holds, the global uniform asymptotic stability for the discrete-time
model has the same definition as in section 3-1-1, where the Lyapunov function is replaced
with the Lyapunovs’ difference [14].

Definition 3.2 (Exponential Stability, discrete-time, [14]). The discrete-time system x(k +
1) = f(x(k)) is said to be globally exponentially stable if there exists a 0 < λ < 1 and a
positive µ such that ∀ ||x(0)||,

||x(k)|| ≤ µ||x(0)||λk, ∀t ≥ 0 (3-8)

3-1-3 Positive invariant sets

Definition 3.3 (Positive invariant sets, [15]). A set O ⊆ X is said to be a positive invariant
set for the autonomous system x+ = f(x, u) subject to the constraints in x ∈ X , u ∈ U if
x(0) ∈ O ⇒ x(k) ∈ O ∀k ∈ Z+.

Positive invariant sets determine if an autonomous system will not violate constraints. Rewrit-
ing a non-autonomous to an autonomous system using a feedback controller u = f(x) can
validate if the controlled system will violate the constraints. A set O ⊆ X is a positive invari-
ant set for the autonomous system x+ = f(x, u) subjected to the constraint in x ∈ X , u ∈ U ,
if x(0) ∈ O −→ x(k) ∈ O ∀k ∈ Z+[4]. This means that for any initial state x(0) that lies in the
positive invariant set, the state of the autonomous system will stay in that set for all k ≥ 0.
Consider the algorithm 1, this algorithm will calculate the positive invariant subset O∞ for
the autonomous system x+ = fa(x) subject to state constraints x(k) ∈ X , ∀k ≥ 0.

Algorithm 1 generates the set sequence {Ωk} satisfying Ωk+1 ⊆ Ωk, ∀k ∈ Z+ and it terminates
when Ωk+1 = Ωk. If it terminates, then Ωk is the maximal positive invariant set O∞ for the
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3-1 Stability analysis of time-driven systems 15

Algorithm 1 Computation of O∞[15]
1: Input: fa,X ;
2: Output: O∞
3: Ω0 ← X , k ← −1
4: repeat
5: k ← k + 1
6: Ωk+1 ← Pre (Ωk) ∩ Ωk

7: until Ωk+1 = Ωk

8: O∞ ← Ωk

autonomous system x+ = fa(x) subject to state constraints x(k) ∈ X and ∀k ≥ 0. If Ωk = ∅
for some integer k, then the simple conclusion is that O∞ = ∅. In general, algorithm 1 may
never terminate. If the algorithm does not terminate in a finite number of iterations, it can
be proven that O∞ = limk→+∞ Ωk[15].

3-1-4 Local stability and ultimate boundedness

Global stability can be a strict notion of stability. Control problems often can be solved using
less strict notions of local stability because the convergence with arbitrary initial conditions
can be too restrictive. Another reason to introduce local stability is that disturbances can
prevent the system from asymptotically approaching the origin. In such a case, convergence
to a set could be considered.

Definition 3.4 (Uniform local asymptotic stability, [14]). Consider the set S and let it be a
neighbourhood of the origin. The system is said to be uniformly locally asymptotically stable
with the domain of attraction S if the following two conditions hold:

1. Local stability holds if ∀µ > 0 there exists δ > 0 such that ||x(0)|| ≤ δ implies ||x(t)|| ≤
µ, ∀t ≥ 0.

2. Local uniform convergence holds if ∀ γ > 0 there exists T (γ) > 0 such that if x(0) ∈ S,
then ||x(t)|| ≤ γ, ∀t ≥ T (γ).

Definition 3.5 (Uniform ultimate boundedness, [14]). Consider the set S and let it be a
neighbourhood of the origin. The system is said to be uniformly ultimately bounded in S, if
∀µ > 0 there exists T (µ) > 0, such that for every ||x(0)|| ≤ µ, x(t) ∈ S, ∀t ≥ T (µ).

Definition 3.6 (Lyapunov function inside a set, [14]). Consider the positively invariant set:

N [ψ, ν] = {x : ψ(x) ≤ ν} (3-9)

Now consider the set S and let it be a neighbourhood of the origin. The locally Lipschitz
positive definite function V is said to be a Lyapunov function inside set S if there exists a
ν > 0 such that S ⊆ N [ψ, ν] and the inequality holds:

V̇ (x) ≤ −ϕ(||x(t)||) (3-10)

for some κ-function ψ.
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Definition 3.7 (Lyapunov function outside a set, [14]). Now consider the set S and let it
be a neighbourhood of the origin. The locally Lipschitz positive definite function V is said to
be a Lyapunov function outside set S if there exists a ν > 0 such that S ⊆ N [ψ, ν] and ∀
x /∈ N [ψ, ν] the inequality holds:

V̇ (x) ≤ −ϕ(||x(t)||) (3-11)

3-2 Stability analysis of switching-max-plus-linear (SMPL) systems

The stability analysis of SMPL systems in [8] has modelling assumptions. Consider the
dynamics for the continuous state x ∈ Rn

ϵ at event step k ∈ N is written in the form:

x(k) = f(l, x(k − 1)), l ∈ nL (3-12)

The switching sequence (possible infinite) σk = (lk)k∈N along with an initial state x(0) for
system dynamics (3-12) completely describes the trajectory of the discrete-event system. For
the rest of this section, it is assumed that the discrete-event system is structurally finite and
the function f(l, x) is continuous and additively homogeneous with the state x ∈ Rn for every
l ∈ nL.

The notions of stability will often use the term ”buffer”. The buffer level of discrete-event
systems described in max-plus algebra is the time delay between the occurrences of differ-
ent events in either the same event cycle or consecutive ones[8]. The notion of stability is
associated with the boundedness of these buffer levels.

3-2-1 Autonomous notions of stability

Definition 3.8 (Max-plus bounded-buffer stability, [8]). A discrete event-system (3-12) is
said to be:

1. uniformly max-plus bounded-buffer stable if there exists a constant δ > 0 and ∀µ > 0
there exists a constant T = T (µ, δ) > 0 such that if x(0) ∈ Bµ, then x(k) ∈ Bδ ∀k ≥
T (µ, δ).

2. uniformly locally asymptotically max-plus bounded-buffer stable with respect to a closed
set K ⊆ Bτ for some τ > 0 if:

(a) For every δ > 0 there is µ = µ(δ) > 0 such that if x(0) ∈ Bµ(K ), then x(k) ∈
Bδ(K ) ∀k ≥ 0.

(b) There exists a constant µ > 0 and for every η > 0, there exists a scalar T = T (η) >
0 such that if x(0) ∈ Bµ(K ), there is a x(k) ∈ Bη(K ) ∀k ≥ T (η).

Definition 3.9 (Max-plus Lipschitz stability, [8]). A discrete event-system (3-12) is said to
be:

1. uniformly max-plus Lipschitz stable if for every µ > 0 there exists a scalar δ > 0 and a
constant T (µ, δ) ∈ N such that if x(0) ∈ Bµ, then x(k) ∈ Bδ(x(k − 1)) ∀k ≥ T (µ, δ).
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3-2 Stability analysis of SMPL systems 17

2. uniformly locally asymptotically max-plus Lipschitz stable with a basin of attraction Bη,
if for a value of η > 0 and the same stability (as in 1) and there exists a scalar ρ ∈ R and
a constant T (η) > 0 such that if x(0) ∈ Bη, then ||x(k)−ρ ·k||∞ is bounded ∀k ≥ T (η).

To prove the uniform asymptotic max-plus bounded-buffer stability later in this chapter, it
is required to have a discrete event system that is uniform max-plus Lipschitz stable. The
asymptotic max-plus Lipschitz stability implies that the asymptotic growth rate is a constant;
the definition requires that growth rate ρ ∈ R exists.

Definition 3.10 (Max-plus incremental stability, [8]). A discrete event system (3-12) evolving
on a positively invariant set K ⊆ Rn for a given switching sequence σk = {l(k)}k∈N is said
to be

1. Uniformly max-plus incrementally stable in K ⊆ Rn if for every δ > 0, there is a
µ = µ(δ) > 0 such that for any x(1)

σ (0), x(2)
σ (0) ∈ K , if x(2)

σ (0) ∈ Bµ(x(1)
σ (0)) there is

x
(2)
σ (k) ∈ Bδ(x(1)

σ (k)) ∀k ≥ 0.

2. Uniformly asymptotically max-plus incrementally stable in K ⊆ Rn if the system is
uniformly max-plus incrementally stable, and for each η > 0, there exists a scalar T =
T (η) > 0 such that for any x(1)

σ (0), x(2)
σ (0) ∈ K , there is x(2)

σ (k) ∈ Bη(x(1)
σ (k)) ∀k ≥ 0.

Definition 3.11 (Max-plus convergent dynamics, [8]). A discrete event system (3-12) is
said to be uniformly max-plus convergent in a positively invariant set K ⊆ Rn for a given
switching sequence σk = {l(k)}k∈N if the following conditions hold:

1. there exists a unique solution x̃σ(k) of a discrete event system defined in K and bounded
in the max-plus Hilbert projective norm ∀k ∈ N.

2. the system is uniformly asymptotically max-plus bounded-buffer stable with respect to
solution x̃σ(k) if:

(a) for every δ > 0, there is a µ = µ(δ) > 0 such that x(0) ∈ Bµ(x̃σ)(0), there is
x(k) ∈ Bδ(x̃σ(k)) ∀k ≥ 0.

(b) there exists a scalar T = T (η) > 0 such that if x(0) ∈ Bµ(x̃σ(0)), there is x(k) ∈
Bη(x̃σ(k)) ∀k ≥ T (η).

3-2-2 Ultimate boundedness

Definition 3.12 (Lyapunov function outside a set, [8]). A positive definite continuous func-
tion Ψ : Rn → R is a Lyapunov function outside Bδ, δ > 0, for the system (3-12) if:

1. there exists v > 0 such that N (Ψ, v) ⊆ Bδ and for all x /∈ N (Ψ, v) we have

∆Ψ(x) = Ψ(f(l, x))−Ψ(x) ≤ −α
(
∥x∥P + δ′)

for some δ′ ≥ 0, a function α of class K and for all l ∈ nL.
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2. The set N (Ψ, v) is positively invariant, so for all x ∈ N (Ψ, v) and for all l ∈ nL, we
have

Ψ(f(l, x)) ≤ v
Theorem 3.1 (Ultimate buffer boundedness, [8]). A discrete-event system (3-12) is uniformly
max-plus bounded buffer stable if it admits a Lyapunov function outside Bδ, for a finite δ > 0
as in definition 3.12.
Definition 3.13 (Max-plus gauge function, [8]). Given a max-plus C-set K ⊆ Rn = span⊕(K),
its max-plus gauge function is defined as:

ΨK(x) = min
µ≥0

{
µ ∈ R | x ∈ eig

(
K̃µ, 0

)}
, ∀x ∈ Rn. (3-13)

Here, the minimum is attained since the max-plus eigenspace of a Kleene star matrix is finitely
generated.

The following properties of a max-plus gauge function can be verified.
Definition 3.14 (Max-plus gauge function properties, [8]). Given a max-plus C-set K ⊆
Rn, the associated max-plus gauge function ΨK : Rn → R satisfies the following properties:

a) Max-plus sub-linearity: ΨK(x⊕ y) ≤ ΨK (x)⊕ ψ(y), for all x, y ∈ Rn;

b) Scale freeness: ΨK (µ⊗ x) = ΨK (x), for all x ∈ Rn and µ ∈ R;

c) Positive definiteness: ΨK (x) ≥ 0,ΨK (x) = 0⇔ x ∈ K ;

d) Continuity.

The max-plus convexity of the sublevel-set of a max-plus gauge function, N (ΨK, δ) for a
given δ > 0, follows from [65, Theorem 18-9]. As the max-plus C-set K is closed, the
function ΨK(·) is max-plus convex.
Definition 3.15 (Closed-form expression of a max-plus gauge function, [8]). For a given
max-plus C-set K ⊆ Rn and a vector x ∈ Rn, max-plus gauge function can be described as:

ΨK (x) = x∗ ⊗K ⊗ x = (−x)T ⊗K ⊗ x, (3-14)

where K ∈ R is the generating Kleene star matrix. The max-plus gauge function provides the
minimum max plus Hilbert projective distance between x and K .

The smallest max-plus Hilbert ball Bδ enclosing the set span⊕(K), for a given Kleene star
matrix K ∈ Rn×n

ϵ , can be obtained by existing algorithms[16]. This provides a global ultimate
upper boundary on the buffer level of the discrete event system [8, theorem 4.3.1].
Theorem 3.2 (Asymptotic Lipschitz stability, [8]). Consider again the discrete-event system
in (3-12). Let ρ ∈ R be given and let the normalised state be denoted as xρ(k) = x(k)−
(ρ · k)⊗ 1n. The following statements are equivalent:

1. The system is uniformly max-plus bounded-buffer stable.
In addition, given any monotone and additively homogeneous function Φ : Rn → R,
for every µ > 0 there exists a scalar T = T (µ) ∈ N such that if x(0) ∈ Bµ, then
|Φ (xρ(k))− Φ (xρ(k − 1))| is uniformly bounded for all k ≥ T .

2. The system is uniformly asymptotically max-plus Lipschitz stable.
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3-2-3 Lyapunov stability

Definition 3.16 (Max-plus Lyapunov function, [8]). Let a discrete event time system have
a closed positive invariant set K ⊆ Rn.

