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eigenvector

y-axis, longitudinal direction of the vertical breakwater,
¥ = 0 in the middle of a section

z-axis, vertical direction, positive upwards, z = 0 at the
seabed
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Parameter Dimension SI-unity

o -
o -

o -

o -

o* -

y, Uz, A3 -

oy (ot , 0p) -

B -

B -

p* -

Bo -

B -

y -

y -

¥s MLT?
Vsaturated ML-ZT-Z
Y MLT?
5 -

8(5) T!
81,611,02,022 -

Ap MTZL?
At T

AV L

& -

ul L

0 ML’
ec'ai ML2
Ozeo ML?
Onya ML?
B0t ML?

Ky -

Ka0 -

| 9] -

K -

M -

v -

13 -

p ML?
pPa () ML"
Pe ML?
Ps ML*
Ps ML
Pe ML
pmixture ML-a

rad or deg
rad or deg

rad or deg

rad or deg
rad or deg
rad or deg

N/m®
N/m®
N/m®

rad or deg
S-l

N/m’®

7]

Description

slope angle of the seabed or berm
angle of contact of an air pocket
air content

parameter Weibull distribution

coefficient (extended Goda formula)

coefficients (Goda formula)

impulsive coefficient (extended Goda formula)
direction of the wave propagation relative to the normal
to breakwater alignment

angle of a wave front hitting a vertical wall
equivalent angle of a wave front hitting a vertical wall
adapted angle of a wave front hitting a vertical wall
parameter Weibull distribution

constant of Poisson

parameter Weibull distribution

weight of soil

weight of saturated soil

weight of water (10.06 kN/m’)

tangential angle to the cord of a curved wave front
delta function

coefficients (extended Goda formula)

change of pressure

time interval

change of volume

ratio of the velocity of the a wall to the velocity of the
incoming water

elevation (Goda formula)

mass moment of inertia

mass moment of inertia of the caisson

geo-dynamic mass moment of inertia
hydro-dynamic mass moment of inertia

total mass moment of inertia

air thickness coefficient

minimum air thickness coefficient

impact height coefficient

added mass correction factor

friction coefficient

Poisson’s ratio

Irribarren number

mass density of fresh water (998 kg/m’)
time dependent mass density of air
mass density of concrete

mass density of the fill

mass density of the soil

mass density of a construction

mass density of an air-water mixture
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Pw

C

cYﬁmndat‘ion
(min, max)
(hor, ver)

¢

¢

b

W Oor ®;

F

M9

ML
MLT?
MLT?

LT

T—l
T—l

kg/m’
N/m?
N/m?

rad or deg
m?/s

rad or deg
rad/s
rad/s
rad/s

mass density of sea water (1025 kg/m’)
pressure
pressure in the foundation

angle of internal friction of the soil

velocity potential

phase

radian frequency (® = 2n/T")

radian frequency of the damped eigenoscillation
radian frequency eigenoscillation
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Abstract and outline of this report

The need for coastal structures, such as breakwaters, at great water depths is rapidly increasing
as a result of the increasing draught of large vessels and off-shore land reclamations which can,
for instance, be used for the benefit of the expansion of harbours and related mdustrial
activities. In water depths greater than approximately 10 m vertical breakwaters may be the
best altemnative compared to ordinary rubble mound breakwaters, in terms of performance, total
costs, environmental aspects, construction time and maintenance.

However, these breakwaters with plane vertical front walls can be exposed to enormous
hydraulic loads, such as wave impacts. Wave impacts are dynamical hydraulic loads with, for
instance, a very short duration (in the order of magnitude of ms) and a very high peak force
which can exceed the quasi-static wave load on a vertical breakwater more than 10 times. As it
is described in chapter 1 “Introduction”, this report contains the reflection of a research which
has been performed on the effect of wave impact loads on the stability of vertical
breakwaters. This Master’s thesis is divided into three parts:

A Wave impact loads on vertical breakwaters

In chapter 2 “Hydraulic loads on vertical breakwaters” different types of quasi-static and
wave impact loads are described. Three types of wave impact loads can be distinguished
depending on the amount of trapped air between the breaking wave and the plane vertical front
wall of a breakwater. In chapter 3 “Wave impact pressures”, chapter 4 “Wave impact forces
and momentum” and chapter 5 “Special attention to wave impacts with a trapped air pocket”
different formulae are presented which can be used to calculate the characteristics of wave
impact loads on vertical breakwaters. In chapter 6 “Vertical breakwater design formula and
wave impacts” short attention is being paid to the calculation of wave (impact) loads according
to the most widely used prediction method for wave (impact) pressures on vertical breakwaters.

B Derivation of models which describe the dynamical behaviour of a vertical breakwater

In chapter 7 “Derivation of an analytical mass-spring model of a vertical breakwater”, in
chapter 8 “Derivation of a mass-spring-dashpot TILLY model of the vertical breakwater” and
in chapter 9 “Analysis of the structure and foundation parameters of the vertical breakwater”
models which can be used to describe the dynamical behaviour and stability of a vertical
breakwater which is exposed to wave impacts are treated. A lot of attention is being paid to the
influence of the magnitude of the different dynamical properties (mass, stiffness and damping)
of such a model.

xviii
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C Analysis of different types of wave impact loads on a vertical breakwater and conclusions

The “Analysis of different types of wave impact loads on a vertical breakwater” 1s reflected in
chapter 10. “Conclusions and recommendations” can be found in chapter 11. It can be
concluded that the stability of a vertical breakwater against wave impacts entirely depends on
the type of wave impact load which is to be expected (i.e. rise time, total duration, magnitude of
the peak force, the amount of trapped air) and the dynamical properties of the vertical
breakwater and its foundation soil (mass, stiffness and damping). The maximum peak force of a
wave impact does not necessarily induce the maximum dynamical response of a vertical
breakwater. Wave impacts with relatively low peak forces and long total durations (relative to
the eigenperiod(s) of a vertical breakwater, double peaked wave impact forces and wave
impacts followed by low frequency force oscillations due to large trapped air pockets seem to be
more dangerous for the stability of a vertical breakwater. The amount of momentum is one of
the goveming properties of a wave impact load conceming the response and stability of a
vertical breakwater. The suggestion commonly found in the literature that wave impacts are
totally not significant and should not be used for the design of vertical breakwaters could not be
confirmed.

A dynamical analysis of the behaviour of a vertical breakwater by means of a mass-(elasto-
plastic)-spring-dashpot computer model should become a necessary part of the design process of
vertical breakwaters which are exposed to breaking wave loads. The characteristics of the wave
impact loads to be expected and the foundation characteristics should be obtained form large
scale hydraulic model tests and site investigations.

Xix
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1 Introduction

1.1 General introduction

Breakwaters and related marine structures can have several functions. They are primarily built
to give protection against wave attack on ship moorings, manoeuvring areas, port facilities and
adjoining areas of land (breakwaters can serve as a coastal protection). Other functions of
breakwaters are that they can serve to reduce the amount of dredging required in a harbour
entrance and that they can guide currents in a harbour entrance channel or currents along a
coast.

Harbour breakwaters and related marine structures' can be divided into two different categories:

e rubble mound structures with permeable and rough side slopes and

e vertical (monolithic, or caisson type) structures which are impermeable and solid with
vertical or very steep faces as can be seen in figure 1.1 where three different types of vertical
breakwaters are sketched: a vertical caisson breakwater which is placed on a thin (rubble
mound) foundation layer, a caisson breakwater which is placed on a thick rubble mound
foundation (a vertical composite caisson breakwater) and a caisson breakwater which is
placed on a thin (rubble mound) foundation layer and which is armoured by a protection
(artificial as well as natural armour units are possible). A caisson is in fact a hollow - in
most cases - concrete box which is filled with sand after it has been placed at the right spot.

Y Sulgerstmcmre with
cflecting Wall

Superstructure
Superstructure Superstructure
ﬁ‘fuwmm%“dm ] g st
d ertd ace (in-sica) g
558 — <= SWL
VA :

Rubble Mound ~
beiing (ST 020N Protection , Beldding
layer ' /a-«-(-: il
2) Vertical Caisson b) Composite Caisson ¢) Armoured Caisson
Breakwater Breakwater Breakwater

fig. 1.1 Three different types of vertical breakwaters [OUMERACI (1994a)]

A rubble mound breakwater is usually the most economical option if a breakwater has to be

constructed in shallow water (i.e. water depths which are approximately smaller than 10 m).

Rubble mound breakwaters use more material per cross-section than vertical breakwaters but

due to their relative simple construction method they prove to be cheaper than vertical

breakwaters. The advantages of rubble mound breakwaters compared with vertical breakwaters

are:

e the use of natural material (however, this is increasingly becoming a disadvantage as a
result of environmental considerations)

e the fact that they give less wave reflection (this will yield a reduced impact on the adjacent
beaches of a breakwater and on the navigation of ships near a breakwater) and

o the fact that they can potentially have a lower crest elevation (this will yield a reduced
impact on the offshore view).

! This study only deals with vertical breakwaters
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However, the recent need of breakwaters at greater depths has made the use of rubble mound
breakwaters more prohibitive. Breakwaters at greater depths are for instance needed to suit the
increasing draught of large vessels. The recent development of off-shore land reclamations for
harbours and their related industries in deep water (i.e. a water depth which is approximately
larger than 10 m) does also play an important role in the increasing demand for vertical
breakwaters as will be indicated by the following example.

The coastal zone is the most densely populated area in the world. Almost 80% of the world’s
population lives in the coastal zone. The need for land in the coastal zone is still increasing
because of the fact the world’s population is still growing. Not only more living space is needed
in the coastal zone but also land for the extension of economical activities such as harbours and
their related industries. The port of Rotterdam (the Netherlands) has almost reached it
economical capacity and has new development plans. One of these plans is the reclamation of
new land, the extension of the current Maasvlakte, the so called Maasvlakte 2.

The water depth at the location where this land reclamation is planned to be carried out varies in
the range of 15 to 20 m, which is considered to be deep water. As has been mentioned before,
vertical coastal structures, such as breakwaters are the most economical at deep water. Vertical
coastal structures can be used at Maasvlakte 2 both as breakwaters and as an essential part of
the coastal defence of the reclamated area.

Vertical breakwaters increasingly become of economical interest as the water depth increases.

At deep water, the reduce of material of a vertical breakwater per cross-section is dominating

the rather expensive construction methods. The advantages of vertical breakwaters compared

with rubble mound breakwaters are:

e that vertical breakwaters occupy a smaller part of the seabed (this will result in a smaller
impact on the flora and fauna in the neighbourhood of a vertical breakwater),

e that less material quantities are needed (less quarry has to be used resulting, for instance, in
a smaller water turbidity during the construction of a breakwater),

e that re-use of dredging material for filling the caisson cells is possible (this will yield less
land quarrying and less offshore sediment disposal, which are advantages from an
environmental point of view),

o the savings in construction time when a breakwater is built at deep water,

o that a safer close navigation is possible (a vertical breakwater is better visible and
underwater obstacles are reduced),

e that vertical breakwaters can potentially be removed (“fill out” and float the caissons),

e the reduced environmental impact when a vertical breakwater is constructed (for mstance:
less trucks are needed, there will be less air pollution and less water turbidity) and

o the less need of maintenance.

The last advantage of a vertical breakwater compared with a rubble mound breakwater is only
valid if a vertical breakwater is well designed. A design of a vertical breakwater of poor quality
has got a high probability of failure. Vertical breakwaters are extremely sensitive to foundation
failure, such as slip, settlements, sliding or failure of the monolithic structure itself. This is a
first indication of the fact that the design of a vertical breakwater may be more complicated
than the design of an ordinary rubble mound breakwater. There have been numerous vertical
breakwater failures in the thirties of this century. Because of this fact, vertical breakwaters have
almost been abandoned except in countries like Italy and Japan. However, a number of
important (scientific) developments which might promote the revival of vertical breakwaters
have taken place in the last decades and nowadays vertical breakwater are becoming more and
more of interest due to the increasing draught of vessels and off-shore land reclamations in deep
water as has been mentioned before. Oumeraci [OUMERACI (1994)] has reviewed and analysed
different vertical breakwater failures. The most important reasons which have led to failures of
vertical breakwaters are described in figure 1.2.
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fig. 1.2 Reasons for the failures of vertical structures [OUMERACT (1994)]

The study which is presented in this report deals with wave impacts ‘on vertical breakwaters.
Wave impacts are dynamical hydraulic loads with, for instance, a very short duration (in the
order of magnitude of ms) and a very high peak force which can exceed the quasi-static wave
load on a vertical breakwater more than 10 times. Wave breaking and impact loads on a vertical
breakwater can, according to figure 1.2, be a reason of the failure of vertical breakwaters.
“Wave breaking and breaking clapotis represent the most frequent damage source of the
disasters experienced by vertical breakwaters” writes Oumeraci [OUMERACI (1994)] in his
paper which deals with a review and analysis of vertical breakwater failures. Different
hydraulic engineers claim that wave impacts are of no significance for the stability of vertical
breakwaters, many others claim the opposite. In this graduation project at the faculty of Civil
Engineering at the Delft University of Technology, I will try to find an answer to the following
general question:

“Are wave impacts important for the stability of vertical breakwaters?”

Several failure modes of vertical breakwaters can be distinguished. These different failure

modes are sketched in figure 1.3. The main modes of failure of vertical breakwaters can be

divided into two categories: overall failure modes and local failure modes. The failure

mechanisms of vertical breakwaters which have been studied in this gradation project are

overall failure modes, these are denoted below and considered to be the relevant failure

mechanisms of vertical breakwaters which are exposed to wave impacts:

» sliding of a vertical breakwater over its rubble mound foundation,

¢ overtumning of a vertical breakwater and

¢ exceeding of the bearing capacity of the foundation soil of a vertical breakwater (which will
lead to settlements and probably to slip failure of the foundation).
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Seaward tilt of 'a vertical breakwater is neglected in this study. Local failure modes, like the
ones which are presented in figure 1.3 as well as for instance rupture of the concrete caisson
due to high wave impact pressures are neglected in this study. In this respect it must be stressed
that the resultants of these wave impact pressures - which are forces - and the positions of these
wave impact forces relative to the centre of gravity of vertical breakwaters are important for
overall stability calculations. The actual pressures on the vertical breakwater are in fact
important for the calculations of more local failure mechanisms such as rupture of the plane
vertical concrete front wall of a breakwater.
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c) Settlement followed by slip d) Settlement followed by slip
failure and seaward tilt failure and shoreward tilt

OVERALL FAILURE MODES
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g) Seabed scour and toe erosion

fig. 1.3 Main modes of failure of vertical breakwaters [OUMERACT (1994a)]
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1.2 Definition of the problem and the purpose of this graduation project

“It has generally been accepted that dynamic loads can be very important, but it has been
argued that many structures are substantially un-affected by such short duration, high intensity
loads. Schmidt et al. [SCHMIDT et al. (1992)] remind us that despite more than 80 years of
research work on wave impact loads on vertical structures subject to breaking waves, there are
two basic attitudes related to the role of wave impact loadings in the design of such structures.
The first attitude simply assumes that impact pressures (or forces) are not important and thus
should not be adopted in the design of vertical structures. The second attitude is to skip the
problem of evaluating the design impact load by assuming that a structure can be designed in
such a way that impact pressures (or forces) will not occur” [ALLSOP et al. (1996)]. However,
these two aforementioned attitudes - more or less neglecting the effect of wave impacts on the
stability of for instance vertical breakwaters - seem to be very risky, especially because of the
fact that vertical breakwaters can be very expensive and important for the safety and
serviceability of harbours and coastal zones. Therefore, a different approach of the problem of
wave impacts on vertical breakwaters will be treated in this study.

In this study it will be tried to find an answer to the following general question which has been
mentioned before in section 1.1:

“Are wave impacts important for the stability of vertical breakwaters?”

To find an answer to this question an extensive study of literature has been carried out and a
third approach of the problem of the influence of wave impact loads on the stability of vertical
breakwaters is pursued. A dynamic analysis of a vertical breakwater, its foundation and the
applied wave impact loads has been carried out. For the benefit of this dynamical analysis a
mass-(elasto-plastic)spring-dashpot computer model of a vertical breakwater which is exposed
to wave impacts has been developed. It ought to be stressed that stability problem of caisson
breakwaters which are exposed to wave impacts is a:

e purely dynamical problem (for instance the inertia of a vertical breakwater is important) and
e a multidisciplinary problem requiring and contributions from a number of disciplines (soil

mechanics, fluid mechanics (hydrodynamics), structural dynamics, etc.) for its solution.

The purpose of this study is to find an answer to the above mentioned general question.
However, it seems advisable to divide this question into the following sub-questions:

Is there one type of wave impact, or is it possible to distinguish different types?

e If there are different types, which aspects or characteristics of these different types of wave
impacts are important for the stability of a vertical breakwater and which are not?

e What is the magnitude of wave impact loads and how is this magnitude related to the
duration of the wave impact load?

o What is the influence of the foundation on the dynamical behaviour of a vertical breakwater
which is exposed to wave impacts?

In this study a relatively simple mass-(elasto-plastic)-dashpot computer model of a vertical
breakwater will be used as a starting step to find an answer to some of these above mentioned
questions. However, such a simple model may help to a better understanding of the relative
effect of the influencing dynamical properties of the vertical breakwater and its foundation, as
well as the effect of the wave impact load and its characteristics.

The answers to the above mentioned questions will be given throughout the whole report. A
summary of these answers can be found at the end of the report in chapter 11, where the most
important results, conclusions and recommendations of this graduation project are discussed.
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1.3 Framework

This Master’s thesis has been written as a part of my study Civil Engineering at the Delft
University of Technology. My graduation project, which deals with wave impacts on vertical
breakwaters, does fit within the framework of a European research programme on vertical
breakwaters. This research programme is a part of the project Marine Science and Technology
(MAST III), PRObabilistic design of VERtical BreakwaterS (PROVERBS). This research
programme is sponsored by the European Union.

This graduation project has among other things been carried out in co-operation with:
projectorganisatic Maasvlakte 2 and Rijkswaterstaat. These two organisations are closely
involved in the land reclamation of the port of Rotterdam and the design of coastal structures
such as vertical breakwaters. At this moment the plans for the land reclamation Maasvlakte 2
are developed and the improvement of the knowledge about the dynamical behaviour and the
stability of vertical coastal structures which are exposed to waves and wave impacts seems to
be essential for a well-considered design.
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Wave impact loads on vertical breakwaters
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2 Hydraulic loads on vertical breakwaters

2.1 Introduction

Coastal structures, such as vertical breakwaters, are exposed to different kinds of loads, e.g.
hydraulic loads. The magnitude of these hydraulic loads depends among other things on the
(hydraulic) boundary conditions near the coastal structure. The different hydraulic boundary
conditions, from which the hydraulic loads can be derived, are related. The principal physical
relationships between the relevant hydraulic boundary conditions are shown in the diagram of

figure 2.1.
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fig. 2.1  Natural hydraulic boundary conditions [CUR/RIIKSWATERSTAAT (1993)]
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The magnitude of the hydraulic loads on coastal structures, such as vertical breakwaters,
depends on the water level, the currents near the structure and the kind of waves to which the
coastal structure is exposed (see figure 2.1). The magnitude of the hydraulic loads on vertical
breakwaters, is also influenced by some geometrical factors, such as the geometry of the seabed
and the geometry of the coastal structure. Of the three different types of hydraulic loads
mentioned above, wave action is in general the most important load on vertical breakwaters.
The effect of water level variations and the effect of currents on the stability and dynamical
behaviour of a vertical breakwater is neglected in this study.

Waves which travel against a vertical breakwater cause in time varying loads. The magnitude
of these loads depends on the wave height, the wave period, the propagation velocity of the
wave, the wave angle relative to the alignment of the coastal structure, the bottom geometry and
- of course - the size and the shape of the structure surface on which the wave pressures or
forces are working. It is often convenient to treat pressures or forces (integrated pressures)
which act on vertical breakwaters under wave action in two categories [ALLSOP et al (1996)]:

¢ Quasi-static, or pulsating wave loads

Quasi-static or pulsating wave loads change relatively slowly, varying at rates of the same

order of magnitude as the wave crest. Traditionally, quasi-static loads are considered for the

design of vertical structures, neglecting the effect of shock forces induced by waves breaking
directly at the structure. Two principal quasi-static forces may be considered here.

1. In the first, a wave crest impinges directly against the structure applying a hydro-static
pressure difference. The obstruction of the energy of the wave causes the wave surface to
rise up the wall, increasing the pressure difference across the wall. The net force is
approximately proportional to the wave height, and can be estimated using relatively
simple methods.

2. The second case is the opposite of that above, arising as the wave reflects back from the
structure, inducing a net negative force or suction on the wall. Again the magnitudes of
the forces are relatively low, and the process is relatively easy to predict.

¢ Dynamical, impulsive or impact wave loads

Dynamical, or wave impact forces are caused by the special conditions that arise where a
wave breaks onto the structure. Impact pressures associated with breaking waves are of
substantially greater intensity than pulsating pressures, but are of shorter duration. The
magnitude of impulsive or impact wave forces and the duration of these forces depends
among other things on the type of wave that breaks onto the structure. The mfluence of these
wave impacts on the dynamical behaviour of vertical breakwaters and its stability (against
e.g. sliding, overtuming or failure of the foundation) is the subject of this study.

Wave action on vertical breakwaters does not only cause horizontal quasi-static or wave impact
forces but also (in time varying) uplift forces which work against the bottom slab of a vertical
break-water. A definition sketch of different forces on a vertical breakwater is given in figure
22.

This study mainly deals with wave impact forces on vertical breakwaters. Only the in time
varying forces are assumed to be of importance when the dynamical behaviour of a vertical
breakwater exposed to wave impacts is investigated. In this study, the in time varying force on
the vertical breakwater is the horizontal wave impact force. All other forces which have been
indicated in figure 2.2 are assumed to be constant and do - in their way - not influence the
dynamical behaviour of a vertical breakwater. Thus, the uplift force is assumed to be constant
as well in this study, see section 2.5. However, the loads which are assumed to be constant in
this study cannot be neglected when the stability of the vertical breakwater against wave
impacts forces is investigated. The buoyant force, for example, influences the stability agamst
sliding because of the fact that it reduces the net weight of the vertical breakwater.

2 - 2
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fig. 2.2  Definition sketch of forces on a vertical (composite) breakwater

Quasi-static wave loads are neglected in this study when the dynamical behaviour and the
stability of a vertical breakwater against wave impacts is investigated. The breakwater which
will be used for the dynamical analysis in chapter 7 to 10 is assumed to be able to withstand the
quasi-static wave forces. This assumption is in accordance with the nowadays most widely used
prediction method for wave forces on vertical walls. This design formula for vertical
breakwaters, the Goda formula [GODA (1985)], is extended by Takahashi et al
[TAKAHASHI et al. (1993)] to include the (extra) load of breaking waves on the vertical front
wall of a breakwater, see chapter 6. For breaking wave conditions against vertical breakwaters
Takahashi et al. [TAKAHASHI et al. (1993)] propose to enlarge the pressures due to the quasi-
static wave loads calculated by the use of the Goda formula by means of a coefficient. Thus, if
a vertical breakwater is able to withstand wave impacts forces calculated according to the
method of Takahashi et al. [TAKAHASHI et al. (1993)], it will surely be able to withstand quasi-
static wave forces calculated according to the Goda formula because of the fact that the quasi-
static wave forces will always be less according to the combined method of Goda [GODA
(1985)] and Takahashi et al. [TAKAHASHI et al. (1993)].

This chapter gives among other things a general overview of different types of waves which are
the cause of these two above mentioned categories of horizontal forces due to wave action on
vertical breakwaters: quasi-static wave forces and wave impact forces. In section 2.2, an
overview of different types of waves, which cause quasi-static forces on vertical breakwaters, is
given. Wave impacts on vertical breakwaters can be caused by some of the waves which are
described in section 2.2. In section 2.3, a decision tree is given that describes whether particular
structures or sea states will cause a risk of impulsive wave conditions. In section 2.4 a broad -
practical - outline of different types of waves impacts is given. Wave impacts will be treated
more extensively in chapter 3 (“Wave impact pressures) and chapter 4 (“Wave impact forces
and momentum™). Finally, in section 2.5 short attention is being paid to uplift forces and
pressures on vertical breakwaters.
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2.2 Different types of waves which cause quasi-static loads

As it has been mentioned before, hydraulic loads can be distinguished in two main categories,
namely: quasi-static loads and dynamical loads. Quasi-static loads have got the same period as
the period of the waves which cause these loads. Dynamic loads, for instance wave impacts,
have got a very short duration. As an indication: the duration of the wave impact is 10-200 ms
but ups and (especially) downs (1 ms) are possible [DELFT HYDRAULICS (1994)]. After a wave
impact pressure has appeared, the quasi-static wave pressure remains.

The movements of waves in water with a free fluid surface are dominated by gravitation. These
movements will only originate if energy is supplied. Wind is the most important cause of wave
generation, but also waves which are generated by sailing vessels may play an important role in
hydraulic engineering.

Compared to the average, wave crests have more potential energy related to gravity and wave
troughs have less potential energy. A distorted water surface contains not only potential energy
related to gravity, but also potential energy which is related to the so called “surface tension”.
This component is only important if very small waves with an order of magnitude of the
amplitude of a few centimetres are considered (the so called capillary waves). In case of waves
with large amplitudes and wave periods, the potential energy related to the surface tension is of
minor importance than the potential energy related to gravity. Between the areas of high and
low potential energy, a continuous exchange of energy takes place by a transformation of
potential energy in kinetic energy [DELFT HYDRAULICS (1994)].

Individual waves are characterised by a period (7), a height (H), a propagation velocity (c) and
a propagation direction or, in the case of this study, an angle of wave attack relative to the
normal to the breakwater alignment (B). It is important to distinguish between the various types
of water waves that may be generated and propagated. One way to classify waves is by wave
period T (the time for a wave to travel a distance of one wavelength), or by the reciprocal of 7,
the wave frequency (f).

Non breaking waves on vertical walls cause quasi-static pressures on these walls. The first
order linear wave theory gives a first approximation of the quasi-static wave pressure on the
vertical front wall of a breakwater.

The expression for the wave pressure is derived from Bemoulli’s equation (equation 2.1;
rewritten with z = 0 at the seabed and z = 4 at Still Water Level (SWL), the explanation of the
different symbols which are used can be found in the list of symbols),

o 1 ,
=—pgz-h) -p—-=
p=—pgz—h) Po 7P

@D

in which the first term on the right side is the hydro-static pressure. In a linear approximation
the third term on the right side is neglected. The equation which describes the quasi-static wave
pressure (e.g. on a vertical breakwater) then becomes:

cosh(2)

o 22
cosh(n) @ = k) 22)

1
p=-pglz- h)+;ng

[BATTIES (1993)].
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Different types of waves, which are of importance for vertical breakwaters and cause quasi-
static pressures according to equation 2.2, are listed below in order of wave period (varying
from short to long waves).

wind waves

Wind waves are by far the largest contribution of energy from the sea to the coastal zone, so
it is obvious that pressures or forces generated by wind waves are usually very essential
hydraulic loads on coastal structures such as breakwaters (see figure 2.3). As winds blow
over water, waves are generated in a variety of sizes from ripples to large ocean waves as
high as 30 meters. Wind waves, which are also known as oscillatory waves, are usually
defined by their height, length and period (see figure 2.3). The wave height (H) is the vertical
distance from the top of the crest to the bottom of the trough. The wave length (L) is the
horizontal distance between successive crests. The wave period (7) is the time between
successive crests passing a given point. The propagation velocity of waves is defined as:
¢ =L/T. As waves propagate in deep water, only the waveform and a part of the energy of
the wave move forward; the water particles move in a nearly circular path [CERC (1984)].
Wave impacts, which are described in section 2.4, are derived from these waves. The period
of wind waves at sea is in the range of 5 to 15 seconds.

Direction of Wave Trove!

p———————— L 2 Wavelength
Wave Crest ~a _~H=Wave Height

—

n—

I~ | ] ——
[~——~Crest !.enqth-—--— Wave Trough
Region Stillviater Level
—Trough Length
Region d= Depth

Ocean Bottom 4

fig.

23 Wave characteristics [CERC (1984)]

swell
Swell are waves which have lengths from 30 to more than 500 times the wave height. They

are generated by a distant storm and they may travel through hundreds or even thousands of
kilometres of calm wind areas before reaching the shore. Under these conditions, waves
decay: short, steep waves are transformed into relatively long, low waves which reach the
shore. This wave transformation is caused by frequency dispersion and direction dispersion.
Swell waves can have periods of 30 seconds [CERC (1984)].
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o seiches
Seiches are oscillations caused by some exciting mechanism and trapped by a susceptible
bathymetry, for instance a bay or a harbour basin. Exciting mechanisms can be:

- local meteorological phenomena like squalls (small depressions) and gusts
- tsunami (seismically induced gravity waves)
- storm surges.

Also long-period wave phenomena like surf beat, induced by variations in shoaling waves
(shoaling is a change in wave height when waves propagate in varying water depths), and
even current-induced vortices may be such a mechanism. Typical time scales are of the order
of minutes (i.e. frequencies are usually less than 0.01 Hz). Observed periods range from 2 to
40 minutes [CUR/RUKSWATERSTAAT (1995)].

e tsunamis

Tsunamis are seismically induced gravity waves, characterised by wave periods that are in
the order of minutes. They occur in seismic active areas. They often originate from
earthquakes or other tectonic disturbances below the ocean, where water depths can be more
than 1000 m and may travel long distances without reaching any noticeable wave height.
However, when approaching a coastline, the height of the wave may increase considerably.
This because, due to the large wave length, these waves are subject to strong shoaling and
refraction effects (refraction is a process by which the direction of a wave moving in shallow
water at an angle to the contours is changed so that the wave crests tend to become more
aligned with those contours). Often, wave periods range from 10 to 100 mmutes [CERC
(1984)].

o tides

Tides are created by the gravitational force of the moon and, to a lesser extent, the sun.
These forces of attraction, and the fact that the sun, moon and earth are always in motion
relative to each other, cause waters of ocean basins to be set in motion. These tidal motions
of water masses are a form of very long period wave motion, resulting in a rise and fall of
the water surface at a point. There are normally two tides per day, but some localities have
only one per day. Tides constantly change the level at which waves attack coastal structures
[CUR/RIKSWATERSTAAT (1995)]. Along the Dutch coast, the tide has a period of 12 hours
and 25 minutes.

e storm surges

Local minima of atmospheric pressures (depressions or “lows”) cause a corresponding rise
of Mean Water Level (MWL), similarly, high pressures cause low water levels. Due to
dynamical effects however, the rise in water level can be amplified significantly. When the
depression moves quickly, the elevation of the water level moves correspondingly as a storm
surge. A storm surge behaves as a long wave with a wave length approximately equal to the
width of the centre of the depression. The height of these long waves may increase
considerably due to shoaling [CUR/RIJKSWATERSTAAT (1995)]. The period of these long
waves may be in the order of magnitude of a day or more.
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Figure 2.4 is an illustration of classification of waves by period or frequency given by Kinsman
[KINSMAN (1965)]. The figure shows the relative amount of energy contained in ocean waves
having a particular frequency. Of primary concemn are the waves referred to in figure 2.4 as
gravity waves, which have periods from 1 to 30 seconds. A narrower range of wave periods,
form 5 to 15 seconds, is usually more important in coastal engineering problems. Waves in this
range are referred to as gravity waves since gravity is the principal restoring force; i.e., the
force due to gravity attempts to return the fluid to its equilibrium position. Figure 2.4 also
shows that a large amount of the total wave energy is associated with waves classified as
gravity waves; hence, gravity waves are extremely important in dealing with the design of
coastal and offshore structures [CERC (1984)].
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fig. 2.4  Approximate distribution of ocean surface wave energy illustrating the classification of surface waves
by wave band, primary disturbing force, and primary restoring force [CERC (1984)]

In section 2.4 different types of wave impacts will be discussed. Only wind waves which break
onto a vertical breakwater are discussed in that section. Impact forces or pressures which may
occur due to other types of waves, such as tsunamis, will not be treated. Before the different
types of wave mmpacts are treated, the conditions necessary for the occurrence of wave impacts
will be treated in section 2.3. In that section a decision tree will be given that describes whether
particular structures or sea states will cause a risk of impulsive wave conditions.
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2.3 Decision tree for wave impact conditions

Goda [GODA (1985)] describes a number of rules to identify whether particular structures (e.g.
vertical breakwaters) or sea states will cause a risk of impulsive (impact) wave conditions. That
method is reinterpreted by Allsop et al. [ALLSOP et al. (1996)] and presented here in the flow
diagram in figure 2.5.

The different parameters which are shown in figure 2.5 are explained in figure 2.6 and figure
2.7. Figure 2.6 gives the co-ordinate system which is used for vertical breakwater calculations
and figure 2.7 gives a definition of the geometric parameters of a vertical breakwater.

is wave aftack oblique?

Beta > 20 degr. 7

Is mound large ?

Any%)o.r;\gund? 0.1 <BbAp<0.3
NS Gres)

Is sea bed slope shallow? Hmax/h > 0.6
-] m < 1/50 7 hivhs > 0.5
No Qes)
Is crest level low? Is crest level low?
<——-————-—- RcHs < 0.37 RoMs <0.3 7
No Yes
PULSATING OR IMPACT LOADS
BROKEN WAVE LOADS ARE POSSIBLE

fig. 2.5  Decision tree for impulsive breaking conditions [ALLsop et al. (1996)]
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fig. 2.6  Co-ordinate system

fig. 2.7  Definition of geometric parameters

In the decision tree of figure 2.5 other parameters, such as H;, Hyac and Ly, are also used. L, is
the deep water wave length related to the peak period ( 7, ) and 1s defined as:

gT?
L =2¢ 23
»= 2.3)

H, is defined as the significant wave height which is the average of the highest one-third of the
wave heights in a wave record. H,... is the maximum wave height in a wave record.

The decision tree of figure 2.5 gives a good idea whether wave impacts will occur or not.
Nevertheless, it is important to keep in mind that wave breaking was often observed during the
most severe storms which preceded some breakwater disasters, even in water depths where
breaking (due to shoaling) was not expected at all [OUMERACI (1994)]. So, one should be very
careful in using the decision tree described in figure 2.5 and always keep in mind that breaking
wave conditions may occur even when figure 2.5 does not indicate these dangerous conditions.

2 - 9
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2.4 Types of wave impacts and related loads

In this section different types of wave impacts and their related loads will be discussed. In
literature, all wave generated loads with a short rising time are generally called impact loads or
impulsive loads. For each type of wave impact a description of the development m time of the
pressure or force on the vertical front wall of the breakwater will be given in this section. The
description of wave impacts in this chapter is more practical than the descriptions which will be
given in chapter 3 and chapter 4. In those chapters, a more detailed, analytical description of the
different types of wave impact pressures, forces and momentum generated by wave impacts will
be discussed.

2.4.1 General

The appearance of wave impacts, the magnitude of the impact pressures or forces and the
development in time of the pressures or forces on the vertical breakwater are influenced by a lot
of factors. These factors are [DELFT HYDRAULICS (1994)]:

geometrical factors:

o the shape of the structure (in connection with trapped air, possibility of water to flow aside
and the magnitude of the exposed surface of the structure)

o the angle between the vertical breakwater and the water surface

o the position of the vertical breakwater in relation to the water surface

e the water depth and the slope angle of the seabed near the vertical breakwater (in connection
with the propagation of the incoming waves, refraction and breaking) »

factors related to the stiffness

o the elasticity of the structure and the compressibility of the water

e the occurrence of trapped air between the water surface and the structure and air bubbles in
the water

factors related to the incoming waves

o the wave height and wave period (the higher the wave height and the shorter the wave period,
the higher the velocity of the water surface)

o the angle of wave propagation (the smaller the angle between the perpendicular of the
breakwater and the wave propagation, the higher the chance of the occurrence of wave
impacts; the chance of the occurrence of wave impacts is very little if the angle between the
perpendicular of the breakwater and the wave propagation is bigger than 20°)

o dispersion of wave direction

o the shape of the local wave, which is influenced by the reflected wave

factors related to the water

o the salinity of the water (the salinity of the water influences the magnitude and the dispersion
of air bubbles in water and influences the propagation of shockpressure waves (see chapter 3
and chapter 4; the mass density of salt water differs from fresh water)

e currents (currents influence a wave field but also the waves near a coastal structure)

o the water level
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Wave generated pressures and forces are very complicated functions of the wave conditions and
geometry of the structure. When a wave crest approaches a vertical wall the water particles will
be forced upwards in a rather sharp curve. The smaller the radius of the particle path, the larger
the pressure as it is balanced by centrifugal forces.

