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Abstract

Accurate alignment of heterogeneous LiDAR point clouds is important for producing high-
quality elevation data. This process, known as harmonisation, corrects spatial discrepancies
between overlapping datasets collected at different times or using different sensors. A key
step in harmonisation is the use of reliable benchmarks, which are features that are clearly
detectable in both datasets, to guide the alignment. While artificial targets have been tradi-
tionally used as such benchmarks, their deployment is costly and impractical for large-scale
or uncoordinated surveys. Consequently, there is growing interest in extracting natural or
man-made features directly from LiDAR data to serve as benchmarks.

Road markings have recently been proposed as an alternative benchmark due to their con-
sistent visibility in LiDAR point clouds, particularly through intensity value. As part of the
Integrale Hoogtevoorziening Nederland (IHN) initiative, road markings are being explored
as benchmarks for national point cloud alignment. However, the performance of the road
markings as a co-registration benchmark has not been well researched yet.

This research investigates how the accuracy of automatically extracted road markings affects
the quality of point cloud alignment. It builds upon an adaptive extraction method that ad-
justs intensity thresholds to suit different datasets and applies geometric filtering to generate
3D line representations of road markings. These extracted features are used to align hetero-
geneous LiDAR point clouds, and their performance is evaluated against manually digitised
road markings to assess how extraction quality influences alignment accuracy. To support
this evaluation, a RANSAC-weighted centroid alignment approach is proposed, which uses
the inlier count of each correspondence as a weight during transformation estimation, aim-
ing to prioritise geometrically stable benchmarks in the alignment process.

The results show that alignment accuracy is influenced by the extraction quality and dis-
tribution of road markings. When fewer road markings are available, especially in datasets
with larger time gaps due to environmental changes, the spatial distribution has a higher
chance of becoming uneven, leading to transformation errors. These errors grow with dis-
tance from the benchmark area, increasing alignment inaccuracies across the dataset.
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1 Introduction

1.1 Research Background and Motivation

High-resolution 3D digital representations of real-world objects are essential in geospatial
analysis, enabling precise measurement and spatial understanding. Light Detection and
Ranging (LiDAR) point cloud data plays a significant role in this field due to its ability to
provide such detail. Advancements in various LiDAR post-processing techniques have en-
abled the effective use of heterogeneous point cloud data to capture dynamic environmental
changes (Riofrı́o et al. 2022; Xiao 2012), making a seamless and unified dataset (Leusink
2024), or compensating for specific sensor limitations (Shao et al. 2022; X. Cheng et al. 2018).
Heterogeneous point cloud data refers to point clouds collected at different times and with
different sensors, often varying in resolution, accuracy, and attribute characteristics. These
works emphasise the importance of accuracy and consistency in position when managing
multiple heterogeneous LiDAR point clouds, ensuring that spatial discrepancies are min-
imised and that the datasets remain precisely aligned for reliable analysis. One technique
used to address these spatial discrepancies is known as harmonisation.

Harmonisation is applied to correct spatial discrepancies in overlapping datasets, ensuring
better accuracy and consistency in the positioning of heterogeneous point clouds. This
process involves aligning datasets to minimise the datasets’ misalignment caused by various
sources of error. A key element in this process is the use of benchmarks, which serve as
reference features to calculate positional differences between datasets. For a benchmark to
function effectively, it must be detectable in both the reference dataset and the dataset being
aligned, allowing for assessment and correction of spatial discrepancies.

Figure 1.1: Illustration of harmonisation: (a) Reference point cloud. (b) Target point cloud.
(c) Harmonisation result
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In the Netherlands, an initiative called the Integrale Hoogtevoorziening Nederland (IHN)
was launched at the Actueel Hoogtebestand Nederland (AHN) and Beeldmateriaal Congress
2024, held on 16 October 2024 in De Mariënhof, Amersfoort (Actueel Hoogtebestand Ned-
erland (AHN) Congress 2024). One of the main objectives of the initiative is to harmonise
national point cloud datasets to ensure the positional accuracy of elevation data across the
country. It also aims to explore and promote methods for assessing and improving the align-
ment of overlapping point cloud datasets acquired at different times, with different sensors,
or by different organisations (Actueel Hoogtebestand Nederland (AHN) Congress 2024). As
part of the objective, identifying a reliable and widely applicable benchmark for alignment
has become important, particularly a benchmark that can be consistently detected across
homogeneous point clouds.

One commonly used approach to ensure positional accuracy and consistency between over-
lapping datasets is the deployment of artificial targets as physical benchmarks (Urbančič
et al. 2019; Liang et al. 2014; Yanmin Wang et al. 2014). The approach allows operators to
determine the optimal placement of benchmarks and how they should be detected in LiDAR
point cloud data based on their unique shape, reflectance, or colour to make sure of their
detectability. However, there are several drawbacks to using artificial targets as benchmarks.
In large-scale survey areas, deploying artificial targets can be highly expensive in terms of
both labour and cost. Additionally, artificial targets must be placed before data acquisition
to be recorded in the dataset, making this method suitable only for pre-planned surveys.
As a result, the method is not suitable for datasets collected without prior coordination or
planning. An alternative type of benchmark that can solve this limitation is needed.

To overcome the limitation of artificial targets as benchmarks, feature extraction techniques
from LiDAR point cloud data have been studied over the past decades to establish reliable
benchmarks for measuring positional inconsistencies and aligning overlapping point clouds
(L. Cheng et al. 2018; Wu and H. Fan 2016; Shao et al. 2022; Xu et al. 2022). The process
involves extracting segments of points into feature primitives such as lines, surfaces, or any
other feature to calculate the roto-translational difference between the two tested datasets (L.
Cheng et al. 2018). For example, (Wu and H. Fan 2016) and (X. Cheng et al. 2018) propose
using building surfaces as control features for registering overlapping point cloud data,
which model building edges and roofs to surfaces or lines, considering buildings as a robust
benchmark due to their stable structure and salient edges. Additionally, buildings are widely
distributed across urban areas, making them effective reference features. While effective in
urban environments, this benchmark is highly dependent on the presence of buildings in
the dataset. Consequently, it is unsuitable for areas without buildings, such as highways
and bridges, where alternative benchmarks are required to ensure accurate registration.
Therefore, there is a need to develop an alternative benchmark that remains effective in
areas without buildings, such as highways and bridges, ensuring accurate alignment across
diverse environments.

To address the limitations of existing benchmarks in areas where buildings are sparse or
absent, the use of road markings has emerged as a potential alternative. As part of the IHN
project, Daan van der Heide, representing the Ministry of Infrastructure and Waterways
of the Netherlands (Rijkswaterstaat) in the IHN project and serving as my mentor in this
research, is investigating the potential of road markings as an alternative benchmark for
point cloud co-registration, due to their colour and material make them noticeable from
point cloud data through intensity values (Heide 2024). The illustration of road marking
detected from intensity value can be seen in Figure 1.2.

2
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Figure 1.2: Road marking detected through point cloud intensity values

Road marking extraction techniques from LiDAR point cloud data have been studied over
the past decade (Barçon et al. 2022), based on the assumption that painted road markings
exhibit higher intensity values than the surrounding pavement. An approach to extract
road markings from LiDAR point cloud data involves the use of machine learning and deep
learning (Wen et al. 2019; Y.-T. Cheng et al. 2020). This method typically projects the 3D
point cloud into a 2D image, enabling the model to learn the intensity patterns of road
markings from labelled datasets. However, it requires a large amount of training data and
has a high computational cost for implementation.

Another approach to road marking extraction is a rule-based method, which uses fixed
mathematical rules rather than learning from data, as implemented in Yan et al. 2016. It
works by identifying road points based on their height relative to the sensor, and detecting
road markings by detecting sudden changes in intensity. However, this method is best
suited for pre-planned surveys where the vehicle is specifically driven along the centreline
to capture road markings accurately. This makes it less suitable for general LiDAR surveys,
where the vehicle is not always positioned directly over the road markings.

Another method for extracting road markings is by filtering points based on an intensity
value range, as applied in B. Yang et al. 2012. This method works by first removing points
with intensity values outside a predefined range and retaining only those within it, then
removing non-ground and noise points. The range is determined by analysing the typical
intensity values of road markings in the specific point cloud data. However, in multi-source
LiDAR datasets, intensity ranges can vary due to differences in sensors and preprocessing
steps, making it difficult to define a fixed intensity range that can be reliably used across
different datasets.

In (Heide 2024), a road marking extraction method is introduced that is intended to address
the challenge of intensity variability across different LiDAR datasets. Unlike traditional fixed-
threshold approaches, this method uses adaptive estimation of intensity thresholds suited to
the intensity range of road markings within each segmented road surface. By dynamically
filtering out non-road marking points, the method improves the reliability of road marking
detection across heterogeneous datasets. Combined with geometric filtering and object clus-
tering, the approach ensures that road markings can be modelled as 3D line-type benchmark
representations.
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While this method is designed to improve the reliability of road marking extraction across
heterogeneous LiDAR datasets, the impact of its extraction accuracy on co-registration per-
formance has not yet been evaluated. This highlights the need to assess not only how well
the method performs, but also whether the current accuracy of extracted road markings is
suitable for use in co-registration.

To address the gap, this research investigates how the extraction accuracy of the road mark-
ing extraction method proposed in (Heide 2024) influences the alignment of overlapping
point clouds in the harmonisation of heterogeneous LiDAR data. The findings will provide
insights into the feasibility of using the method to extract road markings as benchmarks,
and into their impact on the alignment accuracy of LiDAR datasets.

1.2 Research Objective

This research aims to demonstrate the use of road markings extracted using the method
proposed in Heide 2024 as a benchmark in the LiDAR point cloud harmonisation process
and investigate how the extraction accuracy affects the alignment accuracy of LiDAR point
cloud. To achieve this, the following main research question is proposed:

”How suitable are road markings extracted using the method proposed in Heide 2024 as a benchmark
for heterogeneous LiDAR point cloud harmonisation?”

In this research, suitability refers to how well the extracted road markings fulfil their purpose
as a co-registration benchmark. This includes examining whether they remain usable to
reduce the misalignment distance between the overlapping datasets, given the current level
of extraction accuracy, and understanding how the inaccuracies in road marking extraction
may affect the alignment result.

To support the main research question, several sub-research questions have been formulated
to ensure a focused approach toward the main research question, as listed below:

• How can reliable correspondences between road markings be established across LiDAR
datasets with different acquisition times?

• How does weighting the road markings based on their geometric stability influence
the accuracy of multi-temporal LiDAR co-registration?

• How does the accuracy of automatically extracted road markings influence the accu-
racy of LiDAR co-registration?

• How does the alignment error change with increasing distance from the area where
road markings are used as a benchmark?

• What are the types of uncertainty that affect the accuracy of road marking extraction
for position harmonisation?
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1.3 Research Scope

The research focuses specifically on road markings extracted from LiDAR point clouds using
intensity values as benchmarks. While other methods for generating point cloud data ex-
ist, such as photogrammetry-based point cloud reconstruction, which may still detect road
markings using RGB values, these datasets generally lack intensity information and are thus
excluded from this research.

The research also concentrates on the geometric aspect of point cloud harmonisation, specif-
ically on positional inconsistencies between heterogeneous LiDAR datasets. It does not in-
clude harmonisation of intensity or RGB values, as the main goal is to achieve accurate
spatial alignment rather than consistency in appearance or colour.

The study focuses on road marking data as the final product of the extraction method pro-
posed in Heide 2024. The road marking extraction was carried out and provided by Rijk-
swaterstaat. However, a detailed examination of the extracted data is required for specific
parts of the analysis. The data was made available exclusively for this research.

While various types of road markings on different road types can be detected in Dutch
point cloud datasets, this study focuses specifically on simple dashed lane markings and
block dashed lane markings found on highways, as shown in Figure 1.3. This choice re-
flects the current stage of development in road marking extraction methods, which are still
developing.

Figure 1.3: Road mark types: (a) Dashed lane marking. (b) Block dashed lane marking

1.4 Thesis Outline

This thesis is structured into five main chapters, each addressing different aspects of the
research. The outline of the thesis is as follows:

• Chapter 1: Introduction
This chapter provides an overview of the research, including the background and mo-
tivation, research objective and research questions. It presents the reasons underlying
the need to explore the implementation of the automatically extracted road markings
as a co-registration benchmark.
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• Chapter 2: Related Work
This chapter reviews studies that are related to this research. It starts by reviewing
sources that cause point cloud misalignment. Then, it reviews existing methods of
road marking extraction from LiDAR data and how to validate them. After that, it
reviews methods to align LiDAR point cloud data and methods to validate alignment
accuracy.

• Chapter 3: Methodology
This chapter details the research methodology, including the data sources, the pro-
posed approach used to quantify road marks extraction quality, and the proposed
methods to co-register point cloud data using the extracted benchmark.

• Chapter 4: Results
This chapter presents the results obtained through the proposed approach. It analyses
the outcomes and findings related to the implementation of automatically extracted
road markings as a co-registration benchmark.

• Chapter 5: Discussion
This chapter discusses the limitations found during the study. It discusses the chal-
lenges related to the study area, challenges in the processing step, and limitations of
the proposed evaluation approach in this research.

• Chapter 6: Conclusion and Future Work
The final chapter summarises the key findings of the study and provides recommen-
dations for future research in implementing automatically extracted road markings as
a co-registration benchmark.

1.5 Footnotes

The use of AI as writing assistance is acknowledged in this thesis to improve clarity and
correct grammatical errors, under the full supervision of the writer. All research content,
analysis, and conclusions are the sole responsibility of the writer.
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This chapter reviews several studies as the starting point of this research. It first explores
LiDAR point clouds acquisition technique and the causes of errors. It then explores methods
for extracting road markings from LiDAR data and ways to evaluate the extraction result.
Followed by a review of co-registration methods for aligning LiDAR point clouds and ap-
proaches to evaluate point cloud alignment.

2.1 LiDAR Data Acquisition Techniques and Error Sources

Over the past decades, various LiDAR point cloud acquisition techniques have been devel-
oped to meet the growing demand for high-precision spatial data. Three of the most well-
known techniques are Airborne Laser Scanning (ALS), Mobile Laser Scanning (MLS), and
Terrestiral Laser Scanning (TLS). These techniques have emerged in response to various
needs, such as achieving optimal coverage, resolution, and accuracy in different environ-
ments, as well as other factors like cost, platform availability, and technological constraints.
Each system is designed to address specific challenges in LiDAR data acquisition by operating
under different conditions, viewing target objects from varying perspectives, and relying on
different positioning mechanisms. This section examines ALS, MLS, and TLS systems, along
with the potential sources of error that can contribute to point cloud misalignment.

2.1.1 Airborne Laser Scanning

ALS systems can efficiently capture large-scale point cloud data using aeroplanes, helicopters
or Unmanned Air Vehicle (UAV), making this technique ideal for environmental mapping.
However, due to the high-altitude, top-down perspective, ALS datasets often have lower
point density than those captured using MLS and TLS, limiting data collection in enclosed or
obstructed areas Shao et al. 2022.

ALS conceptually records point cloud data by transferring the carrier’s coordinates, obtained
via Global Positioning System (GPS) integrated in the platform, to points on the Earth’s sur-
face. This process is achieved by measuring the laser pulse travel time and transmission
angle, which are corrected using the carrier’s flight attitude data (Killinger 2014). The tech-
nology integrates three key subsystems: Global Navigation Satellite System (GNSS), Inertial
Navigation System (INS), and laser ranging technologies, each operating in its own reference
frame as shown in Figure 2.1. However, the integration of these independent subsystems
introduces systematic errors, primarily due to sensor calibration inaccuracies, time synchro-
nisation issues, and intrinsic errors within each subsystem, leading to inconsistencies in the
recorded point cloud Schenk 2001.
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Figure 2.1: Airborne laser scanner subsystem reference frame Schenk 2001

Systematic errors in ALS can be categorised into several types, including range errors (biases
in laser pulse travel time measurements), scan angle errors (misalignment in laser angles),
INS drift errors (gyroscope and accelerometer inaccuracies), GNSS positioning errors (multi-
path effects and atmospheric delays), and mounting misalignments (incorrect sensor orien-
tation relative to the aircraft) Schenk 2001; Xiaohong and Jingnan 2004. According to Schenk
2001, these errors propagate through the data acquisition process, introducing positional in-
consistencies in overlapping flight strips, often leading to misalignment in ALS point clouds.
Similarly, Xiaohong and Jingnan 2004 points out that GNSS, INS, and LiDAR integration errors
can cause noticeable positional shifts in the data. These errors can become more significant
depending on factors such as flight altitude, scan angle, and the nature of the terrain.

External factors such as changes in weather conditions and terrain variability can further
increase these errors. Fog, rain, and snow can weaken the laser pulse, making distance
measurements less accurate. Changes in ground height and thick vegetation can also affect
how the laser reaches the surface and bounces back, leading to errors in elevation data
Donkers 2024.

2.1.2 Mobile Laser Scanning

MLS system is a high-resolution 3D data acquisition technique that captures point cloud data
while mounted on a ground vehicle such as a car or train. Unlike ALS, which operates from
high altitudes, MLS offers a balance between spatial coverage and point density, making it
particularly well-suited for applications in urban environments, transportation networks,
and large-scale infrastructure projects Yanjun Wang et al. 2019. In contrast to ALS, which
captures data from a top-down perspective, MLS operates closer to the ground, allowing for
the detailed scanning of objects that may be obstructed in aerial views, such as building
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facades and roadsides. This proximity results in denser point clouds and improved detail in
feature representation.

Similar to ALS, an MLS system typically consists of a LiDAR scanner and a Position and
Orientation System (POS), which is an integrated system comprising an Inertial Measurement
Unit (IMU) and a GPS. These components work together to georeference the collected point
cloud data Yanjun Wang et al. 2019; Shahraji, Larouche, and Cocard 2020, see Figure 2.2
for the location of subsystems in MLS system. However, because MLS operates near the
ground in busy environments such as cities and constructed areas, GPS signals are more
susceptible to multipath errors Kalenjuk and Lienhart 2022. In urban areas, GPS signals are
often reflected off buildings, trees, and other obstacles before reaching the receiver, leading
to inaccuracies in positioning. This increased susceptibility to multipath effects makes GPS
errors more influential in MLS than ALS, where the sensor operates at higher altitudes with
fewer obstructions.

Figure 2.2: Mobile laser scanner system components (Kalenjuk and Lienhart 2022)

Additionally, MLS is prone to other systematic errors affecting georeferenced point clouds’
accuracy (Shahraji, Larouche, and Cocard 2020; Kalenjuk and Lienhart 2022). According
to Shahraji, Larouche, and Cocard 2020, a major source of error in MLS is misalignment
between LiDAR sensor, IMU sensor, and GPS receiver, where discrepancies in roll, pitch, and
yaw angles cause distortions, especially on inclined or vertical surfaces. Further mentioned
in the study, leverarm offsets, which are the spatial distance between the LiDAR scanner and
GPS or IMU can lead to systematic shifts, affecting georeferencing accuracy. Another source
of errors mentioned is errors in distance measurement (range errors) and scanning angles,
which can cause points to appear at the wrong position, especially on shiny or reflective
surfaces, because the laser pulse may scatter, be partially absorbed, or reflect multiple times
before returning to the sensor. Kalenjuk and Lienhart 2022 also mentions that external
factors, such as scanning geometry, surface roughness, and reflectivity, influence the quality
of the resulting point clouds.
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2.1.3 Terrestrial Laser Scanner

TLS is a data acquisition technique capable of capturing highly detailed environmental con-
ditions, producing the densest point cloud compared to other LiDAR techniques mentioned
above Rodrı́guez-Gonzálvez et al. 2017; Kushwaha et al. 2023. This is due to its acquisition
method, which utilises a stable platform, such as a tripod, positioned in a fixed location. TLS
is particularly effective for modelling high-polygon objects with complex structures, such as
trees, bridge frameworks, and cultural heritage sites, with exceptional detail. However, as
TLS requires the scanner to be placed at specific points for data collection, acquiring large-
area or large-object datasets takes significantly longer than other methods.

TLS sensor emits a laser pulse, splitting it into a reference and a scanning beam directed by
a rotating mirror. The pulse reflects off the object, and the scanner calculates distance based
on the time difference between the reference and received signals, generating a dense 3D
point cloud Soudarissanane 2016 (see Figure 2.3).

Figure 2.3: Terrestrial laser scanning mechanism Soudarissanane 2016

Unlike ALS and MLS, TLS does not rely on GNSS for positioning, as it operates from a static
location rather than a moving platform. Instead, TLS typically uses ground control points
or total station measurements for georeferencing point clouds. Another method of georef-
erencing TLS data is to position the scanner on a pre-measured fixed reference point during
measurement. This fixed reference point is usually determined using the static GNSS method,
which provides higher accuracy than kinematic methods, such as those used in ALS and MLS.
Static GNSS positioning improves accuracy due to longer observation durations, allowing for
better error filtering and averaging, whereas kinematic GNSS computes positions in real-
time at each measurement epoch, making it more susceptible to instantaneous errors and
dynamic model constraints Tiberius et al. 2021.

Soudarissanane 2016 mentioned several factors influencing individual TLS points’ quality,
which are: systematic and random errors from the scanner-related errors, environmental
conditions, and object surface properties. Scanner-related errors, such as beam divergence,
uncertainty in the angular position of the rotating mirror, and axis misalignment between
laser beam, rotating mirror, and the scanner’s internal axis, introduce random errors. En-
vironmental conditions, including dust, temperature, and humidity, can degrade the laser
signal. The surface properties of scanned objects, such as reflectivity and roughness, af-
fect the intensity and number of valid returns. Finally, scanning geometry, particularly the
incidence angle and range, directly impacts measurement precision.
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2.1.4 Overview of LiDAR Acquisition Techniques

To summarise the subsection, the characteristics and potential error sources of various LiDAR
acquisition methods are compared. This includes airborne, mobile, and terrestrial laser
scanning systems, each with distinct positioning strategies, sensor configurations, and op-
erational environments. The following tables provide an overview of their key components,
positioning methods, and typical sources of error. This structured comparison highlights
how different acquisition techniques may introduce specific limitations in point cloud qual-
ity, understanding the impact on applications such as co-registration.

Table 2.1: LiDAR acquisition types with positioning methods and components

Acquisition Type Positioning Method Component

Airborne Laser Scanning Kinematic (airborne) GNSS, INS, LiDAR scanner

Mobile Laser Scanning Kinematic (on ground) GNSS, INS, LiDAR scanner,
odometer

Terrestrial Laser Scanning Static (on ground) GNSS, LiDAR scanner

Table 2.1 outlines the positioning methods and system components of each LiDAR acquisition
technique. On the other hand, Table 2.2 builds upon this overview by presenting a detailed
comparison of the primary error sources associated with each system. These errors are
grouped into categories, which are: positioning, mounting, scanning, environmental, and
surface interaction, showing how different types of LiDAR systems are affected by specific
technical and environmental factors.