Let there be an open domain D ⊆ Rn and let K ⊂ D be a closed set. With the continuous
function V : D → R+ is a common max-plus Lyapunov function with respect to K defined
over the domain D for the system dynamics when the three following conditions hold:

1. The function V is scale-free such that:

V (µ⊗ x) = V (x), ∀x ∈ D and µ ∈ R

2. There exist two functions of class K∞, α1 and α2 such that:

α1(||x||K ,P) ≤ V (x) ≤ α2(||x||K ,P)

for all x ∈ D ;

3. There exists a continuous, positive definite function α3 such that:

V (f(l, x))− V (x) ≤ −α3(||x||K ,P)

for all x ∈ D and for all l ∈ nL

3-2-4 LaSalle-Like relaxations

Definition 3.17 (Weak max-plus Lyapunov function, [8]). Let K ⊆ Rn be any set. A
function V : Rn → R is said to be a weak Lyapunov function in K for the (3-12) dynamics
if the following conditions hold:

1. The function V is scale-free such that:

V (µ⊗ x) = V (x), ∀x ∈ D and µ ∈ R

2. V (·) is continuous on K .

3. V (f(l, x)− V (x)) ≤ 0, ∀x ∈ K and ∀l ∈ nL

The function V is positive definite with respect to a set Kc ⊆ Rn if:

1. V (x) = 0, ∀x ∈ Kc

2. There exists an η > 0 such that V (x) > 0 wherever x ∈ Bη(Kc) and x /∈ Kc
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3-3 Stability analysis of max-min-min-plus-scaling (MMPS) sys-
tems

An extension of the framework provided in the last section is worked out for MMPS systems
in [4]. In this section, the definitions are presented such that notions of autonomous stability
can be made for both time and quantity signals. Consider an MMPS discrete event with time
signals xt and quantity signals xq:

xt(k) = ft(xt(k − 1), xq(k − 1)),
xq(k) = fc(xt(k − 1), xq(k − 1)).

(3-15)

We assume that the discrete-event system (3-15) is structurally finite. In addition, the func-
tion is assumed to be continuous and partly additively homogenous in the states xt, xq ∈ Rn.
We will define an open ball produced using the projective norm (2.6) as Bδ, and the open
ball produced using the infinity norm (2.7) as Bδ.

Definition 3.18 (Uniformly bounded stable, [4]). An MMPS system with both a time state
xt and a quantity state xq is said to be uniformly bounded stable for every µt, µq > 0 there
exists constants δt, δq > 0 and a constant T = T (µt, µq, δt, δq) > 0 such that if xt(0) ∈ Bµt

and xq(0) ∈ Bµq , we have xt(k) ∈ Bδt , x(k) ∈ Bδq for all k ≥ T ;

Definition 3.19 (Uniform Lipschitz stability, [4]). An MMPS system with both a time state xt

and a quantity state xq is said to be uniformly Lipschitz stable if there exists constants µ̄t, µ̄q >
0 such that for every µt ∈ (0; µ̄t) and µq ∈ (0; µ̄q) there exists a δt = δt (µt, µq) > 0 and
δq = δq (µt, µq) > 0 such that if xt(0) ∈ Bµt and xq(0) ∈ Bµq , we have xt(k) ∈ Bδ̄t

(x(k− 1))
and xq(k) ∈ Bδ̄q

for all k ≥ 0;

Definition 3.20 (Uniform locally asymptotical Lipschitz stability, [4]). An MMPS sys-
tem is said to be uniformly locally asymptotically Lipschitz stable with a basin of attraction(
Bµt(0),Bµq (0)

)
if the system is stable (as in 3.19) and there exist scalars c ∈ N and T =

T (µt, µq) > 0 such that if xt(0) ∈ Bµt(0) and xq(0) ∈ Bµq (0), we have xt(k) ∈ B0(x(k − c))
and xq(k) ∈ B0(x(k − c)) for all k ≥ T (µt, µq).

Definition 3.21. The sub-level sets generated by a continuous function Ψ : Rnt × Rnq → R
for δ ≥ 0 are denoted as:

N (Ψ, ν) = {(xt ∈ Rnt , xt ∈ Rnq ) | Ψ (xt, xq) ≤ δ} .

Definition 3.22. A positive definite continuous function Ψ : Rne × Rnq → R is a Lyapunov
function outside Bδt ×Bδq , δt, δq > 0, for the system (3-15) if:

• there exists ν > 0 such that N (Ψ, ν) ⊆ Bδ and for all x /∈ N (Ψ, ν) we have

∆Ψ = Ψ (f (xt, xq))−Ψ (xt, xq) ≤ −α
(
∥xt∥P + ∥xq∥∞ + δ′)

for some δ′ ≥ 0, κ-function α and for all k ∈ N.

• The set N (Ψ, ν) is positively invariant, so we have for all (xt, xq) ∈ N (Ψ, ν)

Ψ (f (xt, xq)) ≤ ν

for all k ∈ N.
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Theorem 3.3. A discrete-event dynamical system (3-15) is uniformly bounded stable in Bδt×
Bδq if it admits a Lyapunov function outside Bδt ,Bδ̄q

, for a finite δ > 0, as in definition
3.18[4].

3-4 Conclusion

This chapter explored various aspects of stability analysis for different types of systems. We
explored stability analysis for time-driven systems, focusing on Lyapunov’s method. We dis-
cussed conditions for stable, asymptotically stable, and globally asymptotically stable equilib-
rium points. We also studied the concept of exponential stability for continuous-time systems.

Moving on, we discussed stability analysis for discrete-time systems using Lyapunov functions.
We highlighted the difference between Lyapunov functions for continuous and discrete-time
systems and examined exponential stability in discrete time. Next, we discussed positive in-
variant sets, explaining how they are used to ensure that systems do not violate constraints.
We examined an algorithm for computing positive invariant sets and discussed their signifi-
cance in ensuring system stability under constraints.

We discussed definitions for assessing the stability of SMPL systems, including max-plus
bounded-buffer stability, Lipschitz stability, incremental stability, ultimate boundedness and
asymptotic Lipschitz stability. We studied the concept of max-plus Lyapunov functions and
weak max-plus Lyapunov functions for discrete event systems. These functions can provide
insight into the buffer stability of SMPL systems. Finally, we discussed the autonomous
stability notions for MMPS systems with both time and quantity signals.

Overall, this chapter covered a wide range of stability analysis techniques for different types of
systems, providing insights into understanding and ensuring the stability of complex dynamic
systems.
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Chapter 4

Max-plus Lyapunov Functions for
MMP and MMPS Systems

This chapter presents a framework for proving Lyapunov stability for MMP and MMPS
systems using the max-plus gauge function (3-13) as the max-plus Lyapunov function. This
research focuses on the time signals of these systems. Stability is proven in a similar manner
for both types of systems. The first section provides a method to determine the boundedness of
the buffers of MMP and MMPS systems. The second section presents a method to determine
the allowable buffer for the max-plus Lyapunov function. This is done by providing an
algorithm for constructing an attractive positive invariant set for MMP and MMPS. The
third section presents analytical methods to determine the maximal buffer for bipartite MMP
systems. The fourth section gives extra conditions for a bounded growth rate for MMPS
systems and presents analytical methods to determine the buffer for two-dimensional MMPS
systems. Furthermore, it yields additional insights into the additive eigenvalues and additive
eigenvectors of MMPS in relation to their properties of full correlation, time-invariance, and
monotonicity. The chapter ends with a conclusion and technical proofs.

4-1 Fully correlated systems

The term fully correlated system is introduced in this thesis. It can be used to determine
if the buffer between the states of MMP and MMPS systems will be bounded. This section
defines and provides examples of such systems.

4-1-1 Fully correlated MMP system

Consider an MMP system that is rewritten in conjunctive normal form 2.15. Within this
system, we introduce a set of variables ωi selected from {ω1, · · · , ωp}, which corresponds to
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24 Max-plus Lyapunov Functions for MMP and MMPS Systems

the power set1 of the set {x1, · · · , xn}. We can rewrite the state update of xi(k + 1) as:

xi(k + 1) = f1(ω1)⊕′ f2(ω2)⊕′ · · · ⊕′ fq(ωq), (4-1)

Here, the functions fi ∈ {f1, · · · , fq} are max-plus functions.

Definition 4.1 (Fully correlated MMP system). An MMP system is classified as fully cor-
related if, for every state, the update as in (4-1) is composed of max-plus functions that are
dependent on the same set of ωi.

Theorem 4.1. A fully correlated MMP system will have a bounded absolute difference between
all the states.

Proof. see section 4-6.

Example 4.1. Consider an MMP system which is of the form:

x(k + 1) = C ⊗′ (B ⊗ x(k)) (4-2)

Now consider the system matrices:

B =

2 3 ϵ
1 2 ϵ
ϵ ϵ 6

 , C =

1 ⊤ 3
⊤ 2 4
2 9 2

 (4-3)

To check that the system is fully correlated, we write out the state updates:

x1(k + 1) = ((x1(k)⊗ 3)⊕ (x2(k)⊗ 4))⊗′ (x3(k)⊗ 9)
x2(k + 1) = ((x1(k)⊗ 3)⊕ (x2(k)⊗ 4))⊗′ (x3(k)⊗ 10)
x3(k + 1) = ((x1(k)⊗ 4)⊕ (x2(k)⊗ 5))⊗′ ((x1(k)⊗ 10)⊕ (x2(k)⊗ 11))⊗′ (x3(k)⊗ 8)

(4-4)

We define the set ω1 = {x1, x2} and ω2 = {x3}. All state updates are composed of max-
plus functions dependent on ω1 and ω2. Therefore, we can conclude that the system is fully
correlated.

Example 4.2. Consider the following MMP system:

x1(k + 1) = ((x1(k)⊗ 3)⊕ (x2(k)⊗ 9))⊕′ (x2(k)⊗ 4)
x2(k + 1) = ((x1(k)⊗ 7)⊕′ (x2(k)⊗ 4))⊕ (x1(k)⊗ 6)

(4-5)

The MMP is rewritten in conjunctive normal form to check that the system is fully correlated.
As the first state update is already in this form, this is only necessary for x2(k + 1):

x2(k + 1) = ((x1(k)⊗ 7)⊕ (x1(k)⊗ 6))⊕′ ((x1 ⊗ 6)⊕ (x2(k)⊗ 4))
= (x1(k)⊗ 7)⊕′ ((x1(k)⊗ 6)⊕ (x2(k)⊗ 4))

(4-6)

We define the set ω1 = {x1, x2}, ω2 = {x1} and ω3 = {x2}. The first state update is composed
of max-plus functions dependent ω1 and ω3, and the second state update is composed of max-
plus functions dependent ω1 and ω2. Therefore, we can conclude that the system is not fully
correlated.

1Let A be a set; by the power set of A we mean the class of all the subsets of A[17].
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4-1-2 Fully correlated MMPS system

Consider an MMPS system that has been transformed into the ABC normal form. Let
the vector A · x be represented as

[
α1 · · · αn

]T
. Within this system, we introduce a set

of variables ωi selected from {ω1, · · · , ωp}, which corresponds to the power set of the set
{α1, · · · , αn}. We can rewrite the state update of xi(k + 1) as:

xi(k + 1) = f1(ω1)⊕′ f2(ω2)⊕′ · · · ⊕′ fq(ωq), (4-7)

Here, the functions fi ∈ {f1, · · · , fq} are max-plus functions.

Definition 4.2 (Fully correlated MMPS system). An MMPS system is classified as fully
correlated if, for every state, the update as in (4-7) is composed of max-plus functions that
are dependent on the same set of ωi.

Theorem 4.2. A fully correlated MMPS system will have a bounded absolute difference be-
tween all the states.

Proof. See section 4-6.

Example 4.3. Consider an MMPS system in ABC canonical form, with system matrices:

A =
[

0.4 0.6
0.7 0.3

]
, B =

[
3 ϵ
ϵ 5

]
, C =

[
6 3
2 4

]
(4-8)

We substitute A · x = α, with α =
[
α1 α2

]T
for the states. Substituting α and writing out

the state updates gives:

x1(k + 1) = (9⊗ α1)⊕′ (8⊗ α2)
x2(k + 1) = (5⊗ α1)⊕′ (9⊗ α2)

(4-9)

We define the set ω1 = {α1} and ω2 = {α2}. Both state updates are composed of max-
plus functions dependent on ω1 and ω2. Therefore, we can conclude that the system is fully
correlated.

Example 4.4. Now consider a nearly identical system, except for the values of B2,1 and C2,1:

A =
[

0.4 0.6
0.7 0.3

]
, B =

[
3 ϵ
7 5

]
, C =

[
6 3
⊤ 4

]
(4-10)

Again let A× x be α:

x1(k + 1) =(α1 ⊗ 9)⊗′ ((α1 ⊗ 10)⊕ (α2 ⊕ 8))
x2(k + 1) =((α1 ⊗ 11)⊕ (α2 ⊗ 9))

(4-11)

We define the set ω1 = {α1, α2} and ω2 = {α2}. The first state update is composed of max-
plus functions dependent on ω1 and ω2; the second state update is composed of one max-plus
function dependent on ω1. Therefore, we can conclude that the system is not fully correlated.
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4-2 Redefining max-plus Lyapunov functions

Proof of the stability for switching-max-plus-linear (SMPL) systems uses the invariant max-
plus C-set K . In [8], a general setup for constructing the smallest non-empty positively
invariant set for an open-loop SMPL system is provided. Here, the radius of the set is
measured as the (negative) second-largest max-plus eigenvalue of the associated Kleene star
matrix[18].

In this thesis, the same max-plus gauge function is used. The set will represent the allowable
buffer between the states. This buffer will ensure that the max-plus Lyapunov function and
its derivative are semi-positive and semi-negative definite, respectively. This method is easily
interpreted when the max-plus Lyapunov function is written out. Consider a matrix K that
has zeros on its diagonal and finite values δi,j with i ∈ {1, · · · , n} and j ∈ {1, · · · , n}:

K =



0 −δ1,2 −δ1,3 · · · −δ1,n

−δ1,2 0 −δ2,3 · · · −δ2,n

−δ1,3 −δ2,3
. . . . . . ...

