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Summary

Introduction:

In recent years, the advancement of autonomous driving and electric vehicle technology has
significantly impacted urban mobility. Although these vehicles promise a cleaner and safer
transportation system, new challenges remain in understanding their interactions with vulnerable road
users, such as cyclists.

According to the 2014 EU legislation, electric vehicles (EVs) are required to install Acoustic Vehicle
Alerting Systems (AVAS) to convey information to other road users through sound signals, ensuring
their safety. At the same time, autonomous vehicles (AVs) are also recommended to be equipped with
external Human-Machine Interface (eHMI) systems to promote better interaction with other road users.
However, for the specific category of autonomous electric vehicles (AEVs), the continued requirement
for both AVAS and eHMI systems may appear redundant in terms of functional deployment and
inefficient in terms of resource use. Therefore, it remains unclear whether AEVs can rely solely on
visual eHMI to communicate with road users, thus eliminating the need for AVAS, or if a simple sound
signal can replace AVAS. This study aims to investigate how an additional auditory alert system in
AEVs equipped with visual eHMI affects the objective and subjective safety of cyclists.

Against this background, I conducted research at the Mobility in eXtended Reality Lab at Delft
University of Technology to explore whether additional warning sound systems are necessary in AEVs
to enhance the safety and comfort of cyclists. The study emphasizes the importance of using
immersive virtual reality (VR) technology to simulate real traffic environments for precise behavioral
analysis.

Research gap and research questions:

Existing research has thoroughly demonstrated the need for adding AVAS systems to electric vehicles
when driving at low speeds to ensure they can be detected in a timely manner by other vulnerable
road users. In the field of autonomous driving, eHMI has also been considered effective in many
studies for communicating information to other road users and reducing the rate of traffic
accidents(Wu et al., 2024). Although existing studies have explored pedestrian safety and interactions
with autonomous vehicles, research specifically focusing on interactions between AEVs and cyclists
remains limited. Cyclists face unique risks due to their higher speeds and to, on some types of roads,
sharing the space with vehicles. The quieter engine noise of AEVs at low speeds makes them harder
to detect compared to conventional vehicles, and the absence of human driver control may further
exacerbate the risks faced by cyclists. This study aims to fill this gap by posing the following main
question: How does an additional auditory alert system in autonomous electric vehicles equipped with
visual eHMI affect cyclists' behavior, comfort, and safety under different types of idling vehicles and
environmental noise?

To answer the main research question the following sub-questions were defined:

 In the absence of additional auditory alerts, is there a difference in cyclists' perception abilities
and behavior between autonomous vehicles (AVs) and autonomous electric vehicles (AEVs)
equipped with the same electronic human-machine interface (eHMI) system?

 How does the additional auditory alert system to AVs and AEVs affect cyclists' perception
abilities and behavior ?



 Does the environmental noise level of an area influence the perception abilities of cyclists
towards different types of vehicles equipped with the same eHMI system?

Research Methods:

A controlled experimental approach was adopted in this research, using VR technology to create an
immersive environment that simulates real traffic conditions. This allowed to study the impact of
different variables on the interaction between cyclists and AEVs in various scenarios. In this
experiment, a simulated test environment was created using Unreal Engine, focusing on observing
participants (acting as cyclists) as they responded to different variables. These variables included
different levels of environmental noise, the warning distance of sound signals emitted by autonomous
vehicles, and the autonomous vehicles themselves.

Data was collected in two forms: one objective dataset containing participants' time, speed, and
position, and another subjective dataset obtained through post-experiment questionnaires, reflecting
participants' perceptions of trust, safety, and comfort. The participants consisted of 40 individuals with
diverse ages ranging between 23 to 49 years old, from both genders (32 male; 8 female), and cycling
experiences. Data was collected using a within-subject design to minimize individual differences and
ensure robust results. The dual approach of analyzing subjective survey data and objective data using
Linear Mixed Model (LMM) analysis provided a comprehensive understanding of cyclists' perceptions
and behaviors under different auditory and visual conditions.

Results:

The research results indicate that cyclists' comfort and feeling of safety vary significantly depending
on the auditory and visual cues provided by AEVs. Based on the objective behavioral data collected
from participants and the subjective feedback from questionnaires, AEVs equipped with additional
alert systems and visual eHMI showed significant advantages in terms of safety and comfort
compared to those equipped only with visual eHMI.

In terms of safety, the results of the Linear Mixed Model (LMM) analysis indicate that AEVs equipped
with an additional alert system consistently showed significant effects across various scenarios.
Specifically, participants were able to notice these vehicles earlier and respond more quickly when
encountering AEVs with the additional alert system. This demonstrates that adding extra auditory
signals can help participants detect potential hazards earlier, providing them with more time and
distance to react, thereby effectively reducing traffic risks. The questionnaire results further supported
this finding, showing that participants agreed that AEVs with the additional alert system gave them a
stronger sense of safety after the experiment.

In terms of comfort, the results of the LMM analysis show that AEVs equipped with an additional alert
system allowed participants to respond in a less abrupt manner compared to those without the system.
This was particularly evident in the smoother deceleration observed when interacting with AEVs
equipped with the additional alert system, as opposed to the more abrupt deceleration associated with
other vehicles. This indicates that participants were better able to assess the situation and make more
natural and comfortable responses based on their own judgment, thus avoiding the stress or
discomfort caused by sudden reactions.

Conclusions and Implications:

The research concluded that equipping AEVs with additional auditory warning systems plays an
important role in enhancing the safety and comfort of cyclists. This measure can mitigate the traffic
safety risks associated with AEVs in busy urban environments. This study provides valuable insights



for the future optimization and development of autonomous driving technology, further proving the
critical role of sound warning systems in enhancing road safety and improving the overall user
experience. Therefore, adding the sound signal to AEV with eHMI is not redundant, but have an
added value. These findings are significant for policymakers, vehicle manufacturers, and urban
planners in designing safe transportation systems that cater to all road users. Future research should
further explore the effectiveness of different types of warning sounds and the interactions between
AEVs and vulnerable road users under various real traffic conditions to optimize the sound warning
systems.
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1.1 Research Background

As technology progressed, it was expected that autonomous vehicles (AVs), with their advanced
sensors and algorithms, would reduce human driving errors and lower traffic accident rates
(Muhammad et al., 2021; Fu et al., 2022; Bachute & Subhedar, 2021). They offered convenience to
mobility-impaired groups such as the elderly and disabled, making travel easier (Harper et al., 2016).
Additionally, AVs improved road usage efficiency and reduced traffic congestion through more orderly
and dense driving patterns, thereby optimizing overall traffic flow (Garg et al., 2021; He et al., 2022;
Chen et al., 2023). Meanwhile, as people increasingly focused on environmental protection and
sustainable development, concerns rose about the rapid increase in car ownership and the resultant
vehicle exhaust pollution's impact on the environment. In this context, Electric Vehicles (EVs)
gradually entered the automotive market. As new energy vehicles, EVs used electricity instead of
traditional fossil fuels, effectively reducing the environmental impact of vehicle emissions. Moreover,
EVs, by using electric motors instead of internal combustion engines, significantly addressed the
issue of car noise during peak urban traffic periods (Verheijen & Jabben, 2010; Sadek, 2012).
However, EVs still faced many challenges, such as insufficient battery range compared to traditional
cars, preventing long-distance travel (Greaves, Backman, & Ellison, 2014), a lack of charging
infrastructure making it difficult to find charging stations (Funke, Sprei, Gnann, & Plötz, 2019; Gnann
et al., 2018), and safety concerns from other road users due to EVs' low noise, making them harder to
detect (Pallas et al., 2015; Hoogeveen, 2015).

When AVs and EVs were practically implemented, considerations of their safety interactions with
other road users became a focal point. In the electric vehicle field, engine noise had been a key
concern (Pallas et al., 2015). The noise produced by a car primarily comprised tire friction noise,
aerodynamic noise, and engine noise. At low speeds, engine noise was the main source, while at high
speeds, friction and aerodynamic noises became predominant (Kim et al., 2013). Electric vehicles,
compared to traditional cars, used electric motors instead of internal combustion engines, eliminating
noise caused by combustion and mechanical movement in internal combustion engines. This made
them much quieter at low speeds than traditional cars (Parizet et al., 2014). The significantly lower
noise levels at low speeds made them less noticeable to other road users in urban areas, potentially
creating safety issues (Pallas et al., 2015). In response, countries worldwide introduced related
legislations. The European Parliament approved a regulation in April 2014 requiring all new electric
and hybrid electric vehicles to be fitted with an AVAS (Regulation (EU) No 540/2014).

In addition to the noise issues of EVs, the introduction of AVs also faced challenges in communicating
with other road users. In this field, the application of external Human-Machine Interfaces (eHMI)
significantly improved the safety interactions between autonomous vehicles and other road users (de
Winter & Dodou, 2022; Lim, Kim, Shin, & Yu, 2024). With the help of eHMI, other road users could
more intuitively understand the behavior of autonomous vehicles (Othersen et al., 2018; Alhawiti et al.,
2024). Numerous experiments showed that autonomous vehicles equipped with eHMI were perceived
as safer (Ackermans et al., 2020; Sadeghian et al., 2020). Furthermore, research found that
autonomous vehicles equipped with eHMI provided pedestrians with a sense of safety and trust
similar to that of human-driven vehicles (Faas et al., 2020; Joisten et al., 2020).

The eHMI system communicates with road users through various types of signals, such as text,
patterns, light signals, and sound signals, providing them with more intuitive information so that they
can make quick and accurate judgments (de Clercq et al., 2019). This improves the visibility and
interactivity of autonomous electric vehicles in complex traffic situations (Chauhan et al., 2023;
Hensch et al., 2019). Meanwhile, the AVAS system primarily adds noise to ensure that drivers can
hear the vehicle approaching at low speeds, similar to traditional combustion engines, where
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pedestrians are warned by the engine's presence (Fabra-Rodriguez et al., 2021). It is important to
note that concerns have been raised about the lack of differentiation between the functions of these
two systems, which could lead to unnecessary resource consumption and potentially cause road
users to receive multiple or redundant signals from different driver assistance systems, thereby
extending reaction times and increasing potential safety issues.

For all vulnerable road users, cyclists were not only a popular mode of transportation but also a group
that deserved special attention due to their vulnerability (Kareem, 2003). However, compared to
pedestrians, cyclists were often overlooked, although everyone's safety was equally important.
Because bicycles moved at higher speeds, cyclists had less time to react and make decisions when
faced with sudden situations than pedestrians (Evtyukov, S. et al., 2021). Additionally, when cycling at
high speeds, wind noise could cause cyclists to miss auditory signals from other road users (such as
cars accelerating/decelerating, or tire friction on the road), which placed them in unsafe situations
(Stefánsdóttir, 2014). Therefore, given the popularity of cycling and the safety risks they faced,
research results targeted at pedestrians could not be directly applied to cyclists, and more attention
needed to be given to ensuring cyclists' safety.

Some studies published in 2023 proposed and validated that using eHMI in autonomous vehicles
could replace driver information, and artificial sounds could compensate for the engine noise in
electric vehicles, playing important roles in pedestrian safety perception (Fass, S. M., & Baumann, M.
2021). In 2021, a predictive model for a Mechanical Acoustic Vehicle Alerting System (MAVAS) was
introduced to improve the detectability of electric vehicles while complying with European standards
(Fabra-Rodriguez, M. et al., 2021). Additionally, research in 2023 summarized various eHMI systems
related to bicycles and cyclists, explaining different modes of information interaction and their carriers
(Berge, S. H. et al., 2023). However, despite significant progress in understanding eHMI systems,
research on whether autonomous electric vehicles should be equipped with AVAS systems remained
limited, highlighting a gap that needed to be addressed.

1.2 Problem Definition

Although previous research made significant progress in exploring how eHMI enhanced the
interaction safety between cyclists and AVs (Berge et al., 2022, 2023; Carmona et al., 2021), and
studies also focused on improving the detectability of EVs (Fabra-Rodriguez, M. et al., 2021), there
remained a research gap: whether AEVs needed to be equipped with an Acoustic Vehicle Alerting
System (AVAS). Most current studies focused solely on EVs or AVs individually, without fully
addressing the unique challenges posed by the combination of these two technologies. This was
particularly important in urban environments, where safety concerns were more pronounced, and the
need for a tailored AVAS system for AEVs had not been thoroughly investigated.

The direct aim of this study was to determine whether AEVs needed to be equipped with an additional
sound warning system to ensure the safety and comfort of cyclists. To achieve this, the study used
virtual reality technology to simulate experiments in a realistic urban environment, ensuring controlled
experimental conditions and participant safety.

Through experiments and surveys, this study collected both subjective and objective data and applied
a Linear Mixed Model (LMM) to conduct a step-by-step analysis of key target variables, examining the
differences in the effects of vehicle noise, environmental noise, and the activation distance of eHMI on
cyclists. Based on the collected experimental data, the study further explored whether AEVs should
be equipped with an AVAS system and its potential impact on cyclist safety.
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1.3 Research Objective

To more comprehensively explore whether it is necessary to equip AEVs with an AVAS, this study
aims to analyze in depth the functional overlap between the eHMI and AVAS systems and their
potential impact, examining whether AVAS can be omitted on AEVs already equipped with visual
signal eHMI. The goal of this research is to evaluate whether it is possible to optimize system
configurations to reduce resource waste and lower production costs without compromising road safety.
Current electric vehicle regulations require vehicles to be equipped with an AVAS system to ensure
that they can be detected by other road users in low-noise environments through audio signals, while
autonomous vehicles rely on the eHMI system to communicate with pedestrians, cyclists, and other
road users. However, with the convergence of autonomous driving technology and electric vehicles,
AEVs, as an emerging mode of transportation, a question arises of whether an AVAS is needed when
the AVs have also eHMIs, or if that would be redundant.

Thus, this research will carry out a VR experiments (especially with special audio signals) to
demonstrate if the AVAS system is redundant when an eHMI system is present in an AV or a simple
alarm signal would produce the same safety effect. The intention of this research is to support the
development and manufacturing of AEVs based on scientific data and evidence base, both for
regulators and manufacturer that need to find the best trade-off between traffic safety and costs. This
research will contribute to the development of this emerging technology.

1.4 Research Question

Main research question:

How does an additional auditory alert system in autonomous electric vehicles equipped with visual
eHMI affect cyclists' behavior, comfort, and safety under the influence of different types of idling
vehicles and environmental noise?

Sub-questions:

(1) In the absence of additional auditory alerts, is there a difference in cyclists' perception
abilities and behavior between autonomous vehicles (AVs) and autonomous electric vehicles
(AEVs) equipped with the same electronic human-machine interface (eHMI) system?

(2) How does the additional auditory alert system to AVs and AEVs affect cyclists' perception
abilities and behavior ?

(3) Does the environmental noise level of an area influence the perception abilities of cyclists
towards different types of vehicles equipped with the same eHMI system?

1.5 Research method

The interactions between cyclists and autonomous vehicles (AVs and AEVs) equipped with visual
eHMI were studied in a virtual reality environment under different levels of environmental noise and
with/without an additional auditory alert system. This study aimed to understand how additional
auditory alerts impacted cyclists' attention, perception, and safety when identifying and judging
changes in their environment. VR was chosen over real-life experiments because it allowed for an in-
depth investigation of reactions and behaviors in complex traffic environments while ensuring
participant safety (Ali et al., 2020; Alhawiti et al., 2024). Additionally, VR enabled the simulation of
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realistic scenarios under controlled experimental conditions (Katrakazas et al., 2015; Tatler et al.,
2019), providing deeper insights into how these alert systems enhanced cyclists' safety and comfort.

This study used the Unreal Engine to create a realistic virtual experimental space to achieve this goal.
The virtual environment included city streets (i.e., the experimental roads, which were detailed in
section 3.2 Virtual Environment), vehicles, buildings, and environmental sound effects. To create an
authentic auditory experience, different audio files were carefully selected from multiple sources,
including idle sounds of electric and traditional fuel vehicles, urban background noise, and warning
signals, and were integrated into the environment. These sounds were configured in the VR
simulation to ensure that the auditory experience closely matched real-world conditions.

The experiment was conducted in the MXR lab, which is equipped with high-performance computers,
HTC VIVE Pro Eye VR headsets, and a newly developed virtual reality cycling simulator from the
MXR lab, providing a fully immersive experience. Using these tools, participants could enter the virtual
world, cycle, and experience multiple simulated scenarios.

For the experiment, I recruited between 30 and 40 participants, representing diverse age, gender, and
cycling experience characteristics to ensure the generalisability of the experimental findings. Real-

time trajectory data — cycling paths and speed adjustments from participants were collected during

the experiment. This data allowed us to assess the impact of additional auditory warning systems on
cyclists' ability to detect vehicles as well as their perceptions of safety.

After finishing the experiment, each participant was asked to fill out a detailed questionnaire, which
was used to collect qualitative data. This questionnaire included the participants' subjective
preferences regarding additional auditory warning systems, their safety feelings during the experiment,
and their acceptance of this new system, which might be used in future autonomous electric vehicles.
These qualitative results provided valuable information to better understand the potential impact of
auditory warning systems in real-world applications and public acceptance.

This research aimed to propose that the outcomes of this holistic research endeavor would partly be
used to establish the scientific evidence required for designing and implementing
assisted/autonomous electric vehicles, with an emphasis on external auditory warning systems to
improve road safety. It was believed that this research would not only help improve current regulations
regarding automotive safety but also facilitate the broader adoption and development of autonomous
driving technologies.

1.6 Experiment conceptual framework

The conceptual model of this project is shown in the figure. The main target of the study is to explore
whether it is necessary to add an additional auditory alert system to AEVs that are already equipped
with visual eHMI to enhance the safety of cyclists during interactions with AEVs. Among the potential
variables that may affect the information interaction between cyclists and AEVs, I selected
environmental noise level, signal trigger distance, and vehicle type as the main variables. The specific
experimental design is described in the methodology section (Section 3). The subjective and objective
results collected from the virtual reality experiment and the questionnaire will be evaluated in terms of
safety and comfort to address our research question.
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Figure 1 Experiment conceptual framework
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2 Literature Review
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Autonomous Electric Vehicles (AEVs) represent the integration of Autonomous Vehicles (AVs)
technology and Electric Vehicles (EVs) technology. Although both AVs and EVs technologies are
advancing rapidly, and there is extensive research on each individually, comprehensive studies on

AEVs—particularly focusing on how to ensure they can effectively communicate with other road users

in traffic environments while maintaining safety— remain limited. Ensuring safety while combining

these two advanced technologies presents unique challenges. Research specifically focusing on
AEVs is relatively scarce, likely because they involve the integration of two cutting-edge fields.
However, given the potential safety and operational benefits that AEVs offer by combining the
features of both AVs and EVs, understanding the specific research gaps and challenges related to
traffic safety in these areas is crucial for the successful implementation and broader adoption of AEVs.

The literature review in this chapter aims to provide a comprehensive understanding of the impact of
the integration of AVs and EVs technologies (AEVs) on cyclist safety. Section 2.1 begins by examining
the unique challenges cyclists face as vulnerable road users in urban environments. Sections 2.2 and
2.3 then analyze the current state of AVs and EVs in terms of traffic safety. Following this, Section 2.4
discusses the role of eHMI in enhancing communication between AVs and other road users,
emphasizing their potential to bridge communication gaps. Sections 2.5 and 2.6 address specific
safety considerations related to AVs and EVs concerning cyclist safety, focusing on their advantages
and limitations. Finally, Section 2.7 summarizes the main findings and highlights key research gaps.

2.1 Introduction to Cyclist safety

In the field of urban traffic safety research, the interaction between motor vehicles and vulnerable
road users, such as pedestrians and cyclists, is often the primary focus. Numerous researchers have
explored the urban traffic safety issues of these groups from various perspectives. For example, by
analyzing factors such as urban road layouts, population density, national policies, and non-motorized
vehicle infrastructure (Passoli et al., 2024; Mukherjee & Mitra, 2022; Maghanga, Onkware, & Wasike,
2024), they have proposed several optimization strategies to reduce the occurrence of traffic
accidents. These strategies include reducing vehicle speeds, creating dedicated zones for cyclists
and pedestrians, and raising public awareness through traffic safety education (Eric Dumbaugh & Li,
2010; Pucher & Dijkstra, 2000).

Among vulnerable road users, cyclists face more severe safety risks compared to pedestrians. This is
because cyclists typically travel at higher speeds, which results in shorter reaction times and less
decision-making space. Additionally, the risk of collision increases with higher speeds, and injuries
tend to be more severe. During cycling, factors such as wind noise and friction sounds from the bike
can also affect cyclists' attention, making them face more challenges in complex urban road
environments (Billot-Grasset, Amoros, & Hours, 2016). Moreover, cyclists tend to sustain more
serious injuries in collisions with vehicles compared to pedestrians (Wisch et al., 2017; Mackay, 1975).
Studies have shown that in such accidents, cyclists often fall after being thrown off their bicycles, and
during the slide, they are prone to severe injuries such as fractures or head trauma (Mackay, 1994). In
contrast, pedestrian injuries are typically caused by head impact with the ground, whereas cyclist
injuries often result from falling off the bike, leading to greater bodily harm (Mesimäki & Luoma, 2021).

In addition, several studies have highlighted the risks cyclists face in interactions with motor vehicles.
A study by Macioszek and Granà (2022) emphasized that key factors affecting the severity of injuries
sustained by cyclists in road accidents include the driver's age, alcohol consumption, vehicle speed,
and the type of vehicle involved. The research revealed that larger vehicles, such as trucks,
significantly increase the risk of severe injuries. Environmental factors, such as poor visibility, road
conditions, and cyclists' speed, further exacerbate the potential for injury. Since cyclists are
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unprotected vulnerable road users, these factors considerably heighten the likelihood of injury in
collisions. The study underscores the need for improving urban infrastructure and implementing policy
measures to address these risks and ensure the safety of cyclists on the road.

Johnsson et al. (2021) focused on cyclist-motor vehicle interactions at intersections, particularly
looking at surrogate measures of safety such as minimum time to collision (MTTC) and post-
encroachment time (PET). Their study found that the proximity of cyclists to motor vehicles in terms of
space and time significantly correlates with the likelihood of crashes. Specifically, environments where
motor vehicles turn left or right across cyclists' paths, especially at intersections with simultaneous
green lights for cyclists and vehicles, increase the risk of collision(Johnsson, Laureshyn, & D'Agostino,
2021).

Furthermore, their analysis revealed that the use of larger vehicles, like trucks, coupled with complex
intersection designs without clear separations for cyclists, significantly heightens crash severity.
Johnsson et al. emphasized the need for better traffic signal designs, such as separate phases for
cyclists and vehicles, to reduce the frequency of these dangerous interactions

Overall, cyclists, as vulnerable road users, face safety risks not only in interactions with motor
vehicles but also in potential conflicts with pedestrians and other road users (Muslim & Antona-
Makoshi, 2022). Therefore, future urban traffic planning and policy-making should prioritize the safety
needs of cyclists. Optimizing infrastructure and enhancing traffic safety education will help reduce the
risk of injury for cyclists in traffic accidents.

2.2 Autonomous Vehicles (AVs) and Safety

In the field of autonomous driving, there are five levels of automation as defined by the Society of
Automotive Engineers (SAE). Level 1 is driver assistance, where the vehicle can control either
steering or acceleration/deceleration, but not both simultaneously. Level 2 is partial automation, where
the vehicle can control both steering and speed, but the driver must remain attentive and monitor the
driving environment at all times. Level 3 is conditional automation, where the vehicle can manage all
driving tasks under specific conditions; however, the driver needs to be ready to take over when
prompted by the system. Level 4 is high automation, where the vehicle can operate fully
autonomously within designated areas without driver intervention, though certain situations or areas
may still require manual control. Finally, Level 5 is full automation, where the vehicle can
independently handle all driving tasks in all environments, entirely without human intervention. This
research will focus on Level 5 autonomous vehicles.