Table 2.2: Comparison of LiDAR acquisition methods and error sources

Acquisition
Type

Positioning
Error

Mounting /
Integration
Error

Scanner Er-
ror

Environment
Factor Error

Surface In-
teraction Er-
ror

Airborne
Laser Scan-
ning

GNSS mul-
tipath, INS
drift

Lever-arm
offset,
POS–LiDAR
misalign-
ment

Range error,
scan angle
error

Sensitive
to weather
(fog, rain,
snow)

Reflective
surfaces
(e.g. water,
metal)

Mobile
Laser Scan-
ning

GNSS mul-
tipath,
INS drift,
odometer
error

Lever-arm
offset,
POS–LiDAR
misalign-
ment

Range error,
scan angle
error

Affected
by urban
obstructions

Reflective
surfaces
(e.g. water,
metal)

Terrestrial
Laser Scan-
ning

Minimal
(static GNSS
or total
station)

Rotating
mirror an-
gle errors,
axis mis-
alignment

Beam diver-
gence, range
error, scan
angle error

Dust, tem-
perature,
and humid-
ity

Reflective &
roughness
of texture
surfaces
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2.2 Road Marking Extraction from LiDAR Point Cloud

Road markings are among the most detectable and geometrically distinct features in urban
environments, making them useful not only for applications like high-precision map cre-
ation and autonomous driving (Wen et al. 2019; R. Yang et al. 2020; Yao et al. 2021), but also
as potential geometric benchmarks for point cloud alignment (Heide 2024). The extraction
of road marks from LiDAR data, however, is a challenging task and depends on how the road
marks detected in point cloud data through intensity value, influenced by surface reflectiv-
ity, the condition of road marks at the data acquisition phase and the characteristics of the
LiDAR sensor used.

Many existing road marking extraction methods rely on the assumption that painted road
markings exhibit higher reflectivity than the surrounding pavement. Intensity values recorded
by LiDAR sensors capture this contrast, enabling various approaches to utilise intensity in-
formation for detecting road markings within point cloud data.

Machine learning and deep learning methods have gained popularity for road marking ex-
traction due to their ability to learn complex spatial and reflectance patterns from LiDAR data.
These approaches typically rely on supervised learning, where labelled datasets are used to
train models, with LiDAR intensity serving as a key feature. A common strategy involves
projecting the 3D point cloud into a 2D grid and using the average intensity in each cell
as input for segmentation. This enables deep learning models to learn reflectance patterns
associated with road markings and achieve robust performance across different pavement
types and intensity distributions (Wen et al. 2019; Y.-T. Cheng et al. 2020). Although deep
learning models can generalise well when trained on diverse datasets, they require large
amounts of labelled data and high computational resources.

Another approach to extracting road markings involves traditional model-based and rule-
based methods, which use fixed mathematical rules rather than learning from data. Model-
based methods fit simple shapes, such as lines or curves, to the data, while rule-based
methods rely on features like intensity differences or spatial patterns. For example, Yan
et al. 2016 proposed a method that processes 3D mobile LiDAR data by identifying the road
surface based on height differences and detecting markings through sudden changes in
intensity along scan lines. Similarly, Mi et al. 2021 used a two-step method: first selecting
possible road marking points using intensity and elevation information, then improving the
results by fitting simple geometric models to better match the shape of the markings.

Intensity-based filtering approaches make use of the characteristic intensity range of road
markings within point cloud datasets. A straightforward method for filtering road marking
points using intensity value ranges was proposed by B. Yang et al. 2012. The method works
by applying a two-step filtering process: the first step filters road points with intensity values
within the fixed range of 100 to 300, while the second step further refines the filtered points
based on their elevation. This is done to eliminate objects with similar intensity values to
road markings, such as vehicles and other road features.

While effective under controlled conditions, these approaches are highly sensitive to vari-
ous factors, including sensor type, scanning geometry, and environmental conditions. For
instance, the angle of incidence between the laser beam and the road surface can influence
the return intensity, as can the range to the object and the surface moisture (Li et al. 2023;
Ackroyd et al. 2024). Furthermore, the intensity scale is not standardised across different
LiDAR systems or LiDAR acquisition projects (see Figure 2.5), and even within the same sys-
tem, it can vary depending on calibration settings or operating conditions. Consequently,

12



2.2 Road Marking Extraction from LiDAR Point Cloud

using fixed range values may fail to filter road marking across datasets captured by different
LiDAR systems or projects.

Figure 2.4: Variation of road marking intensity ranges across datasets from multiple projects:
a) AHN3 dataset (2018), road marking detected in range 80 to 349. b) AHN4 dataset
(2022), road marking detected in range 900 to 1500. c) AHN5 dataset (2024), road marking
detected in range 2000 to 4000

To solve the limitation of road marking extraction using the fixed intensity range filter ap-
proach as mentioned above, an adaptive intensity range filter, which is capable of automati-
cally determining the threshold based on the input point cloud data, should be employed.

Yao et al. 2021 proposed a method for segmenting road marking point clouds based on inten-
sity by first rasterising 3D road point clouds into 2D intensity images. An adaptive threshold
technique is then applied to the raster image, whereby the binarisation threshold for each
pixel is determined by the local intensity distribution of its surrounding neighbourhood.
Points within each pixel with an intensity value above the mean of their neighbourhood are
then extracted as road marking points. The approach enables dynamic threshold adjustment
across datasets, accommodating variations in data acquisition techniques or post-processing
steps. However, the method requires the transformation of 3D point clouds into 2D images
for road marking extraction, which results in the loss of elevation information. For co-
registration purposes, where 3D information is essential, an alternative approach is needed
that can extract road markings as 3D features.

A method that uses an adaptive intensity filtering approach to extract road marking as a
3D feature was introduced by Heide 2024. It was designed to extract road markings from
LiDAR data to be used as benchmarks for co-registration. Co-registration requires at least
two overlapping point clouds, and these point clouds may differ in their intensity ranges.
This variation makes the adaptive intensity threshold useful for consistently extracting road
markings across different datasets. The pipeline of this method is shown in Table 2.3
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Table 2.3: Processing pipeline of the automatic road marking extraction method using adap-
tive intensity threshold introduced in Heide 2024

Number Step name

Step 0 Gridding and cleaning the input point cloud

Step 1 Road segmentation

Step 2 Curb and noise segmentation

Step 3 Adaptive estimation of the intensity threshold

Step 4 RM cluster estimation

Step 5 Line segmentation

Step 6 Zigzag- and direction correction

Step 7 Naming the line segments

The method works by first dividing the point cloud datasets into smaller tiles to make pro-
cessing more manageable. Each tile is then cleaned and segmented using external road
network data to isolate the road surface. ====ADD HERE=====. To identify road mark-
ings, an adaptive threshold is calculated per tile by analysing the shape of the intensity
histogram, allowing the method to adjust to different datasets and acquisition conditions.
The resulting threshold is smoothed to reduce noise and applied to extract high-intensity
points, which are then grouped into clusters and filtered using simple geometric features,
as listed in Table 2.4, to remove those that do not represent road markings.

Table 2.4: Geometric features and formulas as parameters to filter road marks cluster pro-
posed in Heide 2024

Name Formula

Linearity λ1−λ2
λ1

Planarity λ2−λ3
λ1

Sphericity λ3
λ1

Anisotropy λ1−λ3
λ1

Sum of the Eigenvalues ∑3
i=1 λi = λ1 + λ2 + λ3

Change in Curvature λ3
∑3

i=1 λi

The remaining clusters are then converted into line features using Principal Component
Analysis (PCA) and convex hull fitting. The method addresses inconsistencies in marking
direction by identifying and correcting zigzag patterns that arise from misaligned clusters.
It first detects breakpoints in the line segments and compares their orientation to the local
road direction using data from the Dutch National Road Database (NWB). If a segment
deviates by more than a determined value, it is labelled as zigzag and removed. Lastly,
unique identifiers are assigned to the corrected line segments.
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2.3 Evaluation of Automatic Object Extraction Method

The quality of the automatic road marking extraction method used in this research is an
essential factor in evaluating whether extraction accuracy affects point cloud alignment re-
sults. Therefore, this section reviews the methods used to evaluate the quality of automatic
object extraction as a starting point for assessing the accuracy of the automatic road marking
extraction method used in this research.

Heipke et al. 1997 proposed a framework for evaluating automatic road extraction algo-
rithms by comparing the results against manually plotted road lines. Their method involves
two steps: matching the automatically extracted road network to the reference data, and
calculating its quality measure. The matching is done by placing a buffer around the ref-
erence road lines. Any extracted road segments that fall inside this buffer are counted as
correctly matched, or true positives. The process is then repeated in the opposite direction
by placing a buffer around the extracted roads to see which parts of the reference roads
they overlap. This helps to detect false positives, or incorrect extractions, and false negatives
or missed roads. This two-way matching provides a basis for measuring the accuracy and
completeness of the extraction.

Figure 2.5: Matching principle defined in Heipke et al. 1997: a) Matched extraction. b)
Matched reference.

After the matching step, the second part of the method proposed in Heipke et al. 1997 is to
calculate quality measures that evaluate how well the road extraction performed. These mea-
sures include completeness, which tells how much of the reference road data was correctly
found, and correctness, which shows how much of the extracted data is actually correct.
A combined quality score considers both completeness and correctness. In addition, the
Root Mean Square Error (RMSE) is used to quantify the average positional error between the
extracted roads and the reference lines. This helps assess how accurate the extracted road

15



2 Related Works

position is. Together, these metrics provide a quantitative evaluation of the extraction results
and make it comparable to the other automatic road extraction methods.

Gao et al. 2017 presented a method to automatically extract pavement markings from mo-
bile LiDAR data. To evaluate the accuracy of the extraction, they compared each detected
marking to manually labelled reference data using two metrics: correctness and complete-
ness. Correctness was calculated individually for each extracted marking by comparing its
centre position to the centre of the corresponding reference marking. The closer the two
centres were, the higher the correctness score for that marking. The final correctness score
reported for a dataset was obtained by averaging the individual scores across all detected
markings. Completeness was also calculated for each extracted marking by comparing the
area covered by the extracted marking to the area of the corresponding reference marking.
This measured how much of the actual marking was successfully captured. Like correctness,
the final completeness score was the average of all individual completeness scores across the
dataset.

2.4 Point Cloud Co-Registration

Position harmonisation aims to ensure that multi-source point cloud datasets are geomet-
rically consistent, meaning that corresponding features occupy the same relative positions
and align accurately in 3D space within a shared spatial reference (Riofrı́o et al. 2022). A key
process within position harmonisation is co-registration, which is a process to calculate the
roto-translational differences between the dataset to be aligned and the reference, refining
the alignment of two or more point clouds that are already in the same coordinate system.
Therefore, this section will provide a brief overview of the co-registration process.

Methods to align two overlapping datasets have been widely studied over the past decades
(X. Huang et al. 2021; L. Cheng et al. 2018; Fontana et al. 2021; Brightman, L. Fan, and Zhao
2023). The progress has been driven by the challenge of misalignment in overlapping point
cloud data collected using various acquisition techniques across different survey locations.
Research in this area has focused on developing reliable methods for each step of the pro-
cess, including extracting key features from point cloud data, establishing correspondences
between overlapping datasets, and computing roto-translational differences based on these
correspondences (Wu and H. Fan 2016; Shao et al. 2022; Xu et al. 2022).

2.4.1 Feature Extraction

Feature extraction algorithms in point cloud registration are often developed considering
the specific characteristics of the study area, as certain environments contain only particular
types of objects that can be detected or modelled. The following are examples of feature
extraction used for point cloud registration.

In Xu et al. 2022, where the overlapping features are underwater point clouds acquired by
airborne LiDAR bathymetry, it is challenging to identify solid objects on the seafloor that can
serve as key features for registration. Therefore, the study uses the curved lines represent-
ing seafloor topographic features to evaluate the alignment between the two overlapping
point clouds. To extract these curve features, the underwater points are first used to gen-
erate isolines. Then, a cubic parabolic spline curve interpolation is applied to enhance the
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smoothness and continuity of the isolines to enable better correspondence with the matching
curves in the overlapping dataset. Based on this approach, it is assumed that the geometric
quality of the extracted key features may play a significant role in the registration process.
However, this aspect is not explored in detail within the study.

In Shao et al. 2022, the study area is located in a forest environment, where the scene is
mainly composed of trees and contains few ground objects that can be used as key features
for the coarse alignment process. Therefore, the study proposes a method to extract key
points from the shapes of tree canopies. To achieve this, the point cloud data are first pro-
jected onto 2D top-view images to better represent the canopy shapes, then corners with
significant geometric gradient changes on canopy contours are extracted as key features by
determining the connectivity between each point on the curve and its four neighbouring
points. Prior to key point extraction, image filtering is applied to address noise, holes, and
irregular canopy edges caused by the discreteness of LiDAR points. The image filtering pro-
cess conducted is believed to ensure that the extracted key points are reliable and suitable for
use in the alignment process. However, the study does not provide a detailed discussion on
the extent to which reliable key features are required for effective point cloud alignment.

2.4.2 Corresponence Establishment

Correspondence establishment means finding matching features between two overlapping
point clouds. The step is crucial in the co-registration process because it allows the align-
ment of the datasets by estimating how one should be rotated and shifted to match the
other. The type of features used for matching can vary depending on the data and the en-
vironment. Some methods use geometric features like curves or key points, while others
use neighbourhood-based comparisons such as matching by grids. The following examples
show different ways to establish correspondences based on the characteristics of the data
and the size of the misalignment.

To establish correspondences within the overlapping region in Xu et al. 2022, the study
employs the Longest Common Subsequence (LCSS) algorithm in combination with a curve
deformation energy function to identify matching curves between the two point clouds.
This approach demonstrates how extracted curve line features can be effectively utilised to
compute positional differences and support the alignment of overlapping datasets. The key
challenge in this process lies in automatically identifying reliable correspondences when a
significant spatial gap exists between the datasets, which can complicate curve matching,
as illustrated in Figure 2.6. In contrast, when the positional discrepancies are minor and
the misalignment is relatively small, establishing correspondences becomes more straight-
forward and can often be achieved using simpler matching techniques.
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Figure 2.6: Illustration of gap between feature points (Xu et al. 2022)

Unlike the approach in Xu et al. 2022, which addresses significant gaps between overlap-
ping datasets, this method makes use of the relatively small gap between the two datasets
to perform grid analysis to establish correspondences. Due to the small gap between fea-
ture pairs in each correspondence, the method uses a straightforward spatial distance-based
approach to establish correspondences, rather than relying on the computation of feature
descriptors to identify matches. By employing a fixed grid size, it aligns overlapped point
cloud data by assessing the similarity between corresponding points from both datasets and
uses a fixed threshold of similarity to filter out low correspondences as shown in Figure 2.7.
This approach ensures that any horizontal misalignment stays within the predefined grid
boundaries, thereby facilitating the accurate establishment of correspondences.

Figure 2.7: Illustration correspondence establishment approach proposed in Shao et al. 2022.
Yellow grid indicates incorrect correspondence; (a) matched image by gridding, (b) Fil-
tering incorrect correspondence in each cell using a fixed threshold, (c) filtering incorrect
correspondence in each cell using higher threshold value

2.4.3 Computation of Rotation and Translation

The rotation and translation parameters computation between datasets is a fundamental step
in co-registration. The process involves using corresponding features from both datasets to
estimate how one should be rotated and shifted to align with the other. The type of features
used, such as points, lines, or planes, often determines the method used to compute the
transformation, as different feature types require different mathematical approaches. The
following examples explain how rotation and translation are computed.
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One well-known method for estimating rigid transformations using point-based features
is presented in B. K. P. Horn 1987. The method operates on two sets of 3D points that
represent the same object in different positions. Begins by calculating the centroid of each
point set and shifting both sets so that their centroids align at the origin. The method then
compares corresponding points and calculates the optimal rotation using quaternions, which
are commonly used to represent 3D rotations due to their numerical stability. Once the
rotation is determined, the translation is computed as the difference between the centroids
after applying the rotation. Another alternative was proposed in Arun, T. S. Huang, and
Blostein 1987; Umeyama 1991. Instead of quaternions, this method employs a least-squares
formulation and solves it using Singular Value Decomposition (SVD) to find the optimal
rotation. The translation is then derived in a similar way, by comparing the shifted centroids.
The process is illustrated in Figure 2.8.

Figure 2.8: Illustration of transformation value calculation. Orange points are reference,
blue points are target; (a) Untransformed condition. (b) Centroid alignment. (c) Rotation
calculation. (d) Translation calculation.

In Arun, T. S. Huang, and Blostein 1987, the authors describe a method to find the best-
fit transformation between two sets of 3D points using least squares. The objective is to
compute a rigid transformation, comprising a rotation matrix R and a translation vector t,
that best aligns the target dataset to the reference dataset using least-squares. Let P denote
the set of points from the target dataset, and Q denote the corresponding set of points from
the reference dataset. Each pair (pi, qi) is assumed to be a known correspondence. The goal
is to find the rigid transformation such that the transformed target points Rpi + t are as
close as possible to the reference points qi.

This objective is formalised by minimising the sum of squared Euclidean distances between
the transformed target points and the reference points:

min
R,t

N

∑
i=1
∥qi − (Rpi + t)∥2 (2.1)

The process begins by computing the centroids of both point sets:

p̄ =
1
N

N

∑
i=1

pi, q̄ =
1
N

N

∑
i=1

qi (2.2)

Each set is then centralised by subtracting its centroid from all its points:
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p′i = pi − p̄, q′i = qi − q̄ (2.3)

The cross-covariance matrix H between the centralised point sets is computed as:

H =
N

∑
i=1

p′iq
′T
i (2.4)

To solve for the optimal rotation matrix R, the Singular Value Decomposition (SVD) of H is
performed:

H = UΣVT (2.5)

The optimal rotation matrix that minimises the least-squares error is given by:

R = VUT (2.6)

However, if the determinant of R is negative (i.e., det(R) < 0), it indicates a reflection rather
than a proper rotation. In this case, the last column of V is negated to ensure a proper
rotation matrix:

V[:, 3]← −V[:, 3], R = VUT (2.7)

Once the rotation matrix R is computed, the translation vector t is determined by aligning
the centroids:

t = q̄− Rp̄ (2.8)

This results in a rigid transformation (R, t) that can be applied to the target point set P to
bring it into optimal alignment with the reference point set Q.

In practice, point correspondences are often imperfect due to noise, occlusion, or partial
overlap. To refine the alignment and improve accuracy, iterative methods such as Iterative
Closest Point (ICP) are commonly used. This method was first introduced in Besl and McKay
1992 as part of research on estimating the optimal transformation matrix for point cloud
alignment. ICP works by repeatedly updating the point correspondences based on the cur-
rent alignment, then recalculating the transformation that best fits the updated pairs. This
process continues until the changes become negligible, resulting in a more precise alignment
between the point sets. Another widely used iterative method is Random Sample Consen-
sus (RANSAC), which is designed to handle outliers and was first introduced in Fischler and
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Bolles 1987. RANSAC randomly selects small subsets of point pairs to estimate a transfor-
mation, then evaluates how many other points agree with this transformation; these are
referred to as inliers. This process is repeated many times, and the transformation with the
highest number of inliers is selected. By focusing on the most consistent subsets, RANSAC
increases robustness in situations where some correspondences are incorrect or affected by
noise.

Another approach of rotation and translation matrix calculation, but based on plane fea-
tures, is introduced in Wu and H. Fan 2016, who propose a method for aligning airborne
LiDAR datasets using planar roof surfaces instead of individual points. In this method, flat
roof areas are extracted from both datasets and represented by their normal vectors, which
describe the orientation of each roof surface. The rotation is estimated by aligning the nor-
mal vectors of corresponding roof planes using a least squares solution. After rotation, the
translation is computed by comparing the positions of the same planes in both datasets,
specifically focusing on differences in their vertical placement. While this method uses dif-
ferent types of features, it shares the same overall goal of computing a rigid transformation
to align two datasets.

Another feature-based approach is proposed in Habib et al. 2008, which performs strip
adjustment using linear features extracted from the intersections of planar patches. These
features represent consistent structures, such as roof ridges and surface edges, and are iden-
tified semi-automatically. Once corresponding lines are established, differences in their posi-
tions and orientations are used to calculate the transformation parameters required to align
the strips. Specifically, changes in the direction and location of the lines are used to estimate
the translation and rotation in 3D space. Line orientation information plays a critical role
in determining the rotation parameters in this approach; therefore, the method is highly
sensitive to orientation errors and inaccuracies in line angles.

2.5 LiDAR Point Cloud Accuracy Assessment

The term accuracy in LiDAR point cloud data is commonly categorised into two types: abso-
lute and relative (Heide et al. 2024; Donkers 2024). Absolute accuracy refers to the positional
discrepancies between the LiDAR data and its coordinate reference frame, which is repre-
sented by spatial measurements in the real world, commonly known as benchmarks. This
metric reflects the correctness of the data with respect to reality or the actual situation. Rela-
tive accuracy, on the other hand, refers to the spatial agreement between overlapping LiDAR
datasets and is defined by Rijkswaterstaat as a continuous value representing the distance
between datasets acquired from two different measurement setups within the overlapping
area (Heide et al. 2024). Illustration of absolute and relative accuracy shown in Figure 2.10.
To effectively assess these accuracies, researchers develop various strategies that quantify
the quality of the final product.
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Figure 2.9: Absolute and relative accuracy described in Donkers 2024; (a) high accuracy, (b)
low accuracy

2.5.1 Absolute Accuracy

In measuring LiDAR point cloud absolute accuracy. Csanyi and Toth 2007 utilises elevated
disc-shaped targets as benchmarks. These benchmarks are specifically designed, both in
colour and elevation, to be detectable in the point cloud data based on their intensity and
height values. The centre of each benchmark is measured using GPS with centimetre-level
accuracy. This enables the absolute accuracy of the LiDAR data to be assessed by comparing
the coordinates of the benchmark centres derived from the GPS measurements with those ex-
tracted from the LiDAR point cloud. However, this approach requires additional techniques
to accurately measure the benchmark coordinates, such as the use of GPS, which was im-
plemented in this study. This makes the approach more suitable for controlled or planned
surveys, where such equipment and preparation can be arranged in advance.

Another type of benchmark, tested in Donkers 2024. The research uses spherical targets dis-
tributed throughout the measurement area to assess the absolute accuracy of a LiDAR point
cloud. These targets are detectable based on their shape and reflectivity in the intensity
values. The assessment involves extracting the spherical targets from the point cloud, esti-
mating the centres of the spheres, and comparing these coordinates with the corresponding
reference values. The approach enables the centre of the target’s coordinates to be esti-
mated directly from the point cloud data, allowing for the assessment of absolute accuracy.
However, the targets must be placed in the area prior to LiDAR data acquisition, making
this method more suitable for planned surveys than for applications involving previously
acquired datasets.

In addition to artificial targets, building features such as ridge lines are used as benchmarks
to measure the absolute accuracy of point cloud datasets. A ridge line is defined as the hor-
izontal 3D intersection between two sloped roof surfaces with opposing inclinations. Keuris
2024 introduced two approaches for building ridge line extraction: the direct approach and
the indirect approach. The direct approach extracts ridge lines solely from the classified
point cloud data, without prior knowledge of roof geometry. It operates by dividing the
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point cloud into a grid, estimating the slope and orientation of each cell, grouping adjacent
cells with similar characteristics into roof planes, and identifying ridge lines as intersections
between pairs of roof planes with opposing slopes. On the other hand, the indirect approach
extracts ridge lines using predefined roof surface geometries as input. It uses these known
surfaces to directly select nearby points in the point cloud and then re-estimates the two
roof planes. The ridge line is then calculated as the intersection between the refined planes.
There are several ways to compute the distance between lines mentioned in Keuris 2024,
which are: the distance between the centres of the two lines, the projected distance from the
centres of one ridge line to the other, the average distance between the endpoints of the two
lines, the difference in orientation between the two ridge lines.