...
... . . . . . . ...

−δ1,n −δ2,n . . . . . . 0


(4-12)

V (x) =(−x)T ⊗K ⊗ x
= max(max(−x1,−x2 − δ1,2,−x3 − δ1,3) + x1,max(−x1 − δ1,2,−x2,−x3 − δ1,3) + x2, · · · )
= max(0,±(x1 − x2)− δ1,2,±(x1 − x3)− δ1,3,±(x2 − x3)− δ2,3, · · · )

(4-13)

The lower bound of the max-plus Lyapunov function will be equal to zero. The function will
give the maximal difference between the states minus the corresponding value of δi,j . The
value of δi,j will be the allowable buffer between the states. This is convenient as when all the
absolute differences are smaller than the buffer, the value of the max-plus Lyapunov function
will be zero. This will be equivalent to that the states are in set K = span⊕(K).

MMP or MMPS systems can have oscillating behaviour. This may lead to a divergence
between the states. The system is considered stable if the divergence is within the bounds
of the buffer level δi,j . This method has a significant advantage over traditional Lyapunov
functions such as the two-norm. By modifying the original system to compare all states to
a single reference state, we could investigate the Lyapunov stability of the buffers using the
two-norm. However, if we used the conventional two-norm, the oscillation would result in a
positive Lyapunov function.

Using a visual example helps to show why fully correlated systems can be used to determine
the attractivity and positive invariance of the set. We will first show an example of an SMPL
system [8, example 4.3.3.].
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Example 4.5. Consider a bimodal open-loop switching max-plus-linear (MPL) system defined
by the following matrices:

A(1) =
[
4 ϵ
1 1

]
, A(2) =

[
3 3
ϵ 6

]
. (4-14)

In example [8, example 4.3.3.], it is given that the buffer will be δ1,2 = 3. The plots of figure 4-
1 display the absolute difference between the states after a single state update along the z-axis.
The x and y-axes show the initial system conditions for the system. Matrix A(1) corresponds
to figure 4-1a and matrix A(2) corresponds to figure 4-1b. In both plots, there is a plane that
creates the upper or lower bound where the difference is constant. Using the matrices, we
can easily find the constant buffer and the conditions necessary for this constant buffer. For
system matrix A(1) the buffer will stay constant if x1(k) ≥ x2(k):

x1(k + 1)− x2(k + 1) = 4 + x1(k)−max(1 + x1(k), 1 + x2(k)) = 3 (4-15)

For system matrix A(2), the buffer is constant if x2 ≥ x1 with a buffer of minus three. If both
subsystems always converge to the set where the absolute difference is smaller than three, then
we consider the system stable. Using [8, theorem 4.4.1], it is possible to prove that the states
will converge to the set |x1(k)− x2(k)| ≤ 3. This set will be positively invariant with respect
to both system dynamics. Thus, we can conclude that the states will converge to the set, and
the buffer of the SMPL system will stay smaller or equal to three.

(a) MPL system with system matrix A(1) (b) MPL system with system matrix A(2)

Figure 4-1: Difference between states after one state update (x1(k+ 1)− x2(k+ 1) of a SMPL
system

Figure 4-2 shows the difference between the states for a fully correlated MMP system. The
plot shows that the difference between the states will be upper and lower-bounded. This
means that after one state update, the difference between the states will always be equal
or smaller than the maximal constant buffer. We can use the buffer values to create a
set K = span⊕(K). The set created by the maximal constant buffer will, therefore, be
an attractive set and positively invariant with respect to the system dynamics. Using an
updated domain, we can use this property to calculate the updated maximal buffer. The
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domain will be within the previously calculated maximal buffer. We will iterate until we find
the smallest allowable buffer for MMP and MMPS systems. The following section will present
the algorithm to calculate the buffers for all states.

Figure 4-2: Difference between states after one state update (x1(k + 1)− x2(k + 1)) of a fully
correlated MMP system

4-2-1 Construction

Consider a discrete event fully correlated MMP or MMPS system. Using optimisation, the
absolute maximal buffer is easily calculated. This can be done for all combinations of states
separately. The optimisation will be over a cost function that is the absolute value of the
difference between each pair of states. This optimisation is performed using a dummy variable.
The problem can be recast in a mixed-integer linear program (MILP) problem. Using a binary
variable b and introducing a sufficient big term N , the initial optimisation will be equal to 2:

max
x(k)

δi,j

s.t. δi,j ≥ fi(x(k))− fj(x(k))
δi,j ≥ −fi(x(k)) + fj(x(k))
δi,j ≤ fi(x(k))− fj(x(k)) +Nb

δi,j ≤ −(fi(x(k))− fj(x(k))) +N(b− 1)

(4-16)

In the first iteration, the algorithm will find the maximal buffer for the whole state space.
After calculating this maximal difference for all combinations of states, the constraints are
updated. Because the difference between the states will be equal to or smaller than the
maximal buffer, the following pair of constraints will be included for all combinations of
states

xj ≤ xi + δi,j

xj ≥ xi − δi,j
(4-17)

2Note that the max-plus functions need to be rewritten to make it a MILP problem.
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The algorithm 2 will repeat this procedure with updated constraints until all δi,j equals the
value of the previous iteration. The code for the algorithm used in all Matlab simulations can
be found in appendix B-0-1.

Algorithm 2 Calculating matrix K
1: zi,j =∞, ∀i, j ▷ Initial domain for optimisation
2: repeat ∀i, j
3: Converged ← true ▷ Assume convergence unless condition is not met
4: max

x(k)
δi,j

s.t. δi,j ≥ fi(x(k))− fj(x(k))
δi,j ≥ −fi(x(k)) + fj(x(k))
δi,j ≤ fi(x(k))− fj(x(k)) +Nb

δi,j ≤ −(fi(x(k))− fj(x(k))) +N(b− 1)
x2 ≤ x1 + z1,2

x2 ≥ x1 − z1,2
...

xn ≤ xn−1 + zn−1,n

xn ≥ xn−1 − zn−1,n

5: δi,j = δj,i ▷ The absolute difference is equal for the pair i, j
6: if zi,j ̸= δi,j then
7: Converged ← false ▷ Update convergence status
8: end if
9: zi,j = δi,j

10: until Converged

4-3 MMP systems

This section presents analytical methods to calculate the maximal buffer for bipartite systems.
We propose a method for bipartite systems that have specific initial conditions, including
eigenvectors and those dependent on the C matrix. This section focuses on the buffer stability
of bipartite systems. In the next section about MMPS systems, we draw conclusions about
the additive eigenvalues of MMPS systems. Due to the similarities, we can also apply the
method to bipartite systems with partially arbitrary initial conditions. This will be elaborated
on in the section about MMPS systems.

4-3-1 Bipartite system with initial conditions equal to eigenvector

Consider a bipartite system from (2-18). If a valid additive eigenvector exists and the initial
conditions are equal to an additive eigenvector, there will be no transient period [19]. This
means that all states will have a linear drift with no oscillations.
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Corollary 4.2.1. The buffer between the states of a bipartite system with initial conditions
equal to an additive eigenvector will equal the absolute difference between the additive eigen-
vector entries.

Proof of corollary 4.2.1. All the states will have a constant growth rate equal to the
additive eigenvalue. As a result, the difference or buffer between the states will be equal to
the difference between the initial values of each state. The initial values of the states are
equal to the eigenvector. This completes the proof.

Our interest is in the buffer stability of states x. The states of y are only used for modelling.
The maximal difference between the states of x equals the eigenvector if there is no transient
behaviour. Consider the augmented state z with the corresponding state update:

z(k) =
(
x(k)
y(k)

)
, M

((
x(k)
y(k)

))
=
(

B ⊗ y(k)
C ⊗′ x(k)

)
(4-18)

Algorithm 3 Power algorithm for bipartite systems[20]
1: Take arbitrary initial state vector z(0)
2: Iterate z(k+ 1) = M (z(k)) until there are integers p, q with p > q ≥ 0 and a real number

c such that z(p) = z(q)⊗ c
3: Define as eigenvalue: λ = c

p−q

4: Define as eigenvector: v =
⊕p−q

j=1

(
λ⊗(p−q−j) ⊗ z(q + j − 1)

)
5: if M (v) = λ⊗ v then
6: v is correct eigenvector of the system for eigenvalue λ
7: else if M (v) ̸= λ⊗ v then
8: Take z(0) = v as a new initial state and iterate z(k + 1) = M (z(k)), until for some r
z(r + 1) = λ⊗ z(r), then z(r) is an eigenvector of the system for eigenvalue λ

9: end if

Consider the additive eigenvector vg:

vg =
[
vb,1 vb,2 · · · vb,n vc,1 vc,2 · · · vc,n

]T
(4-19)

The buffer will equal the absolute difference between each eigenvalue corresponding to the
state. Thus, matrix K can be defined as:

K(δ) =


0 −δ1,2 · · · −δ1,n

−δ1,2
. . . . . . ...

... . . . . . . −δ(n−1),(n−1)
−δ1,n . . . −δ(n−1),(n−1) 0



=


0 −|vb,1 − vb,2| · · · −|vb,1 − vb,n|

−|vb,1 − vb,2|
. . . . . . ...

... . . . . . . −|vb,n−1 − vb,n|
−|vb,1 − vb,n| . . . −|vb,n−1 − vb,n| 0



(4-20)

E.J.E. Peijnenburg Master of Science Thesis



4-3 MMP systems 31

Note that it is possible to include the additive eigenvector of the states y in this method.
However, it was not utilized as bipartite systems where a setup for determining buffer levels
for MMPS systems. The ABC canonical form shares a similar form with bipartite systems,
except for the division of states, which is why the states y were not included.

4-3-2 Bipartite systems with partly arbitrary initial conditions

Consider the bipartite system of (2-18). Let the initial conditions of x0 be arbitrary finite
values and let y0 = C ⊗ x0; we will denote this as partly arbitrary initial conditions.

Theorem 4.3. A bipartite system with partly arbitrary initial conditions and only finite
entries for matrix B and a regular matrix C will have a maximal buffer between states i, j
equal to:

δi,j = max(|bi,1 − bj,1|, |bi,2 − bj,2|, · · · , |bi,m − bj,m|) (4-21)

Proof. see section 4-6.

Example 4.6. Consider a bipartite system with system matrix B with only finite values and
a regular matrix C:

B =

6 7 0
3 5 2
7 9 3

 , C =

7 1 8
1 6 4
8 5 5

 (4-22)

According to theorem 4.3, the maximal buffer between each state will be equal to:

δi,j = max(|bi,1 − bj,1|, |bi,2 − bj,2|, · · · , |bi,m − bj,m|) (4-23)

Filling in the entries of the B matrix gives:

δ1,2 = max(3, 2, 2) = 3, δ1,3 = max(1, 2, 3) = 3, δ2,3 = max(4, 4, 1) = 4 (4-24)

Now the K matrix will be equal to:

K =

 0 −3 −3
−3 0 −4
−3 −4 0

 (4-25)

When we use the algorithm 2, the result for matrix K will be equal. The system is simulated
using partly arbitrary initial conditions in figure 4-3. It converges to the set K after one
event and converges to the edge of the set where it remains.
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Figure 4-3: Set K using matrix K for the analytical solution (in blue –) plotted on the
hyperplane{x ∈ R3|x3 = 0}. The system dynamics of the bipartite system (green line with
sky blue markers –).

Example 4.7. Consider a bipartite system with system matrix B with only finite values and
a regular matrix C:

B =

56 16 71
6 95 97
6 81 100

 , C =

99 53 90
15 7 84
96 31 0

 (4-26)

According to theorem 4.3, the maximal buffer between each state will be equal to:

δ1,2 = max(50, 79, 26) = 79, δ1,3 = max(50, 65, 29) = 65, δ2,3 = max(0, 14, 3) = 14
(4-27)

We will compare the analytical solution with the matrix K calculated by the algorithm 2:

Kan =

 0 −79 −65
−79 0 −14
−65 −14 0

 , Kalg =

 0 −18 −23
−18 0 −14
−23 −14 0

 (4-28)

In figure 4-4, the system is simulated using arbitrary initial conditions. It is evident that the
final set generated by matrix Kalg is significantly smaller. The difference between the states
converges to the set Kalg in two events, and the system dynamics converge to the border of
the set and remain constant.
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Figure 4-4: Set Kan using matrix Kan for the analytical solution (in mustard yellow –), the final
set Kalg using matrix Kalg (in blue –), the intermediate results of set Kalg (red dotted line –
–) all plotted on the hyperplane{x ∈ R3|x3 = 0}. The system dynamics of the bipartite system
(green line with sky blue markers –).

4-4 MMPS systems

4-4-1 MMPS functions in conjunctive ABC canonical form

Consider an MMPS system that is the conjunctive ABC canonical form (2-25). Let the system
with state x ∈ Rn and system matrices A ∈ Rn×n B ∈ Rm×n

ϵ and C ∈ Rn×m
⊤ . We define the

vector A ·x = α. We denote the linear combination of each row as αi with i ∈ {1, · · · , n}. For
every state, the update will be a linear combination αi together with a constant addition. Due
to the permutation, the whole system will have many possible combinations of αi. We denote
a unique vector with a combination of αi as α(i) and the specific addition from the B and C
matrix as γ(i). The combination of both will be considered the mode of the MMPS system. If
an MMPS system always converges to the same mode, we denote this as the dominant mode.
Assuming that for a state i the state update will be:

xi(k + 1) = min
j

(max
j

(bij + αj) + cij) = αj0 + bij0 + cij0 , (4-29)

we can write the state update of all states of mode (i) as:

x(k + 1) =


αj0
αj1

...
αjn

+


d1
d2
...
dn


x(k + 1) = α(i) + γ(i) = Φ(i) · x+ γ(i)

(4-30)

In conventional algebra, this would be an affine system. We denote the combinations of αi

for each mode as {α(1), · · · , α(p)} with corresponding system matrix {Φ(1), · · · ,Φ(p)}, and the
corresponding addition {γ(1), · · · , γ(p)}.

