TU Delft

Multi Agent Deep Deterministic Policy Gradient for Active Wake Control

Guus van der Schaaf

Supervisor(s): Mathijs de Weerdt, Greg Neustroev

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Guus van der Schaaf
Final project course: CSE3000 Research Project
Thesis committee: Mathijs de Weerdt, Greg Neustroev, Przemyslaw Pawelczak

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

In wind farms wind turbines are often placed close
to each other. Each turbine generates a turbulent
wake field, this field negatively affects subsequent
turbines. This can cost more than 12% efficiency.
To decrease this loss we can steer the turbines away
from the wind direction, this will decrease the indi-
vidual turbine power output, but can increase the
total power output of the farm. As the size of the
farm increases the number of possible actions in-
crease exponentially. Due to this a numerical so-
lution is not feasible. A reinforcement learning
technique has been proven useful in the past, but
a standard single agent implementation is still very
computationally expensive. We evaluate the effec-
tiveness of MADDPG on the active wake control
problem. MADDPG is a multi agent reinforcement
learning algorithm. MADDPG will be compared
to the numerical solver FLORIS and to the already
implemented and proven TD3 (which is a variation
on a single agent DDPG algorithm). We compare
the eventual output power of the algorithms with
MADDPG. From the results we can see that MAD-
DPG does improve on the learning performance of
TD3, but since MADDPG needs to manage more
neural networks the overhead is larger. MADDPG
reaches an optimum solution in less training steps,
but these steps take significantly more time.

1 Introduction

In wind farms turbines are placed close to each other, this
gives the most performance per square meter.

This close placement does however introduce wake effects.
The wake effects are the result of turbulent air generated by
the wind turbines rotor blades. The air moves slower behind
the rotor, this negatively influences the next turbine in the row
[1].

If we could address these losses we can improve the power
output and thus generate more renewable energy. A study
showed that in Denmark the observed loss in performance
was 12% due to wake effects[2]. With bigger wind farms
these losses become even larger.

These losses could be addressed by steering the turbines.
A wind turbine generates maximum power when steered
straight in the direction of the wind. By steering a turbine
away from the wind we reduce the power of this turbine, but
can greatly improve the output of the next turbine [3, 4]. This
is called active wake steering [5]. The improved overall effi-
ciency can be achieved without building any new infrastruc-
ture so it is an almost free improvement.

The wakes can be simulated using simplified mathematical
models of the wakes [6, 7, 8]. FLORIS (Flow Redirection
and Induction in Steady-State)[9] is a state of the art numer-
ical solver. Due to the continuous action and state space this
problem quickly becomes too big for a numerical approach.

In the past a solution was explored with Deep Reinforce-
ment Learning [10]. This booked some great result, but this
also suffered from the exponential explosion of parameters.

To adress these limitations we experiment with a Multi
Agent Reinforcement Learning (MARL) approach. We hope
to improve on the single agent learning approach by shrinking
the action space to a simple action per agent. Our hypothe-
sis is that a multi agent reinforcement learning approach will
perform better on large windfarms and suffer less from the
combinatorial explosion. We assume that Multi-agent DDPG
is good algorithm to solve this problem. MADDPG is a well
established algorithm where decentralized agents learn a cen-
tralized critic, this leads to policies that only use local infor-
mation of the agents.

In section 2 we explain the main differences between tradi-
tional RL and MARL and we introduce the MADDPG algo-
rithm. In section 3 we explain the setup for the experiments
and present the results. In section 5 we highlight the respon-
sibility and ethics of the research. In section 6 we discuss
the results and highlight some research areas that might be
interesting for new research.

2 Multi Agent Reinforcement Learning

Traditional Reinforcement Learning has been a established
machine learning method for years [11]. The main learning
loop of RL uses the following general structure:

1. The agent observes the environment

2. With this observation the agent computes an action to
execute

3. After the agent executes this action the agent gets a re-
ward from the environment

4. With this reward we can train the agent to maximize its
reward

By shaping the reward we can guide the agent to a goal. In the
basic approach we save all observation and future reward in-
formation in a so called Q-Table. This works great for smaller
state-action spaces.