Figure 2.10: 2D representation of difference calculation between two ridge lines: using the
distance between the centres of the two lines (Keuris 2024)

2.5.2 Relative Accuracy

Various approaches have been developed to assess the accuracy of point cloud data relatively.
In Vosselman 2008, the assessment is performed by extracting ridge line point clouds from
overlapping LiDAR strips and using them as surfaces for comparison. A straight line is fitted
to each ridge in both strips, and the perpendicular distance between the corresponding lines
is calculated. These distances represent the planimetric discrepancies between the strips and
are used to evaluate the relative accuracy of the LiDAR data. However, the method relies on
the presence of buildings, making it unsuitable for point cloud strips that do not contain
building structures.

In Kim et al. 2022, the accuracy between point cloud datasets is measured using amorphous
objects, or objects without clearly defined shape or form, such as trees and bushes, as the
basis for comparison. Isolated objects are extracted from the point clouds, and an optimi-
sation algorithm is applied to measure the positional differences between each segmented
object and its corresponding match in the other dataset. However, since the objects used in
the test are trees and bushes, which are sensitive to shape changes over time due to growth
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or pruning, this method works best when both point cloud datasets are acquired within a
short time interval.

Another approach is proposed in Donkers 2024, which assesses relative accuracy by extract-
ing surfaces within overlapping regions, fitting a plane to each surface, and then comparing
these planes with corresponding points at the same locations to measure the distances be-
tween the points and the fitted planes. In this approach, it is important to carefully select
the region to ensure a valid assessment using this approach, as overly noisy areas can neg-
atively affect the accuracy of the plane fitting. However, this method is tested in relatively
small areas. In larger and more complex environments, such as urban areas where point
cloud data can vary a lot due to diverse terrain and surface features, fitting a single plane
to an entire region may result in high fitting errors and reduce the reliability of the accuracy
assessment.

Another approach to measuring relative accuracy is through Digital Terrain Model (DTM)
differencing, as demonstrated in Salach et al. 2018. This method involves filtering ground
points from both the target and reference point clouds and converting them into rasterised
DTMs. The target DTM is then subtracted from the target DTM to generate a difference raster,
where each pixel represents the elevation error between the two datasets. This approach
produces a large number of elevation differences that can be statistically analysed to provide
a more robust estimate of relative accuracy. However, it assumes that horizontal errors are
minimal and are effectively reduced by averaging elevations within each pixel, provided that
the pixel size is larger than the expected horizontal error.
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This chapter will discuss the proposed methodology of the research to achieve the research
objective defined in Chapter 1 and based on the related works reviewed in Chapter 2. The
main workflow proposed in this research is illustrated in Figure 3.1.

Figure 3.1: Workflow proposed in this research

The methodology of this research is structured around the use of road markings as bench-
marks for the co-registration of heterogeneous LiDAR datasets. This study utilises point
cloud datasets acquired from different sources and time periods, as described in Section 3.2.
The process begins with the extraction of road markings from the selected datasets using
the method proposed in Heide 2024. In parallel, manual digitisation of road markings is
performed on the same datasets to create reference features, as detailed in Section 3.4. These
manually digitised road markings serve as a reference to assess the geometric quality of the
automatically extracted features, as explained in Section 3.5.
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The RANSAC inlier voting approach is used to establish correspondences, where consistent
matches between road markings across datasets are identified through repeated sampling.
The process begins with an initial nearest neighbour search based on the 3D centroids of
road markings within a defined spatial threshold, followed by an inlier-counting strategy
to identify geometrically stable correspondences, which are described in Section 3.6. These
correspondences are then used to estimate the rigid transformation parameters required
for co-registration using the RANSAC-weighted centroid alignment, where each correspon-
dence is weighted according to its inlier count described in Section 3.7.

In the final step of this research, the alignment results are compared to assess how the
quality of road marking extraction affects co-registration accuracy. Alignments using auto-
matically extracted road markings are compared with those using manually digitised ones,
which serve as the reference. In addition, comparisons across different alignment time gaps
are carried out to evaluate how well road markings perform as benchmarks over varying
temporal differences.

3.1 Study Case

To provide a clearer focus for the research, a case study is conducted on aligning the Pro-
Rail–Spoorinbeeld point cloud with AHN data. The ProRail-Spoorinbeeld dataset is a digital
twin of the Dutch railway network, capturing the condition of the railway and its surround-
ings, approximately 50 metres to the left and right, in multiple epochs. The dataset is part of
the public point cloud inventory managed under the IHN project (Heide et al. 2024), making
it a relevant subject of study. However, several sections of the railway data are located in
areas isolated from buildings, where only highways and limited built structures are present
3.2. These conditions make such locations ideal for testing the potential of road mark-
ings along highways as alternative benchmarks, particularly in environments with minimal
building coverage.

Figure 3.2: Isolated Prorail-Spoorinbeeld point cloud data, red lines show the boundary of
the data
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3.2 Data Description

This research uses multi-source point cloud datasets acquired from different platforms and
time periods. The datasets originate from three different sources. The first is railway point
cloud data provided by ProRail through the SpoorInBeeld project as open-access data. The
second is the national elevation dataset of the Netherlands, provided by the AHN project,
also as open-access data. The third is highway point cloud data provided exclusively for this
research by Rijkswaterstaat.

3.2.1 ProRail’s SpoorInBeeld

ProRail is the organisation responsible for managing and maintaining the Dutch railway
network. Its core responsibilities include ensuring the safe and timely transport of passen-
gers and goods, maintaining railway infrastructure, and coordinating with rail carriers and
contractors ProRail 2024. As part of its efforts to support infrastructure monitoring and
planning, ProRail provides access to spatial data through the SpoorInBeeld platform ProRail
SpoorInBeeld 2024. This platform offers a variety of visual and geospatial datasets related
to the railway and its surroundings, including aerial imagery, panoramic photographs, and
laser point clouds, which are valuable for analysis, visualisation, and innovation in railway
management.

Among the available datasets, the laser point clouds from the SpoorInBeeld programme
cover large parts of the Dutch railway network and nearby areas. These data were collected
using LiDAR systems mounted on helicopters, trains, and ground equipment between 2018
and 2022. The point clouds have been checked for both positional accuracy and the avail-
ability of intensity information. The positional accuracy is less than 12 cm absolute and
less than 6 cm relative, based on the Dutch national coordinate system (RD/NAP) Heide
et al. 2024. This dataset is listed in the national overview of point clouds created as part
of the Integral Height Facility Netherlands (IHN) project, where it is included as one of the
point cloud sources being studied and integrated Heide et al. 2024. As such, the ProRail
dataset is relevant not only for railway maintenance but also for research on the alignment
of multi-source point cloud data.

3.2.2 Actueel Hoogtebestand Nederland (AHN)

The Actueel Hoogtebestand Nederland (AHN) is a national programme that provides de-
tailed and accurate elevation data for the entire Netherlands. It is a collaboration between
water boards, provinces, and Rijkswaterstaat, aimed at supporting water system and de-
fence management AHN 2024. AHN data are collected using airborne laser scanning and
are made publicly available as open data. To facilitate access to these datasets, AHN offers
a platform known as the AHN Data Room, where users can download various versions of
the dataset, including ground and surface models in raster format and raw point clouds in
LAZ format AHN Dataroom 2024. Given the large volume of data, the GeoTiles platform
was developed to improve accessibility and usability by dividing the dataset into smaller,
manageable tiles. GeoTiles provides a consistent tiling structure and map-based access to
AHN products, allowing researchers and practitioners to efficiently view and download
data relevant to their area of interest GeoTiles.nl 2024.
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The AHN dataset is available in multiple versions, including AHN2 through AHN5, each
collected in phases across defined geographical plots. The point clouds are referenced to the
national RD/NAP coordinate system and are typically delivered in LAZ format. Depending
on the version, the point density ranges from approximately 6 to over 10 points per square
metre, with vertical accuracy requirements improving over time, up to 3 cm stochastic error
in AHN5 Heide et al. 2024. In addition to being a widely used national elevation source,
AHN is included in the national inventory of point clouds compiled under the Integral
Height Facility Netherlands (IHN) project, which supports harmonisation of heterogeneous
point cloud data across the country Heide et al. 2024. Given its high accuracy and nation-
wide coverage, AHN serves as a valuable reference dataset in this research for evaluating
and aligning LiDAR data from other sources.

3.2.3 Rijkswaterstaat Point Clouds Datasets

Rijkswaterstaat is the executive agency of the Dutch Ministry of Infrastructure and Water
Management. It is responsible for the design, construction, management, and maintenance
of the Netherlands’ main infrastructure networks, including national roads, waterways, and
water systems. The agency plays a key role in ensuring safe and efficient mobility, manag-
ing water levels, and protecting the country against flooding Rijkswaterstaat n.d. Through
its work, Rijkswaterstaat supports a sustainable, accessible, and climate-resilient living en-
vironment across the Netherlands.

Rijkswaterstaat actively uses point cloud data to support a variety of infrastructure-related
tasks, including the creation of DTM, drive-through visualisations, tunnel modelling, and the
maintenance of the digital topographical file (Digitaal Topografisch Bestand). These datasets
are typically acquired through project-based data collection, particularly for large-scale road-
works, and are subject to different quality requirements depending on the intended applica-
tion and environmental context (e.g. dry or wet conditions). Required accuracies generally
range from 2 to 15 centimetres, depending on the object type and location Heide et al. 2024.
Point cloud data is an important part of Rijkswaterstaat’s 3D geodata system, which helps
ensure consistent use of spatial data across the organisation. For this reason, point clouds
collected or managed by Rijkswaterstaat are also listed in the national point cloud inventory
under the Integral Height Facility Netherlands (IHN) project.

3.2.4 Study Area

In Section 3.1, a case is proposed to simulate the condition where road marking is used as
an alternative benchmark to check the alignment and to co-register the railway point cloud
with AHN point cloud data. To better align with the proposed case, this study focuses on
a location south of the village of Terschuur, in the municipality of Barneveld, province of
Gelderland.

The area was chosen due to the availability of high-resolution point cloud data collected
by ProRail as part of the SpoorInBeeld project, which typically covers a corridor extending
approximately 50 metres on either side of the railway (see yellow line in Figure 3.5). In
this specific location, a highway runs parallel to the railway and lies entirely within the
buffer zone of the dataset (see red line in Figure 3.5). As a result, a substantial number
of road markings on the highway are captured in the point cloud. These road markings
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provide a consistent and well-distributed set of features that can potentially be used to assess
alignment accuracy and co-register the railway dataset with other point clouds, particularly
in areas where the presence of buildings is limited.

Figure 3.3: Area of interest

The ProRail SpoorInBeeld point cloud data were downloaded from ProRail SpoorInBeeld
2024 in March 2025. Several datasets acquired using different platforms are available via
the portal, including helicopter-, vehicle-, and tripod-based LiDAR, collected across multiple
epochs. However, at the time of download and area selection, only point cloud data ac-
quired by helicopter in the years 2019, 2021, and 2023 were available. These datasets include
intensity information, which is essential for the extraction of road markings. In terms of
classification, each dataset contains only two classes: railway and non-railway.

AHN point cloud data are used as reference data to assess alignment and to do the co-
registration. The AHN versions used in this research are AHN3, AHN4, and AHN5, which
were downloaded per AHN sub-grid via the GeoTiles platform and downloaded in March
2025. To identify which grids needed to be downloaded, an Area Of Interest (AOI) polygon,
digitised from the boundary of the downloaded ProRail point cloud, was overlaid with the
AHN grid layout to determine which grids the AOI intersected. This resulted in the selection
of grids 32EZ1 19 and 32EZ1 20, which were subsequently downloaded and clipped using
the AOI polygon. The AHN point clouds include intensity values, allowing them to be
used for automatic road marking extraction. Unlike the ProRail datasets, the AHN data
are classified into six categories: ground, building, works of art, water, high voltage, and
other.

All point clouds used in this research are provided in the Dutch national coordinate reference
system (RD New / EPSG:28992). While they share a common spatial reference, the datasets
vary in both intensity value ranges and point density. The intensity range of each dataset was
examined in CloudCompare using the scalar field visualisation of intensity values. To assess
point density, the local surface density was computed in CloudCompare using the “Compute
Geometric Features” tool, with a spherical neighbourhood radius set to one metre. This
calculation provides an estimate of the average number of points per square metre for each
point cloud. The resulting intensity ranges and average density values for all datasets used
in this study are summarised in Table 3.1.
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Table 3.1: Intensity range and point density of the datasets used in this research

Dataset Year
Mean Density (points/m²)

Intensity Range
Inside AOI Road Only

ProRail SpoorInBeeld 2019 66 70 45,000 ∼ 55,000

ProRail SpoorInBeeld 2021 134 144 25,000 ∼ 40,000

ProRail SpoorInBeeld 2023 155 170 27,000 ∼ 36,000

AHN3 2018 10 10 110 ∼ 380

AHN4 2020-2022 23 24 1100 ∼ 1,500

AHN5 2023 17 17 1230 ∼ 4,400

The density values and intensity ranges listed in Table 3.1 were calculated specifically for
the point cloud data within the defined AOI used in this study. The density represents the
average number of points per square metre within the AOI, rather than across the entire
dataset extent. Similarly, the reported intensity range corresponds to the minimum and
maximum intensity values of road markings observed in the AOI. This local calculation
makes sure that the values shown in the table match the actual point cloud data used for
road marking extraction and alignment in this study.

Calculation of Mean Density

There are two types of density values presented in Table 3.1. The values in the ”Inside AOI”
column represent the density calculated from all points within the research AOI, including
all classes available in the point cloud data. In contrast, the ”Road Only” density refers to the
density calculated exclusively from points representing the road surface, specifically those
classified as ground, where the road markings are located. This differentiation ensures that
the density values more accurately reflect the environment relevant to the road markings

To calculate the point cloud density, density rasters were first generated using the ”Point
Cloud Extraction - Density” tool from the PDAL library in QGIS. After creating the density
rasters, they were converted into vector polygons using the ”Polygonize” tool in QGIS, where
each polygon represents a cell with a corresponding density value. The mean density was
then computed by averaging the values of all polygons.

Figure 3.4: Illustration of density calculation. (a) Density raster of the point cloud. (b)
Polygonized density raster.
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Determination of Intensity Range

The intensity ranges shown in Table 3.1 represent the range of road marking intensities that
were manually filtered using the intensity display settings in CloudCompare. This selection
was performed manually by adjusting the minimum and maximum intensity values based
on the visual appearance of the point cloud. As a result, the selected ranges are subjective.
However, they are useful for illustrating the variation in intensity range values across the
different point cloud datasets used in this research

Figure 3.5: Illustration of intensity range determination. (a) Manual adjustment of intensity
range. (b) Displayed point cloud.

3.3 Automatic Extraction of Road Markings

In this research, road marking data were provided by Rijkswaterstaat, who performed the
extraction using the method proposed in Heide 2024. This method is designed to work
with LiDAR point cloud that contains intensity information, regardless of whether it was
acquired through airborne, mobile, or terrestrial laser scanning. It applies an adaptive in-
tensity threshold approach that adjusts locally to differences in intensity range across the
dataset. This is particularly useful to extract benchmarks for co-registration, where over-
lapping point clouds may come from different sensors or acquisition settings and therefore
have varying intensity ranges. By using intensity as the main input feature, the method is
able to detect linear road marking features consistently without relying on RGB imagery or
converting the point cloud into raster format.

Since the extraction process was conducted externally and lies outside the scope of this
study, only the resulting road marking features were used as input for the co-registration
workflow. A brief summary of the method is included in the related work Section 2.2 for
reference. However, this research contributes to finding the threshold values of geometric
properties used to describe road marking clusters. In particular, the method proposed in
Heide 2024 applies minimum and maximum threshold values to shape descriptors, derived
from the eigenvalues of the local neighbourhood, such as linearity, planarity, sphericity,
anisotropy, the sum of eigenvalues, and change in curvature (see Table 2.4). These thresholds
are used to filter out clusters that do not have the typical geometric characteristics of road
markings, helping to distinguish them from other high-intensity objects in the point cloud.
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The workflow to compute the road marking clusters geometry features threshold is shown
in Figure 3.6

Figure 3.6: Workflow to compute road marking clusters geometry features threshold

To calculate the threshold values of the road marking clusters’ geometric features, approx-
imately 100 road markings were manually segmented from the AHN3, AHN4, and AHN5
datasets, covering various locations across the Netherlands. The AHN datasets were chosen
as the baseline for calculating the geometric feature thresholds of road marking clusters be-
cause they serve as the reference datasets in the co-registration process. Since other point
cloud datasets (e.g., from SpoorInBeeld) are aligned to AHN, it is important that the defini-
tion of road marking geometry is consistent with the characteristics present in AHN data.

Given the large number of road markings available throughout the Netherlands, select-
ing samples for segmentation can be challenging. To ensure a representative and evenly
distributed sample, approximately 60 points were randomly placed across the country as
starting locations, as illustrated in Figure 3.7. Around each of these points, one to three
road markings from either the AHN3, AHN4, or AHN5 datasets were selected for manual
segmentation.

Figure 3.7: Locations used to choose road marking examples
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The sampling locations were distributed across the entire Netherlands to ensure that the se-
lected road markings represent a wide range of geographic, environmental, and acquisition
conditions. Since AHN datasets are collected over multiple years and regions using differ-
ent flight paths and sensors, road markings may vary in appearance, intensity, and point
density. By distributing the sample locations across the country and incorporating three
different AHN versions (AHN3, AHN4, and AHN5), the resulting threshold values for geo-
metric features are expected to be more generalisable and robust across varying regions and
dataset versions.

After the random points were distributed, it was necessary to identify which sub-grids from
GeoTiles.nl 2024 each point falls into, in order to simplify the navigation and download
of the relevant data. To achieve this, the sub-grid shapefile data from GeoTiles.nl 2024 is
downloaded and overlaid with the sample points as illustrated in Figure 3.8, making it
easier to determine the correct sub-grid names for downloading the corresponding point
cloud datasets.

Figure 3.8: GeoTiles.nl grid showing the road marking sample locations used to select the
point cloud data

The road markings to be segmented were randomly selected around a set of randomly
placed points and extracted from the AHN3, AHN4, and AHN5 datasets. The segmentation
was done manually in CloudCompare using the “Segment” tool, and all segmented files
were saved in a single folder to allow automatic processing using a Python script. These
segments were used as input to calculate six geometry features for each road marking clus-
ter.
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Figure 3.9: Illustration of road marking segmentation in CloudCompare, yellow polygon
used to select the points inside the polygon then segment it as a new dataset

As illustrated in Figure 3.9, the segmentation process is performed by manually drawing
a polygon around the points, using the intensity values for visual guidance. The polygon
is drawn to enclose points that indicate high intensity, represented in this case by bright
green colouring. However, during the polygon drawing process, some low-intensity points,
possibly corresponding to pavement surfaces, may still be included within the segment.
These points could influence the computed geometry feature values of the cluster.

To further refine the segmented road marking clusters and reduce the influence of unwanted
points, such as low-intensity pavement points accidentally included during manual segmen-
tation, a z-score filtering method was applied to the intensity values of each segmented point
cloud. This statistical approach, commonly used in outlier detection (Benallal et al. 2022),
calculates how far each intensity value deviates from the mean in terms of standard devi-
ation, allowing the identification and removal of non-representative points. In this context,
points with unusually low intensity are excluded, while high-intensity points, which are
more typical of road marking materials, are retained.

To achieve this, each intensity value x is converted into a standardised z-score using the
following formula:

z =
x− µ

σ
(3.1)

where µ is the mean and σ is the standard deviation of all intensity values within the seg-
ment.

Points are retained for further processing if they satisfy the following condition:

z ≥ zthreshold (3.2)

In this study, the value of zthreshold was determined by manually testing several threshold
values on a sample road marking segment. A value of -1.5 was selected based on tests
conducted on sample segment ”RM 21”, as presented in Section 5.2. This relatively low
threshold allows a larger number of points to be retained, including those with moderately
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high intensity. The reason for retaining a larger portion of points in each segment is that,
during the segmentation process, the polygon used to segment the road markings was drawn
as small as possible to keep only high-intensity points, with the assumption that most points
inside the polygon truly belong to the road marking. As a result, using a very low z-score
threshold helps to remove only the few points with very low intensity that were accidentally
included.

The 3D coordinates of these filtered points are then used to calculate a covariance matrix,
which shows how the points are spread in space. From this matrix, eigenvalue decompo-
sition is applied using the NumPy package (Harris et al. 2020) to obtain three eigenvalues,
which represent how the points vary along different directions. These eigenvalues are then
used to compute six geometry features: linearity, planarity, sphericity, anisotropy, sum of
eigenvalues, and curvature, as shown in Table 2.4. All feature values from the samples are
collected for further analysis.

After the geometry features are calculated, statistical filtering is applied to determine reliable
threshold values for each feature. This is done using the Interquartile Range (IQR) filtering
method, which removes outliers by keeping only the values that fall within a reasonable
range around the central portion of the data (Dekking et al. 2005).

The IQR is defined as:

IQR = Q3 −Q1 (3.3)

where Q1 and Q3 are the first and third quartiles, respectively.

Values are retained if they fall within the following range:

[Q1 − 1.5 · IQR, Q3 + 1.5 · IQR] (3.4)

The filtered feature values are then used to determine the minimum and maximum range
for each geometry feature. Table 3.2 presents the minimum and maximum values of each
geometric feature after the IQR filtering. These ranges are considered the adjusted thresholds
and are intended to better represent typical road marking characteristics. They can later be
used to help distinguish road marking clusters from other objects in different point cloud
datasets during the co-registration process.

Table 3.2: Minimum and maximum values of each geometric feature after IQR filtering

Name Min Value Max Value

Linearity 0.9265 0.9990

Planarity 0.0009 0.0732

Sphericity 0.0000 0.0011

Anisotropy 0.9989 1.0000

Sum of eigenvalues 0.0362 1.2091

Change in curvature 0.0000 0.0011
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3.4 Manual Digitisation of Road Markings

To evaluate the quality of automatically extracted road markings, a reliable reference dataset
is required. The reference road markings data were created through manual digitisation
of road markings directly from the point cloud datasets. This process involves visually
identifying the road marking features, using their higher intensity values relative to the
surrounding points as a cue. The manually digitised road markings serve as a benchmark
for assessing the quality of the road marking extraction. By comparing the extracted data
to this reference, it becomes possible to quantify the performance of the extraction method
and evaluate the accuracy of the extracted road marking model, thereby providing insights
into how variations in road marking quality may affect subsequent co-registration accuracy.
To achieve a comparable intensity value range when displaying road marking points, in
line with the automatic extraction method proposed in Heide 2024, the road points are
first segmented, followed by ground filtering to remove noise. The workflow followed for
reference road markings creation is illustrated in Figure 3.10.