Figure 2.8 illustrates three different situations of wave structure interaction [PIANC (1996)]. In
figure 2.8 different photographs are added. These photographs give a description of the water
surface in different phases before and during the wave hits the vertical wall. These photographs
were made during the experiments of Takahashi et al. [TAKAHASHI et al. (1993)]. These
photographs are added in figure 2.8 to give a better idea of the shape of the wave profiles, which
are also shown by the photographs.

Experiments and prototype measurements indicate that pressures on a breakwater due to the
impact of breaking and near-breaking waves may be divided into three overlapping categories.
There are sudden violent peaks, somewhat longer duration oscillatory pressures and the longer-
lasting moderate pressures that persist until the wave crest is reflected. All three types of
pressure can occur in a single wave impact [PEREGRINE (1994)].

The three different types of wave impact forces or pressures which can be found i figure 2.8
are discussed in the next three sub-sections. It should be noted that the three types of wave
impacts are divided, depending on the amount of air which is trapped. A strong correlation
exists between the shapes of the breaking waves at the vertical wall and the trapped air, which
can also be seen in figure 2.8. On the other hand, the latter is known to considerably affect the
magnitude as well as the spatial and temporal distribution of the impact pressure [SCHMIDT et
al.(1992)]. The highest wave impact force, of very short duration is observed when a vertical
wave front strikes the wall while trapping a small amount of air in the form of either bubbles or
a thin lens-shaped pocket. The larger the amount of the entrapped air at impact of the plunging
breakers, the lower the magnitude and the longer the rise time or compression time of the wave
impact force [HATTORI et al. (1994)].

Wave impacts occurring without air entrapment (figure 2.8a) are termed “Wagner type wave
impacts” and are discussed in section 2.4.2, Wave impacts occurring with air entrapment
(figure 2.8c) are termed “Bagnold type wave impacts™ and they are discussed in section 2.4.4.
The most severe wave impact forces and pressures take place in the transition region between
these types (figure 2.8b), these “transition type wave impacts” will be treated in section 2.4.3.
The impact of the transition type-arises when a vertical wave face strikes the wall with small
trapped air bubbles [HATTORI et al. (1994)].
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fig. 2.8  Illustration of vertical wall wave forces and wave profiles from non-breaking and breaking waves;
[PIANC (1996)] and [TakAHASHI et al. (1993)]
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2.4.2 Wagner type wave impacts

In case of a non-breaking wave no air pocket will be trapped between the wall and the
approaching wave front. The pressure at the wall will have a relatively gently variation in time
and will be almost in phase with the wave elevation (see figure 2.8a). This kind of wave loads
might be called quasi-static loads because the period is much larger than the eigenperiods of
oscillation of conventional caisson breakwaters (approximately one order of magnitude larger,
see chapter 7). Consequently, the wave load can be treated like a static load in stability
calculations, with the exception that special considerations are required if the caisson is placed
on fine soils where pore pressures might be built up resulting in significant weakening of the soil
[PIANC (1996)].

However, it is not always that loads from what seems to be non-breaking waves can be regarded
as quasi-static. A certain asymmetry in terms of steepening of the wave front face can cause a
fast rise in the wave pressure, say within some tenths of a second (see figure 2.8a), Lundgren
[LUNDGREN (1969)] denotes this a ventilated shock. In the literature it is often referred to as the
Wagner type pressure (see also section 3.3) [TAKAHASHI (1995)]. In figure 44 onpaged -6
the Wagner type wave impact can be found caused by an upward deflected breaker. The time
history of a Wagner type pressure is characterised by a sudden rise and exponential decay, see
section 3.3.

2.4.3 Transition type wave impacts

The largest impulsive wave loads on vertical breakwaters occur when plunging waves hit the
front wall and a small amount of air is trapped (figure 2.8b). This type of wave impacts causes
a transition type pressure or force (see also section 3.4). The condition for plunging waves to
occur is given by Battjes [BATTIES (1993)] as:

05<§E<33
in which:
tano .
g = ———==== = Irribarren number 2.4
JH ! L,
H = (local) wave height
2
Ly, = g _ deep water wave length (2.5)
g = gravitational acceleration
T = wave period
o = slope angle of the seabed

This fits very well with the results of model tests carried out by Mitsuyasu
[MITSUYASU (1962)] from which it can be concluded that the smaller H/L, and the larger tana,
the larger the non-dimensional pressure intensity given by p / ( pw g H ), where p is the average
pressure over the wall height p, is the mass density of the water and H is the wave height
front of the wall [PIANC (1996)]. Mitsuyasu [MITSUYASU (1962)] found a maximum non-
dimensional pressure [ p / ( pw g H )], for a slope angle of 3.8° (slope 1:15) of approximately
10.5.

In figure 2.9 breaker types according to Battjes [BATTJES (1993)] are portrayed.

2 - 13
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fig. 2.9  Breaker types as a function of & {BATIIES (1993)]

Breaking waves of the plunging type develop an almost vertical front before they curl over. If
this almost vertical front happens to appear just prior to the contact with the wall then very high
but extremely short duration pressures or forces occur.

Figure 2.8b illustrates the case of wave impacts of the transition type where only no or a
negligible amount of air is trapped, resulting in a very large single peaked force followed by
very small force oscillations. The duration of the peak force is in the order of hundredths of a
second. The shorter, the larger is the peak pressure for constant momentum.
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The sharp peak of pressure (or force) is due to the impact between the steep overhanging front
of the wave and the wall. If the velocity and shape of the oncoming wave are known then the
impact can be estimated, by following the type of analysis that has been developed for the
impact of moving solid bodies on water (see chapter 3). The most severe type of impact has
often been described as the case where the wave face is parallel to the wall at the impact.
Cooker et al. [COOKER et al. (1990)] found that in this case a rapid “flip-through” of the
surface occurs, rather than a direct impact.

The flip-through occurs because although the front of the wave is approaching the wall at a
good velocity, the water in front of the wave at the wall cannot escape and is accelerated
upwards. This acceleration increases rapidly, giving the waterline on the wall sufficient velocity
that its rise in front of the wave turmns the surface around to form an upward jet in the short time
in which the oncoming wave might have hit the wall directly [PEREGRINE (1994)]. This effect
can be seen in figure 2.8b for the point in time 7.

The single peaked load history shown in figure 2.8b might by simplified to a “church-roof”
shape, see figure 2.10. The response of a structure to such load depends on the eigenfrequencies
of the structure and the detailed variation of the load in time (see chapter 7 to 10). Of special
importance is the maximum load Fj,ma, the rise time 7, and the duration #; of the horizontal
force impact. The quasi-static load force . is in most cases, where the wave is depth limited,
approximately equal to [GODA (1994)](see figure 2.10) :

Fh, = 1.5%p,*g*H,’ (2.6)

Force (kN/m)
A
Fh,max
“church-roof” load

It

wave impact force

Force (kN/m)
A

/ \/V N\ time (9

quasi-static wave force on the
vertical breakwater

fig. 2.10  Impact load on a vertical breakwater schematised by a church-roof load
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Different formulae have been derived to find a the relationship between the peak value /), m.x and
the total duration of the peak force 7, . In the case of a single peaked load history the maximum
wave impact force may be approximated by the following empirical equation which has been
determined on the basis of large-scale model tests performed by Schmidt et al
[SCHMIDT et al. (1992)] (see section 2.4.4):

F " -0.344
._.””"_"‘2_ = 1.24(_d) 27
p.8H, Tp
in which:
H, = breaker height at the front wall of the vertical breakwater
7, = peak period of the waves
p, =  mass density of sea water (1025 kg/m’)

Equation 2.7 has a considerable uncertainty because of the large scatter in the test results
(linear correlation coefficient = 0.8). The test result forces can be up to twice the force
calculated by equation 2.7 [PIANC (1996)].

In the same tests was found that the point of application of the peak force Fj, e is generally
located slightly below Still Water Level (SWL) and does not vary significantly during the
impact. The ratio of the rise time f, to the total peak duration f; was found to vary between
t./t;~03 and t,/ t;~ 0.65, depending on the amount of trapped air and the magnitude of the
force peak. The larger values of f,/ t; occur for large trapped air volumes and smaller force
peaks.

Equation 2.7 is shown in figure 2.11 together with the corresponding data from large scale
model tests. The information shown in this figure has some limitations:

e The figure is based on scale tests. The validity for prototype dimensions is a pomt of
discussion, given the uncertainty on scale laws, although the tests have been made at large
scale. Scaling problems will shortly be discussed in chapter 4. Waves have been used up to 2
m height and up to a period of 9.4 s. Waves with a period of 9.4 s and a height of 2 m have
got a very small wave steepness (H / L, ) of approximately1.5%.

o The tests have been made for a certain group of geometries, the influence of for instance the

berm with has not been taken into account.

The horizontal wave impact load can be estimated with the help of equation 2.7. The impact
load depends on the value of the relative wave impact duration, £ /T,. According to figure 2.11
t4/T, may vary roughly between 0.001 and 0.1, with an average of about 0.01. Calculated
values of the horizontal wave impact forces for these three values of #; /T, are presented in table
2.1 for four different combinations of maximum wave height and peak period.

Hopax [m] 5 6.5 8 10

T, Is] 8.5 10 11 12
tJT,=0.001 [kN/m] 3355 5671 8590 13422

F. |1JT,=001 [kN/m] 1520 2568 3890 6079
tJT,=0.1 [kN/m] 638 1163 1762 2753

table 2.1 Examples of horizontal wave impact loads for a single peak load history
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fig. 2.11 Maximum impact force versus impact duration [SCHMIDT et al. (1992)]

In figure 2.11 a dotted line is drawn as well. This line runs through the middle of the cloud and
is a line of constant momentum (it is not the best fit). This line is suggested by de Groot (Delft
Geotechnics) [GROOT, DE (1996)]. The function of this line 1s:

F -1
Lhmex o.os(i’-j 2.8)
pngbz TP

De Groot suggests this line because the uncertainty of scaling of wave impacts in a model can
partly be overcome by expressing the results in terms of momentum (see also chapter 4).
However it is still important to know the total duration and/or the rise time of a wave impact. In
chapter 10 it will be shown that if a vertical breakwater is exposed to two different wave
impacts, which both represent the same amount of momentum, the wave impact with the
shortest total duration and rise time causes the largest response of the vertical breakwater. This
fact is confirmed by the study of Qumeraci et al. [OUMERACI et al (1994)].

Other horizontal wave impact force prediction formulae, using a consideration of the momentum
of breaking waves, can be found in literature as well (equation 2.9) [KLAMMER et al. (1996)]:

-1
___f_h_,ge_x___ =224%* [ tr j (2 9)
p.*g*H  \Jd, /g |
in which ¢, is the rise time of the maximum horizontal wave impact force F,m and dj is the
water depth of breaking waves. According to Goda [Goda (1985)], [Goda (1994)] the
maximum dimensionless wave impact force possible can be approximated by: '
F
h,max - =15 (2 10)
Pw * g * H b

This fact seems to be confirmed by the tests of Schmidt et al. [Schmidt et al. (1992)] see figure
2.11. Note that this maximum wave impact force is 10 times as large as the quasi-static wave

force!

Horizontal wave impact force prediction formulae will be extensively treated in chapter 4.
2 - 17
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2.4.4 Bagnold type wave impacts

The double peaked force followed by low frequency force oscillations which occurs when a
large amount of air is trapped in a pocket (see figure 2.8c) has been described by different
researchers. The type of wave impact which causes the wave impact history which is sketched
in figure 2.8¢ is called the Bagnold type wave impact. It is called the Bagnold type wave impact
because of the fact that the theoretical approach of the characteristics of these wave impacts has
firstly been treated by Bagnold [Bagnold (1939)].

Two different theories of the development in time of the double peaked wave impact force can
be found in literature. The two theories differ in the description of the magnitude of the first
peak. Lundgren [LUNDGREN (1969)] says that the first peak of the total horizontal force
(integrated pressures) is the largest one and Schmidt et al. [SCHMIDT et al. (1992] say that the
second peak of the total horizontal force is the largest one. The different ideas are reflected
below. The results of the study of Schmidt et al. [SCHMIDT et al. (1992] and the results of their
large scale hydraulic model will be treated extensively in this study as well. Not only because of
the fact that it gives a good overview of Bagnold type wave impacts but also because of the fact
that many other different aspects of wave impact loads are treated as well. The results of the
study of Schmidt et al. [SCHMIDT et al. (1992] are very usefull for a better understanding of
different important aspects of wave impact loads.

Lundgren
Figure 2.8c illustrates the case where a large amount of air is trapped in a pocket,
resulting in a double peaked force followed by pronounced force oscillations. The first
and largest peak is induced by the wave crest hitting the structure in point 4 (see figure
2.8¢), and is denoted a hammer shock (see also section 3.2). The second peak is induced
by the subsequent maximum compression of the air pocket B (see figure 2.8¢) and is
denoted a compression shock [LUNDGREN (1969)]. In literature, this wave impact load is
often called the Bagnold type (see also section 3.5). The force oscillations are due to the
pulsation of the air pocket. The double peaks are typically spaced in the range of some
milliseconds to hundredths of a second. The period of the force oscillations is in the range

of 0.2to1s.

Schmidt et al.
Schmidt et al. [SCHMIDT et al. (1992)] have carried out a detailed large-scale model

study on impact pressures due to breaking waves of the plunging type on a vertical wall
The hydraulic model tests were performed a the large wave flume (length = 320
m, width = 5 m and depth = 7 m) in Hannover (Germany) by using regular and irregular
waves up to 2 m height and 9.4 s period. The experimental set-up is given in figure 2.12,
showing;

e a sloping seabed 1:20 terminated by a vertical stiff wall of 6 m height instrumented

with 28 high resolution pressure transducers ( />35 kHz)
e the locations of eleven wave gauges installed in front of the wall.

Water depths in the flume up to 3.0 m (1.6 m at the wall) were used for the tests. Most of
the waves used in the tests arrive at the wall as plunging breakers (see figure 2.9 and
figure 2.13), the maximum breaker heights obtained are in the range of Hy = 1.15%d,,
where d,, is the breaking depth measured from Still Water Level (SWL).

Depending on the value of H, /d and on further parameters seven types of breaking and
broken waves - five for the plunging and two for the spilling breaker - in front of the
vertical wall have been obtained (see figure 2.13).
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fig. 2.12  Experimental set-up in the large wave flume [ScHMIDT et al. (1992))
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fig. 2.13  Breaker types observed during tests in the large wave flume [ScHMIDT et al. (1992)]

“Unfortunately, the breaker height H} is extremely difficult to predict with any certamty,
so these classifications are of limited practical use” [ALLSOP, et al. (1996)]. The water
depth d directly at the vertical wall (see figure 2.7) corresponds to the breaking depth d,,
measured from Still Water Level (SWL) by the linear relationship & = 0.83*d, (average of
705 breaking waves and correlation coefficient of 0.84).

Some pressure distributions on the vertical wall, which simulates the vertical wall of a
vertical breakwater, are given in figure 2.14 (breaker height A, = 1.57 m and wave
period T'=6.75 s).

The horizontal force F, per linear meter obtained from pressure integration is also given.
Figure 2.14 also illustrates that impact pressures are not only limited to small areas but
may also occur simultaneously over a large height (in a range up to the wave height) of
the front wall of the vertical breakwater.
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fig. 2.14  Pressure distribution at difterent time steps ( Hy = 1.57 m, 7= 6.75 s ) [SclMDT et al. (1992)]

Particularly in the case of well developed plunging breakers (see figure 2.9 and figure
2.13) with a large trapped air pocket, the spatial integration of the impact pressures
generally leads to a total force with a duration which may be much larger than usually
assumed. In fact, the duration of total impact forces may reach 5 to 10 times that of the
corresponding impact pressures. Since the latter is generally in the range of 0.005 to 0.02
seconds (in the model), the duration of the total impact force may reach values in the
range of 0.05 to 0.2 seconds corresponding to values of 0.15 to 0.6 seconds in prototype
(see chapter 5 for problems related to scaling); i.e. values which may be in the range of
the eigenperiods of oscillation of common prototype vertical breakwaters (see among
other things chapter 7).

The origin of negative pressure (see figure 2.14 steps 6 - 10) can also be explained by the
fact that the trapped air is compressed so much that in re-expanding it throws the water
mass back with such a velocity that the pressure drops below the atmospheric pressure
value. Negative pressures are defined here as pressures which have a magnitude below
the atmospheric pressure value. The pressure distributions in figure 2.14 clearly
characterise the impact of a plunging breaker with a large air pocket trapped between the
breaker front and the wall: a Bagnold type wave impact.

Typically, two force peaks (time step 1+4 in figure 2.14) occur which are also seen in the
related force history shown in figure 2.15. From this figure can also be seen that the
second peak is larger than the first peak for Bagnold type wave impacts according to
Schmidt et al. [SCHMIDT et al. (1992)]
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fig. 2.15 Horizontal force history resulting from pressure integration [SCHMIDT et al. (1992))
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A further important characteristic of this Bagnold type wave impact (well developed
plunging breaker with trapped large air pocket, see figure 2.13) is the presence of the
relative low frequency oscillations after the force peak (see figure 2.15). The latter are
caused by the cyclic compressions and expansions of the trapped air pocket under the
highly transient pressure fields and are hence related to the size of the trapped air pocket.
The most critical situation may occur when the frequency of these oscillations will
approach the range of the eigenfrequencies of the motion of a vertical breakwater, leading
to resonance or near resonance phenomena. This may be more critical than a high single
impact having the same excitation frequency, since it generally needs a number of loading
cycles for resonance to build up from rest [OUMERACI et al. (1992)]. Based on a
theoretical model as well as on field and laboratory data, the following very simple
relationship between the period T, of the pulsations resulting from the cyclic
contractions and expansions of the air pocket trapped between a wall and a plunging
breaker with an incident wave height H (in cm) has been developed:

Ty = 0.75%107*H 2.1D

The derivation of this relationship can be found in chapter 5. According to equation 2.11
the force oscillations with Ty, = 0.075 s in figure 2.15 correspond to an incident wave
height in the large scale model of H = 100 cm = 1 m. The period of the force oscillations
transferred to prototype conditions may also lie in the range of the eigenperiods of
prototype vertical (caisson) breakwaters. As has been said before, these force oscillations
may lead to near resonance excitation. More detailed information of this phenomenon can
be found in chapter 5 and in section 10.6 where the effect of the low frequency force
oscillations on the dynamical behaviour and stability on a vertical breakwater is treated.

The typical features of a force history caused by the impact of a breaker plunging on a
vertical wall and entrapping a large air pocket are schematically summarised in figure
2.16 which also illustrates the origin of each of these characteristics.
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fig. 2.16  Charactenistics of impact forces and their origin {ScrMiDT et al. (1992)]
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So, although the damped eigenfrequency of typical caisson or vertical breakwaters on sand and
gravel is in the order of 0.3 to 0.8 seconds and consequently orders of magnitude larger than the
period of impulsive loads from breaking waves of the transition type (see sub-section 2.4.3),
there is still a possibility of dynamic amplification of the movements of the caisson, dependent
on the rise and decay times of the peak load, the mass of the vertical breakwater, and the
elasticity/plasticity of the foundation. The force oscillations caused by a large trapped air
pocket, thus the force oscillations after the second peak of the double peaked wave impact force
(see figure 2.16), are likely to be dynamically amplified because the frequency of the
oscillations is in the same range as the damped eigenfrequency of caisson breakwaters. It can be
concluded that these oscillating forces may be very dangerous for (for example) the stability of
the vertical breakwater. It may be possible that these oscillating forces have been the cause of
previous vertical breakwater failures, see section 10.6.

In literature different equations which describe the period of the force oscillations (7o, ) can be
found. They all give nearly the same results as will be shown in chapter 5. It can be concluded
that the most dangerous load for vertical breakwaters may be the Bagnold type wave impact
discussed in this sub-section, although the most severe impact forces take place in the transition
region between the Wagner type wave impact and the Bagnold type wave impact, the so called
transition type wave impact (discussed in section 2.4.3). Dynamical amplification of the motion
of the vertical breakwater may occur when a vertical breakwater is exposed to a Bagnold type
wave impact, due to the fact that the force oscillations after the wave impact peak force are in
the same order of magnitude as the eigenperiod of the vertical breakwater.

Oumeraci et al. [Oumeraci et al. (1994)] conclude: “Depending upon the purpose of the analysis
and upon the shape of the actual load, simplification of the impact load history and its reduction
tot very simple shapes (e.g. the “church-roof” (see figure 2.10)) may be either very usefull or
quite misleading. For example misleading in the case when low frequency force oscillations may
occur when a wave breaks onto a vertical wall. The results achieved so far already indicate, that
most of the relevant characteristics of the load history (rise time, single or double force peak,
total impact duration period amplitudes and decay rate of the oscillations following the load
peak) should be considered in the selection of representative dynamic load histories for the final
design of a breakwater.”

“Significant dynamic amplification necessitates a thorough dynamic analysis of the response of
the structure. Important in such an analysis is the characteristics of the foundation soils under

dynamic loads.” [PIANC (1996)]




Wave Impacts on Vertical Breakwaters

2.5 Uplift forces and uplift pressures on vertical breakwaters

Wave action on vertical breakwaters does not only cause horizontal quasi-static or wave impact
forces but also (in time varying) uplift forces which work against the bottom slab of a vertical
breakwater, as has been mentioned in the introduction of this chapter. Uplift pressures and / or -
forces are influenced by the wave action on the vertical breakwater, the permeability of the
rubble foundation of the breakwater and the geometry of the structure and the rubble foundation
(thickness and height).

The uplift pressure underneath a caisson breakwater consists in fact of a hydro-static pressure
and a wave induced pressure. For the calculations of the dynamical behaviour and stability of a
vertical breakwater, the horizontal hydro-static pressure is of no significance. However, in
contrast to this, the vertical hydro-static pressure is of importance. One should account for his
vertical hydro-static force (integrated pressures) or buoyant force in stability calculations. This
can be done by reducing the total weight of the caisson, as will be shown in chapter 7.

Relatively little information is available on wave induced up-lift forces acting on the underside
of vertical breakwaters of the caisson type. Wave induced uplift forces on caisson breakwaters
used for static stability analysis are commonly predicted by empirical and semi-empirical
formulae. In this respect the Goda method [GODA (1985)] is mostly used because it applies for
breaking and non-breaking wave conditions and also accounts for the height of the foundation.
According to Goda [GODA (1985)], see chapter 6, the wave induced uplift pressure, acting on
the bottom of the upright section of a vertical breakwater is assumed to have a triangular
distribution. The maximum uplift pressure ( p, ) occurs at the seaward bottom edge of the
caisson and decreases linearly to zero at the shoreward end (see figure 6.1). For wave impact
conditions an uplift pressure with the same distribution and magnitude is used, according to
Takahashi et al. [TAKAHASHI et al. (1993)] The influence of the characteristics of the rubble
foundation (e.g. the permeability) is totally ignored in the Goda method [GODA (1985)].

For a dynamical stability analysis however, temporal and spatial distributions of the uplift
loading are actually required. Moreover, the interaction of the dynamical response of the
structure and the development of the uplift loading may also be determinant.
[MAST II MSC (1995)]. Different breaker types (these types are among other things dependent
on the amount of trapped air between the breaking wave and the vertical front wall of a
breakwater, see figure 2.13) do cause different pressure distributions undemneath the caisson
according to Kortenhaus et al. [KORTENHAUS et al. (1994)]. For impulsive loading on the
caisson the uplift pressure is not linearly distributed anymore and not equal to zero at the rear
edge of the caisson as usually assumed. This is due to the effect of compression waves beneath
the structure where the maximum uplift pressure no longer occurs at the seaward edge of the
structure. However, in most cases the Goda method [GODA (1985)] seems to give a good first
approximation of the magnitude of the resultant of the uplift pressures: the uplift force.

It should be noted that it is extremely difficult to translate the measured uplift pressures of
hydraulic scale models to prototype scale. Scale effects may be important in the interpretation
of the up-lift data, since the energy dissipation effect of the rubble mound is dependent on the
length of the flow path and the flow regime within the material [ALLSOP et al. (1996)].

Although different pressure distributions underneath caisson breakwaters have been found for
(different) wave impact conditions, the magnitude of the uplift force according to the Goda
method [GODA (1985)] seems to give a usefull approximation for the uplift force used for the
benefit of the calculations within the framework of the given analysis of the effect of wave
impacts on the dynamical behaviour and stability of vertical breakwaters in this study. This
“Goda” uplift force is assumed to be constant in time under different individual wave loading
conditions for the benefit of the calculations which will be presented in this report.
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3 Wave impact pressures

3.1 Introduction

In the previous chapter different general aspects of hydraulic loads on vertical breakwaters have
been treated. Wave impacts passed in review in section 2.4. In this chapter models for wave
impact pressures will be treated. Wave impact forces will be treated in the next chapter. In that
chapter different horizontal wave impact force prediction formulae will be discussed.

Wave impact pressures can significantly differ from place to place on the plane vertical front
wall of a breakwater as can among other things be seen in figure 2.14 on page 2 - 20, figure 4.4
on page 4 - 6 and figure 6.1 on page 6 - 2. If the spatial distribution of the wave impact
pressure on a vertical front wall of a breakwater is known then the total wave impact force on
that breakwater can be calculated by means of an integration of the pressure over the total
height (and width) of that vertical front wall.

Different wave impact force prediction formulae, which will be treated in the next chapter, can
be used for the benefit of the calculation of the dynamical behaviour of a vertical breakwater
which is exposed to wave impacts or to calculate its overall stability. These calculations will be
carried out in chapter 7 to 10. Wave impact pressures have more local effects. Large wave
impact pressures can be extremely destructive for, for instance, the concrete front wall of a
vertical breakwater. However, this study mainly concerns with the overall stability of vertical
breakwaters.

Evidence from various sources, including analysis of existing structures, suggests that pressures
due to breaking waves on a plane vertical surface will be in the range of 100 to 1000 kKN/m*. In
this chapter different theoretical formulae will be presented which make it possible to calculate
these (maximum) wave impact pressures. These models are general applicable. The presented
analytical formulae in this chapter for the calculation of wave impact pressures are of
theoretical use and can be used to get more insight in the phenomena which may occur when
waves break onto a plane vertical wall. Design formulae for vertical breakwaters, for instance
the Goda formula [GODA (1985)] extended by Takahashi et al. [TAKAHASHI et al. (1993)] give
wave (impact) pressures which are of more practical use for the design of vertical breakwater.
This design formula will be treated in chapter 6.

The shock wave model, which gives the highest maximum wave impact pressures is treated in
section 3.2. In this chapter analytical models for the benefit of the calculations of the pressures
of the three different types of wave impacts (treated before in section 2.4) are given as well.
Models for the Wagner type pressure (which gives the lowest maximum wave impact pressure),
the transition type pressure and the Bagnold type pressure are discussed respectively in section
3.3, section 3.4 and section 3.5. In section 3.6 a summary of the different analytical models is
given and for each analytical model the maximum wave impact pressure will be calculated for a
prototype situation. Finally, in section 3.7 an example of the highest measured wave impact
pressure ever, caused by full-scale waves, will be given: in Dieppe (France) a wave impact
pressure of 690 kN/m” has been measured.
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3.2 Shock wave model

3.2.1 Wave impact on a rigid wall

This model can be used to schematise wave impacts with hammer shock pressures. For example
the wave crest of a Bagnold type wave impact which is hitting the structure (see figure 2.8¢
point 4). In this model it is assumed that the water approaches perpendicularly to the rigid wall
and cannot escape. At the moment of the wave impact, the water is compressed and a shock
wave, which moves away from the wall, is created in the water. The celerity of the front of the
shock wave is equal to the velocity of sound in water (1480m/s in pure water
[BATTIES (1990)]). Now the following can be deducted:

Ap = pra — Po = PCLH, 3.1
in which:

Pmax = maximum impact pressure

Pe = water pressure before the impact = p,m at the water surface
Pam = atmospheric pressure

p = mass density of fresh water

uy = velocity of the approaching front of the water

K , , , *10°
¢, = —~ = velocity of sound in water ( 2'2———— ~ 1480 m/s) (G.2)
p 998
14 s

K, = —Ap-&-/— = compressibility modulus (3.3)
Ap = change of pressure

Vo= original volume

AV = change of volume

With equation 3.2, equation 3.1 can be written as:

Ap = uy K, p (B34

It is assumed that the mass density of water p is a constant (which is not true in case of a
compression wave; however, the variation is relatively small) and that the compressibility
modulus is a constant, which means that it is considered as a homogeneous fluid
[DELFT HYDRAULICS (1995)].

The shock wave model as described above gives an absolute upper limit for the wave impact
pressure. In reality the wave impact pressure will always be lower, because it is very unlikely
that the water surface is completely flat and that it hits the wall parallel (the consequence of that
is that the water cannot escape quickly enough), and because of the fact that water often
contains some air, which reduces the wave impact pressure [DELFT HYDRAULICS (1995)]. The
maximum prototype pressure found was about ten percent of that given by equation 34
[MASSEE et al. (1986)].
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An approximation of the total duration of a wave impact of the hammer shock type can be given
[MASSIE et al. (1986)]. The wave which approaches the wall is schematised as a block of water
whit a specific length of L. This block of water hits a rigid wall with a velocity uo. The time
during which the shock wave propagates through the block of water with a length L 1s
At = L/c,, After this time ( At ) the shock wave retumns at the same velocity to the starting point.
Thus the total time duration of the impact ( ;) is:

t,=2At= %{‘- (3.5)

w

If L is approximated by 5 m and ¢, = 1480 m/s than the duration of a wave impact of the
hammer shock type can be estimated by 6.8 ms.

3.2.2 Rigid wall and air-water mixture

When water contains some air it can approximately be said that the compressibility of the air-
water mixture is determined by the air content and the mass density by the water content. The
compressibility modulus of air can be deducted from the equation for the change of the
condition of an ideal gas;

pV? = constant 3.6)
in which:
4 = pressure
V = volume
v = constant of Poisson (isothermal compression (no temperature change during the

compression): y = 1.000; adiabatic compression (no heat exchange with the
vicinity during the compression): y = 1.405)

So, the value of the constant of Poisson is between y = 1.000 and y = 1.405. In rather large air
pockets the compression is approximately adiabatic.

The differentiation of equation 3.6 has the following result:
Vidp +y pVay =0 (3.7
or, when the pressure variations are small, compared to the initial pressure ( po ):

dp __py Py __K, (3.8)

— e [ —

Now, when the air-water mixture is considered homogeneous with « is the air content and (1-a)
is the water content, then the following is approximately valid (0 <a <1):

1 ApV 1 1
Kk = 18V 1. _1 (3.9)
mixture a AV o w aypo
P mixture = (l“a)P (310)
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(Because in an air-water mixture only the air-part is compressed, the variation of the volume as
a result of a given variation in pressure is-a factor a smaller and therefore the compressibility
modulus is a factor o' larger than the compressibility modulus of pure air).

With equations 3.9 and 3.10, equation 3.4 can be written as:

- :
Ap =u, ’M&_& (3.1D

When the water contains little air (for example about 0.1 percent), or when the air is divided up
in multiple small bubbles, the compression of the air is nearly isothermal (y = 1.000), because in
that case the warmth can quickly be transferred to the water. To be able to use the above
equation, an approximation of the quantity of air in the water is necessary. Nevertheless, in
different situations, the quantity of air can vary a lot; this is dependent on the previous history
at the impact zone (previous impacts and breaking waves can increase the quantity of air in the
water) and on the transport of water (flow or no flow). The maximum quantity of air is perhaps
some percents but reliable data do not exist [DELFT HYDRAULICS (1995)].

Fithrboter [FUHRBOTER (1969)], has expressed the influence of air in water on the maximum
impact pressure in a factor, by which Ap according to equation 3.1 should be multiplied. This
resulted in the following equation:

Ap = Prax — Po = PC, Uy 1 (3.12)
I+on( it ——1)

a

in which:
K, = compression modulus of air is yp, ~ 1.000¥10° N/m” in case of isothermal
compression and is yp, ~ 1.405*10° N/m’ in case of adiabatic compression
K, = compressibility modulus of water is 2.2*10° N/m’

This equation implies that the maximum pressure, calculated with equation 3.1, is reduced when
the compressibility of the air bubbles is included. With equation 3.12 values of impact pressure
can be calculated that are closer to reality than the values calculated with equation 3.1. The
problem is to make a reliable approximation of the percentage of air in the water. A difficulty is
that the air has not always homogeneously been divided and that the percentage of air can
strongly vary.

Fihrbéter also found that the effective length L (see equation 3.5) of the approaching water
mass is of the same order as the hydraulic radius R of the impact area. This was explained by
the fact that the sidewards escape of water develops (via a sideward shock wave) just as fast as
the shock wave travels back through the approaching water. The duration the maximum
pressure (see also equation 3.12 and equation 3.5) is then:

R
t; = (3.13)
Cmixt‘ure
in which:
Coisture = velocity of sound in an air-water mixture; Cpn-. decreases to a lowest value of

about 20 m/s in the case of 50% air in the water; in case of 1% air in the water,
Cmixture 1S approximately 100 m/s [KOLKMAN (1992)]
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3.2.3 Wave impact on a compressible wall

As a result of a wave impact on a compressible wall, both in the water and in the wall a
compression wave is created. The velocity of the approaching water is uo; the velocity of the
wall after the wave impact is considered to be suo, the change of the velocity of the water is
(1-€)u,. The celerity of the compression wave is c,. The celerity of the compression wave in the
wall is ¢,. The pressures pp. in the contact surface of the water and the wall are equal. Because
of an equal initial pressure py = pum, the decline of the pressure over the compression waves is
equal too:

Ap = pcw(l - e)uo =p.C,EU, (3.14)
in which:

p. = mass density of the structure

c, = Isc [DIETERMAN et al. (1993)] (3.15)

E, = celasticity modulus of a structure

Equation 3.14 can also be written as:

Ap = pe,ty ———— (3.16)
1+ PCy

PLe

Equation 3.16 shows that including the compressibility of the wall reduces the maximum impact
pressure that is calculated with equation 3.1. Compared with the reduction as a result of air in
the water, the reduction due to the compressibility of the water can normally be neglected. In
reality structures will rather sag than compress, than the above equation is not vahid
[DELFT HYDRAULICS (1995)]. Flowing aside of water which impinges upon a vertical wall has
got a greater influence on the reduction of wave impact pressures than the compressibility of
the (concrete) vertical front wall of a breakwater [DELFT HYDRAULICS (1994)].
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3.3 Models for Wagner type pressure

Wagner type wave impacts have been mentioned before, among other things in figure 2.8a and
in sub-section 2.4.2. Wave impacts which cause Wagner type pressure are also called ventilated
shocks. In this section two models are discussed, firstly a simple model, the flow pressure model
and secondly a more complex model of Takahashi et al. [TAKAHASHI et al. (1993)].

Flow pressure model
Wave impacts of the Wagner type can be described in a so called flow pressure model
which is a very simple model. In this model the maximum wave impact pressure ( Pmax) is

by means of a coefficient expressed in the flow pressure (¥:*p*uo’):

1
Pusx — Po = k(-z—m«f) 3.17)
m which:
k= coefficient which determines the impact pressure

For a given geometry and given hydraulic boundary values the coefficient £ should
experimentally be determined. In some cases a theoretical approximation is possible, for
example in case of a circular cylinder. In marine engineering k is defined as the slamming
coefficient c,. For a circular cylinder, different researchers have determined the
magnitude of ¢;. The magnitude varies between approximately 2 and 6, dependent on the
theories and geometries of the cylinder which are used.

The magnitude of the impact pressure found here with the flow pressure model is
probably the lowest impact pressure which can be found when analytical models are
used. This pressure is considerably lower then observed impact pressures, even though
the velocity of the approaching flow is the comparable to the celerity of a wave in
shallow water [MASSIE et al. (1986)].

In the flow pressure model it is assumed that no water is trapped between the front of the
water and the structure; so the angle between the front of the water and the perpendicular
of the (vertical) wall of the breakwater is small and there are no standing edges which
could hinder the escape of the air. It is also assumed that the water can escape fast
enough to the sides, as a result, the compression of the water can be neglected.