Master of Science Thesis E.J.E. Peijnenburg



34 Max-plus Lyapunov Functions for MMP and MMPS Systems

Lemma 4.4. If a time-invariant monotonic MMPS system stays in the same mode with
system matrix Φ(i) and vector γ(i), the growth rate of each state will converge to a steady
state that will be equal to the steady state value of the Markov chain (Φ(i))(n−1) · γ(i). If the
growth rates are equal for each state, it will be an additive eigenvalue λg of the system.

Proof. See section 4-6.

Lemma 4.5. If a time-invariant non-monotonic MMPS system stays in a mode which is
dependent on the same αi with system matrix Φ(i) and vector γ(i), the additive eigenvalue will
be equal to λg = Φ(i)

1· · γ(i).

Proof. See section 4-6. Note that any row of the matrix can be used to calculate the additive
eigenvalue, as all rows are equal.

Corollary 4.5.1. The additive eigenvectors vg of an MMPS system can be constructed using
the buffer of the corresponding dominant mode α(i).

To construct an additive eigenvector, use initial states with differences equal to buffers of the
dominant mode.

Theorem 4.6. A fully correlated MMPS system will have a bounded growth rate if it is
time-invariant.

Proof. See section 4-6.

Corollary 4.6.1. Consider an MMPS system in ABC canonical form. The states will have
a bounded buffer and growth rate if the system is fully correlated and a time-invariant MMPS
system.

These results provide valuable insights into the behaviour of MMPS systems. One crucial
observation is that in a fully correlated time-invariant monotonic MMPS system, the buffer
may reach a steady state value that depends on different αi. This happens because the
growth rate of each mode will eventually reach a steady state, given the Markov properties.
The buffer will remain constant if the growth rates converge to an equal rate for every state.
However, when growth rates differ, the states can diverge until the system reaches another
mode.

For non-monotonic time-invariant MMPS systems, fully correlatedness will always ensure
that the system will have a bounded growth rate. Many modes will experience exponential
growth due to absolute eigenvalues bigger than one. The unstable nature of these modes will
let the states diverge until the system reaches another mode. If the system reaches a mode
dependent on the same αi, it will experience linear growth (lemma 4.5). The maximal buffer
will be from a mode dependent on the same αi, this can be derived from the proof of theorem
4.1. Because the maximal divergence between the states will equal the maximal buffer, the
system will always experience linear growth at the maximal buffer. Another possibility is
that the system keeps switching between modes, resulting in small oscillations and, again,
bounded growth. Additionally, using the same logic, non-monotonic time-invariant MMPS
systems that are not fully correlated can become unstable because this bound will not exist.
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Another finding is that fully correlated time-invariant monotonic MMPS systems will always
have one dominant mode and only one additive eigenvalue. This property still needs to be
proved, but from many (106) simulations, it is clear that the growth rate will always converge
to the same value. Additionally, simulation made it clear that fully correlated time-invariant
non-monotonic MMPS systems can have multiple additive eigenvalues and, thus, not always
have a dominant mode.

Conjecture 4.1. If a fully correlated max-min-min-plus-scaling (MMPS) system is time-
invariant and monotonic, it will have one dominant mode and, thus, one additive eigenvalue.

Lemma 4.7. If a fully correlated MMPS system is time-invariant and non-monotonic, it can
have multiple additive eigenvalues.

Proof. See example 4.9.

The last thing to note is that a bipartite system can be rewritten as an MMPS system that
is in ABC canonical form. We first rewrite the system such that it is only dependent on x(k)
and choose the initial conditions to be partly arbitrary. The scaling matrix A will equal an
identity matrix in conventional algebra. Therefore the A matrix will be time-invariant and
monotonic. If the system is fully correlated and time-invariant, we can calculate the additive
eigenvalue of each mode. According to conjecture 4.1, we can conclude that a fully correlated
bipartite system with partly arbitrary initial conditions will also have one eigenvalue as it is
time-invariant and monotonic.

Example 4.8. Consider an MMPS system in the ABC canonical form 2-25, with system
matrices:

A =
[

0.8 0.2
0.4 0.6

]
, B =

[
8 8
5 4

]
, C =

[
10 5
3 2

]
(4-31)

Using lemma 4.4, we can derive that if the buffer goes to a steady state, the additive eigenvalue
rate will be equal to λg = Φ(n−1) · γ. The number of possible modes is sixteen. Now, using
Matlab, we calculate each mode’s additive eigenvalues. The mode that gives the eigenvalue is
equal to:

λg = Φn · γ =
[
0.8 0.2
0.8 0.2

]n

·
[
5 + 5
2 + 5

]
=
[
9.4
9.4

]
(4-32)

The growth rate in figure 4-5 converges to λg = 9.4.

We have computed all potential additive eigenvalues and can match the mode with the real
additive eigenvalue. Before simulation, we know the highest and lowest additive eigenvalue
but cannot ascertain which mode it will converge to. It would, therefore, be beneficial to find
a way to determine the dominant mode beforehand to calculate the additive eigenvalue.
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Figure 4-5: Additive eigenvalue of the MMPS system

Example 4.9. Consider a fully correlated, non-monotonic time-invariant MMPS system with
the following system matrices:

A =

−93.7939 29.8611 64.9328
−35.5214 80.7297 −44.2082
−13.3511 20.2736 −5.9225

 , B =

89 56 1
29 85 36
87 47 23

 , C =

37 60 5
1 54 45
41 99 4

 (4-33)

We simulate the system with different arbitrary initial conditions. In figure 4-6, the first state
is simulated fifty times. It is clear from figure 4-6 that this system has three eigenvalues.
The corresponding eigenvalues are equal to: λg,1 = 499.9, λg,2 = 39.7 and λg,3 = −492.2.
Something to note is that the growth rate will be equal for all the states, but only the first
state is plotted.

Figure 4-6: Simulation with different initial conditions, state x1
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4-4-2 Analytical solution

This section will present a method to analytically find the maximal buffer for a fully correlated
MMPS system. It includes examples and discusses the limitations of the analytical solution.

Corollary 4.7.1. If an MMPS system is in ABC normal form (2-25) and is fully correlated,
it is possible to find the maximal buffer analytically.

By writing out the equation from the ABC canonical form, the maximal difference between
each state can be found dependent on the elements of the system matrices. Consider the
system matrices for a two-dimensional system:

A =
[
a1 a2
a3 a4

]
, B =

[
b1 b2
b3 b4

]
, C =

[
c1 c2
c3 c4

]
(4-34)

The state updates will be equal to:

x1(k) = min( max(b1 + a1x1 + a2x2, b2 + a3x1 + a4x2) + c1,

max(b3 + a1x1 + a2x2, b4 + a3x1 + a4x2) + c2)
x2(k) = min( max(b1 + a1x1 + a2x2, b2 + a3x1 + a4x2) + c3,

max(b3 + a1x1 + a2x2, b4 + a3x1 + a4x2) + c4)

(4-35)

The bounded buffer between the states results from the states cancelling each other out. The
linear combination of the states and the elements of the A matrix will cancel out at some
point, and this will be between the upper and lower bounds of the buffer (see proof of theorem
4.2). As a result, we only have to look at which combination of the elements of the B and C
matrices will be smaller. Using a set of fourteen inequalities, we can derive the maximal buffer
for the whole state space. In appendix A, all the combinations of inequalities are presented
with the corresponding minimal and maximal buffer. After one state update, the buffer will
either have a lower and upper bound or a constant difference.

Example 4.10. Consider the system matrices:

A =
[

0.4 0.6
0.7 0.3

]
, B =

[
3 ϵ
ϵ 5

]
, C =

[
6 3
2 4

]
(4-36)

Using the inequalities of appendix A, we can find that:

b1 + c1 ≥ b3 + c2

b4 + c2 ≥ b2 + c1

b1 + c3 ≥ b3 + c4

b4 + c4 ≥ b2 + c3

Thus the maximal buffer will be δ1,2 = 4 and the minimal buffer will be δ1,2 = 1.

When dealing with a two-dimensional system containing square B and C matrices, there
are already fourteen possible combinations of inequalities to determine the maximum buffer.
However, when attempting to identify the difference between two states of a three-dimensional
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system with square B and C matrices, the number of combinations of inequalities increases
significantly to a total of 117. This means that to find the matrix K, 351 inequalities will
be considered. Finding the maximal buffer using analytical methods becomes exceedingly
difficult for higher-order systems. Fortunately, optimisation provides a viable solution to this
problem and can be used to overcome the challenges posed by higher-order systems.

Example 4.11. Consider a fully correlated, monotonic and time-invariant MMPS system in
ABC canonical form with system matrices A, B and C:

A =

0.341 0.399 0.260
0.567 0.298 0.135
0.087 0.090 0.823

 , B =

94 68 8
3 56 12
88 52 63

 , C =

 6 74 58
10 81 78
96 80 31

 (4-37)

Using the method presented in algorithm 2, we can derive that the matrix K is equal to:

K =

 0 −4 −19
−4 0 −15
−19 −15 0

 (4-38)

Using arbitrary initial conditions, the MMPS system is simulated, and figure 4-8 shows the
states and the max-plus Lyapunov function. It can be observed that after three events, the
states get a linear drift with no oscillations. The difference between the states is bounded and
equal to the corresponding values of matrix K. As a result, the max-plus Lyapunov function
is positive semi-definite, and the derivative is negative semi-definite.

(a) States (b) Lyapunov function V and ∆V

Figure 4-7: Simulation of MMPS system with initial conditions x0 = [3, 171, 521]T

Using the method from lemma 4.4, we can find all possible additive eigenvalues. Using Matlab,
the additive eigenvalue corresponding to the actual additive eigenvalue is λg = 106.539.
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Example 4.12. Consider a fully correlated, non-monotonic and time-invariant MMPS sys-
tem in ABC canonical form with system matrices A, B and C:

A =

 3.5039 −6.9609 4.4570
3.3739 6.4015 −8.7754
−1.4085 −5.0195 7.4280

 , B =

1 3 5
3 ϵ ϵ
4 7 3

 , C =

87 46 ⊤
83 12 84
⊤ 99 29

 (4-39)

Using the method presented in algorithm 2, we can derive that the matrix K is equal to:

K =

 0 −34 −53
−34 0 −87
−53 −87 0

 (4-40)

The MMPS system is simulated using arbitrary initial conditions. Figure 4-8 shows the states
and the max-plus Lyapunov function. It can be observed that after one event, the states get a
linear drift with no oscillations. The difference between the states is bounded and equal to the
corresponding values of matrix K. As a result, the max-plus Lyapunov function is positive
semi-definite, and the derivative is negative semi-definite.

(a) States (b) Lyapunov function V and ∆V

Figure 4-8: Simulation of MMPS system with initial conditions x0 = [601, 392, 787]T

Using the method from lemma 4.4, we can find all possible additive eigenvalues. Using Mat-
lab, the additive eigenvalue corresponding to the actual additive eigenvalue is λg = 521.894.
Something to note is that this system has two eigenvalues to which it can converge.
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Example 4.13. Consider a fully correlated, monotonic and time-invariant MMPS system in
ABC canonical form with system matrices A, B and C:

A =

0.3342 0.0248 0.6410
0.1147 0.0482 0.8371
0.1544 0.4924 0.3532

 , B =

82 89 36
42 17 77
52 72 64

 , C =

83 52 43
80 6 12
45 7 68

 (4-41)

Using the method presented in algorithm 2, we can derive that the final matrix K is equal to:

K =

 0 −34.3880 −33.3880
−34.3880 0 −2.3880
−33.3880 −2.3880 0

 (4-42)

Simulating the MMPS system with arbitrary initial conditions yields the intermediate and
final results of set K , as shown in figure 4-9. The system converges to the final set in four
events, with a difference smaller or equal to the last buffer level. This results in a positive
semi-definite max-plus Lyapunov function with a negative semi-definite derivative.

Figure 4-9: The final set K (blue line –), the intermediate results of set K (red dotted line –
–), system dynamics of the MMPS system (green line –) with sky blue markers). All are plotted
on the hyperplane{x ∈ R3|x3 = 0}.
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4-5 Conclusion

This chapter has introduced and developed a framework for analyzing the stability of the
buffer levels and the additive eigenvalues of MMP and MMPS. The chapter established the
use of the max-plus Lyapunov function and proposed a method to determine the boundedness
of MMP and MMPS systems. The fully correlated MMP and MMPS definitions are intro-
duced to ensure a bounded difference between states. The proof is given for both systems to
show that the buffer will be bounded. Additionally, the chapter presented an algorithm for
constructing an attractive set for fully correlated MMP and MMPS systems based on their
dynamics.

Methods to calculate the maximal buffer between states for bipartite and MMPS systems were
derived analytically and demonstrated through examples. Extra conditions on stability were
introduced for MMPS systems to ensure the bounded growth rate of fully correlated systems.
A method to determine the growth rate of time-invariant monotonic MMPS systems is derived
based on Markov chains.

We can draw meaningful conclusions from the provided theorems and lemmas on buffer bound-
edness and additive eigenvalues. Fully correlated time-invariant monotonic MMPS systems
can have a buffer that converges to a steady state value, which depends on different αi. This
convergence occurs due to the Markov properties of each mode, eliminating the need for state
cancellations to maintain a constant buffer.

