<]
TUDelft

Delft University of Technology

Automatic update of road attributes by mining GPS tracks

van Winden, Karl; Biljecki, Filip; van der Spek, Stefan

DOI
10.1111/tgis.12186

Publication date
2016

Document Version
Final published version

Published in
Transactions in GIS

Citation (APA)
van Winden, K., Biljecki, F., & van der Spek, S. (2016). Automatic update of road attributes by mining GPS
tracks. Transactions in GIS, 20(5), 664-683. https://doi.org/10.1111/tgis.12186

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1111/tgis.12186
https://doi.org/10.1111/tgis.12186

Accepted Manuscript

Automatic update of road attributes by mining GPS tracks

Karl van Winden *

Delft University of Technology, The Netherlands
Filip Biljecki

Delft University of Technology, The Netherlands
Stefan van der Spek

Delft University of Technology, The Netherlands

ORCID

KvW:  http://orcid.org/0000-0002-1041-6419
FB: http://orcid.org/0000-0002-6229-7749
SvdS:  http://orcid.org/0000-0003-1258-0527

* Corresponding author at karlvw@hotmail.com

This is the peer reviewed version of the following article:

Van Winden K, Biljecki E Van der Spek S (2016): Automatic update of road attributes by
mining GPS tracks. Transactions in GIS, vol. 20(5), pp. 664-683.

which has been published in final form at
http://doi.org/10.1111/tgis.12186.

This article may be used for non-commercial purposes in accordance with Wiley Terms and
Conditions for Self-Archiving.



http://orcid.org/0000-0002-1041-6419
http://orcid.org/0000-0002-6229-7749
http://orcid.org/0000-0003-1258-0527
mailto:karlvw@hotmail.com
http://doi.org/10.1111/tgis.12186

Abstract

Despite advancements in cartography, mapping is still a costly process which involves a substan-
tial amount of manual work. This paper presents a method to automatically derive road attributes
by analyzing and mining movement trajectories (e.g. GPS tracks). We have investigated the au-
tomatic extraction of eight road attributes: directionality, speed limit, number of lanes, access,
average speed, congestion, importance, and geometric offset; and we have developed a supervised
classification method (decision tree) to infer them. The extraction of most of these attributes has
not been investigated previously.

We have implemented our method in a software prototype and we automatically update the
OpenStreetMap (OSM) dataset of the Netherlands, increasing its level of completeness.

The validation of the classification shows variable levels of accuracy, e.g. whether a road is a one-
way or a two-way road is classified with an accuracy of 99%, and the accuracy for the speed limit
is 69%. When taking into account speed limits that are one step away (e.g. 60 km/h instead of
the classified 50 km/h) the classification increases to 95%, which might be acceptable in some
use-cases. We mitigate this with a hierarchical code list of attributes.

Keywords: data mining; GPS track; movement trajectory; OpenStreetMap; mapping

1 Introduction

With the increasing adoption of location-aware technologies such as smartphones, more and
more movement data is becoming available benefiting a growing number of applications (Shoval
etal.,, 2014). For instance, movement trajectories are being used in travel behavior research (Bo-
hte, 2010; Van der Spek et al., 2009), health studies (Thierry et al., 2013), and traffic management
(Ranjitkar et al., 2002). In GIS, movement data have been used for determining points of interest
(Cao et al., 2010; Zheng et al., 2009), for detecting missing features (Heipke, 2010), and for the
improvement of the geometry of features (Schroedl et al., 2004).

Research efforts coupling movement data and mapping are focused towards the geometry of fea-
tures, and research investigating their semantic aspect (e.g. type of a road) is sparse. Our research,
positioned at the intersection of data mining and GIS, attempts to bridge this gap by investigating
if movement trajectories can be used to automatically derive and update attribute data in maps.
Roads are one of the most prominent features in maps, and are directly associated with the move-
ment of people, hence, we focus our research to the attributes of roads, such as their speed limit
and directionality. Using movement trajectories for this purpose would potentially result in im-
proving the efficiency of mapping production and the increase of the completeness of currently
available datasets.

In this paper we investigate the automatic derivation of eight road characteristics: directionality
(one-way or two-way road), speed limit, number of lanes, access for bicycles, average speed, con-



gestion, importance, and estimated error (offset) of the geometry of the feature. These attributes
have been selected by exploring commonly available attributes in existing road datasets.

We have used a decision tree classifier after investigating patterns in trajectories, and validated it
with a crowdsourced dataset recently acquired in the Netherlands with GPS. The algorithms that
we have developed are not complex and can be reproduced easily, benefiting their implemen-
tation. They involve a number of thresholds which have been determined with a Monte Carlo
simulation to find the optimal values of thresholds that minimize the errors. The dataset that we
have used comprises a substantial number of GPS samples: it contains the movement of 800 peo-
ple sampled every 5 seconds over 7 days in the Netherlands, hence it covers a wide travel behavior
and geographic coverage. This is especially important for the three attributes (average speed, con-
gestion, and importance) that reflect the actual usage (transportation flow) of the road. The size
of this movement dataset is comparable to similar research campaigns in other countries, such as
the “GeoLife GPS Trajectories” dataset from Microsoft Research (Zheng et al., 2009), which are
publicly available.