Figure 3.10: Workflow to generate reference road markings

The first step involves segmenting the road points from the rest of the point cloud. This is
done to ensure that the intensity value range used for visualisation includes only the points
within the road corridor where road markings are expected to be located. By limiting the
data to road areas, objects outside the corridor that have high-intensity values, such as the
unidentifiable object shown in Figure 3.11, can be excluded. These non-road objects may
otherwise interfere with the road marking digitisation process.
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Figure 3.11: Unidentified object with high intensity value outside road corridor

Figure 3.12: Histogram of intensity values of point cloud dataset in Figure 3.11

The next step involves removing noise and objects other than the road pavement from the
point cloud. While the AHN data already includes classification for cars and noise on the
road, the ProRail point cloud only distinguishes between railway and non-railway points.
As a result, vehicles on the road are still present in the dataset, as illustrated in Figure 3.13.
Therefore, ground classification must be performed to isolate the road surface. The ground
classification to remove unwanted objects on the road corridor is done in CloudCompare
using Cloth Simulation Filter (CSF) plugin by Zhang et al. 2016.
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Figure 3.13: Detected cars on the road corridor

Figure 3.14: Histogram of intensity values of point cloud dataset in Figure 3.13

After the road points have been segmented and ground classified, it is assumed that the
intensity range in the point cloud used for manual digitisation is comparable to that used in
the automatic road marking extraction. The process allows the manual digitisation to closely
reflect the conditions under which the automatic method operates, making it suitable as a
reference for evaluation.

Since the digitisation of road markings is performed using a 2D view, additional processing
is required to assign height information to each digitised line. To address this, the previously
ground-filtered points are rasterised into a DTM, which is then overlaid with the digitised
road markings to transfer elevation values from the DTM to each line. The rasterisation of
the ground-classified road point cloud is carried out in CloudCompare using the ”Rasterize”
tool. The result is shown in Figure 3.15
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Figure 3.15: Generated digital terrain model

To assign elevation values from the DTM to the digitised 2D road marking lines, each line
is first simplified by converting it into two points representing its start and end positions.
These two points are then used to sample elevation values from the DTM raster, where
each point retrieves the ground height from the corresponding raster pixel beneath it. The
sampled elevation values are then assigned to the start and end points of the line, allowing
the reconstruction of a 3D line with height and slope information. This results in 3D lines
that are comparable to the extracted 3D lines produced by the automatic road marking
extraction.

3.5 Extraction Quality Measurement

To evaluate the quality of the extracted road markings, a comparison is made between the
automatically extracted features and the manually digitised road markings. This evaluation
consists of two parts: detection accuracy metrics and geometric comparisons. The first part
assesses whether the right road markings are found, missed, or wrongly included. The
second part evaluates how precisely the shape and position of the automatically extracted
road markings match the manual digitised road markings. Together, these assessments help
determine whether the extracted features are suitable for use as benchmarks in point cloud
co-registration.

3.5.1 Detection Accuracy

Detection accuracy metrics focus on how well the algorithm performs in identifying road
markings. The use of these metrics in this research is inspired by established practices in
automatic feature extraction, where similar metrics have been applied to evaluate road ex-
traction performance from aerial imagery Heipke et al. 1997. These metrics indicate how
many features were correctly detected, how many were missed, and how many were incor-
rectly extracted. Rather than serving as an absolute measure of accuracy, they are used to
compare the performance of the road marking extraction method across different datasets.
This relative evaluation helps assess whether the method is robust and consistent when ap-
plied to point clouds from varying sources or acquisition conditions. Additionally, applying
these metrics makes it possible to explore whether the completeness, correctness, and overall
quality of the extraction method influence the accuracy of the co-registration process.

This assessment is based on three common outcomes: true positives (TP), false positives
(FP), and false negatives (FN). A true positive (TP) refers to a road marking that is correctly
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detected by the algorithm and also exists in the reference road markings. A false positive
(FP) is a feature that is incorrectly identified as a road marking but is not present in the
reference road markings, for example, duplicated detections of the same marking or other
high-intensity objects mistakenly classified as road markings. A false negative (FN) occurs
when a true road marking is present in the reference road markings but is not detected by
the extraction method.

Figure 3.16: Road markings detection cases. Blue lines represent manually digitised road
markings, red lines represent automatically extracted road markings: (a) True positive
(TP). (b) False positive (FP). (c) False Negative (FN).

To quantify these outcomes, the comparison is based on the spatial proximity of road mark-
ing centroids. First, the centroid of each road marking is computed for both the manually
digitised and the automatically extracted road markings. A nearest neighbour search is then
performed from each manually digitised road marking’s centroid to the centroids of the
automatically extracted road markings, with a search radius. If a corresponding extracted
road marking is found within the range, it is considered a true positive (TP). Any extracted
road marking that has already been matched to a manually digitised road mark is marked
as part of a correct detection. Extracted segments that do not correspond to any manually
digitised road mark (i.e., not paired in the matching process) are considered false positives
(FP). On the other hand, if a manually digitised centroid does not have any nearby extracted
counterpart within the defined range, it is counted as a false negative (FN). Cases of road
marking detection are illustrated in Figure 3.16

Based on these categories, three evaluation metrics are calculated: completeness, correctness,
and quality. Completeness measures how many of the actual road markings in the manually
digitised road markings were successfully identified. It is calculated as:

Completeness =
TP

TP + FN
(3.5)

Correctness shows the proportion of extracted road markings that are actually correct. It is
calculated as:

Correctness =
TP

TP + FP
(3.6)
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Quality provides an overall score by combining both missed detections and incorrect extrac-
tions. It is defined as:

Quality =
TP

TP + FP + FN
(3.7)

These three metrics are used to compare how well the road marking extraction method
works with different types of input data, such as changes in point density or intensity range.
The goal is to see if the method gives consistent results under different conditions. The ex-
traction accuracy values are then used in the final evaluation to help explain any differences
in the alignment results.

3.5.2 Line Extraction Accuracy

While the detection accuracy metrics show whether the correct road markings are detected,
they do not measure how accurate the extracted features are in terms of shape, position,
or orientation. Since the road markings are extracted as line features for co-registration,
their spatial accuracy may also affect the final alignment. To investigate this, an evaluation
is carried out to measure how accurately the road markings are modelled and to explore
whether their spatial accuracy plays a role in influencing the accuracy of the co-registration
process. To address this, a geometric comparison is carried out to assess how closely the
extracted road markings match the manually extracted road markings.

Three aspects are considered as parameters for measuring the accuracy of the extracted line
features: length, centroid position, and orientation. The length error measures the difference
in segment length between the extracted and reference lines. The position error is calculated
by comparing the 3D coordinates of the midpoints of each segment, providing insight into
any spatial shifts. For orientation, the accuracy is evaluated in two components: the hori-
zontal angle error, which captures the difference in direction within the x–y plane, and the
vertical angle error, which reflects slope differences based on elevation values derived from
the DTM. The illustration of these aspects is shown in Figure 3.17

Figure 3.17: Aspects for evaluating line accuracy. Blue lines represented manually digitised
lines, red lines represented automatically extracted lines. (a) Top view. (b) Side view
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3.6 Correspondence Establishment

After evaluating the quality and geometric accuracy of the extracted road markings, the
next step is to establish correspondences between features in different point cloud datasets.
In this research, road markings are used as the benchmark to align datasets captured from
different sources or at different times. To perform co-registration, it is necessary to identify
matching pairs of road markings between the reference and target datasets.

The process begins by calculating the 3D centroid of each road marking segment in both
datasets. Each road marking is modelled as a 3D line segment with two endpoints. The
centroid of a line is calculated as the average of its start and end point coordinates:

C =

(
x1 + x2

2
,

y1 + y2

2
,

z1 + z2

2

)
(3.8)

where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the start and end points of the line
segment, and C is the centroid of the line.

A nearest neighbour search is then performed to identify potential correspondences, where
each road marking centroid in the reference dataset is matched to its closest road mark-
ing centroid in the target dataset, using a defined maximum search distance to avoid false
matches. This distance threshold is chosen based on how far apart the same road markings
might appear in the two datasets before they are aligned. The illustration of correspondence
finding shown in Figure 3.20

Figure 3.18: Correspondence finding. Blue lines are reference road markings, red lines are
target road markings, grey lines are removed road markings. (a) Before calculation. (b)
After calculation.

The distance threshold in the nearest neighbour search is used to filter an initial set of can-
didate correspondences based on spatial proximity between road marking centroids. At this
stage, the goal is not to identify precise matches, but to include all possible correspondences
that could later be verified through later filtering step. Therefore, the threshold should be
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wide enough to account for expected positional differences between datasets, while still
excluding clearly unrelated features.

Only pairs that fall within this distance threshold are retained as candidate correspondences.
These pairs are later used as input in the RANSAC-based alignment process, where their geo-
metric consistency is evaluated across multiple transformation estimations. In each RANSAC
iteration, a small subset of candidate pairs is randomly selected to compute a rigid transfor-
mation.

Figure 3.19: Illustration of alignment during a RANSAC-based iteration. Blue lines represent
road markings in the reference dataset, red lines represent road markings in the target
dataset, and yellow-circled pairs are the subset of correspondences used to estimate the
transformation between the two datasets

In each RANSAC iteration, after estimating the transformation using a randomly selected
subset of correspondence pairs, the remaining candidate correspondences are evaluated to
determine whether they qualify as inliers. This is done by applying the estimated trans-
formation to the target dataset and then measuring the distance between each transformed
target centroid and its corresponding reference centroid. If the centroid-to-centroid distance
falls within a predefined tolerance, the pair is considered an inlier for that iteration. This
threshold is set smaller than the initial nearest neighbour threshold to further filter the can-
didate correspondences and identify those that align closely after transformation.

Figure 3.20: Illustration of RANSAC inliers evaluation. Blue lines represent road markings
in the reference dataset, red lines represent road markings in the target dataset, and green-
circled pairs are counted as inliers, red-circled pairs are counted as non-inliers

In this research, the distance threshold used to determine whether a correspondence is con-
sidered an inlier is set to 11.2 centimetres. This value is based on the official accuracy
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specifications published in the IHN’s work package 1 report (Heide et al. 2024), which men-
tioned the expected measurement accuracy for different types of features in Dutch point
cloud datasets. Road markings fall under the category of hard topography, which includes
clearly defined objects such as road lines. For this category, the specified absolute accuracy
is 5 cm in the horizontal direction and 10 cm in the vertical direction. These values are
combined into a single 3D positional tolerance using the root sum of squares:

inlier distance threshold =
√

52 + 102 = 11.2 cm (3.9)

This threshold is used during the RANSAC process to check whether a transformed pair
of road markings can be considered an inlier. However, this value is based on the expected
accuracy of a single dataset, while the RANSAC method compares features from two different
datasets. As a result, the actual alignment error could be larger. Even though it’s like that,
this threshold provides a consistent and practical reference derived from national standards,
and is applied here to help filter out unreliable correspondences.

The process of inliers counting are illustrated in Figure 3.21. In this example, the inlier count
is treated as an attribute associated with each road marking. Whenever a pair is classified
as an inlier in a given iteration, it receives a plus 1 increment in its inlier count attribute.
As shown in the figure, RM7, RM8, and RM9 are the only pairs that were considered inliers
during the current iteration, each receiving a plus 1 update. The rest of the pairs remain
unchanged, with an inlier count of plus 0, meaning they did not support the transformation
in that iteration.

Figure 3.21: Example of inlier counting in a single RANSAC iteration

Figure 3.22 shows the example of result attribute table after completing 1000 RANSAC iter-
ations. This table reflects the final accumulated inlier count values for each road marking.
These values indicate how consistently each correspondence supported the estimated trans-
formations throughout the alignment process. Pairs such as RM1, RM3, RM4, RM6, RM8,
and RM9 have high inlier counts, suggesting that they are geometrically stable and reliable.
In contrast, pairs like RM2, RM5, and RM7 have low inlier counts and are considered less
stable, as they rarely contributed to valid transformations. This information can be used
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to identify and filter out unstable correspondences before estimating the final transforma-
tion.

Figure 3.22: Example of accumulated inlier counts after 1000 RANSAC iterations. Red-
circled pairs are pairs that considered to be unstable

A pair of road markings is considered geometrically stable if it aligns well with the trans-
formation in many RANSAC iterations. A high inlier count means the pair frequently fits the
estimated transformation, and it is assumed that the road markings constructing the pair
are well-extracted. On the other hand, a low inlier count may indicate small errors in the
feature, such as a 3D centroid error. The approach is used to help filter out road markings
with low extraction quality. The underlying assumption is that if a road marking is not ac-
curately extracted, either in the reference or target point cloud, it will not align well during
the transformation in a RANSAC iteration and will therefore be less likely to be counted as
an inlier.

However, the inlier count is only an indirect way to assess feature quality. A high count does
not always mean that the features in the pair have been accurately extracted. It could also
occur if both features have similar centroid shifts in magnitude and direction. Although like
that, the inlier count remains useful for identifying correspondences that are less reliable
and may be affected by extraction errors that impact the alignment.

3.7 Rotation and Translation Values Calculation

Once the correspondences between road marking line features have been established, the
next step is to compute the transformation matrix required to align the target dataset to the
reference. This transformation consists of a rigid 3D motion, including both rotation and
translation, and is estimated based on the geometric differences between the matched line
segments.

This research applies a RANSAC-weighted centroid alignment method, which extends the
least-squares approach introduced in Umeyama 1991. In this method, each road marking
is represented by its 3D centroid, and a weight is assigned to each matched pair based on
its inlier count recorded during the correspondence establishment phase. The inlier count
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for each pair is normalised by the total number of RANSAC iterations to produce a relative
weight:

wi =
ci
T

(3.10)

where ci is the inlier count for the i-th pair, and T is the total number of RANSAC itera-
tions. This produces a relative weight wi ∈ [0, 1], which reflects how consistently a pair
supports the alignment transformation. Pairs with higher weights have more influence in
the calculation of the transformation matrix, while those with low weights contribute less.

With these weights defined, the transformation calculation proceeds by incorporating them
into the standard least-squares. Instead of using simple averages to compute the centroids,
as done in the original formulation shown in Equation 2.2, the centroids of the matched
pairs are now calculated using a weighted average. This means that pairs with higher
weights have more influence on the final centroid values.

The weighted centroids are computed as:

p̄ =
N

∑
i=1

wipi, q̄ =
N

∑
i=1

wiqi (3.11)

Following the computation of the weighted centroids, the next step is to calculate the
weighted cross-covariance matrix. This matrix describes how the positions of the reference
and target centroids relate to each other after they’ve both been shifted so their average po-
sition is at the centre. In the weighted version, each pair contributes to the covariance matrix
according to its assigned weight, so that pairs with higher weights influence the estimated
transformation more than those with lower weights. This step is a modified version of the
original cross-covariance calculation in Equation 2.4, where the formula is adjusted so that
each matched pair contributes based on its assigned weight.

The weighted cross-covariance matrix Hw is:

Hw =
N

∑
i=1

wi(pi − p̄)(qi − q̄)T (3.12)

In this formula, the weight wi controls how much each matched pair affects the cross-
covariance matrix Hw. Pairs with higher weights, those that were often identified as inliers
during the RANSAC process, contribute more to the matrix. These pairs are assumed to be
more reliable, so the transformation is influenced more by them than by less consistent pairs.
This helps the alignment focus on the stable geometric structure between the datasets and
reduces the impact of noisy or incorrect matches.

Following the same SVD process in Equation 2.5, the optimal weighted rotation matrix is
then obtained using Equation 2.6 and Equation 2.7. The translation vector is then also
obtained using the Equation 2.8 after optimal rotation matrix is calculated.
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By weighting each matched pair based on its inlier count from the correspondence estab-
lishment process, the method gives more influence to geometrically stable pairs during the
transformation calculation. This helps reduce the impact of noisy or unreliable matches,
which may result from extraction errors or local variations in the point clouds. As a result,
the estimated rotation and translation parameters are more strongly influenced by the most
geometrically stable road markings.

The resulting transformation matrix is saved as a text file and applied to the target point
cloud using a Python script. Matrix operations are handled using the NumPy library (Harris
et al. 2020), while Laspy library (G. V. Horn, Hruska, and contributors 2023) is used to load,
manipulate, and write the point cloud data.

3.8 Alignment Accuracy Evaluation

To assess the quality of the alignment between the reference and target point clouds, this
research applies a raster-based elevation comparison method known as DTM differencing,
following the approach described in Salach et al. 2018. This method evaluates how well the
aligned datasets match by comparing their ground surface elevations, represented as DTMs,
under the assumption that there has been minimal ground surface change during the time
gap between acquisitions.

Direct measurement of horizontal alignment errors is possible by comparing the positions of
individual features. However, this requires the presence of other clearly defined and consis-
tently extracted features in both datasets, besides the road markings, which may not always
be available or reliable. Since road markings are already used as the control features for
the alignment process, their use as independent check points would introduce bias into the
evaluation. Therefore, DTM differencing is another way to measure the alignment accuracy
without relying on the same features used for alignment.

Although this method mainly measures vertical differences, converting the point clouds into
a regular grid helps reduce the impact of small horizontal shifts. If the horizontal error is
smaller than the raster cell size, it has little effect on the elevation values because the points
are averaged within each cell. This makes it easier to focus on overall alignment quality.
DTM differencing also produces a large number of comparison points (raster pixels), which
allows for more robust statistical analysis of the alignment results. For these reasons, it is a
practical method for large-scale validation, especially when other feature-based checks are
not available and the ground surface is expected to stay mostly the same.

The process begins by applying ground filtering to both the transformed and untransformed
point cloud data, retaining only the points classified as ground. If the point cloud does not
contain predefined ground classifications, ground filtering is performed using the CSF plugin
(Zhang et al. 2016) in the CloudCompare software. This step ensures that the resulting DTMs
represent the bare-earth surface, free from interference from buildings, vegetation, or other
elevated features.
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Figure 3.23: Illustration of ground filtering

Following ground filtering, each filtered point cloud is converted into a raster using a Python
programme. The output raster file is written using the rasterio package (Gillies and contrib-
utors 2013), the input point cloud data are read using the laspy package (G. V. Horn, Hruska,
and contributors 2023), and the raster values are computed using numpy (Harris et al. 2020).
A regular raster grid is defined based on a user-specified resolution, and the elevation value
for each cell is calculated as the mean of all ground point elevations falling within that cell.
If no points fall within a given cell, a NoData value is assigned. This produces a continuous
elevation model suitable for surface comparison.

To enable direct comparison between the reference and target DTMs, the target DTM is re-
sampled to match the spatial resolution, extent, and grid alignment of the reference DTM.
The resampling is carried out using a Python programme, employing bilinear interpolation
through the reproject function provided by the rasterio package (Gillies and contributors
2013). Ensuring spatial consistency between the target and reference raster datasets allows
the elevation values of the target DTM to be subtracted from those of the reference DTM on a
per-pixel basis.

After point cloud alignment, the elevation differences are computed by subtracting the re-
sampled target DTM from the reference DTM. The resulting raster represents vertical discrep-
ancies across the study area. In well-aligned datasets, elevation differences should be close
to zero, while larger positive or negative values may indicate misalignments or inconsisten-
cies.

The decision to use only ground features when measuring differences between overlapping
datasets is based on the assumption that the ground surface is the most stable element in the
landscape. In the context of multi-temporal data, stable refers to features that remain largely
unchanged over time. Unlike trees, which grow, or buildings, which may be constructed,
altered, or demolished, the ground typically exhibits minimal variation. However, some low
vegetation such as crops, grasses, bushes, or piles of leaves may be mistakenly classified as
ground due to their low elevation, making them hard to distinguish from true ground points.
In more extreme cases, groundworks such as excavation or landfilling for construction or
agricultural activities can also alter the ground surface significantly. These factors can cause
small changes in ground height that appear as high difference in the DTM difference results
between different datasets.

To minimise the influence of the extreme ground change due to non-natural work and en-
sure a more reliable assessment of alignment accuracy, an interquartile range (IQR) filter is
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applied to the DTM difference raster. The IQR filter addresses this by retaining only the mid-
dle value of the data, thereby excluding unusually high or low values. This filtering step
helps focus the evaluation on meaningful discrepancies due to misalignment, rather than
unrelated surface changes.

Figure 3.24: Illustration IQR filtering to DTM values. Some irrelevant pixel values due to
change in environment are removed

Finally, the filtered DTM difference raster is exported, and key summary statistics such as
the minimum, maximum, mean, and standard deviation are computed. These metrics pro-
vide a quantitative measure of alignment accuracy and are used to compare with different
alignment results.

3.9 Alignment Results Comparison

Three result comparison schemes are used to explore the following: (1) the impact of re-
ducing the influence of geometrically unstable road markings; (2) the effect of automatic
road marking extraction quality on alignment accuracy; and (3) the variation in alignment
performance as the distance increases from the area containing the road markings.

3.9.1 Approach to Evaluate the Influence of Geometric Stability Filtering
on Alignment

The first comparison scheme aims to evaluate the impact of reducing the influence of geo-
metrically unstable road markings by applying RANSAC inlier count-based weighting in the
centroid alignment process. It is based on the assumption that counting on the unstable
road markings, whether caused by extraction errors, changes in the condition or shape of
the markings between the reference and target datasets, or differences in sensor specifica-
tions that cause the markings to be shifted or poorly represented, the same as the stable road
marks can reduce alignment accuracy.

The comparison is carried out by evaluating the alignment results obtained using the RANSAC-
Weighted Centroid Alignment method proposed in Section 3.7, against those obtained using
a more straightforward approach, such as simple centroid alignment that does not consider
road marking stability during the alignment process.
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3.9.2 Approach to Evaluate the Impact of Automatic Extraction Quality
on Alignment Accuracy

The second comparison scheme aims to examine how the quality of road marking extraction,
which was previously evaluated in Section 3.5, affects alignment accuracy. Manually digi-
tised road markings are also used as a benchmark to represent the best possible alignment
result, assuming the road markings are perfectly extracted. The underlying assumption is
that lower extraction quality and detection accuracy will lead to a greater difference be-
tween the alignment results obtained from manually digitised and automatically extracted
road markings.

The comparison is carried out by subtracting the DTM difference of the alignment result us-
ing automatically extracted road markings from the DTM difference of the alignment result
using manually digitised road markings, in order to obtain the DTM difference residuals.
These residuals, calculated for each alignment case, are then compared against the extraction
quality metrics to assess their relationship.

3.9.3 Approach to Evaluate Alignment Accuracy Decay with Increasing
Distance from Road Markings

The third comparison scheme aims to examine how alignment errors originating from the
benchmark area propagate to surrounding areas. It is based on the assumption that the
further an area is from the road marking benchmark, the greater the potential impact of
alignment errors. This may occur in scenarios where road markings are concentrated in a
limited zone, such as urban centres or highway segments, while the surrounding areas lack
sufficient road markings to serve as benchmarks. This scheme provides insights into the
extent to which the current automatic road marking extraction method can be relied upon
as a benchmark for accurately co-registering point cloud data across a larger area.

The comparison is carried out by dividing the DTM difference map into multiple segments
based on increasing distance from the benchmark area. For each segment, the DTM difference
values are extracted, and their average pixel values are computed to represent the local
alignment error. These average values are then compared across segments to observe how
alignment accuracy changes as the distance from the road marking benchmark increases.
This approach allows for the assessment of how far the alignment transformation, derived
from the benchmark area, remains reliable.
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Figure 3.25: DTM difference map divided into multiple segments. The red polygon indicates
the point cloud AOI, the blue polygon marks the area containing road markings used as
the benchmark, and the yellow polygons represent the individual DTM segments.