Autonomous vehicles, as a new mode of transportation, have gradually become a focal point due to
their multiple potential benefits. For instance, autonomous vehicles can effectively reduce human
errors, shorten travel times, and lower carbon emissions, bringing a range of advantages to urban
transportation systems (Olayode et al., 2023). Through precise algorithms and sensor technology,
these vehicles can more effectively plan routes and reduce traffic congestion, especially during peak
hours (Katrakazas et al., 2015). This efficient traffic management not only saves time but can also
significantly reduce carbon emissions caused by vehicle idling, thereby improving air quality and
mitigating climate change (Alexander-Kearns et al., 2016). Moreover, autonomous vehicles offer great
potential for reducing traffic accidents. Studies show that most traffic accidents are caused by human
errors, such as distracted driving, drunk driving, or fatigue (Easa et al., 2020). By eliminating these
factors, autonomous driving technology is expected to significantly lower the frequency of traffic
accidents. However, despite the promise these technologies hold for the future of urban transportation,



10

ensuring safe interactions between autonomous vehicles and other road users (such as pedestrians,
cyclists, and conventional vehicle drivers) remains a major challenge before widespread adoption.

Several major accidents have raised concerns about autonomous driving technology. In 2016, a Tesla
vehicle in Autopilot mode was involved in a fatal accident in Florida. The driver, overly relied on the
Autopilot system, failed to take corrective action and collided with a trailer truck crossing the highway,

resulting in the driver’s unfortunate death (Banks, Plant, & Stanton, 2016). Similarly, in 2018, an Uber

autonomous vehicle struck and killed a pedestrian in Arizona. This accident revealed the

shortcomings of the technology in complex environments, particularly the system ’s ability to handle

unpredictable factors like pedestrians and non-motorized road users (Stilgoe, 2021).

The primary causes of these accidents are as follows: First, current autonomous driving systems still
rely on human supervision, but drivers often develop an over-reliance on the automated systems,
neglecting potential hazards on the road. Second, autonomous vehicles exhibit technological
deficiencies when dealing with complex road scenarios, such as nighttime pedestrians or sudden
obstacles. To address these issues, stricter regulations and testing standards must be established to
ensure the safety of autonomous vehicles in real-world traffic environments. Additionally, improving
human-machine interaction systems and increasing redundant safety mechanisms, such as external
human-machine interfaces (eHMI), are crucial measures to enhance safety (Stilgoe, 2021).

To tackle this challenge, the industry has widely adopted the solution of equipping autonomous
vehicles with eHMI to achieve optimal communication and interaction between these vehicles and
pedestrians, cyclists, drivers, and other road users. eHMI use visual, auditory, and even tactile
methods to convey the vehicle's status and intentions to other road users, thereby enhancing non-
verbal communication (Grimm et al., 2012). These interfaces can display text, light signals, or sounds
to inform nearby pedestrians and cyclists whether the vehicle intends to turn, stop, or continue moving.
This interactive mechanism not only helps reduce the likelihood of traffic conflicts but also increases
other road users' trust in autonomous vehicles.

Numerous studies have pointed out that eHMI offer significant advantages in terms of safety, as they
compensate for the lack of information typically provided by a human driver(Othersen et al., 2018;

Alhawiti et al., 2024; Dey et al., 2020; Faas et al., 2020). By conveying the vehicle’s status, intentions,

and actions to the external environment, road users can better anticipate the vehicle ’s movements,

leading to a stronger sense of safety and trust — this aspect is also emphasized in Hillis'

research.(Grimm et al., 2012; Hillis et al., 2016). Through this system, autonomous vehicles
communicate their intentions to road users in an intuitive manner, reducing the likelihood of traffic
conflicts and thereby improving overall traffic safety.

2.3 Electric Vehicles (EVs) and Safety

EVs, as a vital part of new energy transportation, exhibit significant advantages over traditional fuel-
powered vehicles in many aspects. First, EVs use electric motors instead of internal combustion
engines, making a considerable contribution to reducing carbon emissions. Their high energy
conversion efficiency allows EVs to utilize electrical resources more effectively, thus decreasing
reliance on fossil fuels. This advantage not only plays an essential role in helping reduce global
greenhouse gas emissions but also provides strong support for mitigating global climate change (Rauf
et al., 2024). As EVs become more widely adopted, urban air quality has also improved. Traditional
fuel-powered vehicles emit large amounts of harmful gases, such as nitrogen dioxide (NO2) and
particulate matter (PM2.5), which are major causes of urban air pollution (Wakamatsu, Morikawa, &
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Ito, 2013; Ramacher & Karl, 2020; Kumar & Joseph, 2006). In contrast, EVs produce no tailpipe
emissions during operation, reducing their negative impact on air quality. Moreover, the noise level of
EVs is significantly lower than that of conventional vehicles, especially at low speeds or when idling,
which substantially decreases noise pollution in cities and improves the quality of life for residents.

However, despite the numerous environmental and energy-related advantages of EVs, they also face
certain challenges. First is the issue of range. Although battery technology is continually advancing,
the range of many EVs remains limited during long-distance driving, particularly in extreme weather
conditions when battery performance may degrade. This poses significant limitations for EVs in long-
distance travel and in remote areas (Thiel et al., 2022). Additionally, EVs charging times are generally
longer compared to refueling with gasoline. Even though fast-charging technology has seen
improvements, charging still takes more time than refueling, which can be inconvenient in daily use.
Furthermore, with the increasing number of EVs, the significant growth in electricity demand places
higher demands on urban infrastructure, such as the power grid. If the grid and other infrastructure
are not upgraded in a timely manner, there could be issues with power shortages. Another challenge
that should not be overlooked is the lifespan and recycling of batteries. While EVs batteries perform
well in the early stages, their performance declines over time. Moreover, the production and disposal
of batteries pose potential environmental concerns, especially as battery recycling technologies are
not yet fully developed. A large number of discarded batteries could pose threats to ecosystems
(Haram et al., 2021).

On the other hand, aside from the limitations of EVs themselves, they have also raised some
concerns in the field of urban traffic safety. While EVs help reduce urban noise pollution, they have
introduced new safety risks, particularly for vulnerable road users (Parizet et al., 2014). Due to the
extremely low noise levels of EVs, especially when traveling at low speeds, pedestrians and cyclists
in noisy urban environments may find it difficult to detect the approaching vehicles, thereby increasing
the risk of accidents (Liu et al., 2018). Vulnerable road users, such as the elderly, children, and
individuals with visual or hearing impairments, often rely on auditory signals to perceive the proximity
of vehicles. The low noise characteristic of EVs makes it harder for these groups to detect the
vehicles, leading to a failure to react in time (Tabone et al., 2021). At night or in busy traffic
environments, the lack of noise cues may result in pedestrians and cyclists being unaware of the
presence of an EV, further increasing the risk of collisions. This is especially concerning for groups
with slower reaction times, such as children, the elderly, or pets, who may overlook the approach of
an EVs while crossing the street, potentially leading to accidents (Petrarulo, 2021).

To address this issue, many countries have begun requiring EVs to emit artificially generated sounds,
such as warning tones, when driving at low speeds to alert pedestrians and cyclists. These sounds
mimic the engine noise of traditional fuel-powered vehicles, helping road users better perceive the
approach of EVs and reduce potential safety risks (Regulation (EU) No 540/2014). However, despite
the gradual implementation of such measures, the safety risks posed by the low noise of EVs still
require further research and technological optimization to ensure that vulnerable road users can more
effectively detect and respond to the presence of EVs. Additionally, the acceleration performance of
EVs presents another potential safety risk. Due to the immediate torque response of electric motors,
EVs can accelerate rapidly, especially in urban traffic environments. If pedestrians and cyclists are
unaware of the EV's acceleration, they may struggle to react in time, leading to potential traffic
accidents (ACRS, 2024).

Therefore, while EVs offer significant advantages in environmental protection and energy use, their
unique low-noise characteristics and acceleration performance have also introduced new safety
challenges, particularly for vulnerable road users. For example, a 2020 study by Pardo and his
colleagues provided experimental evidence that due to the low-noise nature of EVs and their potential
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risks to traffic safety, drivers must pay closer attention to the surrounding traffic environment when
driving EVs (Pardo-Ferreira et al., 2020). His research highlighted the safety issues posed by nearly
silent cars, especially when pedestrians and other road users may have difficulty hearing the relatively
quiet EVs.

In 2018, Karaaslan and his colleagues expanded this research area by using Agent-Based Modeling
(ABM) and employing AnyLogic software for micro-traffic simulation. The study aimed to investigate
the impact of electric vehicles and hybrid electric vehicles on pedestrian traffic safety at low speeds by
conducting experiments in a new three-dimensional simulation environment designed to mimic real
urban intersections. He found that the nearly silent operation of electric vehicles makes it more
difficult for pedestrians to hear the approach of cars, thereby increasing the likelihood of collision
accidents (Karaaslan et al., 2018). This study again emphasizes the very real possibility that electric
vehicles, due to their almost silent operation at speeds below approximately 20-25 miles per hour,
could pose a danger to traffic safety.

To address the issue of EVs being hard to detect, the AVAS has come into the spotlight. AVAS is an
acoustic warning system designed for electric and hybrid vehicles, aimed at improving the
detectability of vehicles when they are traveling at low speeds, particularly when the sound of the
vehicle is minimal as it approaches other road users. As EVs produce almost no noise at low speeds,
AVAS generates artificial sounds to alert nearby road users, such as pedestrians and cyclists,
particularly those with visual impairments, thereby enhancing their awareness of the approaching
vehicle. Several experiments have shown that this system can provide additional safety alerts for
pedestrians in quieter environments, though it demonstrates certain limitations in noisier settings
(Fiebig, 2020; Berge & Haukland, 2019).

2.4 External Human-Machine Interface (eHMI)

The eHMI is a technology used to facilitate communication between AVs and road users, such as
pedestrians, cyclists, and other vehicles. Since autonomous vehicles lack the traditional gestures, eye

contact, or verbal cues provided by human drivers, eHMI conveys the vehicle ’s intentions through

visual, auditory, or tactile signals. These signals inform road users of the vehicle ’s actions, such as

whether it is about to start, stop, turn, or yield. The goal of eHMI is to enhance road safety, especially
in situations where human interaction is absent. By offering intuitive communication methods, eHMI
helps pedestrians and other vulnerable road users understand the behavior of autonomous vehicles,
reducing the likelihood of traffic accidents and increasing trust in autonomous driving technology.

According to the literature review, current eHMI systems can generally be categorized into several
types: first, text-based systems, which convey the vehicle’s status or instructions through text on
screens or display panels, such as “Please go ahead” or “Vehicle started”; second, visual light signal
systems, which use changes in light patterns to communicate information; third, auditory signal
systems, which use alarms or beeps to attract the attention of road users; and finally, tactile signal
systems, which interact with sensors installed in road users' devices, such as pedestrians' or cyclists'
equipment, providing vibrations or other haptic feedback to alert them to the presence or intentions of
the vehicle (Berge S.H. et al., 2023; Deb et al., 2018; Lee et al., 2019; Colley et al., 2019).

Among these, visual light signals are the most common system and the most extensively researched
area. Vehicle warning systems that rely on visual light signals can be further divided into the following
types: one involves projecting information directly onto the road surface through lights or projections
to display the vehicle's behavioral intentions or road conditions; another uses screens installed on the
vehicle to display patterns or symbols to help pedestrians and other road users understand the
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vehicle's next action; a third type uses light strips with flashing or different colored lights to indicate the
vehicle’s status through changes in frequency or color, such as stopping, starting, or turning (Lee et
al., 2022; Feng, Xu, Farah, & van Arem, 2023). However, despite the widespread application and
research on visual light signal systems, most existing studies have focused primarily on this area,
neglecting other forms of eHMI signals, such as auditory signals or tactile signals (Dey et al., 2020;
Liu, H. et al., 2024; Bazilinskyy et al., 2019; Hillis et al., 2016).

In recent years, several studies have explored the impact of eHMI on pedestrian safety and
awareness in various contexts. Liu and his colleagues conducted an experimental study and found
that eHMI with voice signals attracted more attention from pedestrians compared to text or graphic
signals, particularly when using Automated Personal Mobility Vehicles (APMV). Voice signals
demonstrated clear advantages in drawing attention (Liu et al., 2024). However, the limitation of this
study was that it only examined pedestrian behavior in a closed environment, without considering the
impact of external environmental noise on auditory perception. Additionally, it did not explore the
safety concerns of other vulnerable road users, such as cyclists. Meanwhile, Haimerl and his
colleagues found that sound signals in multi-modal eHMI serve as important safety cues for
pedestrians with intellectual disabilities, helping them better assess whether it is safe to cross the
street under traffic stress (Haimerl et al., 2022). This highlights the crucial role of sound signals in
enhancing pedestrian decision-making. Similarly, Kreißig and his colleagues expanded research on
eHMI by examining the impact of different types of eHMI on pedestrian awareness during the
automatic parking of electric cargo bikes (Kreißig et al., 2023). The results showed that visual signals
performed better in building pedestrian trust, but auditory signals also played an important role when
visual cues were absent. Although auditory eHMI were found to be less effective than visual eHMI,
they still significantly improved pedestrian awareness and safety compared to the absence of eHMI.
Overall, these studies demonstrate that both visual and auditory signals are essential for enhancing
pedestrian safety in various scenarios, though the impact on other vulnerable road users, such as
cyclists, requires further investigation.

2.5 Cyclist Interactions with AVs

In discussing the interaction between cyclists and AVs, the study by Berge et al. provides critical
insights. The research systematically analyzes various interaction scenarios between cyclists and AVs
in urban traffic through a literature review, expert interviews, and surveys (Berge et al., 2024). The
study found that several high-risk scenarios exist in the interactions between AVs and cyclists,
particularly during right-turn maneuvers, "dooring" incidents (when cyclists collide with a car door),
and vehicle merging situations. These scenarios present a higher probability of accidents. Experts
highlighted that AVs face significant technical challenges in detecting cyclists, especially when dealing
with complex actions such as merging and turning. These challenges arise because AVs have not yet
fully adapted to dynamic road environments and the behavior patterns of non-motorized vehicles.
Additionally, the study pointed to a potential safety risk known as "phantom braking," where AVs may
suddenly brake due to sensor misinterpretation, which not only poses a risk to vehicle occupants but
also increases the likelihood of collisions with cyclists. To address these risks, the study recommends
the implementation of more proactive safety systems and eHMI, allowing AVs to communicate more
effectively with cyclists and reduce unnecessary traffic conflicts. These findings offer important
guidance for the development of autonomous driving technology, emphasizing that AVs must pay
greater attention to the safety needs of cyclists, particularly in road-sharing environments.

Apart from safety, cyclists' comfort in their interactions with AVs is also a critical research topic. As
autonomous driving technology gradually advances, the comfort of cyclists during their travels has
become an important factor that must be considered in traffic design (Botello et al., 2019). Gaio and
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his colleagues' research delves into the impact of AVs on cyclists' attitudes, particularly focusing on
their sense of safety and comfort when interacting with AVs. Through on-site interviews and focus
group discussions conducted in four "living labs" across three countries, the study gathered direct
experiences and perceptions from cyclists regarding AVs. The results indicate that cyclists generally
feel uneasy when interacting with AVs, particularly due to the lack of non-verbal communication (such
as eye contact and gestures) with the driver, which leads to a diminished ability to predict AVs
behavior, thereby reducing their sense of safety. In some cases, this unease surpasses that
experienced during interactions with traditional vehicles, highlighting the need for improvements in
comfort and trust in autonomous driving technology (Gaio & Cugurullo, 2024).

Furthermore, the study also highlighted that cyclists' sense of safety and comfort is closely related to
the surrounding traffic conditions and infrastructure design. Participants emphasized that dedicated
cycling infrastructure, such as separate bike lanes and clear traffic signage, is crucial to ensuring the
safety and comfort of cyclists. In the absence of such infrastructure, cyclists often feel more
vulnerable, especially in situations where they must share the road with motor vehicles. Gaio and his
colleagues' research further pointed out that the introduction of autonomous vehicles could
exacerbate the power imbalance between cyclists and motor vehicles, leading to the further
marginalization of cyclists in traffic.

To address these issues, the study recommends that regulatory authorities closely monitor the
communication gap between autonomous vehicles and cyclists, and develop more effective
communication mechanisms and technologies. For example, optimizing eHMI systems so that they
not only convey the vehicle's intended actions but also adjust in real-time to interact with different road
users. Additionally, improvements in urban design are equally important. Dedicated cycling
infrastructure and clear traffic management policies can significantly enhance cyclists' sense of safety
and comfort. The design of future urban transportation systems must balance technological
development with the actual needs of cyclists to ensure that the safe implementation of autonomous
driving technology does not compromise the rights of vulnerable road users (Gaio & Cugurullo, 2024).

2.6 Cyclist Interactions with Electric Vehicles

The interaction between electric vehicles and cyclists is also a key focus in traffic safety research.
Compared to pedestrians, cyclists have more difficulty noticing vehicles that are in low-speed or idling
states, making them more prone to accidents. Liu and his colleagues conducted a study on electric
vehicle accidents in Norway and identified several key factors contributing to the occurrence of such
accidents.(Liu et al., 2022) First, the almost silent operation of electric vehicles makes it more difficult
for pedestrians and cyclists to detect their approach, especially when they are traveling at low speeds.
This quietness increases the risk of accidents. Second, electric vehicle accidents often occur in urban
areas and at road intersections, where there are usually more pedestrians and cyclists, leading to an
increased risk of interactions with these vulnerable road users. Additionally, most electric vehicle
accidents occur on low- and medium-speed roads (below 80 km/h), primarily during weekday peak
hours, particularly in the morning and evening rush hours, which is closely related to the usage
pattern of electric vehicles for short-distance commuting. The study also found that collisions between
electric vehicles and cyclists or pedestrians are more frequent, with nearly one-third of accidents
involving these vulnerable road users.

To address these issues, Liu and his colleagues proposed a series of effective measures. First,
electric vehicles can be equipped with sound alert systems to improve their audibility at low speeds,
thereby alerting pedestrians and cyclists. This measure has already been implemented in the
European Union, requiring new electric vehicles to be fitted with an AVAS. Second, improving urban
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infrastructure is crucial, such as creating safer pedestrian and cyclist pathways in busy areas and at
intersections, installing traffic lights, speed bumps, and signs to enhance the visibility of road users.
Additionally, increasing traffic safety education for electric vehicle drivers, cyclists, and pedestrians is
essential to raise awareness of potential traffic risks, particularly emphasizing the dangers posed by
the quiet operation of electric vehicles. Moreover, when designing roads, the installation of central
medians can be considered to significantly reduce the severity of collisions, as studies have shown
that medians greatly reduce the occurrence of head-on collisions. Finally, the ongoing collection and
in-depth analysis of electric vehicle accident data will help identify potential safety issues and trends.
As electric vehicle adoption increases, researchers need to regularly update the data to make timely
adjustments to traffic safety strategies (Liu et al., 2022).

Stelling-Konczak and his colleagues' study also explored how the use of electronic devices affects
cyclists' safety, as well as the impact of the quietness of hybrid and electric vehicles on cyclists. Using
a literature review and accident data analysis, the study found that listening to music or making phone
calls while cycling significantly reduces cyclists' auditory perception, increases self-reported accident
risk, and affects cycling performance. Additionally, hybrid and electric vehicles are very quiet when
traveling at low speeds, making it harder for cyclists to detect their presence, especially in noisy traffic
environments. Although there is no direct evidence that the quietness of electric vehicles leads to a
higher accident rate for cyclists, the data show that collisions between electric vehicles and cyclists
occur more frequently compared to collisions with pedestrians. The study emphasizes that cyclists
rely on auditory cues in low-visibility situations, and the lack of sound alerts increases safety risks
(Stelling-Konczak et al., 2015).

2.7 Summary of Key Findings and Research Gaps

Key Findings:

 AEVs combine the advantages of AVs and EVs, potentially reducing human error and emissions
while improving traffic flow.

 Cyclist Safety: Cyclists face higher risks than pedestrians, primarily due to speed, visibility, and
limited reaction time, especially when interacting in mixed traffic environments and high-density
areas.

 Safety Issues for Cyclists with AVs: Although AVs show potential for reducing human errors and
enhancing road safety, they still face challenges in recognizing and safely interacting with cyclists,
especially in complex urban settings.

 Safety Concerns with EVs: EVs' near-silent operation at low speeds poses potential risks for
vulnerable road users who rely on auditory cues.

 External Human-Machine Interface: eHMI has shown potential to improve communication
between AVs and vulnerable road users, though the effectiveness varies across signal types
(visual, auditory, etc.).

Research Gaps:

 Limited research on AEVs interactions with diverse road users (especially cyclists) in traffic
environments.
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 A lack of in-depth studies on combining eHMI with AVAS to improve cyclist safety and comfort in
AEVs.

 Absence of experimental testing to evaluate the effectiveness of multi-sensory eHMI under
different traffic and environmental noise conditions.

 Few studies address the long-term impact of AEVs on cyclist behavior, trust, and perceived
safety, especially in mixed traffic environments.
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3 Methodolgy
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This section summarized the research methodology, detailing the conceptual model of the experiment,
the experimental scenario design, the equipment used, and the experimental procedure. Section 3.1
first described the conceptual model of the experimental design. Section 3.2 provided a detailed
explanation of how the virtual experimental environment was established. Sections 3.3 offered
specific descriptions of the equipment used in the experiment. Section 3.4 introduced the
experimental process.

3.1 Experimental Design

This study employs immersive virtual reality experiments to investigate the effects of autonomous
vehicle types, environmental noise, and eHMI trigger distance on cyclist behavior. A within-subject
design approach was used in the study to remove the effects of individual differences, where each
participant experiences all experimental conditions or treatments. This means that the performance of
each participant will be measured and compared under different conditions.

The main variables involved in this experiment (independent, dependent, and intermediary variables)
and their relationships are shown in Figure 3.1. In this figure, yellow represents independent variables,
blue represents intermediary variables, and green represents dependent variables. I selected three
main independent variables to investigate their influence on cyclist behavior: environmental noise
level, vehicle type, and signal trigger distance. These independent variables were chosen to represent
different conditions that cyclists might encounter in real traffic environments, with the aim of exploring
their impact on cyclist safety. The figure also includes two intermediary variables: noise and warning
signals, which represent how the independent variables influence cyclist behavior through certain
mechanisms. Specifically, different environmental noise levels and vehicle types affect the level of
noise, while signal trigger distance affects the range of the warning signal. These intermediary
variables further influence multiple dependent variables, which are the measured outcomes in the
experiment: reaction distance, maximum deceleration, safety distance, and lateral attention.