To test our method with a real-world map dataset, we focus on OpenStreetMap (OSM) which is,
at least in Western Europe, currently the most significant example of a system based on crowd-
sourced geodata (Girres and Touya, 2010), and it has been a topic of several research papers in
GIS (e.g. Barron et al. (2014); Mooney and Corcoran (2014); Hochmair et al. (2015)). After de-
riving the attributes of roads in the Netherlands, we update the corresponding roads in the OSM
dataset. The results show that a significant number of roads covered by the campaign are up-
dated, increasing the OSM level of completeness. Further, some of the attributes are not present
in OSM, hence we add them to OSM. OSM is not only used for the update, but also for validation,
for which we use the existing data, which is covered well for the Dutch roads.

In Section 2 we present related work in this field, and our motivation for using OSM as the map
dataset to be updated. Section 3 presents the methodology and related matter such as the used
data, tools, and preprocessing. For seven attributes we develop a method for their automatic
derivation. One attribute, the number of lanes, could not be automatically derived, and we present
our efforts and point to the problem, supporting potential future work. The results and the vali-
dation of the method, along with the discussion of privacy concerns, are presented in Section 4.
Section 5 concludes the paper and gives directions for future work.

2 Background

2.1 Related work

One of the similar efforts in this field of research is the work performed by Zhang et al. (2010),
which investigates the integration of GPS tracks with road maps. The GPS tracks are used to
improve the accuracy and detail of an out of copyright road map (e.g. OSM). Their research pri-
marily improves the geometry of roads, but it also works on extracting attribute information such
as directionality and turning restrictions. The research relies on the characteristics of the spread
of the tracks from the center line of the road, which is modeled as a Gaussian distribution. In our



method we have used some of the insights, such as the importance of determining the center line
of a road.

Chen and Krumm (2010) use a probabilistic method to derive the number of traffic lanes from
GPS tracks. To find the lane structure, they “fit a Gaussian Mixture Model (GMM) to the inter-
sections between the GPS traces and a sampling line perpendicular to the road’s centerline”. This
is similar to the previously described research, and we attempt to reproduce their method (more
on this in Section 3.3.4).

Li et al. (2014) use data mining techniques to extract the road class and road name from a com-
bination of movement trajectories and geotagged data in social media. The road network is ex-
tracted using an incremental generation method, where road classes are obtained using Support
Vector Machine (SVM). Their research is of our interest also because it provides insights into
using SVM for developing classifiers for movement data.

Ekpenyong et al. (2009) present a research “towards an innovative solution to the problem of au-
tomated updating of road network databases” Their research identifies roads and assigns them
into classes using a snap-drift neural network to analyze the GPS trajectories. A grouping accu-
racy of 71% is achieved. The research includes statistical indicators of trajectories (e.g. sinuosity
and acceleration) that we consider in the design of our method.

The presented related work shows that the topic has not been researched to the full extent, and it
is mostly limited to one or two attributes. In our work we consider a large number of attributes
(eight), and we use the insights obtained from the review of related work to infer additional at-
tributes.

2.2 OpenStreetMap

The OSM project represents the free editable map of the world. The positional accuracy of OSM
dataset has been researched in several countries in Western Europe, for instance, France (Girres
and Touya, 2010), United Kingdom (Haklay, 2010), Germany (Zielstra and Zipf, 2010), Ireland
(Cipeluch et al., 2010), and the Netherlands (Bhattacharya, 2012). Researchers generally conclude
that the completeness and positional accuracy of OSM data in Western Europe is comparable to
government datasets. However, the quality of the attribute data is not consistent. It is our experi-
ence that the attributes suffer from low completeness, sometimes also lesser accuracy, providing
a motivation for this research.

Attributes in OSM are described using tags. OSM has a freeform tagging system with key-value
pairs, which allows the contributors to add an unlimited number of attributes to a feature (Haklay
and Weber, 2008). However, certain tags and their values act as informal standards agreed upon
by the OSM community.

Consequently, we have decided to use OpenStreetMap as the map dataset to test our developed
method. OSM is free, hence we have the possibility to modify it, and the geometry is relatively
accurate, which is important for our research since we aim to improve the semantics rather than
the geometry. Finally, because of the flexible rationale regarding the attributes, they can be freely



extended with new keys and tags, which we do for a few attributes not previously available in
OSM (e.g. average speed).

3 Methodology

This Section describes the developed method with our implementation, and insight into related
topics such as the used data and tools.

The method consists of four steps: (1) acquisition of the movement data; (2) its preprocessing; (3)
automatically deriving the attributes of roads; and (4) updating the map dataset with the derived
attributes (the latest step is described in the next Section 4 with the obtained results). The algo-
rithms have been developed by analysing a training dataset (Section 3.3.1). The steps are shown
in Figure 1, and are explained throughout this Section.

IInput I
| | Classification and segmentation
| RawGPSdata |, algorithm by Biljecki ef al. (2013) Classified GPS data
| (X, 9,2, 1) | Step (1) & (2) 71 %, y, z, mode, heading, speed)
| |
I OpenStreetMap ! Map matching algorithm by Marchal (2013)
: data : Step (2)
Y
L — — — — — — — 4

Classified GPS data with
assigned road
(%, 9, z, elements, road_id)

Extraction of attributes
Step (3)

Training the data

Update map dataset
with derived attributes
Step (4)

Y
Roads with according
attributes
(roads, attributes)

Update OpenStreetMap
e -

|| OpenStreetMap roads I
_R with updated attributes |

| e T

Validation of results

Figure 1: Diagram explaining the methodology of the research.



The implemented software prototype uses a spatially enabled PostgreSQL database that contains
the map data (OSM) and the movement data (GPS tracks). All attribute extraction algorithms
are implemented using Python.