Since the extended AOI is not fully covered by the Prorail dataset, only the AHN point
clouds are suitable for this analysis. To investigate how alignment accuracy changes with
increasing distance from the road marking benchmarks, alignments are performed between
different AHN datasets using road markings as control features. In this setup, it is as-
sumed that the road markings used for alignment are located only within the southernmost
segment. The remaining segments used for evaluation are arranged to the north of this
benchmark area, allowing a systematic assessment of how well the alignment holds as the
distance from the control features increases in the northward direction.
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This chapter presents the results of the alignment comparisons, following the methodology
outlined in Chapter 3, to address the research questions introduced in Chapter 1. The results
provide the foundation of analysis that used to answer the main research question regarding
the suitability of using road markings extracted using the method proposed in Heide 2024
as benchmarks for heterogeneous LiDAR point cloud harmonisation.

The results are organised according to the corresponding sub-research questions. Section
4.1 presents the results of the correspondence establishment and the subsequent alignment
using the established correspondences. Section 4.2 discusses the impact of weighting road
markings based on their geometric stability to validate the proposed method. In Section
4.3, the alignment results comparison between automatically extracted road markings and
manually digitised road markings is shown. Section 4.4 examines the effect of varying
distances from the benchmark area on alignment accuracy. Finally, Section 4.5 analyses the
potential sources of uncertainty in the alignment process using automatically extracted road
markings, as observed throughout the research pipeline.

4.1 Correspondence Establishment Results

This section presents the results of the correspondence establishment performed across vari-
ous alignment time gaps, using the approach described in Section 3.6. The proposed method
involves two main steps applied to road markings in overlapping datasets. The first step fil-
ters out road markings that are isolated from any corresponding marking in the overlapping
dataset, either due to false detection or environmental changes. The second step assesses
the geometric stability of the remaining pairs in the context of point cloud alignment.

4.1.1 Established Correspondences

The first step in the correspondence establishment process aims to identify and remove road
marking segments that lack a meaningful spatial match in the overlapping dataset. These re-
jected segments may result from false positives in the extraction process or genuine changes
in the road environment between acquisition dates. Table 4.1 and Table 4.2 summarise the
number of manually digitised and automatically extracted road markings, respectively, that
were rejected during this initial filtering stage across several alignment time gaps.
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Table 4.1: Total number of rejected manually digitised road markings in the initial filter
through several time gaps of alignment

Manually Digitized Road Markings

Reference Target Total target RM
Rejected in

initial filter
Total processed RM

AHN3

(2018)

Prorail2019 292 3 289

Prorail2021 316 200 116

Prorail2023 320 209 111

AHN4

(2020-2022)

Prorail2019 292 66 226

Prorail2021 316 130 186

Prorail2023 320 172 148

AHN5

(2023)

Prorail2019 292 228 64

Prorail2021 316 136 180

Prorail2023 320 117 203

Table 4.2: Total number of rejected automatically extracted road markings in the initial filter
through several time gaps of alignment

Automatically Extracted Road Markings

Reference Target Total target RM Rejected Total processed RM

AHN3 (2018)

Prorail2019 559 240 319

Prorail2021 369 306 63

Prorail2023 696 588 108

AHN5 (2023)

Prorail2019 559 470 89

Prorail2021 369 275 94

Prorail2023 696 503 193

It is important to note that automatically extracted road markings were not available for the
AHN4 (2020–2022) dataset at the time of analysis. As a result, the comparison in Table 4.2
only includes AHN3 (2018) and AHN5 (2023) as reference datasets.

From the results in Tables 4.1 and 4.2, a clear trend can be observed in both the manually
digitised and automatically extracted road markings: a larger time gap between datasets
generally results in a lower number of road markings passing the initial filtering step. This
suggests that the geometric consistency of road markings tends to decrease over time due
to physical changes in the road environment, data quality differences, or extraction incon-
sistencies. Furthermore, the number of rejected road markings is consistently higher in the
automatically extracted dataset compared to the manually digitised one. This highlights the
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limitations of automatic extraction methods, which are more likely to include road markings
that are not stable, particularly when aligning datasets with greater temporal differences.

Another observation from Tables 4.1 and 4.2 is the consistently higher number of total target
road markings in the automatically extracted dataset compared to the manually digitised
one. This indicates a trend of over-detection in the automatic extraction method, where
more features, including noise or objects other than road markings, are initially selected.
As a result, some of these over-detected features may pass the initial filtering stage and be
included in the next process. This is shown in the alignment of Prorail 2019 to AHN3 and
Prorail 2019 to AHN5, where the total number of processed road markings in the automatic
dataset is higher than in the manual one.

Following the initial filtering step, the second part of the correspondence establishment pro-
cess focuses on evaluating the geometric stability of the remaining road marking pairs. This
is done by applying the RANSAC algorithm to identify consistent correspondences across
multiple alignment iterations. In this study, 1000 RANSAC iterations were used to ensure a
robust estimation of inliers. A higher number of iterations increases the likelihood of captur-
ing more reliable correspondences by exploring more transformation possibilities. During
each iteration, 3 correspondences were randomly sampled to estimate the transformation.
This sample size was chosen because it is the minimum number required to compute a rigid
transformation in 3D space using line-based features B. K. P. Horn 1987

Tables 4.3 and 4.4 present the distribution of geometrically stable correspondences for each
alignment scenario, using manually digitised and automatically extracted road markings, re-
spectively. These inliers represent road markings that are not only detected in both datasets
but also maintain a stable spatial relationship throughout the alignment iterations.

Table 4.3: Number of geometrically stable correspondences (RANSAC inliers) from manually
digitised road markings across different time gaps of alignment

Manually Digitised Road Markings

Reference Target
RANSAC inlier count

0-200 201-400 401-600 601-800 801-1000

AHN3 (2018)

Prorail2019 133 5 9 11 131

Prorail2021 84 0 2 1 29

Prorail2023 84 1 3 1 22

AHN4 (2020-2022)

Prorail2019 86 4 3 11 122

Prorail2021 60 3 6 11 106

Prorail2023 94 1 2 3 48

AHN5 (2023)

Prorail2019 49 0 0 1 14

Prorail2021 51 9 8 13 99

Prorail2023 34 3 1 2 163
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Table 4.4: Number of geometrically stable correspondences (RANSAC inliers) from automat-
ically extracted road markings across different time gaps of alignment

Automatically Extracted Road Markings

Reference Target
RANSAC inlier count

0-200 201-400 401-600 601-800 801-1000

AHN3 (2018)

Prorail2019 155 82 2 80 0

Prorail2021 43 0 1 1 18

Prorail2023 81 2 1 0 24

AHN5 (2023)

Prorail2019 62 0 2 2 23

Prorail2021 67 1 1 1 24

Prorail2023 116 2 1 2 72

Tables 4.3 and 4.4 show the number of geometrically stable correspondences identified dur-
ing the alignment process, based on manually digitised and automatically extracted road
markings, respectively. The manually digitised road markings are used as the reference
condition, representing an ideal extraction scenario without detection or line accuracy er-
rors. As such, the distribution of RANSAC inliers from this dataset serves as a baseline for
evaluating the quality of the automatically extracted road markings.

In all alignment scenarios, the number of stable correspondences in the highest inlier bin
(801–1000) is consistently lower for the automatically extracted road markings compared to
the manual benchmark. This indicates that the quality of automatic road marking extrac-
tion directly influences the number of geometrically stable pairs that can support alignment.
Errors in detection and line geometry reduce the likelihood that extracted features will main-
tain consistent spatial relationships across datasets. As a result, even if the initial number
of extracted road markings is high, many of them may not be reliable enough to contribute
effectively to the alignment process. This suggests that improving the extraction process
can increase the number of geometrically stable pairs to give more correspondence in the
alignment process.

4.1.2 Alignment Results Using Established Correspondences

After the correspondences are established, the next step is to use them to calculate the
transformation matrix in order to align the target point cloud to the reference point cloud,
following the proposed method described in Section 3.7. The alignment results are then
validated using the DTM differencing as explained in Section 3.8. The results of the alignment
validation are shown in Table 4.5.
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Table 4.5: Validation of alignment results using established correspondences

Mean DTM Difference (m) of Alignment Using Established Correspondence

Reference Target Untranformed Manually Digitised Automatic Extracted

AHN3 (2018)

Prorail2019 0.060 0.012 0.014

Prorail2021 0.002 -0.035 -0.001

Prorail2023 0.012 0.007 0.010

AHN4 (2020-2022)

Prorail2019 0.105 0.000 -

Prorail2021 0.047 0.004 -

Prorail2023 0.054 0.024 -

AHN5 (2023)

Prorail2019 0.096 -0.006 -0.043

Prorail2021 0.037 -0.011 -0.020

Prorail2023 0.051 0.020 0.004

The alignment results for AHN4 using automatically extracted road markings are not in-
cluded in this table, as the extracted road markings are not available at the time of analysis.
Therefore, the alignment tests, including AHN4 as a reference, cannot be conducted in this
research

From Table 4.5, it can be seen that in most cases, the manually digitised road markings
perform slightly better than those from the automatically extracted road markings. This
suggests that there are factors related to the automatic extraction method that may influence
the alignment results, which will be discussed further in Section 4.3. In general, both road
marking extraction methods successfully reduce the alignment gap in the overlapping data.
However, in the alignment of Prorail2021 to AHN3 using manually digitised road markings,
the alignment error increased. This is suspected to be caused by a limitation of the proposed
alignment method, which will be further investigated in Section 4.2.

To answer the first sub-research question: correspondences between overlapping LiDAR
datasets with different acquisition times can be established by applying a method that
weights correspondences based on their stability. The results show that the established
correspondences can be used to reduce the misalignment between overlapping point clouds.
However, in some cases, they failed to do so, indicating a potential limitation of the pro-
posed method. The number of reliable correspondences decreases as the time gap increases,
mainly due to changes in the road environment. However, the number of stable corre-
spondences from automatically extracted road markings is lower than that from manually
digitised ones, indicating that there are factors in the automatically extracted road mark-
ings that affect the number of stable correspondences. Nevertheless, as shown in Table 4.5,
the automatically extracted road markings still manage to reduce the misalignment between
overlapping datasets.
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4.2 Reducing the Influence of Unstable Road Markings on
Alignment Accuracy

In Section 3.6, a method for establishing correspondences was introduced based on counting
how often a pair is identified as an inlier across multiple alignment iterations. Building on
this, Section 3.7 proposed a weighted approach for calculating the transformation matrix,
where the inlier count for each pair is used as a weight in the alignment process. In Section
4.1, the results of the implementation of the method are shown.

In the following section, the result of the proposed method is validated by comparing it with
a more straightforward approach for both correspondence establishment and transformation
calculation as described in Section 3.9.1. The comparison method uses a simple nearest
neighbour search to establish correspondences, similar to the initial filtering step described
in Section 3.6, followed by transformation matrix estimation using the least-squares method
introduced in Arun, T. S. Huang, and Blostein 1987, as reviewed in Section 2.4.3.

By comparing the results of both methods using mean DTM differences, as reviewed in
Section 3.8, between aligned and untransformed point clouds, the aim is to evaluate whether
weighting benchmark based on its geometric stability provides any practical advantage in
improving alignment accuracy over this simpler baseline. The result of the validation of the
method using manually digitised road markings is shown in Table 4.6, while the one that
uses automatic digitised road markings is shown in Table 4.7.

Table 4.6: Comparison of RANSAC-Weighted and Nearest Neighbour Search using manually
digitised road markings

Mean DTM Difference (m) Using Manual Digitised RM

Reference Target Untransformed RANSAC-Weighted NN Search

AHN3 (2018)

Prorail2019 0.060 0.012 0.011

Prorail2021 0.002 -0.035 -0.004

Prorail2023 0.012 0.007 0.021

AHN4 (2020-2022)

Prorail2019 0.105 0.000 0.001

Prorail2021 0.047 0.004 -0.005

Prorail2023 0.054 0.024 0.015

AHN5 (2023)

Prorail2019 0.096 -0.006 -0.017

Prorail2021 0.037 -0.011 -0.012

Prorail2023 0.051 0.020 0.021

The results show that the difference between the RANSAC-weighted method and the simple
nearest neighbour search method is very small. In most cases, the mean DTM differences
between the two methods are only a few millimetres apart. Sometimes the RANSAC-weighted
method gives slightly better results, and sometimes the nearest neighbour search method is
better. The validation shows that adding weights based on geometric stability does not
clearly improve the alignment compared to using a more straightforward nearest neighbour
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Table 4.7: Comparison of RANSAC-Weighted and Nearest Neighbour Search using auto-
matically extracted road markings

Mean DTM Difference (m) Using Automatic Extracted RM

Reference Target Untransformed RANSAC-Weighted NN Search

AHN3 (2018)

Prorail2019 0.060 0.014 0.011

Prorail2021 0.002 -0.001 -0.010

Prorail2023 0.012 0.010 0.014

AHN5 (2023)

Prorail2019 0.096 -0.043 -0.024

Prorail2021 0.037 -0.020 -0.005

Prorail2023 0.051 0.004 0.008

search. This result is the same whether the road markings were extracted manually or
automatically, and whether the time gap between datasets was short or long. Overall, the
weighted method works, but it doesn’t make a big difference in the final alignment accuracy.
It is also important to note that these differences are measured over relatively small areas
of interest. In larger AOIs, the impact of alignment errors may become more noticeable, and
further evaluation would be needed to confirm if similar trends hold at broader scales.

To support the comparison between the RANSAC-weighted method and the nearest neigh-
bour search approach, the following figures show selected alignment results using both
methods. Each example includes a DTM difference map and the corresponding road mark-
ing distribution to highlight where spatial differences occur and how the placement and
density of features may influence the alignment. These visuals help clarify whether the
small differences in mean DTM values are spread evenly or caused by local misalignments.
Only a few representative cases are shown to avoid redundancy, including one case where
RANSAC performs better, one where the nearest neighbour method performs better, and
one where both give similar results.

Figure 4.1: Case where Neighbour search method performs better than RANSAC-Weighted
method. (a) RANSAC-Weighted. (b) Nearest Neighbour search.
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Figure 4.1 shows the alignment results for the manually digitised road markings from Pro-
rail2021 to AHN3 (2018), comparing the RANSAC-weighted method (left) and the nearest
neighbour search method (right). The DTM difference maps indicate that the nearest neigh-
bour approach produces slightly more uniform results (consistent green colour), while the
RANSAC, weighted result shows more variation, particularly with bluish areas in the south-
ern part of the DTM. The DTM difference statistic result is also shown in Table 4.6.

The lower performance of the RANSAC-weighted method in this case is suspected to be
related to the distribution of road markings used. As shown in the bottom row, RANSAC
selected fewer and more sparsely distributed road markings, with most concentrated on
the northern lanes. Many of the markings on the southern lanes received low stability
weights and were excluded (white-coloured). In contrast, the nearest neighbour method still
retained some road markings in the southern lane. From this result, it is suspected that an
uneven or linear distribution of benchmarks, such as road markings limited to one side of
the road, can reduce alignment accuracy, especially in areas farther away from the available
correspondences.

Figure 4.2: Case where RANSAC-Weighted method performs better than Nearest Neighbour
search method. (a) RANSAC-Weighted. (b) Nearest Neighbour search.

Figure 4.2 shows the alignment results for the manually digitised road markings from Pro-
rail2023 to AHN3 (2018), comparing the RANSAC-weighted method (left) and the nearest
neighbour search method (right). The DTM difference maps indicate that the RANSAC-
weighted method provides slightly more consistent results, which is shown by consistent
green colour around the DTM. In contrast, the nearest neighbour method shows more vari-
ation, which can be seen by a slightly more yellow colour in the southern part of DTM. This
is in line with the DTM statistics in Table 4.6.

The better performance of the RANSAC-weighted method in this case is surprising, consid-
ering it also uses fewer road markings with uneven distribution. As shown in the bottom
row of Figure 4.2, most of the selected markings are located on the northern lanes, while
many of the southern markings were excluded due to low stability weights. This observa-
tion suggests that the geometric stability of benchmarks plays a more important role than
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their quantity in achieving accurate alignment. Although the RANSAC-weighted method dis-
carded many southern road markings, the retained features offered a better alignment result.
In contrast, the Nearest Neighbour method, by including all correspondences regardless of
stability, may have introduced noise into the alignment process, especially in the northern
lane where most of the available road markings are concentrated.

However, this also highlights a limitation of the approach used in this evaluation, as a further
strategy is needed to quantify how the unstable road markings included in the Nearest
Neighbour method reduce the quality of the alignment. At present, the analysis compares
the overall performance of two different alignment methods, but it does not directly measure
how much of the error is caused by the inclusion of low-stability features. This makes it
difficult to confirm whether these features are the main reason for the reduced accuracy.

Figure 4.3: Case where RANSAC-Weighted and Nearest Neighbour search method perform
equally. (a) RANSAC-Weighted. (b) Nearest Neighbour search.

Figure 4.3 shows the alignment results for automatically extracted road markings from Pro-
rail2023 to AHN5 (2023), comparing the RANSAC-weighted method (left) and the nearest
neighbour search method (right). The DTM difference maps show that both methods pro-
duce similarly good results, shown by consistent green colour for both DTM difference maps.
This is supported by the values in Table 4.7, where the mean DTM difference is 0.004 m for
the RANSAC-weighted method and 0.008 m for the nearest neighbour method.

In this case, the road marking distribution is relatively even across both lanes, as shown
in the bottom row. This supports the idea that when road markings are well distributed
across the benchmark area (in this case, a highway), both the RANSAC-weighted and nearest
neighbour methods can perform equally well, and the choice of correspondence strategy
becomes less critical.

To conclude the findings, the comparison of selected alignment cases illustrates that the
performance of the RANSAC-weighted and nearest neighbour methods depends strongly on
the distribution of the road marking correspondences. When road markings are unevenly
distributed, especially limited to one side of the road, alignment accuracy may degrade,
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especially in areas farther from the benchmark. For the RANSAC-weighted method, which
relies on weighted inlier counts and tends to exclude less stable features, this issue is more
likely to occur. However, as shown in the second case (see Figure 4.2), even with uneven
distribution, the RANSAC-weighted method can still outperform the nearest neighbour ap-
proach. This outcome highlights a limitation of the evaluation approach in this research,
although unstable road markings are likely to influence the alignment result, the method
does not quantify their individual impact. Finally, when road markings are dense and
evenly distributed across the alignment area, both methods produce almost equal results,
indicating that the impact of the correspondence strategy becomes less significant. These
findings highlight the importance of distribution when selecting or designing alignment
benchmarks.

The influence of the time gap on the number and spatial distribution of usable road markings
is influential in determining the robustness of the alignment. As shown in Section 4.1, larger
time gaps lead to more road markings being rejected during the initial filtering step. This is
mainly due to changes in the road environment over time, which cause many road markings
to no longer be usable as benchmarks. This is also highlighted in Figure 4.2 and Figure 4.3,
which both show the alignment of the Prorail2023 point cloud to different reference datasets
(AHN3 2018 and AHN5 2023, respectively). From these figures, it can be seen that a smaller
alignment time gap (Figure 4.3) results in a more complete set of candidate correspondences,
making the RANSAC-weighted method less likely to over-filter the input features.

To answer the second sub-research question: the findings in this section show that se-
lecting road markings based on geometric stability does not consistently lead to improved
alignment. While the strategy can reduce alignment gaps and performs well when a suf-
ficient number of well-distributed features are available, the actual improvement over a
simpler nearest neighbour method is often minimal. In many cases, the difference between
the two methods is only a few millimetres. This suggests that although the method helps
to exclude correspondences with poor stability, it does not provide a significant advantage
in alignment accuracy. The problem with this approach occurs when the number of initial
correspondences is low or unevenly distributed, particularly in larger alignment time gaps,
where changes to the road surface reduce the availability of reliable road markings. When
the number of initial correspondences is low and unevenly distributed, the method tends to
over-filter, reducing alignment quality by assigning low weight to spatially important road
markings that help maintain an even distribution. Overall, the method is functional, but its
added complexity does not always translate to better alignment results.

4.3 Impact of Extraction Quality on Alignment Accuracy

In Section 4.1, it was observed that there are differences in the number of initial correspon-
dences between manually digitised and automatically extracted road markings. Further-
more, each extraction method results in a different composition of road marking stability. In
addition, the two methods produce different alignment results. These observations indicate
that there are factors within the extraction process that contribute to these differences. To
better understand these factors, the quality of the automatically extracted road markings is
assessed, then the alignment result is compared following the approach described in Section
3.9.2.
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The following section investigates how the quality of automatically extracted road markings
affects the final alignment accuracy in LiDAR co-registration. The alignment results from au-
tomatic extraction are compared with those from manually digitised road markings, which
are assumed to give the best possible alignment.

4.3.1 Extraction Quality Measurement

This section presents the evaluation of the quality of automatically extracted road markings
based on two aspects that were proposed in Section 3.5, which are: detection accuracy and
extracted line accuracy. These measurements aim to assess how well the automatic method
performs in identifying and representing road markings across different datasets.

Detection Accuracy

To evaluate how well the automatic extraction method identifies road markings, three stan-
dard detection metrics are used: completeness, correctness, and overall quality. These met-
rics are calculated by comparing the extracted road markings to manually digitised ground
truth, across different datasets. The results are summarised in Table 4.8.

Table 4.8: Detection accuracy metrics for each dataset

Metric Prorail 2019 Prorail 2021 Prorail 2023 AHN3 AHN5

True Positive 259 255 307 247 123

False Positive 300 115 390 352 100

False Negative 33 61 13 61 0

Completeness 0.887 0.807 0.959 0.802 1.000

Correctness 0.463 0.689 0.440 0.412 0.552

Quality 0.438 0.592 0.432 0.374 0.405

Overall, the results highlight a trade-off in the extraction method: while it successfully de-
tects most actual road markings (high completeness), it also includes a significant number
of incorrect detections (low correctness). Completeness is primarily influenced by false neg-
atives, which occur when actual road markings are not detected despite being present. On
the other hand, correctness is largely affected by false positives, where non-road features
are mistakenly identified as road markings. These false positives arise from various issues,
such as the inclusion of edge lines or noise points that are incorrectly modelled as road
markings.

Completeness measures how many of the actual road markings in the data were success-
fully detected by the method. A high completeness score means that most of the real road
markings were found, while a low score means many were missed. For example, in the
Prorail 2021 and AHN3 datasets, the completeness scores are around 0.80, which means that
about 20% of the road markings were not detected. This can happen for several reasons.
Sometimes, the markings are missed because their intensity values fall outside the detection
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range. In other cases, they may be removed due to filtering steps of the automatic extraction
process if they do not meet the condition.