Figure 3.1. Variable relation Map
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Table 3.1. Main variables included in the experiment

Independent Variables

Variable Definition Brief Indication

Environment Sound Level
The level of ambient noise in the

environment

Compares quiet residential areas with noisy
streets to observe cyclists' reactions under

varying noise conditions

Vehicle Type Different types of vehicles used in the study
Includes AVs with eHMI, AEVs with eHMI,
and AEVs with eHMI and additional auditory

alerts to test safety impacts

Signal Trigger Distance
The distance at which the eHMI signal is

activated

Tests short, medium, and long activation
distances to assess their effect on cyclists’

awareness and reactions

Intermediary Variables

Noise
Combines ambient noise level and idle

engine noise from vehicles

Simulates real-world road environments with
varying background noise levels to test

cyclist perception

Warning Signal
Determined by the combination of trigger

distance and vehicle type
Assesses how signal strength and vehicle
configuration affect cyclists’ responses

Dependent Variables

Reaction Distance
The distance between the cyclist and the

vehicle at the time of response
Measures the cyclist's reaction speed under

different experimental conditions

Safety Distance
The distance between the cyclist and the
vehicle when the cyclist completes their

response

Measures the cyclist's complete response
behavior under different conditions

Max Deceleration
The strength of deceleration applied by the

cyclist when responding
Reflects the cyclist's perception of the

urgency of the signal

Side Attention
The level of attention the cyclist pays to
auditory signals in the environment

Indicates the cyclist's sensitivity to warning
signals and ability to focus on information in

complex environments

The main variables in this experiment and their definitions are shown in Table 3.1. For a more detailed
description, see Appendix A. In this study, by systematically manipulating three independent variables
using the controlled variable method, a total of 18 different experimental scenarios were generated.
These 18 scenarios are divided into two main levels, each corresponding to a different environmental
noise level. Specifically, one level of scenarios is set in a quiet residential area, while the other level is
set in a busy street environment. Within each level, the scenarios are further subdivided into 9
different conditions, which are determined by varying the warning signal trigger distances and vehicle
types.

This carefully designed combination of scenarios allows for comprehensive data collection and
analysis under 18 different conditions, enabling an in-depth exploration of the impact of each
independent variable on participants' behavior and reactions. During the experiment, participants will
ride from the starting point to the endpoint, simulating a real cycling experience. If participants
perceive a warning signal emitted by a vehicle(The light signals emitted by the roof-mounted visual
eHMI and the additional warning sound signals installed on some vehicles), they will be required to
execute an evasive maneuver, such as changing direction or reducing speed, to avoid potential
hazards. This reaction process reflects participants' decision-making abilities and response behaviors
when faced with sudden situations.

In each scenario, only one variable is changed while all other variables remain constant. This
controlled variable method allows for the precise evaluation of the effect of a single variable on the
experimental outcomes. Since all other parameters in the virtual environment are consistent, the
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impact of each variable can be independently analyzed. This approach not only enhances the
reliability and validity of the experimental results but also reduces the interference of external factors
on the outcomes, enabling a more accurate understanding of the role and significance of each
variable under different conditions.

Table 3.2. Two different level based on the Environment Sound Level

Quiet Residential area Very busy Streets

54 dB 68 dB

Table 3.3. Experiment scenario for each sound level

Vehicle Type Additional Signal Trigger distance

AVs with eHMI 15 m

AEVs with eHMI 15 m

AEVs with eHMI and Additional alert 15 m

AVs with eHMI 20 m

AEVs with eHMI 20 m

AEVs with eHMI and Additional alert 20 m

AVs with eHMI 25 m

AEVs with eHMI 25 m

AEVs with eHMI and Additional alert 25 m

3.2 Virtual Environment

To ensure the scientific rigor and precision of this experiment, I adopted a controlled experimental
method, which allows us to isolate and systematically compare the impact of each variable on
participants' attitudes toward cycling safety, both subjectively and objectively, as well as their cycling
behavior. The advantage of using a controlled experiment is that it minimizes external interference,
enabling us to focus on comparing the specific effects of different factors on cyclists' behavior and
safety perception. For this purpose, I set up 18 test sections within the experiment, each representing
a specific test scenario. These scenarios encompass various combinations of variables, allowing us to
explore in depth the influence of factors such as vehicle type, environmental noise levels, and signal
trigger distances on cyclists.

The advantage of choosing a virtual reality (VR) experiment lies in its ability to replicate real-world
scenes and environments to the greatest extent possible, while also precisely controlling various
potential influencing factors that are difficult to quantify in the real world. By using VR technology, I
can eliminate random external environmental interference, thereby ensuring the reliability and
repeatability of experimental data. Additionally, the VR environment provides a safe platform for
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participants, allowing them to simulate real cycling scenarios and respond accordingly without facing
actual traffic risks. This approach offers a high degree of flexibility and safety for conducting the
experiment(Rizzo et al., 2009; Guo et al., 2018; Howie & Gilardi, 2021; Newman et al., 2022).

The virtual environment used in this study was constructed using Unreal Engine and is designed as a
long, straight road shared by both bicycles and cars. The road is 1400 meters long and 4.5 meters
wide, representing a standard two-lane shared road. To make the experimental environment as
realistic as possible, this virtual road is designed for two-way traffic with no intersections, simplifying
cyclists' decision-making processes and focusing on testing the impact of specific variables.

Along this road, 12 parking zones are set up, each 30 meters long, with vehicles parked
perpendicularly to the road, facing the street. The parking zones are separated by residential areas
ranging from 60 to 80 meters in length. These residential areas not only enhance the realism of the
scene but also provide practical conditions for simulating the propagation of sound signals and
environmental noise, as shown in Figure 3.1.

Figure 3.2. Experiment environment setting

The shapes of the parking areas are shown in Figure 3.2. Each parking area represents an
experimental section. Upon completing one section and entering the next, there is a transition area to
guide participants back to a designated position, ensuring that each experiment controls for
participants entering the experimental area from the same location. In this area, a vehicle will drive in
the opposite direction to encourage participants to ride on the right side of the road. In each
experimental section's parking area, 10 cars are evenly distributed, all with the same shape but
different colors to provide visual diversity and realism. At the beginning of the experiment, the eHMI
signal lights on these vehicles remain inactive. These devices only activate and start emitting signals
when participants enter the predefined signal trigger distance. The experimental setup ensures that in
each scenario, when participants enter the parking area, only one of the 10 cars is in an idling state.
This vehicle emits continuous light and sound signals based on the distance between the participant
and the idling vehicle upon entering the designated zone. The sound of the signal received by the
participants follows natural laws, increasing in volume as the participants approach the vehicle.
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Specifically, when participants approach the parking area and enter the signal trigger range, they will
first notice the engine noise of the idling vehicle. The loudness of this sound is designed to account
for the characteristics of sound propagation and attenuation in a real environment. To realistically
simulate the perception of sound approaching from a distance, Unreal Engine uses an inverse square
attenuation formula, which is particularly suited for open environments.

L =
L0

d2

L (dB):represents the perceived loudness at a distance d.

L0 (dB):is the reference loudness near the sound source (typically the loudness at the source).

d (m):is the distance between the sound source and the listener.

This formula ensures that the loudness decreases with the square of the distance, simulating the
behavior of sound in real life. For example, when the distance doubles, the loudness decreases to
one-quarter of the original value. In Unreal Engine, this formula is essential for maintaining the realism
of sound in open environments, where sound naturally spreads over a larger area. By using this setup,
the realism of the experiment and the participants' sense of immersion will be enhanced. When
participants continue to move forward and enter the preset signal trigger zone, the eHMI signal lights
on top of the idling vehicle will be activated and start emitting light signals.

Figure 3.3. Parking area setting draft

In order to ensure the accuracy of the experimental data and reduce the possibility of the participants
forming habitual reactions due to repeated attempts, I randomly set 3 interference zones in 12 parking
spaces. Data from these interference regions will not be included in the final analysis to avoid
interfering with the experimental results. In these interference zones, I set up two specific scenarios:
in some cases, certain vehicles would not trigger any signals, and subjects would drive by without
receiving any visual or auditory cues. In other cases, certain vehicles will leave the parking space
immediately after the signal. This setup is designed for disrupting the participants' expected
responses so that they do not act on the same pattern through the whole experiment, which can avoid
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the formation of habitual responses. In this case, this design can not only helps to avoid the influence
of "learning effect" on the experimental results, but also increase the authenticity and complexity of
the virtual experimental environment, and finally improves the accuracy of the simulation of real
driving scenarios.

In addition, to further increase the general realism of the experimental situation multiple finer objects
and features were added in the virtual setting. The road was dotted with residential buildings, potted
trees, streetlamps and parked cars on both sides. These details both deepen the visual of the scene
and give participants more information about the environment, these settings can make the
participants naturally immerse themselves in the virtual environment.

During the experiment, participants wore head-mounted display (HMD) virtual reality equipment and
experienced the experiment from a first-person perspective. Through the HMD devices, participants
were able to cycle in a nearly realistic street scene. The participants' perspective was presented
through a virtual camera, and they moved within the scenario using a custom-made bicycle simulator.

This design aims to allow participants to conduct the experiment more naturally, while also striving to
achieve a reasonable degree of similarity between the experimental conditions and real-world
scenarios. Although simulations are simplifications of reality, setting up a realistic scenario can still
make the responses and behaviors of participants resemble what they might do in the real world,
thereby increasing the external validity of your study. By taking this approach, the experiment data will
not only show the behavior of participants in a virtual environment, but it can also offer some insights
into analyzing and predicting their behavior in real-world contexts. In essence, this experiment, with its
detailed setup, will yield invaluable data and insights for optimizing eHMI strategies in AEVs.

3.3 Experimental Equipment

In this experiment, a bicycle simulator (described in Section 3.4) and two HTC VIVE Pro Eye Head-

Mounted Display (HMD) virtual reality devices (resolution: 1440 × 1600 pixels/eye, 110 FOV, 90Hz

refresh rate) were used (as shown in Figure 3.4). This setup was implemented so that one device
could serve as a backup during the experiment. The HTC devices were connected to a Windows 10
desktop computer equipped with an Intel Core (TM) i7-8700 CPU, 16GB RAM, NVIDIA GeForce RTX
2070 graphics card, and a SanDisk SD9SN8W 256GB SSD. The HMDs were run on a Windows 10
desktop computer powered by an Intel Core (TM) i7-10700F CPU, 16GB 2933MHz RAM, and an
NVIDIA GeForce RTX 3060 GPU. Virtual reality technology has been widely accepted by many
scholars, and HMDs, as a type of VR device, play a crucial role in immersive experiments. However,
since HMD devices come into direct contact with the face, a lack of cleanliness could lead to hygiene
and comfort issues. Therefore, in this experiment, a system of alternating between the two devices
was adopted.
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Figure 3.4. HTC VIVE Pro Eye

Keep operating the above mentioned method then it ensures that the equipment is cleaned fully and
disinfected after its each use. Not only does this method serve as a very direct disinfection aid for the
gadgets (important because of Covid-19 pandemic is just over), it also helps maintain the equipment
in optimal condition. Participants performing the experiment while wearing the HMD VR devices,
usually cycling in the virtual environment, make physical effort that may lead to sweating as well.
Sweat can accumulate which will alter the comfort of the equipment and may cause them to feel
uncomfortable, in turn making it difficult for participants to concentrate on the experiment. To this end,
the device will be kept clean and dry for every individual use.

Another benefit of alternating equipment use is that it allows for more optimal utilization. First, this
ensures that all participants can conduct the experiment with the equipment in its best condition,
avoiding any discomfort caused by hygiene issues. Additionally, while one set of equipment is in use,
another can be cleaned or replaced, thereby reducing downtime during the experiment. This not only
makes the experimental process more convenient but also provides participants with a more
comfortable and safe experience.

On the other hand, in this study, a newly developed virtual reality (VR) cycling simulator from the
Mobility in eXtended Reality Lab at the Faculty of Civil Engineering and Geosciences at Delft
University of Technology was also utilized. The simulator consists of a bicycle mounted on a Tacx
Flow Smart rear-wheel resistance trainer and a virtual reality headset (HTC VIVE Pro Eye).The
electromagnetic resistance unit on the rear wheel provides resistance during cycling. During the
experiment, participants only need to wear the HMD, and by using the cycling simulator as they
normally would—by pedaling the pedals or pressing the brakes—they can move forward or stop in the
virtual environment.

However, the simulator cannot simulate the tilting or pitching motions of a real bicycle, allowing only
forward motion and lacking steering capabilities. To address this limitation, a VIVE controller was
attached to the handlebars of the bicycle, allowing participants to make lateral movements by
pressing buttons on the controller, partially fulfilling the need for left and right directional adjustments.
Before the experiment, participants will be informed that by pressing the trigger buttons on both
handles of the VIVE controller, they can translate their position 5 cm in the corresponding direction in
the virtual environment. Holding down the trigger button will continuously move them in that direction
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until the button is released. Although this setup does not fully replicate the real-world cycling
experience, it allows participants to make basic directional changes in the virtual environment. See
Figure 3.5.

Figure 3.5. Bicycle Simulator

3.4 Experimental Procedure

The experiment consists of four stages:

(1) Pre-experiment Preparation: Upon arriving at the laboratory, participants will first be guided
to read a detailed instruction document. This document is intended to provide participants with a
comprehensive overview of the experiment, including a user guide for the HMD device used in
the experiment, the overall experimental procedure, and the potential discomforts along with the
corresponding safety measures. The document also explains in detail the possible temporary
effects of motion sickness induced by the virtual reality equipment and how to manage these
potential discomforts. The purpose of this step is to ensure that participants have a thorough
understanding of the experimental process and are able to correctly use the equipment.
Additionally, to protect participants' rights, all participants are required to read and sign an
informed consent form before the experiment begins. This consent form confirms that
participants are fully aware of all relevant information about the experiment, including its purpose,
procedures, potential risks, and their right to withdraw from the experiment at any stage. The
experiment staff will particularly emphasize that participants have the unconditional right to
withdraw from the experiment at any time, whether due to physical discomfort, psychological
stress, or any other reason, ensuring that they feel comfortable and safe throughout the entire
process.

(2) Practice: Before entering the formal experiment, participants will need to undergo a practice
session with the equipment to familiarize themselves with the use of the HMD VR device and the
experimental procedure. This phase is an essential part of the experiment as it helps participants
gradually adapt to the virtual reality environment, reducing the likelihood of operational errors or
anxiety during the formal experiment. Participants will wear the head-mounted display and use
the bicycle simulator provided by the laboratory to practice in a specially designed preset virtual
scenario. As shown in Figure 3.6, the practice scenario requires participants to ride from point A
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to point B, perform a lane change at point B, and then continue riding to point C. This practice
session not only helps participants become familiar with navigating within the virtual environment
but also allows them to master the specific operational techniques of the experimental equipment,
such as how to control cycling speed and direction using the simulator and how to react within
the virtual environment.

Figure 3.6. Practice Field

(3) Formal Experiment: At the start of the formal experiment, participants will be guided to a
predetermined starting point, where they will wear the HMD VR device and prepare to begin
cycling. Once the experiment begins, participants will follow the system's instructions to ride
along the virtual road until they reach the endpoint. During the ride, the system will randomly
present the designed scenarios, including different types of autonomous vehicles. These vehicles
may emit warning signals, indicating that they are about to take certain actions. When
participants detect these signals, they will need to naturally adjust their cycling behavior, such as
slightly changing direction or reducing speed, to safely navigate through the simulated traffic
situations.The experimental system(Unreal Engine) will continuously record various data from
participants, including their cycling trajectory, speed, and other key behavioral indicators.

(4) Post-experiment Questionnaire: After the formal experiment concludes, participants will be
guided to a computer in the laboratory to complete a detailed post-experiment questionnaire.
This questionnaire is designed to gather participants' subjective experiences with the AEVs they
encountered during the experiment, with a particular focus on their impressions and feedback
regarding vehicles equipped with additional auditory warning systems.
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4 Data Analysis
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In this chapter, a detailed description will be provided of the types of data collected during the
experiment, the data processing methods, the analysis techniques used, and the results derived from
these analyses. This section aims to lay a solid foundation for the subsequent discussion and
conclusions.

4.1 Experiment Data collection

During the experiment, participants' cycling trajectory data will be recorded frame by frame and stored
in CSV files as coordinates and velocity data. Simultaneously, the Euler angle data from the HMD VR
device worn by the participants will also be recorded in sync. These Euler angles capture the
orientation and posture of the head-mounted VR device in three-dimensional space, including the yaw
angle (rotation around the vertical Z-axis), pitch angle (rotation around the lateral Y-axis), and roll
angle (rotation around the longitudinal X-axis). The types of data recorded in their original form are
listed in Table 4.1. This data is crucial for analyzing the participants' gaze direction and attention
distribution within the virtual environment.

Table 4.1. The types of data directly recorded through the experiment

Data Type Unit

Location m

Longitudinal Velocity m/s

Yaw / Pitch / Roll Angle Degrees (°)

By analyzing the coordinate data and its changes, it is possible to calculate the time taken between
two points by determining the coordinates and speed. Once the time data is computed, further
analysis of the trajectory data can yield key information, such as the distance between the participant
and the target vehicle when the participant first notices the vehicle and initiates an evasive maneuver,
as well as the final distance between them after the evasive action is completed. These distance
metrics are vital for assessing the detectability of vehicle signals and the participant's reaction speed.

By combining speed and time data, a deeper analysis of the intensity of the participant's avoid action
can be conducted. Observing the magnitude of speed changes and the time intervals can reveal
whether the participant decelerates gradually and smoothly avoids the vehicle or performs a last-
minute emergency maneuver. The types of data obtained after processing are listed in Table 4.2.
These details provide valuable insights into the participant's decision-making process and reaction
strategies.
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Table 4.2. The types of data obtained through processing

Data Type Unit

Time s

Speed change Point m

Lowest Speed Point m

Acceleration/Deceleration m/s2

Meanwhile, the Euler angle data from the HMD VR device provides information about the participant's
head orientation and posture during the experiment. Analyzing this data allows for an assessment of
the participant's attention to different directions, particularly the roadside environment. This
information is essential for understanding the distribution of the participant's attention and their ability
to perceive and respond to the surrounding environment under different experimental conditions.
Through comprehensive analysis of this multi-dimensional data, the experiment can yield profound
insights into the observed phenomena, providing robust support for the optimization of autonomous
driving technology and human-machine interface design.

4.2 Questionnaire Data Collection

The subjective experience data of the participants were collected through a questionnaire completed
after the virtual reality experiment. This questionnaire was based on survey designs used in similar
virtual reality experiments (Feng, Xu, Farah, & van Arem, 2023). The questionnaire consists of six
sections: (1) participant information, (2) face validity questionnaire, (3) simulator sickness
questionnaire, (4) presence questionnaire, (5) trust in autonomous driving questionnaire, and (6)
perceived behavior questionnaire. The participant information section includes characteristics such as
gender, age, familiarity with computer games, familiarity with VR, familiarity with the concept of
autonomous vehicles, and experience interacting with autonomous vehicles. The face validity
questionnaire measures whether the simulator assessed what it was intended to assess (Kaptein,
Theeuwes, & van der Horst, 1996). In the face validity questionnaire, the realism of the virtual
environment, virtual objects (such as vehicles), motion capability, and environmental sound are rated
on a 5-point scale. The simulator sickness questionnaire is a standard tool for assessing the level of
simulator sickness experienced by participants in virtual environments (Kennedy, Lane, Berbaum, &
Lilienthal, 1993). The presence questionnaire (Witmer, Jerome, & Singer, 2005) measures the sense
of presence in the virtual environment. Based on the work of Nuñez Velasco, Farah, van Arem, and
Hagenzieker (2019), a trust in autonomous driving questionnaire was used, consisting of five
questions. Finally, a perceived behavior questionnaire, also consisting of five questions, was used to
assess participants' attitudes toward the additional warning sound system for AEVs. The six sections
of the questionnaire can be broadly categorized into the following three parts.

4.2.1 Participant Demographic Questionnaire

This section focuses on collecting demographic data about the experiment participants. The survey
includes not only basic information such as age and gender but also more specific background details
such as cycling frequency and the participants' experience with video games and related types of
vehicles.
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Regarding cycling frequency, the questionnaire measures participants' cycling habits through multiple
options. Participants will be asked to select the number of days they typically ride per week, with
options ranging from "less than one day" to "every day." This data helps to understand participants'
real-life cycling frequency, providing better context for interpreting their performance in the experiment.

Additionally, the questionnaire explores participants' familiarity with video games and the autonomous
vehicles involved in the experiment. Participants will self-assess their experience in these areas using
a five-point Likert scale, with options ranging from "very unfamiliar" to "very familiar." This approach
allows for a nuanced understanding of participants' backgrounds, helping to distinguish different levels
of familiarity with the virtual environment and autonomous driving technology.

By collecting this detailed background data, the study can more thoroughly analyze the differences in
performance among participants with varying characteristics. This not only aids in controlling for
variables but also provides important reference points for subsequent data analysis, making the
research findings more scientifically robust and persuasive.

4.2.2 Presence Questionnaire

Including a presence analysis in the questionnaire is intended to systematically evaluate participants'
sense of immersion and realism within the virtual reality (VR) environment. This analysis is crucial in
VR research because the sense of presence directly affects the validity and reliability of experimental
results. Presence, or the feeling of "being there," refers to the extent to which participants feel
immersed in the virtual environment, serving as an important measure of the environment's realism.

In VR experiments, the strength of presence can significantly impact participants' psychological and
behavioral responses. If participants experience a strong sense of presence in the VR environment,
their behavior and decision-making are often more reflective of how they would act in the real world,
thereby enhancing the external validity and generalizability of the experimental data. Conversely, if
the sense of presence is weak, participants may be more aware that they are in a virtual environment,
leading to behaviors that differ from what would be expected in real-life situations, which could affect
the interpretation and application of the experimental results.

This section of the questionnaire is designed with multiple dimensions to allow participants to evaluate
their sense of presence during the VR experiment from various perspectives. The questions cover
several aspects, including overall feelings about the virtual environment, perception of sound effects,
and whether the behavior of the controlled virtual characters met their expectations. To ensure
precision and consistency in evaluations, the questionnaire employs a five-point Likert scale, with
options ranging from "strongly agree" to "strongly disagree." The Likert scale allows for capturing
nuanced differences in participants' attitudes toward the VR environment, rather than simply a binary
agree or disagree response. Additionally, the Likert scale is easy to understand and use, simplifying
the questionnaire completion process and improving the efficiency of data collection.

Through the presence analysis in the questionnaire, the study can provide an important reference
framework for assessing the impact of the virtual environment on participants' behavior. This allows
the research to not only explain behavioral patterns observed in the data but also to evaluate whether
the design of the virtual environment successfully simulated real-world situations.

4.2.3 Subjective Experience Questionnaire

This section of the questionnaire is designed around the core research questions, aiming to directly
collect participants' perceptions and feelings about different types of vehicles after the experiment.
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These questions include whether participants noticed the engine noise emitted by vehicles in idle
mode and whether they could distinguish the difference between the engine noise of electric vehicles
and conventional cars. Additionally, the questionnaire directly asks for participants' opinions on the
eHMI system, particularly whether they believe it is necessary to add auditory warning signals when
the vehicle is already equipped with strong visual cues, such as light signals.

These questions provide direct insight into participants' subjective attitudes toward the need for
warning sounds in AEVs. Participants' perceptions of different types of noise and their evaluations of
the eHMI system will offer valuable qualitative data for the study. This data can reveal the actual
effectiveness of light signals and auditory warnings in enhancing vehicle detectability, as well as their
relative importance in different noise environments. By analyzing this feedback, the research can
better understand participants' safety needs, thereby providing more targeted recommendations for
the future design of autonomous driving technology.

4.3 Participants

A total of 41 participants took part in the experiment, with 40 successfully completing the entire
experimental process. One participant opted to withdraw from the experiment midway due to physical
discomfort. The reason for this participant's withdrawal was due to experiencing discomfort with the
VR equipment, presenting typical symptoms of VR-induced motion sickness. VR motion sickness is a
common issue encountered when using virtual reality technology and is typically caused by a
mismatch between visual input and the body's actual sensory experiences, leading to confused
signals in the brain. Symptoms include dizziness, nausea, sweating, eye strain, and headaches.
These reactions may be related to technical limitations of VR devices, such as latency and low refresh
rates, or a lack of prior experience using VR. Fortunately, after drinking water and taking a brief rest,
the participant fully recovered.

4.4 Data Processing and Filtering

This section provides a detailed explanation of how the data collected during the experiment was
processed, as well as how the target experimental variables were extracted and calculated.