3.1 Acquisition of movement data

The movement dataset (i.e. GPS tracks in the form of a set of timestamped positions z, y, 2, t) was
acquired in early 2013 for an urban analysis project at the Section Urban and Regional Develop-
ment of the Delft University of Technology in the Netherlands (Van de Coeveringetal., 2015). The
dataset contains timestamped positions by more than 800 people inhabiting the cities of Amers-
foort, Veenendaal and Zeewolde (central Netherlands) during a 7 day campaign in which respon-
dents carried a GPS device. The respondents of the campaign have volunteered to participate in
the survey after they have been approached randomly. The distribution and density of the sam-
ples across the Netherlands is shown in Figure 2.

Such dataset is comparable to similar campaigns, which are also available for free public use across
the world (e.g. see the work of Zheng et al. (2009)). An alternative is to use the OSM GPS data,
uploaded by users worldwide.

3.2 Preprocessing the data

The preprocessing of the movement data consists of four stages.

First, because the algorithms which we have developed require additional data such as speed
and heading at each sample in the track, each of the point is enriched with a series of calculated
parameters.

The method takes advantage of mining trajectories made by car and bicycle. Since the data con-
tains tracks made by a variety of transportation modes, knowledge of the used mode is important
for filtering out tracks made by non-relevant modes.

The classification of the movement trajectories regarding the used transportation mode has been
done with the method developed by Biljecki et al. (2013). The method was selected because of its
accuracy and available implementation. After the classification, each GPS point is enriched with
the information of the used transportation mode in that moment.

The third stage is focused on the map matching of the GPS points, i.e. assigning each point to the
road. This part is essential for deriving the attributes for the roads because it is required to know
to which road each GPS point belongs. The algorithm that is used for this research is based on
the topological algorithm developed by Marchal et al. (2005), and it was realized in a cloud based
web service TrackMatching*. The motivation for using this approach is its accuracy and the free
availability of the implementation.

*https://mapmatching.3scale.net
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Figure 2: Density map of the movement dataset showing the distribution of the GPS samples in
the Netherlands. Since the country is not fully covered with a uniform number of sam-
ples (explained in Section 3.3), the attributes have not been derived for the whole coun-
try. The colors and the legend indicate the number of points per square kilometer.

In the fourth stage biased movement data which might negatively influence the quality of the
results are filtered out. We did this by imposing several thresholds to mitigate frequent problems,
such as undesired travel behavior and GPS noise. For instance, in several occasions during the
campaign people forgot to take the GPS device with them or have stayed at home with the device
on, resulting in many points at the same location. These points are all matched to the same road,
thus it appears that the road is used a lot, and that the traffic on it is congested. Therefore some
measures have been taken to filter out these points, such as taking into account the duration of the
stationary period and the speed of each point, e.g. all points that have a speed lower than 5 km/h



are removed from the dataset. Another example are outliers, which are detected by observing
unrealistic accelerations.

3.3 Deriving Attributes

A decision tree algorithm has been developed for deriving each attribute. A list of possible classes
per attribute has been determined by following the standard OSM practices. However, in order
to fully relate our method to OSM, we extend OSM in two ways.

First, multiple code lists have been implemented in a hierarchical structure, which we call a hi-
erarchical code list. The hierarchy describes the level of detail and the granularity of the value of
the attribute, and it is introduced for accuracy reasons. This is in line with the general notion of
the level of detail in GIS (Biljecki et al., 2014). Due to the complexity of the derivation of some
attributes, the hierarchies can provide different perspectives on the classification. For instance,
the classification of the speed limits for fine classes proved to be complex and may lead to inaccu-
rate results. Hence, we have decided to group classes resulting in a coarser classification, which
might be acceptable for some use-cases.

Second, in practice OSM does not contain four out of eight attributes that we investigate (average
speed, congestion, importance, and geometric offset), hence we add new keys to OSM that are
currently not present.

The research that has been done for deriving each attribute is described in the following sections,
with an algorithm, which is described either in pseudo-code or narratively. Further, for each at-
tribute, we have determined the minimum number of points that should be used in order to get
satisfactory and unbiased results of the classification. This was determined by running the algo-
rithms in iterations with different sizes of randomly selected subsets, and finding the degree at
which the increase of the number of samples has no further influence on the accuracy of the clas-
sification. The algorithms, except the one for the congestion (Section 3.3.7), are independent of
each other because of the specific challenges that are unique to each attribute (i.e. each procedure
is different and it does not require the knowledge of other attributes).

3.3.1 General methodology and training dataset

For designing the classification tree for each attribute, we have followed a general approach that
we elaborate here.

First we have established a training dataset to discover the potentially predictive relationships
between the movement trajectories and the values intended to be acquired. The training dataset
consists of a number of road segments for which the ground truth of the attributes is known (from
OSM and confirmed with official datasets), and the movement trajectories that are matched to
them (subset of the dataset described in Section 3.1). The selection of the training dataset will be
explained after the general methodology.



For each of the road segments we have computed a number of statistical indicators from the
matched movement trajectories that might indicate the value of the attribute. For instance, for
the attribute of the speed limit, the mean speed, the median speed, and its distribution, have been
computed. The selection of these indicators is in line with the methods of related work (Section 2)
and in the work on the classification of movement trajectories for other semantic properties such
as the transportation mode and purpose (Stopher et al., 2008; Bohte and Maat, 2009; Biljecki et al.,
2013).