As shown in Table 4.8, the method generally achieves high completeness across all datasets,
with the highest result found in AHN5 (1.0) and Prorail 2023 (0.959). Referring to Table 3.1,
despite AHN 3 having a much lower density of just 10 points/m², it still achieves a com-
pleteness score of 0.802, which is comparable to Prorail 2021 (0.807), which has a density
of 134 points/m². A similar pattern can be seen between Prorail 2023 and AHN5, where
the former has a much higher density than the latter, yet both achieve similarly high com-
pleteness scores. On the other hand, the difference in completeness between Prorail 2021
and Prorail 2023, as well as between AHN3 and AHN5, despite relatively small changes in
density, reaches nearly 0.2. No consistent trend between density and completeness can be
identified from these comparisons. This suggests that point density alone does not directly
determine detection performance.

In terms of intensity range, the results also do not show a clear or consistent relationship
with completeness. Prorail 2021 has one of the widest intensity ranges (25,000 to 40,000) and
achieves a completeness score of 0.807. In comparison, AHN3 has the narrowest intensity
range (110 to 380) but still achieves a completeness score of 0.802, which is almost identical to
that of Prorail 2021. Similarly, Prorail 2023 and AHN5 achieve almost similar completeness
scores of 0.959 and 1.000, respectively, even though their intensity ranges differ significantly;
Prorail 2023 has a broader range (27,000 to 36,000), while AHN5 has a much narrower range
(1,230 to 4,400). These results suggest that the intensity range alone does not explain the
variation in completeness across datasets. However, despite the variation in intensity ranges,
the automatic extraction method manages to achieve detection accuracy between 0.8 and
1.0, indicating that nearly all road markings recorded in the point cloud were successfully
extracted.

Apart from completeness, another important aspect of detection performance is correctness.
Correctness measures how many of the detected road markings are actually correct. For
example, in the Prorail 2023 dataset, the correctness score is only 0.44, and for AHN3 it is
0.41. This means that more than half of the detected features are actually not road markings.
This problem happens because the method often selects extra points by mistake, such as
parts of nearby objects or noisy points that look similar in intensity. Even though the method
is good at finding most of the real road markings (high completeness), it also includes a lot
of wrong ones. This suggests improvement on the filtering step to avoid picking up features
that do not belong to road markings.

Based on the results shown in Table 4.8, no clear or consistent relationship can be observed
when comparing correctness with the intensity range and point density values listed in
Table 3.1. For example, AHN3 has the lowest point density (10 points/m²) and a very
narrow intensity range (110 to 380), yet its correctness score (0.412) is similar to that of
Prorail 2023 (0.440), which has a much higher point density (170 points/m²) and a broader
intensity range (27,000 to 36,000). Likewise, Prorail 2021 achieves the highest correctness
score (0.689), despite having intensity and density values that are not significantly different
from the other Prorail datasets. These comparisons suggest that correctness is not directly
influenced by point density or intensity range alone.
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Source of Error in Completeness Metric

To better understand the cause of these missed detections, a closer inspection was conducted
on a manually prepared sample of the Prorail 2021 dataset, as illustrated in Figure 4.4.
This visual comparison highlights areas where visible road markings were not captured by
the automatic extraction. Building on this observation, the following discussion considers
several possible explanations based on the steps in the automatic extraction pipeline (see
Table 2.3).

Figure 4.4: Example of undetected road markings in Prorail 2021 Data. Green lines represent
extracted road markings. Viewed through (a) intensity value and (b) elevation value

The point cloud shown in Figure 4.4 has been manually ground classified and cropped to
retain only the road surface, which follows key preprocessing steps used in the automatic
road marking extraction pipeline of Heide 2024. This was done to ensure a fair comparison
between the manually visualised data and the automated process. By applying similar
filtering steps, it can be assumed that the displayed intensity values are similar to those
used during automatic extraction, allowing for a more accurate investigation of why certain
road markings were not detected.

Referring to the automatic road marking extraction pipeline proposed by Heide 2024 re-
viewed in Section 2.2, several possible reasons were considered to explain the undetected
road markings in Prorail 2021 data shown in Figure 4.4. The first possibility is that the adap-
tive intensity thresholding step was too strict. However, when the point cloud is viewed
through the intensity values (Figure 4.4a), the undetected road markings appear to have
similar intensity values as the ones that were successfully extracted. If the thresholding
were truly too strict, other markings would have also been excluded. The next possibility
is that the markings may have been occluded by obstacles such as vehicles. Yet, this is also
unlikely, since the undetected road marking points are detected in the intensity view.

Another consideration is that the points were mistakenly removed as part of the curb and
noise segmentation step, under the assumption that they belonged to curb structures. How-
ever, as shown in the elevation view (Figure 4.4b), the elevation in this area is flat and
consistent, indicating no significant height changes that would suggest curbs. To determine
whether the road markings were undetected because they were rejected by the minimum
and maximum geometric thresholds, an undetected road marking was segmented, and its
geometric features were calculated. These values were then compared with the defined
minimum and maximum threshold ranges, as illustrated in Figure 4.5.
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Figure 4.5: Geometry features of an undetected road marking. (a) Location of road marking
where the geometry values are calculated, symbolised by the yellow circle. (b) Calculated
geometry features of selected undetected road markings.

By comparing Figure 4.5b with Table 3.2, it can be seen that the geometric feature values
of the selected undetected road marking fall within the minimum and maximum threshold
ranges. This analysis indicates that the road marking segment was not removed due to being
outside the defined geometric thresholds.

Based on the reviews, none of the suspected causes, such as strict intensity thresholding,
occlusion by obstacles, misclassification as curbs, or rejection by geometric thresholds, can
fully explain why the road markings were missed. Each of these factors was investigated
and ruled out through visual and numerical inspection. This suggests that the cause of the
missed detection may lie in the later stages of the extraction pipeline that have not yet been
reviewed in detail, specifically Step 5 (line segmentation) and Step 6 (zigzag and direction
correction) of the automatic road marking extraction method used in this research, according
to Table 2.3.

Figure 4.6: Example of undetected road markings in Prorail 2023 Data. Viewed through (a)
intensity value and (b) elevation value

The problem of undetected road markings also appears in the Prorail 2023 dataset, as shown
in Figure 4.6. Even though this dataset achieved the highest completeness score (0.959) in
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Table 4.8, a few markings were still missed, possibly for the same reasons as in Prorail 2021.
The point density (155 points/m²) and intensity range (21 to 35,000) in Prorail 2023 are close
to those in Prorail 2021, which had a lower completeness score. However, in Prorail 2023,
this issue caused only a small number of missed markings, while in Prorail 2021, it had a
bigger effect. This shows that the error does not follow a clear pattern and may also be
influenced by other factors that were not covered in this analysis.

To conclude, while the automatic road marking extraction consistently achieves high com-
pleteness across datasets, the score is still not perfect due to several reasons. As detailed
through the visual inspection, some road markings were missed even though they appeared
visually clear and met the expected intensity and geometric conditions. Several potential
causes, such as overly strict intensity thresholding, occlusion by vehicles, misclassification
as curbs, or rejection based on geometric feature thresholds, were investigated and ruled out
through visual inspection. This indicates that the missed detections may originate from later
stages in the automatic extraction pipeline that were not fully examined with this visual in-
spection approach, particularly Step 5 (line segmentation) and Step 6 (zigzag and direction
correction), as listed in Table 2.3. These steps might introduce errors by removing valid road
marking segments, which reduce the completeness score.

Source of Error in Correctness Metric

Similar to the previous step, a visual interpretation approach was used to inspect samples
of false positives to understand several reasons underlying the errors. This involved over-
laying the automatically extracted road markings and the manually digitised reference road
markings on top of a preprocessed point cloud. The preprocessing step included cropping
the point cloud to retain only the road surface and applying ground classification to re-
move non-ground objects. Additionally, the intensity range was adjusted to make the road
markings visually stand out, helping to identify where detection errors had occurred.

The inspection was conducted using the AHN3 dataset, as it recorded the lowest correctness
score among all datasets. Starting with this dataset helps focus on the worst case, where the
problem of false detection is most obvious and easier to learn from.

Figure 4.7 shows a snippet of the AHN3 dataset overlaid with the manually and automati-
cally extracted road markings; it can be seen that many road markings have been extracted
using the automatic method. However, a significant portion of these do not correspond to
the manually digitised road markings, as illustrated by the blue lines. Only the markings
that overlap with the manually digitised ones, shown in red, represent correct detections.
This shows that some of the detected road markings are incorrect. To better understand the
types of false detection, a closer visual inspection of selected segments is carried out.

As shown in Figure 4.8, edge lines along the sides of the road, which are not intended to be
included as part of the road markings used for co-registration benchmarks, are also extracted
by the automatic method. These detections are counted as false positives, which lowers the
overall correctness score. Moreover, the detection of the edge lines is not continuous; instead
of being identified as a single long line, they appear as a series of short, dotted segments.
This is likely due to the natural variation in the intensity values along the edge lines. As a
result, the number of false positives increases further, leading to an additional decrease in
the correctness score.
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Figure 4.7: Detection error in AHN3 point cloud. Blue lines represent automatically ex-
tracted road marks, red lines represent manually digitised road marks (as a reference for
detection accuracy measurement)

Figure 4.8: Closer inspection of false detections on edge lines. Blue lines are features ex-
tracted from the automatic extraction method, red lines are manually digitised road mark-
ings, and yellow-circled lines indicate the sample of false detection.
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Figure 4.9: Closer inspection of false detections on noise points. The yellow-circled line
shows a sample of false detection. (a) Viewed using intensity values, which show sig-
nificantly high intensity. (b) Viewed using elevation values, which show no significant
difference compared with the surrounding ground points.

Another type of false detection is caused by incorrect detection of undefined ground points
with high intensity values, as shown in Figure 4.9. This is suspected to originate from points
that were part of a car object (which typically produces high intensity values) but happen
to have an elevation very close to the ground. As a result, these points may not have been
properly filtered out during the vehicle removal step. When the distribution pattern of these
points resembles that of a road marking, the automatic extraction algorithm may incorrectly
classify them as a road marking segment and model them as a line. This leads to false
positives and further reduces the correctness score.

Figure 4.10: Closer inspection of false detections without clearly visible high-intensity point
clusters. The yellow-circled areas show automatically extracted lines where no obvious
group of high-intensity points is visible.

Another type of false detection happens when the extraction algorithm creates a road mark-
ing line in an area where there is no clear group of high-intensity points, as shown in
Figure 4.10. In the yellow-circled area, there are no obvious signs of a real road marking,
but the algorithm still detects and draws a line. This type of false detection may reflect a
limitation of the inspection method itself. While no distinct segment is apparent through
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visual analysis, it is possible that the structured steps of the automatic extraction pipeline
identified a valid pattern that is not easily noticeable by eye. Alternatively, the error might
be caused by leftover non-ground or noisy points with high intensity that were not fully re-
moved during earlier filtering steps of the automatic extraction pipeline. These possibilities
show that not all false detections can be easily explained just by looking at the data. Some
of them might happen because of small steps in the automatic process that are hard to see
or understand through simple visual inspection.

Figure 4.11: Closer inspection of false detections showing duplicated road marking extrac-
tion. The yellow-circled areas show cases where a single road marking is mistakenly
extracted as two separate lines (blue lines), despite there being no clear indication of mul-
tiple point clusters in the intensity view.

A different type of false detection is observed in the Prorail datasets, where a single road
marking is mistakenly detected multiple times. As shown in the figure, there is only one
actual road marking present, yet the algorithm generates two separate line segments at the
same location. However, the reason for this is not clearly explained through visual inspec-
tion, as the intensity view shows a continuous distribution of points that appear to form
a single segment. When this happens, the extraction method treats these groups as sepa-
rate features and generates multiple lines for what should be a single road marking. These
duplicated detections are counted as false positives, which reduces the overall correctness
score.

To conclude, the visual inspections revealed several factors that cause false positives. First,
edge lines along the road, which are not intended as road markings for alignment, are also
extracted due to their high intensity, even when their appearance is inconsistent. Second,
noise points such as parts of vehicles or undefined objects, which have high intensity values
and are mistakenly identified as road markings, especially if not fully removed during the
filtering process. Third, some detections occur even where there is no clear intensity cluster,
suggesting the algorithm might be responding to unidentified patterns in the data. These
three cases show that false positives are not caused by a single factor, but by a combination of
intensity, geometry, and insufficient filtering. Improving the filtering stages or adjusting the
criteria used in the automatic method may help reduce these false detections and improve
the correctness score.
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Extracted Line Accuracy

To evaluate how well the lines were extracted using the automatic road marking extraction
method, this section compares the geometry of the automatically extracted line features to
manually digitised ground truth lines. The comparison looks at differences in position,
length, and orientation. The results of the extracted line accuracy measurement are shown
in Table 4.9.

Table 4.9: Extracted line accuracy metrics across datasets

Metric Prorail 2019 Prorail 2021 Prorail 2023 AHN3 AHN5

Mean ∆ Length 3D -1.373 -1.316 -1.183 -0.984 -1.197

Mean ∆ Angle Horizontal 4.542 5.490 4.860 6.858 4.995

Mean ∆ Angle Vertical 4.497 4.760 3.475 1.300 1.444

Mean ∆X of Centroid -0.028 -0.006 0.001 -0.020 0.008

Mean ∆Y of Centroid 0.007 -0.004 -0.003 0.008 0.019

Mean ∆Z of Centroid -0.001 0.005 0.000 0.001 0.000

Mean ∆3D of Centroid 0.138 0.129 0.151 0.207 0.202

Since the alignment method proposed in this research is the RANSAC-weighted centroid
alignment method, which utilises the centroid of the extracted road markings to measure
the transformation matrix needed to align the target point cloud to the reference point cloud
(see Section 3.7), the main focus of the analysis is the mean 3D centroid difference. This
metric shows how far the centroids of the extracted lines are from the centroids of the
reference lines in 3D space.

The variation of density across datasets in Table 3.1 shows a relationship with the Mean
3D Centroid accuracy. A trend can be observed where datasets with higher point density
tend to achieve better centroid accuracy. For instance, the Prorail datasets, which have
point densities of 70, 144, and 170 points/m² respectively, show lower centroid differences
(0.138, 0.129, and 0.151 metres). In contrast, the AHN3 and AHN5 datasets, with lower
point densities of 10 and 17 points/m², show higher centroid differences of 0.207 and 0.202
metres.

Source of Error in 3D Centroid Position

To better understand the sources of error that lead to slight differences in the centroid posi-
tions between automatically extracted road markings and manually digitised road markings,
a closer inspection was carried out on selected samples. Similar to the approach used in Sec-
tion 4.3.1, this inspection was conducted visually by overlaying the automatically extracted
and manually digitised road markings on a point cloud that had been ground-filtered and
cropped to retain only the road surface.
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Figure 4.12: Sample of road markings detected in Prorail 2023 point cloud. Blue lines repre-
sent manually digitised road markings. Red lines represent automatically extracted road
markings.

The sample of automatically extracted road markings and manually digitised road markings
on the point cloud from the Prorail 2023 dataset is shown in Figure 4.12. In the figure, the
blue lines are the manually digitised road markings (used as reference), and the red lines are
the results from the automatic extraction. In an ideal case, the red lines should cover the blue
lines completely, showing that the extracted road markings are in the correct position. In the
figure, some red lines do match the blue lines well, but others only partly cover them or are
slightly shifted. This indicates that there are variations in the accuracy of the extracted lines,
which contribute to the overall mean error reported in Table 4.9. A closer investigation of
several road marking samples with varying levels of extraction accuracy was conducted to
understand the factors that cause these differences in how well the extracted road markings
match the reference.

Figure 4.13: Example of a correctly detected road marking. Red lines represent automatically
extracted road markings. Blue lines represent manually digitised road markings.

From Figure 4.18, it can be observed that the automatically extracted road marking (red line)
closely matches the manually digitised reference (blue line) in both position and orientation.
The red and blue lines are nearly overlapping, indicating that the extraction method suc-
cessfully captured the correct location and shape of the road marking. The intensity values
of the surrounding points also appear consistent, further supporting the correctness of the
detection. This example illustrates a case of high geometric accuracy, where the centroid
difference between the extracted and reference line is minimal. Cases like this contribute
positively to the overall centroid accuracy scores.

72



4.3 Impact of Extraction Quality on Alignment Accuracy

Figure 4.14: Example of a poorly detected road marking. Red lines represent automatically
extracted road markings. Blue lines represent manually digitised road markings.

From Figure 4.14 it can be seen that the automatically extracted road marking (red line)
differs from the manually digitised reference (blue line) in both length and orientation. The
red line is noticeably shorter and slightly rotated compared to the blue line, indicating that
the automatic extraction method did not fully capture the true shape and extent of the road
marking. This kind of geometric mismatch contributes to centroid and angular errors.

Furthermore, this poor line extraction is not supported by the intensity values of the sur-
rounding points. The visualised intensity clearly shows a continuous high-intensity segment
corresponding to the road marking, which should have been detected as a complete and cor-
rectly oriented line. The fact that the algorithm failed to model it accurately. This suggests
a potential error in the extraction pipeline, possibly in the clustering, line fitting step or line
filtering.

Figure 4.15: Example of a shifted detected road marking. Red lines represent automatically
extracted road markings. Blue lines represent manually digitised road markings.

From Figure 4.15 it can be seen that the automatically extracted road marking (red line) has
a similar length and orientation to the manually digitised reference (blue line), suggesting
that the shape of the road marking was generally captured correctly. However, the extracted
line appears slightly shifted to the right compared to the reference. This offset causes a
difference in centroid position, which contributes to the centroid error.

Despite the surrounding intensity values clearly showing where the road marking is located,
the extracted line does not align precisely with the centre of the visible high-intensity points.
This suggests that there may be a limitation in the automatic extraction pipeline that makes
the extracted line shifted from the original position, which cannot be detected or analysed
through the proposed approach in this research.
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To conclude, the inspection revealed two main types of errors that contribute to centroid
inaccuracies. First, some road markings were extracted with incorrect shape or orientation,
where the detected line was shorter or slightly rotated compared to the reference. This error
may result from limitations in the clustering or line fitting steps that fail to fully capture the
road marking’s extent. Second, other road markings showed a noticeable shift, where the
extracted line was offset from the high-intensity centre despite having the correct shape. The
source of this error cannot be understood through the approach proposed in this research

4.3.2 DTM Difference Residuals Measurement

In Section 4.3.1, it was shown that the automatic extraction method introduces errors when
compared to the manually digitised road markings. These errors come from both detection
mistakes and inaccuracies in the shapes and positions of the extracted lines. In Section 4.1,
it was shown that the quality of the extracted road markings directly affects how many
stable pairs can be used to support the alignment process. Based on those earlier findings,
this section now compares the alignment results using both types of road markings, manual
and automatic, to see how the errors in the automatic extraction reduce the quality of the
alignment compared to the manual benchmark.

To explore this further, Table 4.10, Table 4.11, and Table 4.12 present a summary of the key
metrics used to evaluate both the extraction quality and the resulting alignment performance
for each test. Each table includes measures of line centroid accuracy, detection completeness
and correctness, the distribution of RANSAC inlier weights, and the resulting mean DTM
residuals. These combined indicators provide a basis for analysing how different aspects
of the automatic extraction process, such as geometric accuracy and the number of usable
road markings, contribute to the overall co-registration result when compared to the manual
benchmark

Table 4.10: Summary of extraction and alignment quality metrics for Test 1 and Test 2

Test 1 Test 2

Reference Target Reference Target

AHN3 Prorail2019 AHN5 Prorail2019

Mean ∆3D of Centroid (m) 0.207 0.138 0.202 0.138

Completeness (%) 0.802 0.887 1 0.887

Correctness (%) 0.412 0.463 0.552 0.463

Quality (%) 0.374 0.438 0.405 0.438

Weight

0% - 20% 155 62

20% - 40% 82 0

40% - 60% 2 2

60% - 80% 80 2

80% - 100% 0 23

Mean Residual Map (m) 0.0022 -0.0485
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Table 4.11: Summary of extraction and alignment quality metrics for Test 3 and Test 4

Test 3 Test 4

Reference Target Reference Target

AHN3 Prorail2021 AHN5 Prorail2021

Mean ∆3D of Centroid (m) 0.207 0.129 0.202 0.129

Completeness (%) 0.802 0.807 1 0.807

Correctness (%) 0.412 0.689 0.552 0.689

Quality (%) 0.374 0.592 0.405 0.592

Weight

0% - 20% 43 67

20% - 40% 0 1

40% - 60% 1 1

60% - 80% 1 1

80% - 100% 18 24

Mean Residual Map (m) 0.0395 -0.0116

Table 4.12: Summary of extraction and alignment quality metrics for Test 5 and Test 6

Test 5 Test 6

Reference Target Reference Target

AHN3 Prorail2023 AHN5 Prorail2023

Mean ∆3D of Centroid (m) 0.207 0.151 0.202 0.151

Completeness (%) 0.802 0.959 1 0.959

Correctness (%) 0.412 0.44 0.552 0.44

Quality (%) 0.374 0.432 0.405 0.432

Weight

0% - 20% 81 116

20% - 40% 2 2

40% - 60% 1 1

60% - 80% 0 2

80% - 100% 24 72

Mean Residual Map (m) 0.0031 -0.0156

The results presented in Table 4.10, Table 4.11, and Table 4.12 show that there is no clear
or consistent trend between individual extraction quality metrics (such as centroid accuracy,
detection completeness, or the distribution of RANSAC inlier weights) and the resulting align-
ment accuracy, as measured by the mean DTM residuals. In some tests, higher completeness
or more stable correspondences appear to correspond with better alignment results, but in
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other cases, similar metric values produce different outcomes. This indicates that there is
no direct correlation between any single quality measure and the final alignment accuracy.
Therefore, evaluating extraction quality solely based on global statistics may not be sufficient
to predict alignment success, and it highlights the need to include benchmark distribution
inspection to better understand how extraction quality affects alignment accuracy, as it is
also implemented in Section 4.2.

Figure 4.16: Test 1 benchmark distribution. (a) DTM residual map. (b) Automatically ex-
tracted benchmarks. (c) Manually digitised benchmarks

Figure 4.17: Test 2 benchmark distribution. (a) DTM residual map. (b) Automatically ex-
tracted benchmarks. (c) Manually digitised benchmarks

Based on the visual inspection of Figure 4.16 and Figure 4.17, the DTM residual map in Test
1 (Figure 4.16a) shows a more uniform result with mostly greenish tones, indicating consis-
tent alignment. In contrast, the DTM residual in Test 2 (Figure 4.17a) displays a noticeable
gradient, with greenish areas in the northern lane and bluish areas in the southern lane. This
difference is likely related to the spatial distribution of road markings. In Test 1, both the au-
tomatically extracted (Figure 4.16b) and manually digitised (Figure4.16c) road markings are
well distributed across both lanes. In Test 2, however, the number of stable road markings is
visibly lower, especially in the southern lane. The automatically extracted benchmarks (Fig-
ure 4.17b) show no road markings on the southern side, while the manually digitised ones
(Figure 4.17c) still contain a few remaining features. This lower and uneven distribution of
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road markings in Test 2 shows a match with the less consistent alignment result shown in
the DTM residual map. This supports the findings in Section 4.2, which indicate that larger
alignment time gaps increase the likelihood of discrepancies in alignment accuracy between
automatically extracted and manually digitised road markings.