The collected data was pre-processed to extract the necessary values for the experimental variables.
This step was crucial for ensuring the data was in a format suitable for analysis. In this experiment,
four core variables were primarily focused on, each representing participants' reactions and
behavioral characteristics under different experimental conditions. By analyzing these variables, a
deeper understanding can be gained of how participants respond to the signals of AEVs in various
traffic scenarios and make safety-related decisions. The four core variables are summarized in Table
4.3 below for clarity.

The first variable is the position where participants first react. This variable provides a clear indication
of the distance at which participants initially notice the vehicle and begin to react during the
experiment. By analyzing participants' reaction distances, the effectiveness of vehicle signals can be
assessed, and insights can be gained into the participants' ability to detect approaching vehicles
under different warning conditions (e.g., light signals, sound signals). Changes in reaction distance
can directly reveal the role of warning signals in vehicle perception and provide valuable feedback for
optimizing warning systems.
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Table 4.3. Brief Overview of Core Variables in the Experiment

Variable Unit
Definition

(How it was measured)
Brief indication

Position where participants
first react

m
The location at which
participants first notice the
vehicle and begin to react.

Indicates participants'
initial detection of the
vehicle and their reaction
distance.

Position where the
avoidance maneuver is
completed

m
The distance at which
participants first notice the
vehicle and begin to react.

Indicates the distance
participants used to
complete the avoidance
maneuver.

Maximum Deceleration m/s
The highest deceleration rate
observed during the
avoidance maneuver.

Measures the urgency
and intensity of the
participants' avoidance
actions.

Euler Angle Data Degrees (°)
The yaw angles recorded by
the VR headset during the
experiment.

Assesses participants'
attention distribution.

The second variable is the position where the avoidance maneuver is completed, which indicates the
specific location where participants finish their avoidance action under different scenarios. By
analyzing the avoidance position, researchers can combine it with the reaction start position to
calculate the distance participants used to perform the avoidance maneuver. This helps assess
participants' ability to respond to different experiment scenarios and reveals their level of control over
the situation. If the avoidance is completed at a closer position with a shorter distance, it suggests that
participants reacted quickly in an emergency. In contrast, if the avoidance position is farther away with
a longer distance, it typically indicates that participants, after receiving sufficient warning information,
confidently completed the maneuver based on their own experience. This variable is crucial for
understanding participants' trust and sense of safety in the autonomous driving system.

The third variable is the maximum deceleration during the avoidance maneuver, which directly
measures the urgency of participants' actions when avoiding the vehicle. When participants perceive
potential danger, they often instinctively perform a sharp deceleration to ensure safety. Conversely, if
participants have better control over the situation, they tend to decelerate more smoothly, maintaining
a lower deceleration rate. By analyzing the maximum deceleration, researchers can gauge the level of
danger participants felt during the experiment and the urgency of their avoidance actions. This data
helps to understand the role of different warning signals in participants' decision-making processes.

The fourth variable is the Euler angle data from the participants' headsets, which tracks head rotation
(including yaw, pitch, and roll). By analyzing the recorded Euler angles (including yaw, pitch, and roll)
during the experiment, it is possible to assess the participants' attention distribution and focus within
the virtual environment. These data help determine whether participants noticed roadside vehicle
signals in a timely manner and their directional response when facing warning signals. This variable is
highly valuable for evaluating the impact of different signaling systems on participants' visual attention.

During the data processing phase, in order to extract the aforementioned variables, the raw data first
undergo a series of pre-processing operations. Although participants' behavior data were recorded on
a frame-by-frame basis, the frame rate during the experiment was not fixed, resulting in slight
differences in the time intervals between recorded frames. Therefore, the first step is to calculate the



33

time data for each frame by computing the differences in distance and speed between each pair of
recorded data points. Subsequently, the acceleration data are derived from the changes in speed and
time, leading to a complete dataset that encompasses all the key response variables.

In this experiment, the experimental data was filtered using low-pass filtering techniques to reduce
noise and highlight the main trends in the data. This method effectively smoothed out minor
fluctuations during participants' cycling, allowing for clearer identification of key reaction points and
behaviors. Detailed information on the filtering process and its implementation can be found in
Appendix B.

In the process of collecting experimental data, apart from the typical deceleration behavior, special
cases such as lateral avoidance and missed responses to warning signals were observed. These
behaviors are of significant research value for understanding participant reactions under specific
conditions and have been retained for further analysis. For details on the classification and processing
of these special data sets, please refer to Appendix C.

4.5 Method of getting core variable

4.5.1 Position of cyclists’ reactions

The reaction position(m) is an important target variable used to evaluate when participants notice the
vehicle signal and react accordingly. This variable represents the distance participants travel from the
moment they start receiving the information conveyed by the vehicle's eHMI to the point where they
actually react by slowing down or making a lateral movement. A larger value indicates that
participants reacted closer to the vehicle, meaning they reacted later. Given the large amount of data
generated in the experiment, manually identifying the reaction position for each data set is impractical
and time-consuming. Therefore, an autonomous standard is needed to enable batch processing and
analysis of the data through a computer.

To achieve this, two main criteria were established for selecting the reaction position to ensure
accurate identification of the reaction time. The first criterion was based on changes in the
participants' speed to determine whether they reacted. Specifically, the system began at a pre-
designated target point and set a time window. Within this time window, if the participant's speed
decreased by more than a specified threshold, this speed change was considered significant, and the
point was identified as the starting point of deceleration, or the reaction point. In other words, if the
participant's speed dropped beyond the preset standard within the given time frame, it signified that
they had begun to react at that point. For the time window, a 1.5-second interval was chosen in the
experiment, based on the average reaction time for cyclists, which is approximately 0.8 seconds.
Therefore, a 1.5-second observation period was selected to effectively capture the speed changes
from the moment the signal was activated to when participants reacted. The system then identified
the first point that met this condition as the initial reaction point.

The second criterion was designed to further validate the accuracy of the identified reaction point.
Whenever the system found a reaction point based on the first criterion, it checked several preceding
data points to verify whether the speed at the previous point was greater than the current point. If
there was a point before the initial reaction point where the speed was higher, this earlier point was
marked as the new reaction point. This process was repeated until a data point was found where the
speed of the previous point was not greater than the current point. At this point, the system confirmed
the location as the final reaction point.
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The purpose of the second criterion was to address a potential situation where participants may have
started to react, but their initial speed reduction was not significant enough for the system to capture it
using the first criterion. For instance, participants might have begun decelerating, but the early
deceleration was too subtle to meet the threshold set in the first criterion. In such cases, the system
might have incorrectly identified a later point as the reaction point. By adding the second criterion, this
issue was effectively avoided, ensuring the accuracy of the reaction point, and preventing the
omission of the actual reaction time due to less dramatic initial speed changes.

By applying these two criteria in combination, the system was able to more precisely identify the
reaction position of participants during the experiment, ensuring the accuracy and reliability of data
analysis. As shown in Figure 4.1, the reaction point identified using the two criteria was located at the
point where the speed began to significantly decrease. This validated the effectiveness of the two-
step filtering method, ensuring not only the precise identification of the reaction point but also the
elimination of irrelevant data fluctuations that could interfere with the experimental results. Therefore,
the reaction point indicated in Figure 4.1 accurately reflected the moment and position where the
participant first reacted to the vehicle's warning signal during the experiment, providing a solid
foundation for subsequent data analysis and experimental conclusions.

Figure 4.1 The finding point where the avoidance action begins

When determining the reaction start position for special data sets, different processing methods need
to be established. First, for participants who exhibited no response, identifying the reaction start
position is relatively straightforward. Since these participants did not show any deceleration or
avoidance behavior, the system will set their avoidance reaction start position at the location of the
vehicle. This indicates that the participants only became aware of the vehicle when they were at the
same location as the vehicle. In other words, they failed to timely notice the vehicle's warning signal
during the experiment and did not make an effective avoidance response.

However, for data sets involving lateral avoidance behavior, identifying the reaction start position
becomes much more complex. The behavior patterns of these participants could include first
decelerating and then changing lanes when they judged the situation to still be critical, or they might
perform a lateral avoidance first, and then decide whether to decelerate based on their control of the
situation. Due to these varied response combinations, identifying the exact start point of the
avoidance behavior becomes more challenging.

To accurately pinpoint the start of the lateral avoidance behavior, a comprehensive analysis of two key
events—lateral movement and deceleration—must be conducted. Specifically, the system will
compare the location where the first lateral movement occurred with the location where deceleration
began, determining which of the two is farther from the vehicle. The farther location indicates the
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earliest point where the participant began to react, and this is considered the start of the avoidance
behavior. The system will mark this earliest reaction point as the start of the avoidance action.

This method takes into account the diverse response strategies participants may adopt in different
scenarios. For example, some participants might choose to immediately move laterally after detecting
the vehicle to maintain a safe distance, while others might opt to decelerate first, observe the situation,
and decide whether to change lanes based on the vehicle's actions. By analyzing both lateral
movement and deceleration together, this approach provides a more comprehensive understanding of
participants' response patterns, ensuring that the identification of the avoidance start point is both
accurate and reflective of the actual experimental conditions.

This processing method not only improves the precision of data analysis but also provides richer
behavioral patterns for further analysis and research, thereby offering deeper insights into
participants' decision-making processes and safety responses under different traffic conditions.

4.5.2 Position of Avoidance Completion

The completion position of the avoidance action(m) is a critical target variable in the experiment,
recorded as the distance between the point at which the participant begins receiving the vehicle's
signal and the point where they complete the avoidance action. Therefore, the larger this value, the
closer the participant is to the vehicle emitting the signal when they finish the avoidance action. This
variable is significant because it can be used to measure the participant's total reaction time, thereby
assessing their efficiency in responding to sudden situations. By analyzing this data, researchers can
gain a deeper understanding of participants' decision-making processes, especially regarding how
they perform avoidance actions under different traffic conditions. Additionally, the completion position
of the avoidance action can reveal different behavioral patterns, such as distinguishing between quick
deceleration and gradual deceleration, which reflect the participant’s driving style and risk perception
ability.

The position where the avoidance action is completed can also be used to evaluate the participant’s
control over the experimental environment. If the avoidance completion positions are similar across
multiple data sets, this may indicate that the participant has developed strong control over the
experimental scenario and the vehicle’s behavior. They may feel confident in performing the
avoidance action at a location that suits their judgment of safety, rather than reacting immediately.
This behavior typically indicates that participants are more confident in choosing when to perform the
avoidance rather than responding quickly in an emergency.

In terms of data processing, identifying the position where the avoidance action is completed is
relatively straightforward. For participants who decelerate to avoid the vehicle, the point where the
avoidance action is completed is marked by the lowest speed recorded. When participants reach their
lowest speed and subsequently begin to accelerate, it indicates that the avoidance action has been
completed, and the participant has resumed normal cycling. Therefore, in data analysis, the system
selects the lowest speed point between the reaction start point and the position of the signaling
vehicle as the position where the avoidance action is completed.

For data sets where participants exhibit lateral avoidance behavior without any significant
deceleration, a different approach is used. In such cases, the system directly selects the first point
with the greatest lateral movement between the avoidance start position and the signaling vehicle.
This point represents the furthest distance from the vehicle achieved through lateral movement. No
further lane changes suggest that the participant perceives this distance as safe, and thus this point is
considered the completion position for lateral avoidance.
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However, for participants who exhibit both deceleration and lateral avoidance behavior, the situation is
more complex. For these data sets, the system compares the lowest speed point with the point of
greatest lateral movement to determine which is closer to the vehicle. By comparing these two points,
the system can accurately identify the final position where the avoidance action is completed.

Finally, for participants who do not perform any avoidance action, the completion position is set to the
same point as the reaction start position, which is the location of the vehicle. This indicates that the
participant only noticed the vehicle upon reaching it and did not take any effective avoidance action.
Such data highlight situations where participants either ignored or failed to respond promptly to the
warning signals, providing valuable insights for improving the signaling systems of autonomous
vehicles.

4.5.3 Maximum Deceleration

Maximum deceleration(m/s2), as a critical observed variable in the experiment, reflects the peak
deceleration exhibited by participants during the period from reacting to the signal until the completion
of the response action. The larger the value, the greater the deceleration, meaning the participant's
speed decreases more rapidly over a given period of time. This variable provides a direct measure of
participants' perception of safety in the current environment. When faced with an emergency situation,
individuals instinctively decelerate to ensure their safety. Therefore, the maximum deceleration value
quantitatively represents participants' perception of the urgency of the situation and their attitude
towards potential risks.

In the data processing phase, for those participants who performed lateral avoid action without
significant deceleration, the maximum deceleration is set to 0. This is because, in the bicycle
simulator, forward speed is calculated by reading the wheel's rotational speed, which naturally
generates acceleration and deceleration variations. However, due to the limitations of the simulator,
lateral movement is controlled by buttons attached to the handlebars, which trigger fixed-speed
movement without any changes in acceleration. Therefore, for participants who performed lateral
evasions, the maximum deceleration is recorded as 0.

Additionally, since there are only 42 data sets of lateral avoid action without deceleration, the sample
size is relatively small and insufficient for separate analysis. To ensure the continuity of data analysis,
I assigned a maximum deceleration of 0 to these data sets and incorporated them into the broader
analysis model. Comparative tests revealed no significant changes in the effect sizes of the variables
after including these data. The integration of these data into the analysis did not affect the significance
or interpretation of the other variables in the model. Thus, combining these lateral evasion data with
the rest is feasible without negatively impacting the overall results. A detailed comparison of this
analysis is presented in the appendix.

For participants who exhibited significant deceleration during the response action, their maximum
deceleration was recorded in the same manner as for standard deceleration data sets. The system
tracked their deceleration curve and identified the highest deceleration value throughout the
avoidance process. This value is crucial for assessing the level of perceived danger and urgency
experienced by the participants during the maneuver.

Finally, for participants who did not exhibit any response action, the maximum deceleration was also
recorded as 0, indicating that no deceleration occurred during the experiment. By analyzing these
combined data sets, I can gain deeper insights into how participants respond to vehicle warning
signals under different experimental conditions, as well as how different signal types and activation
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distances influence their evasive behaviors. Maximum deceleration, as a key variable, helps to better
evaluate the effectiveness of the Alert signal systems in AEVs in enhancing road safety.

4.5.4 Roadside Attention

The variable Roadside Attention(°) serves as an important metric in the study, effectively reflecting the
extent to which participants focus on the right side of the road between the moment they begin
receiving signals and when they complete an avoidance maneuver. This data is derived by calculating
the average yaw angle from the Euler angles of the VR headset. The yaw angle indicates the
horizontal rotation of the headset, which aligns with the study's goal of tracking the direction of
participants' head movements. The average yaw angle reveals how frequently participants focused on
roadside information during the experiment. If participants consistently monitored roadside signals,
the average yaw angle would be relatively high, indicating that their attention was more frequently
directed toward the side of the road rather than straight ahead.

For participants who displayed significant attention to roadside signals, the yaw angle data would
show higher values, indicating that their head was frequently turned toward the roadside. This could
suggest that participants were actively searching for and responding to roadside signals or visual
cues, which is important for evaluating safe driving behaviors. Conversely, if the yaw angle values are
lower, it would suggest that participants were primarily focused on the road ahead, potentially
overlooking key roadside signals or cues.

For special data sets, such as those in which participants executed lateral avoidance actions or did
not perform any avoidance actions, the method of calculating roadside attention remains unchanged.
Regardless of the avoidance strategy employed by participants, their degree of attention to roadside
information can still be measured through the average yaw angle. This consistent method of
calculation ensures a comprehensive analysis across all data sets, allowing for an accurate
assessment of participants' attention to roadside signals, regardless of their specific avoidance
behavior.

Measuring roadside attention not only provides valuable insights into participants' attention
distribution but also helps evaluate the effectiveness of roadside signals in capturing attention. This
can inform further improvements in road safety and the design of signal systems.
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5 Results
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In this chapter, I analyze the experimental data I have collected. The data collected from the
experiment is divided into subjective attitude data, gathered through questionnaires and presented in
Section 5.1, and objective behavioral data, collected through the virtual reality experiment and
presented in Section 5.2.

5.1 Questionnaires Data Analysis Results

In this section, I will present and analyze the data collected from the survey, summarizing valuable
insights and findings. To clearly convey the results of the analysis, this chapter will be divided into
three subsections. The first subsection covers the demographic data of the participants, which will
help us understand the basic background characteristics of the subjects. Next, I will analyze the
participants' sense of presence during the experiment, exploring their feelings of immersion and
realism within the virtual reality environment. Finally, I will examine participants' direct feedback and
impressions of the experiment, including their subjective evaluations of the different signal systems
and AEVs. These analyses will provide a deeper understanding of participants' reaction patterns and
attitudes, supporting the conclusions drawn from the experiment.

5.1.1 Demographic Results

Figure 5.1. Age and Gender distribution

In this study, information was collected from 40 participants, covering aspects such as gender, age,
and their experience with virtual reality (VR) devices and computer games. The gender and age
distribution of the participants is shown in Figure 5.1. Among the participants, 33 were male and 7
were female. In terms of age, the majority of participants were concentrated in two main groups: 25
participants were under 25 years old, and 15 participants were over 25 years old.

Regarding familiarity with computer games, the distribution of responses was relatively even.
Specifically, 24.4% of participants reported being very familiar with computer games, another 24.4%
said they were somewhat familiar, 17.1% claimed to be quite familiar, and 24.4% indicated they were
moderately familiar. Only 9.8% of participants stated they were completely unfamiliar with computer
games. This distribution suggests that most participants had a reasonable level of familiarity with
computer games, which may imply stronger adaptability to virtual environments.

As for their experience with VR devices, the participants showed varying levels of exposure. The data
in Figure 5.2 revealed that 39.0% of participants occasionally used VR devices, while 36.6% said they
rarely used them, and 19.5% had never used VR devices before. Only 2.4% of participants reported
using VR devices frequently, and another 2.4% stated they always used them. This information helps
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us better understand participants' ability to adapt to and interact with the virtual reality environment
during the experiment.

Figure 5.2. Statistics on Computer Game Experience and VR Device Usage

In the experiment, in addition to observing participants' reactions to different signals, special attention
was given to whether they could distinguish between the engine noise of conventional vehicles and
electric vehicles. To better understand this, participants' experience with electric vehicles was
thoroughly analyzed. Understanding their familiarity with the concept of electric vehicles and their
actual experience driving or riding in them helps us gain insights into how their responses during the
experiment correlate with their knowledge of electric vehicles.

As shown in Figure 5.3, there is a wide variation in participants' familiarity with the concept of electric
vehicles. 29.3% of participants reported that they were somewhat familiar with the concept of electric
vehicles, while 26.8% said they had a moderate understanding of it. Additionally, 22.0% of participants
considered themselves quite familiar with the concept, and 19.5% indicated they were very familiar
with the technology and concept of electric vehicles. Only 2.4% of participants stated they were
completely unfamiliar with the concept. This data suggests that as electric vehicles have gradually
become more widespread, the related knowledge has been well disseminated, with most people
having at least some understanding of the concept.

However, despite the high level of familiarity with the concept, participants’ actual experience with
electric vehicles is relatively limited. The data shows that 39.0% of participants reported that they
rarely drive or ride in electric vehicles, while 26.8% said they occasionally use them. Additionally,
22.0% had never driven or ridden in an electric vehicle, and only 12.2% frequently use electric
vehicles. This indicates that while electric vehicle technology has been broadly introduced and is in
practical use, the proportion of individuals in the 20 to 30 age group who have frequent experience
with electric vehicles remains relatively small. Most people are still at the stage of limited exposure or
occasional use.

This data highlights that although electric vehicle concepts are well-known, actual user experience is
still not as widespread. For participants, the gap between conceptual familiarity and real-world
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experience might influence their ability to distinguish between conventional and electric vehicle engine
noises during the experiment. Those with greater familiarity and experience with electric vehicles may
find it easier to perceive these noise differences, while those with limited experience may struggle to
make accurate distinctions.

Figure 5.3. Familiarity with the Concept of Electric Vehicles and Experience in Using Them

The primary objective of this experiment is to evaluate the safety and comfort of adding an additional
alert system to AEVs. Therefore, analyzing participants' familiarity with autonomous vehicles and their
practical experience with them is crucial for interpreting their behavioral responses during the
experiment. Generally, participants who are familiar with or have had exposure to autonomous
vehicles tend to exhibit more pronounced behavioral tendencies, as they already have formed
opinions and attitudes toward the safety and technological features of autonomous vehicles.

Figure 5.4 shows the participants' familiarity with the concept of autonomous vehicles. According to
the results, 41.5% of the participants reported having some level of understanding of autonomous
vehicles, while 24.4% indicated that they were completely unfamiliar with the concept. Additionally,
17.1% of the participants stated they had a moderate level of knowledge about autonomous vehicles,
9.8% said they were fairly familiar, and only 7.3% indicated they were very familiar with this emerging
technology. This suggests that while autonomous vehicles have gradually entered the public
consciousness in recent years, most people still have only a surface-level understanding or are
entirely unfamiliar with the concept.

In terms of practical experience, the data reveals an even greater scarcity. A total of 90.2% of
participants had never driven or ridden in an autonomous vehicle, 4.9% reported occasionally having
the opportunity to do so, and another 4.9% said they sometimes used autonomous vehicles. Clearly,
most participants have very limited experience with autonomous vehicles, which aligns with the
current reality that autonomous vehicles are not yet widely deployed. At this stage, autonomous
vehicles are still largely in the development and testing phases, with limited opportunities for the
public to interact with them.
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Figure 5.4. Familiarity with the Concept of Autonomous Vehicles and Experience in Using Them

5.1.2 Presence Analysis

In this experiment, presence analysis is primarily used to assess the immersion and realism
experienced by participants in the virtual reality environment. This analysis is crucial to the validity of
the experiment, as a strong sense of presence allows participants to behave more similarly to how
they would in real-life situations, thereby enhancing the external validity and generalizability of the
experimental results. If participants experience weak presence in the virtual environment, they may
become more aware that they are in a simulated setting, which could affect their behavioral patterns
and decision-making processes. This could result in a disconnection between the experimental results
and real-world conditions, ultimately impacting the accuracy and applicability of the experiment’s
conclusions.

In this experiment, a specific questionnaire was used to gather participants' feedback on their visual
and auditory experiences in the virtual environment, as well as their overall sense of presence. The
study adopted the Presence Questionnaire (PQ) (Witmer, Jerome, & Singer, 2005) to measure
participants' sense of presence. This questionnaire consists of four subscales: involvement, sensory
fidelity, immersion, and interface quality. Participants rated 19 items using a 5-point Likert scale. The
results of the PQ survey are shown in Table 5.1. Both the immersion and sensory fidelity subscales
had the highest scores, indicating that participants experienced a strong sense of immersion and that
the sensory stimuli, such as visual and auditory aspects in the virtual environment, closely resembled
those in the real world. The average total score of the PQ in this study was 73.225 (SD = 5.63),
indicating a strong sense of presence in the study.

Table 5.1. Subscales of PQ(range from 1 to 5)

Involvement Sensory fidelity Immersion Interface quality

Mean 3.85 3.98 3.98 2.81
SD 0.29 0.1 0.19 0.63

According to the statistical analysis of responses to certain questions, more than 70% of participants
indicated that the objects in the virtual environment realistically replicated those in the real world. This
suggests that the visual aspects of the experimental design were effective, as the object modeling
and details provided participants with a strong sense of realism, allowing them to fully engage with the
experimental environment.
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In addition to the visual experience, participants were also asked to evaluate whether their behavior in
the virtual world matched their expectations and whether their interactions with the environment felt
natural. Most participants reported that their interactions in the virtual environment were smooth and
natural, and that they were able to freely control their actions and reactions. This fluidity and
responsiveness are key factors in enhancing immersion, helping participants focus more on the
experiment and reduce their awareness of the virtual setting. Auditory feedback also played a
significant role in enhancing immersion; well-designed sound effects further increased the realism of
the virtual environment, allowing participants to adapt to the simulated scenarios more quickly.