The wave impact pressure is determined by the inertia phenomena connected with the
‘blocking’ of the water. According to Newton’s second law the following equation is

valid:

d(mu) du

V4 5 pL py (3.18)
It is assumed that the mass density of the water p is constant. The longitudinal measure L
is a measure for the quantity of water which has to be blocked (m =pL). L can be
determined by a added water mass consideration. The added water mass is a mass which
has to be taken into account when the dynamical behaviour of hydraulic structures is
investigated. Hydraulic structures which move in water excite water movements. These
water movements influence on their turn the movement of the hydraulic structure. This
influence can by modelled by taking into by adding a virtual mass (an added mass) to the
structure (see also chapter 7 of this report).
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Now it is assumed that the velocity of the approaching wave front u, is reduced to O,
therefore du = -u. When the front of the water hits the structure under a certain angle,
the time for slowing down, df, can be set proportional to D/u,, in which D is the average
space between the front of the water and the vertical breakwater. Thus the wave impact
pressure can be calculated with the following equation:

pLul 1
pmax—p0=_59—=k(5pu§) (319)

The larger the angle between the front of the water and the structure, the smaller the
coefficient k and the smaller the maximum pressure. With equation 3.19 a good first
approximation of the pressure can be given, if it is assumed that there is no air trapped. If
air is trapped, the air compression model derived by Bagnold [BAGNOLD (1939)],
discussed in section 3.5, should be used. A limitation of the flow pressure model is that
for some geometry’s there is no slamming coefficient £ known.

Slamming coefficients are often determined by letting fall an object on the water. When
the object hits the water a certain quantity of water mass (the added water mass) is given
an acceleration and pressure waves occur in the water. This is the same quantity of water
mass that is slowed down when the water hits a rigid object. Both experiments produce
the same slamming coefficient, if the added water mass is not related to the acceleration.
The added water mass is not related to the acceleration when the acceleration is short-
lived.

The added water mass does not change when both the water surface and the object are
moving. But the time for slowing down the water mass ( d ) is then related to the
difference of the velocity of the water surface and the velocity of the object. The velocity
if the water surface that is to be reduced is an absolute quantity though. Equation 3.28
cannot be used when both the water surface and the object are moving. The velocity ( uo)
could be replaced by a relative velocity; nevertheless then it is dubious to use a slamming
coefficient ~which is determined with a unmoving water  surface
[DELFT HYDRAULICS (1995)].

Model of Takahashi et al.
Takahashi et al. [TAKAHASHI et al. (1993)] have developed a theoretical model to
describe the generation mechanism of impact pressures. Different models have been
developed for each type of pressure. The type of impact pressure changes with the
amount of trapped air. The model for the Wagner type pressure is discussed in this
section. In section 3.4 the model for the transition type pressure is discussed and in
section 3.5 discusses the model for the Bagnold type pressure.

Nota bene: The other models which are described in this chapter also take the
atmospheric pressure ( Py OF Pum ) into account when the maximum wave impact
pressure is calculated. Takahashi et al. omit do this. So the atmospheric pressure has
to be added afterwards if the results of the theory of Takahashi et al
[TAKAHASHI et al. (1993)] are compared to the results of the other theories which
are described in this chapter (see section 3.6).

The three models are defined for three different regions of the attack angle () of the
wave front surface against the wall. A special feature of the model is that the wave front

surface has a curvature defined by the tangential angle (8 ) to the cord of the curved
wave front as shown in figure 3.1.
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fig. 3.1  Diagram showing the curved wave front for the impact pressure generation model
[TakanasHi et al. (1993)]

Therefore a small amount of air is trapped even when the attack angle (P ) is zero and
Bagnold type pressure acts when 0 > B. Wagner type pressure acts when the attack angle
is B > & and is also assumed to act in the transition region of 6 > B > 0 (see figure 3.2)
even though the pressure is changed due to the trapped air. Takahashi et al.
[TAKAHASHI et al. (1993)] found that at B ~ 20° the transition is between the Wagner
type pressure and the transition type pressure. When B ~20° the maximum pressure of
the Wagner type occurs (see figure 3.3). As mentioned before, the three regions (see
figure 3.2) are discussed respectively in this section, section 3.4 and section 3.5.

Wagner Type Transition Type Bagnold Type

fig. 3.2  Wave action models for the three applied regions [TAKAHASHI et al. (1993)]
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Figure 3.3 gives an idea of the magnitude of the three types of impact pressures
compared to each other, calculated with the three models of Takahashi et al
[TAKAHASHI et al. (1993)]

b average
pgH
transition type
'Wagner type
: Bagnold type
20 0
< B >

+

fig. 3.3  Impact pressure versus the angle B [TakaHasHI et al. (1993)]

Figure 3.3 shows again that the most severe impact pressures take place n the transition
region between the Wagner type pressure and the Bagnold type pressure.

When B > 8, the Wagner type pressure acts (see figure 3.4) and the wave front hits the
vertical wall with the height ([ = k; H), speed ( u, ) and angle ( B ). The impact pressure
acts along / of the wall. Using the Wagner theory, [TAKAHASHI et al. (1983)] the
pressure p(z,f) is (for the definition z = 0, the lowest point of the impact pressure, and
z = I, the highest point of the impact pressure, see figure 3.4):

2
5
b(r
plz,0) = Loz meotf __10() — (3.20)
2 1 ( x ) - (_ﬂj
R0 b(r)
n
b(t) = ——— 321
( 2u,t cotB G20
In which:
Ky = added mass correction factor
K = impact height coefficient

Equation 3.20 is similar to equation 3.17, the only differences are that the (slamming)
coefficient k is replaced by a different coefficient and the atmospheric pressure is not
added.
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2. 21 4
KK H Uo Mt = constant
- )
K
Dr
= K H
0 P
B=8
p Prmax F, Fh,max
x = constant
ta ¢t tq t

Collision of a wave front on a vertical wall ( p 2 3) [TakasasH! et al. (1993)]

The peak pressure Pmax of p(x) is:

1 55 n’ 2
P = 5 P Ky T°°t B+1 (3.22)

The total impact force F(f) on the wall increases linearly with the time ¢, reaches its peak
Fmax and instantaneously goes to zero. The peak value Fjm. and the average peak

PIESSUIe Prax average along / (= x; H ) are related as:

F, prluix?
rage = —— = ™ cot 3.23
D max,ave g KIH 4 ﬂ ( )

The duration time ¢; of F, is:

A (3.24)

T
Euo cotP

;=

It should be noted that the impact pressure only acts where the water surface hits the
vertical wall (z = 0 to ! ), With Pmaxaverage being the average peak pressure within this
particular region. Although the peak pressure at each point is quite high, the average
peak pressure is lower since the high pressure moves from z = 0 to / as defined by
equation 3.20. This is the typical feature of the Wagner type pressure
[ TAKAHASHI et al. (1993)].
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3.4 Model for transition type pressure

The model Takahashi et al. [TAKAHASHI et al. (1993)] have made for the transition type
pressure (see also sub-section 2.4.3 and figure 2.8b) uses the model for the Wagner type
pressure described in the previous section. When 0 < B < §, it is assumed that the impact
pressure can be modelled as Wagner type pressure and also that the peak pressure is decreased
and the duration time increased by the existence of air (see figure 3.2). This effect is expressed
by the equivalent angel B” which is used in this region instead of B, i.e..

* d—
B =P+ 2200 6.25)
2
B, = tan{ —-| L= (3.26)
K, | 1 2
2Puo
8=0

In figure 3.3 can be seen that the adapted angle described in equation 3.25 and 3.26 reduces the
average impact pressure calculated with the equation of the Wagner type pressure (equation
3.23). If the adapted angle, described in equation 3.25 and 3.26, was not used, the impact
pressures would grow infinite (see figure 3.3). The Wagner type pressure becomes infinite if

B — 0 (see equation 3.23).

3.5 Models for Bagnold type pressure

When there is some air trapped between the water surface and the structure and this air is
compressed, the air compression model can be used. This model can be used to describe the
Bagnold type wave impacts (see also sub-section 2.4.4 and figure 2.8c). With this model not
only the maximum impact pressure can be calculated but it also gives information about the
duration of the impact and the frequency of the oscillating air pocket which is trapped between
the breaking wave and the plane vertical wall of a breakwater. More information about the
phenomenon of oscillating air pockets which can cause low frequency force oscillations on the
vertical front wall of a vertical breakwater can among other things be found in sub-section 2.4.4
and chapter 5.

Breaking waves of the plunging type can cause large amounts of trapped air (see among other
things figure 2.8c). Air entrapment can also occur where vertical and horizontal slabs come
together. The air will not equally be compressed on a large surface; there normally is an angle
between the approaching water surface and the surface of the structure and therefore the
trapped air will be pushed to the corners. Where the water surface hits the structure first, the air
compression model is not valid. The quantity of air that is considered in the air compression
model is one order of magnitude larger than the quantity of air in the shock wave model. In the
shock wave model, the compression of the air is isotherm ( y = 1.000; no temperature change
during the compression). In the air compression model the compression will be adiabatic
(y = 1.405; no heat exchange with the vicinity during the compression) because the volume of
the trapped air is relatively large.

In this section the models of Bagnold [BAGNOLD (1939)] and Takahashi et al.
[TAKAHASHI et al. (1993)] are treated.

3 -1
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Model of Bagnold
Bagnold [BAGNOLD (1939)], was the first to formulate an equation for the compression

of air that is trapped along with a wave impact. He considered piston model as
reproduced in figure 3.5; the spring element is the trapped air, the water mass is the
piston.

compression chamber

(added) water mass

fig. 3.5  Bagnold’s piston model [DELFT HYDRAULICS (1995)]

The water mass m can be determined by an added water mass consideration and is equal
to pL per unit piston surface.

The stiffaess of the air is assumed constant (linear approximation). This is only allowed
when the air is compressed not too much. The initial pressure po in the compression
chamber is equal to the atmospheric pressure pam. According to Poisson:

p(D - x)y =constant (3.27)
The differentiation of equation 3.27 has the following result (see equation 3.7):
dp(D-x)" —yp(D-x)' "dx=0 (3.28)

When the compression of the air is small than x ~ D and p = po = Pam is valid. The
stiffness k of the air per unit piston surface is:

k=32 _10 | (3.29)
& D

The differential equation for the mass-spring system can be written as:

d’x YPo
[ ——+—x=0 3.30)
dt? D (
i which:
x = (pollk 331
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The solution of the differential equation described in equation 3.30 and 3.31 is:

YPoPL . | | YD
- Py =Uu sin t 3.32
2= P o‘/ D (\[DpL] ( )

This is an oscillation that is not damped. The maximum pressure is:

, L
Pmax = Po t U ZEQDP— (3.33)

The period of the oscillation is:

T=2x DpL (3.34)
TPo

Ramkema has measured frequencies of prototype wave impact low frequency force
oscillations. The frequencies measured and those calculated with Bagnold’s theory show
(see equation 3.34) good similarity [DELFT HYDRAULICS (1979)]. The pressure
calculated with this Bagnold air compression model proves to give the same (calculated)
pressure as with the linear shock wave model when (1-a)/a = L/D (compare equation
3.11 to equation 3.33), so when the relations between the volume of water and the volume
of air are equal. In reality the content of air of an air-water mixture is not higher than
about 1 %. The quantity of air, trapped along with a wave impact, can substantially be
bigger. Therefore the linear air compression model will lead to a lower pressure than the
linear shock wave model [DELFT HYDRAULICS (1995)], [RAMKEMA (1978)].

Model of Takahashi et al.
The model of Takahashi et al. [TAKAHASHI et al. (1993)] includes also Bagnold type

pressure (see figure 3.2). When B = 0, air is trapped due to the curvature of the wave
front (see figure 3.2) having a volume which increases as the absolute value of B
increases (0 2 B, see also figure 3.3). The air compression pressure can be obtained by
the thickness of the air layer D , the with L of the water mass compressing the air and the
speed u, of the compressing water.

z
M t = constant

)

[= Ky H
0 2
p=0
Pmax X = Consfant Fh'm“
¥4 F,

tq /'\ tq

' " ~— @t"j' !

fig. 3.6 Collision with trapped air (B = 0) [TakanasH et al. (1993)]
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The average thickness of the air layer D is defined by:

D=x,! (3.35)
K, =Ko +05tan|f] (3.36)
)
Koo = — —cotd 3.37
* 4\sin® 8 37
In which:
Kao= the minimum air thickness coefficient at § = 0
Ky = air thickness coefficient for B <0
The effective width L of the water mass compressing the air is:
(3.38)

L:—;EK,Z,,K,H

The pressure due to the compression of the air layer is obtained by solving a set of
differential equations, representing D, L and 1,. The impact pressure 1is assumed to act on
the wall where the water surface entraps the air ( z = 0 to / ). The impact pressure is a
sinusoidal oscillation with relatively high damping. The impact pressure is assumed to
simultaneously act only within z = 0 to [ with the same intensity, even though the air
compression pressure propagates in the water. The peak pressure pm. can be estimated
with figure 3.7 using the Bagnold number which is defined as:

prc,uy _ pLug (3.39)
dpek,  poD
30 T T T T T

Exact Solution

————— Approximation

20

o) 1 [ !
0 2
(uo"pLY/(Dpo)

fig. 3.7  Pressure due to air compression versus Bagnold number [TaxkaHasH et al. (1993)]
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The approximate linear solution of the theoretical equations is shown in figure 3.7, where
Pmax/ Po is proportional to 2.7 times the Bagnold number. The air compression pressure
can be approximated by a damping oscillation, with pr. being:

pLug J
= =16 3.40
Puox =P max,average ( D , Do ( )

Equation 3.40 is considered to provide a good approximation of the exact solution,
especially for impact pressures on a prototype vertical breakwater. Note that the exact
solution does take air leakage during air compression into account. In the approximate
linear solution presented here this air leakage is neglected.

The oscillation period is approximated by:

2..2 2
T=2n ,w (.41)
4yp,

where y = 1.405 for adiabatic compression. This approximation is in fact the same as
equation 3.34 which was found before for the linear air compression model.

3.6 Summary of the analytical models

In this section a summary of the different analytical models is given and for each analytical
model the maximum wave impact pressure will be calculated for a prototype situation.

The period of the oscillation of the air pocket of the Bagnold type pressure will also be given for
this prototype situation

The following situation is considered:

Po
Cyw
Up

SRR O

<

g we

~N~mp s

= 1.01325*10° N/m® (= pam)

1480 m/s

10 m/s

1.000 (isotherm compression) > a = 0.1%

1.405 (adJabatlc compression) - = 5.0%

1.000%10° N/m® (isotherm compression); 1. 405*105 N/m” (adiabatic compression)

2.2¥10° N/m’

998 kg/m3 (fresh water is used in these computations)

2100 kg/m’

2.85%10" N/m’

3680 m/s

6

= 006 —» pB=0° > x,= 006 > D=015m
> B=%20° > «x,= 024 > D=06m

i

= 05
0.9
Sm
25m
= 1.6m

I
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SHOCK WAVE MODEL:

e Wave impact on a rigid wall:
AP = Prax = Po = PC, Yo G.D

Pmax = 1.01325¥10° + 998*¥1480*10 = 14872 kN/m”

¢ Rigid wall and air -water mixture:

0 1-
— [1po( oLon)p G.11)

1.000*1.01325*10° * (1~ 0.001) * 998
0.001

=3280 kKN/m*

Pmax =1.01325%10°+ 10*\/

(the water contains a small amount of air: 0.1%)

A small amount of air does significantly reduce the wave impact pressure as it can be
seen when the results of equation 3.1 and 3.11 are compared to each other.

Fithrbéter:
Ap = Prac = Po = PO, Uy —— (3.12)
1+a[ ¥ — )
Dmax = 1.01325%10° + 998%1480*10* ! — = 744 KN/m®
1+ O‘OOI[—Z'—Z—iS— - 1)
1.000*10
(the water contains a small amount of air: 0.1%)
o Wave impact on a compressible wall:
Ap = peu, (3.16)
14+ P
pCcC
1
- *10° + 908 * %] 0% = 2
Prmax 1. 01325*%10° + 998*1480*10 N 908 ¥ 1430 12502 kN/m
2100* 3680

The reduction of the wave impact pressure as a result of a compressible wall is much
smaller than due to a small amount of trapped air (0.1%) as it can be seen when the
results of equation 3.11 and 3.12 are compared to the results of equation 3.16.
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MODELS FOR WAGNER TYPE PRESSURE:

Flow pressure model:

pLisl 1 |
Posx = Po = D" =k(5pu§) (3.17)

Pa = 1.01325*105+6*(—§-*998*102) = 401 KN/m?

Takahashi et al.:
1 55 n’ 2
Prmax = 'EPHOK,,, '4_C0t ﬁ +1 (322)

(including the atmospheric pressure, the maximum Wagner type pressure occurs for f = 20°

as can be seen in figure 3.3)

n_z

Prmax = 1.01325*105+%*993*102*0.92 (—4—-cot2 20+ 1} = 895 kN/m’

MODEL FOR TRANSITION TYPE PRESSURE:
The maximum pressure occurs when 8 = 0 and is equal to the maximum pressure for the
Bagnold type pressure according to Takahashi et al. (see figure 3.3).

MODELS FOR BAGNOLD TYPE PRESSURE
Model of Bagnold:

Pmax = Po +u0\,1}-705% (3.33)

1405%1.01325*10° *998* 1.6
06

=296 kN/m’

Prmax = 1,01325*1o5+1o\/

The period of the oscillation is:

T =2n | 2PL - (3.34)
2o

* *
T=27t\/ 067998716 > =052s.
1405*1.01325*10

The magnitude of the period and the maximum pressure is calculated for the case that a
relatively large air pocket is trapped (D = 0.6 m and y = 1.405), which is typical for the
Bagnold type pressure. As has been indicated before in chapter 2, a period is found which
magnitude is in the range of the eigenperiods of a vertical breakwater of the caisson type
(e.g. 0.2 - 0.8 s). Dynamic amplification of the displacement of a vertical breakwater may
occur when it is exposed to an impact load with a low frequency force oscillation - due to a
large trapped air pocket - which is in the range of the natural periods of the breakwater (see
sub-section 2.4.4, chapter 5 and section 10.6).
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Takahashi et al.:
The model of Takahashi et el. [TAKAHASHI et al. (1993)] gives almost the same value of the

maximum pressure as mentioned above, when D = 0.6 m and y = 1.405.

The maximum pressure of a Bagnold type wave impact in the model of Takahashi et al.
[TAKAHASHI et al. (1993)] occurs when B = 0 (see figure 3.3) and this is the upper limit for

this model.

The maximum pressure can be determined, using figure 3.7:

2,2 L 2 9 % . % 2
PRK U, =P Uy _ 998*16 510 263 (3.39)
4p.x, poD  101325*10° *06

Pmax/Pocan not be determined in figure 3.7, but its value will be approximately (including the

atmospheric pressure):

Pmax=1.01325%10°+1.6%2.63*1.01325*%10° = 528 kN/m*  (see equation 3.40)

The approximation of the period of the force oscillations using the Takahashi et al.
model is, when B = -20°: '

2.2 2
T=2x w (341
\ 4vp,

Jn * 008 % 0,92 * (52 * (024 * 52
4*1405*1.01325*10°

=051 s

which is in fact almost the same as found before for the air compression model of Bagnold
(equation 3.34)

Conclusion:

The maximum wave impact pressures - of the models described in this chapter - differ
substantially. Dependent on the prototype situation, one of the models can be chosen to make a

first approximation of the maximum wave impact pressure which may occur.

Equations 3.34 and 3.41 show that the period of the oscillation of the Bagnold type pressure
may be in the range of the natural period of a vertical breakwater of the caisson type. This can

be dangerous (see section 10.6).

18
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3.7 Wave impact pressures caused by full-scale sea waves

In this section different wave impact pressure records can be found in figure 3.8 to 3.10. These
are records of pressure impulses caused by full-scale sea waves in Dieppe (France). In figure
3.8 to 3.10 the unity fonnes per square metre is used, 1 tonne per square metre is
approximately equal to 10 kN/m’. The wave impact pressure records can be found in
[ROUVILLE et al. (1938)] and [BAGNOLD (1939)].

e In figure 3.8 the largest measured full-scale wave impact pressure ever is sketched. In
Dieppe (France) a wave impact pressure of 690 kN/m” has been measured on the 23" of
February 1937. The height of the breaking waves was found to be H, = 2.5 m. Compare
this impact pressure of 690 kN/m’ to the results found by the general analytical models
described in the previous section. In figure 3.19 it can be seen that 7, = 20 ms and ;= 50 ms.

o In figure 3.9 a wave impact pressure history is sketched which is caused by breaking waves
with a height of A, = 4.0 m. The low frequency pressure oscillations can easily be seen in
figure 3.9. The period of these oscillations is approximately 0.3 sec. This datum fits
perfectly well in the equation given in the previous chapter which describes the relationship
between the wave height and the period of the low frequency force or pressure oscillations
( H in cm, the derivation of this equation will be given in chapter 5):

Tow =0.75%10°3 *H 2.1)

e In figure 3.10 a wave impact pressure history is sketched which is caused by breaking waves
with a height of A, = 2.9 m. The period of the first cycle of the oscillations is approximately

0.15s.

30~

»
o
T

MANOGRAPH-PRESSURE
TONNES PER SQUARE METRE,
w
o
T

~N
o

37 fah, 1937 120 377 50

Q- 02 0.3
! TIME: SECONOS.

fig. 3.8  Highest measured wave pressure ever: 690 kN/m? , H; = 2.5 m [BacNoLD (1939)]
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fig. 3.10 Wave impact pressure history with low

frequency force oscillations, Tow = 0.15 s,
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Wave impact pressure history with low frequency force oscillations, Tow = 0.3 s, H; = 40 m

[BagyoLD (1939)}
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4 Wave impact forces and momentum

4.1 Introduction

In this chapter the derivation of a prediction formulae for maximum horizontal wave impact
forces will be treated. In this chapter only a triangular wave impact force history is assumed (as
it has been described in chapter 2 before). So, there is taken no account of the effect of pulsating
air pockets etc.. One of the derivations has been published by Klammer et al
[KLAMMER et al. (1996)] and will be reflected here again in section 4.2, together with an
analysis of the important parameters of this formula. In section 4.3 some other horizontal wave
impact force prediction formulae are given as well. An analysis of the total amount of
momentum of a wave impact is given in section 4.4 and finally in section 4.5 brief attention is
being paid to scaling of wave impacts from model tests to full scale situations.

Nota bene:
All prediction formula which are given in this chapter will be derived for one linear

meter. So the SI- unity of Fj, . , the maximum horizontal wave impact force, is a
force per linear meter [N/m].

4.2 Derivation of a prediction formula for horizontal wave impact forces

Klammer et al. [KLAMMER et al. (1996)] have derived a formula for the maximum wave impact
force using the momentum theory and the solitary wave theory. Missing parameters in the
formula were obtained from PIV (particle image velocity) tests conducted at the University of
Edinburgh [OUMERACI et al. (1995)]. The obtained formula has been compared to hydraulic
model tests performed in the large wave flume of Hannover (GWK).

A breaking wave impinging on a vertical wall generally induces impulsive pressures on the wall
which are difficult to predict in terms of their magnitude as well as in terms of their spatial and
temporal distribution (see figure 4.1)

force Fi, F, Lax actual rise time of a wave impact

actual force history

max wave run-up

A 4

time ¢t

fig. 4.1  Impact loading of a vertical structure - definition sketch

The forward momentum of a fluid mass m hitting the a wall with a horizontal velocity ¢ will
induce a force impulse (see figure 4.1):

[R@*a=mro @1)
0

where ¢, is the rise time of the peak force Fj . and F(f) is the horizontal force time function.
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Assuming a linear temporal increase of the force Fi(f), equation 4.1 yields:

U Fma*t, = m*c _ 4.2)
thus leading to the peak force:
m*c
Flms = 2% 4.3)

r

The most difficulties encountered in applying equation 4.3 for the prediction of impact forces
originate from the lack of information on the magnitude of the fluid mass m which is involved in
the impact process and which accounts only for a small portion of the total mass M of the
breaking wave impinging on the wall (k is a dimensionless mass parameter):

m= kM 4.4

Assuming that the actual wave at breaking may be approximated by a solitary wave, its total
mass M is given by the following relationship (see figure 4.2):

M=p,* ’%*Hb *db3 4.5)

The maximum horizontal velocity is approximated by (see figure 4.2):

c=Jg*d, + H,) ' (4.6)

solitary wave

fig. 42  Definition sketch solitary wave

If the breaking criterion of equation 4.7 is used:

H
=t -078 @

b

equations 4.5 and 4.6 can be written as:

c=Jg*d, *(1+078) =133* [g*d, | 4.3)
16 H,
M=p,* |—*H, *(—b) =335%p,*H, 4.9)
p J3 b 078 pw b (
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The forward momentum of the fluid mass m involved in the impact process is obtained from
equation 4.4, 4.8 and 4.9:

m*c:(k*M)*C=4.47*k*pw*Hb2* g*d, 4.10)

Considering equation 4.3, the dimensionless peak force is obtained as a function of the
dimensionless rise time:

-1

F max Nd, / t

;‘“;};*—Hz’=k*8.94*[ 2 gJ:k*&%*(\/ar_/g] 4.11)
w b b

So far, this method is purely based on theoretical considerations. But the formula contains a non
dimensional mass parameter k which represents the portion of the total mass of the breaking
wave involved in the impact process. This parameter has to be determined experimentally for
each breaker type because of the fact that for different breaker types different portions of the
total fluid mass M are involved in the wave impact process.

r

According to Bagnold [BAGNOLD (1939)] the magnitude of & can be approximated by 0.2
(“.. it is possible that the maximum value to be allowed for ¥ may have to be slightly
greater...”). Besides the mass parameter k, important parameters in equation 4.11 are the
breaker height H,, which is related to the breaker depth dj - which is another important
parameter - and the rise time 7, of the wave impact which is dependent on the breaker type. It
must be noted that the breaker type determines the mass parameter and the rise time. The
determination of the breaker height and the mass parameter will be treated below.

Estimation of the wave height

An estimation of the incident wave height in the presence of a vertical structure can be made by
using the formula which is given by Oumeraci et al. for irregular  waves
[OUMERACI et al. (1994a)]. In the formula, which is described in equation 4.12, the total
reflection of the structure and its influence on wave breaking is considered by the reflection

coefficient K, .

_ * ook
Hszb*[O.1025+0.0217*(1 K’H*tanh(-z—‘lfﬁ’—] 4.12)

1+K L,

7

In equation 4.12, ds is the water depth at the breaking point of the wave and L, is the wave
length of the breaking wave. Equation 4.12 is sketched in figure 4.3 for different reflection
coefficients K, . Besides the breaking criterion for irregular waves which is described by
equation 4.12 also the breaking criterion for regular waves are sketched in figure 4.3
[OUMERACI et al. (1994a)].
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The water depth in front of the structure can be regarded as the governing parameter for the
magnitude of the resulting wave height A, . It can be assumed that a relatively short berm in
front of the structure ( 0. 15 > (B, /L) will only have a small influence on wave breaking.
Therefore, it would not be correct to use the water depth d in front of the structure as an input
(d = d,) for equation 4.12. On the other hand using the water depth %, (see figure 4.1) at the
toe of the berm would certainly overestimate the breaker height as the influence of the berm on
the breaking would be neglected. It is assumed that the berm width B, , the wave length L, and
the lope of the berm 1 : m (in which m = cot o and « is the slope angle of the berm) will
influenced the breaking of waves. Therefore an affective water depth d,, can be derived which
takes into account the aforementioned parameters (see figure 1):

du =d +B,y *m,y *(hs-d) (4.13)

In equation 4.13 B,,; is the part of the berm width which influences the effective water depth:
B =1 forB, /L,>1 (4.14)
By = 1-05*B, /L, forB, /Ly<1 |

The parameter m,; in equation 4.13 is a part of the slope of the berm which influences the
effective water depth and is assumed to be:

me = 1 form<1 .15
Mg = m-05 form >1
For solitary waves the effective water depth d,, is very close to the depth 4, (d, = A, ), so that
B,; =1 and m, = 1. This is confirmed by comparing the calculated wave height using
equation 4.12 and this assumption with measurements in the Large Wave Flume of Hannover

(GWK). A relatively good agreement between measured and calculated values is also obtained
for regular and random wave tests [KLAMMER et al. (1996)].

Experimental determination of the mass parameter &

Model tests in the wave flume at the University of Edinburgh were conducted to experimentally
define the water mass m involved in the impact process under different loading conditions
[OUMERACI et al. (1995)]. For three breaker types the mass parameter k could be determined
using the particle image velocity (PIV) tests (see table 4.1 and figure 4.4 (note that the resultant
wave impact force is slightly below Still Water Level (SWL) for the three different cases)):

. BREAKER TYPE MASS PARAMETER &
well developed plunging breaker with a large 0.11
trapped air pocket
plunging breaker with a small trapped air 0.16
pocket
upward deflected breaker 0.28

table 4.1 Mass parameter for different breaker types

It can be seen from table 4.1 that the value of the experimentally determined mass parameter &
(0.11-0.28) has got the same order of magnitude as the average value k¥ = 0.2 proposed by
Bagnold [BAGNOLD (1939)].
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Prediction formula for impact loading of vertical structures

If k is chosen as 0.2 and substituted in equation 4.11, the following wave impact prediction
formula can be derived (equation 4.16) presented in terms of a dimensionless peak force:

-1
—Thm 79+ ( L (4.16)
P rg*H  \(d, /g |

Equation 4.16 is based on the assumption of a linear rise of the horizontal force to the
maximum load as can be seen in figure 1 and this is reflected in equation 4.2. Actually the
shape of this force increase is strongly dependent on the breaker types. Therefore a reduction
factor £, is introduced by Klammer et al. [KLAMMER et al. (1996)]. This reduction factor
accounts for the different geometries of load histories in the case of breaking waves. The factor
k, is the value which has to be multiplied with the rise time ¢, in order to obtain a triangle with
the same area (force impulse). For the horizontal force this can be calculated as follows (see
figure 4.5):

with &, <1 4.17)

i
Lyn, = [ F(dt
0

v

%

g time Lr time

fig. 4.5  Substitution of the real force history by an equivalent triangular force

Using equation 4.17 is substituted in equation 4.11 the following result can be obtained, again
presented in terms of a dimensionless peak or maximum force:

F
o X rgoq
pw*g*Hb k’

-1
L ) 4.18)

Ja, /g

The magnitude of the reduction factor k, has been obtained from PIV measurements as well (see
table 4.2.

BREAKER TYPE REDUCTION FACTOR &,
well developed plunging breaker with a large 0.8
trapped air pocket
plunging breaker with a small trapped air 0.8
pocket
upward deflected breaker 1.0

table 4.2 Reduction factor k. for different breaker types
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If k is chosen as 0.2 and &, as 0.8 the following horizontal wave impact force prediction
formula can be derived for the dimensionless maximum wave impact force:

-1
F,

pw*g*Hbz de/g

This prediction formula can be compared with measurements obtained from tests performed in
the large wave flume of Hannover (GWK) [KORTENHAUS et al. (1994)] see figure 4.6. The
wave types which were generated throughout the tests are among other things: solitary waves
and random waves. Data of the tests is given in table 4.3:

wave height (m) wave period (s) water depth (m)
SOLITARY WAVES 0.40-0.60 - 3.10-3.50
0.65-1.10 - 3.50-3.90
RANDOM WAVES 030-1.10 3.50-3.60 370-430

table 4.3 Data of large scale model test
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fig. 4.6  Comparison of the prediction formula to large-scale measurements (random waves)
[KLamMER et al. (1996)]

It can be seen from figure 4.6 that the prediction formula in equation 4.19 approximately
represents the upper envelope to the random wave test results. This was to be expected because
of the fact that a conservative approach, the solitary wave theory, was used. Therefore, for
solitary waves the prediction formula better fits the data obtained from the model tests. (see

figure 4.7).
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From figure 4.6 and 4.7 it is obvious that the shorter the rise time of the wave impact, the
higher the impact force. In fact the horizontal wave impact force can be infinite if the rise time
of the wave impact approaches zero. According to Goda [GODA (1985)], [GODA (1994)], who
is referring to different measurements in the past, the maximum dimensionless wave impact
force on a vertical wall can be set about 15 (see equation 4.20). Goda’s findings are treated
more extensively in the next chapter where some other wave impact force prediction formulae
will be treated as well.

F,
R 215 (4.20)
pw*g*Hb
15
Eoal
5 . \
=~ .
=
s
2 P
B
& 6
E »
2 3
g
I
4.19
0 L 1 ; , 1 ,
0.0 02 0.4 0.6 0.8 1.0 12 1.4 1.6

Relative Rise Time t_f/(d/g) [-]

fig. 4.7  Comparison of prediction formula to large-scale measurements (solitary = waves)
[KrammeR et al. (1996))




Wave Impacts on Vertical Breakwaters

4.3 Other prediction formulae for horizontal wave impact forces

In chapter 2 the horizontal wave impact force prediction formula derived by Schmidt et al.
[SCHMIDT et al. (1992)] has already been given. This formula has been derived based on large
scale model tests by using waves up to 2 m height and with wave periods of 9.4 s. (the
experimental set-up of the tests has already been described in chapter 2). The relation between
the peak value F}, max per linear meter and the total peak duration f; may be approximated by:

Fh L ;) 0344
P&y P

Equation 4.21 is sketched again in figure 4.8, together with two other wave impact prediction
formulae which will be treated later on. This wave impact force prediction formula does not
represent wave impacts with a constant amount of momentum. Wave impacts with a long total
duration f; represent a greater amount of momentum than wave impacts with very short total
duration. The wave impact prediction formula which has been given in the previous section, see
equation 4.19, has been derived for a wave impacts with a constant amount of momentum:
Fiumsx linearly decreases with a linearly increasing rise time of the wave impact.

IHHI[ 1 IIHIT[‘ 1 IIHH{ T T TTTT
o -1
Z 2 Fhmax = 15%pu g Hy' T =°'°6(I_d)
Q3 T . -\ P,,8Hy Tp -
~ 15 N \ h/ F . ~0,344
» v . . max d .
st - \ . ;= 1.24- | —=—
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fig. 48  Maximum impact force versus impact duration [ScEMIDT et al. (1992)]

The theoretical basis of equation 4.21 is weak. It is an empirical formula based on a fit of
plotted points. The formula has a considerable uncertainty because of the large scatter in the
test results (linear correlation coefficient = 0.80). The test forces can be up to twice the force

calculated by equation 4.22. No restrictions are given for the ratio /4 / Tp .
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In figure 4.8 the wave impact force formula which is given by equation 4.22 is also given. This
equation describes wave impact forces per linear meter with a constant amount of momentum
and runs through the middle of the cloud of points.

F -1
—””‘;‘2 = 0.06[;—") (4.22)
pwg b P

In the tests of Schmidt et al. [SCHMIDT et al. (1992)] it was found that:

03< ;— <065 (4.23)
d

The ratio of the rise time to the total peak duration is depending on the amount of trapped air
and the magnitude of the force peak. The larger values of #, /; occur for large trapped air
volumes and smaller force peaks. According to Walkden et al. [WALKDEN et al. (1995)] the
reduction in the impact force and the associated increase in the impact duration are due to the
combined influence of the increase in compressibility of the air/water mixture and the observed
change in the wave profile at the impact.

In the derivation of the horizontal wave impact force prediction formula which has been
described in the previous chapter, the effect of the wave period of the waves which might break
on the vertical wall has not been taken into account because of the fact that the solitary wave
theory has been used. The derivation of a horizontal wave impact force prediction formula
which accounts for the wave period of the waves will be treated below.

The mass of an incoming sinusoidal wave can be approximated by (see figure 4.9):

*
M=p, *H—;’*ﬁ (4.24)
T

d

0.5*%L,

fig. 4.9  Incoming sinusoidal wave

If the following breaker criterion is used:

B o713 4.7

b

The maximum velocity of the incoming wave can be approximated by:

c=4g(d, +05*H,) = 118* Jg*d, (4.25)
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The wave length and the wave peak period which contains the most are related by the following
relation (the peak period of the waves is that period of the waves in the wave field at which the
most energy is accumulated in the energy density spectrum):

Ly=c*T, (4.26)

So the total amount of momentum of the incoming wave is:

H, * H, *c*T
M= pw*——-zé—;—;cl:é-* =p,* bz*n Lxc=022%p H,gd,T, @4.27)

In equation 4.3 the following relation has been given for the relation between the maximum
horizontal peak force, the rise time and the forward momentum of a wave:

%
Fhmax = 2% MZ ¢ (4.28)

r

The following horizontal wave impact force prediction formula can be obtained using equation
426, 427 and 4.7 if is assumed that the total mass of the incoming wave causes the wave
impact (the dimensionless peak force is a function of the rise time and the peak period of the
waves):

F -1
b _ 057 * [;—] (4.29)

pw*g*FIb2 p

The maximum wave impact force per linear meter obtained by equation 4.29 can be reduced if
it is assumed that only a part of the total mass of the incoming wave causes the wave impact
instead of the total mass, as has been assumed here. According to Bagnold [BAGNOLD (1939)]
the total mass of the incoming wave can be multiplied by a factor 0.2 to obtain the actual mass
involved in the wave impact process (adaptation of the formula by the use of the factor &, see
section 4.2 will not be carried out here). Now equation 4.30 can be determined:

Fh max t B
— = 0.11%| - 4.30)
P, *g*H, »

As has been stated before, Schmidt et al. [SCHMIDT et al. (1992)] have found the following
ratio

t
03<-+-<065 (4.23)

fq

According to this ratio, the maximum forces can be expected if #, = 0.3*/, . This leads to the
following equation for the dimensionless maximum wave impact force:

-1
F,
— R =O,38*(t—d) (4.31)
p,*g*H, ?