Nowadays a Deep Q-Learning [12] approach is more pop-
ular, where the Q-Table is approximated with a Neural Net-
work, this saves creating a fully populated table and thus
saves exploring the complete state space.

In the Actor-Critic [13] paradigm the agents ’brain’ is split
in two parts, the Actor and the Critic part. The Actor is a
function that has as input the current observation and outputs
the best action to take. The Critic is a function that has as
input a observation and an action and outputs the ’value’ of
this action in this given state. The value of the action can be
seen as the future possible reward gained from this action.

Some problems are better suited for a multi agent ap-
proach, instead of a single overarching agent controlling ev-
erything there are now multiple agents controlling only their
own actions, each agent has its own ’brain’. A main advan-
tage of the multi agent architecture is that this shrinks the ac-
tion space of each agent. Instead of computing =™ actions we
now have to compute x * n actions. We could also shape the
reward function differently such that the agents will ’fight’
each other in a competitive scenario or work together in a co-
operative scenario. This also leads to a more elegant approach
to some problems. For the active wake problem a cooperative
algorithm is the best fit.

The multi agent paradigm also introduces some problems.
For instance since all agents execute their own actions with
their own policies there is no stationary policy. We might
get a situation where the agents are chasing around the goal
instead of towards the goal. Also the runtime complexity of
MARL can be higher. By having each agent act on its own
there is more overhead.

Some examples of Deep Cooperative Multi Agent algo-
rithms are [14]:

¢ Independent Q-Learning

* Distributed Q-Learning

* Hysteric Q-Learning

* Multi Agent Deep Deterministic Policy Gradient
« COMA

In MARL the algorithms can be divided in some cate-
gories. One of those categories is Independent Learners. In-
dependent Q, Distributed Q and Hysteric Q are all part of this
category. With Independent Learners each agent is modeled
as its own completely independent agent only using its own
observations for its policy. Another category is Fully Observ-
able Critic. In this architecture the critic(s) can see all poli-
cies of all agents. This stabilizes the learning since there is
a global stationary policy. COMA and MADDPG are part of
this category.

We use the Multi Agent Deep Deterministic Policy Gra-
dient algorithm. This algorithm is based around the Actor
Critic architecture. There are N centralized critics with N
decentralized actors, as illustrated in figure 1. COMA is very
similar to MADDPG, but COMA uses one central critic for
all agents. We assume that by having NV critics each agent can
learn a more specific policy. The execution loop of MADDPG

execution

Figure 1: Architecture of MADDPG [15]

uses the following structure:
1. Each agent observes its local environment.

2. Each agent uses its own local observation to generate an
action to execute.

3. Each agent gets a reward and a new observation from the
environment. Each agent saves these values in its replay
memory.

4. We execute the training function for each agent

The training function is described as follows for each
agent:

1. Take a minibatch from the replay memory. (environment
states, next environment states, taken action, observed
reward)

2. Get from all agents the action they would have executed
in these states.

3. Get from all agents the action they would have executed
for the next states.

4. Calculate the critic value for all actions that would have
been taken in these states.

5. Similar to normal q learning we discount these values
with the rewards. critic_target = reward + v *
critic_value

6. The critic network can now be updated by taking a gra-
dient step in this direction

7. For the actor network we calculate the current policy ac-
tion for the agent in the given states

8. We calculate the critic value for the actions of all agents
and the new action of this agent.

9. With this critic value we can update the actor network.

From the pseudo-code it can be seen that during execution
time we do not need to communicate with the other agents.
MADDPG uses a extra actor and critic network called the tar-
get actor and target critic. The target networks are used when
a value is used for the update process, the normal network is
updated each training step. After some training steps we do a
polyak update [16] to the target network.