Fully correlatedness ensures that time-invariant non-monotonic MMPS systems will always
have a bounded growth rate, even though some modes may exhibit exponential growth. This
stability arises because modes where the states cancel out will experience linear growth. The
property of fully correlation gives a boundary condition on the maximal difference between
states. If the system dynamics reach this bound, the additive eigenvalue becomes constant.
Conversely, non-monotonic time-invariant systems that are not fully correlated can become
unstable because this bound will not exist.

While it needs further confirmation, there is a hypothesis that fully correlated time-invariant
monotonic MMPS systems always have one dominant mode and, thus, only one additive
eigenvalue. Extensive simulations support this hypothesis. In contrast, fully correlated time-
invariant non-monotonic MMPS systems can have multiple eigenvalues.

We could calculate each mode’s additive eigenvalues using the methods presented for MMPS
systems and the equivalences between bipartite systems and the ABC canonical form. Addi-
tionally, if we can prove the conjecture 4.1, we could conclude that a bipartite system that is
fully correlated with initial conditions that are partly arbitrary will have one eigenvalue.

Lastly, analytical solutions for two-dimensional fully correlated MMPS systems were derived,
revealing the downsides of analytical solutions.

The chapter presents analytical tools and methods for understanding the buffer stability and
additive eigenvalues of MMP and MMPS systems. It offers insights into the behaviour of
MMP and MMPS systems. It provides a foundation for further research in control strategies
and stability analysis for discrete-event MMP and MMPS systems.
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4-6 Technical proofs

Proof of theorem 4.1. Consider an MMP system rewritten in conjunctive normal form. Let
ωi ∈ {ω1, · · · , ωp} be the power set3 of set {x1, · · · , xn} present in max-plus functions fi,
i ∈ {1, · · · , q}. Let {ξ1,i, · · · , ξq,i} be the values added to the max-plus functions. Then, the
state update can be written down as follows:

xi(k + 1) = min(ξ1,i + f1,i(ω1), ξ2,i + f2,i(ω2), · · · , ξq,i + fq,i(ωq)) (4-43)

After one iteration, we will prove that the difference between states i and j will be bounded.
We consider two cases: the first case where for both states i and j, the minimal values are
composed of max-plus functions dependent on the same ωi. In the second case, for states i
and j, the minimal values are composed of max-plus functions dependent on different ωi

Case 1: Assume that the following inequalities are true:

ξ1,i + f1,i(ω1) ≤ ξ2,i + f2,i(ω2) ≤ · · · ≤ ξq,i + fq,i(ωp)
ξ1,j + f1,j(ω1) ≤ ξ2,j + f2,j(ω2) ≤ · · · ≤ ξq,j + fq,j(ωp)

(4-44)

Let the set ωi be equal to {x1,ωi , · · · , xn,ωi} and the corresponding finite variables {θ1,f1,i
, · · · , θn,f1,i

}.
Then, the max-plus function is written in the following form:

f1,i(ωi) = max(x1,ωi + θ1,f1,i
, x2,ω1 + θ2,f1,i

, · · · , xn,ωi + θn,f1,i
) (4-45)

Using inequalities (4-44) the difference between the updated states i and j will be equal to:

xi(k + 1)− xj(k + 1)
=ξ1,i + f1,i(ω1)− ξ1,j + f1,j(ω1)
=ξ1,i − ξ1,j + max(x1,ωi + θ1,f1,i

, · · · , xn,ωi + θn,f1,i
)−max(x1,ωj + θ1,f1,j

, · · · , xn,ωj + θn,f1,j
)

(4-46)

The first two terms ξ1,i and ξ1,j will be constant. Next, we prove that the difference be-
tween two max-plus functions in (4-46) will always be bounded. Assume that the following
inequalities are true:

x1,ω1 + θ1,f1,i
≥ x2,ω1 + θ2,f1,i

≥ · · · ≥ xn,ω1 + θn,f1,i

x1,ω1 + θ1,f1,j
≥ x2,ω1 + θ2,f1,j

≥ · · · ≥ xn,ω1 + θn,f1,j

(4-47)

Then, using inequalities (4-47), the difference between the states will be:

xi(k + 1)− xj(k + 1) = ξ1,i − ξ1,j + θ1,f1,i
− θ1,f1,j

, (4-48)

which is constant. Now, consider a scenario where the following set of inequalities are true:

x1,ω1 + θ1,f1,i
≥ x2,ω1 + θ2,f1,i

≥ · · · ≥ xn,ω1 + θn,f1,i
,

x2,ω1 + θ2,f1,j
≥ x1,ω1 + θ1,f1,j

≥ · · · ≥ xn,ω1 + θn,f1,j

.

(4-49)

3Let A be a set; by the power set of A we mean the class of all the subsets of A[17].
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Then, the difference between the states will be dependent on different states:

xi(k + 1)− xj(k + 1) = ξ1,i − ξ1,j + x1,ω1 + θ1,f1,i
− x2,ω1 − θ2,f1,j

. (4-50)

Using the inequalities (4-49), we can derive that the difference (4-50) is upper and lower
bounded:

θ1,f1,i
− θ1,f1,j

≥ x1,ω1 + θ1,f1,i
− x2,ω1 − θ2,f1,j

≥ θ2,f1,i
− θ2,f1,j (4-51)

Thus, the difference between the states is bounded by the following constants:

θ1,f1,i
− θ1,f1,j

+ ξ1,i − ξ1,j ≥ x1,ω1 + θ1,f1,i
− x2,ω1 − θ2,f1,j

+ ξ1,i − ξ1,j ≥ θ2,f1,i
− θ2,f1,j

+ ξ1,i − ξ1,j

(4-52)

The same can be proved for all the possible combinations of inequalities (4-49).

Case 2: Now consider a situation where the states xi(k+1) and xj(k+1) depend on max-plus
functions with different ω. Assume that the following set of inequalities are true:

ξ1,i + f1,i(ω1) ≤ ξ2,i + f2,i(ω2) ≤ · · · ≤ fq,i(ωp)
ξ2,j + f2,j(ω2) ≤ ξ1,j + f1,j(ω1) ≤ · · · ≤ fq,j(ωp)

(4-53)

Then, the difference between the states will be equal to:

xi(k + 1)− xj(k + 1) = ξ1,i + f1,i(ω1)− ξ2,j − f2,j(ω2) (4-54)

Using the inequalities (4-53), we can find that the upper bound will be the difference between
two max-plus functions dependent on the same ωi:

ξ1,i + f1,i(ω1)− ξ2,j − f2,j(ω2) ≤ ξ2,i + f2,i(ω2)− ξ2,j − f2,j(ω2) (4-55)

We have already derived that the difference between max-plus functions that depend on the
same ωi will be bounded. This means the difference between f2,i(ω2) and f2,j(ω2) is bounded,
so the difference between the states will be upper bounded. Similarly, we can prove that the
states are lower bounded:

ξ1,i + f1,i(ω1)− ξ2,j − f2,j(ω2) ≥ ξ1,i + f1,i(ω1)− ξ1,j − f1,j(ω1). (4-56)

This will hold for all possible combinations of inequalities (4-53). Thus, a fully correlated max-
min-plus (MMP) system will have a bounded absolute difference between all the states.

Proof of theorem 4.2. This proof is similar to that of theorem 4.1 except that we substitute
the states x with α where α = A · x.
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Proof of theorem 4.3. If we rewrite the state update of a bipartite system, the system can
be fully dependent on x(k):

x(k + 2) = B ⊗ y(k + 1) = B ⊗ (C ⊗′ x(k)) (4-57)

As long as matrix C is regular, all the state updates will have a finite value. We can find the
maximal buffer between each state using periodic behaviour. This is the result of using the
partly arbitrary initial state:

x0 = x0 y0 = C ⊗′ x0
x1 = B ⊗ (C ⊗′ x0) y1 = C ⊗′ x0
x2 = B ⊗ (C ⊗′ x0) y2 = C ⊗′ (B ⊗ (C ⊗′ x0))
x3 = B ⊗ (C ⊗′ (B ⊗ (C ⊗′ x0))) y3 = C ⊗′ (B ⊗ (C ⊗′ x0))

(4-58)

Each state will have the same value for two events due to the initial conditions. Consider βi

with i ∈ {1, · · · ,m} as:

βi = min(ci,1 + x1(k), ci,2 + x2(k), · · · , ci,n + xn(k)). (4-59)

Now we can substitute the variable β, the difference between state i and j can be described
as:

xi(k+2)−xj(k+2) = max(bi,1+β1, bi,2+β2, · · · , bi,m+βm)−max(bj,1+β1, bj,2+β2, · · · , bj,m+βm).
(4-60)

Assume the following inequalities are true:

bi,1 + β1 ≥ bi,2 + β2 ≥ · · · ≥ bi,m + βm,

bj,2 + β2 ≥ bj,1 + β1 ≥ · · · ≥ bj,m + βm.
(4-61)

For the conditions, the difference between state i and state j will be equal to:

xi(k + 2)− xj(k + 2) = bi,1 + β1 − bj,2 − β2. (4-62)

Using the inequalities (4-61), the upper and lower bound of the solution will be equal to:

bj,2 − bj,1 ≥ β1 − β2 ≥ bi,2 − bi,1,

bi,1 − bj,1 ≥ bi,1 + β1 − bj,2 − β2 ≥ bi,2 − bj,2.
(4-63)

The difference will be bounded for all possible combinations of inequalities (4-61). In general,
the following will hold:

bi,u − bj,u ≥ bi,u + βu − bj,v − βv ≥ bi,v − bj,v. (4-64)

Therefore, the maximal value of the difference between state i and j will be equal to the
difference between the entries of matrix B:

max(xi(k + 2)− xj(k + 2)) = max(bi,1 − bj,1, bi,2 − bj,2, · · · , bi,m − bj,m) (4-65)
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Proof of lemma 4.4. If the MMPS system is monotonic, then ai,j ≥ 0, ∀i, j [7, Lemma 12],
and the time-invariance implies that the rows sum up to one[7, Lemma 11]. As a result, the
system matrices {Φ1, · · · ,Φp} for each mode will be transposed Markov matrices. Using the
properties of the Markov chain, we can derive that the growth rate of each state will converge
to a constant if the system stays in the same mode. Consider two state updates for one mode
α(i) with system matrix Φ and with constant addition γ:

x(k + n) = Φnx(k) + Φ(n−1)γ + Φ(n−2)γ + · · ·+ Φγ + γ

x(k + n− 1) = Φ(n−1)x(k) + Φ(n−2)c+ Φ(n−3)c · · ·+ Φγ + γ
(4-66)

If we take the difference, most terms fall away, and we keep:

x(k + n)− x(k + n− 1) = Φnx(k) + Φ(n−1)γ − Φ(n−1)x(k) (4-67)

Using the properties of Markov chains, we know that each of the terms will converge to the
steady state. All three terms in equation 4-70 are Markov chains, so the growth rate will be
a summation of the steady state values. For a sufficiently large value of n where each term is
in a steady state, the growth rate becomes:

λg = Φ(n−1)γ. (4-68)

If, for each state, this growth rate is equal, this would be an additive eigenvalue of the
system.

Proof of lemma 4.5. If the MMPS system in ABC canonical form is time-invariant, the
rows sum up to one[7, Lemma 11]. If the mode with system matrix Φ is dependent on the
same αi, each row is identical, and the system matrix is idempotent. This means that the
matrix Φ = Φ · Φ. Now consider two state updates for one mode with the addition of vector
γ:

x(k + n) = Φnx(k) + Φ(n−1)γ + Φ(n−2)γ + · · ·+ Φγ + γ

= Φx(k) + Φγ + Φγ + · · ·+ Φγ + γ

x(k + n− 1) = Φ(n−1)x(k) + Φ(n−2)γ + Φ(n−3)γ · · ·+ Φγ + γ

= Φx(k) + Φγ + Φγ · · ·+ Φγ + γ

(4-69)

If we take the difference, most terms fall away, and we keep:

x(k + n)− x(k + n− 1) = Φγ (4-70)

Each mode is identical; thus, the growth rate is equal for each state. So, for each mode that
is dependent on the same αi, the additive eigenvalue will be:

λg = Φ1·γ. (4-71)
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Proof of theorem 4.6. The proof for the bounded buffer of a fully correlated MMPS system
follows from theorem 4.2.

If the MMPS system is monotonic, then ai,j ≥ 0, ∀i, j [7, Lemma 12]. As a result, all system
matrices {Φ1, · · · ,Φp} for each mode will be transposed Markov matrices. We know that the
eigenvalues of a transposed matrix will equal the eigenvalues of the original matrix. We also
know that every Markov matrix will have an eigenvalue λ1 = 1, and the other eigenvalues will
satisfy ||λi|| ≤ 1. If A has all positive entries, the other |λi| < 1 [21]. Thus, we can conclude
the system will not experience exponential growth in any of the modes, and the growth rate
of each mode can be calculated as in lemma 4.4. If the states have different growth rates, the
states will diverge until it reaches another mode. If the mode depends on the same αi, the
growth rate will become linear (lemma 4.5).

If an MMPS system is non-monotonic, it will have a system matrix Φ with positive and neg-
ative values. In modes that combine different αi, the system dynamics may become unstable
due to absolute eigenvalues greater than one, causing the states to diverge. Consequently, the
system will reach a mode with the same αi. Again, if the mode depends on the same αi, the
growth rate will become linear (lemma 4.5). Another possibility is that the system switches
between modes, which creates small oscillations.

E.J.E. Peijnenburg Master of Science Thesis



Chapter 5

Max-plus Lyapunov Functions as
Control Lyapunov Functions for

Model-Predictive-Control (MPC)

This chapter explores using max-plus Lyapunov functions as cost functions for model predic-
itive control (MPC). This chapter introduces a promising approach that offers new control
strategies.