This equation is sketched in figure 4.8 as well. It can be seen that this formula is more
conservative than the two other formulae which are sketched in figure 4.8. Nearly all ponts are
plotted under the line which represents equation 4.31.
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Goda [GODA (1994)] uses the same method to derive a wave force prediction formula as in this
section and in section 4.2. The time integral or the amount of momentum of a breaking wave
force exerted upon a vertical wall must be equal to the forward momentum of the breaking
wave impinging upon the wall. He suggests that the upper limit of the momentum of a breaking
wave can be approximated with that of a semi-circular cylinder having a diameter of H, which
advances with the speed of the wave celerity ¢. Goda [GODA (1994)] has found the following
relation for the dimensionless peak force:

Fh,mmax nt*c
p,*g*H,> 4*g*i, (4.32)

If the breaking criterion of equation 4.7 is used than the speed of the wave celerity can be
approximated by:

c=4gd, +05*H,) = 118*Jg*d, (4.25)

than the findings of Goda can be presented in the following formula (equation 4.33)

-1
_ P _ 093*( L (4.33)
p *g*H \Jd, /g '

Although the breaking wave pressure measured by a pressure gauge with a small sensor area
often exceeds 100 times the hydrostatic head of the wave height, the total thrust upon the whole
area of the vertical wall does not rise to such a high level. By referring to the measurements by
Mitsuyasu (1962, 1966a,b) and Horikawa and Noguchi (1970), the upper limit of the
dimensionless wave impact force can be set to about 15 [GODA (1994)], see equation 4.20:

Fh max
: =15 (4.20)

Py * g * Hb2 B
Equation 4.20 is sketched in figure 4.8 as well.

After the wave impact the standing wave force on the vertical wall remains which can be
estimated by:

F, h,max .

——F=15 (4.34)

Nota bene:
The fact that wave impact forces hardly exceed a value of Fjmu™= 15*p,*g*H,” N/m
has been investigated by the author of this report for many wave impact situations
generated by random waves of small scale and large scale hydraulic model tests which
could be found in the literature. Only a very few wave impacts for random wave
conditions were found to exceed a value of Fjma = 15*p,*g*H,’. This can among other
things be seen in figure 4.10 and 4.8 where only a few points (~5) are plotted above the
line which indicates the maximum horizontal wave impact force. So for the benefit of the
analysis which is presented in this report, this value of 15*p,*g*H,’, will be seen as the
upper limit for wave impact forces per linear meter on vertical breakwaters.

4 - 13
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One should bear in mind that if a vertical breakwater is designed, a probabilistic design
approach can be very useful. In this way one is able to take into account that specific
extreme wave impact, which might exceed the value of say Fimw = 15*p,*g*H,’ N/m
and might lead to failure of a vertical breakwater, in a - from a designers point of view -
more “realistic” way. It is essential to know the retumn period of these extreme wave
impacts (actually this is essential for all kinds of wave impacts). For instance: it seems
unwise to design a vertical breakwater with a proposed life time of 50 years for a wave
impact force of say Fi,me = 25*p,*g*H,> N/m which will lead to vertical breakwater
failure, but has a return period of say 1000 years.

For the benefit of a probabilistic design the statistical distribution of the (dimensionless)
horizontal forces has to be derived. Such a distribution function has been developed by
Klammer et al. [KLAMMER et al. (1996)] by modifying the standard Weibull distribution
function. This gives the following conditional formula (only valid for wave impacts):

F(x)=1-e7@® 59 (4.35)

In equation 4.35 a, B, and y are the parameters of the modified Weibull functions
whereas F(x) is the distribution function. Figure 4.10 shows the non exceedance
probabilities of the dimensionless (“relative”™) horizontal forces taken from large scale
measurements with random waves [KORTENHAUS et al. (1994)].
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fig. 4.10  Statistical distribution function of dimensionless horizontal forces [KLAMMER et al. (1996)]

The following value of wave impact forces on vertical breakwaters may be used for a
preliminary design according to Oumeraci [KORTENHAUS (1996)]:
Frmex = 8.0% p,, gH,’ (4.36)

This formula has been derived from experiments on a large-scale breakwater model for the
design of a high water protection wall in Hamburg, Germany.

From statistical analysis it has been found that the non exceedance probability of the relative
horizontal force Fm / P *g*H,' in equation 4.36 is about 10 to 15%. The point of application
of the force is close to the height of the Still Water Level (SWL).

4 - 14
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The two wave impact force formula, which have been derived in this chapter, can be compared
with the formula of Schmidt et al. [SCHMIDT et al. (1992)] and the formula which has been
derived by Goda [GODA (1994)], see table 4.4. In section 4.2 the following formula was found
[KLAMMER et al. (1996)] (for reasons of comparison, the formula without the correction factor
k, is used here (see section 4.2)):

e _179*( f, J‘l (4.16)
p.rg*H T \J4,/¢g | |
In this section equation 4.31 was found:
-1
F,
_has =o,3s*[’_d] 4.31)
P.*g*H, T,
The formula of Schmidt et al. [SCHMIDT et al. (1992)] is
F -0.344
ke o4 (f—dj 4.21)
p.*g*H, T,

The formula of Goda [GODA (1994)] is

Fhmax t B
AR = 093%| =~ (4.33)
P, *g*H, NCIE

For reasons of comparison it is assumed that in equation 4.19 and equation 4.33: #, = 0.3%/4,
tq is chosen as 0.1 s. Wave data can among other things be found in table 4.3.

equation 4.16 | equation 4.31 equation 4.33 equation 4.21
(t,=03%,) (t,=03%,)
la= 0.1s F;z,max Fh,max E1,max Fh,max
P.&H,’ PueH,’ pueH,’ p.8H,
Hb =03m
T~T,=355s 36.64 13.49 19.04 423
db =37m
(see table 4.3)
Hb =1.1m
T~T,=355s 39.50 13.49 20.87 423
d[, =43 m
(see table 4.3)
Hb =10m
T~T,=12s 73.78 45.6 45.08 423
dy =15m '
(see chapter 7)

table 4.4 Comparison wave impact force prediction formula

Some of the dimensionless forces which can be found in table 4.4 are much higher than the
maximum value of 15 given by Goda in equation 4.20. This is because of the fact that the input
parameters of the horizontal wave impact force prediction formulae described in equation 4.16,
431, 4.33 and 4.21 are not restricted to any range of values. So, in fact, much higher values are
possible according to these formulae, but in the remainder of this report 15 will be regarded as
the maximum dimensionless wave impact force (F5,max /Pw *g*H,%), because of the fact that this
has proven to be a good approximation according to a lot of hydraulic model tests.

4 - 15
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For the data which is presented in table 4.4 it can be seen that the formula of Klammer et al.
[KLAMMER et al. (1996)] gives the highest horizontal wave impact forces.

If equation 4.16 and 4.31 are compared and it is assumed that £, = 0.3*; than it can be
concluded that equation 4.31 only gives higher values than equation 4.16 if the following
condition is fulfilled:

1570.1% <1 437
g P

For full scale situations under breaking conditions for short waves at vertical wall breakwaters
this is condition is nearly never fulfilled. So it can be concluded that the formula of Klammer et
al. [KLAMMER et al. (1996)] gives higher horizontal wave impact forces than equation 4.31
which has been derived in this chapter.

It should be noted that the rise time of a wave impact is dependent on the angle of the wave
front as can be seen from figure 4.11

V.

vertical
wall

. wave front

Hy

fig. 411  Angle of the wave front

The rise time of the wave impact and the angle of wave front are related by the relation which 1s
reflected in equation 4.29:

*
t, :f— H, *tanc tana oc ﬁ- (4.38)
¢ (d+05*H g

This relation has been used in the horizontal wave impact force prediction formula of Klammer
et al. [KLAMMER et al. (1996)] presented in the previous section and the formula of Goda
[GODA (1994)] which has been given in this section. In the way the rise time is schematised here
Froude scaling seems applicable. When Froude scaling is used time should be scaled from
model scale to full scale by the square root of the length (or a characteristic size), see equation
445,
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4.4 Momentum of a wave impact

In chapter 10 it will be shown that especially the total amount of momentum of a breaking wave
impinging on a vertical breakwater is very important for the overall stability of the vertical
breakwater against sliding, overturning or other modes of failure. As it will be shown in chapter
8, a very high horizontal wave impact peak force will not threaten the overall stability of the
structure as long as the duration of the wave impact is sufficiently short enough. In that case the
total amount of momentum of the breaking wave will be only very small. For smaller horizontal
wave impact peak forces - but longer durations - situations may arise which cause vertical
breakwater failure because of the fact that the total amount of momentum of these breaking
waves (which will be transferred to the vertical breakwater) is too large: the breakwater cannot
withstand such amounts of momentum.

In the previous sections the amount of momentum of a breaking wave has been used to
determine horizontal wave impact force prediction formulae. It has been shown that some of
these horizontal wave impact force prediction formulae represent an upper envelope to random
wave test results of wave impact forces.

Schmidt et al. [SCHMIDT et al. (1992)] have investigated the wave momentum and the force
impulse of wave impacts caused by plunging breakers. Some results of their study has already
been presented in the previous section, among other things in figure 4.8 and in chapter 2.
Schmidt et al. [SCHMIDT et al. (1992)] have determined “dynamic” and “quasi-static”
components I, and I, of the force impulse of wave impacts separately. These are defined n
figure 4.12 where the point (M) of maximum wave run-up is also shown.

7 r
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Force Impulse /,, [kNs/m]

st DK

Wave Momentum M*c  [kNs/m] —

fig. .12 Force impulse definition sketch and force impulse versus wave momentum [ScavmT et al. (1992)]

From the part of figure 4.12 where the definition sketch is given, it can be seen that the dynamic
component of the force impulse /4, is the part which “belongs to” the actual peak force. This
dynamic force impulse I, has been used in the previous sections to determine the horizontal
wave impact force prediction formulae.
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According to Schmidt et al. [SCHMIDT et al. (1992)] the force impulse I, = Zgn + Iy should be
equal to the momentum of the wave with a mass M impinging on a wall with a horizontal
velocity ¢ by assuming conservation of momentum and the solitary wave theory:

M= pw*‘f—l—;—*Hb *d,’ @.5)

c=\g*(d, +H,) (4.6)

in which d is the breaking depth measured from Still Water Level (SWL) and H, the breaker
height. After analysing the results of the large scale tests the solitary wave theory proved to give
the best approximation of the velocity of the breaking wave and the mass of the breaking wave.

The momentum of the wave was calculated using equations 4.5 and 4.6 and compared to the
force impulse 1, in figure 4.12. It can be seen that despite the large scatter, the solitary wave
theory still represents a good mean for the approximate evaluation of the loads of vertical
structures by breaking waves. In average, the wave momentum was slightly larger (7%) than
the force impulse J, (correlation coefficient 0.83).[SCHMIDT et al. (1992)]

In the previous sections some horizontal wave impact force prediction formula have been
derived using the momentum of an incoming (solitary) wave as well. The (dimensionless) forces
which can be predicted by among other things equation 4.16, 4.31 and 4.33 were found to be
(very) conservative compared to (dimensionless) wave impact forces measured in hydraulic
scale model tests. Here, a good agreement is found between the measured force impulse and the
predicted wave momentum while in the previous sections large differences were to be found.
This is because of the fact that the “quasi-static” component Iy, has been neglected i the
previous sections. The total wave momentum, approximated by M’ *c (see equation 4.5 and 4.6)
is set to be equal to I, leading to very high wave impact forces, while it should in fact be set
equal to the total force impulse I, = Iyar + Lim according to the results which are shown in
figure 4.12. The latter approach leads to a mean for the approximate evaluation of the loading
of vertical structures induced by breaking waves, while the approach presented in section 4.2
and 4.3 leads to horizontal wave impact force prediction formulae which represent an upper
envelope to random wave test results of wave impact forces.

In figure 4.13 equation 4.19 is sketched together with the upper bound given by Goda
[GODA (1994)] presented in equation 4.20.

..__ﬂ’.ﬁ‘_‘.a}__—zzll_*[ ! \J_] (4.19)
p.*g*H,’ NENE
Fhmax
— ’*H -=15 (4.20)
pw g b
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fig. 4.13  Prediction formula 4.19 with the maximum dimensionless wave impact force of 15

Figure 4.13 can be used to determine the maximum momentum of wave impacts. The transition
rise time of the two formulae (equation 19 and equation 20) presented in figure 4.13 is given in
equation 4.39;

r,=2'24* 9 = 01403+ % (4.39)
15 g g

AForce Flmax

time

A\ 4

ta

A
v

fig. 4.14  Definition sketch maximum momentum

The maximum momentum of a wave impact can be determined as (see figure 4.14)
Inax =05 %1, * Fax (4.40)

The following formulae of the maximum momentum of a wave impact can be used:

: d
If t, < 224, |4y Toax = 0.5%p, *g*H, 2 ¥15%¢, (4.41)
15 g
t
Ift,>2'—24-* d_b Imax=0.5*pw*g*Hb2 %04 % fi_b_*_é_ (4.42)
15 g g ¢
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In figure 4.15 the maximum momentum of a wave impact is sketched for the following
situations (see also equation 4.23):

e Hy,=10m, d, =15 mand? =0.30%,

e H,=10m, d, =15 mands =0.65%,

5000000 -+~ momentum
4500000 + [Ns/m]

.= 0.65 1y

500000 - total duration (¢;) [s]

—

0 0.1 0.2 03 0.4 05 06 0.7 08

fig. 415 Maximum momentum for H; =10m, dy =15 mand = 0.65%t; and t. = 0.30*1,

The linear branch of the graph presented in figure 4.15 indicates equation 4.41. The constant
branches of the graph indicate equation 4.42 for different rise times. It is obvious that these
branches are constant because equation 4.42 has been derived using the horizontal wave impact
formula of the previous sections which has been derived using the consideration of a constant
amount of momentum. From figure 4.15 it can be seen that the amount of momentum of wave
impacts with the same total duration, but with a shorter rise times (t,= 0.3 t; ) can be much
higher than wave impacts with longer rise times (t,= 0.65 ;). This is logical because the two
investigated wave impacts have got the same total duration and wave impacts with the shortest
rise times give the highest wave impact forces, according to the formulae which have been
derived in the previous chapter.

Figure 4.15 will be used in chapter 10 to indicate the danger of the maximum wave impacts
forces for different (total) durations of these wave impacts.

The same procedure as has been used here to derive the momentum of wave impacts using the
formula of Klammer et al. [KLAMMER et al. (1996)] can be used to derive the momentum of
wave impacts using the formula which takes the peak period T, of the waves into account:

-1
F
_hms 0.38*(—’?—) @31)
Pw *g*Hb T

14

Now, the following formulae of the maximum momentum of a wave impact can be derived,
using equation 4.31 and the maximum dimensionless horizontal wave impact force of 15
(see equation 4.20 and also figure 4.14):

If ¢,< 05;8 * Tp L= 0.5*Pw*g*Hb2 *15%¢, (4.43)
If ¢ 0'38*7’ L..=05%p *og*H,2*038*T (4.44)
d > 15 r max — V- pw g b . ¥4 .

Using 7, = 12 s and H, = 10 m , the maximum momentum becomes (equation 4.44):
L = 2292597 Ns/m; using equation 4.42 with #, = 0.65 t; gives Ine = 2142440 Ns/m (see
figure 4.15. It can be concluded that these two formulae give almost the same results.

4 - 20
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4.5 Brief attention to scaling of wave impacts

In this section attention is paid to scaling of wave impacts from small and large scale hydraulic
model tests to prototype situations.

As gravity forces are predominant in the case of surface water waves which are to be modelled,
the Froude number should be identical in the hydraulic scale model and in nature (prototype
scale). The Froude number is given by:

“ (4.43)

NEA

in which:

u = velocity
g acceleration of gravity
L characteristic dimension of the caisson

From this the scale factor follows for:

o velocity n, = n, (4.44)
s time n; = Jn, 4.45)
* mass Py = ng (4.46)
s pressure np = n “4.47)
mn which:

"= value in nature

;= - (i indicates the parameter which is considered) (4.48)
value in model

Impact forces caused by breaking waves can not always be modelled according to the Froude
number. Compression of the trapped air by the breaking wave and subsequent oscillation of air
bubbles give model scales which deviate from the above mentioned scale law
[DELFT HYDRAULICS (1993)]. Impact loads are potentially influenced by scale and other model
effects, so impact loads converted directly by Froude scaling will over-estimate prototype loads.
Froude scaling does not take account of air entrainment which causes compressibility of the
air / water mixture. Only in the case of pulsating wave forces (quasi-static wave forces) where
the relationships between wave momentum, pressure impulse, and horizontal force are relatively
simple, the assumption of Froude scaling is realistic.

It has long been argued and is well accepted that wave impacts in small scale hydraulic model
tests will be grater in magnitude , but shorter in duration than their equivalents at full scale in
(invariably aerated) sea water. The reduction in the impact force and the associated increase in
impact duration are due to the combined influence of the increase in compressibility of the
air/water mixture and the observed change in the wave profile. It is very probable therefore that
the higher impact forces measured in model tests can be scaled to lower values, but that the
impulse durations must be scaled to longer values._On the other hand, a comparison between
large scale model tests and different small scale hydraulic model tests suggests that Froude
scaling should be used to obtain an upper limit to the impact force to be expected. It may be
noted in passing that the largest forces occur when there is least air entrained or trapped, and
these impacts may therefore actually be less influenced by scale effects on air compression
[ALLSOP et al. (1996)].
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Many of the uncertainties conceming scaling of wave impacts have been studied by various
researchers. Among other things the effect of using salt and fresh water has been tested. It has
been shown by Walkden et al. [WALKDEN et al. (1995a)] that lower impact forces can be
expected from a sea water wave impact than from a similar fresh water wave impact, due to the
differences in bubble characteristics and higher aeration levels in sea water. It can be seen from
hydraulic model tests-that bubbles in sea water are approximately one order of magnitude (a
factor 10) smaller than fresh water bubbles for the same entrainment rate. It has previously
been argued that the addition of only small fractions of air may dramatically change force or
pressure transmission characteristics of the water, thus substantially modifying pressures or
forces that might be experienced by the structure. Numerical modelling studies by Peregrine et
al. [PEREGRINE et al. (1995)] suggest that scale errors due to air effects might be limited to
“about 50%. In his study it has been theoretically shown that even a small volume fraction of air
(as bubbles) in water can significantly lower the sound speed (4% air causes a speed reduction
by 96%), and thus the impact force.

The results of small scale hydraulic model tests - done at HR Wallingford and described in -
[ALLSOP et al. (1996)] - suggest that even small changes of the level of the rubble mound
compared to the Still Water Level (SWL) will change wave impact forces by factors 5 of even
more. This suggests that the influence of small changes to the geometry may be of greater effect
than the uncertainties introduced by scale effects.

It will be shown in chapter 5 - where special attention will be paid to wave impacts with a
trapped air pocket - that the pulsation period of a trapped air pocket which is generally visible in
the force history of plunging breakers must be transferred to prototype by using the Mach-
Cauchy scaling law instead of the Froude scaling law [OUMERACI et al. (1991)].
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5 Special attention to wave impacts with a

trapped air pocket

5.1 Introduction

A general overview of hydraulic loads on vertical breakwaters has been given in chapter 2.
Wave impacts on vertical breakwaters, the subject of this graduation project and a special type
of hydraulic loads, have been treated concisely in that chapter: an overview of different types
of wave impacts has been given. Three types of wave impacts have been defined: wave impacts
of the Wagner type without trapped air, wave impacts of the Bagnold type with large trapped
air pockets (a trapped air pocket between the breaking wave and the plane vertical front wall of
a breakwater caused by breakers of the plunging type) and wave impacts of a transition type.
These three types of wave impacts have been described more extensively in chapter 3 by some
general analytical formulae which can be used to calculate wave impact pressures. In chapter 4
different formulae have been treated which can be used to predict the maximum horizontal
wave impact forces on vertical breakwaters.

In this chapter (see figure 5.1) wave impacts with a large amount of trapped air (a large trapped
air pocket) between the plane vertical front wall of a breakwater and the breaking wave (a wave
impact of the Bagnold type) will be treated elaborately because they can be considered as a
dangerous type of wave impacts. This has been mentioned before in chapter 2 and chapter 3
and will also be shown in this chapter and further on in this report (see chapter 10).

hydraulic loads on vertical breakwaters
1 1
quasi-static loads ] dynamical loads (wave impacts)

Wagner type wave impact| {transition type wave impact | }Bagnold type wave impact
no trapped air {small amount of trapped air | [large amount of trapped air

fig. 5.1  Position of the Bagnold type wave impact

Wave impacts of the Wagner type are not treated in this study because they show more or less
quasi-static behaviour.

Wave impacts of the transition type have got very high peak forces and very short durations.
By means of an analytical study in chapter 7 and a study by means of a computer model
(a mass-(elasto-plastic)spring-dashpot TILLY model) in chapter 8 to 10 the danger of this type
of wave impacts will be indicated.

Wave impacts of the Bagnold type can be more dangerous than wave impacts of the transition
type although their peak forces are lower. The force history of a wave impact of the Bagnold
type has been shown in figure 2.16 previously but is shown here as well in figure 5.2.
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fig. 5.2 Characteristics of a Bagnold type wave impact (a large trapped air pocket) [SCHMIDT et al. (1992)]

The Bagnold type wave impact can be more dangerous because of the large air pocket which is
trapped between the breaking wave and the plane vertical front wall of a vertical breakwater,
although the two peak forces (see figure 5.2) of the Bagnold type wave impact are lower than
the peak force of the transition type wave impact. “Generally, it is believed that the main effect
of air entrapment is to damp the shock pressure, and thus favourably acts on the stability of the
breakwater. If this is true for the damping of the pressure, it is not likely the case for the
dynamic response of the structure” [OUMERACI et al. (1991)]. This large air pocket is the cause
of force oscillations and the cause of two peaks instead of one peak. These two aspects can
both be very important:

e The direct collision of a wave crest onto a plane vertical wall causes the first peak and the
compression of an enclosed air pocket causes the second peak (see also figure 10.22 on page
10 - 22). If the second peak occurs within such a time that it hits the structure while the
structure is moving in the same direction as the direction of the wave impact (i.e. while the
vertical breakwater is moving shoreward) it will have to overcome no or at least only a part
of the inertia of the structure. The cumulative response is expected to be much higher than it
would be if only a single impact occurred or if the second peak was applied at a time when
the structure was moving opposite to the direction of the wave impact. The effect of double
peaked wave impacts will be shown elaborately in chapter 10, section 10.5.

» A large trapped air pocket between a plunging breaker and the plane vertical front wall of a
breakwater will start to oscillate as will be shown in this chapter. The air cushion which is
subject to a highly transient pressure field expands and contracts cyclically. It acts therefore
as an oscillator which starts to cyclically excite the structure just as the peak of the impact
load passes. These excitations can be clearly identified as oscillations following the first
peak in the impact force. In fact the second peak in the force history is the first peak of the
low frequency force oscillations. The most critical situation may occur when the period of
these force oscillations approaches the range of natural periods of the structure, thus leading
to resonant excitations, this can cause breakwater failure as will be shown in chapter 10.
The existence and the origin of these low frequency force oscillations will be treated

extensively in this chapter.
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In this chapter an extensive analysis of this wave impact with a large trapped air pocket caused
by a plunging breaker is treated. Special attention will be paid to the origin and the existence of
the low frequency force oscillations. It will be shown that these low frequency force oscillations
really exist in nature and that they are not a disturbance of the force signal on the front wall of
a vertical breakwater by the eigenmotion of the vertical breakwater itself (see section 5.2).
These force oscillations can be described by analytical formulae. The derivation of a formula
which gives a relationship between the incident wave height and the period of the force
oscillations of a Bagnold type wave impact can be found in section 5.3. This formula confirms
measured values of these force oscillations in hydraulic scale models and full-scale situations.
In section 5.4 some attention will be paid to the scaling of the period of the force oscillations of
Bagnold type wave impacts from hydraulic model scale to full-scale situations.

5.2 Hydraulic scale model tests and wave impacts with a trapped air
pocket

5.2.1 Introduction

In this section the existence of low frequency force oscillations due to a trapped air pocket is
proved using several results of two hydraulic scale model tests. As it has been mentioned
before, these low frequency force oscillations can be very dangerous for the stability of a
vertical breakwater. In chapter 10 it will be proved that these low frequency force oscillations
can result in vertical breakwater failure. The various results of two different hydraulic scale
model tests are described here because it is very dangerous to use only one result of a single
hydraulic scale model test as an evidence for the existence of these low frequency force
oscillations due to large trapped air pockets. In sub-section 2.4.4 in figure 2.15 these low
frequency force oscillations have already been shown. But as has been said before, it is
dangerous to use only the results of these single tests to draw conclusions. Poor measurements
may result in wrong conclusions.

For instance: it can be possible that the wave impact force signal which is measured on a model
of a vertical breakwater by measuring instruments (which are among other things placed on the
front wall of the vertical breakwater) is disturbed by the eigenoscillation of the breakwater
itself. A wave impact on a vertical breakwater will cause an oscillation of this structure. The
structure will still oscillate in its eigenfrequency after the wave impact, which has only got a
very short duration, is disappeared. If the structure is not fixed rigidly one will also measure
this eigenoscillation of the vertical breakwater besides the wave impact itself, because the
measuring instruments are moving in the water together with the structure itself because of the
fact that they are placed on the front wall of the vertical breakwater. The measuring
instruments will translate the eigenoscillation of the vertical breakwater into a force. The force
signal will then show a very high peak and after the peak low frequency force oscillations. This
may lead to the wrong conclusion that a wave impact will not only cause a high peak force but
also low frequency force oscillations which have got the same frequency as the eigenfrequency
of the vertical breakwater.

So one must be sure that the model structure on which one is measuring is fixed rigidly: the
measuring structure must have a very high eigenfrequency compared to the frequency of the
oscillating air pockets to make sure that the low frequency force oscillations which are
measured are the consequence of the wave impact load itself (a wave impact with a large
trapped air pocket which is oscillating) and not the consequence of the eigenoscillation of the
structure. In section 5.2.2 special attention is being paid to these hydraulic scale model tests.
The low frequency force oscillations due to trapped air pockets which are measured are
compared with the eigenfequency of the structure which is exposed to plunging breakers which
are able to cause these wave impacts.




Wave Impacts on Vertical Breakwaters

5.2.2 Hydraulic scale model tests

Hydraulic scale model tests of Hattori et al. [HATTORI et al. (1994)]
“The physics and characteristics of the impact pressure significantly depend on the colliding
conditions of breaking waves. These were studied for the following colliding conditions:
flip-through (an upward deflected breaker), collision of the vertical wave front and plunging
wave collision [HATTORI et al. (1994)].” These colliding conditions have already been
discussed in figure 2.8 on page 2 - 12 and figure 4.4 on page 4 - 6. Hattori et al. have found
as well that when plunging and curling of the breaking wave develop well, a thick air pocket
is trapped and damped force oscillations, due to the air pocket pulsation, appear
immediately after the peak of the impact force. Hattori et al. have carried out experiments
for all kinds of wave impacts. Here only the results are shown concerning wave impacts

with a large trapped air pocket.

The experimental set-up of the scale model tests of Hattori et al. is shown in figure 5.3.
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Fig. 1. Experimental sct-up (units: m).
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fig. 5.3  Experimental set-up [HATTORI et al. (1994)]

The experiments were carried out in a glass walled wave flume, 0.30 m wide, 0.55 m high
and 20 m long in which a steel beach of 1/20 slope was installed. Thus, these tests can be
considered as two dimensional tests. Regular waves were produced by a reflection-
absorbing wave generator. A vertical plane wall of a 35 mm thick plastic plate (0.30 m wide
and 0.50 m high) was firmly shored up with steel frames. The wall complex, having an
eigenfrequency of 1.2 kHz in water, was mounted rigidly on a plastic mound with a
foreshore slope of 1:10, modelling the rubble mound of composite type breakwaters (see
figure 5.3). The impact pressures were measured by semi-conductor type transducers 10
mm in diameter. Their natural frequency in water and frequency range of flat high cutoff are
9,6 kHz and DC to 4.8 kHz, respectively.
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As it is shown in figure 5.4, four pressure transducers were located vertically along the
centreline of the wall at an interval of 2.0 cm. The maximum pressures occur most likely in
the vicinity of the still water level as has been shown by Takahashi et al. [TAKAHASHI et al.
(1993)]. Two additional transducers were set at 1.0 cm below and above the still water level
and 5.0 cm apart from the centreline. Pressure records will be presented in a normalised
form:
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fig. 5.4  Armrangement of pressure transducers (units: ¢cm) [HATTOR! et al. (1994)]

Hattori et al. have specified wave impacts in different categories. The characteristics of the
impact pressures caused by a plunging breaker which causes a large pocket of trapped air
(relative to the waterdepth; i.e. the scale of the hydraulic model tests) are shown in figure
5.5. High speed motion pictures of this type of wave impact are shown in figure 5.6. The
letters in figure 5.5 correspond to the letters which belong to the high speed motion pictures
in figure 5.6.

At the instant of the impact, a large amount of air is entrapped between the wave and the
wall. The goveming tip of the plunging breaker is in free fall (figures 5.6 a - d) and collides
with the wall in the vicinity of transducer P4 (figure 5.6 e). A large 1.1 cm thick air pocket -
(relative to the waterdepth and wave height, of course) is clearly trapped and it breaks up
mnto air bubbles (figures 5.6 f-g). The air pocket disintegrates into a group of bubbles,
which are compressed and stretched as a whole with the wave run-up (figures 5.6 h - 1). The
pressure records between the limits of the locations of the thick air pocket (P1 to P4 in
figure 5.5) display regular pressure oscillations with decreasing amplitude, having a
frequency of 210 Hz. '

The eigenfrequency of the wall complex is 1.2 kHz in water, this is almost five times higher
than the measured frequency of the force oscillations due to the oscillating air pocket. The
conclusion can be drawn that in this test with a fully developed plunging breaker, the
pressure signal has not been disturbed by the eigenmotion of the vertical breakwater.
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The frequency of the pressure oscillations is low compared to the frequency of the pressure
oscillations which has been found in the same hydraulic scale model tests for other kinds of
wave impacts. For an impact with a small amount of trapped air (D = 0.4 ¢m, see figure
5.5) a frequency of 625 Hz was found. For a vertical wave front in fact a wave impact of
the transition type, with almost no entrapped air (D = 0.0 cm) a frequency of 1100 Hz was
found for the force oscillations, see figure 5.7.
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fig. 5.5  Dimensionless wave pressure records from collision of a fully developed plunging breaker
[Hatrorr et al. (1994)]

In the study of Hattori et al. it has been found that with the development of plunging and
curling incident waves, a large amount of air in the form of an air pocket is trapped and
damped pressure oscillations start immediately after the impact. The larger the amount of
entrapped air, the lower the peak pressure maxima and the longer the rising time of the
impact. Subtle variations in the primary wave cause variations in the shape of the air
pocket, resulting in high variability in the pressure characteristics.
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(b) &9

(c) (9)

(d) )

fig. 5.6  High speed motion pictures of the collision of a fully developed plunging breaker
[HaTToRI et al. (1994)]
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(k) (o)

(p)

fig. 5.6  High speed motion pictures of the collision of a fully developed plunging breaker
[HatTORI €t al. (1994)]
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fig. 5.7  Comparison of pressures and frequencies for different types of wave impacts measured by transducer P4
[HatToRI €t al. (1994)]

Hydraulic scale model tests of Delft Hydraulics [DELFT HYDRAULICS (1993)]
In the report of Delft Hydraulics [DELFT HYDRAULICS (1993)] the results of model
investigations which have been performed to measure the distribution of wave impacts at the
‘front face of a caisson breakwater are described. This breakwater which consists of concrete
caissons is the extended breakwater of the existing rubble mound breakwater of the harbour
of Civitavecchia (Italy).

The tests were performed in a flume in De Voorst Laboratory (the Netherlands). The length
of this flume is about 50 m, the width is 1 m and the height is 1.2 m. The front side of the
tested caisson was constructed of a 10 mm thick steel plate. The rear side was strengthened
by steel diaphragms to ensure a rigid model construction. The caisson was founded on a
rigid steel base, the berm in front of the caisson was constructed of concrete (see figure 5.8).
The following scale has been used: 1 m in the hydraulic scale model is the full-scale
situation 38 m. Waves have been used in the hydraulic scale model with a height in the
order of magnitude of H =0.20 m
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fig. 5.8 Test set - up for wave impact study [DELFT HYDRAULICS (1993)]
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“The caisson was constructed of steel to obtain a model with a great stiffness. Natural
frequencies were measured with water in the flume. Frequencies of 1250, 2000 and 5000
Hz were measured. Although the lowest frequency of 1250 Hz is in the range of impact
frequencies, the stiffness of the caisson is much larger than the stiffness of air and water
muxture and therefore pressure variations by the natural frequency will be negligible [DELFT

HYDRAULICS (1993)].

In figure 5.9 different wave impacts which have been measured are sketched.
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The location of the different impact types is sketched in figure 5.10
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fig. 5.10 Location of impact types [DELFT HYDRAULICS (1993)]

The following results have been found in the hydraulic scale model tests of Delft Hydraulics
[DELFT HYDRAULICS (1993)] conceming the oscillation of air pockets:

* the range of frequencies of air pocket oscillation: 33 < f < 8 Hz
s the range of air bubble oscillations: 200 < f < 2000 Hz

Again it can be seen that the frequencies of the air pocket oscillation due to a wave impact
which encloses this large air pocket are different from the eigenfrequencies of the structure
on which the wave impacts have been measured. Thus, the conclusion can be drawn that for
this test of the collision of a fully developed plunging breaker the pressure 51gna1 has not
been disturbed by the eigenmotion of the vertical breakwater.

Conclusion:
It can be concluded that the air pocket oscillation is a phenomenon purely caused by a wave
impact load itself, the wave impact pressure signal has not been disturbed by the eigenmotion

of the vertical breakwater.
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5.3 Formulae for the pulsation of an air pocket

In the previous chapter it has been shown that the low frequency force oscillations, caused by a
large air pocket which is enclosed between a breaking wave and a vertical front wall of a
breakwater, is a phenomenon purely caused by the wave impact load itself. The low frequency
force oscillations are not caused by the eigenmotion of a vertical breakwater, on which is
measured in a model, which disturbs the force signal. The low frequency force oscillations can,
by accident, have a frequency which is in the range of the eigenfrequencies of a vertical
breakwater .

Bagnold [BAGNOLD (1939)] and many others, such as Ramkema [RAMKEMA (1978)], have
used air trapped by a piston as a model (see chapter 3) to determine the force oscillations which
occur after the second force peak caused by a plunging wave with a large air pocket. Bagnold
[BAGNOLD (1939)] has found the following relationship for the period of an oscillating air
pocket which can be caused by a breaking wave of the plunging type:

7 =2n |2PL (3.34)
YPo

Takahashi et al. [TAKAHASHI et al. (1993)] have found approximately the same result:

2.2 2
T=2n /w (.41)
4yp,

Both results show that the period of the oscillations of an enclosed air pocket is proportional to
the wave height or a “length”: ¥/ DL . A definition of the different symbols can be found in the
list of symbols.

The derivation of a relationship between the wave height and the period of the force oscillations
will be given here. This derivation has been presented earlier by Oumeraci et al.
[OUMERACI et al. (1991)]. This derivation can be denoted as the Lumped-Mass approach.