Overall, participants' feedback indicated that their experience in the virtual environment largely
matched their expectations of the real world, with most reporting a strong sense of presence. This
provides important support for the validity of the experimental results, ensuring that the collected data
reflects the behavioral traits and reaction patterns participants would likely exhibit in real-life scenarios.
The full questionnaire will be presented in the appendix for further analysis and reference.

5.1.3 Direct perceptions

In the survey, I used a 1-5 scale to measure and record participants' direct feedback following the
experiment, particularly regarding whether they noticed the light signals emitted by idling vehicles on
the roadside. The average score for this question was 4.15 (SD = 0.65), indicating that most
participants were able to clearly detect these light signals. This suggests that the light signals were
highly effective in conveying the vehicle's intentions. The strong visual effect of the light signals
quickly caught participants' attention, allowing them to promptly respond to the vehicle’s status. This
feedback further confirms the role of light signals as an important communication tool in traffic
environments.

Meanwhile, for the question on the noticeability of sound signals, the average score was 3.54 (SD =
0.99), indicating that most participants also acknowledged the effectiveness of sound signals.
However, compared to light signals, sound signals were perceived as slightly less effective. While
sound signals performed well in quieter environments, some participants noted that their
distinguishability decreased in noisier street environments. This result suggests that, although sound
signals can provide additional warning functionality, relying solely on sound signals may not be
sufficient in complex traffic scenarios.

Regarding the distinction between electric vehicles and traditional internal combustion engine vehicles,
the average score of 2.83 (SD = 0.79) indicates that many participants found it difficult to differentiate
between the two based on engine noise when the vehicles were idling. This suggests that the low-
noise characteristic of electric vehicles is not always easily perceptible, especially in more complex
environments.

Additionally, participants' trust in autonomous vehicles that rely solely on light signals to convey
information had an average score of 3.24 (SD = 0.90), generally rated as moderate. This reflects
some skepticism regarding the effectiveness and safety of using light signals as the sole
communication method. Most participants felt that relying solely on light signals might not be sufficient
to handle complex driving environments, especially in busy urban traffic (with an average score of
3.88, SD = 0.49 on the question of whether it is insufficient for complex environments). They generally
believed that combining multiple signals (such as light and sound) could offer a more comprehensive
and reliable way for autonomous vehicles to interact with other road users, thereby enhancing overall
safety (average score of 3.68, SD = 0.92).
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On the other hand, I conducted a detailed survey of participants who experienced AEVs equipped
with an alert system, aiming to assess their attitudes towards this new feature. On the question of
whether adding sound alerts could effectively improve road safety, the average score was 3.95 (SD =
0.79), indicating that most participants agreed that the addition of sound alerts could significantly
enhance road safety, helping other road users detect the approach of autonomous vehicles in a timely
manner. However, on the question of whether sound alerts would contribute to noise pollution, the
average score was 2.72 (SD = 1.07), with the highest standard deviation among all the questions,
reflecting a wide range of opinions among participants. Some participants expressed concerns that
widespread use of sound alerts could increase urban noise pollution, especially in busy street
environments. Therefore, while improving vehicle detectability, avoiding excessive noise pollution has
emerged as a topic that requires further research and improvement.

Figure 5.5 Participants' Opinions on the Necessity of the Additional Alert Signal System

At the end of the survey, I directly asked participants for their subjective feedback on the alert signal
system after completing the experiment. As shown in Figure 5.5, only one participant felt that it was
unnecessary to add an audible alert system to autonomous vehicles. Among the remaining
participants, 60% believed that relying solely on light signals was insufficient to ensure safe
interactions between vehicles and other road users, while 40% indicated that light signals could
effectively support the operation of autonomous vehicles but also agreed that adding audible alerts
would further enhance safety. Overall, participants generally felt that, while light signals were
somewhat effective, the addition of sound alerts could significantly improve the subjective sense of
safety and comfort for cyclists and pedestrians, especially in complex urban traffic environments.

Based on the subjective feedback, the addition of an alert signal system is still considered highly
necessary. This enhancement would not only increase the visibility and warning effectiveness of
autonomous vehicles in various scenarios but also boost the safety perception and trust in
autonomous driving technology among road users. These survey results provide valuable insights for
future design and optimization of autonomous driving systems, indicating that a combination of
multiple signaling methods (such as light and sound signals) can better facilitate safe interactions
between autonomous vehicles and other road users.
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5.2 Analysis Results of VR Experiment Data

In this section, an in-depth analysis of the four main target variables(Reaction position,Avoidance
finish position,Max Deceleration and Roadside Attention) from the experiment was conducted. The
analysis model used is the Linear Mixed Model (LMM). LMM is a statistical model that combines fixed
effects and random effects, allowing the consideration of both systematic influences and random
variations in the data. Fixed effects describe factors that have the same influence on all observational
units, which are typically the experimental variables pre-set to observe their changing effects.
Random effects, on the other hand, account for factors that influence observational units differently,
usually reflecting minor unnoticed differences in the experiment or variations in participants' behavior.

In this experiment, three main independent variables were designed, each consisting of two, three,
and three different settings, resulting in a total of 18 experimental condition combinations. The "noisy

environment," "AEVs without Visual eHMI and alert system," and "close signal trigger distance" were

chosen as the baseline group. In LMM analysis, the baseline group serves as a reference point for all
experimental conditions, with other conditions being compared to the baseline in terms of their effects.

These three conditions were selected as the baseline because the initial hypothesis suggests that this
combination of independent variables (i.e., noisy environment, AEVs without an alert system, and
short signal trigger distance) is likely the most challenging for participants to perceive vehicle warning
signals. This assumption is based on the consideration that noise in the environment might interfere
with sound signals, AEVs without an alert system may lack sufficient visual and auditory cues, and the
short signal trigger distance may put participants under greater pressure to react in a shorter
timeframe, thus affecting their ability to respond promptly to vehicle signals.

The formula for the LMM model is shown in the figure above, where Y represents the response
variable, which is our main target variable. β0 is the intercept, and βn are the fixed effect parameters
for each predictor variable. These parameters combine with the predictor variable xn, taking a value
of 1 when this predictor variable is present in the scenario and 0 when it is absent. βdouble and
βtriple represent the interaction effect parameters for two and three predictor variables, respectively.
Zb is the random effects term, and ε represents the error term.

5.2.1 The longitudinal position of the reaction

In the main effect analysis, five key variables were studied: AVs, AEVs equipped with an Alert system,
medium and long-range signal trigger distances, and quiet environments. The analysis results
showed that only AVs did not display significant differences, while AEVs equipped with the Alert
system, long-range signal triggers, and quiet environments significantly affected participants'
responses. This suggests that warning systems and quiet environments can effectively enhance
participants' perception of and reaction to vehicles. In contrast, AVs performed relatively weaker
compared to the baseline group (AEVs without the Alert system), indicating that the difference in
engine noise is not as noticeable in noisy environments.
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Table 5.2. Significance Evaluation of Longitudinal Reaction Points and Their Standardized

Coefficients

Predictors Explanations EsL SE CI p

(Intercept) 38.791 1.187 [36.465,41.117] <0.001
𝛽𝑄 Quiet Environment Sound Level(Ref: Noisy level) -8.098 1.580 [-11.195,-5.000] <0.001
𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1 Middle Signal Trigger Distance(Ref: Short Distance) -9.785 1.580 [-12.882,-6.688] <0.001
𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 Long Signal Trigger Distance(Ref: Short Distance) -12.848 1.580 [-15.945,-9.751] <0.001

𝛽𝑉𝑇1
Vehicle Type:AVs with Visual eHMI
(Ref: AEVs with Visual eHMI)

-2.140 1.580 [-5.237,0.957] 0.176

𝛽𝑉𝑇2
Vehicle Type:AEVs with Visual eHMI and Alert signal
(Ref: AEVs with Visual eHMI)

-11.346 1.580 [-14.443,-8.248] <0.001

𝛽𝐷𝑜𝑢𝑏𝑙𝑒1 Interaction term(𝛽𝑄 with 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1) 6.891 2.235 [2.510,11.271] 0.002

𝛽𝐷𝑜𝑢𝑏𝑙𝑒2 Interaction term(𝛽𝑄 with 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2) 3.113 2.235 [-1.267,7.494] 0.164

𝛽𝐷𝑜𝑢𝑏𝑙𝑒3 Interaction term(𝛽𝑄 with 𝛽𝑉𝑇1) 4.361 2.235 [-0.019,8.742] 0.051

𝛽𝐷𝑜𝑢𝑏𝑙𝑒4 Interaction term(𝛽𝑄 with 𝛽𝑉𝑇2) 10.293 2.235 [5.913,14.674] <0.001

𝛽𝐷𝑜𝑢𝑏𝑙𝑒5 Interaction term(𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1 with 𝛽𝑉𝑇1 ) 1.302 2.235 [-3.078,5.682] 0.560

𝛽𝐷𝑜𝑢𝑏𝑙𝑒6 Interaction term(𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 with 𝛽𝑉𝑇1 ) -3.487 2.235 [-7.867,0.893] 0.119

𝛽𝐷𝑜𝑢𝑏𝑙𝑒7 Interaction term(𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1 with 𝛽𝑉𝑇2 ) 9.225 2.235 [4.845,13.605] <0.001

𝛽𝐷𝑜𝑢𝑏𝑙𝑒8 Interaction term(𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 with 𝛽𝑉𝑇2 ) 4.824 2.235 [0.444,9.205] 0.031

𝛽𝑇𝑟𝑖𝑝𝑙𝑒1 Interaction term(𝛽𝑄 , 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1 with 𝛽𝑉𝑇1 ) -3.843 3.161 [-10.038,2.352] 0.224

𝛽𝑇𝑟𝑖𝑝𝑙𝑒2 Interaction term(𝛽𝑄 , 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 with 𝛽𝑉𝑇1 ) -4.359 3.161 [-10.553,1.836] 0.168

𝛽𝑇𝑟𝑖𝑝𝑙𝑒3 Interaction term(𝛽𝑄 , 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1 with 𝛽𝑉𝑇2 ) -10.489 3.161 [-16.684,-4.295] 0.001

𝛽𝑇𝑟𝑖𝑝𝑙𝑒4 Interaction term(𝛽𝑄 , 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 with 𝛽𝑉𝑇2 ) -5.942 3.161 [-12.136,0.253] 0.060

Random
effects

Var SD p

#Participant:
Intercept

Participant’s ID 12.79 3.577 <0.001

Model
Performance

Observations 1440

Marginal R2 0.239
Conditional R2 0.325

logLik -1377.910
AIC 4795.821

BIC 4901.270

*The zero reference point is 0, representing the moment when participants enter the

experimental area and begin receiving the signal.

Further analysis revealed that the combination of quiet environments and vehicle types had a
significant effect on participants' response distance (p = 0.051). Although the main effect of AVs was
not significant, this indicates that in quiet environments, AV engine noise was more noticeable,
prompting participants to react more quickly.

Regarding signal trigger distances, the combination of a quiet environment and medium-range signals
showed significant differences, while the combination with long-range signals did not. This could be
because long-range warning signals provided participants with more time, allowing them to choose
the appropriate moment to perform avoidance actions rather than reacting immediately. In other
words, a longer warning distance may give participants a sense of having ample reaction time, which
could delay their decision to avoid.

Additionally, the combination of AVs and signal trigger distance did not show significant differences,
but the combination of AEVs with the Alert system and various distances exhibited significant effects.
This may be due to the fact that, at medium and long distances, the additional sound warning signals
helped participants detect the distant light signals earlier and respond more effectively. In particular,
under long-range warning signal conditions, sound signals become especially important as they assist
participants in better noticing and locating the light signals.

This significant effect is not only observed in two-variable combinations but also in the interaction
effects of three variables. Multi-variable interaction analysis further confirms that AEVs equipped with
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warning systems demonstrated significant comprehensive advantages in quiet environments and
under varying signal distances.

From the standardized main effect coefficients, it is evident that changes in warning distance have a
clear impact on the position where participants react. However, given the small difference between
medium distance (M) and long distance (L), it can be inferred that the effect of warning distance may
only be more pronounced within a certain range. There is a significant difference between AEVs and
AEVs equipped with the Alert system, while the difference between AVs and these vehicles is minimal.
This indicates that the differences in engine noise types did not have a significant impact on the
participants' reaction positions, while the additional alert signal played a crucial role. This may be
because the alert signal is more likely to capture the participants' attention, prompting them to react
more quickly.

The combination of quiet environments and vehicle types generally shows a positive effect, but after
considering the main effects, the overall impact on the target variable still presents as a negative
effect. This may be because in quiet environments, participants can more easily detect the presence
of vehicles through engine noise at the same distance and locate the vehicle earlier. Consequently,
they may feel more confident in reacting at a distance they consider safe rather than taking immediate
action. This leads to a certain delay in the reaction point, but overall, participants are still able to
respond more promptly due to earlier detection of the signal.

For AEVs equipped with the Alert system, the interaction effect with medium and long signal trigger
distances shows significant differences, whereas AVs do not exhibit this effect. This could be because
in noisy environments, the sound signals from the Alert system are more easily received by
participants, helping them better judge the distance between themselves and the vehicle. This allows
them to more safely and confidently choose the position at which to react.

The three-variable interaction effects are mostly negative. After combining the main effects and
interaction effects, the overall impact on the target variable remains negative. However, significant
interaction effects are observed only when the vehicle is an AEV equipped with the Alert system. In
quiet environments, when more noticeable sound alerts are combined with longer warning distances,
participants react earlier. This is reasonable because when considering these factors individually, they
all have negative effects—each variable enables participants to notice the vehicle's position earlier.
The earlier the vehicle is noticed, the earlier the reaction.

5.2.2 Position of Avoidance Completion

First, the significance analysis shows that all main effects have statistically significant impacts on the
completion position of avoidance behavior. In the two-way interaction effects, the interaction between
signal trigger distance and AVs did not show significant differences. However, the interaction between
signal trigger distance and AEVs equipped with the Alert system did show significance. This difference
may be due to the Alert system's auditory warning signals, which prompt participants to quickly notice
approaching vehicles and take avoidance action. This phenomenon also appears in the three-way
interaction effects, further confirming the important role that auditory warning signals play in triggering
participants' responses.
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Table 5.3. Significance evaluation of the Longitudinal Position of Avoidance completion and

its standardized coefficients

Predictors Explanations EsL SE CI p

(Intercept) 54.998 0.727 [53.572,56.423] <0.001
𝛽𝑄 Quiet Environment Sound Level(Ref: Noisy level) -4.190 0.901 [-5.956,-2.424] <0.001
𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1 Middle Signal Trigger Distance(Ref: Short Distance) -5.760 0.901 [-7.526,-3.994] <0.001
𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 Long Signal Trigger Distance(Ref: Short Distance) -10.293 0.901 [-12.059,-8.527] <0.001

𝛽𝑉𝑇1
Vehicle Type:AVs with Visual eHMI
(Ref: AEVs with Visual eHMI)

-1.916 0.901 [-3.682,-0.150] 0.033

𝛽𝑉𝑇2
Vehicle Type:AEVs with Visual eHMI and Alert signal
(Ref: AEVs with Visual eHMI)

-9.804 0.901 [-11.570,-8.038] <0.001

𝛽𝐷𝑜𝑢𝑏𝑙𝑒1 Interaction term(𝛽𝑄 with 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1) 2.781 1.274 [0.283,5.279] 0.029

𝛽𝐷𝑜𝑢𝑏𝑙𝑒2 Interaction term(𝛽𝑄 with 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2) 1.212 1.274 [-1.286,3.710] 0.342

𝛽𝐷𝑜𝑢𝑏𝑙𝑒3 Interaction term(𝛽𝑄 with 𝛽𝑉𝑇1) 4.409 1.274 [1.911,6.907] 0.001

𝛽𝐷𝑜𝑢𝑏𝑙𝑒4 Interaction term(𝛽𝑄 with 𝛽𝑉𝑇2) 9.579 1.274 [7.082,12.077] <0.001

𝛽𝐷𝑜𝑢𝑏𝑙𝑒5 Interaction term(𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1 with 𝛽𝑉𝑇1 ) 1.456 1.274 [-1.042,3.954] 0.253

𝛽𝐷𝑜𝑢𝑏𝑙𝑒6 Interaction term(𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 with 𝛽𝑉𝑇1 ) -1.176 1.274 [-3.673,1.322] 0.356

𝛽𝐷𝑜𝑢𝑏𝑙𝑒7 Interaction term(𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1 with 𝛽𝑉𝑇2 ) 4.934 1.274 [2.436,7.431] <0.001

𝛽𝐷𝑜𝑢𝑏𝑙𝑒8 Interaction term(𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 with 𝛽𝑉𝑇2 ) 4.414 1.274 [1.916,6.912] 0.001

𝛽𝑇𝑟𝑖𝑝𝑙𝑒1 Interaction term(𝛽𝑄 , 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1 with 𝛽𝑉𝑇1 ) -3.353 1.802 [-6.885,0.179] 0.063

𝛽𝑇𝑟𝑖𝑝𝑙𝑒2 Interaction term(𝛽𝑄 , 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 with 𝛽𝑉𝑇1 ) -1.362 1.802 [-4.894,2.171] 0.450

𝛽𝑇𝑟𝑖𝑝𝑙𝑒3 Interaction term(𝛽𝑄 , 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1 with 𝛽𝑉𝑇2 ) -6.323 1.802 [-9.855,-2.791] <0.001

𝛽𝑇𝑟𝑖𝑝𝑙𝑒4 Interaction term(𝛽𝑄 , 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 with 𝛽𝑉𝑇2 ) -6.512 1.802 [-10.044,-2.980] <0.001

Random effects Var SD p

#Participant:
Intercept

Participant’s ID 9.835 3.136 <0.001

Model
Performance

Observations 1440
Marginal R2 0.342

Conditional R2 0.495
logLik -1605.531
AIC 3251.065

BIC 3356.510

Additionally, the interaction effects between a quiet environment and all vehicle types showed
significance, indicating that a quiet environment had a notable influence on the completion point of
avoidance behavior. However, it is worth noting that the combination of a quiet environment and
medium-distance signal triggers showed significance, while the combination with long-distance signal
triggers did not. This may be because, in a quiet environment, long-distance warning signals allow
participants to notice approaching vehicles earlier, giving them ample time and space to assess the
situation. As a result, they feel confident in completing the avoidance maneuver at an appropriate
moment rather than acting immediately, thus not showing significant differences with the long-
distance signal.

In contrast, participants in the medium-distance signal trigger condition, without the extended reaction
time offered by long-distance signals, may feel more urgency when the signal is activated, leading
them to complete the avoidance maneuver earlier, which results in significant differences. This
analysis suggests that in a quiet environment, medium-distance signal triggers have a more direct
impact on participants' avoidance behavior, while long-distance signals provide more flexibility,
allowing participants to perform avoidance actions with greater confidence and comfort, which may
explain the lack of significant differences.

The analysis of the standardized main effect coefficients shows that a longer warning distance indeed
prompts participants to complete avoidance actions earlier. Similarly, AEVs equipped with alert signals
are more effective in prompting participants to take early evasive actions compared to AEVs without
alert systems. This indicates that the introduction of alert signals significantly improves participants'
awareness, enabling them to detect the approaching vehicle earlier and respond in a timely manner.
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The interaction effects between variables present a more complex pattern. In most of the two-variable
interactions, the effects are positive. However, when the main effects and interaction effects are
applied simultaneously to the target variable, the results still show a negative effect. This suggests
that, while the combined interaction effects do accelerate the completion of avoidance action, the
degree of acceleration is not as pronounced as the sum of the individual main effects would predict. In
other words, although the warning signals and specific experimental conditions promote earlier
avoidance behavior, the combined impact is not as significant as initially expected.

In the combination of quiet environments and vehicle types, the distance at which participants
complete avoidance action is significantly reduced. Notably, the effect of AEVs equipped with alert
signals is more pronounced than that of standard AVs. This could be because in a quiet environment,
participants are more likely to detect the vehicle's engine sound, allowing them to more accurately
determine the vehicle’s position. This auditory signal provides a sense of safety, giving participants
the confidence to complete the avoidance maneuver at a location they deem appropriate, rather than
taking action too early or too late.

Additionally, the interaction effect between warning distance and AEVs equipped with alert systems
shows a significant positive effect. This may be due to the fact that, in noisy environments, engine
noise can be obscured by ambient sounds, while the loud alert signal remains distinct, helping
participants to better locate the vehicle. This confidence in determining the vehicle's position explains
why the effect coefficients for both medium and long warning distances are quite similar.

The three-variable interaction effects are generally negative. Even after accounting for both the main
effects and two-variable interaction effects, the overall impact on the target variable remains negative.
However, significant effects primarily occur in the combination of AEVs equipped with alert systems.
This indicates that when a quiet environment, a longer warning distance, and a more noticeable alert
signal are combined, participants complete avoidance actions even earlier. This is because these
variables are more prominent compared to the control group, allowing participants to gain a better
understanding of the situation earlier, which prompts them to take action and complete the avoidance
maneuver sooner.

5.2.3 Maximum Deceleration

In the significance analysis, the evaluation of the main effects shows that only the AEVs with warning
signals did not exhibit significant differences, while all other variables demonstrated significant effects.
In terms of two-way interaction effects, the quiet environment, in combination with warning distance
and vehicle type, displayed significant differences, indicating that compared to a noisy environment, a
quiet setting can significantly enhance participants' ability to perceive vehicle signals. However, in the
interaction between distance and vehicle type, only the combination of long distance and AVs showed
significant effects, suggesting that longer warning distances can more effectively capture participants'
attention under certain conditions.