The first section gives a brief introduction to MPC. It will discuss the importance of control
Lyapunov functions (CLF’s), and it proposes a control method using the max-plus Lyapunov
functions as control Lyapunov functions. The second section provides two examples of their
application in production systems. The first example will stabilize a max-plus-linear (MPL),
and the second model will stabilize a max-min-plus (MMP) system.

5-1 model predicitive control (MPC)

Model predictive control is a control approach that makes use of optimization. Each iteration
calculates the optimal control strategy over a prediction horizon Np. The optimal control
strategy is calculated using a cost function. The most commonly used cost function is of the
form:

VN (x,u) :=
N−1∑
k=0

ℓ(x(k), u(k)) + Vf (x(N)). (5-1)

Where the stage cost is l(x, u) and the terminal penalty is Vf (x)[22]. A graphical representa-
tion of the algorithm is shown in figure 5-1. The optimization is performed over the prediction
horizon. If the control horizon is smaller than the prediction horizon, the input will remain
constant for the rest of the prediction horizon.
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Figure 5-1: Function principle of a model-based predictive controller, with horizons N1, N2, Nu

[23]

5-1-1 Control Lyapunov function (CLF)

Lyapunov functions are relevant for proving the stability of an autonomous system and can
provide conditions for asymptotic stability. The importance of the concept of control Lya-
punov function is that the existence of one of such functions is also a sufficient condition for
the existence of stabilizing feedback[24].

Definition 5.1 (Global control Lyapunov function (CLF) [22]). A function V : Rn → Rz0 is
a global control Lyapunov function for the system x+ = f(x, u) and closed set A if there exist
Kw functions α1(·), α2(·), α3(·) satisfying for all x ∈ Rn :

α1 (|x|A) ≤ V (x) ≤ α2 (|x|A)
inf
u∈U

V (f(x, u))− V (x) ≤ −α3 (|x|A)

5-1-2 Max-plus Lyapunov function as CLF

Consider the max-plus Lyapunov function that denotes the minimum max-plus Hilbert pro-
jective distance between x and K :

V (x) = −xT ⊗K ⊗ x (5-2)

The max-plus Lyapunov function uses matrix K to incorporate the buffer. In chapter four,
we derived a method to determine the maximal allowable buffer for fully correlated MMP
and MMPS systems. Instead of finding the maximal buffer for the CLF, we will use the
minimal possible buffer for the whole state space, optimizing over the states and the input.
It makes sense to use the minimal buffer value. The buffer level of an unstable system will
be unbounded, so there will be no maximal buffer. Using the minimal buffers, the matrix K
is constructed. Now consider a discrete-event function:

xi(k + 1) = fi(x(k), u(k)). (5-3)

Using a dummy variable, the absolute optimization is again rewritten in a mixed-integer
linear program (MILP) problem. For all the combinations of states, the minimal buffer is
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calculated. The variable N should be sufficiently large, and b is a binary variable 1.

min
x(k),u(k)

δi,j

s.t. δi,j ≥ 0
δi,j ≥ fi(x(k), u(k))− fj(x(k), u(k))
δi,j ≥ −fi(x(k), u(k)) + fj(x(k), u(k))
δi,j ≤ fi(x(k))− fj(x(k)) +Nb

δi,j ≤ −(fi(x(k))− fj(x(k))) +N(b− 1)

(5-4)

The buffer levels are implemented using the same K matrix as in (4-12). Using the max-plus
Lyapunov function as a control Lyapunov function, we can stabilize the buffer levels and keep
it constant. Stabilizing the system is done using model-predictive control, using the discrete-
time derivative of the max-plus Lyapunov function as a cost function that is minimized. The
minimization can be presented as follows:

min
u(k)

∆V (x(k), u(k)) = min
u(k)

V (f(x, u))− V (x) (5-5)

After simulating various scenarios, it became clear that the length of the prediction horizon
has no impact on the stability of the buffer levels. Therefore, we will use a prediction horizon
of one for the following two examples, as this requires the least computational power. This
may be because of the linear behaviour of the stabilized system.

5-2 MPC for max-plus-linear system

The first example of using max-plus Lyapunov functions as CLF will be on a max-plus-
linear (MPL) system. The system will be a simple manufacturing system from [10]. Consider
the manufacturing system in figure 5-2. The systems consist of three different processing
units: P1, P2 and P3. The raw material is fed to P1 and P2, processed and sent to P3 where
assembly occurs. The processing times for each processing unit are d1 = 11, d2 = 12 and
d3 = 7 respectively. The transportation time between the processing units (denoted in figure
5-2) are t1 = 2, t2 = 0, t3 = 1, t4 = 0 and t5 = 7. The other transportation times and set-up
times are assumed to be negligible. The system can be described using the MPL state space
model:

x(k + 1) =

 11 ε ε
ε 12 ε
23 24 7

⊗ x(k)⊕

 2
0
14

⊗ u(k), (5-6)

y(k) =
[
ε ε 7

]
⊗ x(k) (5-7)

With u(k) the time at which a batch of raw material is fed to the system for the (k+1)th
time, x(k) the time at which Pi starts working for the kth time, and y(k) the time at which

1Note that the max-plus functions need to be rewritten to make it a MILP problem.
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Figure 5-2: A simple manufacturing system

the kth finished product leaves the system. This example will focus on stabilizing the buffer
using a max-plus Lyapunov function as a cost function. The input will be a delay to prevent
buffer levels from increasing if the buffer level is not constant. First, we find the minimal
buffer for all states and inputs. Using the optimization (5-4) for each pair of states, we can
find the matrix K:

K =

 0 −2 −12
−2 0 −11
−12 −11 0

 (5-8)

In figure 5-3, the system is simulated with and without MPC. Figure 5-4a shows the un-
controlled system. The states are diverging. Over time, this difference will grow linearly.
Processing unit P1 is processing the raw material faster; thus, the product processed by P1
will stack up until it can be assembled. The amount of product will keep growing, and the
buffer will keep increasing; thus, the system is considered unstable. Figure 5-4b shows the
controlled system. It can be seen that the buffer immediately converges to constant values
and stays stable. Therefore, we can conclude that the system is stabilized. Now consider the

(a) Without control (b) With MPC

Figure 5-3: Simulation of max-plus-linear manufacturing unit, with initial state x0 = [0, 0, 10]T .

same system where at k = 60, there is a delay due to a technical difficulty at processing unit
P2. It takes d(60) = 360 time units to repair the processing unit. We simulate the system
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with the same initial conditions in figure 5-4. The uncontrolled system has a buffer that grows
even more. The model-predictive controlled system using the max-plus Lyapunov function
stabilizes the system and keeps the buffer level constant by delaying the input of raw product.
The Matlab code used for this simulation can be found in appendix B-0-2.

(a) Without control (b) With MPC

Figure 5-4: Simulation of max-plus-linear manufacturing unit with disturbance, with initial state
x0 = [0, 0, 10]T .

5-3 MPC for MMP system

Consider the production system from figure 5-5:

Figure 5-5: Production system with competition

The system has five different machines Mi, i ∈ {1, ..., 5}. M1 and M2 are the first machines
that prepossess the raw product. From M1 and M2, the product is transported to the switch-
ing device SW . The switching device feeds the first finished product in the k-th cycle to
the slower machine M3 and the second to the faster M4 machine. Finally, the products are
assembled in the last machine M5. The following system equations can describe the system:
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x1(k + 1) = max (x1(k) + d1, u(k + 1) + t1) ,
x2(k + 1) = max (x2(k) + d2, u(k + 1) + t2) ,
x3(k + 1) = max (min (x1(k + 1) + d1, x2(k + 1) + d2) , x3(k) + d3)
x4(k + 1) = max(max (x1(k + 1) + d1, x2(k + 1) + d2) , x4(k) + d4)
x5(k + 1) = max (x3(k + 1) + d3, x4(k + 1) + d4 + t8)

(5-9)

The states xi describe the time the i-th machine starts processing. The input u describes the
time the system is fed. The input can serve as a delay in supplying the raw product when the
buffers between states are not constant. The states will diverge when simulating the system
with zero input, as shown in figure 5-6a. When comparing the states, the first machine will
process a hundred products in the same time that the last machine assembled ten products.
As a result, there will already be ninety products waiting for processing. The system’s buffer
between machines is the amount of products it will be able to hold before processing between
machines. As the growth rate of the last state is ten times greater than the first state’s growth
rate, this buffer will be violated at some point. The goal of using model-predictive control
(MPC) is to find an optimal control input so that the amount of product is smaller or equal
to the maximal buffer. The matrix K is derived using the optimisation (5-4), the result is:

K =


0 −3 0 −1 −6
−3 0 −3 −3 −8
0 −3 0 −10000 −6
−1 −3 −10000 0 −5
−6 −8 −6 −5 0

 (5-10)

The dependence on different variables may cause the high δ3,4 value. The high value of a δ3,4
is not necessary. Therefore, we can tune the value; the value can be as small as one, but it
does not improve the performance. The value of one can also be determined using the other
buffers. Using the dependency between the states, we can derive that the minimal buffer will
be equal to |δ1,3 − δ1,4| = |δ3,5 − δ4,5| = 1. The prediction horizon is set equal to Np = 1. In
figure 5-6, the uncontrolled and the model-predictive controlled systems are simulated. From
the simulation, it is clear that the MPC-controlled system stays stable. The states do not
diverge and have a limited growth rate.

Now consider the same system where at k = 50, there is a delay due to a technical difficulty
at processing unit M4. It takes d(50) = 100 time units to repair the processing unit. We
simulate the system with the same initial conditions in figure 4-8. The uncontrolled system has
a buffer that grows even more. Using the max-plus Lyapunov function, the model-predictive
controlled system stabilizes the system and keeps the buffer level constant. The Matlab code
used for this simulation can be found in appendix B-0-3.
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(a) States production unit without control (b) States production unit with MPC

Figure 5-6: Simulation of MMP system with initial conditions x0 = [3, 27, 67, 41, 97]T

(a) States production unit without control (b) States production unit with MPC

Figure 5-7: Simulation of MMP system with disturbance, initial conditions x0 =
[3, 27, 67, 41, 97]T

5-4 Conclusion

This chapter explored a novel approach to control discrete-event systems with Max-Plus Lya-
punov functions as Control Lyapunov functions. The investigation underscored the critical
role of CLF as control functions in MPC and their implications for the existence of a stabi-
lizing controller. Building on this foundation, we introduced max-plus Lyapunov functions
as effective tools for stabilizing buffer levels in inherently unstable systems. The chapter
presents a method to determine the buffer for the max-plus Lyapunov function as a CLF that
is similar to the method presented in chapter four. Instead of using the maximal buffer, the
absolute minimal buffer is used for matrix K.
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We were able to show the effectiveness of this approach through analysis and simulation.
For a MPL system, max-plus Lyapunov functions successfully prevented buffer divergence
and maintained stability even with disturbance. This success was also replicated for a MMP
system.

This chapter shows promising results using max-plus Lyapunov functions as cost functions
for MPC. This approach ensured stable buffer levels even with uncertainties. This chapter
contributes to advancing the field of control for discrete-event systems, setting the stage for
future innovations in system stability for discrete-event systems.
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Chapter 6

Conclusions and Contributions

This chapter summarizes the main conclusions drawn from the research in this thesis. Addi-
tionally, it provides a concise overview of the thesis’ contribution to the fields of systems and
control and discrete-event systems.

6-1 Conclusions

This section gives an overview of the main conclusions of this master thesis. It answers the
research questions and subquestions.

• How can buffer stability be proven using Lyapunov or Lyapunov-like functions for dis-
crete event max-min-plus (MMP) systems?

– What kind of Lyapunov function can be used to determine the buffer stability of
a max-min-plus (MMP) system?

– Can we provide a generalized methodology to determine the buffer stability of
max-min-plus (MMP) systems?

To establish the stability of discrete-event MMP systems, the aim was to use the concept
of Lyapunov stability for the buffer. In the early stages of the research, it became clear
that the max-plus Lyapunov function had the best potential for analyzing the buffer stability
of MMP systems. The first approach made use of conventional Lyapunov functions and
a converted system. To implement conventional Lyapunov theory for MMP systems, the
system was rewritten such that every state represents the difference between the state and
one reference state. MMP systems tend to oscillate, which can result in a slight divergence
between the states. Using conventional Lyapunov functions such as the two-norm would not
be sufficient because this would result in an oscillating Lyapunov derivative, which often
would be positive and thus not considered stable. The max-plus Lyapunov function uses the
K matrix to incorporate the allowable buffer. If the system dynamics converge to the max-
plus C-set created by this matrix K, the max-plus Lyapunov function will be semi-positive

Master of Science Thesis E.J.E. Peijnenburg



56 Conclusions and Contributions

definite and its derivative semi-negative definite. If the oscillations of the system remain
within the buffer, the system is considered to be stable.

The definition of fully correlated MMP systems was introduced to determine the levels of
MMP systems. Using this definition, it is possible to prove the boundedness of the buffer
levels after one iteration. Analytical methods were derived for finding the maximal buffer
of bipartite systems, dependent on special initial conditions. We derive that the buffers
stay constant if a bipartite system has initial conditions equal to an eigenvector. If the
initial conditions are partly arbitrary (dependent on the C matrix), it will result in periodic
behaviour. We could use that information to analytically determine the maximal buffer for
fully correlated bipartite systems.

Using the properties of a fully correlated MMP system, we provided an algorithm to determine
the buffers for the max-plus Lyapunov function. Fully correlated MMP systems will have a
bounded difference after one iteration; therefore, the states will never diverge more than the
maximal absolute buffer. The algorithm finds the absolute maximal buffer after one iteration.
The next iteration updates the domain of the optimisation and calculates the next maximal
buffer until the optimisation does not provide a smaller set. Compared with the analytical
method provided for bipartite systems, this algorithm results in a smaller buffer.