Lumped-Mass approach [OUMERACI et al. (1991)]

“Force and pressure histories and the simultaneously recorded video pictures show that a
correlation is apparent between the size of the pulsating air pocket, the incident wave height and
the period of pulsations. In spite of the stochastic nature of the phenomena involved a semi-
empirical relationship between the resonant period of pulsations and the incident wave height
may be derived, based on the test results and the basic knowledge in gas bubbles dynamics, as
well as in the thermodynamics and acoustics. (...) only very approximate solutions can be
obtained, since linear pulsations are assumed for the development of the equation of motion.
Even with these shortcomings, the proposed relationship will allow us to evaluate the
importance of the phenomena involved(...). For reasons of simplification the air pocket will first
be assumed as a sphere pulsating in infinite incompressible water. [OUMERACI et al. (1991)].
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The spherical air pocket (figure 5.11) is assumed as a linear oscillating system, a mass-spring-
dashpot model.

SPHERICAL AIR POCKET EQUIVALENT OSCILLATING
IN INFINITE WATER SYSTEM
(MASS-SPRING-DASHPOT MODEL)

V09PD r
>—>- >

Vo), p®)
0

fig. 5.11  Pulsating air pocket and equivalent oscillating system [OUMERACI et al. (1991)]

The linear second-order equation of free motion is formulated in terms of the air volume ¥{(#)
oscillating around an equilibrium volume of V5 :

dv dv

CMET+CJ "‘c‘lt—"f-CkV:O [Pa=N/m2] (53)
in which :

C, = inertial coefficient [Ns%m’ ]

C, =  damping coefficient [Ns/m’]

C = stiffness coefficient [N/m’]

Neglecting the dissipating effect during the first oscillation cycle the resonant period 7, can be
obtained:

{Cm

Nota bene:
The period of the oscillating trapped air pocket will increase due to the effect of

damping as can be seen in equation 5.5:

(U P S (5.5)
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The generalised mass or inertial coefficient C,, represents in this case the pressure dp required
to give the water a volume acceleration:

. d

V= 5.6
i (5.6)
dp

m= 5.7

Substituting the following relationships [LAMB (1932)] in equation 5.7

pP=pud (5.8
vV
- 5.9
4nR,
gives
P
C, =" 5.10
" 4nR, ©-10)
in which:
¢ = velocity potential of a water particle at distance Ry
P = mass density of water
Vv = dV/dt = velocity of volume change of the air pocket

The stiffness coefficient C; can be defined as the change of pressure dp inside the air pocket
associated with its volume change dV-

dp
C. = 511
T (5.11)

In thermodynamics generally is made use of the Poisson equation in the following form:

V Y
p=po(—1}) (5.12)

Differentiation of this equation leads to the following result (assumed is that the pressure
variations are small, compared to the initial pressure, see chapter 3, equation 3.7):

dp _ y(ﬂ’_j (5.13)
dv V,
in which:
V,p = instantaneous volume and air pressure, respectively
Vo, Do = equilibrium values of ¥ and p, respectively
y = constant of Poisson (isothermal compression (no temperature change during the

compression): y = 1.000; adiabatic compression (no heat exchange with the
vicinity during the compression): y = 1.405)
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The trapped air pocket at its equilibrium state can be assumed to have a volume ¥} which is
equal to a volume of a sphere with a radius Ry

Vo = 3*n*Ry® (5.14)

This assumption will not significantly affect the final result, since the natural frequency of
oscillations is only slightly dependent on the shape of the trapped air [PEREGRINE (1994)].

Combining equations 5.11, 5.13 and 5.14 gives:

3
C, = .&; (5.15)
4nR,

So, finally the period of the oscillations of the air pocket can be found (substituting the
equations 5.10 and 5.15 in equation 5.4):

(5.16)

This equation shows good agreement with the equation of Bagnold (equation 3.34) and
Takahashi (equation 3.41) which have been given in chapter 3.

Oumeraci et al. [OUMERACI et al. (1991)] show by an energy approach of the problem of the
oscillating trapped air that the pulsation process of the air pocket is adiabatic, this means that
y = 1.4. This result is not surprising due to the relatively large volume of the trapped air. In
previous studies is also experimentally shown that the process is clearly adiabatic when the
initial volume ( ¥, ) is greater than 4 cm’.

Using equation 5.16, equation 5.17 can be derived when v = 1.4, po= pum = 1.01325%10° N/m’
and p,, = 1025 kg/m’:

To=0.3084*R, $.17)
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Equation 5.17 (T, = 0.3084*R;) is obtained by assuming the air pocket oscillating in infinite
water. However, due to the presence of the solid boundary (front wall of the vertical
breakwater) the resonant period is expected to increase. Based on the geometric considerations
in figure 5.12 and following Blue (1966), Oumeraci et al. [OUMERACI et al. (1991)] have
obtained a relationship between the increase of the period of the oscillations of the trapped air
pocket and the relative distance form the wall expressed by the angle o which is described in
equation 5.18:

fig. 5.12  Pulsating air pocket in the presence of a solid boundary [OUMERACI et al. (1991)]

Ty, = Ty 41+ cos(a) (5.18)

in which:
Tow = period of the oscillations of an air pocket near a vertical solid boundary
T, = period of the oscillations of an air pocket in infinite water

According to equation 5.18 and assuming that the spherical air pocket is at its equilibrium stage
when the angle of contact is o = 60° equation 5.17 becomes:

T, = T,/1+ cos(a) = 0.3084*Ry* y/1+ cos(60) = 0.378*R, 5.19)

According to a number of observations of trapped air pockets by plunging breakers during
model tests (video) and prototype (photographs) the following approximate relationship
between the equivalent radius R, and the incident wave height H may be assumed:

Ry=02*H (5.20)

Finally, the relationship between the period of pulsations 7o, (in seconds) and the incident
wave height H (in cm) is obtained:

Tow=0.75%10"* H (521
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Prototype measurements of force oscillations and experimental results from small and large-
scale tests are plotted in figure 5.13, showing a relatively good agreement with equation 5.21
[OUMERACI et al. (1991)].

10 -1

E '
I - “10°H L

o T = (3/4)*10"H ey
£
8 Prototype A] De Rouville et al. (1938)
E " Large scale m.| @
S 10 -2 Small- m| Witte (1988)
-8 §-~ scale ®| Mitsu Yasu (1966)
2 - model 4 Rundgren (1958)
3]
~

10 3

100 101 10 2 103 104
Wave Height H [cm]

fig. 5.13  Pulsation period of air pocket versus incident wave height [OUMERACI et al. (1991)]
The meaning of the result shown in figure 5.13 may be formulated as follows:

» If a plunging breaker is impinging on a vertical caisson front in such a way that a large air
pocket is trapped, the latter will perform volume oscillations with a period which is directly
proportional to the incident wave height.

* Prototype scale values for wave heights are 1 - 10 m. This leads to periods of the force
oscillations in the range of 0.075 - 0.75. Muraki [MURAKI (1966)] found that the damped
natural frequency of typical caisson or vertical breakwaters on sand and gravel is in the
range of 0.3 to 0.6 seconds (see also chapter 7).! The period of the low frequency force
oscillations is in the range of the eigenperiods of the structure. Dynamic amplification of the
displacement of a vertical breakwater may occur due to these resonant or quasi-resonant
force oscillations. In chapter 10 it will be shown that if a plunging breaker hits the vertical
breakwater and a large air pocket is entrapped, the breakwater can fail. This situation is not
likely to occur very often, a very special situation (dependent on the geometry of the
structure and the foreshore and the characteristics of the waves) is necessary to cause this
kind of load, but it can occur! One should regard this load as an important load which may
lead to breakwater failure.

! Lamberti et al. [LAMBERTI et al, (1996)] have reanalysed the prototype measurements of Muraki et
al. [MURAKI et al. (1966)] with modern methods and found a different conclusion than the author
himself. For one of the tested caissons Muraki et al. found a period of oscillation of 0.2 s while
Lamberti et al. found larger periods. Two dominant periods have been found, one which is slightly
smaller (0.7 s) and one which is slightly larger than (1.3 s) than 1 s.

5 - 17
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Oumeraci et al. [OUMERACI et al. (1991)] do also give an evaluation of the amount of energy
which is transferred from an approaching wave to an enclosed air pocket. The available
incident wave energy E,, will be transferred through a half-cylindrical water-air boundary to
the air pocket (see figure 5.14). This transferred energy E,,p will be presented within the air
cushion as internal energy during the ﬁrst compression; i.e. when the air volume reaches its

minimum value.

halt-cylindrical

Sty air pocket
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fig. 5.14  Entrapped air pocket as a wave energy reservoir [OUMERACT et al. (1991)]

The ratio of the transferred energy E,, to the available incident wave energy E., (Eq /E, ) is
plotted in figure 5.15 versus the dimensionless maximum pressure pms/po inside the air pocket
for different wave lengths L = 10 m (small hydraulic scale model), L = 20 - 40 m (large
hydraulic scale model) and L = 100 - 200 m (full-scale) (po is the initial pressure or the
equilibrium pressure in the air pocket).
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fig. 5,15 Wave energy accumulated by the entrapped air pocket [OUMERACT et al. (1991)]

From figure 5.15 it can be seen that:
e the accumulated wave energy rate increases with the maximum pressure inside the air

pocket
e the smaller the model scale, i.e. the smaller the air pocket, the larger the portion of the

available wave energy that is accumulated by the air pocket
o for full-scale situations the wave energy accumulated by the entrapped air pocket is
approximately 20 to 25%.
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5.4 Brief attention to scaling of wave impacts with a trapped air pocket

As has been shown before in section 4.5 the scale factor for the time according to Froude’s law
is (see equation 4.45)

no = \n, | (4.45)

However, the period of the pulsation of an air pocket which is enclosed when a plunging
breaker hits a plane vertical front wall of a breakwater in a hydraulic scale model must be
transferred to full-scale situations by multiplying the hydraulic scale model value by the length

scale n; instead of (/n, , i.e. according to Mach-Cauchy’s scaling law instead of Froude’s

law. “This result can also be found by applying a dimensional analysis to the wall motion and
the pressure field of the air pocket” [OUMERACI et al. (1991)].

It is obvious to see from the presented formulae in the previous section that the period of the

oscillations of an air pocket is proportional to a “length scale” e.g. the wave height A or VDL .
The three equations which have been treated in this chapter and which can be used to calculate
the period of an oscillating air pocket which is enclosed by a breaking wave of the plunging
type are reflected here again:

[BAGNOLD (1939)]:
7= 2m | 2PL (3.34)
YPo ’

[TAKAHASHI et al. (1993)]:

2.2 2 l
T =2m [P KT (3.41)
4yp, :

[OUMERACI et al. (1991)]:

Ty, =0.75%107 * H " (5.21)

The formula presented in equation 5.21 will be used to calculate the period of the low frequency
force oscillation (caused by a large trapped air pocket) in this study.
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6 Vertical breakwater design formula and wave
impacts

6.1 Introduction

In this chapter the most widely used prediction method for wave forces on vertical breakwaters
will be treated. This method is known as Goda’s method [GODA (1985)]. This method was
primarily developed to calculate the horizontal forces for concrete caissons on rubble mound
foundations, and was calibrated against laboratory tests and back-analysis of historic failures. It
assumes that wave pressures on the wall can be represented by a trapezoidal distribution, see
figure 6.1, with the highest value at Still Water Level (SWL), regardless of whether waves are
breaking or non-breaking [ALLSOP et al. (1996)]. In section 6.2 this method will be treated more

extensively.

Goda’s method does not consider frequent wave breaking close to and at a vertical breakwater.
Therefore, Takahashi et al. [TAKAHASHI et al. (1993)], [TAKAHASHI et al. (1994)] have
developed a modification to the Goda method, often termed the “Takahashi extension”. This
extension will be treated in section 6.3.

The pressures which can be calculated by means of the presented design method in this chapter
can be used to calculate wave (impact) forces on a vertical breakwater. These forces can be
used in a (quasi-)static stability analysis. In this study, however, a dynamical (stability)
analysis will be used to calculate the effect of wave impact forces on the stability of a vertical
breakwater. This analysis will be carried out in chapter 7 to 10 by means of the calculation of
the dynamical behaviour of a vertical breakwater which is exposed to wave impacts. For a
dynamical (stability) analysis the development in time of wave impact forces has to be known.
The forces or pressures which can be calculated by means of the presented method(s) in this
chapter do not give the development in time of the wave (impact) forces and are therefore of
limited use for this study.

6.2 The Goda formula

Wave pressure formulae have been developed by Goda [GODA (1985)] for the case of a
conventional vertical front where wave breaking on the wall is not enhanced by a steep seabed
or structural configurations. The method was primarily developed to calculate the horizontal
force for concrete caissons on rubble mound foundations. The formulae are based on model test
in head-on waves but were modified to cover oblique waves as well. The formulae include the
effect of breaking waves to the extent of normal accidental (non-provoked) wave breaking. The
formulae are currently used in the Japanese as well as in the European standards. The Goda
formula is the most widely used prediction method for wave forces on vertical walls.

The Goda method is based on non linear wave theory and assumes that wave pressures on the
wall can be represented by a trapezoidal distribution, with the highest value at Still Water Level
(SWL), regardless of whether waves are breaking or non-breaking (see figure 6.1). It is
assumed, for the sake of simplicity, that wave overtopping does not have an influence on this
distribution.
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Goda’s method represents wave pressure characteristics by considering two components, the
breaking wave (impacts) and the deflected wave (slowly varying or pulsating pressures),
represented in the method by coefficients o, o, and oz [ALLSOP et al. (1996)]. According to
Goda these coefficients have got the following meaning:

s Coefficient o, accounts for the influence of the wave period: the influence of the relative
depth to the wave length on the slowly varying component.

¢ Coefficient o, accounts for the tendency of the pressure to increase with the height of the
rubble-mound foundation. It accounts for the effect of impulsive wave breaking due to the
relative level of the mound.

e Coefficient oy is the result of an interpolation between o; and a, and accounts for the
relative crest level of the caisson and the relative water depth over the toe mound.

The results of the Goda formula are presented by means of pressures on the vertical front wall
of a vertical breakwater and pressures and undemeath a vertical breakwater (uplift pressures).
These results can be used to calculate the forces on the caisson breakwater which can, in their
way, be used to calculate the stability of a vertical breakwater for instance against shiding and /
or overturning,.

In the Goda formula: “the highest wave in the design sea state is to be employed. The adoption
of this H. in the pressure formulae was first proposed by Ito. It is based on the principle that a
breakwater should be designed to be safe against the single wave with the largest pressure
among storm waves” [GODA (1985)].
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fig. 6.1  Wave pressure distribution by Goda’s formulae [Gopa (1985)]

In figure 6.1 four parameters regarding the geometry (lay-out) of a breakwater are denoted. R,
is the crest freeboard, the level of the crest less the static water level, A, is the water depth-in
front of the vertical breakwater, d is the water depth over the berm at the vertical front wall of
the breakwater and /4’ is the distance from the design water level to the bottom of the upright
section (the upright section is the actual vertical breakwater; in fact, figure 6.1 denotes a
vertical composite breakwater, consisting of an upright section and a rubble mound berm, see
figure 7.4).
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The wave pressures (and forces) on the upright section can be calculated using the following
equations:

N =075%(1+cosP) ¥\, *H,. ©.1)
P = 05*(1+cosB)(A o, + A, 0, cos’ B)*p, *g* H 6.2)
- P (63)

Pz 2n
cosh(— * h)
L

ps = os¥p 6.4)
Pu = 0.5%(1+cosP)As *ou*as*p,* g* Himex 6.5)
in which:

B = angle of incidence of waves (angle between the wave crests and the normal of
the front of the structure)

Hpx = the design wave height defined as the highest wave in the design sea state at a
location just in front of the breakwater. If seaward of a surf zone a value of 1.8
H, might be used corresponding to the 0.1% exceedence value for Rayleigh
distributed wave heights. This corresponds to Hy2s0 (mean of the heights of the
waves included in 1/250 of the total number of waves, counted in descending
order of height form the highest wave). If within a surfzone Hp. is taken as the
highest of the random breaking waves at a distance 5*H, seaward of the
structure [BURCHARTH et al. (1994)] [PIANC (1996)]. “The Goda formula
might, according to van der Meer et al. (1992), be regarded as a good central
approximation for the maximum wave force in a sea state with a duration of
approximately 2500 waves” [BURCHARTH et al. (1994)].

L = wave length corresponding to that of the significant wave 7, = 1.1*¥7,, , where
T, is the average period
* 2
@ = 06+05% TR/ L (6.6)
sinh[(4n*h )/ L]
h-d(H,\ *
o, =  thesmallestof -2 (——“ﬁ) or 2%d 6.7)
3*%h, d H,_.
o3 = 1—-@—* 1- ! (6.8)
h, cosh[2rn*h )/ L]
h, = water depth at the location at a distance of 5*H, seaward of the breakwater
front wall )

A1, Az,As = modification factors dependent on the structural type; 1 for the condition of
both standing and non-provoked breaking waves on a vertical wall

Although the wave induced uplift pressure, p, (equation 6.5), at the front edge of the base plate
is equal to ps it is suggested by Goda to use the somewhat reduced value given by equation 6.5.
This is because analyses of the behaviour of Japanese breakwaters revealed that the use of
Pu=p; together with an assumed triangular distribution of the uplift pressure gave too
conservative results [PIANC (1996)].
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“The caissons on rubble mound foundations considered by Goda (1974) had natural periods
around 0.1 to 0.3 s. When subjected to loads of durations shorter than the most dominant
eigenperiod of the oscillation of a vertical breakwater, the effective load will itself be smaller
than the applied load. Thus for the very short peak pressures caused by breaking waves, the
Goda formula does not give the actual peak pressure, but pressures which give the equivalent
static load for the dynamic system of caisson, mound and foundation. This method was not
intended to predict pressures of short duration, or of limited restricted spatial extent. Goda
(1974) noted that impulsive pressures caused by waves which break in front of or onto the wall
may rise to

10*p, *g*H, (6.9)

but judged that vertical breakwaters would not be designed to be exposed to direct impulsive
pressures” [ALLSOP et al (1996)].

Goda considers wave impacts not to be that important for the stability of vertical (composite)
breakwaters. “It is found in laboratory experiments that the front face of an impinging breaking
wave is always curved and a small amount of air is entrapped at the instant of collision. As
suggested by Bagnold [BAGNOLD (1939)] and by Takahashi and Tanimoto (1983), the
entrapped air acts to dampen the impulsive pressure and prevents it from becoming abnormally
high. Furthermore, the rubble mound foundation and the ground around a prototype breakwater
will be elastically deformed under the application of an impulsive breaking wave pressure, and
this softens the wave impact on the upright section” [GODA (1985)]. In Goda’s opinion impact
forces are not important for the design of vertical breakwaters. “It would be rather foolish to
design a vertical breakwater to be directly exposed to impulsive breaking wave pressures. A
rubble mound breakwater would be the natural choice in such a situation. If space is limited, or
if little wave transmission is to be allowed, a vertical breakwater protected by a mound of
concrete blocks of the energy-dissipating type might be an altemative design. From the
engineering point of view, it is not the magnitude of the greatest pressure but, rather the
occurrence of the impulsive breaking wave pressure that is the most important” [GODA (1985)].

“Various researchers have found uncertainties with the Goda’s method, and some have
identified differences with measurements of forces / pressures. (...) Despite these limitations, the
methods developed by Goda (1975), Goda [GODA (1985)] and others constitute the best
methods available, and include many points of good advice” [ALLSOP et al. (1996)].

6.3 Extended Goda formula by Takahashi et al.

Goda’s formula does not consider frequent wave breaking close to and at a vertical breakwater.
Therefore, Takahashi et al. [TAKAHASHI et al. (1993)], [TAKAHASHI et al. (1994)] have
developed a modification to the Goda method, often termed the “Takahashi extension”. This
modification has been developed to estimate equivalent wave forces under breaking wave
impacts and was obtained by re-analysing the results of comprehensive model tests of caissons
sliding under wave impacts, together with analysis of the breakwater movements at Sakata Port,
Japan 1973-1974. The modification is applied to the Goda method by changing the formulation
for the o, coefficient of the Goda formula. Takahashi introduces a new coefficient a* which 1s
the maximum of o, or a new impulsive coefficient ay, itself given by two coefficients
representing the effect of the wave height on the mound, and the shape of the mound (see figure
6.2). This modification only operates where the water depth over the toe mound is relatively
small, and the mound is therefore likely to generate wave breaking onto the wall. Takahashi’s
method does not change the uplift pressures calculated by Goda’s method.
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fig. 6.2  Transition of wave pressure [TAKAHASHI (1995)]

According to Takahashi et al. [TAKAHASHI et al. (1993)] the pressure p, at the water surface in
the Goda pressure formula can be expressed as (see also equation 6.2)

pr = 05* (1+cosB)(M,@, + 2,0 cos” B) *p, * g * Hpy, (6.10)

where a* represents the coefficients of impulsive pressure and o is the pressure coefficient for
the slowly varying pressure. The coefficient o* is expressed by:

a* =the largest of o, and oy (6.11)

In figure 6.3 a calculation diagram for the impulsive pressure coefficient oy is presented. This
diagram has been obtained from sliding tests [TAKAHASHI et al. (1993)].

o} 0.t 02 03 0.4
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fig. 6.3  Calculation diagram of the impulsive pressure coefficient [TAKAHASHI et al. (1993)]
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The coefficient a; is expressed by the product of oo and o
-0y = Qp*otn 6.12)
where o represents the effect of wave height on the mound, i.e.,
oo = Humax /1.8%d : Hua/1.8%d < 2 (6.13)
op=2.0 . Huax/1.8%d > 2
and oy, represents the shape of the rubble mound:

cosd,

anp = 6, €0 6.14
1 cosh 3, 2 (6.14)
1
oy = 5, >0
! coshd, * Jcoshd, :
61 = 20*811 611 < 0 (615)
51 = 15*611 X 511 >0
B —
831 =0.93 (—b - 0.12) + 0.36(11“ d - O.6j (6.16)
L h,
52 = 4.9*622 . 622 <0 (617)
62 - 3*522 . 522 >0
B h —
8, =-0.36 (Tb - 0.12) + 0.93( Sh a_ o.ej (6.18)

s

L is defined as for the Goda formula and B, is the width of the rubble berm at the toe of the
wall of a vertical breakwater.

The value of a; reaches a maximum of 2 when B, /L = 0.12, d/h; = 0.4 and Hpe / 1.8d 22.
When the term d/h, >0.7, then impulsive pressures rarely occur and a; is close to zero (as can
be seen in figure 6.3) and smaller than o,. It should be noted that impulsive pressures are
significantly reduced when the angle of incidence B increases.

In using Goda’s or Takahashi’s methods, it is assumed that wave pressures are distributed
approximately trapezoidally over the height of the caisson, with the maximum at the water level.
Impact conditions considered by Takahashi et al. [TAKAHASHI et al. (1993)] are assumed not to
alter the shape of the pressure distribution, so gradients are relatively mild.

For vertical (composite) breakwaters with high rubble mounds 0.6 <4, / h; < 0.9 (see figure
2.7) Allsop et al. [ALLSOP et al. (1996)] suggest that: “An extremely crude, and safe approach
for wave forces in this region is to use the Takahashi prediction, described in this section,
multiplied by 2. This gives a generally safe result for the combinations of conditions tested here
(see [ALLSOP et al. (1996)], but has little other merit except its relative simplicity.”
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Derivation of models which describe the
dynamical behaviour of a vertical breakwater

Civitavecchia (Italy), inspection tower of a cooling-water intake
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7 Derivation of an analytical mass-spring model
of a vertical breakwater

7.1 Introduction

In this chapter the derivation of a simple mass-spring model of a vertical breakwater will be
treated. This model will be used to calculate the dynamical behaviour of a vertical breakwater
which is exposed to a transition type wave impact. This calculation is also treated in this
chapter. The transition type wave impact has been treated before in section 2.4.3. A transition
type wave impact on a vertical breakwater is caused by a breaking wave with an almost vertical
front, so there is almost no trapped air. Because of this almost vertical front the rise time and
total duration of a transition type wave impact is very short and the peak force is very high.

The dynamical behaviour of a vertical breakwater can be calculated by the use of a mass-spring
model. If the dynamical behaviour of a vertical breakwater is known, the displacement of
different points on the vertical breakwater is known and the forces in the foundation of the
vertical breakwater are known as well. The masses which are used in this mass-spring model
describe the mass and the mass moment of inertia of the vertical breakwater. The springs which
are used in this mass-spring model describe the behaviour of the foundation of the vertical
breakwater and they are linear-elastic. The mass-spring model which will be treated in this
chapter has three degrees of freedom and damping and elasto-plastic behaviour of the
foundation are neglected. Because of the fact that linear-elastic springs are used and that there
is taken no account of damping a rather simple analytical solution of this problem is possible.

In the next chapter the derivation of a more sophisticated model will be treated. In that chapter a
description is given of the derivation of a mass-spring-dashpot computer model with elasto-
plastic springs and damping which describes the behaviour of the foundation of a vertical
breakwater more accurately. Results of this more sophisticated model will be calculated by the
use of TILLY, which is a computer programme. It is very usefull to find an analytical solution
of the dynamical behaviour of a vertical breakwater which 1s exposed to a wave impact of the
transition type in advance because it can give some insight in the problems involved when a
mass-spring-dashpot model is derived by using a computer programme. The analytical solution
can also serve as a check of the solution of the dynamical behaviour of the vertical breakwater
which is generated by the computer model.
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In section 7.2 the derivation of a mass-spring model which describes the dynamical behaviour of
a vertical breakwater will be treated. The derivation of this model will be carried out for a
general case. The result of this derivation is written in parameters which can be chosen
conformance with the situation one would like to calculate. In this chapter (and in the remainder
of this report) all calculations will be carried out for a situation along the Dutch coast, so the
parameters are also chosen in conformance with the situation at this location. In this chapter
and in the next chapter the chosen parameters will not be varied. The effect of the variation of
different parameters of the models - which are described in chapter 7 and 8 - will be treated in
chapter 9. In that chapter the masses and mass moment of inertia are varied (e.g. by changing
the design of the vertical breakwater: if the width and the length of a vertical breakwater of the
caisson type are constant, a vertical breakwater on a low rubble mound will weight more than a
vertical breakwater on a high rubble mound in the same waterdepth) and the stiffhess, strength
and damping of the foundation are varied in order to give an idea of the importance of the
magnitude of the different parameters. The wave impact load and water depth will not be varied
in chapter 9. Calculations with different loads will be carried out in chapter 10. In chapter 10 an
analysis of different types of wave impact loads on a vertical breakwater will be treated. In that
chapter the structure and foundation parameters will not be varied, but the load on the vertical
will.

To determine the magnitude of the parameters which are necessary for the calculations with the
model - which will be derived for a general case in section 7.2 - a lay-out of a vertical
breakwater is chosen which applies to the situation at the planned land reclamation of the port
of Rotterdam: “Maasvlakte 2”. The water depth, the wave impact load, the structure size and
masses and the characteristics of the foundation are chosen in conformance with the situation at
that location.

The masses, size and shape of the vertical breakwater, and the characteristics of the foundation
of the vertical breakwater at the chosen location are given in section 7.3. In section 7.4 the
eigenvalues of the chosen vertical breakwater are calculated. In section 7.5 the dynamical
behaviour of the vertical breakwater, exposed to a wave impact of the transition type (here only
the triangular part of the “church-roof” load) is calculated. The stability of the vertical
breakwater which is exposed to a transition type wave impact will be discussed in section 7.6.
Comments on the calculations carried out in this chapter can be found in section 7.7.
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7.2 Derivation of an analytical mass-spring model

In figure 7.1 an overview of the different parameters which are used for the determination of the
mass-spring model is given ( F; (=F(f)) and F; (=Fy(Y)) are extemal forces, T’ (= T(f)) is an
external moment). This model has three degrees of freedom: vertical, horizontal and rotational
displacements are possible.

top view

N
o)

LN

P
~

fig. 7.1  Definition sketch parameters

The dynamical behaviour of the system sketched in figure 7.1 can be described by the following
differential equation (a description of the different parameters can be found in the list of
symbols and figure 2.5 and 2.6):

M iD+K x(D= F(@) (7.1
in which:
M = mass matrix
K = stiffness matrix
o = load vector
x(t) =  displacement vector (x'(f) = [ x1(5) x:() x3(6) 1; x1(D), x2 () [m], x3(¢) [rad])
i) = acceleration vector ( f o) =[%,@) %, %0

£(1), %,(0) [m/s%], %5 @) [rad/s”])

Equation 7.1 represents three differential equations, one for each degree of freedom:
e vertical: translation x;

e horizontal: translation x;

e rotational:  rotation x;.
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These three differential equations can be derived using the so called displacement method. The
reaction force of the foundation must be derived when each degree of freedom is given a unit
displacement (see figure 7.2); b, and b, are the so called “bed constants” which represent
respectively the stiffness of the foundation in vertical and horizontal direction (b, , b, [N/m’] see
section 7.3.2).

T x161L, (N/m) T xib1LoB, (N)
> o2 —_ o2 5
F’) F2

€ XaboLoB,. (N)

—— e e — X3}lb2Lc (N/I'ﬂ)

T

wnbbla (N/m)

fig. 7.2 Unit displacements and forces

The three equations for the three degrees of freedom can now be derived:

mi, =-b,L.B *x, +0%x, -0*x; + F| (7.2)
m,%, =0%x, ~b,L B, *x, —hb,L B, *x; +F, (7.3)
0%, =0%x, —hb,L B, * x, — h'b,L B, * x, —-‘;lb3b,Lc tx,+T (7.4)

In which b = %*B, and A= 152*H, .
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This can be written in a matrix notation:

m 0 0][%] [6,L.B, 0 0 X, E

0 m, O||%|+| © b,L,B, hb, LB, X, | = |F

0 0 6||% 0  hb,L,B, h*»,L B ,+(/)b°b L, || x, T
(1.5)

Check of the elements of the stiffness matrix: k2 = kn
ki =k
k23 = k32 -> OK!

In the matrix notation (equation 7.5), the different stiffnesses of the springs (as sketched in
figure 7.3) can be found. The stiffnesses of the two translational springs ( & and k;) and the
rotational spring ( k3 ) can be found in equation 7.6, 7.7 and 7.8.

kl = bILch (76)
ks = byL.B. )

ks = b*Y*L.*B,> = by*] (7.8)

kl = bchBc'

fig. 7.3  Mass-spring model

The position of the translational springs in figure 7.3 (k and ;) is important and is as sketched
in figure 7.3. The position of the rotational spring is not relevant. The position of the springs is
of course also assimilated in equation 7.9.

* Substitution of the equations 7.6, 7.7 and 7.8 in equation 7.5 gives:

mo 0 0][%] [k, O 0 x, F,
0 m, O||% |[+|0 &k  hk 5, | = |F (1.9)
0 0 0||&| |0 hk Ak otk ]|x T
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7.3 Structure and foundation parameters of the chosen vertical
breakwater

In the previous section a general analytical model which describes the dynamical behaviour of a
vertical breakwater has been derived. The magnitude of the different parameters of the model
will be described in this section. The magnitude of these parameters is chosen in conformance
with a prototype situation, in this case: along the Dutch coast at the site of the planned land
reclamation of the harbour of Rotterdam: “Maasvlakte 2”.

Vertical or caisson breakwaters are usually placed on a rubble mound. This rubble mound
usually consists of coarse stones (e.g. 10 - 1000 kg). To protect the rubble mound in front of the
vertical breakwater, it is usually covered with armour blocks (e.g. heavy stones or concrete
blocks). Dependent on the height of the rubble mound, these breakwaters are called high mound
or low mound vertical composite breakwaters (see figure 7.4). These breakwaters are called
vertical composite breakwaters because they consist of several layers in a vertical direction.

armouiblocks

rubble mound

caisson

/ rubble mound

A B C D

rubble mound

A basic vertical wall breakwater

B: low mound vertical composite breakwater
C high mound vertical composite breakwater
D: rubble mound breakwater with crown wall

fig. 7.4  Vertical type breakwaters

The rubble mound (foundation) under the vertical breakwater has several functions:

e The rubble mound can level out an uneven seabed, so the caissons can be placed on an even
foundation.

e During placing of the vertical (caisson) breakwater, high flow velocities can occur between
the caissons and the seabed which, for example, consists of sand along the Dutch coast
(caisson breakwaters are usually constructed elsewhere at a construction site and floated in
after they are completed). The rubble mound stabilises the foundation (the seabed) in order
to prevent enormous scour during placing of the caissons.

o The rubble mound serves as a filter in order to prevent local liquefaction of the foundation of
the vertical breakwater. As a result of the movements of a caisson breakwater which are
caused by wave action, the groundwater pressure under the caisson breakwater will fluctuate
considerably. At some points high pressure differences can occur which can cause local
liquefaction. To prevent this local liquefaction a geometrical closed filter is necessary
[SCHIERECK (1995)]. A geometrical closed filter is designed in such a way that the grains in
and under the filter layer cannot move. This often leads to a conservative design, since the
filter can stand any load: there is no critical gradient at which the grains will start to move.

e The rubble mound prevents erosion of the sandy seabed at the toe of a vertical breakwater.
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The calculations which are carried out in this study - and described in this report - are carried
out as if the rubble mound is absent. This is assumption does not influence the calculations in
the way as they are carried out here, but one should always bare in mind that in a real situation
a rubble mound berm is usually necessary.

The vertical breakwater of which the dynamical behaviour will be calculated in this chapter, is a
vertical breakwater of the caisson type and is directly placed on the seabed which consists of
sand. Both the rubble mound and the armour layer are absent. In fact this is an basic vertical
wall breakwater ( see figure 7.4). The caisson breakwater is constructed at the construction site
and floated in after it is completed. After the caisson is placed at the right spot, it is filled, for
instance with sand. The width of the caisson is 20 m and the height is 23 m. The length of one
individual caisson is chosen as 30 m (a total breakwater consists of several individual caissons
which are placed next to each other). The water depth at both sides of the caisson is 15 m. The
breakwater is assumed to be rigid, it will not distort. The lay-out of the vertical breakwater of
the caisson type is described in figure 7.5.

L. =30m B.
AT AT
8§m
SWL
— % - = Avi
—_— H, —
15m ‘ d
foundation (sand) ‘L >
: 20m :

fig. 7.5  Lay-out of the vertical breakwater of the caisson type

Nota bene:
The design of the chosen breakwater is a realistic one. A high rubble mound that is

lower than Still Water Level (SWL) occasionally generates impulsive wave forces

due to wave breaking [TAKAHASHI (1995)]. A low mound - in this case no mound

is assumed - is favourable for the stability of the vertical breakwater because:

o less breaking waves will act directly against the vertical breakwater and

e a larger caisson is needed. A caisson on a high mound will weight less than a
caisson which is placed on a thin rubble mound, because the dimensions of the
breakwater on a high rubble mound can be smaller (the height is smaller and
the width is the same) A heavy caisson is more stable against sliding and
overturning than a light caisson as will be shown later on in this report in
section 9.5.

The calculations which will be carried out in this study will be carried out for a

design which will give the fewest breaking wave conditions under the given cir-

cumstances at the location of the vertical breakwater (at a waterdepth of 15 m). If

one is interested in the effect of wave impact forces on a vertical breakwater one

should choose a realistic design to calculate the effect of wave impacts and not a

design of a vertical breakwater where wave impacts are generated by the chosen

design itself (e.g. by a high rubble mound). That would be a very unwise design!
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The most interesting thing is to know if wave impacts are important - and, if so,
which wave impacts are important - for a chosen design which would give the
fewest wave impact forces on a vertical breakwater under the given circumstances.
A comparison between a vertical breakwater at a waterdepth of 15 m on a low
mound and a vertical breakwater at a waterdepth of 15 m on a high mound (the
stupid design) will be made in section 9.5.

A vertical breakwater without damping can be schematised by a mass-spring model with three
degrees of freedom: vertical (translation x; ), horizontal (translation x, ) and rotational
(rotation x; ) displacements are possible (see section 7.2 and figure 7.6). The origin of these
displacements is chosen in the centre of gravity ( C ) of the caisson. When the dynamical
behaviour of a caisson breakwater is investigated, the following parameters must be known:

o the masses ( m; and m;, ) and the mass moment of inertia ( 8 ) of the caisson breakwater
o the stiffhesses (41, &, and &; ) of the foundation which can be represented by springs.

fig. 7.6  Mass-spring model with three degrees of freedom

The magnitude of the masses and the mass moment of inertia is treated in sub-section 7.3.1 and
the (linear-elastic) characteristics of the foundation are treated in sub-section 7.3.2.

7.3.1 Masses and mass moment of inertia of the vertical breakwater

The masses and the mass moment of inertia of the caisson breakwater are determined for the
vertical breakwater with a height of 23 m, a width of 20 m and a length of 30 m.