3 Experimental Setup

Traditional Reinforcement Learning tasks are often ran using
the OpenAl Gym framework [17], this gives a standardised
base to create environments and algorithms. The wind farm
experiment also has been converted to a OpenAl Gym [18].
This is used as a base for our experiments.

For evaluating our research question we need to test with
multiple sizes of wind farms. This way we can verify on
smaller models that our algorithm converges and test the scal-
ing of the algorithm on the larger farms. We used the follow-
ing wind farm layouts.

¢ 3 turbines in a row, this is called a wind tunnel. This is
to verify our solution is correct.

* A grid of 4x4 turbines, this is a lot larger to test the scal-
ing.

* A model of the Princess Amalia Wind farm [19] consist-
ing of 64 turbines. This is a model of an actual wind
farm, this test will tell us if the algorithm could be used
in the real world.

We tested multiple algorithms versus MADDPG to verify that
it actually resulted in correct solutions and to compare as a
baseline to other approaches.

* FLORIS [20], the numerical solution (this was only ran
on the 3 and 8 turbine farm)

* TD3, as implemented in this paper [10] on the Active
Wake Control problem

« MADDPG

All experiments logged data in a tensorboard format [21].
With this setup we could easily in real time monitor the per-
formance and track what the algorithms were doing. With
this data we could observe if a algorithm was converging to
a solution. All experiments were tested with a constant wind
speed of 20km/h from the west.

4 Results

A result can be considered good if it reaches a optimum goal
in a less training steps. However we also need to evaluate the
amount of time each algorithm needs per training step.

0.00095 4 A a
—— Floris
MADDPG

—— Naive
— TD3

_ 0.00090 -

0.00085 4

CuLpUL U

0.00080

0.00075 4 ._/

T T T T T
0 10000 30000 40000 50000 60000

Step

T
20000

Figure 2: Output Power on the 3 turbine layout evolving over learn-
ing time

In the 3 turbine experiment depicted in figure 2 we can ob-
serve that MADDPG works. It learns a strategy that is better
than doing nothing. Eventually it meets the optimal target set
by FLORIS. We can also observe that for small windfarms a
multi agent approach does not give big benefits since it does
not reach the optimal value in less training steps.

For 16 turbines we can see in figure 3 that MADDPG learns
faster than TD3. In this run it did learn a inferior strategy
and dropped. By running the algorithm multiple times this
could be alleviated. This can be explored in the future. With
more learning time both algorithms would probably reach the
optimum.

On the Amalia wind farm we can see that MADDPG learns
faster. It reaches a value of 0.14 about 50000 training steps
earlier. And stays for almost the complete training time above
the value of TD3.

0.0048

0.0046

0.0044

0.0042

0.0040

Output Power (MW)

0.0038 4

0.0036

0.0034

T T T T
40000 60000 80000 100000

Step

T
0 20000

Figure 3: Output Power on the 16 tubine layout evolving over learn-
ing time

0.015

0.014

0.013

— MADDPG
Naive
—— TD3

0.012

0.011 A

Output Power (MW)

0.010 A

0.009

0.008 -

1] 25000 50000 75000 100000 125000 150000 175000 200000
Step

Figure 4: Output Power on the Amalia layout evolving over learning
time

We also logged the time of every full time step the time
data can be seen in table 1. The corrected rows have their
times divided by the number of turbines in the farm. From
this we can observe that all tested algorithms scale linearly
in time per step with the number of turbines. And MADDPG
needs 7x more time per time step. These values are dependent
on the used hardware.

Algorithm 3 turbine | 4x4 grid | Amalia
TD3 11ms 31ms 217ms
MADDPG 82ms 418ms 1680ms
TD3 Corrected 4ms 2ms 4ms
MADDPG Corrected 27ms 26ms 28ms

Table 1: Training time per algorithm on the Amalia wind farm

5 Responsible Research

All code used to create the MADDPG algorithm is uploaded
on GitHub [22]. To ensure reproducibility of our research
we use seeds to initialize the random processes. This ensures
that the random process will output the same order of values
every time, by using the same seed one should get an identical
learning curve for the same hyperparameters.