In the analysis of multi-variable interaction effects, the combination of AVs and long warning distances
in a quiet environment showed significant effects, as did the combination of AEVs with Alert systems
and medium warning distances. This indicates that different signal types and trigger distances have
varying impacts on participants' maximum deceleration in a quiet environment.
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Table 5.4. Significance evaluation of the maximum deceleration and its standardized

coefficients

Predictors Explanations EsL SE CI p

(Intercept) 11.791 0.692 [10.434,13.148] <0.001
𝛽𝑄 Quiet Environment Sound Level(Ref: Noisy level) -3.484 0.877 [-5.203,-1.765] <0.001
𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1 Middle Signal Trigger Distance(Ref: Short Distance) -2.765 0.877 [-4.484,-1.046] 0.002
𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 Long Signal Trigger Distance(Ref: Short Distance) -4.568 0.877 [-6.286,-2.849] <0.001

𝛽𝑉𝑇1
Vehicle Type:AVs with Visual eHMI
(Ref: AEVs with Visual eHMI)

-4.046 0.877 [-5.765,-2.327] <0.001

𝛽𝑉𝑇2
Vehicle Type:AEVs with Visual eHMI and Alert signal
(Ref: AEVs with Visual eHMI)

-1.043 0.877 [-2.762,0.676] 0.234

𝛽𝐷𝑜𝑢𝑏𝑙𝑒1 Interaction term(𝛽𝑄 with 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1) 2.454 1.240 [0.023,4.884] 0.048

𝛽𝐷𝑜𝑢𝑏𝑙𝑒2 Interaction term(𝛽𝑄 with 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2) 4.312 1.240 [1.881,6.743] 0.001

𝛽𝐷𝑜𝑢𝑏𝑙𝑒3 Interaction term(𝛽𝑄 with 𝛽𝑉𝑇1) 3.073 1.240 [0.643,5.504] 0.013

𝛽𝐷𝑜𝑢𝑏𝑙𝑒4 Interaction term(𝛽𝑄 with 𝛽𝑉𝑇2) 3.212 1.240 [0.781,5.643] 0.010

𝛽𝐷𝑜𝑢𝑏𝑙𝑒5 Interaction term(𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1 with 𝛽𝑉𝑇1 ) 1.291 1.240 [-1.140,3.722] 0.298

𝛽𝐷𝑜𝑢𝑏𝑙𝑒6 Interaction term(𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 with 𝛽𝑉𝑇1 ) 5.423 1.240 [2.992,7.854] <0.001

𝛽𝐷𝑜𝑢𝑏𝑙𝑒7 Interaction term(𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1 with 𝛽𝑉𝑇2 ) 2.318 1.240 [-0.113,4.749] 0.062

𝛽𝐷𝑜𝑢𝑏𝑙𝑒8 Interaction term(𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 with 𝛽𝑉𝑇2 ) 1.782 1.240 [-0.648,4.213] 0.151

𝛽𝑇𝑟𝑖𝑝𝑙𝑒1 Interaction term(𝛽𝑄 , 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1 with 𝛽𝑉𝑇1 ) 0.135 1.754 [-3.303,3.573] 0.939

𝛽𝑇𝑟𝑖𝑝𝑙𝑒2 Interaction term(𝛽𝑄 , 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 with 𝛽𝑉𝑇1 ) -5.469 1.754 [-8.907.-2.031] 0.002

𝛽𝑇𝑟𝑖𝑝𝑙𝑒3 Interaction term(𝛽𝑄 , 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1 with 𝛽𝑉𝑇2 ) -3.987 1.754 [-7.425,-0.550] 0.023

𝛽𝑇𝑟𝑖𝑝𝑙𝑒4 Interaction term(𝛽𝑄 , 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 with 𝛽𝑉𝑇2 ) -3.027 1.754 [-6.465,0.411] 0.084

Random effects Var SD p

#Participant:
Intercept

Participant’s ID 7.589 2.755 <0.001

Model
Performance

Observations 1440
Marginal R2 0,048

Conditional R2 0.236
logLik -1560.592
AIC 3160.385

BIC 3265.833

From the standardized coefficients of the main effects, it can be observed that a quiet environment,
longer warning distances, and more prominent engine noise all contribute to a decrease in
participants' maximum deceleration. This implies that their deceleration behavior becomes more
gradual and less abrupt, suggesting that participants are able to make more controlled and less hasty
avoid actions under these conditions, reducing the likelihood of emergency braking.

In the two-way interaction effects, although many combinations showed positive effects, when the
main effect coefficients were included in the overall analysis, the maximum deceleration still showed a
decreasing trend. This suggests that while interaction effects may weaken some of the impacts of the
main effects, the overall trend remains a reduction in maximum deceleration. Particularly in quiet
environments, the interaction between vehicle type and trigger distance shows positive coefficients,
likely because sudden signals in quiet settings can induce a momentary sense of urgency, leading to
more abrupt initial reactions to ensure safety.

In the three-way interaction effects, almost all combinations exhibited negative effects. Upon
observing these interactions, it becomes clear that longer warning distances indeed facilitate more
gradual evasive actions. However, the type of warning signal also plays a crucial role—it is not simply
a matter of longer distances leading to smoother deceleration. For instance, AEVs with warning
signals showed smoother deceleration at medium distances compared to long distances. This may be
because, in a quiet environment, participants are closer to the vehicle at medium distances and can
hear the engine noise earlier, allowing them to prepare sooner, resulting in less abrupt deceleration.
Conversely, long distances might provide too much time and space, causing participants to lower their
guard.
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In conclusion, while longer warning distances and a quiet environment help participants detect vehicle
signals earlier and prompt them to make more gradual avoid actions, the specific deceleration
behavior also depends on the combination of warning signal types and distances. In some cases,
medium warning distances may encourage more controlled reactions rather than relying solely on
long-distance warning signals.

5.2.4 Roadside Attention

In the evaluation of the significance of road-side attention, most main effects did not show significant
differences. However, the AEVs equipped with alert signals showed a notable trend toward
significance compared to other vehicles, though the P-value of 0.077 is still greater than the 0.05
threshold for statistical significance. Meanwhile, long-distance warning signals were found to be
significant, and the effect was negative. As for multivariable interactions, most did not show
significance, with the exception of the combination of AVs and a quiet environment, which
demonstrated a significant interaction.

Table 5.5. Significance evaluation of roadside attention and its standardized coefficients

Predictors Explanations EsL SE CI p

(Intercept) 7.118 0.501 [6.136,8.100] <0.001
𝛽𝑄 Quiet Environment Sound Level(Ref: Noisy level) 0.083 0.656 [-1.203,1.369] 0.899
𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1 Middle Signal Trigger Distance(Ref: Short Distance) -0.312 0.656 [-1.598,0.974] 0.634
𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 Long Signal Trigger Distance(Ref: Short Distance) -1.686 0.656 [-2.973,-0.400] 0.010

𝛽𝑉𝑇1
Vehicle Type:AVs with Visual eHMI
(Ref: AEVs with Visual eHMI)

-0.593 0.656 [-1.879,0.694] 0.366

𝛽𝑉𝑇2
Vehicle Type:AEVs with Visual eHMI and Alert signal
(Ref: AEVs with Visual eHMI)

-1.160 0.656 [-2.446,0.126] 0.077

𝛽𝐷𝑜𝑢𝑏𝑙𝑒1 Interaction term(𝛽𝑄 with 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1) -0.685 0.928 [-2.504,1.135] 0.461

𝛽𝐷𝑜𝑢𝑏𝑙𝑒2 Interaction term(𝛽𝑄 with 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2) -0.523 0.928 [-2.342,1.296] 0.573

𝛽𝐷𝑜𝑢𝑏𝑙𝑒3 Interaction term(𝛽𝑄 with 𝛽𝑉𝑇1) 1.818 0.928 [-0.002,3.637] 0.050

𝛽𝐷𝑜𝑢𝑏𝑙𝑒4 Interaction term(𝛽𝑄 with 𝛽𝑉𝑇2) 1.649 0.928 [-0.170.3.468] 0.076

𝛽𝐷𝑜𝑢𝑏𝑙𝑒5 Interaction term(𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1 with 𝛽𝑉𝑇1 ) -0.042 0.928 [-1.861,1.778] 0.964

𝛽𝐷𝑜𝑢𝑏𝑙𝑒6 Interaction term(𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 with 𝛽𝑉𝑇1 ) 1.515 0.928 [-0.304,3.335] 0.103

𝛽𝐷𝑜𝑢𝑏𝑙𝑒7 Interaction term(𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1 with 𝛽𝑉𝑇2 ) 0.105 0.928 [-1.715,1.924] 0.910

𝛽𝐷𝑜𝑢𝑏𝑙𝑒8 Interaction term(𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 with 𝛽𝑉𝑇2 ) 1.270 0.928 [-0.549,3.089] 0.171

𝛽𝑇𝑟𝑖𝑝𝑙𝑒1 Interaction term(𝛽𝑄 , 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1 with 𝛽𝑉𝑇1 ) -0.069 1.313 [-2.642,2.504] 0.958

𝛽𝑇𝑟𝑖𝑝𝑙𝑒2 Interaction term(𝛽𝑄 , 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 with 𝛽𝑉𝑇1 ) -1.623 1.313 [-4.196,0.950] 0.216

𝛽𝑇𝑟𝑖𝑝𝑙𝑒3 Interaction term(𝛽𝑄 , 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1 with 𝛽𝑉𝑇2 ) 0.127 1.313 [-2.445,2.700] 0.923

𝛽𝑇𝑟𝑖𝑝𝑙𝑒4 Interaction term(𝛽𝑄 , 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 with 𝛽𝑉𝑇2 ) -0.674 1.313 [-3.247,1.898] 0.607

Random effects Var SD p

#Participant: Intercept Participant’s ID 2.865 1.693 <0.001

Model
Performance

Observations 1440

Marginal R2 0.034
Conditional R2 0.172

logLik -1135.877
AIC 4311.754

BIC 4417.202

The long-distance warning signal showed both significance and a negative effect, indicating that when
participants noticed the vehicle’s signal from a greater distance, they were less likely to continuously
or significantly turn their heads to monitor the signaling vehicle. This is because they had already
gathered enough information from a distance, allowing them to focus more on the road ahead and
use peripheral vision, rather than fully turning their heads to follow the vehicle. This behavior suggests
that when signals are detected early, participants' attention to the vehicle decreases, and they focus
more on the road’s overall conditions. This is considered a safety enhancement, as participants are
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both aware of the signaling vehicle and able to focus on the road without being overly distracted by
the signaling vehicle.

Additionally, the combination of AVs and a quiet environment showed significance when compared to
the baseline group, and the interaction remained positive after adjusting for the main effects. This
suggests that in closer proximity, participants in a quiet environment were able to detect the vehicle’s
engine noise earlier, but the absence of visual signals caused them to maintain their attention on the
roadside, searching for potential warning signals. This continued attention resulted in increased road-
side focus, particularly in scenarios where AVs were not equipped with additional alert signals.
Consequently, participants' visual attention was more heavily concentrated on identifying the signal
source in such conditions.
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6 Discussion and Conclusions
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In this chapter, the main research findings will be discussed. First, Section 6.1 will revisit the research
question and explain the importance of conducting this study. Section 6.2 will summarize the main
results presented in Chapter 5 and positioning the study results within the literature. Finally, Section
6.3 will address the limitations of this research and future research directions.

6.1 Recap of Problem Statement and Research

Importance

With the rapid development of autonomous driving and EVs technologies, AEVs are emerging as a
critical component of future transportation systems. AEVs not only offer significant advantages such
as reducing carbon emissions, improving energy efficiency, and optimizing traffic flow, but they are
also seen as a potential solution to many of the transportation and environmental challenges faced by
modern society. However, despite their immense potential, the safe interaction between AEVs and
other road users remains a key challenge that must be addressed for their widespread adoption and
use.

Currently, one of the widely adopted industry solutions is to equip autonomous vehicles with external
Human-Machine Interfaces (eHMI), which use visual signals to communicate non-verbally with
pedestrians, cyclists, and other road users. These visual cues help others on the road to better
understand the intentions of the autonomous vehicle, thereby reducing the risk of accidents. However,
because AEVs, like most electric vehicles, produce little engine noise, especially when traveling at low
speeds or idling, they may be difficult to detect by sound alone. As a result, the question of whether
AEVs should be equipped with Acoustic Vehicle Alerting Systems (AVAS) to provide additional
auditory warnings and compensate for this lack of noise remains unresolved. Currently, there is
insufficient research support in both industry and academia to definitively answer this question.

To address this key issue, the present study used Virtual Reality (VR) technology to simulate
interaction scenarios between AEVs and cyclists, focusing specifically on whether additional auditory
warning systems (AVAS) could enhance cyclists' ability to perceive vehicles and improve their sense
of safety. An experiment was designed within the virtual reality environment, incorporating different
combinations of environmental noise levels, signal trigger distances, and vehicle types. The goal was
to systematically analyze experimental data to assess the impact of auditory warning systems on the
interaction between AEVs and road users.

The central research question is: In situations where autonomous electric vehicles are already
equipped with eHMI systems, is an additional auditory warning system still necessary to ensure road
safety? Through comprehensive analysis of the experimental data, this study aims to provide
scientific evidence for policymakers, traffic management authorities, and vehicle manufacturers. The
goal is to help them strike the optimal balance between ensuring the safety of road users and
reducing the cost of implementing this technology.

6.2 Summary of main results

6.2.1 Safety Aspect

Through the analysis of experimental data and survey responses, it is clear that the acoustic alert
system significantly enhances cyclists' ability to perceive approaching vehicles. Firstly, the
experimental results indicate that AEVs equipped with acoustic alert signals perform exceptionally
well, especially in noisy environments. Compared to vehicles that rely solely on visual signals, the
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acoustic alert system effectively compensates for the low engine noise of electric vehicles, particularly
when triggered at medium to long distances. This was strongly validated through data analysis,
specifically in the evaluation of maximum deceleration and reaction points, where the acoustic alert
system enabled cyclists to detect vehicles earlier and react in advance. This not only reduced reaction
time but also significantly lowered the sense of urgency and stress participants experienced when
faced with sudden situations.

Survey feedback corroborates these findings, with 73.2% of participants clearly stated that the
acoustic alert system helped them perceive approaching vehicles more effectively, particularly in
complex traffic conditions where visual signals alone may not fully ensure safety (In the questionnaire,
all participants gave a score of 3.24 to vehicles that used only light signals in noisy environments,
while vehicles with an additional alert system received a score of 3.88. This is a significant difference).
This feedback aligns closely with the experimental data. Although 40% of participants believed that
visual signals were sufficient in scenarios without the complex lighting and sound interference typical
of urban areas, nearly all participants expressed a preference for the inclusion of an acoustic alert to
enhance perception and safety. This demonstrates that, from a subjective standpoint, the acoustic
alert system not only enhances participants' sense of security but also improves their ability to control
the environment and recognize potential hazards.

Overall, the acoustic alert system consistently enabled participants to notice vehicles earlier and
provided them with more ample reaction time and distance under various experimental conditions,
representing an improvement in safety. It effectively compensates for the low noise levels of electric
vehicles, ensuring that vehicles are more easily perceived by other road users, especially in noisy
urban environments. Therefore, the integration of an acoustic alert system in future transportation
systems has the potential to significantly enhance overall road safety.

6.2.2 Comfort Aspect

From the perspective of comfort, the acoustic alert system also plays a significant role, particularly in
enhancing participants' comfort during the avoidance process. Experimental data shows that AEVs
equipped with alert signals not only prompted cyclists to initiate avoidance behaviors earlier but also
significantly improved the smoothness of their avoidance actions. The analysis of maximum
deceleration reveals that the acoustic alert signals allowed cyclists to perform smoother avoidance
actions, avoiding the stress and anxiety associated with abrupt braking. This smoother response
indicates that participants, when aware of the vehicle's presence, were able to react in a more
composed and natural manner, rather than becoming highly tense due to the sudden appearance of a
signal.

This experimental outcome aligns with the subjective feedback collected from the surveys. Many
participants noted that the sound signals not only increased the perceptibility of the vehicle but also
reduced their mental burden when interacting with autonomous vehicles, making the overall driving
experience more comfortable. This suggests that the acoustic alert system not only enhances the
visibility of vehicles in traffic but also significantly boosts participants' confidence, allowing them to
interact with autonomous vehicles in a more composed and relaxed manner.

Furthermore, the analysis of roadside attention further supports this conclusion. The experimental
data indicates that longer warning distances showed a significant advantage over medium warning
distances. The results suggest that participants were able to gather information about the vehicle's
status from a distance, thereby reducing the need for frequent head-turning. This implies that the
acoustic alert system may allow participants to detect potential hazards earlier and more quickly,
enabling them to focus on the road ahead without frequently shifting their gaze.This more natural
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behavior effectively reduced participants' anxiety, enhancing the smoothness and comfort of their
driving experience. Participants in the survey commonly reported that sound signals not only
increased their sense of security but also alleviated their anxiety when facing autonomous vehicles,
significantly improving overall driving comfort.

6.2.3 Answering the research questions

This study aims to explore how an additional auditory alert system affects the interaction between
cyclists and AEVs equipped with a visual eHMI in a virtual reality environment, focusing particularly on
its impact on cyclists' perceived safety and comfort. The central research question is to determine
whether this auditory alert system can enhance both the objective and subjective road safety and
comfort of cyclists. To answer the central research question, three sub-questions were defined to
delve deeper into specific aspects of this interaction. In the previous chapters, a series of data
analyses and discussions were conducted, and several conclusions were drawn. Now, a summary will
be provided to answer the sub-research questions and the central research question that were set out
at the beginning of this study.

Sub-question 1: In the absence of additional auditory alerts, is there a difference in cyclists'
perception abilities and behavior between autonomous vehicles (AVs) and
autonomous electric vehicles (AEVs) equipped with the same electronic
human-machine interface (eHMI) system?

The research results show that in the absence of an auditory alert system, cyclists' perception abilities
toward AEVs are significantly lower than those toward AVs. Due to the low engine noise of AEVs,
cyclists found it more difficult to detect the approaching vehicle in noisy environments, leading to
longer reaction times. Although visual eHMI signals provide some assistance, the lack of auditory
cues makes AEVs less perceivable than AVs, resulting in slower response speeds.

Sub-question 2: How does the additional auditory alert system to AVs and AEVs affect
cyclists' perception abilities and behavior ?

The auditory alert system significantly enhanced both the safety and comfort of cyclists. Objective
data showed that the auditory signals reduced reaction times and lowered maximum deceleration,
enabling cyclists to complete avoidance actions in a smoother manner. Subjective feedback also
indicated that participants were satisfied with the presence of the auditory signals, believing that it not
only improved their awareness of the approaching vehicle but also alleviated psychological stress,
making their cycling experience more relaxed and comfortable.

Sub-question 3: Does the environmental noise level of an area influence the perception
abilities of cyclists towards different types of vehicles equipped with the
same eHMI system?

The study demonstrated that environment noise levels significantly impact cyclists' perception abilities.
In noisy environments, AEVs, due to their low noise characteristics, are harder for cyclists to detect
quickly, and the effectiveness of visual eHMI signals is also reduced. However, when an auditory alert
system is introduced, the negative impact of noise on perception abilities is effectively mitigated. The
auditory signals enable cyclists to more accurately judge the vehicle's position and movement.
Therefore, the auditory alert system proves especially effective in high-noise environments.
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Main research question: How does an additional auditory alert system in autonomous electric
vehicles equipped with visual eHMI affect cyclists' behavior, comfort,
and safety under the influence of different types of idling vehicles and
environmental noise?

The research results indicate that the auditory alert system significantly enhances cyclists' perceived
safety. Objective data show that the auditory signal improves cyclists' reaction time, prompting them
to complete avoidance actions earlier, particularly in noisy environments where the sound signal
compensates for the low noise levels of electric vehicles. Moreover, the subjective feedback from the
survey supports this, with participants expressing a clear preference for the auditory signal, noting
that it greatly improved their awareness of the vehicle and made them feel safer in complex traffic
situations. Therefore, the study concludes that the auditory alert system is an effective tool for
improving the safety of interactions between AEVs and cyclists.

Based on the answer of the research questions, it is clear that the auditory alert system significantly
enhances the safety and comfort of cyclists when interacting with AEVs. From a safety perspective,
the experimental data show that auditory signals significantly reduce cyclists' reaction time, prompting
them to notice potential hazards earlier and complete avoidance actions sooner. The increased
reaction distance is considered an effective factor in reducing the likelihood of accidents. This finding
is further supported by survey feedback, where over 60% of participants indicated that relying solely
on visual signals is insufficient to ensure complete road safety, especially in noisy urban environments.
The additional auditory signals complemented the visual eHMI, improving cyclists' perception of
approaching vehicles and enhancing safety in complex traffic scenarios.

In terms of comfort, the auditory alert system not only increases vehicle detectability but also allows
cyclists to execute avoid actions more smoothly and naturally, alleviating the psychological strain
caused by sudden reactions. The data demonstrate that the inclusion of auditory alerts reduces
cyclists' maximum deceleration, allowing them to respond more smoothly. The survey feedback
corroborates these findings, with participants expressing that auditory alerts made them feel more at
ease and significantly improved their overall cycling experience.

6.2.4 Positioning the study results within the literature

Currently, in the literature on interactions between AEVs and other vulnerable road users, most
studies focus primarily on pedestrian interactions with AEVs. However, research on cyclists, who are
also vulnerable and often have to share the road with vehicles, remains relatively limited.

In the existing literature, significant progress has been made regarding the interaction between AEVs
and road users. Wessel et al. (2022) investigated how the sound characteristics of electric vehicles
during acceleration affect pedestrians’ estimation of time-to-collision (TTC). Their experiment,
conducted using virtual reality technology, tested pedestrians’ TTC judgments in scenarios where
electric vehicles were either equipped with or without acoustic vehicle alerting systems (AVAS). The
results indicated that due to the low noise levels of electric vehicles, pedestrians often overestimated
the TTC, which increased the risk of road accidents. While the introduction of AVAS improved this
judgment, it was still less effective than for internal combustion engine vehicles (ICEVs). This
research highlights the critical role of sound signals in enhancing traffic safety perception, especially
in the absence of such signals, where pedestrian reactions were slower compared to traditional
vehicles.

In contrast, the present study showed that sound warning signals not only effectively enhanced
cyclists' ability to perceive the approaching vehicle but also significantly reduced reaction times,
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prompting them to complete avoidance actions earlier, particularly in noisy environments. Although
both studies emphasize the positive impact of sound warning systems on safety, there are some
differences in their conclusions. Wessel et al. found that electric vehicles equipped with AVAS were
less effective than ICEVs in terms of pedestrian safety, whereas this study demonstrated that
additional sound signals could effectively compensate for the shortcomings of low-noise vehicles in
complex environments. This discrepancy may stem from key differences in experimental design:
Wessel's experiment focused on pedestrians estimating TTC during vehicle acceleration, whereas
this study examined scenarios in which cyclists actively approached stationary vehicles. Additionally,
Wessel et al. concentrated on the effects of different AVAS loudness levels, while this study employed
a beeper as the warning signal. The differences in signal types, as well as the types and sound level
of environmental noise, may explain the variation in conclusions.

Bindschädel et al., (2023) conducted a real-world experiment exploring the effectiveness of AVs
communicating with pedestrians through eHMI and acoustic signals. The study revealed that the
combination of acoustic signals and eHMI significantly improved pedestrians' decision-making when
crossing the street and increased their sense of safety. This finding aligns with the results of the
present experiment, particularly regarding the effectiveness of sound warning systems in noisy
environments. Although Bindschädel’s study used a real-world setting while the current research
relied on virtual reality technology, both studies demonstrate that sound signals are crucial tools for
enhancing interactions between AVs and pedestrians or cyclists. This further supports the role of
sound signals in improving safety and perception.

Similarly, Liu et al., (2024) explored the impact of multimodal eHMI (MUI) with emotional voice
prompts on the interaction between autonomous personal mobility vehicles (APMV) and pedestrians.
Through passenger experiments in real-world environments, the study found that eHMI with voice
prompts significantly enhanced passengers' understanding and quality of interaction with pedestrians.
While this study focused on the effectiveness of emotional voice prompts and the current experiment
used a simpler beeper warning signal, both studies reached the conclusion that sound signals
significantly improve users' sense of safety and driving experience.

Additionally, Shen et al.,(2020), through simulation modeling concluded that the low noise
characteristic of electric vehicles increases the risk to pedestrians at low speeds. Although the
experimental methods differ, this finding is highly consistent with the conclusions of the current study,
both indicating that the low noise of electric vehicles can make it difficult for road users to respond
promptly, thus increasing the risk of accidents. This study further validated through virtual reality
experiments that sound warning systems can significantly improve cyclists' awareness of approaching
vehicles. Especially in noisy urban environments, the addition of sound warnings effectively
compensates for the perceptual limitations caused by electric vehicles' low noise.

By comparing the aforementioned studies, it can be concluded that while the methodologies and
experimental designs differ, all suggest that incorporating sound warning systems in autonomous
electric vehicles plays a crucial role in improving road safety. Sound signals not only significantly
enhance pedestrians' and cyclists' ability to perceive vehicles but also improve their sense of safety
and comfort, with their effectiveness being particularly prominent in complex traffic environments.

6.3 Research Limitations and Future Research

Despite several important findings in this stusy, there are some limitations that need further
exploration. First, while the use of virtual reality (VR) technology provided numerous advantages,
such as offering a safe and controlled environment to simulate real road scenarios, it also has
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inherent limitations. Participants’ behaviors in a virtual environment may not fully align with how they
would act in reality. Though VR technology can effectively simulate driving situations, there may still
be differences in perception and action feedback compared to real-world experiences, especially in
complex traffic scenarios. Participants’ psychological responses and decision-making might be
constrained by the VR equipment. Thus, conclusions drawn from VR experiments need to be
validated through rigorous real-world control experiments to confirm that findings from virtual
environments are applicable to actual settings.