The statistical indicators have been analyzed, and the relation to the values has been established
through a classification tree. The thresholds that have been used are determined with a Monte
Carlo simulation on a set of thresholds from which the optimal value yielding the smallest error
has been found.

In this method, the training dataset plays an important role. The training dataset has been se-
lected to be representative with respect the different types of roads, travel behavior, and geo-
graphic area, and as such has to contain the attributes that are investigated (the values in OSM
have been checked with other sources such as government datasets). Following this rationale we
have chosen the road segments that contain most of the samples in our dataset, and where dif-
ferent categories of roads are equally represented and in different geographic areas. This covers a
wide travel behavior and different types of roads.

The road segments are structured according to the data model of OpenStreetMap, where each
road may be represented by multiple line segments. In our training dataset, the road segments
are of varying distances from 0.5 to 5 km, and they contain from 6 to 19 thousand samples.

The number of 10 road segments have proven to be of a sufficient size. This has been tested with
repeated experiments involving different permutations and sizes of the training dataset. We have
computed several statistical indicators, and the results did not significantly deviate by increasing
the number of road segments.

3.3.2 Directionality (one or two way road)

The knowledge of whether a road facilitates driving in one direction or in two directions is critical
for routing and other purposes. This attribute is realized in OSM with the “oneway” tag, with
values of “yes” and “no”.

The algorithm first selects the GPS points that belong to a particular road thanks to the map
matching performed in the preprocessing step (Section 3.2). Then using the heading of each road
(in degrees), the points are grouped into three bins: “similar”, “opposite”, and “outliers”. The “sim-
ilar” points comprise the points whose heading is approximately the same as the corresponding
line segment that represents the road. The reverse applies to the “opposite” points. There is no
“equal” class because the heading of two consecutive GPS points always has a deviation from the
line segment on the road.

The threshold to determine if a point has a comparable heading is 20 degrees. All points that are
outside this threshold are outliers and are not taken into consideration. As with other thresholds



used in this work, this value has been determined with repeated experiments (as a Monte Carlo
simulation) in which the optimal threshold has been determined. More details can be found
in Van Winden (2014).

The total number of “similar” (or “opposite”) points is divided by the sum of “similar” and “op-
posite”, and if this ratio is bigger than a certain threshold the road is considered a one way road.
Else, the road is a two way road. The algorithm is tested by using different thresholds and the
threshold with the smallest error on the training data was selected. In our experiments the ratio
of 0.9 proven to be the best value. This means that if a specific relative direction is represented
less than 10% the road is considered one way accounting for undetected outliers.

The minimum number of points required for this classifier is 10 per road, which was determined
with experiments when taking into account the different number of samples.

3.3.3 Speed Limit

In routing, also an important attribute of roads is its speed limit, which in OSM is realized through
the “maxspeed” tag. The assumption here is that by deriving the movement pace from the tra-
jectories it is possible to deduce the speed limit of a road. Deriving the speed limit depends on
different factors. For instance, the varying behavior of drivers has a considerable influence. Fur-
ther, speed limits can differ over time, and congestions may cause significant bias. Such aspects
influence the input data and make it difficult to develop a reliable reasoning for automatically and
precisely deriving speed limits. Here we briefly describe the steps that we have taken to create an
algorithm that derives the speed limit from movement data.

The “maxspeed” attribute can be divided into multiple levels in the hierarchy (Figure 3). The
speed limits that are used here are the speed limits in the Netherlands: 30, 50, 60, 70, 80, 100, 120,
and 130 km/h. Level L0 groups these speed limits into an ordinal scale: low, medium and high.

By analyzing the trajectories, we have realized that there is a clear difference in driving behavior
between two roads with the same speed limit, e.g. the average speed of samples on one road is
different from another road with the same speed limit. For lower speed limits, the deviation of
the behavior is less noticeable.

In the movement data there are also many relatively low speeds which could influence the results
of the extraction of the speed limit. These relatively low speeds can be considered as outliers and
are caused by deceleration (e.g. for stopping at traffic lights), congestions, and other forms of
traffic disruptions. Therefore it is important to filter out lower speeds which do not represent
the uninterrupted flow of the traffic. Using acceleration proved not to be beneficial. Hence, the
velocity change rate (VCR), a concept different from acceleration, has been used. It is a statistical
indicator that takes into account the magnitude of the velocity, i.e. a change of 20 km/h from 100
km/h is different than the same change from a speed of 30 km/h. VCR is calculated by dividing
the change in velocity by the velocity of the first point (Zheng et al., 2010):
Vi — Vj-1

va= 0 (1)
Vi
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Figure 3: Different levels in the hierarchical code list for attribute “maxspeed” The units are in
km/h. This hierarchy may slightly differ between different countries where the speed
limits and units may be different.

Our research has shown that 0.15 was the threshold which gave the best results. Therefore only
points with a VCR between -0.15 and 0.15 are taken into account when deriving the speed limit.

After filtering the non-relevant points, we have realized that the mean speed of the points on a
road is proved to be a valuable indicator for the speed limit on the road. A step function of speed
limits was created taking the mean of the speeds as its single argument. Investigations based on
the training data have shown that the classification according to Table 1 yields the best results.

Mean (input) | Speed Limit (output)
[km/h] [km/h]

<40 30
> 40 and < 55 50
> 55 and < 65 60
>65and < 75 70
>75and < 85 80
>85and < 110 100
> 110 and < 125 120
> 125 130

Table 1: Classification function of the speed limit according to the mean speed. This hierarchy is
country-dependent depending on the legislation and on the units.