The OpenAl Gym used in our research is based upon
FLORIS Simulator, this simulator has been proven to be an
almost perfect simulator for this experiment. FLORIS has
been compared with a particle simulator and produced ap-
proximately the same results in much quicker time. This en-
sures that the data is accurate enough.

6 Conclusions and Future Work

Multi Agent Deep Deterministic Policy Gradient Reinforce-
ment Learning is an effective method to get a solution to the
active wake control problem. The problem is very hard to
solve, mainly since the state action space is exponential.

We first evaluated if MADDPG in the most simple imple-
mentation could generate useful results. This was proven to
be very effective. MADDPG beats the baselines we set for it:

* Doing nothing, the naive approach. This is a very useful
baseline to beat, since we now know that at least we have
not made things worse.

* FLORIS, if we meet the quality of FLORIS we have at
least an almost optimal solution. FLORIS cannot run on
the bigger wind farms so this baseline only holds for the
basic farms.

» TD3, a implementation of single agent DDPG.

We can see that we can meet all these baseline for the three
experiment setups.

However the expected scaling of the algorithm did not hap-
pen. Since there are a lot more calculations per time step the
training process takes significantly longer. We do reach the
optimum in a lower number of steps, but the steps take an or-
der of magnitude longer to process. This might however be
solved by using a faster computer.

In the future MADDPG can be improved in multiple ways.
One could for instance change the state space per agent. A
useful property of MADDPG is that the agents do not nec-
essarily need the same state information, thus we could give
each agent only information that is deemed relevant. For in-
stance only giving the agents the yaws of turbines in their
vicinity. This could shrink the state space and thus increase
the learning speed.

One could also change the reward function. In our algo-
rithm the reward is the total power output of the farm. This
could be split in a reward per agent, this would involve calcu-
lating the contribution of that single agent in the whole farm,
the result would be that the algorithm could be steered to the
correct solution more quickly.

There are also multiple extensions of MADDPG [14] page
11. MADDPG-GCPN has been proven to improve on MAD-
DPG. MAAC has proven to be useful to reduce the dimen-
sionality of the observations.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

LJ Vermeer, Jens Norkaer Sorensen, and Antonio Cre-
spo. “Wind turbine wake aerodynamics”. In: Progress
in aerospace sciences 39.6-7 (2003), pp. 467-510.

R Barthelmie et al. “Modelling the impact of wakes on
power output at Nysted and Horns Rev”. In: European
wind energy conference. Vol. 2. 2009, pp. 1351-1373.

Pieter MO Gebraad et al. “Wind plant power optimiza-
tion through yaw control using a parametric model for
wake effects—a CFD simulation study”. In: Wind En-
ergy 19.1 (2016), pp. 95-114.

Michael F Howland, Sanjiva K Lele, and John O
Dabiri. “Wind farm power optimization through wake
steering”. In: Proceedings of the National Academy of
Sciences 116.29 (2019), pp. 14495-14500.

Jan Willem Wagenaar, L Machielse, and J Schepers.
“Controlling wind in ECN’s scaled wind farm”. In:
Proc. Europe Premier Wind Energy Event 1.01 (2012).

Antonio Crespo, J Herna, et al. “Turbulence charac-
teristics in wind-turbine wakes”. In: Journal of wind
engineering and industrial aerodynamics 61.1 (1996),
pp- 71-85.

Niels Otto Jensen. A note on wind generator interac-
tion. Vol. 2411. Citeseer, 1983.

Angel Jimenez, Antonio Crespo, and Emilio Migoya.
“Application of a LES technique to characterize the
wake deflection of a wind turbine in yaw”. In: Wind
energy 13.6 (2010), pp. 559-572.