Secondly, the choice of signal type in this experiment may have influenced the generalizability of the
study’s results. This research used a beeping sound as a substitute for a sound warning signal but did
not explore more diverse acoustic signals, such as different loudness levels or frequencies. This
limitation restricts the generalizability of the findings and does not fully assess how other types of
sound signals may impact cyclists’ perception and reactions. Following the findings from previous
research, Wessel’s experiment thoroughly evaluated the effects of different sound levels and
frequencies, resulting in findings that differ from those in this study. Therefore, future research could
benefit from comparing various types of sound warning signals to better understand the effectiveness
of warning systems across different environments and signal forms.

Third, the background of the participants may have influenced the results. The participants in this
study were primarily recruited from a campus setting, meaning the sample largely consisted of
students and young adults who had prior experience with virtual reality and computer games. This
may have led to a higher level of adaptability to the experimental environment, which could mean that
the findings do not fully reflect the behavior of older or less technologically experienced drivers and
cyclists. To increase the generalizability of the results, future research should consider including a
more diverse group of participants to verify whether the findings apply to road users from different
backgrounds.

Fourth, the limitations of the cycling simulator also have potential impacts on this study. Since the

simulator ’ s handlebars are fixed, participants could only control lateral movement using buttons,

which differs from the body tilting and handling involved in real cycling. These limitations may affect
participants' behavior, especially in complex traffic scenarios, as the simulator may not fully reflect
real-world operations and reactions. Moreover, the cycling simulator cannot simulate real-world
variations in terrain elevation, or environmental factors like wind and rain. For transparency, it is
important to acknowledge these limitations and address them in future research. Improvements could
include using more realistic simulators or conducting comparative tests on real roads to verify the
reliability and applicability of the study's findings.

Fifth, the measurement method for the mean yaw angle used in this study has certain limitations in
terms of accuracy. Although the average yaw angle provides valuable insights into participants' head
movements, its validity as the sole measure of "roadside attention" should be approached with
caution. The yaw angle only reflects the direction of the participants' head and does not ensure that
their visual focus is always on roadside information. Factors such as peripheral vision, eye
movements, or brief distractions may affect attention allocation, which cannot be captured solely by
the yaw angle. Additionally, the accuracy of the VR headset in tracking the yaw angle may be
influenced by device lag or calibration errors, potentially introducing some bias into the data. Future
research could incorporate eye-tracking technology or other behavioral indicators to improve the
reliability of this measurement method.

Additionally, the design of the experimental scenarios may have limited the study’s conclusions.
Although the research simulated different signal scenarios in both noisy urban and quiet environments,
the experiment was conducted on a single road or under specific conditions. Real-world traffic
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situations can be much more complex, involving multiple vehicles, pedestrians, and other road users
interacting simultaneously. Therefore, the experimental setup does not cover all potential real-world
situations. Future research could benefit from incorporating more complex experimental settings to
further validate the effectiveness of sound warning systems in a broader range of traffic environments.

Lastly, the chosen signal trigger distances in the experiment may have had an impact on the results.
This study used specific trigger distances to test the effectiveness of the sound warning system, but in
real-world scenarios, trigger distances may vary due to factors such as vehicle speed, road conditions,
and ambient noise. Thus, future studies should consider testing the warning system over a wider
range of trigger distances to further enhance the applicability of the conclusions.

In future research, I will continue to validate the conclusions of the current study by addressing some
of its limitations. First, I will investigate the types of sounds used in sound alert systems, as studies
have shown that different warning sounds can have varying effects on individuals (Patterson, 1990).
Therefore, replacing the buzzer sound used in this experiment with different types of sounds and
verifying their effects would be a promising direction for future research. Additionally, adjusting the
vehicles from an idle stationary state to moving vehicles is another key aspect for future investigation.
In this study, the vehicles were stationary, but to apply the current findings to real-world scenarios, it is
essential to study the interactions between moving vehicles and other road users. These interactions
should not only include face-to-face encounters but also situations such as overtaking, turning, and
various real-world scenarios.
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7 Study Implications
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I believe the findings of this study have significant implications for the design and regulation of future
autonomous vehicles. Both subjective and objective results indicate that the presence of auditory
information enhances other road users' perception of the road environment and makes them feel
safer on a subjective level. Therefore, ensuring that AEVs are equipped with an additional alert
system can bridge the perceptual gap caused by the low-noise characteristic of electric vehicles. This
is particularly crucial in noisy environments, where auditory information is essential for detecting
approaching vehicles. This study provides evidence supporting the integration of comprehensive
eHMI systems (combining visual and auditory elements) to enhance the safety and comfort of all road
users, especially cyclists.

Additionally, this study utilized a virtual experimental environment. It provides an opportunity for more
researchers to go beyond merely using virtual reality experiments to study human behavior and
instead incorporate a wider variety of vehicles into the virtual world. The experimental parameters and
environmental settings in this study were based on extensive references to existing literature, making
them suitable for continued use in more in-depth research. As mentioned earlier, further investigations
into different types of sound signals and various vehicle behavior patterns, which were not
implemented in this study, can also be developed based on the experimental environment established
here.

Furthermore, from a long-term perspective, the study highlights the potential broad societal benefits of
equipping AEVs with sound alert systems. Improving the safety and comfort of cyclists can encourage
more sustainable transportation choices, fostering urban mobility solutions that align with
environmental goals. By ensuring safe interactions between AEVs and non-motorized road users, the
promotion and adoption of AEV technology can be advocated to a certain extent.

In conclusion, this study has demonstrated the important role of integrating sound alert systems with
visual eHMI into AEVs in addressing the safety and comfort challenges faced by cyclists. The
combination of experimental data and participant feedback provides strong support for the practical
significance of sound alert systems. Although this is only a small step toward enhancing safety in the
field of AEVs, continuous and in-depth research will help establish reasonable regulations that meet
the safety needs of all road users while ensuring the effectiveness of autonomous driving solutions,
thereby accelerating the integration of AEV technology into daily life.



63

References

[1] Kim, K. J., Park, E., & Sundar, S. S. (2013). Caregiving role in human–robot interaction: A study of
the mediating effects of perceived benefit and social presence. Computers in Human Behavior, 29(4),
1799-1806. https://doi.org/10.1016/j.chb.2013.02.009

[2]European Parliament and Council. (2014). Regulation (EU) No 540/2014 of 16 April 2014. Official
Journal of the European Union. Retrieved from [https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=celex%3A32014R0540]

[3]Ackermans, S., Dey, D., Ruijten, P., Cuijpers, R. H., & Pfleging, B. (2020, April). The effects of
explicit intention communication, conspicuous sensors, and pedestrian attitude in interactions with
automated vehicles. In Proceedings of the 2020 chi conference on human factors in computing
systems (pp. 1-14).

[4]Sadeghian, S., Hassenzahl, M., & Eckoldt, K. (2020, September). An exploration of prosocial
aspects of communication cues between automated vehicles and pedestrians. In 12th International
Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 205-211).

[5]Faas, S. M., Kao, A. C., & Baumann, M. (2020, April). A longitudinal video study on communicating
status and intent for self-driving vehicle–pedestrian interaction. In Proceedings of the 2020 CHI
conference on human factors in computing systems (pp. 1-14).

[6]Joisten, P., Alexandi, E., Drews, R., Klassen, L., Petersohn, P., Pick, A., ... & Abendroth, B. (2020).
Displaying vehicle driving mode–Effects on pedestrian behavior and perceived safety. In Human
Systems Engineering and Design II: Proceedings of the 2nd International Conference on Human
Systems Engineering and Design (IHSED2019): Future Trends and Applications, September 16-18,
2019, Universität der Bundeswehr München, Munich, Germany (pp. 250-256). Springer International
Publishing.

[7]Fabra-Rodriguez, M., Peral-Orts, R., Campello-Vicente, H., & Campillo-Davo, N. (2021). Gear
sound model for an approach of a Mechanical Acoustic Vehicle Alerting System (MAVAS) to increase
EV’s detectability. Applied Acoustics, 184, 108345. https://doi.org/10.1016/j.apacoust.2021.108345

[8]Berge, S. H., de Winter, J., & Hagenzieker, M. (2023). Support Systems for Cyclists in Automated
Traffic: A Review and Future Outlook. Applied Ergonomics, 111, 104043.
https://doi.org/10.1016/j.apergo.2023.104043

[9]Parizet, E., Robart, R., Ellermeier, W., Janssens, K., Bianciardi, F., Haider, M., Quinn, D., &
Chamard, J.-C. (2014). WARNING SOUNDS FOR ELECTRIC VEHICLES. In Proceedings of the
Fisita World Automotive Congress.

[10]Pardo-Ferreira, M. del C., Rubio-Romero, J. C., Galindo-Reyes, F. C., & Lopez-Arquillos, A.
(2020). Work-related road safety: The impact of the low noise levels produced by electric vehicles
according to experienced drivers. Safety Science, 121, 580-588.
https://doi.org/10.1016/j.ssci.2019.02.021.



64

[11]Horn, S., Madigan, R., Lee, Y. M., Tango, F., & Merat, N. (2023). Pedestrians’ perceptions of
automated vehicle movements and light-based eHMIs in real world conditions: A test track study.
Transportation Research Part F: Traffic Psychology and Behaviour, 95, 83-97.
https://doi.org/10.1016/j.trf.2023.02.010.

[12]Faas, S. M., & Baumann, M. (2021). Pedestrian assessment: Is displaying automated driving
mode in self-driving vehicles as relevant as emitting an engine sound in electric vehicles? Applied
Ergonomics, 94, 103425. https://doi.org/10.1016/j.apergo.2021.103425.

[13]Karaaslan, E., Noori, M., Lee, J., Wang, L., Tatari, O., & Abdel-Aty, M. (2018). Modeling the effect
of electric vehicle adoption on pedestrian traffic safety: An agent-based approach. Transportation
Research Part C: Emerging Technologies, 93, 198-210. https://doi.org/10.1016/j.trc.2018.05.026

[14]Ashmead, D. H., Grantham, D. W., Maloff, E. S., Hornsby, B., Nakamura, T., Davis, T. J., Pampel,
F., & Rushing, E. G. (2012). Auditory perception of motor vehicle travel paths. Human factors, 54(3),
437–453. https://doi.org/10.1177/0018720811436083

[15]Hornikx, M., Dohmen, M., Conen, K., van Hooff, T., & Blocken, B. (2018). The wind effect on
sound propagation over urban areas: Predictions for generic urban sections. Building and
Environment, 144, 519-531. https://doi.org/10.1016/j.buildenv.2018.08.041

[16]Emerson, R. W., & Sauerburger, D. (2008). Detecting Approaching Vehicles at Streets with No
Traffic Control. Journal of visual impairment & blindness, 102(12), 747.

[17]Abbott, D. (2019). Intensity and Distance. In Understanding Sound. Pressbooks. Retrieved from
https://pressbooks.pub/sound/chapter/intensity-and-distance-april-2019-version/

[17]Evtyukov, S., Brylev, I., & Blinder, M. (2021). Estimation of the reaction time of the driver of a two-
wheeled vehicle in case of danger. MATEC Web of Conferences, 341, 00047.
https://doi.org/10.1051/matecconf/202134100047

[18]Easa, S., Ma, Y., Elshorbagy, A., Shaker, A., Li, S., & Arkatkar, S. (2020). Visibility-Based
Technologies and Methodologies for Autonomous Driving. In Self-Driving Vehicles and Enabling
Technologies. IntechOpen.

[19]Grimm, D. K., Kiefer, R. J., Angell, L. S., Deering, R. K., & Green, C. A. (2012). U.S. Patent No.
8,253,589. Washington, DC: U.S. Patent and Trademark Office.

[20]Hillis, W. D., Williams, K. I., Tombrello, T. A., Sarrett, J. W., Khanlian, L. W., Kaehler, A. L., & Howe,
R. (2016). U.S. Patent No. 9,475,422. Washington, DC: U.S. Patent and Trademark Office.

[21]Rauf, M., Kumar, L., Zulkifli, S. A., & Jamil, A. (2024). Aspects of artificial intelligence in future
electric vehicle technology for sustainable environmental impact. Environmental Challenges, 14,
100854. https://doi.org/10.1016/j.envc.2024.100854

[22]Kreißig, I., Morgenstern, T., & Krems, J. (2023). Blinking, beeping or just driving? Investigating
different communication concepts for an autonomously parking e-cargo bike from a user perspective.
In Human Interaction and Emerging Technologies (IHIET-AI 2023): Artificial Intelligence and Future
Applications (Vol. 70, No. 70). http://doi.org/10.54941/ahfe1002930



65

[23]Haimerl, M., Colley, M., & Riener, A. (2022). Evaluation of common external communication
concepts of automated vehicles for people with intellectual disabilities. Proceedings of the ACM on
Human-Computer Interaction, 6(MHCI), 1–19. https://doi.org/10.1145/3546717

[24]Liu, H., Li, Y., Zeng, Z., Cheng, H., Peng, C., & Wada, T. (2024). Is Silent External Human–
Machine Interface (eHMI) Enough? A Passenger-Centric Study on Effective eHMI for Autonomous
Personal Mobility Vehicles in the Field. International Journal of Human–Computer Interaction.
https://doi.org/10.1080/10447318.2024.2306426

[25]Dey, D., Habibovic, A., Löcken, A., Wintersberger, P., Pfleging, B., Riener, A., Martens, M., &
Terken, J. (2020). Taming the eHMI jungle: A classification taxonomy to guide, compare, and assess
the design principles of automated vehicles' external human-machine interfaces. Transportation
Research Interdisciplinary Perspectives, 7, 100174. https://doi.org/10.1016/j.trip.2020.100174

[26]Bazilinskyy, P., Dodou, D., & De Winter, J. (2019). Survey on eHMI concepts: The effect of text,
color, and perspective. Transportation Research Part F: Traffic Psychology and Behaviour, 67, 175-
194.

[27]Lee, Y. M., Madigan, R., Uzondu, C., Garcia, J., Romano, R., Markkula, G., & Merat, N. (2022).

Learning to interpret novel eHMI: The effect of vehicle kinematics and eHMI familiarity on pedestrian ’

crossing behavior. Journal of Safety Research, 80, 270-280. https://doi.org/10.1016/j.jsr.2021.12.010

[28]Deb, S., Strawderman, L.J., & Carruth, D.W. (2018). Investigating pedestrian suggestions for
external features on fully autonomous vehicles: A virtual reality experiment. Transportation Research
Part F: Traffic Psychology and Behaviour, 59, 135-149.

[29]Lee, Y. M., Uttley, J., Madigan, R., Garcia, J., Tomlinson, A., Solernou, A., et al. (2019).
Understanding the messages conveyed by automated vehicles. Proceedings of the 11th International
Conference on Automotive User Interfaces and Interactive Vehicular Applications, Utrecht,
Netherlands.

[29]Colley, M., Walch, M., Gugenheimer, J., & Rukzio, E. (2019). Including people with impairments
from the start: External communication of autonomous vehicles. In Proceedings of the 11th
International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp.
307-314). https://doi.org/10.1145/3349263.3351521

[30]Harper, C. D., Hendrickson, C. T., Mangones, S., & Samaras, C. (2016). Estimating potential
increases in travel with autonomous vehicles for the non-driving, elderly and people with travel-
restrictive medical conditions. Transportation research part C: emerging technologies, 72, 1-9.

[31]Garg, M., Johnston, C., & Bouroche, M. (2021, September). Can Connected Autonomous
Vehicles really improve mixed traffic efficiency in realistic scenarios?. In 2021 IEEE International
Intelligent Transportation Systems Conference (ITSC) (pp. 2011-2018). IEEE.

[32]Chen, B., Chen, Y., Wu, Y., Xiu, Y., Fu, X., & Zhang, K. (2023). The Effects of Autonomous
Vehicles on Traffic Efficiency and Energy Consumption. Systems, 11(7), 347.
https://doi.org/10.3390/systems11070347

[33]He, S., Ding, F., Lu, C., & Qi, Y. (2022). Impact of connected and autonomous vehicle dedicated
lane on the freeway traffic efficiency. European Transport Research Review, 14(1).
https://doi.org/10.1186/s12544-022-00535-4



66

[34]Bindschädel, J., Weimann, P., & Kiesel, A. (2023). Using eHMI, acoustic signal, and pitch motion
to communicate the intention of automated vehicles to pedestrians: A Wizard of Oz study.
Transportation Research Part F: Psychology and Behaviour, 97, 59-72.
https://doi.org/10.1016/j.trf.2023.06.017

[35]Wessels, M., Kröling, S., & Oberfeld, D. (2022). Audiovisual time-to-collision estimation for
accelerating vehicles: The acoustic signature of electric vehicles impairs pedestrians' judgments.
Transportation Research Part F: Traffic Psychology and Behaviour, 91, 191-212.
https://doi.org/10.1016/j.trf.2022.09.023

[36]Shen, S., Fu, J., Li, L., & Zhang, X. (2020). Simulating the adoption of electric vehicles and its
impact on pedestrian traffic safety: An agent-based approach. Journal of Traffic Safety, 12(3), 45-56.

[37]Marie-Agnès Pallas, John Kennedy, Ian Walker, Roger Chatagnon, Michel Berengier, et al.. Noise
emission of electric and hybrid electric vehicles : deliverable FOREVER (n° Forever WP2_D2-1- V4).
[Research Report] IFSTTAR - Institut Français des Sciences et Technologies des Transports, de
l’Aménagement et des Réseaux. 2015, 134 p. ffhal-02177735f

[38]Eric Dumbaugh & Wenhao Li (2010) Designing for the Safety of Pedestrians, Cyclists, and
Motorists in Urban Environments, Journal of the American Planning Association, 77:1, 69-88, DOI:
10.1080/01944363.2011.536101

[39]Pucher, John & Dijkstra, Lewis. (2000). Making walking and cycling safer: Lessons from Europe.
Transportation Quarterly. 54. 25-50.

[40]Billot-Grasset, A., Amoros, E., & Hours, M. (2016). How cyclist behavior affects bicycle accident
configurations? Transportation Research Part F: Traffic Psychology and Behaviour, 41(Part B), 261-
276. https://doi.org/10.1016/j.trf.2015.10.007

[41]Mesimäki, J., & Luoma, J. (2021). Near accidents and collisions between pedestrians and cyclists.
European Transport Research Review, 13(38), 1-12. https://doi.org/10.1186/s12544-021-00497-z

[42]Stilgoe, J. (2021). How can we know a self-driving car is safe? Ethics and Information Technology,
23(3), 635-647. https://doi.org/10.1007/s10676-021-09602-1

[43]Wakamatsu, S., Morikawa, T. & Ito, A. Air Pollution Trends in Japan between 1970 and 2012 and

Impact of Urban Air Pollution Countermeasures. Asian J. Atmos. Environ 7, 177 – 190 (2013).

https://doi.org/10.5572/ajae.2013.7.4.177

[44]Ramacher, M.O.P., & Karl, M. (2020). Integrating Modes of Transport in a Dynamic Modelling
Approach to Evaluate Population Exposure to Ambient NO2 and PM2.5 Pollution in Urban Areas.
International Journal of Environmental Research and Public Health, 17(6), 2099.

[45]Kumar, R., & Joseph, A.E. (2006). Air Pollution Concentrations of PM2.5, PM10 and NO2 at

Ambient and Kerbsite and Their Correlation in Metro City – Mumbai. Environmental Monitoring and

Assessment, 120(1), 1-10.

[46]Thiel, C., Amillo, A.G., Tansini, A., Tsakalidis, A., Fontaras, G., Dunlop, E., Taylor, N., Jäger-
Waldau, A., Araki, K., Nishioka, K., Ota, Y., & Yamaguchi, M. (2022). Impact of climatic conditions on
prospects for integrated photovoltaics in electric vehicles. Renewable and Sustainable Energy
Reviews, 158, 112109. https://doi.org/10.1016/j.rser.2022.112109



67

[47]Haram, M. H. S. M., Lee, J. W., Ramasamy, G., Ngu, E. E., Thiagarajah, S. P., & Lee, Y. H. (2021).
Feasibility of utilising second life EV batteries: Applications, lifespan, economics, environmental
impact, assessment, and challenges. Alexandria Engineering Journal, 60(5), 4517-4536.
https://doi.org/10.1016/j.aej.2021.03.021

[48]Liu, S., Fitzharris, M., Oxley, J., & Edwards, C. (2018). The impact of electric/hybrid vehicles and
bicycles on pedestrians who are blind or have low vision. Vision Australia.

[49]Tabone, W., de Winter, J., Ackermann, C., Bärgman, J., Baumann, M., Deb, S., Emmenegger, C.,
Habibovic, A., Hagenzieker, M., Hancock, P. A., Happee, R., Krems, J., Lee, J. D., Martens, M., Merat,
N., Norman, D., Sheridan, T. B., & Stanton, N. A. (2021). Vulnerable road users and the coming wave
of automated vehicles: Expert perspectives. Transportation Research Interdisciplinary Perspectives, 9,
100293. https://doi.org/10.1016/j.trip.2020.100293

[50]Petrarulo, L. (2021). Road safety aspects of quiet electric vehicles in Africa and South Asia.
Insight Paper, High Volume Transport Applied Research Programme, UKAid, UK Foreign,
Commonwealth & Development Office. https://doi.org/10.1016/road-safety-aspects-of-quiet-electric-
vehicles

[51]Australasian College of Road Safety (ACRS). (2024). Submission to Inquiry into the transition to
electric vehicles. ACRS. https://www.acrs.org.au/

[52]Berge, T., & Haukland, F. (2019). Adaptive acoustic vehicle alerting sound (AVAS) for electric
vehicles: Results from field testing. SINTEF Digital. Report No. 2019:00062.

[53]Fiebig, A. (2020). Electric Vehicles Get Alert Signals to be Heard by Pedestrians: Benefits and
Drawbacks. Acoustical Society of America, 16(4), 20-29. https://doi.org/10.1121/AT.2020.16.4.20

[54]Berge, S. H., de Winter, J., Cleij, D., & Hagenzieker, M. (2024). Triangulating the future:
Developing scenarios of cyclist-automated vehicle interactions from literature, expert perspectives,
and survey data. Transportation Research Interdisciplinary Perspectives, 23, 100986.
https://doi.org/10.1016/j.trip.2023.100986

[55]Gaio, A., & Cugurullo, F. (2024). Reshaping cyclist mobility: Understanding the impact of
autonomous vehicles on urban bicycle users. Journal of Cycling and Micromobility Research, 2,
100038. https://doi.org/10.1016/j.jcmr.2024.100038

[56]Stelling-Konczak, A., Hagenzieker, M. P., & Van Wee, B. (2015). Traffic sounds and cycling safety:
The use of electronic devices by cyclists and the quietness of hybrid and electric cars. Transport
Reviews, 35(3), 1-21. https://doi.org/10.1080/01441647.2015.1017750

[57]Liu, C., Zhao, L., & Lu, C. (2022). Exploration of the characteristics and trends of electric vehicle
crashes: A case study in Norway. European Transport Research Review, 14(6).
https://doi.org/10.1186/s12544-022-00529-2

[58]Cripton, P. A., Shen, H., Brubacher, J. R., Chipman, M., Friedman, S. M., Harris, M. A., Winters,
M., Reynolds, C. C. O., Cusimano, M. D., Babul, S., & Teschke, K. (2015). Severity of urban cycling
injuries and the relationship with personal, trip, route and crash characteristics: Analyses using four
severity metrics. BMJ Open, 5(2), e006654. https://doi.org/10.1136/bmjopen-2014-006654



68

[59]Johnsson, C., Laureshyn, A., & D'Agostino, C. (2021). Validation of surrogate measures of safety
with a focus on bicyclist–motor vehicle interactions. Accident Analysis & Prevention, 153, 106037.
https://doi.org/10.1016/j.aap.2021.106037

[60]Othersen, I., Conti-Kufner, A. S., & Dietrich, A. (2018). Designing for automated vehicle and
pedestrian communication: Perspectives on eHMIs from older and younger persons. Proceedings of
the Human Factors and Ergonomics Society Europe Chapter 2018 Annual Conference.