Figure 4.18: Test 3 benchmark distribution. (a) DTM residual map. (b) Automatically ex-
tracted benchmarks. (c) Manually digitised benchmarks

Figure 4.19: Test 4 benchmark distribution. (a) DTM residual map. (b) Automatically ex-
tracted benchmarks. (c) Manually digitised benchmarks

Figure 4.18 and Figure 4.19 present the benchmark distribution and residual DTM maps for
Test 3 and Test 4. In Test 3 (Figure 4.18), both the automatically extracted and manually
digitised road markings are mostly located on the northern lane. This uneven distribu-
tion appears to result in a gradient pattern in the DTM residual map, with greener tones
in the north and more yellowish tones in the south, indicating alignment differences across
the road width. In contrast, Test 4 (Figure 4.19) shows a more consistent green colour in the
DTM residual map. Although the automatic extraction in Test 4 includes many unstable road
markings, the stable ones are better distributed across both lanes. This suggests that hav-
ing well-distributed, high-stability road markings plays a more important role in achieving
uniform alignment than simply having a high number of extracted features.
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Figure 4.20: Test 5 benchmark distribution. (a) DTM residual map. (b) Automatically ex-
tracted benchmarks. (c) Manually digitised benchmarks

Figure 4.21: Test 6 benchmark distribution. (a) DTM residual map. (b) Automatically ex-
tracted benchmarks. (c) Manually digitised benchmarks

In Test 5, both the automatically extracted and manually digitised road markings (Figures
4.20b and 4.20c) are not well distributed, with most features concentrated on the northern
lane and very few in the southern lane. Despite this, the DTM residual map (Figure 4.20a)
shows a consistent green colour across the area, indicating a uniform alignment result. In
contrast, Test 6 presents a more unexpected outcome. The road markings from both sources
(Figures 4.21b and 4.21c) are well distributed across both lanes and appear more complete,
yet the DTM residual map (Figure 4.21a) shows a slight gradient from north to south. This
finding is surprising, as better benchmark distribution in Test 6 does not lead to a more
consistent residual result compared to Test 5. It suggests that even when the input features
appear well balanced, other factors in the alignment process might still influence the out-
come. Therefore, visual inspection remains important alongside statistical evaluation, as it
helps reveal inconsistencies that might not be obvious from metrics alone.

The results demonstrate that errors in automatically extracted road markings, such as in-
correct segmentation, positional shifts, and inclusion of features that are not actual road
markings, can influence the alignment outcome, particularly by affecting the distribution
and stability of available benchmarks. However, the relationship between extraction qual-
ity and alignment accuracy is not straightforward. As shown across the test cases, high
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completeness or correctness scores do not always correspond with better alignment results.
Similarly, cases with balanced and well-distributed benchmarks sometimes still produce
misalignments. These findings indicate that while extraction errors contribute to alignment
inaccuracies, their exact impact is difficult to quantify using the proposed approach in this
research. This is because the inaccuracies in the extracted road markings may differ between
the reference and target datasets, making the remaining misalignment a combined effect of
errors from both sides and also the quality of spatial distribution of the benchmark, which
remains unexplored through the approach in this research. This highlights a limitation of
the approach proposed in this research, which lacks a controlled way to trace and quantify
how much the extraction errors contribute to the resulting alignment errors. The challenge
is mainly due to the role of the spatial distribution of the benchmark, which acts as the
link between extraction quality and alignment quality. However, a method to quantify the
quality of this distribution has not been explored in this research.

To answer the third sub-research question: the accuracy of automatically extracted road
markings influences LiDAR co-registration by affecting the distribution of the benchmarks
used for alignment. Errors in the extraction process propagate to the quality of the bench-
mark distribution. However, the impact of errors in the reference and target datasets on the
quality of this distribution remains unclear, as the current approach does not quantify the
quality of the benchmark distribution.

4.4 Alignment Accuracy at Varying Distances from Road
Markings

The section evaluates how alignment accuracy changes with increasing distance from the
benchmark area. In Section 4.3, it was shown that the spatial distribution of road markings,
such as when features are only present on a single lane or represented on both lanes of
the highway, affects alignment accuracy. Furthermore, findings from both Section 4.3 and
Section 4.2 indicate that areas located farther away from the benchmark tend to experience
greater alignment errors. Building on these observations, this section investigates how align-
ment performance degrades over distance by dividing the DTM residual map into multiple
segments extending away from the road marking benchmarks as proposed in Section 3.9.3.
The average residual value is calculated for each segment, allowing a comparison of how
alignment accuracy varies spatially. This analysis is carried out for both manually digitised
and automatically extracted road markings to understand how alignment errors propagate
beyond the benchmark area.

As mentioned in Section 3.9.3, this evaluation investigates how alignment accuracy changes
with increasing distance from the area where road markings are used as benchmarks. To
apply the approach, the alignment is performed by registering AHN3 to AHN5 using road
markings located on a highway in the southern part of the extended AOI. These road mark-
ings serve as the only control features used for the transformation, allowing the remaining
area, extending northward from the benchmark location, to be evaluated for changes in
alignment accuracy over distance. The results of the alignment error per segment are shown
in the Table 4.13.
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Table 4.13: Mean DTM difference per segment for the alignment of AHN3 to AHN5

Mean DTM Difference per Segment (m)

Segments Segment 0 Segment 1 Segment 2 Segment 3 Segment 4

Untransformed -0.033 -0.030 -0.020 -0.020 -0.027

Manual 0.001 -0.006 -0.017 -0.015 -0.022

Automatic -0.019 0.147 0.318 0.486 0.645

The results in Table 4.13 show a noticeable increase in alignment error for automatically
extracted road markings as the distance from the benchmark increases, while the manually
digitised benchmarks maintain low and stable DTM difference values across all segments.
When using manually digitised benchmarks, the DTM difference remains low and stable
across all segments. The results show that the alignment remains consistent even for seg-
ments that were far from the area where the road markings are. In contrast, the automatic
extraction shows a significant increase in DTM difference with distance. The results indi-
cate that the alignment accuracy degrades as the segment increases. Overall, the results
show that manually digitised road markings are better at maintaining alignment accuracy
as the distance from the benchmark area increases. In contrast, automatically extracted
road markings lead to larger alignment errors in the farther segments, while in Segment 0,
where the road markings are located, the error from automatic extraction remains relatively
small (around 2 cm). The result suggests that the impact of extraction errors becomes more
significant further from the benchmark area.

Table 4.14: Difference between adjacent segment of AHN3 to AHN5 alignment

Difference Between Adjacent Segments (m)

Extraction Method Manual Automatic

∆ between Segment 0 and 1 -0.007 0.166

∆ between Segment 1 and 2 -0.011 0.170

∆ between Segment 2 and 3 0.002 0.169

∆ between Segment 3 and 4 -0.007 0.159

Mean ∆ -0.006 0.166

Table 4.14 presents the differences in mean DTM residuals between adjacent segments to
further support the findings. The results show that manually digitised road markings result
in smaller differences between segments compared to automatically extracted ones. For the
manual method, the changes in residual values are minimal, within a few millimetres. In
contrast, the automatic method shows significantly larger and more consistent increases in
residual differences between segments, with values around 16 cm. The result shows that
alignment accuracy using automatically extracted road markings tends to degrade faster
with distance than the manually digitised road markings. To better understand the source
of this difference, visual inspection is performed, with the results presented in the following
figures.
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Figure 4.22: DTM difference map for alignment of AHN3 to AHN5 using manually digitised
road marks. (a) Untransformed. (b) Aligned using manually digitised road markings.

Figure 4.22 presents the comparison of DTM difference maps for the alignment of AHN3 to
AHN5 using manually digitised road markings. In the untransformed case (Figure 4.22a),
red and orange tones dominate, especially in the left part of the map. After alignment
using manually digitised road markings (Figure 4.22b), the colours shift closer to green and
yellow, which represent values near zero, indicating improved alignment. Although there
are still some red and orange areas in the right part of the map, they appear lighter and more
scattered, showing that alignment accuracy has improved, particularly in the area where the
benchmark is located, the polygon in the southernmost part of the map.
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Figure 4.23: DTM difference map for alignment of AHN3 to AHN5 using automatically
digitised road marks. (a) Untransformed. (b) Aligned using automatically digitised road
markings.

Figure 4.23 presents the DTM difference maps for the alignment of AHN3 to AHN5 using
automatically extracted road markings. In the untransformed case (Figure 4.23a), most of
the map is covered in red and orange tones, indicating consistent elevation offsets across the
area. After alignment using automatically extracted road markings (Figure 4.23b), the colour
pattern becomes more varied, with blue and green tones dominating the northernmost seg-
ments and red and orange tones dominating the southernmost segments. This variation
in colour of the heat map indicates alignment errors introduced in some areas. While the
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southern segment, where most road marking benchmarks are located, shows relatively low
alignment error, the northern segments display significant misalignments, meaning that the
accuracy of alignment increases with distance from the control features. To better under-
stand why the DTM difference maps from manually digitised and automatically extracted
road markings differ significantly, a visual inspection of the road markings used in the
alignment will be conducted.

Figure 4.24: Distribution of benchmark road markings within the validation AOIs. (a) Man-
ually digitised road markings. (b) Automatically extracted road markings.

Figure 4.24 shows the spatial distribution of benchmark road markings within the validation
AOI. It can be seen that road markings are only located in the southernmost segment of the
AOI. Furthermore, due to the limited spatial coverage of the AHN5 dataset, only the left
half of Segment 0 is fully covered. A more detailed view of the road marking distribution is
provided in the following figure.

Figure 4.25: Closer view of road marking distribution of alignment AHN3 to AHN5. (a)
Manually digitised road markings. (b) Automatically extracted road markings.
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The visual comparison in Figure 4.25 reveals a key difference between the automatically
extracted and manually digitised road markings in the benchmark area. In the automatic
case (Figure 4.25a), several features appear along the road edges that are not present in the
manual dataset (Figure 4.25b). These are non-road marking elements, such as road edge
lines, that were mistakenly included during the automatic extraction process. Since these
features were not successfully filtered out during either the extraction or the correspondence
establishment step, they may have been wrongly used as benchmarks. This introduces false
correspondences, which might distort the transformation estimation and negatively impact
the alignment accuracy. Based on this finding, improvements are recommended in both the
extraction process and the correspondence establishment step to better filter out non-road
marking objects for future work.

To better understand the pattern observed in the DTM difference results, the rotation parame-
ters derived from the transformation matrices are compared. These parameters indicate how
the target point cloud was rotated to align with the reference. In this context, the rotations
are expressed as Omega (rotation around the X-axis), Phi (rotation around the Y-axis), and
Kappa (rotation around the Z-axis). The consistent differences between adjacent segments
shown in Table 4.14 suggest that there is a notable difference in rotation around the X-axis
between the alignment results. Table 4.15 summarises the rotation angle differences between
the manual and automatic alignment results for the AHN3 to AHN5 case.

Table 4.15: Comparison of rotation angles (Omega, Phi, Kappa) between manual and auto-
matic road marking alignment for AHN3 to AHN5.

Rotation Axis Manual RM Automatic RM Difference

Omega (°) 0.000740 -0.046187 -0.046927

Phi (°) -0.004176 -0.000962 0.003214

Kappa (°) 0.005920 0.004096 -0.001824

After comparing the transformation matrices in Table 4.15, it becomes clear that the largest
difference occurs in the Omega angle, which represents rotation around the X-axis. This
is likely because the road that contains the extracted road markings naturally runs along
the X direction. As a result, the road markings are well distributed along the X-axis but
lack sufficient distribution along the Y-axis, making the alignment more sensitive to rotation
errors in that direction.

To conclude, this section shows that alignment accuracy tends to decrease as the distance
from the benchmark area increases, particularly when using automatically extracted road
markings. Manually digitised road markings maintain low and stable alignment errors
across all segments, while automatically extracted road markings show a consistent increase
in DTM residuals. This increase in error is also reflected in the difference between adjacent
segments, where automatic methods show large and consistent jumps in error, while manual
methods show small, consistent jumps. Visual inspection reveals that false features, such
as road edge lines included during automatic extraction, affect the difference in rotation
along the X-axis. However, there is a limitation in this approach: it remains unclear how
differences in road marking distribution between manual and automatic methods directly
affect the rotation outcome.
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To answer the fourth sub-research question: alignment error increases consistently with
distance from the area where road markings are used as control features. This is because the
error originates from a rotation matrix that does not accurately capture the correct rotation
during the alignment process, leading to growing misalignments further from the control
area. However, the factors that determine the extent of this increase cannot be quantified
using the approach applied in this research.

4.5 Type of Uncertainty in Position Harmonisation Using
Automatic Extracted Road Markings

This section identifies and categorises the uncertainties that influence the accuracy of posi-
tion harmonisation when using automatically extracted road markings as reference features.
These uncertainties are examined by reviewing the proposed methodology and the evalua-
tion results obtained in this research. Uncertainty in the alignment process refers to factors
that reduce confidence in the accuracy of the result. These factors can occur at different
steps in the alignment process and affect the following steps, leading to errors in the final
alignment. The uncertainties presented in this section were identified during the research
process through analysis of each alignment stage and evaluation of the resulting outputs. In
this section, the identified uncertainties are organised according to the steps of the alignment
process, as illustrated in Figure 4.26.

Figure 4.26: Alignment process pipeline

4.5.1 Data-Related Uncertainties

The first type of uncertainty originates from the characteristics of the input point cloud data.
These uncertainties are not introduced by processing steps but are inherent to the datasets
themselves. In this research, the reference and target point clouds were acquired from differ-
ent projects, resulting in variations in point density and acquisition time. These differences
introduce uncertainty at the very beginning of the alignment process, which propagates
through the alignment steps and affects the final alignment result. The uncertainties in-
cluded in this category are described below.

Variation of Point Cloud Density

To begin with, the point cloud density and intensity range of road markings in each dataset
were calculated in Section 3.2.4 to understand the characteristics of the input data. The re-
sults are presented in Table 3.1. Further analysis was conducted in Section 4.3.1, where the
accuracy of automatically extracted road marking lines was evaluated. The results shown
in Table 4.9 indicate that the Prorail datasets produced a lower mean 3D centroid difference
compared to the AHN datasets. This performance is related to the significantly higher point

85



4 Results

density of the Prorail datasets compared with AHN datasets shown in Table 3.1. These
findings demonstrate that point cloud density has a direct impact on the accuracy of line
extraction, particularly the 3D centroid position, which in turn affects the stability of corre-
spondences in the correspondence establishment process

Variation of Point Cloud Acquisition Time

Based on the findings in Section 4.1, the number of candidate correspondences is related to
the time gap between point cloud acquisitions. Smaller time gaps result in a higher number
of candidate road markings that proceed to the next step of correspondence establishment. A
greater number of correspondences reduces the risk of over-filtering in the RANSAC-weighted
alignment method, as discussed in Section 4.2. This also increases the likelihood of achieving
a more balanced spatial distribution of road markings, particularly between the northern
and southern lanes of the highway, which contributes to improved alignment accuracy, as
analysed in Sections 4.2 and 4.3.

4.5.2 Extraction-Related Uncertainties

The next type of uncertainty comes from the road marking extraction process. This process
was carried out using an adaptive intensity filtering approach to handle variations in the in-
tensity range of the input data as introduced in Heide 2024. As described in Section 2.2, the
method consists of multiple steps to produce line features that serve as benchmarks for the
co-registration process (see Table 2.3). However, as discussed in Section 4.3.1, the extracted
lines are affected by extraction errors, which in turn influence the alignment accuracy. In-
spection of several extracted road marking samples revealed uncertainties in the extraction
results that may propagate through the alignment process and affect the final accuracy.

Road Marking Clustering Uncertainty

Road Marking Cluster filtering is applied to remove high-intensity objects other than road
marking clusters by evaluating each cluster’s geometric features against road marking ge-
ometry threshold values as shown in Table 2.4. However, as shown in Figure 4.8, some edge
lines were still included as the road markings to be used as benchmarks in the co-registration
process. This indicates that the geometric filtering step is not always sufficient to distinguish
between different types of high-intensity features, particularly when non-road features share
similar geometric properties with actual road markings.

Line Segmentation Uncertainty

Line segmentation is performed using principal component analysis and convex hull fitting
to convert point clusters into line features, as reviewed in Section 2.2, to fit a line into the
road marking segments. However, as shown in Figure 4.14 and 4.15, some extracted lines’
shapes did not represent the road marking very well, while another sample shows that the
line is shifted from its road marking points, leading to an error in centroid accuracy.
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Zigzag and Direction Correction Uncertainty

Zigzag filtering and direction correction are applied to remove line segments that deviate
from the expected road orientation, based on comparison with road direction data obtained
from the Dutch National Road Database (NWB). However, as shown in Figure 4.9 and Fig-
ure 4.10, some features with orientations nearly perpendicular to the road were still included
as benchmarks for the co-registration process.

4.5.3 Correspondence Establishment-Related Uncertainties

Another type of uncertainty comes from the proposed correspondence establishment method
described in Section 3.6. The method depends on the centroid of each line feature as the key
element for establishing correspondences, which may introduce uncertainty due to potential
errors in centroid estimation. In addition, the method uses distance thresholds in both the
candidate correspondence selection step and the inlier evaluation step. The choice of these
threshold values can affect the correspondence results.

Centroid Estimation Uncertainty

The uncertainty comes from the use of 3D centroids to represent road marking segments
during the correspondence process. When a line is inaccurately extracted, such as when
the shape of the line did not accurately represent the road marking (as shown in Figure
4.14) or the position of the line is shifted from its original position (shown in Figure 4.15),
the calculated centroid may not reflect the true position of the actual road marking. Such
centroid shifts can affect the stability of a correspondence and influence the result of the
transformation calculation.

Distance Threshold Uncertainty

The correspondence method relies on spatial distance thresholds to determine which fea-
tures are considered candidate matches and inliers. These thresholds directly affect how
many correspondences are included or rejected. During the inlier evaluation, if the thresh-
old is too small, the number of road markings identified as highly stable will decrease.
Conversely, if the threshold is too large, more road markings will be classified as stable.
This influences the transformation calculation process, as the stability of each road marking
is used as a weight in the computation.

4.5.4 Transformation Calculation-Related Uncertainties

Uncertainties may also occur during the calculation of the transformation matrix used to
align the target dataset to the reference. In this research, the transformation is computed
based on correspondences established using RANSAC inlier voting, where the number of
times each correspondence is selected as an inlier is used as a weight, as described in Sec-
tion 3.7. However, using the inlier count as a weight causes correspondences with very low
inlier counts to be excluded from the transformation calculation. This changes the spatial
distribution of the benchmarks used in the transformation process.
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Spatial Distribution of Benchmark

Uncertainty in the transformation calculation can arise from the spatial distribution of the
correspondences used in the transformation process. As analysed in Section 4.2, where the
transformation results using the RANSAC-weighted alignment method are compared with
the nearest neighbour search method, a significant difference in alignment accuracy is ob-
served for the case of aligning Prorail 2021 to AHN3. Figure 4.1 shows that the stable
benchmarks identified by the RANSAC-weighted method are concentrated only on the north
lane of the highway, with no stable benchmarks found on the south lane. This uneven distri-
bution leads to different alignment results between the two methods. The nearest neighbour
method, which retains some benchmarks in the south lane, produces better alignment accu-
racy. This demonstrates that the spatial distribution of benchmarks plays an important role
in determining the accuracy of the transformation. A similar condition is observed in Sec-
tions 4.3 and 4.4, where differences in the spatial distribution of benchmarks, resulting from
the correspondence establishment process using manually digitised versus automatically
extracted road markings, lead to variations in alignment accuracy.

4.5.5 Alignment Accuracy Validation-Related Uncertainties

The final stage of the alignment pipeline involves evaluating the accuracy of the alignment
results using a DTM differencing method as described in Section 3.8. This process compares
ground surface elevations between the reference and target point clouds, assuming minimal
environmental change. While this method enables large-scale quantitative validation, it also
introduces uncertainties due to specific processing steps such as ground filtering, raster
resampling, and outlier removal. These steps may influence the final DTM difference values
and, consequently, the interpretation of alignment accuracy.

Ground Filtering Uncertainty

The DTM differencing relies on filtering the point clouds to retain only ground points. How-
ever, in datasets without ground classification labels, such as Prorail datasets, this step is
performed using an automated filtering algorithm, such as CSF in CloudCompare, which
is implemented in this research. This introduces uncertainty, especially in areas with low
vegetation such as crops or bushes, which may be misclassified as ground, leading to errors
in the DTM differencing process.

Rasterisation Uncertainty

During rasterisation, the elevation of each grid cell is calculated by averaging all points in-
side the grid. This averaging process can make small changes in elevation less noticeable,
which makes it more difficult to detect small vertical alignment errors. Additionally, the
choice of raster resolution may affect the accuracy of the comparison. A larger pixel reso-
lution may fail to detect small alignment errors, while a smaller pixel resolution may leave
some grid cells empty if there are no points inside the grid, especially in areas with low
point density. These factors introduce uncertainty into the alignment accuracy.
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Outlier Filtering Uncertainty

The research utilises IQR filtering on the DTM difference raster to remove noise on the ground
surface caused by changes unrelated to alignment, such as vegetation or excavation. While
this step reduces some of the noise, it is still difficult to determine whether there is any
remaining noise that contributes to the evaluation results or not.

4.5.6 Summary of Identified Uncertainties

To answer the fifth sub-research question: the following section presents five main types of
uncertainty that influence the accuracy of position harmonisation when using automatically
extracted road markings. Each type corresponds to a step in the alignment process and was
supported by findings from the methodological review and evaluation results. Table 4.16
provides an overview of these uncertainty types and summarises their impacts.

Table 4.16: Summary of identified uncertainties in the alignment pipeline

Type Uncertainty Observed Impact

Data-Related
Variation in point cloud density Affects the accuracy of extracted

road marking centroids

Variation in point cloud acquisi-
tion time

Affects the number candidate
correspondences

Extraction-Related

Road marking clustering uncer-
tainty

Non-road marking features are
classified as benchmark

Line segmentation uncertainty Shifts centroid position, affect-
ing correspondences establish-
ment

Zigzag and direction correction
uncertainty

Non-road marking features are
classified as benchmark

Corr. Establishment-Related
Centroid estimation uncertainty Affects number of correspon-

dences and their stability

Distance threshold uncertainty Affects number of correspon-
dences and their stability

Transformation
Calculation-Related

Spatial distribution of bench-
marks

May produce incorrect rotation
and translation values of align-
ment

Acc. Validation-Related

Ground filtering uncertainty Includes non-ground points, re-
ducing DTM accuracy

Rasterisation uncertainty Choice of pixel size affect DTM
differencing result

Outlier filtering uncertainty Unremoved noises affect DTM
differencing result
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5.1 Selection of Study Case and Study Area

5.1.1 Limitation of Study Case

Although this research provides useful insights into the use of road markings as bench-
marks for LiDAR point clouds co-registration, several limitations need to be considered when
analysing the results. These limitations mainly relate to the characteristics of the study area
and the datasets used, which may affect how broadly the findings can be applied to other
environments or conditions.

First, the study focuses only on road markings located on highways. Highways usually have
well-maintained markings, clear lane separations, and relatively consistent road surfaces.
This makes them suitable for testing automatic extraction methods. However, other road
types, such as urban streets, rural roads, or intersections, often have different surface mate-
rials or levels of fade or tear. These differences can affect the visibility and shape of the road
markings in the point cloud data. Since these road types were not included in the study, the
performance of the extraction method and alignment approach in those conditions remains
unknown. Therefore, the method might not work equally well in more complex environ-
ments.