Masses
The mass which should be taken into account (1, ) is the mass of the caisson breakwater itself

( M. ), the added hydraulic mass (. ) and the added mass of soil ( mg., ):
Mot = Mygi + Mpya + Mgeo (710)

The mass of the caisson breakwater ( m., ) can be calculated if the amount and the mass
density of concrete and the amount and the mass density of the fill are know. Usually, a caisson
breakwater consists of approximately 10% concrete, the mass density of reinforced concrete
(p.) is 2400 kg/m®. The fill (sand) has a mass density (p;) of 1900 kg/m’ (almost saturated
sand). Thus, the total mass of the vertical breakwater is:

L*B*H, *(0.1*p, +0.9*p,) = 7.1
= 30%20*23*(0.1*2400+0.9¥1900) = 26910.0*10° kg

Mg




Wave Impacts on Vertical Breakwaters

When the caisson which is exposed to a wave impact load oscillates, a certain body of water is
forced to move with the structure. This added mass of water is called hydro-dynamic mass in
the following. By using a theoretical calculation based on an incompressible and irrotational
two dimensional potential flow it can be shown [OUMERACI et al. (1994)] that for horizontal
oscillations:

L. *0.543*p, *d? (7.12)

mhyd hor
in which:

' Muya.ner = the hydro-dynamic mass for horizontal oscillations
d water depth next to a vertical breakwater

Nota bene:
Equation 7.12 refers to the water on the seaward side of the structure only.

Pendulum tests on a caisson have been conducted for different water depths d
[OUMERACI et al. (1992a)]. The results of these tests show that equation 7.12 will lead to
underestimated values of the added mass. For calculating the hydro-dynamic mass of the
system, equation 7.13 will be used [MAST II, ANNEX 1 (1995)]:

Migd hor = Lo ¥1.40%p,, *d ? (7.13)
=30*1.40*1025*15% = 9686.3*10° kg

Equation 7.12 and 7.13 are plotted in figure 7.7 (L. is chosen as 1 m).

relative hydro-dynamic mass

09 + Muyd | Meai
08 +
0.7+  measured
0.6+ 1.4%*p, *d*
05 +
041 computed
03 L 1.086*p,, *&
02+
01+

0 —— i

0 05 1
relative water depth d/ H,

fig. 7.7  Hydro-dynamic mass resulting from horizontal caisson oscillations

The hydro-dynamic mass for vertical motions is assumed to be zero.

Miyd, ver = 0 kg (714)
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Nota bene:

The theoretical basis of the added hydraulic mass or hydro-dynamic mass is weak.
It seems logical that the hydro-dynamic mass is dependent on the frequency of
oscillation of the structure, but all formulae given here are independent of the
frequency of oscillation. The value for the hydro-dynamic mass which is used by
different researchers within the MAST project is used here as well, so a hydro-
dynamic mass which is independent of the frequency of oscillation of the vertical
breakwater. According to MARIN (faculty of Marine Technology, Delft
University of Technology) the hydro-dynamic mass can be estimated by the
displaced mass of water by the vertical breakwater, which is
30%15%20%1025 = 9225.0%10° kg. This is slightly lower than the value of
9686.3*10° kg which is used in this study.

When the caisson exhibits oscillating motions, a certain mass of the soil beneath the structure is
forced to move with the latter, this added mass of soil is called in the following geo-dynamic
mass. For the determination of the geo-dynamic mass, the approximation which can be found in
[MAST II, ANNEX 1 (1995)] (see equation 7.15) is used. In fact this is the geo-dynamic mass
for horizontal oscillations. The geo-dynamic mass is assumed to be the same for horizontal and
vertical oscillations. This assumption will not influence the results of the calculations very much
because of the fact that a wave impact of the transition type will cause horizontal and rotational
oscillations and almost no vertical oscillations.

3
0.76*p, * (_BCL°) 2
n
mgeo = mgeo,hor = mgeo,ver = 2_v (7 15)
3
. o
0.76 * 2000 * (20 30) ’
= i =23599%10° kg
2-03
in which:
Ps = mass density of the foundation soil (2000 kg/m’)
v = Poisson’s ratio. (The Poisson ratio is normally within the range of 0.2-0.4 for

sandy soils. Here 0.3 is chosen, assuming drained conditions)

Nota bene:
Just as for the hydro-dynamic mass, the theoretical basis of the geo-dynamic mass

is weak. Again a formula is used which is independent of the frequency of
oscillation of the vertical breakwater. Expression 7.15 is also independent of the
height and weight of the vertical breakwater. This formula is also being used
within the MAST project and will be used here as well.

The total mass for vertical oscillations is:

My = Mot ver = Meg; + mhyd ver T M 20, ver (7 16)
=26910.0¥10*+0+2359.9¥10° = 29269.9*10> kg
The total mass for horizontal oscillations is:
(7.17)

m; = Mg, i_mr =My + mhyd hor T Mgeo, hor
=26910.0*10°+9686.3*10°+2359.9*10° = 38956.2%10° kg
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Mass moment of inertia
For the determination of the mass moment of inertia, the same procedure can be followed as for

the determination of the mass of the vertical breakwater:
etot = ecai + ehryd + egeo (7 18)
Ocai , Onmya » Bgeo must be determined individually.

A good approximation of the magnitude of 6,, can be found when 0,; and 8,,, are neglected
and M, nor 1S used instead of m,,; in equation 7.19.

Oent = %*mm«*wﬁ +H) (7.19)

This equation represents the mass moment of inertia of the caisson around the centre of gravity
(C, see figure 7.1) for a rectangular caisson with equally distributed density.

0=0k, = '1‘15 *mtot,hor*(Bcz +ch ) (7.20)

= é*38956.2*103*(202+232)=3.016*109 kgm’

Nota bene:
It is assumed that the mass of the vertical breakwater is equally distributed over its

length, height and width. The centre of gravity is assumed to be placed in the
centre of the cross section as is shown in figure 7.1.

7.3.2 Soil characteristics

The soil characteristics (e.g. the stiffness of the foundation soil) must be known to determine the
stiffness of the springs of the mass-spring model. The determination of the stiffness of the
springs will be carried out in the next section. Here, only the so called “bed constants” will be
given. These constants are different for different foundation soils. The following values are to
be found in the literature for a static situation (these values are approximations!):

e clayorpeat: 1*10°N/m’
e sand: 1*10” N/m?
e gravel: 1*10° N/m®

Here a value of 2.5%¥10” N/m’ will be chosen. This value will be chosen the same for the
horizontal and vertical direction. A rather high value is chosen. It is assumed that the vertical
breakwater will be placed on compact sand. Another reason for choosing a rather high value is
the fact that the vertical breakwater is exposed to a highly dynamical load. The stiffness of the
soil, when exposed to a dynamical load, may expected to be higher than the static value. The
stiffnesses of the springs of the mass-spring model can now be determined:

k = b,L.B, = 2.5%107 *30*20 = 1.5*10"° N/m (7.6)
k, = b,L.B. = 2.5%107 *30*%20 = 1.5*10" N/m X))
by = b*Y/u*L.*B.> = b*I = 2.5%107%/,,*%30*20° = 5.0%10" Nm/rad (7.8)




Wave Impacts on Vertical Breakwaters

Nota bene:

Within the MAST-project the spring constants are often calculated using the
method of Richart et al. [RICHART et al. (1970)]. Using the method which is used
here, with the bed constants with a magnitude of 2.5%10” N/m’ gives results which

_ are comparable with the results using the method of Richart et al..

The formulae given by Richart et al. are dependent on the size of the structure
(especially the ratio B, / L.). The following approximations can be given for the
stiffnesses of the different springs:

ky=11*E,* [B_* L - ! ~ N/m (7.21)
-V

k, =082*k, N/m (7.22)

ky =2.73% B2 *V/;,%k, N/m (7.23)

The properties of the soil are usually expressed in terms of a shear modulus G, and
the Poisson ratio v instead of an elasticity modulus E;. The elasticity modulus can
be derived from the shear modulus and the Poisson ratio with the following
relation:

E, = 2*(1+V)*G, (7.24)
Pedersen [PEDERSEN (1994)] uses equation 7.25 for the determination of the shear

modulus G, which has been derived for sandy normally consolidated soils which
consist of angular-grained material [RICHART et al. (1970)}:

G —04*1230+2973-9" | F, (7.25)
£ l+e B *L, '

where e is the void ratio. Expression 7.25 is developed as a best fit to a number of

n

tests and is seen not to be dimensionally correct. G, and must be

evaluated in [Ibf/in’] (1 Ibf/m’ = 1.4503*10* N/m?).

If e is chosen as 0.6, v = 0.3 and F,, = 152.4*10° N (see equation 7.88) than E; can
be calculated using equation 7.24 and 7.25. This calculation results in:
E, =188*10°N/m”.
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7.4 Determination of the eigenvalues of the vertical breakwater

All structure and foundation parameters which are needed for the determination of the mass-
spring model of the vertical breakwater of the caisson type at the chosen location are known.
The mass-spring model of the chosen breakwater for this specific location can now be derived.

If there is no load on the vertical breakwater (F7 = 0, F, = 0 and T = 0) equation 7.9, which
described the dynamical behaviour of the breakwater, will be homogeneous:

m 0 0][%] [k O 0 %, 0
0 m, O||% |+ 0 k  hk x| =10 (7.26)
0 0 6||%| |0 hk, Rk, +k||x, 0

In this section the solution of this homogeneous equation will be given. This solution is called
the eigensolution of the mass-spring system.

This solution represents the free oscillations of the breakwater, which will occur when no
energy is added to the mass-spring system which represents the vertical breakwater.

The solution of the homogeneous equation 7.26 is:

x(t)=% sin(@ t+4,) G=1,2,3) (7.27)
in which
X, =  eigenvector

The mass-spring system (see equation 7.26) can be divided in two sub-systems:
mE,(t) + kyx, (1) =0 (7.28)
and
m, 0 x2 () . k, 2 hk, x, (1) _ 0 (7.29)
0 0| %] bk, hk,+k | |20 0

The solution of this system is as follows:

x,(t) 1 0 0
x(t) =] x, () |= A4,| 0 [sin(@,f +§,) + A,| 1 [sin(@,t+d,)+ 4, 1 |sin(e,r+6;)
() 0 R, R

(7.30)

In this section R, Rs;, ©;, ®, and ®; will -be determined. 4,, 4;, 43, 1, ¢ and ¢; will be
determined in the next section.
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In section 7.3 the structure and foundation parameters have already been given, they will all be
repeated here.

m = 29269.9%*10°kg

my =  389562*¥10°kg

6 = 3.016%10° kgm’

B, = 20m b = 100m
H, = 23m h = 115m
L, = 30m l = 150m
k= 15%10°N/m

k= 15%10°N/m

ks = 5.0*10" Nm/rad

The first system, only the vertical oscillation, degree of freedom x; (¥)

292699 *10° %, (£) + 15* 10", (£) = 0 (7.31)
k 15*10"
o, = [+= ——————1———~—3 =22638 rad/s (7.32)
m, ¥292609*10
1
£ =00 22638 st (7.33) r=t-_l _o218s (138
2n 2n fi 3603
1
eigenvector £, ={ 0 (7.35)
0

The second system, the horizontal oscillation and the rotational oscillation, degrees of freedom
xx(?) and x5(9)

389562 +*10° 0 5HO1, 15%10"°  1725*10" | [x, (0] _ [0
0 3016%10° | | &, ()| [1725*%10" 248375*10" | | x5(0) 0

(7.36)
Solution of this eigenvalue problem:
2 03 +o3, 0L -0 i 4
o), =205 (23520 (o) a5
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in which:
k . * 10
ol :——2—2—:—15—-1—9———-;:385.048 (7.38)
m, 389562*10
k . *10™
0l =-3= ﬁ@——lg— =823525 (7.39)
0 3016*10
k k . * 11 * * 11
M 1725710 : 1725710 —=253262140 (7.40)
m,9  389562%*10° *3016*10
2
(mz ) _385048+823525 \/( 385.048 - 823.525) + 253262140 (7.41)
2,3 2 2
o2 = 604287 ~ 548933 =55354 ®; = 7.440 rad/s (7.42)
£, =02 7980 ieam, (7.43) n=t-—L _osass (749
2 2n f, 1184
0 0
eigenvector X, =| 1 |= 1 (7.45)
R, | |-007445
in which
- 2 +k _ * %103 %110
R, =202t hn 55354 * 389562 1011 +15%10° o raas (7.46)
~ky, —-1725*%10
®? = 604287 +548933=1153220 o3 = 33.959 rad/s (7.47)
. 1 1
fi=ts 33959 _ 5405Hz (7.48) T,=—=——=0185s (7.49)
2 2m f, 5405
0 0
eigenvectorx, =| 1 |= 1 (7.50)
R, | |017348
in which
— 2 _ % ® 3 * 10
R, =25 +hy _—1153220%389562%10° +15*10° _ ¢ (7.51)

~k,s ~1725*10"

Check: RZ*R3=—5”6i >  OK!
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Summary of eigenvalues and solution of equation 7.30

1
© = 22.638 rad/s f,=3603Hz 7,=0278s %, =0
[0
o, = 7.440 rad/s [, =1184Hz T, =0845s X, = I
| -0.07445
0
03 = 33.959 rad/s £, =5405Hz T, =0185s = 1
017348
x, (1) 1 0 0
x(O)=|x,(6) |= 4, 0 |sin(22.638t + &)+ 4,| 1  |sin(7440t+¢,) + 45| 1  |sin(33.959¢ + ;)
x3(f) 0 -0.07445 017348

Nota bene:
The results found here show good agreement with the results found in the

literature. Lamberti et al. [LAMBERTI et al. (1996)] have calculated eigenperiods
for caisson breakwaters in Italy (Genoa, Naples and Brindisi). In their study it has
been shown that for these caissons the eigenperiods for horizontal movements are
in the range of 0.65 - 0.85 s and the eigenperiods for rotational movements are in
the range of 0.20 - 0.30 s.

7.5 The vertical breakwater exposed to a “transition type” wave impact

In this section the horizontal and rotational movements of the breakwater which is exposed to a
transition type wave impact will be calculated. Thus, according to equation 7.30, only 45, 43, ¢,
and ¢; have to be determined. The vertical motion will be zero because there is no vertical load.

The breakwater will be exposed to a transition type wave impact load. Chosen is for the
“church-roof” load which is among other things described in chapter 2. The equation which has
been derived by Schmidt [SCHMIDT et al. (1992)] is used here (see equation 7.52). No other
loads on the breakwater due to wave action are taken into account for the benefit of the
dynamical analysis presented in this report. The uplift force and the quasi-static wave forces are
assumed to be constant. This assumption will be made throughout the whole report and will not
influence the calculation of the dynamical behaviour of the vertical breakwater because of the
fact that these forces are constant.

F P ~0.344
_h:i";}_"? = 1,24(7:!_) (7.52)
P8, P

The vertical breakwater will be exposed to a wave impact with a magnitude of 13422 kN/m (see
table 2.1, H,=10m, T, = 125, (t./T, ) = 0.001, so #; = 12 ms). Only the triangular part of the
“church-roof” load will be taken into account (see figure 7.8). According to Oumeraci
[OUMERACI et al. (1994)] substitution of an actual impact load by a triangular pulse may lead
to useful results if only the maximum response is needed. The maximum response of the vertical
breakwater is what will be calculated here. This maximum response will be used for the
stability analysis in the next section, so the substitution of the actual load by a force pulse
seems permissible in this case.
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The wave impact will act over the total length of the vertical breakwater which is a very
pessimistic assumption. The total horizontal force of the wave impact with a peak force of
13422 kN/m is 13422*30=402660 kN.

13422 kN/m
F

v

12 ms t
b J——

fig. 7.8  Triangular load on the vertical breakwater

According to Takahashi et al. [TAKAHASHI et al. (1993)] the peak pressure of the wave impact
of the transition type acts at Still Water Level (SWL). It is supposed that the total wave impact
force (resultant of the wave impact pressures) acts at SWL. As stated before, it is assumed that
this wave impact is the only load on the structure. The total uplift force under the caisson due to
wave action is assumed to be constant. Together with the buoyancy, which is also assumed to
be constant, the uplift force will not influence the horizontal and rotational motions of the
vertical breakwater.

The wave impact is schematised by a pulse load. A pulse load can be schematised using a delta-
function [DIETERMAN (1994)]

F(t) = F,8(¢) (7.53)
mn which:

'S :

f 8(f)dt =1 (7.54)

4

Fy, = 0.5%12%10°*30%13422*10° = 2415960 Ns (7.55)

The time between ¢ = 0- and 7 = O+ is very short. Because this pulse will act excentric on the
front wall relative to the centre of gravity, it will also cause a pulse moment. The centre of
gravity is 11.5 m above the seabed. The wave impact force (the resultant of the wave impact
pressures) acts at SWL, thus 15 m above the seabed. Thus, the wave impact force acts 3.5 m
excentric relative to the centre of gravity. The magnitude of the force and the moment on the
vertical breakwater ( 3 (¢) and T(¥) ) are;

F, ()= 2415960*5(t) N (7.56)
T = -3.5*F,=-8455860*3(¢) Nm (7.57)
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Fy(f) and T(¥) can be substituted in equation 7.36:
389562 *10° 0 %, (1) . 15*10"°
0 3016%10° | %,(1) | |1725*%10"

If the solution of equation 7.58 has to be determined, this equation has to be integrated from
t=0-tot = 0+ to get rid of the delta-function in the load vector. This is done for degree of
freedom x,(¢).

1725¥10" T, (1] [ 2415960 *3(7)
248375%102 | x,(f) | | -8455860*8(r)

(7.58)

0+ 0" ') 0"
j 389562 *10°%, (£)dr + J‘ 1725% 10" x, (r)dr + j 1725% 10" x, (£)dt = j 2415960 * 5(r)dr
0 0" [ 0

(7.59)

The second and the third term of equation 7.59 are zero because x; (f) and x; (f) are zero: ina
very short period the breakwater will not move.

38956.2%10°*x, (0%) — 389562 *10° * %, (07) = 2415960 (7.60)
with:
%,(07)=0 (7.61)
follows:
%, (0M)= &@Tz 0.0620173 m/s (7.62)
389562 *10
The same can be done for degree of freedom x3:
—8455860
%,(07) = —————=-0.0028036 rad/s (7.63)
0= 1016+ 10°

At ¢ = O+ there is no wave impact any more. Thus, the elements of the load vector in equation
7.58 become zero. Again, it is a homogeneous system for ¢ > 0+

389562 *10° 0 O], | 15*107 1725%10" | x, (0| _|0 (7.64)
0 3016%10° | %,(1) | |1725%10" 248375%10" | x;(r)] |0 ’
With the initial values:
(x, ()] [0
x(0%) = 2O (7.65)
_x3(t)_ 0
(%, ()] [ 00620173
(0= %2() = (7.66)
| %5() ] [-00028036

18




Wave Impacts on Vertical Breakwaters

The solution of equation 7.64 and 7.65 and 7.66 can be found using the modal analysis
[SPUKERS et al.(1993)]:

_ 2. a2 u, (¥) _
x() = g;ziui ()= x, x; La (t)J = Eu(t) (7.67)
Substitution of:
M)+ Kx(#)=0 (7.68)
gives:
i, () +olu()=0 (G=2,3) (7.69)

Equation 7.69 has as solution:

u, () =C, sin(w,;t+¢,) (i=2,3) (7.70)
m which:
B 2
C =4’ +(——f—) 7.71)
¥
40,
an B (7.72)
in which:
£ Mx(0)
AT, 77

For the problem which is described in the equations 7.64, 7.65 and 7.66, 4,, 43, ¢, and ¢; can
now be determined:

A4,=0 (7.75) A3=0 (7.76)

B, = 0.0547027 (7.77) B;=0.0073161 (7.78)
00547027)° 00073161\°

Cy= || —————| =7.3525*102 (7.79) C;= (-———) =2.1544*10* (7.80

g ( 7.440 ) (7.79) G 33.959 (7.80)

=0 (7.81) ¢;=0 (7.82)
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Now, x,( t) and x3( ¢ ) can be determined using again equation 7.67 and 7.70:

x(f) = zij w ()=l £, {”2 (’)} ) (7.67)
had - s JAdRdst 12223 u3 (t) 4 .
w()=C sin@,+6,)  (=2,3) (7.70)

21544*107*

x, ()] | 73525*107
37375*10°°

() =| _s4739*10- :'sin(33,959t) (7.83)
3 —J.

x(f) = { }sin(7.440t) + {

Equation 7.83 describes the horizontal and rotational oscillations of the centre of gravity of the
caisson breakwater.

7.6 Stability of the vertical breakwater

In this section the stability of the vertical breakwater which is exposed to the wave impact
(which is described in figure 7.8) will be discussed. The stability of a vertical breakwater
against wave action can be examined for a lot of modes of failure. The most important failure
modes are: sliding, overturning and collapse of the foundation. In this section these failure
modes will be checked: sliding in sub-section 7.6.1, overturning in sub-section 7.6.2 and
possible collapse or yielding in the foundation will be discussed in sub-section 7.6.3. In this
chapter, the foundation is schematised by linear-elastic springs which can in fact not collapse.
Collapse of the foundation will be treated in the next chapters, when the springs are not linear-
elastic anymore, but elasto-plastic. The plastic part of the springs “represents” the collapse of
the foundation.

Before the stability of the vertical breakwater against sliding and overturning is treated, the
force in the foundation must be known. Therefore, the displacement of the bottom of the caisson
must be calculated in advance. The force in the foundation can be calculated easily when the
displacement of the bottom of the caisson is know.

The horizontal displacement of the centre of gravity of the caisson is x(f) and the rotation of the
centre of gravity of the caisson breakwater is x(). The horizontal displacement of the bottom of
the caisson is a function of x,(f) and x(f), see equation 7.84 and equation 7.85. Equation 7.85 is
sketched in figure 7.9 together with the equations which are described in the matrix notation of

equation 7.83.
Xpottom( 1) =X2( )+ 11.5 ¥ x35(¢) (7.84)

Xpotom( 1) = 1.0575%107 *sin ( 7.440 1) + 6.4525%10™ * sin (33.9591¢) (7.85)
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[ 0.008 — equation 7.83, xx(r)
time (s)

0 : : . — : : +— i
0002 0} 0.2 0.4 06 O.ﬂ 1 1.2 14 1.6
-0.004 +
-0.006 +
-0.008 + J

0.0006 — equation 7.83, x;(f)

' e
0.0004 4 /
0.0002 +

rad time (s)
0 } ¢
] 0.2 4 6
-0.0002 +
-0.0004 +

-0.0006 ~

0.002 - equation 7.85, x; (H)+11.5%*x3(¢8)
’ [ horizontal displacement caisson breakwater bottom

0.0015 +

0.001 + A A
0.0005 + .
time (s
moo : \/\ ' /\ / ; ; t ) i

0} 0.2 04 06 08 1 1. 1.4 1.6
-0.0005 -+

-0.001 +
-0.0015 —

-0.002 -

. 7.9 Results of the analytical calculation, see equation 7.83 and 7.85
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In figure 7.10 the total displacement of the bottom of the caisson breakwater is sketched

......................

v N

SERYA

S

maximum horizontal displacement of the
bottom of the caisson breakwater

W

fig. 7.10  Total displacement bottom caisson

The maximum horizontal displacement of the bottom of the vertical breakwater is
1.0575+0.64525 = 1.70275 mm. The maximum horizontal force in the foundation is:

Fundation = 1.70275%10*%k, = 1.70275%10*1.5%10™ = 25 54*10° N (7.86)
2554*10° . i .
Only ———————=6.34% of the wave impact force is “felt” in the foundation.
30* 13422000

The maximum rotation of the vertical breakwater is 5.4739%10%+3.7375*%107 =
5.84765*10™ rad.
The maximum moment in the foundation is:

Miundaion = 5.84765%10ky = 1.033*10*5,0%10" = 292.38*10° Nm (7.87)

29238*10°

Y 30%15% 13422000
the foundation.

=484 % of the moment caused by the wave impact force is “felt” in

The force and moment in the foundation of the breakwater are reduced due to the dynamical
behaviour of the caisson breakwater (inertia).
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7.6.1 Stability against sliding

The caisson breakwater will not slide if the maximum horizontal foundation force of
25.54*10° N (equation 7.86) is smaller than the friction force between the caisson breakwater
and its foundation (see figure 7.11). This horizontal friction force ( Fr ) is related to the normal
force of the vertical breakwater by the Coulomb friction coefficient (1). The normal force F, is
the difference between the weight ( W) of the caisson and the buoyancy ( F» ) and the uplift
force (F, ) under the caisson due to wave action.

F,=W-F, -F, (7.88)
F,=u*F, (7.89)

It is assumed that F, is caused by a column of water of 3.5 m equally distributed under the
bottom of the caisson breakwater. This value is chosen for this vertical breakwater according to
the Goda formula (see chapter 6). The Goda formula assumes a triangular uplift pressure
[GODA (1992)]. The uplift pressure is zero at the side of the vertical breakwater which is not
exposed to wave loads and approximately equal to a column of water of 7 m at the sea-side of
the vertical breakwater. So, the average uplift pressure according to the Goda formula is equal
to a column of water of 3.5 m. The weight is calculated for an unfavourable situation, only 7.

(equation 7.11) is taken into account.

F, foundation F, f

fig. 7.11  Forces on the vertical breakwater

Thus, F, will be:

F, =269100*10%*981-15%20*30*1025* 9.81-35%20*30*1025*9381
F, =1524*10° N

With p = 0.5 follows (u = 0.5 is a rather safe assumption, this Coulomb friction coefficient is
usually taken as 0.6 in Japan [GODA (1992)]):

F, =05%1524*10° =7620*10° N

The caisson breakwater is safe against sliding because £y > Fpundation (76.20%10° > 25.54*10°%).
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7.6.2 Stability against overturning

As explained in the EUROCODE, the stability against overtuming is ensured by restricting the
eccentricity to:

e<03*B, =03*20=6m (7.90)
M on -29238%10°
Jfoundation .
e= = =192m 7.91
F 1524 *10° (7.91)

n

The condition which is described in equation 7.90 is fulfilled, it can be concluded that the
breakwater is stable against overturning.

7.6.3 Collapse of the foundation

The foundation of the vertical breakwater will not collapse (or yield) if the pressure in the
foundation does not become smaller than -700 kN/m? (the derivation of this value will be given
in the next chapter, tension is positive and pressure is negative). The pressure in the foundation
cannot exceed the value of 0 N/m’® because the foundation soil cannot withstand tension; this
condition is in fact fulfilled if the condition described in equation 7.90 is fulfilled. Thus, the
following criterion must be fulfilled:

026 fyniaion = —TO0KN/m’ (7.92)
in which:

F M foundation
O foundaton = = g £ L (7.93)
Bc Lc _é* Lc * BCZ

*10° £106
Gfoundam=~1522(')4* 100 i2192'38 10 =.254.0 + 146.2 kN/m’
3 5*30*202

thus,
COfoundation, max = -107.8 I(IQ/ITX2

csfowldan‘ion, min = -400.2 kN/m2

The criterion which is described in equation 7.92 is fulfilled, so the foundation of this vertical
breakwater which is exposed to the (enormous) wave impact which is described in figure 7.8
does not collapse.

Conclusion:

Although the caisson breakwater is exposed to an enormous wave impact (12 ms, 13422 kN/m
and a triangular load history), it will neither slide nor overturn. The wave impact force is only
felt for approximately 6.34% in the foundation of the breakwater and the moment caused by the
wave impact force for approximately 4.84%. From this case - with a conservative assumption
like a wave impact which acts over the total length of the vertical breakwater - it can be
concluded that enormous wave impacts with very high forces and very short durations are not
important for the stability of vertical breakwaters within the framework of the given analysis.
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7.7 Comments

The model as described in the previous sections has its limitations and its shortcomings but it
gives a good first approximation of how a caisson breakwater reacts on an enormous wave
impact of the transition type - a very high force and very short duration. The results found in
this chapter show good agreement with the literature [MARINSKI et al. (1992)],
[OUMERACI et al. (1992)].

The most important shortcomings and assumptions of the model which is described in this

chapter are:

o The duration of the horizontal impact force (f; ) and the rise time (¢, ) were partially
neglected when the wave impact was schematised by a pulse force. In chapter 2 and chapter
3 was stated that these are very important. When a computer model of the caisson
breakwater is made, the development in time of a wave impact force can easily be taken into
account. It will then also be possible to see how the breakwater will react on a force history
as is described in chapter 2, a double peaked force with low frequency force oscillations
which are in the range of the eigenfrequencies of a vertical (caisson) breakwater. This type
of wave impact can be far more dangerous than wave impacts with a very high peak force
and a very short duration, relative to the eigenperiods of the caisson breakwater (see chapter
10).

e The structure is assumed to be rigid, this seems to be a reasonable assumption. For the
derivation of the TILLY computer model the vertical breakwater will be assumed to be rigid
as well, the structure cannot distort. '

e It is assumed that there is no interlocking between the different individual caissons, this
seems a reasonable assumption as well.

o The wave impact acts on the total length of the structure, this is a very conservative
assumption.

e Only a rough estimation of the pressure distribution under the caisson breakwater has been
made, the effect of a wave impact on the pressure distribution under the caisson breakwater
has not been taken into account very accurately.

e No cyclic loads are taken into account (a few wave impacts after each other).

e Long time (dynamical) effects of the foundation soil are not taken into account.

o Liquefaction of the foundation of the vertical breakwater, which may probably be an
important failure mode, has not been taken into account and this will not be done in the
remainder of this study.

e The foundation was assumed to react elastic. This is a good assumption when the
displacements of the vertical breakwater are small. Elasto-plastic springs should be applied
if the displacements of the bottom of the breakwater are large, because the maximum
bearing capacity of the foundation may be exceeded or sliding of the vertical breakwater
may occur. In the computer model the foundation can be schematised by elasto-plastic
springs.

e Damping is neglected.

In the next chapter the derivation of a more sophisticated model will be described. Most of the
points which are mentioned above can then be taken mto account (different load histories,
elasto-plastic springs and damping). The results of this more sophisticated model will be
calculated by the use of TILLY, which is a computer programme. These calculations and
results of these calculations will be treated in the next chapters.
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8 Derivation of a mass-spring-dashpot TILLY
model of the vertical breakwater

8.1 Introduction

In this chapter the derivation of a mass-spring-dashpot model will be described. This mass-
spring-dashpot model represents a vertical breakwater. In this case the mass-spring-dashpot
model represents the vertical breakwater which has already been described in chapter 7. The
model can be used to calculate the dynamical behaviour of the vertical breakwater which is
exposed to wave impacts. Unlike the previous chapter, the springs in this model are not linear-
elastic anymore. The behaviour of the foundation will be described more accurately by the use
of elasto-plastic springs, in which the plastic part of the springs represent the yielding of the
foundation soil (“collapse” of the foundation soil).

Calculations of the dynamical behaviour of the vertical breakwater exposed to wave impacts, by
the use of this mass-spring-dashpot model with elasto-plastic springs, will be carried out by the
use of TILLY 3.3, which is a computer programme. The possibilities of this computer
programme are reflected by using the name of the programme itself:

T Transient and static loading

I Incremental loading, initial stresses and strains
L Linear and non linear behaviour

L Lumped masses, springs and dashpots

Y Young and aging material

In section 8.2 a mass-spring TILLY meodel will be derived. This model differs in some ways
from the analytical model of chapter 7 (see figure 7.3). This is done because of the fact that the
new model makes it easier to implement elasto-plastic springs. The results of the calculations of
this TILLY model will be compared to the results of the analytical model of chapter 7 to show
the validity of the TILLY model. In section 8.3 the derivation of the characteristics of the
elasto-plastic springs which represent the foundation of the vertical breakwater (sub-section
8.3.1) and the magnitude of the damping of the vertical breakwater (sub-section 8.3.2), which is
represented by dashpots, will be discussed. The elasto-plastic springs and the dashpots will be
implemented in a mass-spring-dashpot TILLY model which can describe the dynamical
behaviour of the vertical breakwater very accurately. This will be carried out in section 8.4. In
section 8.4 also the results of two wave impact loading cases on the vertical breakwater which
are calculated by the use of this TILLY model will be presented.
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The TILLY model which is derived in this chapter is a very usefull one. It describes the
behaviour of the foundation of the vertical breakwater accurately and does also take the
damping of the system into account. The output (the result of the calculations) of the TILLY
model gives a reliable estimation of the dynamical behaviour of the vertical breakwater in real
nature, until the moment that the soil in the foundation yields (see also the remark at the end of
section 8.4). In this chapter the calculations are carried out for one geometry of a breakwater.
All calculations will be carried out for the same vertical breakwater as has been described in
chapter 7 before: the length is L. = 30, the height is A, = 23 m and the width is B, = 20 m. The
effect of the variation of different parameters of the mass-spring-dashpot model will be
presented in chapter 9. The importance of the different parameters of the mass-spring-dashpot
model can be indicated by means of the calculation of the effect of the variation of the different
parameters.

In the TILLY model the geometry of the vertical breakwater- and the characteristics of the
foundation of the vertical breakwater - can be changed easily, so in fact this model can be used
for any type of vertical breakwater. The loading on the breakwater can also be changed very
easily (see also chapter 10). Thus, not only the dynamical behaviour of a vertical breakwater
which is exposed to wave impacts can be calculated, but also the dynamical behaviour of a
vertical breakwater which is exposed to any kind of load. So the TILLY model of a vertical
breakwater can - with some slight changes - easily be adapted to any kind of vertical breakwater
which can be exposed to any kind of (dynamical) load. In this way it can support the analysis of
the dynamical behaviour of any kind of vertical breakwater.

8.2 Derivation of a mass-spring TILLY model

In the previous chapter the derivation of an analytical model of a vertical breakwater has been
discussed. This mass-spring model consisted of three linear-elastic springs with an infinite
strength: a horizontal, a vertical and a rotational spring. The TILLY model which will be
derived in this section differs from the model of the previous chapter, instead of a horizontal, a
vertical and a rotational spring, the TILLY model consists of six linear-elastic springs: five
vertical springs and one horizontal spring (see figure 8.1)

ANALYTICAL MODEL TILLY MODEL

fig. 8.1  Comparison of the analytical model with the TILLY model
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As can be seen in figure 8.1 the rotational spring in the analytical model has been replaced by
the springs 1, 2, 4 and 5 in the TILLY model. Springs 1, 2, 4 and 5 represent not only the
vertical stiffness of the foundation of the vertical breakwater but they can also represent the
rotational stiffness of the foundation of the breakwater (ks 4 in the analytical model) because of
the fact that they are placed excentric relative to the centre of gravity ( C ) of the breakwater
(spring k; in the TILLY model does not contribute to the rotational stiffness, but only to the
vertical stiffness of the foundation see table 8.1).

The change in the TILLY model compared to the analytical model has been made because of the
fact that in section 8.3 the linear-elastic springs will be changed into elasto-plastic springs. It is
difficult to determine a rotational elasto-plastic spring. In the TILLY model the rotational spring
is absent and only the elasto-plastic behaviour of the horizontal and the five vertical springs has
to be determined, which is relatively easy. The determination of the elasto-plastic behaviour of
the springs which represent the characteristics of the foundation will be carried out in sub-
section 8.3.1. In this section, the springs will still be considered as linear-¢lastic.