However, because of varying behavior in the different speed limit categories, for the higher speeds
it proved more difficult to classify the correct values using the standard value of mean. To solve
this problem, we keep the presented classification function, but when the mean speed is higher
than 85 km/h we do an additional filtering where only a percentile of the highest speeds is taken
into account. Experiments did show that the 20th percentile was the best value to use for deriving
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the speed limits above 85 km/h.

Afterwards, our investigation has shown that only using the mean speed for speed limits lower
than 85 km/h and only using the mean of the percentage highest speeds for speed limits higher
than 85 km/h is not sufficient. The system inclined to assign lower speed limits to the roads.
Therefore to improve the performance of the algorithm, a mix of the two means is created. For
speed limits up to and including 80 km/h, the average of the mean speed (v) and the mean of the
percentage of highest speeds (vp;gp) is used: M% For speed limits higher than 80 km/h, the

: L . 20, .
mean of the percentage of highest speeds is weighted twice than the mean speed: M% This
is because the higher speeds are more representative than the lower speeds for high speed limits.
These values are tested on the training dataset (described in Section 3.3.1) to determine the best

weight for this classification.

The final algorithm, which requires at least 50 samples on a road segment, is shown in Algo-
rithm 1.

Algorithm 1 Attribute Extraction of “maxspeed”

function MAXSPEED(roadid)
Select all speeds for roadid
if r > 50 then D> r is the number of results
Derive mean from speeds
SPEED LIMIT(mean,speeds)
Update “maxspeed”

function SPEED LIMIT(speeds)
if ((v+h)/2) <40 then > v = normal mean
maxspeed = 30 > h = high speeds mean
elseif ((v+h)/2) >40and ((v+ h)/2) <55 then
maxspeed = 50
etc...
elseif ((v+h)/2) > 85 then
if ((v+2h)/3)>85and ((v+2h)/3) <110 then
maxspeed = 100
etc...

return maxspeed

Inspired by related work (Section 2), besides this algorithm, some pattern recognition classifiers
such as SVM were also trained on the data but were proven not to be more accurate than the
current (simpler) method.

3.3.4 Number of usable lanes on the road

This Section discusses the possibility of the detection of the number of usable traffic lanes of a
road. The difficulty with GPS data for lane extraction is its inaccuracy, noise and the position of
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the GPS device with respect to the lanes.

Chen and Krumm (2010) use a histogram with the assumption that the distances of the samples
to the centerline of the lane are normally distributed, and develop an algorithm that extracts the
number of lanes. We could not manage to reproduce their method on our data following their
publication, and we have worked towards alternative solutions, which did not succeed either, as
experiments on our data suggest that the lanes are indistinguishable. However, we describe our
efforts in order to support possible future attempts.

First it is important to determine on which side of the road a point lies. This can be determined
using a cross product, and it is done for each point in the dataset. Afterwards, the distance to the
center line of the road has been computed.

For an impression of the calculated data, a histogram of the distances from each point to the
center line of one direction of a road is shown in Figure 4. Even as a human, it seems impossible
to detect the number of lanes out of this histogram.

010 Dlstauce‘s to Road : p= —0.8,0 ‘:4.5

Frequency
o
o
[=)]
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o
=}
B

0.00 - -
-30 =20 -10 0 10 20 30

Distance [m]

Figure 4: Histogram showing the distances from GPS points to the center line of the road includ-
ing the fitted normal distribution.

An alternative approach to infer the number of lanes would be from the width of a road, however,
the standard lane width in the Netherlands substantially varies (between 2.5 meters and 4.5 meters
depending on the road type (WegenWiki, 2014)). Even when using these lane widths and the
standard deviation as an indicator for the spread of the points, one might expect that the number
oflanes can be derived. However, calculating the mean and standard deviations did not contribute
towards a successful classification. Further, the shape of the distribution does not reveal much, as
it is a frequent case that the distribution of distances of samples on roads with two or more lanes
are blended in a single peak.
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We have computed histograms and values for each road in the training dataset, and we have not
seen considerable deviations in the values and in the distribution of the distances when analyzing
roads with a different number of lanes.

According to Chen and Krumm (2010), Gaussian Mixture Models (GMM) can detect lanes from
GPS data. Reynolds (2009) defines GMM as “a parametric probability density function repre-
sented as a weighted sum of Gaussian component densities”. Implementing GMM and testing it
on the training dataset, did not result in a successful lane detection either.

Hence, despite previous successful research, we conclude that when dealing with real-world data
the number of lanes cannot be determined from movement trajectories. We are of an impression
that such methods work only with data obtained in a controlled environment, for instance, one
where highly accurate devices are mounted at the same position in the vehicles.

This inability is most likely caused by the combination of multiple factors that influence the move-
ment data. Not only the GPS noise considerably affects the performance of the classification, but
also the placement of the devices in a vehicle can cause deviations in this case. We believe that
with the improvement of the accuracy of positioning sensors in future, this problem might be-
come easier to solve.

3.3.5 Access

The term access in the frame of OSM has a two-fold meaning, both related to the transportation
mode. On one hand, it can generally denote a traffic restriction for a certain road, i.e. that no
non-walking transportation mode is allowed on a particular road (e.g. it is strictly a pedestrian
zone). On the other hand, not all types of vehicles are allowed on every road, therefore it is used to
denote the different categories of vehicles (e.g. truck, car, and bicycle) that are allowed. This can
be useful in navigational systems, which can then determine appropriate routes for each mode
(e.g. different for a car and a bicycle; see the related research of Hochmair (2005) and Kim et al.
(2009) on deriving the appropriate route selection based on different factors).