Second, the highway sections analysed in this study all run in a west-to-east or east-to-west
direction and include only two lanes. This introduces a limitation in the evaluation of road
marking distribution. In this study, only two situations are observed: one where road mark-
ings are spread evenly across both lanes, and one where the markings appear on only one
side. However, in real-world applications, road markings can be more complex, such as at
roundabouts, cross-overs, or areas with construction. The lack of variation in road struc-
ture means the study cannot fully explore how uneven or imbalanced marking distributions
might impact the alignment results, especially for the proposed alignment method in this
research.

Lastly, the datasets used in this study are limited to airborne LiDAR acquisitions, where
Prorail datasets are collected from a helicopter and AHN datasets are collected from an
aeroplane. While these datasets provide high-quality top-down views of road environments,
they do not represent all possible acquisition methods. For example, MLS and TLS provide
data from ground level and often have higher density and different noise characteristics.
These methods may capture road markings differently and could influence both the feature
extraction process and the quality of the final alignment. Because only airborne datasets are
used in this study, the findings may not generalise well to point clouds captured using other
techniques.
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5.1.2 Limitation of Study Area

In a comparison study using different datasets, it is important that all datasets cover the same
area. When datasets differ in terms of their availability or extent, they can unintentionally
introduce bias into the results. This situation happened in this research due to differences
in the release schedule of the AHN5 dataset.

At the time of this research, AHN5 data had not yet been fully released for the entire area
of interest. As shown in Figure 5.1, only the blue region (Regio West 2023) had AHN5
coverage, while the red region (Regio Oost-Zuid 2025) was still unavailable. Because of this,
the analysis using AHN5 was limited to a smaller area, while other datasets were tested
on a larger, more complete region. This discrepancy in data coverage creates bias in the
evaluation.

Figure 5.1: AHN5 data availability during the time of research. Only the blue area (Regio
West 2023) had AHN5 data available when the research was conducted. The red area
(Regio Oost-Zuid 2025) had not yet been released, limiting the AOI and potentially influ-
encing detection performance.

From Table 4.8, the AHN5 dataset shows a perfect completeness score of 1.000, meaning all
road markings in the tested area were successfully detected. However, this result should
be interpreted with caution. It is possible that the unreleased area of AHN5 contains more
difficult or lower-quality road markings, so the high completeness score might be due to the
easier conditions in the available section. It is not clear if AHN5 would perform the same if
tested on the full area.

In this study, the AOI was selected before checking which AHN5 tiles were available. For
future research, it may be better to first review the available data and then define the AOI
accordingly. This would help avoid issues caused by differences in data coverage and ensure
a more balanced comparison between datasets
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5.2 Determination of Z-Score Threshold to Filter Low
Intensity Points in Manually Segmented Road Marking

In this research, a z-score threshold was used to filter out low-intensity points from manu-
ally segmented road marking clusters. This was done to improve the accuracy of geometry
feature calculations by removing noise from non-road marking points, such as pavement sur-
faces that were included in the manual segmentation process. The z-score filtering process
depends on the intensity values within each segmented cluster, where the threshold helps to
determine points that have significantly lower intensity values than the actual road marking.
However, the effectiveness of the z-score filtering is highly dependent on the consistency of
the manually created segmentation polygons. One limitation of this manual segmentation
approach is that it is difficult to manually draw polygons of the same size and shape for
each road marking. Since the segmentation process was done visually in CloudCompare,
the size of the selected area can vary depending on the operator, especially when the road
markings are visually unclear.

This inconsistency directly affects the average intensity value calculated for each road mark-
ing segment. If a larger polygon is used, it is more likely to include additional low-intensity
points from surrounding pavement, while the number of true high-intensity road marking
points remains the same. As a result, the average intensity for that segment becomes lower,
shifting the z-score values of the points. This causes the z-score threshold to perform differ-
ently across segments, depending on the size and content of the manually drawn polygon.
In practice, this means that the same threshold may filter different amounts of points for each
segment, depending on how the segmentation was done. For some segments, the threshold
may remove only the unwanted low-intensity points as intended. For others, it may retain
too many or filter out useful points because the average intensity was shifted due to incon-
sistent polygon sizes. Therefore, while the z-score method is useful for cleaning segmented
road markings, its performance is affected by the manual segmentation step, making it less
reliable when road markings are manually segmented.

Figure 5.2 illustrates how the size of the segmentation polygon affects the result of z-score
thresholding on road marking segments. The top row shows examples where the polygon is
drawn tightly around the road marking, capturing mostly high-intensity points. As a result,
the z-score calculation retains only a small number of points, which are concentrated along
the marking. In contrast, the bottom row shows results when a larger polygon is used, which
includes more surrounding pavement points with lower intensity. This lowers the average
intensity value for the segment, causing more points to pass the z-score threshold. Assuming
that the orthophoto basemap provides an accurate reference for the actual size of the road
marking, the optimal z-score threshold for the top row segment (RM 21) is approximately
-1.5, as it preserves the highest point density within the marking area. In contrast, for the
bottom row segment (RM 35), a threshold of -0.5 is more suitable, as it retains the points
located within the marking and removes most of the pavement points included due to the
larger segmentation area. This shows that the size of the segmentation process affects the
z-score threshold value.
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Figure 5.2: Illustration of z-score thresholding results on road markings using different poly-
gon sizes. Top row: smaller segmentation polygon. Bottom row: larger segmentation
polygon.

These findings highlight the need for an adaptive z-score threshold that can adjust to incon-
sistencies introduced during the manual segmentation process. Since operators may draw
segmentation polygons with varying sizes or shapes, the average intensity value of each
road marking segment can differ significantly. This affects the calculation of the z-score and
results in inconsistent filtering performance across segments. An adaptive approach could
help ensure that points are evaluated relative to the specific characteristics of each segment,
rather than using a single fixed threshold for all.

5.3 Calculation of Geometric Features Threshold for Road
Marking Segmentation

The threshold calculation was based on manually segmented road markings, following the
workflow described in Section 3.3. For each road marking segment, six geometric features
were calculated based on the eigenvalues of the point distribution. These features and their
formulas are shown in Table 2.4. To better understand the range of each feature, histograms
were created to show the distribution of values across all road marking samples. These
histograms helped identify the most common value ranges and detect any outliers. To
remove these outliers, the IQR filtering method was applied to each histogram. Based on this
filtering, the minimum and maximum threshold values were estimated from the cleaned
data distribution. The histograms of all geometric features before and after IQR filtering are
shown below.
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Figure 5.3: Histogram comparison of linearity feature values. (a) Before and (b) after IQR
filtering

Figure 5.4: Histogram comparison of planarity feature values. (a) Before and (b) after IQR
filtering

Figure 5.5: Histogram comparison of sphericity feature values. (a) Before and (b) after IQR
filtering
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Figure 5.6: Histogram comparison of anisotropy feature values. (a) Before and (b) after IQR
filtering

Figure 5.7: Histogram comparison of sum of eigenvalues feature values. (a) Before and (b)
after IQR filtering

Figure 5.8: Histogram comparison of change in curvature feature values. (a) Before and (b)
after IQR filtering

As shown in the histogram plots, most of the geometric features have a single peak in their
distribution. This means that most of the road marking segments have feature values that
cluster around a typical range. These types of distributions are suited for IQR filtering, which
works by keeping only the values that fall within the central range of the data, between the
first and third quartile (Dekking et al. 2005), and removing values that are much lower or
higher than average, which are considered as outliers.
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However, the sum of the eigenvalues features behaves differently. Its histogram shows two
separate peaks instead of just one. Because of this, the IQR method does not work well.
The IQR filter works by calculating the first quartile (Q1) and third quartile (Q3) of the data,
and then only keeping values that fall between them, typically extended slightly using the
1.5× IQR rule Dekking et al. 2005.

But when the data has two different groups, this approach becomes ineffective, since the Q2
will fall between the two peaks. In the case of the sum of eigenvalues, the actual quartile
values are Q1 = 0.3360 and Q3 = 0.9413, giving an interquartile range:

IQR = Q3−Q1 = 0.9413− 0.3360 = 0.6053 (5.1)

The IQR filter then calculates the filtering bounds as:

Lower bound = Q1− 1.5× IQR = 0.3360− 1.5× 0.6053 = −0.5720 (5.2)

Upper bound = Q3 + 1.5× IQR = 0.9413 + 1.5× 0.6053 = 1.8492 (5.3)

This results in a very wide range that includes almost all values in the histogram. As a
result, the IQR filter fails to remove any values. While the filtering formula works correctly,
it is not suitable when the data has more than one peak. The wide IQR range makes it unable
to remove noise values.

The sum of eigenvalues describes the overall size or spread of a point cloud segment. It
is calculated by adding up the three eigenvalues of the covariance matrix, which tell us
how much the points vary in space. A higher value means the segment is more spread out
(either longer, wider, or denser), while a lower value means the segment is more compact or
narrow.

In this case, the histogram of the sum of eigenvalues shows two peaks, which suggests that
there are two different groups of road markings in the data. This makes sense, because
during manual road marking segmentation, the dataset included mainly two different types
of road markings, which are; short dashed lines and long dashed lines. These two types
naturally have different spatial sizes, resulting two peaks in the sum of the eigenvalues
histogram.

Figure 5.9: Two types of road markings segmented for training sample. (a) Short and (b)
long dashed road markings
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Based on these findings, it is recommended that the geometric feature thresholds used to
filter road marking segments in the automatic extraction method should be adjusted accord-
ing to the type of road marking. The presence of two distinct peaks in the histogram of
the sum of eigenvalues suggests that different types of markings, such as short dashed lines
and long dashed lines, have different spatial characteristics. Differentiating thresholds by
marking type could improve the accuracy of the segmentation. This observation also opens
up a direction for future research, not only for improving road marking extraction, but also
for developing methods to classify different types of extracted road markings based on their
geometric features.

The final minimum and maximum threshold values for each geometric feature, as deter-
mined through IQR filtering, are summarised in Table 3.2. These values were extracted from
the cleaned histograms of each feature after removing outliers. They represent the range of
geometric features observed in valid road marking segments. These thresholds are intended
to support the automatic road marking extraction method by helping to distinguish road
markings from other objects in the point cloud.

5.4 Limitations in Alignment Evaluation and Interpretation

5.4.1 Challenges in Visual Inspection for Analysing Error Sources

In this research, visual inspection was used to assess both the detection and geometric accu-
racy of automatically extracted road markings. For detection accuracy, the method involved
overlaying the extracted and reference road markings on ground-classified point clouds,
with intensity values adjusted to make road markings more visible. This was effective in
identifying major detection errors, such as missing markings (false negatives) or incorrectly
extracted features (false positives). However, while these errors could be observed, their
underlying causes could not be fully explained through visual inspection alone.

For example, as shown in Figures 4.5 and 4.6, some undetected road markings still exhibit
high intensity, valid geometric features, and no elevation change that would indicate removal
due to curb filtering. This suggests that the error did not occur in the early stages, such as
intensity filtering, geometry thresholding, or elevation filtering. Instead, the problem may
have originated from later steps like road marking clustering, line segmentation, or zigzag
and direction correction. Since these steps cannot be directly interpreted from the point
cloud, the explanation of the error remains an assumption.

Similarly, for line accuracy, 2D visual inspection was used to verify whether the extracted
lines were correctly placed and oriented. This method helped detect horizontal misalign-
ments and direction errors. However, it did not provide insight into why these errors oc-
curred. This is because visual inspection only reveals the final output of the pipeline, not
the intermediate results, such as the result of adaptive intensity filtering in removing low-
intensity points, the result of clustering high-intensity points, or which lines were removed
during the zigzag and direction correction step. Therefore, although visual analysis is useful
for detecting errors, it is limited in its ability to trace their exact origin within the extraction
process.
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5.4 Limitations in Alignment Evaluation and Interpretation

5.4.2 Difficulty in Understanding Transformation Instability

The results of this research show that the spatial distribution of road markings has an in-
fluence on the quality of the alignment, as identified in Section 4.2 and 4.3. The alignment
accuracy decreased in areas that were far from where the road markings were concentrated,
as shown in Section 4.4. This issue is linked to differences in the transformation matrix used
during alignment, especially in the rotation around the x-axis. This makes sense because the
road markings were mostly distributed along the x-direction of the road, meaning the con-
trol points were unevenly spread in space. However, the current approach does not include
a way to measure or quantify how well the benchmarks are distributed. Because of this, it is
difficult to explain exactly how the quality of the distribution relates to the alignment errors.
Future research is needed to better understand this relationship, especially how the density
and spread of road markings in different directions affect the rotation and translation used
in point cloud alignment.
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6 Conclusion and Recommendations

6.1 Conclusion

As proposed in Section 1.2, this research is conducted to demonstrate the use of road mark-
ing extracted using the method proposed in Heide 2024 as a benchmark in the LiDAR point
cloud harmonisation process to understand how its extraction accuracy affects the final
alignment accuracy. Following that, a main research question is proposed to reflect the
objective of the research:

”How suitable are road markings extracted using the method proposed in Heide 2024 as a benchmark
for heterogeneous LiDAR point cloud harmonisation?”

In this context, suitability refers to how well the extracted road markings fulfil their role as
a benchmark for LiDAR harmonisation. This involves assessing whether they consistently
reduce misalignment across datasets acquired at different times and with different sensors,
despite the presence of inaccuracies in the extraction process

This takes into account that datasets acquired at different times may be affected by envi-
ronmental changes, while different sensors introduce variations in dataset specifications.
These factors may influence the availability and consistency of road markings as bench-
marks between datasets. Therefore, it is necessary to develop a strategy that addresses these
challenges, which is reflected in the first sub-research question.

1. How can reliable correspondences between road markings be established across LiDAR datasets
with different acquisition times?

As researched in Section 4.1, correspondences between overlapping LiDAR datasets with
different acquisition times can be established by applying a stability-based method that fil-
ters road marking pairs using a RANSAC-based voting approach. The results show that this
method generally manages to reduce misalignment, but in some tests, the method fails to do
so, indicating a potential limitation of the proposed approach. In datasets with larger time
gaps, the number of stable correspondences decreases, likely due to environmental changes.
Moreover, the number of stable correspondences from automatically extracted road mark-
ings is consistently lower than from manually digitised ones, showing that extraction errors
reduce the ability to establish reliable matches. Despite this condition, the automatically
extracted road markings were still able to reduce the misalignment between overlapping
datasets.

Based on the findings, the proposed method for establishing correspondences and align-
ing overlapping datasets appears to have certain limitations. To better understand these
limitations, the second sub-research question was formulated.
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6 Conclusion and Recommendations

2. How does weighting the road markings based on their geometric stability influence the accuracy
of multi-temporal LiDAR co-registration?

As investigated in Section 4.2, the results show that weighting road markings based on their
stability does not consistently improve alignment accuracy. Although the method can help
exclude unstable correspondences and performs well when features are well-distributed,
its advantage over a simpler nearest neighbour approach is minimal in most cases. The
added complexity becomes a limitation when the number of initial correspondences is low
or unevenly distributed, particularly in datasets with large time gaps. In these situations, the
method tends to over-filter, reducing the influence of spatially important road markings and
lowering alignment quality. Overall, while functional, the stability-based weighting does not
always lead to better results.

As shown in the results from Section 4.1, there are factors in the automatically extracted road
markings that affect the number of established correspondences, which also affect the align-
ment results when compared to manually digitised road markings. To better understand
this impact, the third sub-research question was formulated.

3. How does the accuracy of automatically extracted road markings influence the accuracy of
LiDAR co-registration?

The findings in Section 4.3 indicate that the accuracy of automatically extracted road mark-
ings influences co-registration results by affecting the distribution and reliability of the
benchmarks used for alignment. Errors in the extraction process, such as undetected road
markings and slight positional shifts of the road marking centroids, affect the alignment
accuracy. However, the relationship is not straightforward. Errors in the extraction pro-
cess affect the spatial distribution of the benchmarks, which then influences the alignment
accuracy. Although the current method shows that extraction errors impact the alignment
result, it does not measure how much they contribute to the overall error. While the cur-
rent method shows that extraction errors have an effect on the alignment result, it does not
quantify how large that effect is. This highlights a limitation of the proposed approach, as it
cannot measure how much the extraction errors contribute to the overall alignment error.

The findings from the previous analysis also show that alignment errors vary across the
test area. To better understand how these errors behave spatially and specifically how they
change with increasing distance from the area where road markings are used as a bench-
mark, the fourth sub-research question was formulated.

4. How does the alignment error change with increasing distance from the area where road mark-
ings are used as a benchmark?

The findings show that alignment error increases with distance from the area where road
markings are used as control features, especially when using automatically extracted road
markings. This increase is mainly caused by rotation errors introduced during alignment,
which become more noticeable further from the benchmark area. While manually digitised
road markings produce stable alignment, automatically extracted features lead to larger
misalignments over increasing distance. This suggests that differences in the transformation
matrix produced by the alignment are influenced by the extraction quality and spatial dis-
tribution of the road markings. However, the current method does not establish a clear link
between the amount of extraction error and the quality of distribution with the resulting
rotation error. As a result, it is not possible to determine how specific levels of input error
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6.1 Conclusion

lead to specific levels of transformation error, which limits the ability to fully understand
the effect of these factors on alignment quality.

Besides the specific findings related to extraction accuracy and alignment results, this re-
search also found uncertainties that can affect the position harmonisation process. These
uncertainties do not happen in just one step but can appear at different points in the align-
ment process, from detecting the road markings to applying the transformation. To better
highlight the uncertainties in the alignment process, the fifth sub-research question was
formulated.

5. What are the types of uncertainty that affect the accuracy of road marking extraction for position
harmonisation?

This research identified five main types of uncertainty that influence the accuracy of posi-
tion harmonisation when using automatically extracted road markings. These uncertainties
occur at different stages of the alignment process and include issues related to input data
quality, extraction errors, correspondence estimation, transformation calculation, and ac-
curacy validation. Each type contributes to reduced reliability in different ways, such as
shifting road marking positions, reducing the number of valid correspondences, or distort-
ing the final alignment result. A detailed summary of these uncertainties and their observed
impacts is presented in Table 4.16, which highlights the challenges in using automatically
extracted road markings for heterogeneous LiDAR alignment.

In response to the main research question, this research concludes that:

The findings of this research show that the suitability of automatically extracted road mark-
ings as benchmarks for LiDAR point cloud harmonisation is affected by both extraction errors
and the spatial distribution of benchmarks. As the alignment time gap increases, environ-
mental changes are more likely to occur between datasets, further reducing the number of
available benchmarks. With fewer available benchmarks, the likelihood of an uneven bench-
mark distribution increases, which leads to errors in the estimated transformation. These
transformation errors cause misalignments that become more noticeable with increasing dis-
tance from the benchmark area, resulting in higher alignment errors across the dataset.

Given these findings, it is not recommended to rely on automatically extracted road mark-
ings as benchmarks for co-registration in scenarios with large temporal gaps between datasets,
especially in cases where the road markings are only available from a single highway that
runs in a single axis. In such cases, the risk of having both a low number of available control
features and an uneven spatial layout is significantly higher, making the resulting transfor-
mation less reliable. It is also not recommended to use areas located far from the benchmark
region in further processing or spatial analysis, especially in cases with large alignment time
gaps, as alignment errors tend to increase with distance from the control area. These conclu-
sions are only applicable to cases similar to the study presented in this research, as different
conditions may lead to different outcomes.

However, a limitation of the proposed method is that it does not quantify how specific levels
of extraction error or distribution quality propagate into transformation errors. This limits
the ability to fully understand or predict the effects of those input conditions on the final
alignment quality. Additionally, this research only investigates one type of road layout,
where all road markings run in a single direction (along the x-axis). As a result, the impact
of other spatial configurations, such as intersections or curved roads, could not be evaluated,
which may influence the generalisability of the findings.
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Reflection of the research:

The findings of this research provide insight into the performance of the current develop-
ment of automatic road marking extraction as a benchmark for heterogeneous LiDAR point
cloud harmonisation, as introduced in Heide 2024, specifically within the study case pro-
posed in this research. This benchmark has the potential to support the goals of the Integrale
Hoogtevoorziening Nederland (IHN) initiative, which aims to co-register point cloud data
across the Netherlands.

The research also proposes a scheme to observe the relationship between the quality of ex-
tracted benchmarks and the resulting alignment accuracy. This scheme provides insight into
which aspects of the relationship can be effectively observed, while also revealing its own
limitations, specifically where it fails to capture deeper patterns needed for more influential
conclusions, such as its inability to quantify how much a specific input condition contributes
to the resulting alignment error. These observations help identify directions for improving
the evaluation method itself. In the context of geomatics, this is important in improving the
quality assessment of point cloud data, as accurate point cloud alignment plays a key role
in supporting reliable 3D modelling and spatial analysis.

In addition, the research proposes a new strategy for establishing correspondences and es-
timating transformations based on the geometric stability of individual features. This strat-
egy was also compared with a simpler, more direct method to evaluate its effectiveness.
The comparison not only informs the performance of the proposed strategy but also con-
tributes new insight into feature-based alignment strategies for heterogeneous point cloud
harmonisation.

The code used to compute the geometry feature thresholds for the road marking cluster
estimation step, to establish correspondences using the RANSAC inlier voting method, and
to perform alignment using the RANSAC-weighted centroid method, as well as the training
datasets used to compute the geometry feature thresholds and the sample datasets used
for alignment in this research, are available in the following GitHub repository: Research
Repository.

6.2 Recommendations

The following recommendations are proposed to address the limitations and challenges
identified in this study and to support future improvements in similar research.

• Improved filtering of non-road marking objects: The automatic extraction often in-
cluded false features (e.g., road edge lines), which negatively affected the alignment.
Enhanced filtering techniques during extraction and in the correspondence establish-
ment phase could help remove these false positives.

• Improved extracted line accuracy: In this study, some of the extracted road markings
did not match the true position or shape of the actual markings. This inaccuracy
indirectly reduced the quality of the alignment. Future work can investigate improving
how the lines are extracted, such as by improving the line segmentation method.

• Investigation of influence of benchmark distribution on transformation matrix val-
ues: Further investigation is needed to understand the influence of spatial benchmark
distribution on specific transformation components (e.g., omega, phi, kappa). This
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6.2 Recommendations

could help to determine the extent to which benchmark distributions can be classi-
fied as stable or unstable for point cloud alignment purposes. Controlled experiments
could be carried out to simulate different benchmark distribution scenarios.

• Dynamic weighting of benchmark: Instead of relying on uniformly weighted bench-
marks, future work could explore adaptive weighting strategies that consider the initial
spatial distribution of the benchmarks as input to give weight to the benchmarks.

• Combining different types of benchmarks: Combining road markings with other
types of benchmarks (building surfaces, railway features, lamp posts, etc.) may help
increase the number of benchmarks, which reduces the risk of unstable distribution of
benchmarks

• Incorporating RGB values for improved road markings filtering: Some high-intensity
non-road marking features, such as unfiltered ground-level car points or planted steel
on roads, may share similar intensity values with road markings and lead to misclassi-
fication. Integrating RGB values can provide additional information to help distinguish
road markings from other high-intensity objects. This could improve both the filtering
of false positives of the extracted benchmark.
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