The stiffnesses of the springs have to be determined in such a way that the results of the
analytical and the TILLY calculations are the same. The magnitude of the different parameters
of the analytical model is (see also figure 7.1 and section 7.3):

m = 29269.9*10° kg

m, =  38956.2*10°kg

6 = 3.016*10° kgm’

B. = 20m b = 100m
H., = 23m h = 115m
L, = 30m ! = .150m
k= 15%10°N/m

kb, = 15%10°N/m

ks = 5.0%10" Nm/rad

The horizontal stiffness in the analytical model and in the TILLY model are the same:
ks = koq = 1.5%10" N/m 8.1

The vertical stiffness of spring 1 (k4 ) in the analytical model has to be the same as the total
vertical stiffness of the five vertical springs in TILLY model. So:

k * 10
N R A =—1-'—5—-51—0-—=3.0*109N/m. 82)

5

The stiffnesses of the five vertical springs are known. Now the eccentricities (a and 2*a) of the
springs 1, 2, 4 and 5 have to be determined (see figure 8.2). These eccentricities determine in
their way the rotational stiffness of the foundation of the vertical breakwater. The moment in
the foundation of the vertical breakwater which is described by the analytical model is

X3*ks 4 = 1*5.0%10" = 5.0*10" Nm (8.3)

if the vertical breakwater is given a unit rotation of 1 rad. The moment in the foundation of the
TILLY model must be 5.0%¥10" Nm as well, when x; (the rotational degree of freedom) in the
TILLY model is also chosen as 1 rad. In that case the five vertical springs of the TILLY model
exactly represent the rotational spring of the analytical model.
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fig. 8.2  Eccentricity of the vertical springs

The total moment in the foundation of the breakwater in the TILLY model is 10*a™*k (in this
case ky , k2 , k3 , k4 and ks are called £ for reasons of simplicity) if the vertical breakwater is
given a unit rotation of = 1 rad (see table 8.1). The total moment of 10*a’*k must be equal to
5.0¥10" Nm.

spring extension force (x;=1 rad) lever arm moment

1 -2*a*x ~2*a*k 2*a A*a**

2 -a*x3 ~a*k -a a*k

3 0 0 0 0

4 a*x; a*k a a*k

5 2*a*x; 2*a*k 2*q 4*g*ef
TOTAL 10%a"*k

table 8.1 Moment in the foundation

Soais:

k. *1 %10l
a=\/ 34 =\/ 20%10 40825 m (8.4)
10¥k*1 Y10%*30*10°

The TILLY model can now be developed because all the mput parameters of the model are
known: the masses and the mass moment of inertia of the vertical breakwater, the stiffnesses of
the springs and the eccentricities of the springs. All these parameters describe the vertical
breakwater. This vertical breakwater can be exposed to different kinds of loads. These loads are
an input for the model as well.

The validity of the TILLY model has to be checked. The analytical model of chapter 7 can
serve as the check for the TILLY model, just as was mentioned in chapter 7 when the analytical
model was derived. The vertical breakwater which is described by the TILLY model will be
exposed to the same wave impact as has been described in chapter 7 before: a wave impact of
the transition type with a triangular load history, with a peak force of 13422 kN/m and a
duration of 12 ms (see figure 7.8). The load will act on the breakwater at Still Water Level
(SWL) over a total length of 30 m, so 3.5 m eccentric relative to the centre of gravity of the
vertical breakwater. (The centre of gravity of the vertical breakwater is 11.5 above the seabed,
the water depth is 15 m, so when the wave impact acts on the vertical front wall of the
breakwater at SWL, it acts 3.5 m eccentric relative to the centre of gravity of the vertical
breakwater. If the results of the analytical and the TILLY model are the same, then the TILLY

model has been derived correctly.
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The output of the TILLY model will be determined for two cases. In the first case the
homogeneous solution of the breakwater is determined, just as this has been carried out before
in chapter 7 (section 7.5) where the wave impact of the transition type was schematised by a
pulse load; so no extemnal load on the vertical breakwater and only initial values which have
been described in equations 7.65 an 7.66 before:

+ _’_xZ(t) _—O
x(0 )—_x3 ( r)}"_o} (7.65)

£(07) = (7.66)

[%,(6)] [ 00620173
| %5(r)| | -0.0028036

The listing of the TILLY programme in which this model is described can be found in enclosure
8.1 at the end of this report.

In the other case the initial velocities and the initial displacements are zero. The input of the
TILLY model is an extemnal load (the triangular load with a peak force of 13422 kN/m and a
total duration of 12 ms which acts over a total length of 30 m) which is described in the TILLY
model as follows (see also figure 7.8): .

i =0000 s F=0 kN
t;, =0.006 s F=402660 kN 8.5
=0012 s F=0 kN

The listing of the TILLY programme in which this model is described can be found in enclosure
8.2.
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The results of the calculations of the two TILLY models (described in enclosure 8.1 and
enclosure 8.2) and the analytical model are summarised in figure 8.3. In figure 8.3 the
horizontal displacement of the caisson breakwater bottom is sketched for the three cases which
have been calculated for the same wave impact load situation.

’5‘,002 - horizontal displacement caisson breakwater bottom
0.0015 +
0.001 +
0.0005 +

0 } t t /;L\ } i
0 0.2 04 0 O.BV 1 1 2\/

-0.0005 +

-0.001 +

0.0015 +

-0.002 +

fig. 8.3  Comparison of the output of the analytical model and the two TILLY computations

The results show good agreement: there is hardly any difference between the output of the
different models (the two TILLY models and the analytical model). So the following
conclusions can be drawn:

Conclusions:

The TILLY model and the analytical model show good agreement. Henceforth, the calculations
of the dynamical behaviour of a vertical breakwater exposed to a wave impact can be done by
the use of the TILLY model which has been derived in this section. (This TILLY model will be
improved in the next sections.)

In chapter 7, the wave impact of the transition type has been schematised by a pulse load, figure
8.3 shows that this was permitted.

In the next section the TILLY model will be extended, a more sophisticated model will be
derived. Damping and elasto-plastic springs will be introduced.
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8.3 Derivation of a TILLY model with elasto-plastic springs and damping

8.3.1 Elasto-plastic springs

So far, the springs which represent the foundation of the vertical breakwater have been
considered as linear-elastic. The linear-elastic springs have got an infinite strength, there is not a
certain displacement at which the springs (which represent the foundation) yield (“collapse™). In
nature this is not true. If the forces in the foundation exceed a certain value, the foundation will
react plastic instead of elastic, if this value is not exceeded the foundation will react elastic.
When the foundation of the vertical breakwater becomes plastic, the foundation yields and
permanent displacements in the foundation will occur. This combined elastic and plastic
behaviour of the foundation can be schematised by elasto-plastic springs . In figure 8.4 an
elasto-plastic spring is shown which can be used to schematise the real behaviour of the

foundation soil.

force force | plastic
4 elastic _ 4 _
extension elastic 4 extension
----- p fé.stic \ real behaviour of
4+ Vv + ¥ the foundation soil
linear-elastic spring elasto-plastic spring

fig. 8.4  Linear-elastic spring and elasto-plastic spring

A negative extension of the spring can be seen as pressure in the spring and a positive extension
of the spring can be seen as tension in the spring (see figure 8.4). Thus, a negative pressure in
the soil is caused by a negative extension of the springs and a positive pressure in the soil is
caused by a positive extension of the springs (tension).

The determination of the elasto-plastic behaviour of the foundation will be treated separately for
the horizontal spring and the vertical springs because a different way of calculating is used for
these two different types of springs.
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Determination of the vertical elasto-plastic springs (spring 1, 2, 3, 4 and 5)

For the determination of the elasto-plastic behaviour of the foundation in the vertical direction,
the theory of Brinch Hansen is used [VERRUUT (1993)]. By the use of this theory, the maximum
bearing pressure of a strip foundation can be determined. A strip foundation shows good
agreement with the foundation of a vertical breakwater (see figure 8.5).

)2
EEEZR RIS ENITARATUTANAXAERE l[ n,b..T..irTniL?Thuhou1 I: 'Gver‘<fchor,=q
I 111 I II: transition
I I I |6hor { < Icver! =p

fig. 8.5  Definition sketch for the determination of the bearing pressure of a strip foundation [ VERRUTIT (1993)]

The theory of Brinch Hansen has been the subject of a lot of discussions. Although the
theoretical basis of the Brinch Hansen formula is weak at some points (the theoretical basis of
some factors and constants), it can give a good approximation of the bearing pressure of the
foundation. The theory has been derived for dry conditions.

Brinch Hansen used the theory of Prandtl and defined the bearing pressure of the strip
foundation ( p ) (see also figure 8.5):

p=is.cN, +is,gN, +i,s By BN, (8.6)
mn which:
P = maximum bearing pressure in the foundation
i.,,,i, = reduction factors related to direction of the load on the foundation
s.,8,,5, = reduction factors related to the shape of the foundation (different from a strip)
¢ = cohesion
q = pressure next to the foundation
Ys = weight of the soil (kN/m3)_ For soil under water: ¥s = Yoamrated - Yw
By = B.2*e = effective width of the foundation 8.7
M 'oundation o
e =—-Lfd—m— = eccentricity (see figure 8.6) (8.8)
N, = M—@-e[“*“"(“’n = dimensionless constant 8.9
1-sin{@)
N, = (NgDcot(p) = dimensionless constant (8.10)
N, = 2(N,-Dtan(p) = dimensionless constant (8.11)
0] = angle of internal friction of the soil
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fig. 8.6  Definition sketch for the determination of Bz

The maximum bearing pressure of the foundation must be reduced when besides a vertical load
(F, ) a horizontal load (Fpunaaion ) also acts on the foundation (see figure 8.7)

F Jfoundation

fig. 8.7  Horizontal and vertical load

If the breakwater does not slide (Floundgation < W*F, , see chapter 7) the reduction factors i., 7 4
and i, are:

Ffuundan’on
B
i, = 1————Ff£—— (8.12)
¢ +—"-tan(op)
eff
i = il (8.13)
iy =} (8.14)

The Brinch Hansen formula was derived for a strip foundation with an infinite length. A vertical
breakwater consists of different individual caissons with a finite length. The following reduction
factors (s,, s, and s,) must be applied if the foundation is rectangular instead of an infinite long

strip.

By

S = 1+02% 8.15)
LC
Beﬁ' .

Sq = 1+ 1 sin(p) (8.16)
B

5, = 1-03*—L (8.17)

8§ - 9
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For the determination of the parameters which are used in the Brinch Hansen formula, the same
vertical breakwater is used as was described in chapter 7 and in section 8.2. The mput
parameters which are necessary for the calculation of the maximum bearing pressure of the
foundation by means of the Brinch Hansen formula are as follows:

e The length of one section (one caisson) of the vertical breakwater is chosen as L; =30 m.
This length is used for the determination of the reduction factors s., s, and s, . The width of
the caisson is B, = 20 m.

e The foundation of the vertical breakwater is sand: mass density p, = 2000 kg/m’,
ys=10 kKN/m’, the cohesion c¢=0N/m’ and the angle of intemal friction is chosen as
@ = 33°. The angle of internal friction of sand is somewhere in the range of 30-35°, so here a
mean value of 33° is chosen.

o F,=1524*10°N
In chapter 7 was found that 6.34% of the wave impact force was felt in the foundation and
4 84% of the moment caused by the wave impact. These values are rather low due to the fact
that the wave impact with a peak force of 13422 kN/m only has a small duration (12 ms).
So, this wave impact only represents a small amount of momentum. For wave impacts with a
longer duration - and a larger amount of momentum - it is expected that a greater part of the
wave impact force and wave impact momentum is felt in the foundation. Here it is assumed
that 7% (>2*3.33%) of the maximum wave impact force of 30*( 15%p,*g*H,’ ) is felt in the
foundation by means of a force and a moment ( H, = 10 m )

Foundation = 0.07*30%(15%1025*9.81¥10%)  =31.67*10°N

Mpundation = 15%31.67¥10° =475.1¥*10° Nm
M . *10°
e = foundation 4751*10 =311
F 152.4%10°

n

By = Bi2% =20-2*311=13.78 m

e ¢g=0N/m.

The maximum bearing pressure in the vertical direction of the foundation can now be
determined:

i = 0.680 iq = 0.462 iy = 0.314
Se = 1.092 Sq = 1.250 Sy = 0.862
N, = 38.638 N, = 26.092 N, = 32.590

p=is.cN, +is,qN, +i,s, )37 By N,
= 0.680*1.092*0*38.638+0.462*1.250%0%26.092+0.314*0.862*0.5%10%13.78*32.590
= 608 kN/m’

This value is a good approximation for the maximum bearing pressure of the foundation of a
vertical breakwater. One should bear in mind that the influence of the angle of internal friction
on the results obtained is enormous. For example if ¢ = 35° is chosen, the maximum bearing
pressure will be 1022.0 KN/m®. In literature a value of 700 kN/m® is recommended as a
maximum for the bearing pressure of deep water vertical breakwater (see formula 7.92).
According to the Japanese standards the maximum value of the bearing pressure (at the toe of
the caisson) was previously taken as 400 - 500 kN/m®. The limit has been increased to 600
kN/m? or more, especially for deep-water breakwaters [PIANC (1996)]
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Nota bene:

For the determination of the elasto-plastic behaviour of the foundation in the
vertical direction, the theory of Brinch Hansen has been used. This theory has been
derived for a static loading case. The calculations which are carried out in this
study are for a dynamical loading case. The foundation of the vertical breakwater
will react different on dynamical loads than on static loads. According to Verruijt
[VERRUDT (1996)] the theory of Brinch Hansen can be used under dynamical
loading situations if the following condition is fulfilled:

o < wg (8.18)
in which:

© = the radian frequency of the oscillation(s) of the structure

2*c
w0y = = 8.19
o= % (8.19)
¢, = .|—= = wave velocity in the foundation soil (8.20)
Ps
in which:

E, = elasticity modulus of the soil, approximated by 188*10° N/m” (this
estimation is a rather high value, but in chapter 7 has been stated that the
vertical breakwater is founded on stiff soil, the derivation of this value
can be found in sub-section 7.3.2).

L B *L
R = radius of the loaded area, approximation: R = et 8.21)
T
* 100 *
c, =wa307m/s R= 1f30 20 =138m, so:
2000 g
*
W = 27307 =44 S5rad/s

The eigenfrequencies of the vertical breakwater which have been found in chapter
7 are all smaller than 44.5 rad/s (0, = 22.638 rad/s, ©, = 7.440 rad/s and
3 =33.959 rad/s), this means that the condition of equation 8.18 is fulfilled. So it
is allowed to use the Brinch Hansen theory for the determination of the maximum
bearing pressure of the foundation.

According to Verruijt [VERRUUT (1996)] the geo-dynamical mass can be
neglected when the condition of equation 8.18 is fulfilled because there will be no
mertia of the foundation soil. But because of the fact that the magnitude of the geo-
dynamic mass has been derived independent of the frequency of the oscillations of
the structure - which is common within the framework of the MAST-project - it
will still be taken into account, just as it has been done before in chapter 7.
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The elasto-plastic springs can now be determined. The maximum bearing pressure of the
foundation soil is 608 kN/m*. The soil cannot withstand pressures greater than 0 kN/m* and
smaller than - 608 kN/m’. The springs which represent the foundation of the breakwater have
got an initial negative extension due to the static load of the vertical breakwater. This negative
extension is:

F, _ 1524*10°

- = =-1016 mm (8.22)
5%k 5%30%*10°

Al =

A negative extension causes a negative pressure in the soil and thus a negative force in the
springs which represent the foundation of 30480 kN (= F,, /5 = 152.4*10%5).

The initial negative extension of the springs must be taken into account when the dynamical
behaviour of the vertical breakwater is determined. The springs which represent the soil can be
lengthened until the force in the springs is 0 kN, the initial force in the springs is -30480 kN.

The maximum and minimum forces in the springs can be determined if the area of the soil
which is represented by each of the springs is known. The springs are determined for the total
length of the structure (L. = 30 m). Every spring represents a part of the width of the caisson.
Spring 2, 3 and 4 represent 4.0825 m and spring 1 and 5 together represent the rest of the width
of the caisson which is [20-(3*4.0825)]/2=3.8763 m (see figure 8.2). So:

» spring 2, 3 and 4 represent an area of: 4.0825%30 = 122,475 m*
o spring 1 and 5 represent an area of: 3.8763*30 = 116289 m’
and:

e the minimum force in spring 2, 3 and 4 is: 122.475*-608 = -74464.8 kN
¢ the minimum force in spring 1 and 5 is: 116.289*-608 = -70703.7 kN
s The maximum force in all springs is: 0 kN
and:

e The stiffhess of spring 1, 2, 3, 4 and 5 is 3.0¥10° N/m.

The characteristics of spring 1, 2, 3, 4 and 5 are sketched in figure 8.8.

SPRING 1 AND 5 SPRING 2, 3 AND 4
force . force plastic
_ Plastic 744648 KN [T — 2
707037 KN | o = 608 KN/m
elastic elastic
initial force N initial force
304800 kN 7 in spring 304800 kN 77 in spring
L plastic F=30CNm e [/ T 300Nm
) v extension ) N extension
+ ¥ 110,16 mm TV 11016 mm

fig. 8.8 Spring characteristics of spring 1 and 5 and spring 2, 3 and 4

Check: 2¥70703.7+3*74464.8 = 20*30*608 — OK!
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Determination of the horizontal elasto-plastic spring (spring 6)

The elasto-plastic behaviour of the horizontal spring (spring 6) can be determined using the
sliding criterion which has previously been described in chapter 7, sub-section 7.6.1 The
maximum force in spring 6 is chosen equal to:

F, = u*F, (8.23)

pring 6, max —
The minimum force in spring 6 is equal to;
Fipring 6, min = ~UW*F, 8.24)
In equations 8.17 and 8.18 the Coulomb friction coefficient () is used which is defined as:
p = tan (¢) (8.25)

The magnitude of the Coulomb friction coefficient can be determined as p = tan (33) = 0.65.
This value is higher than 0.50, the value which has been used in section 7.6.1, but lower than
0.6 the value which is usually used in Japan [GODA (1993)], [TAKAHASHI (1996)]. Delft
Hydraulics [DELFT HYDRAULICS (1982)] has found values which are in the range of 0.60-0.70.
The value of the friction coefficient p has been investigated in models and in full scale studies.
For a plane concrete slab resting on quarried rubble stones Takayama (1992) found, as an
average, a static friction coefficient of u = 0.636 and a coefficient of variation of 0.15. Here, p
will be chosen as 0.60.

So, the maximum and minimum force in spring 6 are, with 7, = 152.4¥10° N and p = 0.60:

e the maximum force in spring 6 is 0.60%152.4*10° = 91440.0 kN
e the minimum force in spring 6 is -0.60*152.4%10° = -91440.0 kN.

The characteristics of spring 6 are sketched in figure 8.9.

SPRING 6

forceA
91440 kKN |-y

plastic

k=150%10"
+

S
rd

extension

91440 kN

elastic

plastic

fig. 8.9  Spring characteristics of spring 6
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8.3.2 Damping

Damping has been neglected in the TILLY model so far (as well as in the analytical model).
This means that if energy is added to the system (in this case the vertical breakwater), this
energy will not be dissipated. In other words, if the system is oscillating due to the addition of
energy it will not stop oscillating (until an intervention). In nature energy will be dissipated. So
in order to make a good model of the vertical breakwater, damping has also to be added. This
can be done by means of dashpots (dampers).

In this section only the derivation of the mass-spring-dashpot 7ZLLY model will be given. In the
following intermezzo short attention is being paid to the analyfical formula of a mass-spring-
dashpot model which belongs to the model which is also sketched in this intermezzo. This model
is almost the same model as the model which has been used in chapter 7 (only the dashpots with
the friction coefficients are added).

Intermezzo
ANALYTICAL MODEL ds

spring {- dashpot

SepsEenOst

k = stiffness
d = friction coefficient

EQUATION WHICH DESCRIBES THE DYNAMICAL BEHAVIOUR OF THE MODEL

m 0 O0|[%7] [d, © 0 o] [k O 0 X F,
0 m 0% |+ 0 d, hd, |+ 0 K hk, x| = |E
0 0 8||% 0 hd, h'd,+d,||%, 0 hk, Wlhy+ky||x, T

Energy dissipation can take place in the structure itself, in the foundation of the structure and
by exciting water movements (e.g. waves) when the structure is moving:

o It is assumed that energy is not significantly dissipated in the caisson breakwater itself,
which is assumed to be rigid (no internal distortion).

o Dissipation of energy by exciting water movements is negligible if [DELFT HYDRAULICS
(1995)] the condition which is described in equation 8.26 is fulfilled:

2
©°L .10 (8.26)
g
m which:
I = characteristic size of the structure
® = radian frequency of the oscillation of the breakwater

The condition of equation 8.26 is usually fulfilled for caisson breakwaters which are
exposed to waves and wave impacts.

8 - 14
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The validity of the condition which is described in equation 8.26 can be shown by the
following analysis. The maximum wave length of waves is the deep water wave length Ly:

g*T”
L, = 8.27
0 2%x ( )

It is assumed that the waves in the water around the vertical breakwater which are excited by
the oscillating vertical breakwater itself have got the same periode as the period of the
horizontal oscillation of the vertical breakwater. This period is 7; = 0.845 s (equation 7.44),
so Lo becomes: .

_ 9.81*0845
2*x

L, =111m

The condition for deep-water calculations is:

* *
2 ’2 d 1 - (8.28)

which is fulfilled in this situation:
2*n*15
—
111

if is assumed that L ~ L, (which is a conservative assumption)

> 1

The influence of the wave period is often described as a wave length and related to the wave
height, resulting in a wave steepness. The wave steepness, s, can be defined by using the

deep water wave length:

* *
5= L:Eizﬂzg_ (8.29)
g 0

According to Miche (1944) [BATTIES (1993)] the wave steepness is limited for deep water
waves. The maximum height of (regular) deep water waves, Huax , is given by the following
equation:

Hone~0.14 * L, (Smac® 0.14) (8.30)

So, in this case the maximum wave height which is possible for waves which are excited by
the oscillating vertical breakwater is 0.14*1.11 = 0.15 m.

The influence of the waves which are excited by the oscillating vertical breakwater on the
dynamical behaviour of the vertical breakwater itself is negligible (compared to the size and
mass of the structure and compared to the hydraulic loads on the structure). Only very minor
waves with a maximum wave height of 0.15 m and a maximum wave length of 1.11 m are
generated by the oscillating structure. These waves are, for example, very small compared to
the waves which can cause wave impacts on the vertical front wall of the structure, they can
be as high as 10 m. So just as has been stated before by the condition which has been
described in equation 8.26, no significant damping is expected due to the excitement of water
movements due to the oscillating breakwater. So damping due to excitation of waves can be

neglected.

Damping in the foundation is the only significant damping. Damping will take place m
horizontal and in vertical direction.

8 - 15




Wave Impacts on Vertical Breakwaters

Damping in the TILLY model will be represented by five dashpots in the vertical direction with
friction coefficients (d, ¢, ds, ds and ds ) and one dashpot in the horizontal direction with a
friction coefficient (ds) (see figure 8.10)

TILLY MODEL

fig. 8.10  Mass-spring-dashpot model of the vertical breakwater

The vertical damping (represented by dashpots with friction coefficients d; to ds) and the
horizontal damping (represented by a dashpot with a friction coefficients ds) will be chosen the
same. The friction coefficients which represent the damping in the foundation of the vertical
breakwater can be estimated using the following formula for the total magnitude of the damping
in the vertical and the horizontal direction:

dhor,verch*Lc*\/ps*Es (831)

d =30*20*/2000*188*10° = 367.9 *10° Ns/m

hor,ver
So, the following friction coefficients for the different dashpots of the model can be derived:
dy, dy, ds, dy, ds = '/5¥367.9%10°= 73.58*10° Ns/m (8.32)
ds = 367.9*10° Ns/m (8.33)
The horizontal dashpot and the five vertical dashpots are placed parallel relative to the springs
(see figure 8.10). This means that the five vertical dashpots have got the same eccentricity

relative the centreline of the bottom slab of the vertical breakwater as the five vertical springs,
a = 4.0825 m (see equation 8 .4).
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Nota bene:
Within the MAST-project damping is often calculated using the formulae which
are given by Richart et al. [RICHART et al. (1970)]. Richart et al. gives different
friction coefficients for horizontal, vertical and rotational oscillations. The formula
used for the determination of the damping in the foundation soil used in the
analysis which is presented in this report gives, together with the chosen position
of the dashpots (see figure 8.10 and 8.11), comparable results.

In the previous sub-section the elasto-plastic springs have been determined, in this sub-section
the magnitude of the friction coefficients which represent the damping in each of the six
dashpots has been calculated. In the next section the different aspects of the TILLY model will

be summarised and some calculations will be done.
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8.4 Implementation and summary

In this section a summary of the mass-(elasto-plastic)spring-dashpot TILLY model is given in
figure 8.11. The programme listing of this TILLY model (exposed to the transition type wave
impact) can be found in enclosure 8.3.

SIZES

H,=23
L, =30

d =15m

force

70703.7 kN

+  plastic
< U

B.=20 m
m
m
a =4.0825

30480.0 kKN 17

TILLY MODEL

b=10 m
h=115m
[I=15 m

m

SPRING 1 AND 5§

elastic

initial force
in the spring

Nk =3.0%10° N/m

+

4

extension

10.16 mm

dik, drky ds ks dyky dsks

INERTIA
my = 29269.9¥10° kg
my= 38956.2*10° kg
6 = 3.016*10° kgm’
DAMPING
d; = 73.58*10° Ns/m
dy = 73.58*10° Ns/m
d; = 73.58*10° Ns/m
dy = 73.58*10° Ns/m
ds= 73.58*10° Ns/m
ds = 367.9%10° Ns/m
SPRING 6
force , plastic
91440kN -
+ k=1.5*10""N/m
elastic / | extension
A 91440 kN
plastic
SPRING 2, 3 AND 4
force plastic
744648 kN p =608 kKN/m*
elastic
initial force
30480.0 kN T+ / in the spring
\ 5 _ 0
4+ plastic \k=3.010°N/m
v extension
+ ¥ 10.16 mm

fig. 8.11

Summary of the mass-spring-dashpot TILLY model, elasto-plastic springs and damping
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First example loading case

The vertical breakwater which is described in the TILLY model (see figure 8.11 and enclosure
8.3) will be exposed to the same wave impact as has been described before in chapter 7: a wave
impact of the transition type with a triangular load history, with a peak force of 13422 kN/m
and a duration of 12 ms which acts over a total length of 30 m (see figure 7.8). The load will
act on the vertical front wall of the breakwater at Still Water Level (SWL), so 3.5 m excentric
relative to the centre of gravity of the vertical breakwater. The result of this TILLY calculation
- in this case the horizontal displacement of the bottom of the vertical breakwater - is shown
figure 8.12 together with the analytical solution which has been derived in chapter 7 before.

0002 . horizontal displacement caisson breakwater bottom

0.0015 +
0.001 +

0.0005 time (s)

, ) , , (N |
, : - , ~
0 ‘ 4 / 12/ % 16
00005 0.2 0.4 J 1 \//
0001 + / d

-0.0015 + i ion
: nalytical solut TILLY i
ahalytical solutl mass-spring-dashpot TILLY model with
elasto-plastic springs

-0.002 ~

fig. 8.12 Comparison horizontal displacement analytical solution and mass-spring-dashpot TILLY model

2 00E+07 — forces in spring 5 and spring 6 (see figure 8.11)

1.00E+Q7 -

time (8)

0.00E+00 4
0
-1.00E+07 +

-2.00E+07 +

-3.00E+07 /\\//\\7/\ e
-4.00E+07 +

-5.00E+07 + -

fig. 8.13 Forces in spring 5 and spring 6 calculated by using the TILLY model

In section 7.6 the most important failure modes of a vertical breakwater have been mentioned,
these are: sliding, overturning and collapse (yielding) of the foundation. As can be seen m figure
8.12, the vertical breakwater does not slide. There are no residual displacements. In figure 8.13
can be seen that the foundation of the vertical breakwater does not collapse if the vertical
breakwater is exposed to the wave impact with a peak force of 13422 kN/m and a duration of
12 ms (see figure 7.8. The springs do not become plastic.
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The forces in spring 5, the most eccentric vertical spring and the forces in spring 6, the
horizontal spring, do not exceed the value at which the springs become plastic. For spring 5 this
value has a magnitude of -70703.7 kN and for spring 6 it is £91440 kN. This means that both
the vertical and the horizontal springs remain elastic and that there is no permanent - horizontal
and vertical - displacement.

The fact that the breakwater does not overturn has already been proven in sub-section 7.6.2.

Second example loading case

The results of the last loading case on the vertical breakwater of this chapter can be found in
figure 8.14 and in figure 8.15. In this example the vertical breakwater will be exposed to a load
which causes foundation failure of the breakwater. The breakwater will be exposed to a
maximum wave impact force of 15%p,*g*H,> (15082.875 kN/m) which will act over the total
length (30 m) of the vertical breakwater, the total force is 30*15*p, *g*H,” = 452486.25 kN.
The height of the wave is chosen as H, = 10 m. The total duration of the wave impact is chosen
as 0.25 s (250 ms) and the wave impact has a triangular load history. This duration of 250 ms
is almost 20 times as large as the duration of the previous example which was 12 ms. It is
assumed that the wave impact force acts on the vertical front wall of the vertical breakwater at
Still Water Level (SWL), so 3.5 m excentric relative to the centre of gravity of the vertical
breakwater. The listing of the TILLY programme in which this problem is described can be
found in enclosure 8.4.

04+ displacement top ®
of the caisson (point B) B
03 +
®
displacement centre of C
02+ gravity of the caisson (point C) -
A
01+ time (s)
m 0 ; ‘ rA T ——n
1 » "= 3 4 5
0.1
02 1 displacement bottom
of the caisson (point A)

fig. 8.14 Horizontal displacement of different points on the caisson breakwater

As it can be seen in figure 8.14, there is no significant horizontal displacement of the bottom of
the vertical breakwater, while figure 8.15 shows that the horizontal spring becomes plastic, the
maximum force in spring 6 (91440 kN) is reached within the first second. The fact that there is
almost no horizontal displacement of the bottom of the vertical breakwater is due to the fact that
a wave impact not only causes a horizontal force but also a moment on the vertical breakwater.
Because of this moment the vertical breakwater is forced to rotate. This rotation works against
the horizontal translation of the bottom of the vertical breakwater. The net effect is almost no
horizontal displacement of the bottom of the vertical breakwater. This effect which is described

here is sketched in figure 7.10 and see also figure 8.17.

A better way to look at the horizontal displacement of the vertical breakwater is to look at the
horizontal displacement of the centre of gravity, because the rotation of the vertical breakwater
does not work against the horizontal translation of the vertical breakwater at that pomt. It can
be seen that there is a significant displacement of the centre of gravity of the structure.

8 - 20
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1.00E+08 [ forces in the springs which represent the foundation

8.00E+07 spring 6

6.00E+07

4.00E+07 +

2.00E+07 + N time (s)
0.00E+00 —_ ‘ B
-2.00e+07 & 2\/ 3 4 5

-4.00E+07 -
-6.00E+Q7 +
-8.00E+Q7 +
-1.00E+08 “spring 4 * spring 5

fig. 8.15 Forces in the springs which represent the foundation

In figure 8.15 it can be seen that spring 5 and spring 4 do not bear a load anymore after the first
second. The consequence is that the vertical stiffness of the foundation, represented by five
vertical springs decreases: some of the springs do not bear a load anymore. The effect of this is
that the period of oscillation of the vertical breakwater will increase according to equation 8.34
which describes the period of oscillation of a single degree of freedom mass-spring model:

. :
T= Zn\/; 8.34)

If k decreases than T increases. This is effect is clearly to be seen if the periods of the horizontal
oscillation of the vertical breakwater sketched in figure 8.14 and figure 8.12 are compared.

The reason for this is that the foundation of the vertical breakwater has yielded (“collapsed™).
The foundation is permanently displaced at the place of spring 4 and spring 5, as is sketched in
figure 8.16. Spring 4 and S can only bear a load when the breakwater is loaded again and
displaced that much that the bottom of the vertical breakwater has a renewed contact with the
foundation soil. In figure 8.15 it can also be seen that spring 3 has to bear more load. This
means that the vertical breakwater is permanently displaced downwards. Besides this downward
displacement it is also rotated as can be seen in figure 8.14 and figure 8.17.

foundation -

permanent displacement of the
foundation of the vertical breakwater

fig. 8.16 Permanent displacement foundation
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fig. 8.17 Horizontal and vertical translations and rotation of the centre of gravity of the vertical breakwater

The conclusions which have been drawn for this loading case before (described in enclosure
8.4) can be confirmed. According to figure 8.17 there are residual displacements of the centre of
gravity of the vertical breakwater. If the wave impact acts on the left vertical front wall of the
vertical breakwater there is a horizontal displacement to the right (positive in the direction of x;)
a positive downward displacement (positive in the direction x;) and a rotation to the right
(negative in the direction of x3) as can be seen in figure 8.17.

Nota bene:
One should bear in mind that the model which is presented in this chapter can give

a reliable estimation whether sliding of the vertical breakwater or failure - collapse
or yielding - of the foundation of the vertical breakwater will occur. The precise
sliding distance of the vertical breakwater and/or permanent displacement in the
foundation of the vertical breakwater are very difficult to model. What precisely
happens at the contact surface of the bottom slab of the vertical breakwater and the
foundation soil during sliding of the breakwater or yielding of the foundation soil
of the vertical breakwater is not very well known.
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9 Analysis of the structure and foundation
parameters of the vertical breakwater

9.1 Introduction

In the previous section the mass-(elasto-plastic)spring-dashpot TILLY model has been derived.
In this chapter the effect of the variation of different parameters of that model on its dynamical
behaviour will be described.

There are two basic sources of uncertainty when calculations of the dynamical behaviour of a
vertical breakwater are being carried out. The first source of uncertainty is the wave impact
load on the vertical breakwater. Which characteristics of wave impacts loads are important and
which are not. The effect of the type of wave impact loading on the dynamical behaviour of the
vertical breakwater and its stability will be treated in chapter 10. The second source is
structural model itself, with is most relevant dynamical parameters (mass, stiffness and
damping). The effect of the variation of the different parameters of the mass-(elasto-
plastic)spring-dashpot model will be described in this chapter

The effect of changing the stiffness of the foundation soil of the vertical breakwater will be
treated in section 9.2. The influence of the strength of the foundation soil of the vertical
breakwater will be treated in section 9.3. In section 9.4 the effect of the variation of the last
parameter concerning the foundation, the damping of the foundation, will be described. The
effect of the variation of the masses and the mass moment of inertia of the vertical breakwater
on its stability will be treated in section 9.5 by means of a variation of the total lay out of the
vertical breakwater.

It is interesting to study the variation of the foundation parameters because of the fact that the

foundation aspects are relatively more important with caisson breakwaters than with rubble

mound breakwaters. The bearing capacity of the subsoil is often decisive for the dimensions of .
the caisson where the subsoil consists of clay and loose or even medium dense sand.

[MAST II MSC (1995)].
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The results of the variation of the parameters of the mass-(elasto-plastic)spring-dashpot model
will be checked by comparing these results to the analytical solution of a mass-spring-dashpot
model - with only one degree of freedom - which is exposed to a pulse load. A pulse load can,
according to chapter 7 and 8, be used to schematise a wave impact. In that way the validity of
the mass-(elasto-plastic)spring-dashpot TILLY model which has been derived in the previous
chapter can be checked. The analytical solution of a mass-spring-dashpot model - with one
degree of freedom - exposed to a pulse load which can schematise a wave impact is shown in
figure 9.1. '

B mi(£) +dic(t) + kxe(t) = F, *8(t)
x(0)=0
£(0)=0

K1) = Fy*o(t) J

F, , <
x(f)=—2—*e 27 *sin(o , ¥ 1)
me

in which:

d “Ym am?

sprin, dashpot
pring P F, 2 [k &
x(f) = —=—==="e " *sin(;| ———5 *1)
d? m 4m
m = mass 'km—-—-—
k = stiffness 4

d = friction coefficient

fig. 9.1  Analytical solution of a mass-spring-dashpot model with one degree of freedom exposed to a pulse
load

The breakwater lay-out which is used for the analysis of the foundation parameters which is
presented in section 9.2 to 9.4 is the same as the one which has been described in chapter 7 and
chapter 8 before, see figure 9.2 and 8.11. In these sections will be referred to figure 9.2
repeatedly. ' '

my = 29269.9%10° kg

m, = 38956 2%10° kg B. =20m %=30m

8 = 3.016*10° kgm®

N

R
8§m
SWL !
___V
"""""" H.=23m
h, =115m d=15m
d6 Y
ks

diky dy ky di ks diky dsks

fig. 9.2  Configuration used for the benefit of the analysis in section 9.2, 9.3 and 9.4
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The only load on the vertical breakwater which is of relevance for the analysis of the dynamical
behaviour of the vertical breakwater, in this chapter as well as in chapter 10, is a horizontal
wave impact load. All other loads on the vertical breakwater (the quasi-static wave forces, the
buoyancy and the uplift force) are assumed to be constant. They will not influence the
dynamical behaviour of the vertical breakwater which is exposed to a wave impact load. The
only force of relevance (the wave impact force) is shown in figure 9.3 together with the constant
forces (and the weight) which are represented by a dotted arrow. According to Oumeraci et al.
[OUMERACI et al. (1994)] neglecting of the quasi-static forces in the calculation of the
dynamical behaviour of the vertical breakwater is valid if one is only interested in the maximum
response of the vertical breakwater. For reasons of simplicity it is assumed that the uplift force
is constant and according to the prediction of the design formulae of Goda which have been
treated before in chapter 6. The magnitude of this force has been given in chapter 7 before and
has been calculated by assuming an equally distributed uplift pressure with a magnitude of
approximately 35 kN/m’.

wave impact force (the force of
/ relevance)
(Le*) Fromax (1)
homae (1) SWL
’ AV
- - L s - -
>t W, <
(Lc*)Fh,q 1 (Lc*)th
v
Y
Fu 1 Fb
| . |

fig. 9.3  Forces on the vertical breakwater

The only failure mechanisms which can - and will - be investigated by the use of the dynamical
TILLY model in this chapter and in chapter 10 are sliding of the vertical breakwater over its
foundation and failure (collapse or yielding) of the foundation soil. However, this is very usefull
because these failure mechanisms are very important ones. Other failure mechanisms which
have been presented in chapter 1 are neglected (e.g. slip of the foundation or liquefaction of the
foundation soil due to building up of groundwater pressure).