From the implementation point of view, the first type of access cannot be taken into account
because in reality it is not possible to obtain a movement dataset that is so dense and thorough
where road segments without any recorded movement could be easily detected and assigned as
restricted. For instance, if no pedestrian GPS samples are recorded in a restricted (pedestrian-
only) street, it would be ambiguous if such street is a pedestrian zone or a private road that is
off limits. For these reasons we focus on the latter, where we extract the restrictions related to a
class of a non-walking transportation mode. We have developed an algorithm that analyzes the
position of a track made by a bicycle relative to the nearest cycleway and road, and it determines
if bicycles are allowed access to a road.

The development of the algorithm is hampered by the practical fact that in practice in OSM cycle
paths are not mapped as much as roads, and that the map matching implementation that we
use does not support matching to cycle paths. Hence, we adapt the algorithm to mitigate these
shortcomings.
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The method for the classification is given narratively, and it requires at least 10 samples.

First for each point a motorized road is matched and a nearest cycleway is assigned, provided that
there is a cycleway in the vicinity. This algorithm takes into account a couple of factors. At first,
a GPS point made while cycling has to comply with the same thresholds as the GPS points made
by car, i.e. a speed higher than 5 km/h, the distance to the road should be less than 30 meters
and the heading of the point should be similar or opposite to the drawing direction of the road.
Secondly, the distance to the road should be smaller than the distance to the cycleway. Finally,
the difference between the distance to the road and the distance to the cycleway should be bigger
than 10 meters. The latter should be incorporated into the system due to points that are slightly
closer to the road than the cycleway, but actually are on the cycleway, which is caused by GPS
noise.

3.3.6 Average Speed

The average speed of the traffic on a road is an attribute not found in OSM, and it might be esti-
mated when dealing with a large sample of movement trajectories. It an attribute that is relatively
easy to calculate, and is frequently used for navigation purposes, for instance in routing when
querying for optimal routes.

We introduce this attribute to OSM as “averagespeed”. While a single value per each road might
be calculated, we develop a finer code list. The level L0 of “averagespeed” is the average speed of a
road in both directions. Level L1 is the average speed for each direction, in case of a two way road.
Finally, level L2 provides the average speed per direction per hour to take into account deviations
of speed during the day for more detailed information. The levels in the hierarchy are depicted
in Figure 5.

The average speed in level L0 is calculated by selecting all the speeds of GPS points of a certain
road and dividing them by the total number of GPS points. For level L1, only points with the
relative directionality “similar” or “opposite” are selected, and for level L2 all the points with the
relative directionality and a specific hour are selected. We have realized that for all the levels this
algorithm gives results with only 10 points (increasing the number of samples did not increase in
the accuracy of the prediction), and when running the classification with an increased number
of the samples, there is an insignificant deviation (i.e. <1%) from the values obtained with 10
points.

3.3.7 Hours in which congestion occurs

The time of day during which a road is usually congested might also be useful for navigation
purposes, to avoid certain roads at certain hours. Taylor et al. (2000) describes congestion as a
phenomenon of increased disruption of traffic movement on an element of the transport system,
observed in terms of delays and queuing.
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averagespeed

LO both directions
L1 similar direction| |opposite direction
L2 hour: [ O | ... ... 23 ol .. .. 1|23

Figure 5: Different levels in the hierarchical code list for attribute “averagespeed”

We introduce this attribute to OSM through the tag “congestion’, which indicates the usual con-
gestion for a specific hour of day. The level LO represents the difference between congestion dur-
ing the week and the congestion during the weekend. Congestion tends to happen more often
during weekdays, because of the working hours of inhabitants. Therefore level L1 separates the
congestion per day of the week (168 classes). The levels in the hierarchical code list are depicted
in Figure 6.

There are two possible ways to derive the hours in which congestion occurs. One method is
to compare the average speed of a specific hour to the average speed of the road and the other
method is to use the VCR to detect a significantly higher amount of stopping or slowing down of
the car compared to the uninterrupted behavior.

In this research, we apply the first approach because it achieves the goals of congestion more di-
rectly. Moreover, stopping at traffic lights and differences in speed limits on roads could cause the
VCR to fluctuate making it not reliable for detecting congestions. Hence, we define disruptions
as considerable deviations from the average speed of a road.

First of all, it should be noted that the congestions are calculated per driving direction. This is
important because it is possible that in one direction there is no congestion, but in the opposite
direction there is a lot of congestion during a certain moment in time. This means that for the
opposite direction a different route might be more beneficial, but not for the other direction. Next,
a percentage of the average speed is determined as the indicator for congested traffic. In this case,
10% seemed as an optimal percentage to define as a significant difference between the average
speed of the road and the average speed per hour. We have determined this by analyzing the pace
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per hour per:
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Figure 6: Different levels in the hierarchical code list for attribute “congestion”

of the trajectories. The average speed per hour is then subtracted from the average speed and
compared with the 10% of the average speed of the road. If the difference between the average
speed and the average speed per hour is exceeding this threshold, that hour will be considered
congested.

For a proper derivation of the values, a minimum number of 10 points per road direction per
hour is recommended. As with other values, this was determined with a Monte Carlo simulation
with a different number of samples.