[61]Alhawiti, A., Kwigizile, V., Oh, J. S., Asher, Z. D., & Hakimi, O. (2024). The Effectiveness of eHMI
Displays on Pedestrian–Autonomous Vehicle Interaction in Mixed-Traffic Environments. Sensors,
24(15), 5018.

[62]Dey, D., Habibovic, A., Löcken, A., & Wintersberger, P. (2020). Taming the eHMI jungle: A
classification taxonomy to guide, compare, and assess the design principles of automated vehicles'
external human-machine interfaces. Transportation Research Interdisciplinary Perspectives, 7,
100085.

[63]Rizzo, A. A., Bowerly, T., Buckwalter, J. G., & Klimchuk, D. (2009). A virtual reality scenario for all
seasons: The virtual classroom. CNS Spectrums, 14(1), 54-57.

[64]Guo, Z., Zhou, D., Chen, J., Geng, J., Lv, C., & Zeng, S. (2018). Using virtual reality to support the
product's maintainability design: Immersive maintainability verification and evaluation system.
Computers in Industry, 101, 1-10.

[65]Howie, S., & Gilardi, M. (2021). Virtual observations: A software tool for contextual observation
and assessment of user's actions in virtual reality. Virtual Reality, 25(2), 89-102.

[66]Newman, M., Gatersleben, B., Wyles, K. J., & White, M. (2022). The use of virtual reality in
environment experiences and the importance of realism. Journal of Environmental Psychology, 78,
101713.

[67]B.G. Witmer, C.J. Jerome, M.J. Singer, The Factor Structure of the Presence Questionnaire,
Presence Teleoperators Virtual Environ. 14 (2005) 298–312.

[68]N.A. Kaptein, J. Theeuwes, R. van der Horst, Driving simulator validity: some considerations,

Transp. Res. Rec. (1996) 30–36. https://doi.org/10.3141/1550-05.

[69]R.S. Kennedy, N.E. Lane, K.S. Berbaum, M.G. Lilienthal, Simulator Sickness Questionnaire: An

Enhanced Method for Quantifying Simulator Sickness, Int. J. Aviat. Psychol. 3 (1993) 203 – 220.

https://doi.org/10.1207/s15327108ijap0303_3.

[70]J.P. Nuñez Velasco, H. Farah, B. van Arem, M.P. Hagenzieker, Studying pedestrians ’ crossing

behavior when interacting with automated vehicles using virtual reality, Transp. Res. Part F Traffic

Psychol. Behav. 66 (2019) 1–14. https://doi.org/10.1016/j.trf.2019.08.015.

[71]Bachute, M. R., & Subhedar, J. M. (2021). Autonomous driving architectures: Insights of machine
learning and deep learning algorithms. Machine Learning with Applications, 6, 100164.

https://doi.org/10.1016/j.mlwa.2021.100164



69

[72]Fu, Y., Li, C., Yu, F. R., Luan, T. H., & Zhang, Y. (2022). A survey of driving safety with sensing,
vehicular communications, and artificial intelligence-based collision avoidance. IEEE Transactions on
Intelligent Transportation Systems, 23(7), 6142-6163. https://doi.org/10.1109/TITS.2021.3083927

[73]Muhammad, K., Ullah, A., Lloret, J., Ser, J. D., & de Albuquerque, V. H. C. (2021). Deep learning
for safe autonomous driving: Current challenges and future directions. IEEE Transactions on
Intelligent Transportation Systems, 22(7), 4316-4336. https://doi.org/10.1109/TITS.2020.3032227

[74]Verheijen, E. N. G., & Jabben, J. (2010). Effect of electric cars on traffic noise and safety. RIVM
letter report 680300009. National Institute for Public Health and the Environment (RIVM).

[75]Sadek, N. (2012). Urban electric vehicles: A contemporary business case. European Transport
Research Review, 4(1), 27-37. https://doi.org/10.1007/s12544-011-0061-6

[76]Greaves, S., Backman, H., & Ellison, A. B. (2014). An empirical assessment of the feasibility of
battery electric vehicles for day-to-day driving. Transportation Research Part A: Policy and Practice,

66, 226-237. https://doi.org/10.1016/j.tra.2014.05.011

[77]Gnann, T., Funke, S., Jakobsson, N., Plötz, P., Sprei, F., & Bennehag, A. (2018). Fast charging
infrastructure for electric vehicles: Today’s situation and future needs. Transportation Research Part D:

Transport and Environment, 62, 314-329. https://doi.org/10.1016/j.trd.2018.03.004

[78]Funke, S. Á., Sprei, F., Gnann, T., & Plötz, P. (2019). How much charging infrastructure do electric
vehicles need? A review of the evidence and international comparison. Transportation Research Part

D: Transport and Environment, 77, 224-242. https://doi.org/10.1016/j.trd.2019.10.024

[79]Pallas, M.-A., Kennedy, J., Walker, I., Chatagnon, R., & Berengier, M. et al. (2015). Noise
emission of electric and hybrid electric vehicles: Deliverable FOREVER (n° Forever WP2_D2-1-V4).
[Research Report]. IFSTTAR - Institut Français des Sciences et Technologies des Transports, de
l’Aménagement et des Réseaux. https://hal.archives-ouvertes.fr/hal-02177735

[80]Hoogeveen, L. V. J. (2015). A Silent Future: Road traffic safety of silent electric vehicles. [Master's
thesis, Delft University of Technology]

[81]Lim, D., Kim, Y., Shin, Y., & Yu, M. S. (2024). External human–machine interfaces of autonomous
vehicles: Insights from observations on the behavior of game players driving conventional cars in

mixed traffic. Vehicles, 6(3), 1284-1299. https://doi.org/10.3390/vehicles6030061

[82]Alhawiti, A., Kwigizile, V., Oh, J.-S., Asher, Z. D., Hakimi, O., Aljohani, S., & Ayantayo, S. (2024).
The effectiveness of eHMI displays on pedestrian–autonomous vehicle interaction in mixed-traffic
environments. Sensors, 24(15), 5018. https://doi.org/10.3390/s24155018

[83]Othersen, I., Conti-Kufner, A. S., Dietrich, A., Maruhn, P., & Bengler, K. (2018). Designing for
automated vehicle and pedestrian communication: Perspectives on eHMIs from older and younger
persons. In D. de Waard, K. Brookhuis, D. Coelho, S. Fairclough, D. Manzey, A. Naumann, L.
Onnasch, S. Röttger, A. Toffetti, & R. Wiczorek (Eds.), Proceedings of the Human Factors and
Ergonomics Society Europe Chapter 2018 Annual Conference (pp. 135-148).

[84]Kareem, A. (2003). Review of global menace of road accidents with special reference to Malaysia:
A social perspective. Malaysian Journal of Medical Sciences, 10(2), 31–39. https://doi.org/PMCID:
PMC3561885



70

[85]Stefánsdóttir, H. (2014). Pleasurable cycling to work: Urban spaces and the aesthetic experiences
of commuting cyclists (Doctoral thesis). Norwegian University of Life Sciences.

[86]Carmona, J., Guindel, C., Garcia, F., & de la Escalera, A. (2021). eHMI: Review and guidelines for
deployment on autonomous vehicles. Sensors, 21(9), 2912. https://doi.org/10.3390/s21092912

[87]de Clercq, K., Dietrich, A., Núñez Velasco, J. P., de Winter, J., & Happee, R. (2019). External
human-machine interfaces on automated vehicles: Effects on pedestrian crossing decisions. Human
Factors, 61(8), 1353–1370. https://doi.org/10.1177/0018720819836343

[88]Chauhan, V., Chang, C.-M., Javanmardi, E., Nakazato, J., Lin, P., Igarashi, T., & Tsukada, M.
(2023). Fostering fuzzy logic in enhancing pedestrian safety: Harnessing smart pole interaction unit
for autonomous vehicle-to-pedestrian communication and decision optimization. Electronics, 12(20),
4207. https://doi.org/10.3390/electronics12204207

[89]Hensch, A.-C., Neumann, I., Beggiato, M., Halama, J., & Krems, J. F. (2019). Effects of a light-
based communication approach as an external HMI for automated vehicles – A Wizard-of-Oz study.
Transactions on Transport Sciences, 10(2), 18-32. https://doi.org/10.5507/tots.2019.012

[90]Tatler, B. W., Hansen, D. W., & Pelz, J. B. (2019). Eye movement recordings in natural settings. In
C. Klein & U. Ettinger (Eds.), Eye movement research. Studies in neuroscience, psychology and
behavioral economics. Springer, Cham. https://doi.org/10.1007/978-3-030-20085-5_13

[91]Katrakazas, C., Quddus, M., Chen, W.-H., & Deka, L. (2015). Real-time motion planning methods
for autonomous on-road driving: State-of-the-art and future research directions. Transportation
Research Part C: Emerging Technologies, 60, 416–442. https://doi.org/10.1016/j.trc.2015.09.011

[92]Alhawiti, A., Kwigizile, V., Oh, J.-S., Asher, Z. D., Hakimi, O., Aljohani, S., & Ayantayo, S. (2024).
The effectiveness of eHMI displays on pedestrian–autonomous vehicle interaction in mixed-traffic
environments. Sensors, 24(15), 5018. https://doi.org/10.3390/s24155018

[93]Ali, Y., Sharma, A., Haque, M. M., Zheng, Z., & Saifuzzaman, M. (2020). The impact of the
connected environment on driving behavior and safety: A driving simulator study. Accident Analysis &
Prevention, 144, 105643. https://doi.org/10.1016/j.aap.2020.105643

[94]Passoli, A., Dandonougbo, I., Dizewe, K., & Aholou, C. (2024). Urban mobility and road safety:
Approach to the safety of users of soft modes of transport in Grand Lomé. American Journal of Traffic
and Transportation Engineering, 9(1), 9–22. https://doi.org/10.11648/j.ajtte.20240901.12

[95]Mukherjee, D., & Mitra, S. (2022). Development of a systematic methodology to enhance the
safety of vulnerable road users in developing countries. Transport in Developing Economies, 8, 28.
https://doi.org/10.1007/s40890-022-00165-4

[96]Maghanga, S. H., Onkware, K., & Wasike, S. (2024). Examining the effectiveness of non-
motorized transport interventions on Outering Road safety, Nairobi County, Kenya. African Research
Journal of Education and Social Sciences, 11(3), 82-94.

[97]Wisch, M., Lerner, M., Vukovic, E., Hynd, D., Fiorentino, A., & Fornells, A. (2017). Injury patterns
of older car occupants, older pedestrians, or cyclists in road traffic crashes with passenger cars in
Europe – Results from SENIORS. Proceedings of the International Research Council on the
Biomechanics of Injury (IRCOBI) Conference, 63-77.



71

[98]Mackay, G. M. (1975). Pedestrian and cyclist road accidents. Journal of the Forensic Science
Society, 15(1), 7–15. https://doi.org/10.1016/S0015-7368(75)71019-8

[99]Mackay, M. (1994). Engineering in accidents: Vehicle design and injuries. Injury, 25(10), 615–621.
https://doi.org/10.1016/0020-1383(94)90037-X

[100]Muslim, H., & Antona-Makoshi, J. (2022). A review of vehicle-to-vulnerable road user collisions
on limited-access highways to support the development of automated vehicle safety assessments.
Safety, 8(2), 26. https://doi.org/10.3390/safety8020026

[101]Katrakazas, C., Quddus, M., Chen, W.-H., & Deka, L. (2015). Real-time motion planning
methods for autonomous on-road driving: State-of-the-art and future research directions.
Transportation Research Part C: Emerging Technologies, 60, 416–442.
https://doi.org/10.1016/j.trc.2015.09.011

[102]Alexander-Kearns, M., Peterson, M., & Cassady, A. (2016). The impact of vehicle automation on
carbon emissions: Where uncertainty lies. Center for American Progress.
https://www.americanprogress.org

[103]Banks, V. A., Plant, K. L., & Stanton, N. A. (2016). Driver error or designer error: Using the
Perceptual Cycle Model to explore the circumstances surrounding the fatal Tesla crash on 7th May
2016. Transportation Research Group, University of Southampton, UK.

[104]Botello, B., Buehler, R., Hankey, S., Mondschein, A., & Jiang, Z. (2019). Planning for walking and
cycling in an autonomous-vehicle future. Transportation Research Interdisciplinary Perspectives, 1,
100012. https://doi.org/10.1016/j.trip.2019.100012

[105]Patterson, R. D. (1990). Auditory warning sounds in the work environment. Philosophical

Transactions of the Royal Society of London. Series B, Biological Sciences, 327(1241), 485 –492.

https://doi.org/10.1098/rstb.1990.0091

[106]Wu, M., Guan, J., Chen, X., Wang, X., Zhao, P., Li, R., Chen, J., & Liu, L. (2024). Experiences
with the infra-acetabular screw placement technique in acetabular fracture surgery. Zhongguo Xiu Fu

Chong Jian Wai Ke Za Zhi, 38(9), 1040–1046. https://doi.org/10.7507/1002-1892.202405036



72

Appendix

Appendix A. Main Variables in experiment

For the three main independent variables in this experiment, these variables are the factors actively
controlled in the experiment, aimed at studying how they affect cyclists' behavioral responses in
different situations. By selecting these specific independent variables, the experiment can explore
their potential impact on road safety under diverse traffic conditions.

First, the environmental sound level, as one of the independent variables, includes two levels: quiet
residential areas and busy streets. This setup is designed to compare participants' responses under
different environmental noise conditions. Specifically, in a quiet residential environment, people have
more opportunities to hear the audible warning sounds emitted by vehicles. On the other hand, in a
busy street environment, the background noise might make it harder for participants to detect warning
signals, which could result in differences in their reaction speed and behavior when approaching
vehicles. By comparing the experimental results under these two environmental conditions, a better
understanding can be gained of how environmental noise affects public safety perception, reaction
time, and decision-making behavior.

The second independent variable was the type of vehicle. The study used three selected vehicle
configurations in order to represent common types of AVs which presently and/or potentially could be
find on the roadway in future, i.e., 1) AVs with eHMI; 2) AEVs with eHMI; and 3) AEVs with both
addition alert signals and eHMI. The three configurations allow an investigation into how the different

vehicle type affect participants’ perception, trust and behaviors across scenarios—specifically if AEVs

with additional alert signals provide better safety assurances.

The third independent factor indicates the trigger distance of the eHMI signals, including short,
medium, long-distance conditions. This variable is designed to assess the impact of different trigger
distances on participants' responses, particularly whether their perception of approaching vehicles
and their reaction behaviors vary with the trigger distance of the signals. Through comparison of
these three trigger distance boundary conditions, the objective is to further investigate the role of
signal trigger distance in improving road safety, particularly in a complex traffic environment, and
establish the optimal trigger distance for signal activation thereby leading to providing cyclist with
sufficient time allowance for safety avoidance.

The two mediating variables in the experiment are as follows. The first is "Noise," which combines
different levels of environmental noise with the engine noise emitted by various types of vehicles in
idle mode. The variation in noise levels simulates diverse real-world road environments, ranging from
quiet residential areas to busy streets, allowing an assessment of participants' perception and
reaction abilities under these varying noise backgrounds. The second is "Warning Signal," which is
determined by the combination of different warning signal trigger distances and vehicle types. This
design enables the experiment to explore how participants' responses are affected by different
warning signal strengths and vehicle configurations.

The dependent variables include: (1) the distance between the participant and the signaling vehicle at
the moment of reaction, used to measure participants' reaction speed; (2) the intensity of deceleration,
indicating how forcefully participants reduce their speed in emergency situations, reflecting their
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perception of potential danger; (3) participants' attentiveness to sound signals, which relates to their
sensitivity to warning signals and their ability to focus on information in complex environments; and (4)
the distance between the participant and the signaling vehicle when stopping, reflecting participants'
perception of safe space after completing the evasive maneuver. By collecting and analyzing these
dependent variables, a more detailed understanding of how the independent variables specifically
affect participants' behavior can be obtained.
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Appendix B. Data Filtering

After the initial processing of the experimental data, plotting the participants' behavioral data reveals
that the results based on the raw experimental data contain a wealth of details. These details provide
more comprehensive information, offering a clearer picture of the participants' reactions and behavior
Apatterns during the experiment. However, the abundance of details also presents significant
challenges for subsequent data analysis, especially when trying to identify trends or extract key
variables. The complexity of the data can obscure important analytical objectives.

As shown in Figure 1, which displays the speed-time and speed-distance graphs based on the raw
experimental data, each frame's detailed information is preserved, but the graphs also highlight the
data's volatility and noise. For example, variations in speed and distance during participants' cycling
may be influenced by multiple factors, leading to irregular fluctuations in the data. While these
fluctuations reflect the actual conditions of the experiment, they can obscure the precise points of key
reactions (such as participants' initial reactions or deceleration behavior), thus increasing the difficulty
of extracting core variables. Because these fluctuations and noise may mask the exact timing or
magnitude of critical behaviors, further data processing is necessary to smooth the data and
accurately identify key reaction points and behaviors.

Figure 1 Speed-Time Graph and Speed-Distance Graph Based on Raw Data
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As shown in Figure 1, participants generated significant trends of peaks and troughs during cycling,
but there were also many small-amplitude fluctuations. These minor fluctuations were caused by the
pedaling action during cycling: each time participants pressed the pedals, a noticeable acceleration
occurred, leading to the formation of peaks. Between the first and second pedal strokes, the bicycle
gradually decelerated due to friction and air resistance, resulting in troughs. These fine fluctuations
provided detailed information about the dynamics of cycling, showing how the power output changed
throughout the process. However, during data analysis, these small fluctuations are not the primary
focus and may complicate the analysis process.

For instance, when attempting to identify the exact moment participants reacted using algorithms or
code, these small fluctuations could interfere with the accuracy of the analysis. The system might
incorrectly identify one of these minor fluctuations as the point of reaction, leading to inaccurate data
analysis results. Therefore, to ensure data accuracy and simplify the analysis process, it is necessary
to optimize these small fluctuations to avoid their interference with subsequent analysis.

In the field of data analysis, when there are many small fluctuations or noise in the data, smoothing or
filtering techniques are typically applied to reduce interference and highlight the overall trend. In this
experiment, low-pass filtering was chosen as the primary data processing method. Low-pass filtering
is a classic signal processing technique that allows low-frequency signals to pass through while
blocking or attenuating high-frequency noise components. By applying this technique, the data can be
effectively smoothed, eliminating rapid changes and noise while preserving the major trends and key
patterns.

Specifically, in the data processing for this experiment, low-pass filtering was applied to smooth the
cycling speed and distance data, reducing the fine fluctuations caused by participants' pedaling
actions. This process not only aids in more accurately identifying the moments when participants
reacted but also makes the data easier to interpret, providing a clearer foundation for subsequent
variable analysis. As shown in Figure 2, after applying low-pass filtering, the small fluctuations in the
data are significantly reduced, and the overall trend becomes smoother. This greatly facilitates further
analysis, allowing researchers to focus on the primary trends and reaction points without being
disturbed by minor noise.
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Figure 2 Speed-Time Graph and Speed-Distance Graph after Low-Pass Filtering

As shown in Figure 2, compared to the image generated from the raw data, the graph processed with
low-pass filtering appears significantly smoother. The distracting fluctuations, which are irrelevant to
the core data analysis, have been effectively smoothed out and eliminated. This smoothing allows the
primary trends and key data points to stand out more clearly, making the data easier to interpret.
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Appendix C. Classification of Atypical Behavior

Data

In the process of collecting experimental data, in addition to the typical deceleration avoidance
behavior, there were some special data sets. Since the experiment allowed participants to choose
their avoidance strategy based on their own judgment and preferences, some participants opted for
lateral movement to avoid roadside vehicles, rather than deceleration. Additionally, in certain
situations, due to factors such as lack of attention or insufficiently clear signals, participants failed to
notice the vehicle emitting the warning signal in time and did not perform any avoidance actions.
Although these data differ from typical avoidance behavior, they still represent participants' real
reactions in specific conditions during the experiment and have significant research value. Therefore,
these data should not be ignored but should be retained and included in the analysis. However, the
processing of these data differs from that of typical deceleration avoidance data and cannot be
handled in the same way.

For example, for participants who performed lateral movement to avoid vehicles, the conventional
method of "finding the deceleration start point" cannot be used to determine the onset of their
avoidance behavior. In these cases, lateral movement data require special treatment to correctly
capture the key points and behavioral characteristics of participants' avoidance actions. This section
will discuss in detail how to classify these data sets and provide a framework for the subsequent
analysis of special data. Specific methods for extracting the target variables from these special data
sets will be explained in the following chapters.

First, for the data sets involving lateral avoidance behavior, it is necessary to identify and extract them.
As shown in Figure 1, the way participants entered each scenario was carefully designed: they were
required to enter the scene from a position 1.2 meters to the right of the center line of a 4.5-meter-
wide road. This design ensured that the participants' initial position remained relatively fixed and
reduced lateral movement at the start of the experiment. However, even though the bicycle simulator
itself did not have built-in lateral movement functionality, an additional handle was provided to enable
lateral movement. Some participants, out of curiosity or interest in testing the equipment, might have
attempted lateral movement. Therefore, it is necessary to distinguish between normal movements and
actual avoidance actions.

Figure 1 Example of the trajectory plot for lateral avoidance data
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To determine whether participants genuinely performed lateral avoidance actions, a criterion was
established: when participants crossed the centerline of the road in the experimental scene, moving
from the right half to the left half, it was considered that they had engaged in lateral avoidance
behavior. To prevent participants from changing lanes arbitrarily and thus affecting the validity of the
experimental data, vehicles were introduced in the opposite lane as part of the experimental design.
This ensured that participants could not remain in the left lane for extended periods. Based on this, if
a participant moved from the right side of the road to the left side during the experiment, it can be
assumed that they performed a lateral avoidance maneuver in response to the situation. This
identification criterion ensures the accuracy of the data, allowing lateral avoidance behavior to be
effectively captured and analyzed.

Figure 2 Example of the speed-distance plot for data with no avoidance behavior

Similarly, for the data sets where no avoidance behavior was performed, as shown in Figure 2, the
filtering process is relatively simpler. These data typically show that participants neither exhibited
significant deceleration nor performed any lateral movement or lane change. In such cases, it can
reasonably be inferred that the participants either did not notice the vehicle emitting the warning
signal in the scene or did not perceive it as a potential danger requiring avoidance.

Specifically, the filtering criterion is set as follows: when a data set shows no significant deceleration
and no lateral movement to the other side of the lane, it is classified as a scenario where the
participant did not react. The term "significant deceleration" refers to the moment the participant
begins to react, as recorded during the experiment and detailed in section 4.5.3. If no clear
deceleration is detected at or near that point, it can be assumed that the participant did not respond to
the vehicle's signal in time.

This data filtering standard allows us to distinguish between data sets where participants did not react
to the vehicle signals and those where avoidance behavior was performed. Such data also hold
significant research value, as they can reveal potential issues with the effectiveness of the vehicle's
warning signals under certain conditions, or indicate that participants did not adequately notice the
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signals in specific environments. Analyzing these data can help further optimize the warning systems
of autonomous vehicles, ensuring that signals are more effective at capturing the attention of road
users and prompting them to take appropriate avoidance actions in complex traffic environments.
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Appendix D. Questionnaire






