For bipartite systems, an additive eigenvalue exists if the system matrices are an irreducible
pair (theorem 2.1). Fully correlated MMP systems are a bigger class. To get insights into
the additive eigenvalues of bipartite systems with partly arbitrary initial conditions, we use
the similarities between bipartite systems and MMPS systems in ABC canonical form. The
bipartite system can be rewritten in the ABC canonical form using an identity matrix (con-
ventional algebra) for the A matrix. From conjecture 4.1, we can derive that the bipartite
system will have one additive eigenvalue.

• How can buffer stability be proven using Lyapunov or Lyapunov-like functions for the
time signals of discrete event max-min-min-plus-scaling (MMPS) systems?

– What kind of Lyapunov function can be used to determine the buffer stability of
a max-min-min-plus-scaling (MMPS) system?

– Can we provide a generalised methodology to determine the buffer stability of
max-min-min-plus-scaling (MMPS) systems?

– Is it possible to determine the additive eigenvalues for discrete-event max-min-min-
plus-scaling (MMPS) systems?

Using the same motivation as for MMP systems, max-plus Lyapunov functions are used to
determine the buffer stability of MMPS systems. To determine the buffers of max-min-min-
plus-scaling (MMPS) systems, we introduced the definition of fully correlated MMPS systems.
Using this definition, we are able to determine the boundedness of the buffer levels. The same
algorithm can be applied to determine the buffer levels for MMPS systems, as is done with
MMP systems.

Next to ensure buffer stability, the growth rate of MMPS systems should be bounded. It
is possible to predict the behaviour of fully correlated MMPS systems using the properties
of time-invariance and monotonicity. The properties of time-invariance and monotonicity
will ensure that in each mode, the growth rate will converge to a steady state. If we write
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out the MMPS system, the mode of a system can be rewritten in an affine system. The
system matrices Φ of each mode will be Markov matrices. Using this property, the absolute
eigenvalues of the system matrices of each mode will be smaller or equal to one. Therefore,
we can conclude that the system will not experience exponential growth in any of the modes.
If the growth rate is equal for all the states, we can calculate the additive eigenvalue of each
mode.

We could draw meaningful conclusions from the provided theorems and lemmas from chapter
four. Fully correlated time-invariant monotonic MMPS systems can have a buffer that con-
verges to a steady state value, which depends on different αi. This convergence occurs due to
the Markov properties of each mode, eliminating the need for state cancellations to maintain
a constant buffer.

Fully correlatedness ensures that time-invariant non-monotonic MMPS systems will always
have a bounded growth rate, even though some modes may exhibit exponential growth. This
stability arises because modes, where the states cancel out, have eigenvalues smaller or equal
to one. The maximal buffer forms a boundary for the difference between the states, and
in such a mode, the system matrix will be dependent on the same αi. In these modes, the
system will experience linear growth (lemma 4.5). Conversely, non-monotonic time-invariant
systems that are not fully correlated can become unstable because this bound will not exist.

While it needs further confirmation, there is a hypothesis that fully correlated time-invariant
monotonic MMPS systems always have one dominant mode and, thus, only one additive
eigenvalue. Extensive simulations support this hypothesis. In contrast, fully correlated time-
invariant non-monotonic MMPS systems can have multiple additive eigenvalues, which are
shown using simulation.

• Can Max-plus Lyapunov Functions serve as Control Lyapunov Functions for Model
Predictive Control in Discrete-Event Systems?

– Can a generalized approach be developed to stabilize the buffers of unstable discrete-
event systems?

– Is it possible to utilize max-plus Lyapunov functions as control Lyapunov function
(CLF) to stabilize the buffer of unstable max-plus-linear (MPL) systems?

– Is it possible to utilize max-plus Lyapunov functions as control Lyapunov function
(CLF) to stabilize the buffer of unstable max-min-plus (MMP) systems?

The research conducted in chapter 5 explores the application of max-plus Lyapunov func-
tions as CLF for stabilizing the buffer levels in discrete-event systems. By utilizing these
functions in a MPC framework, a generalized approach to stabilize buffers of inherently un-
stable discrete-event systems is presented. The chapter demonstrates the effectiveness of this
approach through the analysis and simulation of two different systems, including MPL and
MMP systems. These simulations reveal that the MPC strategy employing max-plus Lya-
punov functions successfully maintains buffer stability in the face of varying conditions and
disturbances.

Through the case study of a manufacturing system modelled as a MPL system, this thesis
demonstrates the viability of using max-plus Lyapunov functions as CLF. The analysis of
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the manufacturing system indicates that without control, the buffer levels between machines
can diverge rapidly, leading to unstable buffer levels. However, the application of MPC with
max-plus Lyapunov functions as cost functions effectively stabilize the buffer levels, ensur-
ing they remain bounded and preventing system divergence with and without disturbance.
The second example analyses a more complex scenario involving an MMP system. In this
case, the controlled system successfully maintains stable buffer levels even when subjected
to disturbances, such as delays in processing units. By effectively managing buffer levels
between different machines, the MPC strategy using max-plus Lyapunov functions stabilizes
an inherently unstable MMP system.

In summary, the research conducted in this chapter provides affirmative answers to the re-
search questions. The chapter showcases that max-plus Lyapunov functions can serve as
effective control Lyapunov functions for MPC in discrete-event systems. The chapter pro-
vides a generalized approach to stabilize buffers of unstable systems. The control method is
successfully applied on both MPL and MMP systems, thereby contributing to the advance-
ment of control strategies in the domain of discrete-event systems.

6-2 Contributions

This thesis contributes to the field of systems and control and discrete-event systems through
the following results:

• This thesis demonstrates how to use max-plus Lyapunov functions to analyze buffer
stability for both MMP and MMPS systems.

• A new definition, fully correlated, is introduced to assess buffer level boundedness for
MMP and MMPS systems.

• A methodology is developed for determining the buffer across both fully correlated
MMP and MMPS systems.

• A approach is presented for determining the additive eigenvalues of each mode of fully
correlated time-invariant monotonic MMPS systems using Markov chains.

• The existence of multiple eigenvalues for time-invariant, non-monotonic fully correlated
MMPS is shown.

• A control strategy is formulated for effectively stabilizing buffers within unstable discrete-
event systems.

• The thesis demonstrates the potential of MPC by using max-plus Lyapunov functions
as CLF for MPL and MMP systems.
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Chapter 7

Recommendations for future work

• Give a proof for the existence of a dominant mode/singular additive eigen-
value.
After conducting numerous simulations, it has become evident that fully correlated,
time-invariant monotonic MMPS systems converge to only one additive eigenvalue con-
sistently. However, further mathematical proof is required to confirm the validity of
this observation.

• Determine the dominant mode or modes of the MMPS system.
We suggest that fully correlated time-invariant monotonic MMPS systems will have only
one additive eigenvalue and that fully correlated time-invariant non-monotonic systems
can have multiple eigenvalues. We can now determine the eigenvalue of all possible
modes, but it would be beneficial to know which mode or modes will be dominant.
Identifying this mode will allow us to predict growth rates.

• Determine stability for MMP and MMPS systems that are not fully corre-
lated.
Because a lot of MMP and MMPS systems are fully correlated, this can be used to
determine a system’s buffer and ensure that the difference between the states will be
bounded. But especially time invariant monotonic MMPS systems, there will be enough
examples where MMPS systems will have a stable buffer even if the system is not fully
correlated. This is probably due to the convergence of the growth rate, which is shown
in lemma 4.4. It would be beneficial to prove for these systems that the buffer will
always converge to a steady value, such that we can verify the buffer stability of more
MMPS systems.

• Find more real-world examples of MMPS systems
There aren’t many real-world examples or practical implementations in the field of
MMPS systems. The appeal of creating a new MMPS system is not only about filling
this gap but also about potentially contributing to various fields, such as improving
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problem-solving methods, decision-making processes, and resource allocation strategies
in real-world situations.

• Apply the MPC method presented on MMPS system
The general approach for MPC control using CLF is worked out. It would be interesting
to apply the method to many more different systems. It would be interesting to apply
this method to an MMPS system and more discrete-event systems in general to validate
the viability further.
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Appendix A

Inequalities for a two-dimensional
conjunctive MMPS system

δ = |c1 − c3| ⇐⇒


b1 + c1 ≤ b3 + c2

b2 + c1 ≤ b4 + c2

b1 + c3 ≤ b3 + c4

b2 + c3 ≤ b4 + c4

(A-1)

δ = |c2 − c4| ⇐⇒


b1 + c1 ≥ b3 + c2

b2 + c1 ≥ b4 + c2

b1 + c3 ≥ b3 + c4

b2 + c3 ≥ b4 + c4

(A-2)

δ = max(|c1 − c3|, |c2 − c4|) ⇐⇒


b1 + c1 ≤ b3 + c2

b4 + c2 ≤ b2 + c1

b1 + c3 ≤ b3 + c4

b4 + c4 ≤ b2 + c3

(A-3)

δ = max(|c1 − c3|, |c2 − c4|) ⇐⇒


b1 + c1 ≥ b3 + c2

b4 + c2 ≥ b2 + c1

b1 + c3 ≥ b3 + c4

b4 + c4 ≥ b2 + c3

(A-4)
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δ = max(|c1 − c3|, |b2 + c1 − b4 − c4|) ⇐⇒


b1 + c1 ≤ b3 + c2

b2 + c1 ≤ b4 + c2

b4 + c4 ≤ b2 + c3

b1 + c3 ≤ b3 + c4

(A-5)

δ = max(|c1 − c3|, |b1 + c1 − b3 − c4|) ⇐⇒


b1 + c1 ≤ b3 + c2

b2 + c1 ≤ b4 + c2

b3 + c4 ≤ b1 + c3

b1 + c3 ≥ b3 + c4

(A-6)

δ = max(|c2 − c4|, |b3 + c2 − b1 − c3|) ⇐⇒


b1 + c1 ≥ b3 + c2

b2 + c1 ≥ b4 + c2

b4 + c4 ≤ b2 + c3

b1 + c3 ≤ b3 + c4

(A-7)

δ = max(|c2 − c4|, |b4 + c2 − b2 − c3|) ⇐⇒


b1 + c1 ≥ b3 + c2

b2 + c1 ≥ b4 + c2

b4 + c4 ≤ b2 + c3

b3 + c4 ≤ b1 + c3

(A-8)

δ = max(|c1 − c3|, |b3 + c2 − b1 − c3|) ⇐⇒


b1 + c1 ≥ b3 + c2

b4 + c2 ≥ b2 + c1

b1 + c3 ≤ b3 + c4

b4 + c4 ≥ b2 + c3

(A-9)

δ = max(|c1 − c3|, |b4 + c2 − b2 − c3|) ⇐⇒


b1 + c1 ≤ b3 + c2

b4 + c2 ≤ b2 + c1

b1 + c3 ≤ b3 + c4

b4 + c4 ≥ b2 + c3

(A-10)

δ = max(|c2 − c4|, |b1 + c1 − b3 − c4|) ⇐⇒


b1 + c1 ≤ b3 + c2

b4 + c2 ≤ b2 + c1

b1 + c3 ≥ b3 + c4

b4 + c4 ≤ b2 + c3

(A-11)

δ = max(|c2 − c4|, |b2 + c1 − b4 − c4|) ⇐⇒


b1 + c1 ≥ b3 + c2

b4 + c2 ≥ b2 + c1

b1 + c3 ≥ b3 + c4

b4 + c4 ≤ b2 + c3

(A-12)

E.J.E. Peijnenburg Master of Science Thesis



63

δ = max(|b1 + c1 − b3 − c4|, |b2 + c1 − b4 − c4|) ⇐⇒


b1 + c1 ≤ b3 + c2

b3 + c4 ≤ b1 + c3

b2 + c1 ≤ b4 + c2

b4 + c4 ≤ b2 + c3

(A-13)

δ = max(|b3 + c2 − b1 − c3|, |b4 + c2 − b2 − c3|) ⇐⇒


b1 + c1 ≥ b3 + c2

b3 + c4 ≥ b1 + c3

b2 + c1 ≥ b4 + c2

b4 + c4 ≥ b2 + c3

(A-14)
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Appendix B

Matlab

B-0-1 General construction K

1 %----------GENERAL OPTIMISATION - K -----------
2
3 x = sdpvar (n , 1 ) ; %DEFINE VARIABLES
4
5 x1 = . . . %DEFINE STATE UPDATE FROM 1,..,n
6 x2 = . . .
7 xn = . . .
8
9 xc = [ x1 ; x2 ; . . . ; xn ] ; %COMBINING STATE UPDATES

10
11 options = sdpsettings ( ’verbose’ , 1 , ’solver’ , ’Gurobi’ ) ;
12 options . gurobi . PoolSearchMode=0;
13 options . gurobi . PoolSolutions =1000;
14 options . savesolveroutput = 3 ;
15
16 n = length ( xc ) ;
17 z = ones ( n ) ∗inf ; %SET INITIAL DOMAIN FOR FIRST ITERATION
18 N = 1000 ;
19
20 K_save = [ ] ; %SAVE ALL ITERATIONS
21
22 for k = 1:100
23 F = [ ] ;
24 for i=1:n
25 for j=1:n
26 if i>=j
27 f = [ ] ;
28 else
29 f = [ x ( j )<=x ( i )+abs ( z (i , j ) ) , x ( j )>=x ( i )−abs ( z (i , j ) ) ] ; %

INTRODUCE UPDATES CONSTRAINTS
30 end
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31 F = [ F , f ] ; %STACKS
CONSTRAINTS