3.3.8 Importance of a road

Generalisation of maps, navigation systems, and other applications require the knowledge of the
classes of roads. While the importance of roads can be based on their type, this does not take into
account their actual usage and demand. The distribution of acquired tracks for each road can give
an indication of the usage of roads. Therefore, importance in this research can be described as
the relative usage of roads compared to the total usage within the movement dataset. Depending
on the coverage of the movement trajectories, this may refer to cities, regions, and countries (see
Figure 2 for the kernel density estimation in our case).

Therefore we introduce the “importance” attribute, which indicates the usage of the road on an
ordinal scale. There are multiple ways to derive the usage of a road. The basic idea is to derive
the ratio of the usage of the road compared to the total usage of all roads. The following units can
be used to derive the importance: number of GPS points on a road, time spent on a road by GPS
points, and number of passes on a road.

The first unit is the simplest: the more people drive on a road the more GPS points that road
contains. However, in the case of regularly sampled data, this unit also has a disadvantage: the
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varying speed. The speed influences the number of GPS points that are assigned to a certain road
and it biases the result.

By taking into account the time spent on the road, the results will also be biased in the same
manner. For example, consider motorways which are often congested. Such roads will then have
a higher amount of time spent on them, while they may not actually be used more often. Hence
the time unit also does not represent the usage of roads well.

The number of passes could give a better, less biased result compared to the previous two units.
A pass is counted when a vehicle travels over a certain road, and it is equal regardless of the time
spent and the speed. Therefore we have used it as a measure for the importance.

After the number of passes on all roads are calculated, a classification is performed using a step
function where a range of the number of points is assigned to a single class. This classification
depends on the data and the amount of passes that are made. Because of a non-uniform distri-
bution of points, we have decided not to assign directly the number of passes as the value, but
rather an ordinal scale of five classes that are determined from an evenly sized bins of points—the
amount of the highest number of passes in the computations has been divided by five to represent
the size of each class (e.g. 1001-2000 and 2001-3000).

3.3.9 Offset of the Road Geometry

The error of the geometry of the road network in OSM is usually assessed by a comparison to
official datasets. However, here we introduce the possibility of using movement trajectories for
this purpose. This attribute can therefore be considered as a quality indicator.

A multitude of research projects is available where road networks are extracted or improved from
GPS points. For example, the research by Zhang et al. (2010) improves existing road data from
GPS tracks. Similarly, Bruntrup et al. (2005) uses GPS tracks to generate maps and infer the road
geometry. However, they do not to use the GPS points as a quality indicator. The advantage of
GPS tracks is that, while they are not too accurate, if the dataset is big enough eventually a line
derived from a collection of tracks will follow the geometry of the road.

Here we consider a different perspective and try to determine the positional accuracy of the road
geometry, store it as an attribute, and make it possible for OSM contributors to be alarmed about
excessive offsets.

Again, the relative distance is used to calculate this attribute. The mean of all relative distances
of a road is the average offset of the GPS data compared to the center line of that road. Figure 7
shows an example for one road. The dashed line can be considered as the approximate centerline
of the trajectories, and the origin value (at 0) is the OSM centerline. Their discrepancy may be a
useful indicator of the accuracy of the geometry in OSM.

However, in some cases, this value cannot be directly used as a quality indicator due to the fact
that in the case of multiple lanes the distribution of the GPS points over these lanes influences
the result. For example, if for a two lane road 90% of all the people on that road drive on the
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Figure 7: Histogram of a road showing the discrepancy between the OSM geometry (at 0 meters)
and the mean of the distances of the samples (at -3.3 meters—dashed line).

right side and 10% of the people drive on the left side, the mean of the relative distances will be
shifted and will not represent the center line of that road. Further, the distribution of traffic in
two-way roads may differ, which could also have a substantial influence. Since it was not possible
to derive the number of lanes, it is not possible to adjust the distribution of points with respect
to the number of lanes. However, since such significantly uneven usage of the lanes are common
only in highways (e.g. ones having three or more lanes), this attribute still serves its purpose for
most cases.

4 Results, validation and privacy

4.1 Updating the attribute values

After the road attributes have been derived, the map dataset has to be updated. In our case,
because of the experimental nature of this research, the derived attributes were updated in a local
copy of the OSM database.

In Table 2 we present the new level of completeness of the attribute data of the roads in the area
covered by our movement data, i.e. roads that have at least one sample matched to it. Depending
on the attribute, the completeness varies from 4% to 100%. For instance, now 60% of the roads
contain the value for the directionality. This represents the increase of 39% comparing to the
presently available data.

It is important to state that the Netherlands is one of the most completely mapped countries in
OSM (a fact that is also visible in Table 2). Hence, when using a movement dataset of a comparable
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size, the increase in completeness for other countries would be more substantiated. Further, the
high level of completeness in the Netherlands is beneficial for this research because we have used
the existing data for validation (Section 4.2).

Two attributes: “access” and “congestion” have been derived for only a fraction of the roads be-
cause the used dataset did not have enough samples for their extraction on a larger scale.

Attribute Informed roads Relative
before the after the increase
extraction [%] | extraction [%] [%]
“oneway” (§3.3.2) 43.1 60.1 39.4
“maxspeed” (§3.3.3) 50.8 52.5 33
“access” (bicycle) (§3.3.5) 0.0 4.0 -
“averagespeed” (§3.3.6) - 37.3 -
“congestion” (§3.3.7) - 55 -
“importance” (§3.3.8) - 100.0 -
“geometryerror” (§3.3.9) - 34.1 -

Table 2: Overview on the magnitude of the informed attributes in OSM before and after perform-
ing our classification.