Jennifer Annoni et al. “Analysis of control-oriented
wake modeling tools using lidar field results”. In: Wind
Energy Science 3.2 (2018), pp. 819-831.

G. Neustroev et al. “Deep Reinforcement Learning for
Active Wake Control”. In: 2022, p. 10.

Volodymyr Mnih et al. “Playing atari with
deep reinforcement learning”. In: arXiv preprint
arXiv:1312.5602 (2013).

Jianging Fan et al. “A Theoretical Analysis of Deep Q-
Learning”. In: Proceedings of the 2nd Conference on
Learning for Dynamics and Control. Ed. by Alexan-
dre M. Bayen et al. Vol. 120. Proceedings of Machine
Learning Research. PMLR, Oct. 2020, pp. 486-489.
URL: https://proceedings . mlr. press/v120/yang20a.
html.

Ivo Grondman et al. “A Survey of Actor-Critic Rein-
forcement Learning: Standard and Natural Policy Gra-
dients”. In: IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 42.6
(2012), pp. 1291-1307. por: 10.1109/TSMCC.2012.
2218595.

A. Oroojlooy and D. Hajinezhad. “A review of coop-
erative multi-agent deep reinforcement learning”. In:
Applied Intelligence. 2022.

Ryan Lowe et al. “Multi-agent actor-critic for mixed
cooperative-competitive environments”. In: Advances
in neural information processing systems 30 (2017).

[16]

(17]

(18]

(19]

(20]

(21]

(22]

Taisuke Kobayashi and Wendyam Eric Lionel Ilboudo.
“T-soft update of target network for deep reinforce-
ment learning”. In: Neural Networks 136 (2021),
pp. 63-71.

Greg Brockman et al. “Openai gym”. In: arXiv
preprint arXiv:1606.01540 (2016).

G. Neustroev et al. The Wind Farm Gym. 2022. URL:
https://github.com/AlgTUDelft/wind-farm-env.

Noord Zee Loket. Prinses Amalia Windpark. 2008.
URL: https://www.noordzeeloket.nl/en/functions-and-
use/offshore- wind- energy/free- passage- shared- use/
hollandse-kust-noord-wind-farm-zone-including/.
NREL. FLORIS Version 2.4.2021. URL: https://github.
com/NREL/floris.

Martin Abadi et al. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. Software avail-
able from tensorflow.org. 2015. URL: https://www.
tensorflow.org/.

G. van der Schaaf. MADDPG Code. 2023. URL: https:
// github.com/JeffersonYeh/MARL - awc - windfarm/
tree/maddpg.

https://proceedings.mlr.press/v120/yang20a.html
https://proceedings.mlr.press/v120/yang20a.html
https://doi.org/10.1109/TSMCC.2012.2218595
https://doi.org/10.1109/TSMCC.2012.2218595
https://github.com/AlgTUDelft/wind-farm-env
https://www.noordzeeloket.nl/en/functions-and-use/offshore-wind-energy/free-passage-shared-use/hollandse-kust-noord-wind-farm-zone-including/
https://www.noordzeeloket.nl/en/functions-and-use/offshore-wind-energy/free-passage-shared-use/hollandse-kust-noord-wind-farm-zone-including/
https://www.noordzeeloket.nl/en/functions-and-use/offshore-wind-energy/free-passage-shared-use/hollandse-kust-noord-wind-farm-zone-including/
https://github.com/NREL/floris
https://github.com/NREL/floris
https://www.tensorflow.org/
https://www.tensorflow.org/
https://github.com/JeffersonYeh/MARL-awc-windfarm/tree/maddpg
https://github.com/JeffersonYeh/MARL-awc-windfarm/tree/maddpg
https://github.com/JeffersonYeh/MARL-awc-windfarm/tree/maddpg

	Introduction
	Multi Agent Reinforcement Learning
	Experimental Setup
	Results
	Responsible Research
	Conclusions and Future Work