32 end
33 end
34 for i = 1 : n
35 for j = 1 : n
36 if i>=j %ABSOLUTE

DIFFERENCE BETWEEN i,j AND j,i WILL BE EQUAL , MAKES SURE
THAT IT OPTIMIZES ONCE

37 d = 0 ;
38 else
39 obj = xc ( i )−xc ( j ) ; %OBJECTIVE (

DIFFERENCE BETWEEN STATES)
40
41 delta = sdpvar (1 ) ; %INTRODUCE DUMMY

VARIABLE
42 y = binvar (1 ) ; %INTRODUCE BINARY

VARIABLE
43
44 con = [ F , obj+N∗y>=delta ,−obj+N∗(1−y )>=delta ,−obj<=delta ,−

obj<=delta ] ; %INTRODUCE EXTRA CONSTRAINTS TO CONVERT
THE OPTIMISATION PROBLEM

45
46 sol = optimize ( con ,−delta , options ) ; %OPTIMISATION
47
48 d_str = sol . solveroutput . result . pool ; %POOL OF

SOLUTIONS TO STRING
49 d_cell = struct2cell ( d_str ) ; %CONVERT TO CELL
50 sols = cell2mat ( d_cell ( 1 , 1 , : ) ) ; %COVERT TO MAT
51 sols = reshape ( sols , [ ] , 1 ) ’ ; %RESHAPE
52 d =max ( abs ( sols ) ) ; %USE MAXIMAL

VALUE OF ALL SOLUTIONS
53
54 disp ( ’---------------------------------------------’ )
55 end
56 K (i , j ) = d ;
57 end
58 end
59 K = −1∗(K + flip (K ’ , 3 ) ) ;
60 K_save = cat (3 , K_save , K ) ;
61 if round (K , 2 ) == round (z , 2 ) %CHECK IF CONVERGED
62 break
63 end
64 z = K ;
65 end

B-0-2 MPC for MPL system

1
2 % ---------- MPC MPL ----------
3 clc
4 clear all
5
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6 %% System matrices
7 e = −inf ;
8
9 A = [11 e e ;

10 e 12 e ;
11 23 24 7 ] ;
12 B = [ 2 ; 0 ; 1 4 ] ;
13
14 %% Optimization
15
16 x = sdpvar ( 3 , 1 ) ;
17 u = sdpvar ( 1 , 1 ) ;
18
19 x1 = max(11+x (1 ) ,2+u ) ;
20 x2 = max(12+x (2 ) , u ) ;
21 x3 = max ([23+x (1 ) ,23+x (2 ) ,7+x (3 ) , u+14]) ;
22
23 xc = [ x1 ; x2 ; x3 ] ;
24
25 options = sdpsettings ( ’verbose’ , 2 , ’solver’ , ’Gurobi’ ) ;
26 options . gurobi . PoolSearchMode=0;
27 options . gurobi . PoolSolutions =1000;
28 options . savesolveroutput = 3 ;
29
30 n = length ( xc ) ;
31 F = [ ] ;
32
33 N = 1000 ;
34
35 % This part is very similar to the construnction of K but then using

the
36 % minimal value
37 for i = 1 : n
38 for j = 1 : n
39 if i>=j
40 d = 0 ;
41 else
42 obj = xc ( i )−xc ( j ) ;
43
44 delta = sdpvar (1 ) ;
45 y = binvar (1 ) ;
46
47 con = [ F , obj+N∗y>=delta ,−obj+N∗(1−y )>=delta ,−obj<=delta ,−obj

<=delta ] ;
48
49 sol1 = optimize ( con , delta , options ) ;
50
51 d1_str = sol1 . solveroutput . result . pool ;
52 d1_cell = struct2cell ( d1_str ) ;
53
54 sols1 = cell2mat ( d1_cell ( 1 , 1 , : ) ) ;
55 sols1 = reshape ( sols1 , [ ] , 1 ) ’ ;
56 d =min ( abs ( sols1 ) ) ;
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57
58 disp ( ’---------------------------------------------’ )
59 end
60 K (i , j ) = d ;
61 end
62 end
63 K = −1∗(K + flip (K ’ , 3 ) ) ;
64
65 %% Update
66 clearvars −except K A B
67
68 N = 1 ;
69 evnts = 150 ;
70
71 % x0 = randi([1,100],[3,1])
72 x0 = [ 0 ; 0 ; 1 0 ] ;
73
74 dis = zeros ( evnts ) ;
75 dis (60) = 360 ;
76
77 x1 = [ x0 (1 ) zeros (1 , evnts −1) ] ;
78 x2 = [ x0 (2 ) zeros (1 , evnts −1) ] ;
79 x3 = [ x0 (3 ) zeros (1 , evnts −1) ] ;
80
81 x = [ x1 ; x2 ; x3 ] ;
82
83 V (1 ) = normpK ( x0 , K ) ;
84 for k = 1 : evnts
85 x0 = x ( : , k ) ;
86
87 u ( : , k ) = MPC_mpl (K , x0 ) ;
88
89 x1 ( k+1) = max(11+x1 ( k ) ,2+u ( k ) ) ;
90 x2 ( k+1) = max(12+x2 ( k ) , u ( k ) )+dis ( k ) ;
91 x3 ( k+1) = max ( [ x1 ( k ) +23,x2 ( k ) +23,x3 ( k ) +7,u ( k ) +14]) ;
92
93 x = [ x1 ; x2 ; x3 ] ;
94
95 V ( k+1) = normpK ( x ( : , k ) , K ) ;
96 DeltaV ( k ) = V ( k+1) − V ( k ) ;
97 end
98
99 %% PLOTS

100
101 figure ( )
102 hold on
103 grid on
104 plot ( ( 0 : evnts ) , x ( 1 , : ) )
105 plot ( ( 0 : evnts ) , x ( 2 , : ) )
106 plot ( ( 0 : evnts ) , x ( 3 , : ) )
107 legend ( ’x_1’ , ’x_2’ , ’x_3’ )
108 title ( ’States - MPC’ )
109
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110 figure ( )
111 hold on
112 plot ( ( 0 : length ( DeltaV ) −1) , DeltaV )
113 grid on
114
115 figure ( )
116 hold on
117 plot ( ( 0 : evnts −1) , u ( 1 , : ) )
118 title ( ’Input’ )
119 grid on

B-0-3 MPC for MMP system

1 % ---------- MPC MMP ----------
2 clear all
3 clc
4 close all
5 %% Calculate minimal set
6 d1 = 1 ;
7 d2 = 3 ;
8 d3 = 6 ;
9 d4 = 4 ;

10 d5 = 0 ;
11
12 t1 = 4 ;
13 t2 = 1 ;
14 t3 = 0 ;
15 t4 = 0 ;
16 t5 = 0 ;
17 t6 = 0 ;
18 t7 = 0 ;
19 t8 = 1 ;
20
21 %% Optimizations
22
23 x = sdpvar ( 5 , 1 ) ;
24 u = sdpvar ( 1 , 1 ) ;
25
26 x1 = max ( x (1 )+d1 , u+t1 ) ;
27 x2 = max ( x (2 )+d2 , u+t2 ) ;
28 x3 = max ( min ( x1+d1 , x2+d2 ) , x (3 )+d3 ) ;
29 x4 = max ( max ( x1+d1 , x2+d2 ) , x (4 )+d4 ) ;
30 x5 = max ( x3+d3 , x4+d4+t8 ) ;
31
32 save_sols = [ ] ;
33
34 xc = [ x1 ; x2 ; x3 ; x4 ; x5 ] ;
35
36 options = sdpsettings ( ’verbose’ , 2 , ’solver’ , ’Gurobi’ ) ;
37 options . gurobi . PoolSearchMode=0;
38 options . gurobi . PoolSolutions =1000;
39 options . savesolveroutput = 3 ;
40
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41 n = length ( xc ) ;
42 F = [ ] ;
43
44 N = 1e6 ;
45
46 for i = 1 : n
47 for j = 1 : n
48 if i>=j
49 d = 0 ;
50 else
51 obj = xc ( i )−xc ( j ) ;
52
53 delta = sdpvar (1 ) ;
54 y = binvar (1 ) ;
55
56 con = [ F , obj+N∗y>=delta ,−obj+N∗(1−y )>=delta ,−obj<=delta ,−obj

<=delta ] ;
57
58 sol1 = optimize ( con , delta , options ) ;
59
60 d1_str = sol1 . solveroutput . result . pool ;
61 d1_cell = struct2cell ( d1_str ) ;
62
63 sols1 = cell2mat ( d1_cell ( 1 , 1 , : ) ) ;
64 sols1 = reshape ( sols1 , [ ] , 1 ) ’ ;
65 d =min ( abs ( sols1 ) ) ;
66
67 disp ( ’---------------------------------------------’ )
68 end
69 K (i , j ) = d ;
70 end
71 end
72
73 K = −(K + flip (K ’ , 3 ) ) ;
74 %% Update
75 clearvars −except K
76
77 N = 1 ;
78 evnts = 100 ;
79 u0 = 0 ;
80 x0 = zeros ( 5 , 1 ) ;
81 % x0 = [3;27;67;41;97];
82
83 d1 = 1 ;
84 d2 = 3 ;
85 d3 = 6 ;
86 d4 = 4 ;
87 d5 = 0 ;
88
89 t1 = 4 ;
90 t2 = 1 ;
91 t3 = 0 ;
92 t4 = 0 ;
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93 t5 = 0 ;
94 t6 = 0 ;
95 t7 = 0 ;
96 t8 = 1 ;
97
98 x1s (1 ) = x0 (1 ) ;
99 x2s (1 ) = x0 (2 ) ;

100 x3s (1 ) = x0 (3 ) ;
101 x4s (1 ) = x0 (4 ) ;
102 x5s (1 ) = x0 (5 ) ;
103
104 dis = zeros ( evnts , 1 ) ;
105 % dis(50) = 100;
106 % ucheck = zeros(20,100);
107
108 for k = 1 : evnts
109 V (1 ) = normpK ( x0 , K ) ;
110 x0 = [ x1s ( k ) ; x2s ( k ) ; x3s ( k ) ; x4s ( k ) ; x5s ( k ) ] ;
111
112 u_ = MPC_prod_unit_compK ( x0 , N , K ) ;
113 u ( k+1) = value ( u_ (1 ) ) ;
114
115 x1s ( k+1) = max ( x1s ( k )+d1 , u ( k+1)+t1 ) ;
116 x2s ( k+1) = max ( x2s ( k )+d2 , u ( k+1)+t2 ) ;
117 x3s ( k+1) = max ( min ( x1s ( k+1)+d1 , x2s ( k+1)+d2 ) , x3s ( k )+d3 )+dis ( k ) ;
118 x4s ( k+1) = max ( max ( x1s ( k+1)+d1 , x2s ( k+1)+d2 ) , x4s ( k )+d4 ) ;
119 x5s ( k+1) = max ( x3s ( k+1)+d3 , x4s ( k )+d4+t8 ) ;
120
121 x = [ x1s ( k+1) ; x2s ( k+1) ; x3s ( k+1) ; x4s ( k+1) ; x5s ( k+1) ] ;
122
123 V ( k+1) = normpK (x , K ) ;
124 DeltaV ( k ) = V ( k+1) − V ( k ) ;
125 end
126
127 %% PLOTS
128
129 u = value ( u ) ;
130
131 figure ( )
132 % subplot(2,1,1)
133 hold on
134 grid on
135 plot ( ( 0 : length ( x1s ) −1) , x1s )
136 plot ( ( 0 : length ( x1s ) −1) , x2s )
137 plot ( ( 0 : length ( x1s ) −1) , x3s )
138 plot ( ( 0 : length ( x1s ) −1) , x4s )
139 plot ( ( 0 : length ( x1s ) −1) , x5s )
140 legend ( ’x_1’ , ’x_2’ , ’x_3’ , ’x_4’ , ’x_5’ )
141 xlabel ( ’k’ )
142 ylabel ( ’time unit’ )
143
144 % subplot(2,1,2)
145 % plot((0:length(dis)-1),dis,’r--’)
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146 % grid on
147 % title(’Disturbance on state x_2’)
148 % xlabel(’k’)
149
150 figure ( )
151 hold on
152 plot ( ( 0 : length ( DeltaV ) −1) , DeltaV )
153 grid on
154
155 figure ( )
156 plot ( ( 0 : size (u , 2 ) −1) , u )
157 title ( ’Input’ )
158 grid on
159
160
161 %% Functions
162
163 function C = tplus (A , B )
164 C = max (A , B ) ;
165 end
166
167 function C = ttimes (A , B )
168 n = size (A , 1 ) ;
169 m = size (B , 2 ) ;
170 X = kron ( ones (m , 1 ) , A ) ;
171 Y = kron (B ’ , ones (n , 1 ) ) ;
172 C = reshape ( max ( X+Y , [ ] , 2 ) ,n , m ) ;
173 end
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Glossary

List of Acronyms

MMP max-min-plus
MMPS max-min-min-plus-scaling
MPC model predicitive control
SMPL switching-max-plus-linear
DES discrete-event systems
CLF control Lyapunov function
MILP mixed-integer linear program
MPL max-plus-linear

List of Symbols

ϵ Max-plus zero element −∞
λg Additive eigenvalue
Rϵ Set of real numbers including ϵ
R⊤ Set of real numbers including ⊤
Rc Set of real numbers including ϵ and ⊤ (complete)
R Set of real numbers
R Either Rϵ, R⊤, R or Rc

⊕ Max-plus addition operator (’oplus’)
⊗′ Min-plus addition operator
⊗ Max-plus multiplication operator (’otimes’)
⊤ Min-plus zero element ∞
vg Additive eigenvector
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