4.2 Validation

Here we provide an overview on the accuracy of the classification of the attributes, an analysis of
the errors, and discusses the sources of the errors. Since there is a number of external factors that
influence the performance of the classification, the validation focuses both on the total error of
the classification, and the identification and elimination of the erroneous external factors.

The validation was performed on the subset of 100 roads for which the ground truth is known.
The ground truth has been determined from OSM, and it has been further checked with other
sources such as government datasets. A number of attributes is novel (e.g. average speed and
congestion), and for them the validation against ground truth is not possible.

An overview on the classification accuracies is given in Table 3. The Table contains both the total
error of the classification, and the errors of the classification system after the eliminated external
factors, which is explained later.

The error for determining the directionality of the road is 0.6% for both levels in the hierarchical
code list. The error for the speed limit is 10.4% for the level LO and 34.0% for the level L1, showing
the difficulty of the classification of the speed limit in the finer code list.

However, if we take into account speeds that are one speed class away (e.g. classification of 50
km/h instead of the actual 60 km/h) the error is decreased to 5.0%. This may be acceptable for
some use-cases, such as the rough estimate of travel time between two points. The access attribute
has a total classification error of 26.0%.
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Attribute Level Total accuracy | Refined accuracy
(%] (%]
“oneway” 99.4 99.5
“maxspeed” LO 89.6 89.6
L1 66.0 69.2
+ one class 95.0 96.0
“access” Lo 74.0 90.2

Table 3: Overview of the accuracy of the developed classification system for attributes for which
the ground truth is known.

The resulting errors are caused by different factors, which may be internal (algorithm-inherent) or
external (data-inherent). Internal errors are the errors which are caused by the imperfection of the
extraction algorithm developed in this research. External errors are errors which are present in
the input data and cannot be easily detected. There are numerous external factors which can cause
these errors. For instance, (1) wrongful classification of the transportation mode of the movement
trajectory; (2) errors of the map matching, i.e. GPS points that are matched to another road; (3)
data used as ground truth is not correct. This applies also to temporary errors, for instance, a road
that has been closed due to constructions during the campaign, but it is available in OSM.

The errors caused by external factors have been filtered out with manual intervention (a sample
of erroneous data has been manually inspected), and the refined results showing only internal
errors of the algorithms are shown in Table 3. There is an improvement, especially for the “access”
attribute.

4.3 Privacy

If the used movement dataset is sufficiently large (as it is in our case) there are no privacy is-
sues concerning the movement and identification of people. First the data that is used has been
anonymized and this research deals with investigating the utility of the GPS data, which means
that no direct link between the person that carried the device and the data that is saved. Second,
and more importantly, the algorithms derive single and unrelated values (e.g. speed limit) from
which individual tracks, and further, their identity, cannot be reconstructed.

5 Conclusions and future work

In this article we have investigated to what extent it is possible to automatically derive road data
attributes from movement trajectories. We have thoroughly researched eight attributes, which are
common in road datasets. Four of these attributes are practically new to OSM. The algorithms
that we have developed are straightforward, and can be easily reproduced. Because each of the
attributes is specific, each requires a separate algorithm. We believe that it would not be possible
to design a unified single approach to derive all atributes.
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Further, we have shown that it is straightforward to extract some of the attributes (e.g. direction-
ality), and for some it is difficult or impossible (e.g. number of lanes).

Our contribution is that (1) our comprehensive research involves a large number of attribute
classes, most of them not researched previously; (2) we extend OSM by developing a hierarchical
code list and introduce attributes that do not exist in OSM; (3) the presented methodology is
tully automatic and it is implemented in a software prototype that derives the attributes starting
from the import of the movement data up to and including the updating of the maps, without
any human intervention; (4) we obtain satisfying results for some attributes (e.g. directionality
and speed limit), and for the number of lanes prove that it is not possible to derive them from
movement trajectories (at least not in the Netherlands); and (5) our method considerably elevates
the level of completeness of the attributes in OSM, with some attributes being enriched in more
than half of the roads covered by the trajectories. When updated, the attributes can contribute
to a number of applications, such as navigation. Finally, OSM contributors can benefit from the
new “geometryerror” attribute to get alerted of geometry that potentially has a significant offset
from the real-world counterpart.

This research is not applicable to only the OSM map data and GPS data, but also for other map
data and movement trajectories acquired with other technologies (e.g. GLONASS and Galileo).

While the method was tested in the Netherlands, it has a worldwide applicability after a certain
degree of adaptation and adjustments of thresholds to conform to the travel behavior in other
geographic areas. This depends on how similar the road network properties are in another geo-
graphic area, somewhere it would require minimum adjustments, and somewhere an additional
training and a combination with other methods.

The classification system does not provide results with a 100% accuracy, but we are of the opinion
that the accuracy cannot be further considerably improved, while retaining the same level of
simplicity that our method offers. Potential improvements would require much more complex
methods, and we have also concluded that some of the more advanced methods (such as SVM)
do not bring any benefit.

For future work we plan to add a certainty measure to each classification, to extend the classi-
fication to other attributes which may be more challenging (e.g. type of the road and material
of road surface), and to extend the hierarchical code list for some existing attributes, especially
for the speed limit that can be different between day and night. Further, we plan to work on the
validation of the attributes which were hard to validate in the scope of this research. This applies
foremost to the attribute of the congestion, which can be validated with the use of Traffic Message
Channel (TMC) data.
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