In chapter 8 it has been stated that the Brinch Hansen theory can be used for an estimation of
the strength of the foundation soil depending on the frequency of oscillation of the structure.
Changing the parameters of the mass-(elasto-plastic)spring-dashpot TILLY model will among
other things change the frequency of oscillation of the vertical breakwater. But for reasons of
simplicity it will be assumed that the Brinch Hansen theory will be applicable constantly.

Nota bene:
Tt must be stated that the conclusions which will be drawn in this chapter and in the

next chapter are only (directly) valid for the model as it is presented here in this
report, within the framework of this study. However, some conclusions are
generally applicable
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9.2 Variation of the stiffness of the foundation

The influence of the magnitude of the stiffness of the foundation on the dynamical behaviour of
the vertical breakwater which is described in figure 9.2 will be investigated in this section. The
strength of the foundation soil, the damping in the foundation soil and the masses and mass
moment of mertia will not be varied. Thus, the maximum bearing pressure of the foundation soil
is 608 kN/m’ and the damping coefficients d; to ds are 73.58*10° Ns/m and d, is 367.9%10°
Ns/m as has been derived in chapter 8 (see figure 8.11).

Nota bene:
It seems reasonable that a stiff foundation soil will be stronger as well (and the

other way around). A stiffer soil may also lead to more damping because of the
fact that the elasticity modulus of the foundation soil changes. However, these
effects will be neglected in this study, but it is very interesting to do research on
this topic: the relation between the strength, stiffness and maximum bearing
pressure of the foundation.

All results in this chapter will be derived for the breakwater described in figure 9.2 and which is
exposed to a wave impact force with a triangular load history. The quasi-static part is neglected
again just as it has been done before in the previous chapters. This wave impact is sketched in
figure 9.4 and will not lead to foundation failure or sliding for the mass-(elasto-plastic)spring-
dashpot TILLY model which has been described before in chapter 8, figure 8.11
(k; to ks are 3.0%10° N/m and ks = 1.5%10" N/m, in the remainder of this section called: “the
reference case” or case 1). The wave impact is supposed to act at Still Water Level (SWL).

................. Fh,max — 30*15*Pw*g*Hb2
=30*15*%1025%9.81*10°
=452.5%10° N

time

rd

ty = 37 2}5

fig. 9.4  Wave impact force on the vertical breakwater
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The influence of the stiffhess of the springs on the dynamical behaviour will now be investigated
for two cases and compared to the reference case (see figure 8.11):

e case l:

e caseZ:

e case 3:

the reference case (see figure 8.11):
ki, ko, ks, ks and ks 3.0*10° N/m
ks : 1.5¥10" N/m

the stiffness of the foundation will be halved:

ki, ko, ks, ks and ks 1.5%10° N/m
ks : 0.75*10"° N/m
the stiffness of the foundation will be doubled:
ky , ky, ks, ks and ks 6.0%10° N/m
ke : 3.0%10" N/m

The horizontal displacement of the bottom of the vertical breakwater (4, see figure 9.2) for each
of the cases is sketched in figure 9.5. The horizontal displacement of the centre of gravity (C,
see figure 9.2) of each of the cases is sketched in figure 9.6 and the horizontal displacement of
the top of the vertical breakwater (B, see figure 9.2) of each of the cases is sketched i figure
9.7. The forces in spring 1, spring 5 and spring 6 are sketched in figure 9.8 for casel, in figure
9.9 for case 2 and in figure 9.10 for case 3. Spring 1 and spring 5 are the two most eccentric
vertical springs and spring 6 is the horizontal spring (see figure 9.2).

0.005 horizontal displacement bottom vertical breakwater
0.004 +
0.003 + case 1,k
case 2, 0.5%k
0.002 1 - - = - case 3, 2*k
0.001
mo
000 a 5
001 + time (s)
-0.002 +
-0.003 ~
fig. 9.5  Horizontal displacement of the bottom vertical breakwater (A) for three cases
horizontal displacement centre of gravity of the vertical breakwater
T
0.025 +
002 +
0015 L FA case 1,k
’ R case2,0.5k
0.01 + \‘ ,'\‘ [ -~ —-case3, 2k
oos | | \/ VN Ny S
m o \ i ‘J \ A N )
b \ 1‘ 4 s\ 2 v, ) 3 4 5
-0.005 ¥ ' .
\ ,’ time (s)
001 + b
-0.015 +
002 1
fig. 9.6  Horizontal displacement of the centre of gravity (C) of the vertical breakwater for three cases
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0.06 T horizontal displacement top of the vertical breakwater

case 1,k
case 2,0.5k
== = == ~cased 2k

fig. 9.7  Horizontal displacement of the top (B) of the vertical breakwater for three cases
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fig. 9.8  Forces in spring 1, 5 and 6 for case 1

forces in spring 1, 5 and 6 for case 2
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fig. 9.9  Forces in spring 1, 5 and 6 for case 2
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6.00E407 1 forces in spring 1, 5 and 6 for case 3
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fig. 9.10  Forces in spring 1, 5 and 6 for case 3

Some effects of the change of the stiffness of the foundation will be discussed now. The results
of this change of the stiffness of the foundation are presented in figure 9.5 to 9.10. The
influence of the stiffness on the period of the horizontal oscillation of different points on the
vertical breakwater, the behaviour of the springs which represent the stiffness of the foundation
as well as the magnitude of the horizontal displacements of different points (point A, B and ()
on the vertical breakwater will be discussed.

Period of horizontal oscillation for case 1, case 2 and case 3

It can be seen from figure 9.5 to 9.7 that the period of the horizontal oscillation of the vertical
breakwater changes when the stiffhess of the foundation changes while the masses, mass
moment of inertia and the damping of the foundation remain constant. The periods of the
horizontal oscillations of the different cases are:

e case 1 (reference case): T=085s
o case 2 (halved stiffness): T=123s
e case 3 (doubled stiffhess): T=060s

The period of the horizontal oscillation of the vertical breakwater increases if the stiffhess of the
foundation decreases and the other way around. This is in accordance with the formulae
presented in figure 9.1 where ©, is the radian frequency of the damped eigenoscillation. If the
stiffness, k, decreases then @, decreases and T increases because 7' = 2n/w .

Behaviour of the springs for case 1, case 2 and case 3

The behaviour of the springs which represent the stiffness of the foundation of the vertical
breakwater is shown in figure 9.8 to 9.10. In figure 9.8 the forces in spring 1, spring 5 (the two
most eccentric vertical springs, see figure 9.3) and spring 6 (the horizontal spring, see figure
9.2) of case 1, the reference case, are shown. Just as it has been stated before in the
introduction, the force which is sketched in figure 9.4 will not lead to foundation failure for the
reference case. This is true according to figure 9.8: it can be seen that spring 1 and 5 do not
have to bear forces which become less than - 70703.7 kN.
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Note that the force spring 1 becomes 0 kN and thus spring 1 will react “plastic” for a short
moment (see figure 8.11). However, this will not considered to be foundation failure because the
soil is not permanently deformed. When the minimum vertical force in the foundation is reached
(-70703.7 kN) the solil is really deformed. It can be seen from figure 9.8 that the forces in the
springs return to their initial value which is 0 kN for spring 6 and -30480.0 kN for spring 1 and
5. This confirms the statement that a force of 0 kN in a spring does not mean foundation failure.
The fact that the force in spring 1 becomes 0 kN means in fact that the vertical breakwater is
not safe against overturning (see equation 7.90). However, this failure mechanism is neglected
in the remainder of this study because in can be seen form figure 9.8 that the fact that the force
becomes 0 kN in spring 1 has no influence on the characteristics of that spring and the other
springs because there is no permanent vertical residual displacement.

From figure 9.9 it can be seen that if the stiffness of the foundation is reduced, the forces in the
springs are reduced as well. The minimum force in spring 5 of case 1 (the reference case) is
approximately ~70000.0 kN while the minimum force in spring 5 of case 2 (the case where the
magnitude of the stiffness is halved). is approximately -58000 kN. It is obvious to see from
figure 9.9 that none of the springs become plastic.

The opposite is the case for case 3 as can be seen in figure 9.10 (note that - relative to figure 9.8
and 9.9 - the scale of the time axis has been changed). The stiffhess of the foundation of case 3
is doubled compared to the reference case. Now the foundation yields, the minimum force of
-70703.7 kN is reached. This will lead to permanent displacements (vertical, horizontal and
rotational) of the vertical breakwater. The permanent horizontal displacement of the vertical
breakwater for case 3 can clearly be seen in figure 9.6 to 9.8, although it is a very small
horizontal displacement. Note that because of the fact that spring 5 becomes plastic, the other
springs have to bear more load. This will cause a downward displacement and a permanent
rotation of the vertical breakwater as well.

The phenomenon that the springs which represent a stiff foundation of a vertical breakwater
become plastic while the springs of a foundation with a smaller stiffness are still elastic - when
the breakwater is exposed to the same wave impact load - can be explained (see figure 9.11).
For this explanation positive forces and positive extensions are used in contrast to the situation
of case 3 where the foundation yields for at the maximum regative force at a negative
extension.

force 4 Fo plastic behaviour (yielding)

reference foundation

elastic behaviour

+

rd

" X " 2%x, extension

fig. 9.11  Characteristic of an elasto-plastic spring

From figure 9.11 it can be seen that for a reference foundation, with a stiffness %, the maximum
extension - before yielding of the foundation soil - is equal to 2*x,. The maximum extension
before yielding of the foundation soil for a foundation which is twice as stiff as the reference
foundation (2*k) is xo. Thus, the foundation of a soil which is twice as stiff as a reference
foundation yields at an extension which is twice as twice small as the extension at which the
reference foundation would yield.
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But, according to the formulae presented in figure 9.1, the displacement of a vertical breakwater
which is placed on a stiff foundation also becomes smaller because of the fact that the stiffness
1s larger. However, this displacement is only reduced by a factor which is proportional to the
square root of the stiffness of the foundation, according to equation 9.1. Equation 9.1 denotes
the amplitude of the movement of a mass-spring-dashpot model with one degree of freedom
which is exposed to a wave impact load represented by Fo.

K ©.1)

2
m—
4

Conclusion:

Wave impact loads are the most dangerous for the foundation (and the stability) of a vertical
breakwater if the foundation is rather stiff. A stiff foundation of a vertical breakwater is more
likely to yield than a foundation of a vertical breakwater with a smaller stiffness, if it 1s exposed
to the same wave impact load (F; is equal for both situations) and the other parameters of the
model are maintained constant (e.g. the strength of the foundation soil). Even if the reduction of
the maximum displacement - because of the fact that magnitude of the stiffness of the
foundation is larger - of a vertical breakwater placed on a stiff foundation is taken into account.
Thus, it is favourable to have a foundation with a small stiffness, e.g. clay. The disadvantage of
such a foundation soil is that it is less strong than a foundation with a large stiffness e.g. sand
or gravel and that the vertical breakwater may not be stable against quasi-static wave loading
because of the fact that the eigenperiod of oscillation of the vertical breakwater increases if the
stiffness decreases.

This phenomenon can also be explained by calculating the maximum load (Fo, ma ) Which is
necessary to let the foundation of a vertical breakwater, which is exposed to wave impacts,
yield. The maximum load which is necessary to led a foundation with a stiffness & yield is
proportional to (see figure 9.11):

FO,max,stiﬂhess k & 2*\/;*1'0 (92)

while for a foundation of a vertical breakwater with a stiffness 2*k a load with a magnitude
proportional to

FO,max,sﬁﬂhess »x X 2%k *xo = “/E*\/E*xo (93)

is necessary to let the foundation yield. Thus, the load which is needed to let a foundation yield
with a stiffness k is larger than the load which is needed to let a foundation yield with a stiffness
2*k. This fact confirms previous conclusion.

If spring 5 which only represents a part of the foundation of the vertical breakwater becomes
plastic, the foundation yields. It is interesting to see from figure 9.10 that the force in spring 5
does not return to its initial value of 30480.0 kN anymore after it has become plastic (after the
foundation soil has yielded, compare this case to the cases presented in figure 9.8 and 9.9 where
this phenomenon does not occur). This is because of the fact that the negative extension in
spring 5 is less in the final situation than in the initial situation because of the fact that due to
the yielding of the foundation the soil is - so to say - “pushed away”. This phenomenon is
sketched in figure 8.16 for an extreme situation where the soil is totally pushed away.

The following could be found in the literature regarding the stiffness of the foundation soil of
vertical breakwaters: “Stiff soil often yields the highest sensitivity to wave impacts, because the
natural period becomes closer to the impact duration. On the other hand stiff soil is usually
much stronger then elastic soil” (see section 9.3) [MAST II MSC (1995)].
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Horizontal displacement for case 1, case 2 and case 3

It can be seen from figure 9.5 to 9.7 that the maximum horizontal displacement increases if the
stiffness of the foundation decreases. The maximum horizontal displacement of the bottom of
the vertical breakwater for the different cases is (see figure 9.5):

e case | (reference case): Xmax = 3.0 mm
e case 2 (halved stiffness): Xmx = 4.2 mm
¢ case 3 (doubled stiffness): Xmax = 1.9 mm

It can be seen in figure 9.6 and 9.7 that the maximum horizontal displacement of the centre of
gravity and of the top of the vertical breakwater are approximately a factor 10 in magnitude
larger than the maximum horizontal displacement of the bottom of the vertical breakwater. This
1s caused by the rotation of the vertical breakwater, which reduces the horizontal displacement
of the bottom, but enlarges the horizontal displacement of the top of the vertical breakwater.

Not that because of the fact that spring 5 in case 3 has become plastic permanent displacements
of the vertical breakwater will occur (horizontal, vertical as well as rotational displacements).

as well as the magnitude of the horizontal displacements of different points (point 4, B and C)
on the vertical breakwater will be discussed.

The fact that a stiffer foundation leads to a smaller horizontal displacement in accordance with
the formulae presented in figure 9.1. The horizontal displacement of the vertical breakwater is
proportional to:

r, ©.1)
d2
vy

km

So, if the stiffness of the foundation # increases the horizontal displacement decreases.
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The last case which will be examined in this section is case 4. In case 4 the horizontal stiffness
is halved in relation to the reference case. In literature it is often suggested that the horizontal
stiffness may be (much) smaller than the vertical stiffness. The effect of the change in the
horizontal stiffness for the mass-(elasto-plastic)spring-dashpot TILLY model of the vertical
breakwater as it is presented in this study will be reflected by means of a comparison between

the reference case and case 4. The load on the vertical breakwater is sketched in figure 9.4,

e case l:

e case 4:

the reference case (see figure 8.11):

ki, ky ks ksand ks : 3.0¥10° N/m
ks : 1.5%10" N/m
the horizontal stiffhess is halved:

ki, ky ks ksand ks : 3.0¥10° N/m
ks : 0.75*10" N/m

The horizontal displacement of the bottom (4), the centre of gravity (C) and the top (B) of the
vertical breakwater is shown in figure 9.12, 9.13 and 9.14 respectively. The forces in spring 1,
spring 5 and spring 6 for case 4 are presented in figure 9.15.
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fig. 9.12  Horizontal displacement of the bottom of the vertical breakwater (4)
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fig. 9.13  Horizontal displacement of the centre of gravity (C) of the vertical breakwater
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fig. 9.14 Horizontal displacement of the top (B) of the vertical breakwater
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fig. 9.15  Forces in spring 1, 5 and 6 for case 4

From figure 9.12 to 9.13 it can be seen that the influence of the horizontal stiffness on the
horizontal displacement of the vertical breakwater is relatively large for the horizontal
displacement of the bottom of the vertical breakwater but negligible for the horizontal
displacement of the centre of gravity and the top of the vertical breakwater.

As is to be expected the period of the horizontal oscillation increases if the stiffness of the
horizontal spring decreases.

Horizontal springs with a small stiffness can withstand lager forces before they become plastic
compared to horizontal springs with a large stiffness as has been shown in this section before.
So case 4 makes the vertical breakwater safer against sliding compared to the reference case
because the horizontal stiffness is smaller and therefore a larger load is necessary to provoke

breakwater sliding.

Nota bene:
It must be stated that in this section - and in the remainder of this chapter - only a

few relevant parameter studies are being carried out. Of course, it is possible to
vary all individual springs, dampers etc. individually but that is beyond the scope
of this study.
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9.3 Variation of the strength of the foundation

Previous deterministic and probabilistic studies of the effect of quasi-static wave loads on
vertical breakwaters have shown that failure of the foundation (yielding of the foundation soil)
is the most important an most probable failure mechanism for vertical breakwaters with a
conventional rectangular shape [HAILE (1996)]. Sliding of vertical breakwaters is only dominant
in the case of vertical breakwaters with a large ratio of width / height. In figure 9.10 it can be
seen that - within the framework of that given analysis - this conclusion can be confirmed for
wave impacts as well. Reference is being made to chapter 10 where this conclusion will be
treated more extensively.

However, this conclusion can change if other parameters of the model are changed (see section
9.5) or for instance if the strength of the foundation soil is varied. If the strength of the soil of
the foundation is very high or, the other way around, if the Coulomb friction coefficient is
smaller in magnitude than expected, sliding of the caisson may be more probable than failure
(collapse or yielding) of the foundation.

In this study the strength of the foundation has been determined using the theory of Brinch
Hansen. The calculated strength is dependent on the angle of intemnal friction of the foundation
soil. One of the govemning factors in the determination of the strength of the foundation soil is
the dimensionless factor N, which changes dramatically with the angle of internal friction of the
foundation soil. A large angle of internal friction means a large strength of the foundation soil.
In sub-section 8.3.1 it was found that the strength of the chosen foundation soil in this study
with an angle of internal friction of 33° is 608 kN/m?, while for an angle of intemal friction of

35° the strength of the soil can be as high as 1022 kN/m”.

Just as has been said in the previous section, there will be a relation between the strength of the
foundation soil and the stiffness.

Recapitulating: it is to be expected that there is a large influence of the strength of the
foundation soil and the magnitude of the Coulomb friction coefficient on the conclusions which
can be drawn. In the remainder of this study, the following values will still be used:

e maximum bearing pressure of the foundation soil: 608 kN/m”
e magnitude of the Coulomb friction coefficient (p): 0.6

Within the framework of MAST the following could be found; “A low value of the friction
angle between caisson bottom and the gravel or rubble or bedding layer or mound, may bring
about the risk of sliding of the caisson over this layer. A reliable prediction of this angle may be
essential. The quantification is not yet clear. The favourable effect of a rough caisson bottom or
ribs cannot yet be quantified” [MAST II MSC (1995)].




Wave Impacts on Vertical Breakwaters

9.4 Variation of the damping of the foundation

In this section the magnitude of the damping of the foundation of the vertical breakwater will be
varied. It has been shown that the damping values obtained from experimental results exhibit a
considerable scatter [OUMERACI et al. (1992a)]. In order to assess the effect of this scatter on
the results of the computations of the dynamical behaviour of the vertical breakwater, three
different cases have been investigated:

e case I the reference case (see figure 8.11):
dy,d,, ds, dyand ds : 73.58*10° Ns/m
ds ; 367.9*10° Ns/m

e case5: the damping of the foundation will be halved:
dy,d,,ds, dyand ds 36.79*10° Ns/m
ds ; 183.95%10° Ns/m

e case6: the damping of the foundation will be doubled:
di,dy,ds,dyand ds 147.16%10° Ns/m
ds : 735.80*10° Ns/m

The breakwater will be exposed to the wave impact load which has been sketched in figure 9.4.

The stiffnesses of the springs and the strength of the foundation will not be varied and these
values are according to the values reflected in figure 8.11. Thus, the maximum bearing pressure
of the foundation soil is 608 kN/m? and the stiffnesses of the springs k1 to ks is 3.0¥10° N/m
and the stiffness of spring ks is 1.5%¥10' N/m as has been derived in chapter 8 (see figure 8.11).

The influence of the magnitude of the friction coefficients on the horizontal displacement of the
vertical breakwater is shown for the bottom of the vertical breakwater (point 4, see figure 9.2)
in figure 9.16, for the centre of gravity (C) in figure 9.17 and for the top (B) of the caisson in
figure 9.18. In each figure, case 5 and case 6 are compared to the reference case, case 1

horizontal displacement bottom of the vertical breakwater

0.004 -

0.003 - case 1, d
case5,0.5d

0.002 + — - — - case6, 2d

time (s)

fig. 9.16  Horizontal displacement of the bottom of the vertical breakwater (4)
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horizontal displacement centre of gravity of the vertical breakwater

case 1,d
case 5,0.5d

— - = ~case6,2d

fig. 9.17 Horizontal displacement centre of gravity (C) of the vertical breakwater

horizontal displacement top of the vertical breakwater

case 1,d
case 5,0.5d
— - — = case 6,2d

fig. 9.18 Horizontal displacement top (B) of the vertical breakwater

The results of the computations are shown in figure 9.16 to 9.18. The conclusion found by
Oumeraci et al. [OUMERACI et al. (1994)]: “As is to be expected, the period of the oscillations
and the maximum amplitude of the response of the first cycle are almost not affected by the
variation of the damping terms 4" is confirmed by the computations carried out in this section.

As can be seen from fig 9.16 to 9.18 large variations of the damping of the foundation of the
vertical breakwater have much less influence on the maximum horizontal displacement of the
vertical breakwater than large variations of the stiffness of the foundation. The maximum
displacements do not differ that much from case to case as could be found in figure 9.5 to 9.7
for the variation of the stiffness of the foundation from case to case, see table 9.1.

maximum horizontal maximum horizontal
displacement bottom of displacement bottom of
the vertical breakwater the vertical breakwater
for variation of the for variation of the
stiffness : damping
(see figure 9.5) : (see figure 9.16)
case 1: reference case k 3.0 mm case 1: reference case d 3.0 mm
case 2: 0.5*k 4.2 mm case 2: 0.5*d 3.4 mm
case 3: 2*k 1.9 mm case 3: 2*d 2.7 mm
ratio: case 2 / case 3 2.21 ratio: case 5/ case 6 1.26
table 9.1 Comparison maximum horizontal displacements for variation of the stiffness and damping
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On the other hand, the damping strongly affects the magnitude of the amplitude of the
oscillations after the first cycle. This is according to the formulae presented in figure 9.1. See
equation 9.4 which represents the amplitude of a mass-spring-dashpot model with one degree of
freedom which is exposed to a wave impact:
Fy * _Edﬁ
e

2
- ©0.4)

If the magnitude of the friction coefficients increases (the damping d increases) than the
amplitude of the (horizontal) movement of the breakwater decreases: the two factors of which
equation 9.4 consists do both decrease.

Because of the fact that the damping has only got a minor influence on the maximum
displacement of the bottom of the vertical breakwater, the effect of the variation of the damping
will not be investigated as intensively as the effect variation of the stiffness of the foundation

has been done.

Note that the springs do not become plastic in the reference case. The displacements of the
vertical breakwater - horizontal, as shown in figure 9.16 to 9.18 but also vertical - for case 5
are somewhat larger than for the reference case. This means that spring 5 of case 5 will become
plastic for a short moment. But as can be seen in figure 9.16 to 9.18 this does not cause any
significant residual horizontal displacement of the vertical breakwater.
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9.5 Variation of the masses and mass moment of inertia of the vertical
breakwater

The effect of the variation of the mass and mass moment of inertia of the vertical breakwater
will be studied by means of a variation of the total lay-out of the vertical breakwater as can be
seen in figure 9.19. Note that this is the only section of the report in which the lay out of the
(chosen) vertical breakwater will be changed. All other calculations in the report will be done
for the lay out of the reference case, case 1, described among other things in figure 8.11 and
9.19.

The reference case is case 1 and the breakwater with the different geometry is case 7. The
breakwater of case 7 is considered to be a vertical composite breakwater. a vertical wall
breakwater (a caisson) placed on a rubble mound. The ratio height / width is chosen the same
for both cases. So the width of the caisson of case 7 is: (16/23)*20 =14 m.

CASE 1 CASE 7
3 20m 3 14m
H A e e A
23 m
SWL 8 m
— N
15m o

m = 29269.9%10° kg my = 15463.9*10°kg
m;, = 38956.2*10°kg m, =  18219.1*10°kg
® = 3.016*10° kgm® ® = 0.6863*10° kgm’

fig. 9.19 Lay-out vertical breakwater case 1 and case 7

The masses and mass moment of inertia of the vertical breakwater of case 1 are according to the
values which are presented in figure 8.11 or 9.2. The masses and mass moment of inertia of
case 7 have to be determined now:

Meai = 30*%14*¥16*1950 = 13104.0%¥10°kg (see equation 7.11)
Mipanor = 30%1.4¥1025%8%= 2755.2%10° kg (see equation 7.13)
Miyg ver = 0 kg (see equation 7.14)
Mgoo hor = 2359.9%10° kg (see equation 7.15)
Mgeover = 2359.9%10° kg (see equation 7.15)
m = 13104*10°+ 2359.9*10° = 15463.9*10° kg (see equation 7.16)
m; = 13104*10°+ 2755.2*10° + 2359.9*10° = 18219.1*10’ kg (see equation 7.17)
6 = 1, *18219.1*10°*(14>+16%) = 0.6863*10° kg (see equation 7.20)
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The stiffness and the damping of the foundation soil are the same for each case and according to
figure 8.11. In fact the stiffnesses of the springs and the magnitude of the damping is dependent
on the surface of the bottom slab of each individual caisson as has been derived in chapter 7.
But for reasons of comparison it is assumed that the stiffness and the damping of the foundation
soil are maintained constant for both cases in order to assess the effect of the variation of the
masses and mass moment of inertia of a vertical breakwater more clearly.

The strength of the horizontal springs is assumed to be the same for both cases as well.
According to the theory of Brinch Hansen, which has been used before to calculate the strength
of the foundation soil, the strength of the foundation soil of case 7 can be different from the
reference case because the strength of the foundation soil is dependent on the surface of the
bottom slab of the vertical breakwater. However this effect is neglected here. Because of the
fact that the weight of the vertical breakwater of case 7 is much smaller than the weight of the
vertical breakwater of case 1, a smaller force is needed to provoke breakwater sliding. If the
same uplift pressure is assumed for both cases (~35 kN/m?) than the normal force on the
foundation for case 7 is equal to (see equation 7.88)

F, = 13104.0¥10°+9.81-8%¥14*30%1025%9.81-3.5*14*30*1025*9.81 = 79.98*10° N

If the Coulomb friction coefficient is p = 0.6 than the maximum and minimum force in spring 6
are:

Fipring 6, max, min = 0.6 * 79.98*10° = +47.99%10° N

A berm with a large width will significantly change the height of the breaking waves against the
vertical wall. The rubble mound of case 7 is considered to be narrow. It is assumed that it does
not change the breaking conditions of waves on the vertical front wall of the breakwater
compared to case 1. So it is assumed that the same wave impact load acts on the two
breakwaters sketched in figure 9.19. This wave impact load is sketched in figure 9.20 and is the
same wave impact as the one which has been shown before in figure 9.4.

................. Fh,max = 30*15*pw*g*Hb2
=30%15%1025%9.81*10%
=452.5%10°N

time

A 4

I = 37 !!!§

fig. 9.20 Wave impact force on the vertical breakwater

The wave impact, described in figure 9.20 is assumed to act on Still Water Level (SWL) The
wave impact acts different on the two breakwaters relative to their centre of gravity because of
the fact that the lay-out of the two breakwaters is different. The wave impact acts 35m
eccentric relative to the centre of gravity for case 1 and 0 m eccentric relative to the centre of
gravity for case 7 because the centre of gravity is exactly placed at Still Water Level for case 7.
It is assumed that the mass of the vertical breakwater is equally distributed over its height,
length and width just as it has been said before in chapter 7.

Now all input parameters are known for case 7. In figure 9.21 the displacements of the centre of
gravity of the vertical breakwater of case 7 are shown. Some results of the calculations of case
1 can be found in figure 9.5 to 9.8,
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003 - displacements centre of gravity of the vertical breakwater case 7

- - — - vertical translation

0.015 + horizontal translation

002 +

rotation

fig. 9.21 Displacements centre of gravity of the vertical breakwater for case 7

As it can be seen in figure 9.21 the vertical breakwater slides. There is a residual horizontal
displacement of several mm. The breakwater slides to the right if the wave impact acts on the
left vertical front wall of the breakwater (see figure 9.19). From this it can be concluded that it
is unfavourable for the stability of a vertical breakwater to have a small mass. The
displacements of a vertical breakwater will be larger for a “light” caisson than for a “heavy”
caisson with a rectangular cross-section which are both exposed to the same wave impact. This
conclusion can be confirmed by the formulae given in figure 9.1. The maximum displacement of
a vertical breakwater exposed to a wave impact is proportional to:

F, ©.1)

2
=2
4

If the mass m increases, than the maximum displacement of the vertical breakwater decreases if
all other parameters remain constant. This can also be found in figure 9.6 and figure 9.21. The
maximum horizontal displacement of the centre of gravity for case 1, the “heavy” caisson, is 22
mm, while the maximum horizontal displacement of the centre of gravity of case 7, the “light”
caisson is 27 mm. It can be concluded that the heavier the caisson, the safer the caisson is
against sliding, so it is favourable for the stability of a vertical breakwater to have a large mass.

This conclusion is only valid if the breakwater of case 1 and case 7 are exposed to the same
wave impact load. Thus, it is unwise to design a breakwater with a high rubble mound with a
small width and a small caisson - with a relatively small mass - placed on it because this
breakwater will be exposed to the same wave impact load as a large vertical breakwater of the
caisson type which is placed on a small berm. If a rubble mound with a large width is made
than probably waves with a smaller height will break against the vertical front wall because of
the fact that the water depth is significantly reduced in front of the vertical breakwater and
waves might have been broken before they reach the vertical front wall of the breakwater. It 1s
part of an economical analysis to choose the best design alternative (a large rubble mound can

be expensive!).

A large mass of the vertical breakwater is favourable for its stability. However, a vertical
breakwater with a larger mass will cause higher initial pressures in the foundation soil if the
dimensions of a vertical breakwater are fixed. This is unfavourable. Thus, a larger mass of a
vertical breakwater should be combined with larger dimensions: a larger width B, for example.
Note that a larger width will also cause an increase in the stiffness of the foundation according
to the formulae presented in chapter 7, if an individual caisson has got a fixed length L. .
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In figure 9.6 and 9.21 it-can also be seen that if the mass of the vertical breakwater decreases,
the period of the oscillation decreases as well. This is in accordance with the formulae presented

in figure 9.1 where o, is the radian frequency of the damped eigenoscillation. If the mass, m,
decreases then 0, increases and T decreases because 7 = 2n/w, . In figure 9.22 the forces in the
springs are shown for case 7. * '

B.00E+07 — forces in spring 1, 5 and 6 for case 7

400E+07 + spring 1
— - = - spring 5

2.00E+07 - spring 6

N : o
0.00E+00 ; : ; — {
TR Ws

-2.00E+07 i o

-400E+Q7 1 time (s)

-8.00E+07 + |

-8.00E+07 L

fig. 9.22 Forces in spring 1, 5 and 6 for case 7

It can be seen from figure 9.22 that in this case sliding is detrimental for the stability of the
vertical breakwater. Firstly the horizontal spring becomes plastic while secondly vertical
spring 5 becomes plastic, in other words: the breakwater slides before the foundation vields.
This confirms what has been said before in section 9.3: changing the parameters of mass-
(elasto-plastic)spring-dashpot model might as well change the conclusion which vertical break-
water failure mechanism is the most probable one. In figure 9.10 could be found that for that
case yielding of the foundation was the most detrimental failure mechanism. In chapter 10 it this
conclusion will be found as well for the vertical breakwater described in figure 8.11 (case 1).

The following-could be found in the literature about the influence of the magnitude of the added
mass, the geo-dynamic and the hydro-dynamic mass: “Depending on the motions of the
structure and the nature of the foundation soil, the geo-dynamic mass and the hydro-dynamic
mass may reach values of more than 5% and 50% of the mass of the oscillating structure,
respectively. Not properly accounting for these added masses will introduce some mistakes in
the period as well as in the amplitude of the oscillations. In this respect it has already been
pointed out by Qumeraci et al. [OUMERACI et al. (1992a)] that neglecting the geo-dynamic mass
and the hydro-dynamic mass would result in a decrease up to 10% and 25% of the natural
period of oscillation respectively” [OUMERACI et al. (1994)].

Nota bene:
In this chapter different parameters of the mass-(elasto-plastic)spring-dashpot

model have been varied. In order to assess the effect of the variation of each
parameter all other parameters have been maintained constant. In this way it has
been possible to properly indicate the influence of the different parameters on the
stability and the dynamical behaviour of a vertical breakwater exposed to wave
impacts. However, it is assumed that the initial values of the different parameters
of the mass-(elasto-plastic)spring-dashpot TILLY model belonging to case 1 and
described in figure 8.11 are the correct values. All calculations in the next chapter
will be carried out for this model. Different conclusions which have been presented
in this chapter, conceming the parameter variation of the mass-(elasto-
plastic)spring-dashpot model of a vertical breakwater, are summarised in chapter

11 as well.

g - 20




Wave Impacts on Vertical Breakwaters

Analysis of different types of wave impact loads
on a vertical breakwater and conclusions

Naples (Ttaly), 11" of January 1987, H = 7 m




Wave Impacts on Vertical Breakwaters

10 Analysis of different types of wave impact
loads on a vertical breakwater

10.1 Introduction

The TILLY model which has been derived in chapter 8 can be used to analyse the effect of the
variation of the magnitude of different parameters which are related to the dynamical behaviour -
of a vertical breakwater which is exposed to wave impacts. In the previous chapter the effect of
the variation of the parameters related to the mass-(elasto-plastic)spring-dahpot TILLY model
itself has been investigated. In this chapter the characteristics of a wave impact load on a
vertical breakwater will be varied in order to determine the effect of wave impacts. Which wave
impacts are important and which are not for the stability of the investigated vertical breakwater?
In this chapter it is tried to find an answer to this question.

All calculations of the effects of different types of wave impacts on a vertical breakwater will be
carried out for the vertical breakwater of which the mass-{elasto-plastic)spring-dashpot model
has been derived in chapter 8. A summary of this dynamical model of the vertical breakwater
can be found in figure 8.11 on page 8-18 but is reflected here as well in figure 10.1.

The effect of the variation of the magnitude of the different parameters of the model - which has
been described in the previous chapter - has to be kept in mind when the effect of different types
of wave impacts on the stability of the vertical breakwater is examined. The magnitude of the
different parameters of the model of the vertical breakwater is chosen fixed in this chapter, see
figure 10.1. All conclusions which will be drawn in this chapter are directly valid for the chosen
model. However, it must be stated that some conclusions are generally applicable. The chosen
magnitude of the parameters seem to represent a very reasonable estimation of the real values in
nature. However, conclusion might dramatically change if the goveming parameters of the
model are changed (e.g. the masses and mass moment of inertia or the stiffness of the
foundation).

The following will be treated in this chapter:

o In section 10.2 the effect of a variation of the position of the point where the resultant of the
wave impact pressures acts on the vertical front wall of the breakwater.

e An analysis of the formula of Schmidt et al. [SCHMIDT et al. (1992)] in section 10.3. This
formula can among other thing be found in section 4.3 equation 4.21. It will be shown that
the duration of a wave impact is very important. Failure of the breakwater (foundation
failure) can occur if the duration of a single peak wave impact (a wave impact of the
transition type, see chapter 2) is in the range of the eigenperiods of the vertical breakwater.

e In section 10.4 an analysis of the formulae of which the derivation has been presented in
chapter 4 can be found. In that chapter horizontal wave impact force prediction formulae
have been derived using a consideration of momentum of a breaking wave.

e A comparison between the effect of a single peaked wave impact force (due to a wave impact
with almost no trapped air) and a double peaked wave impact force (due to a wave impact
with a large trapped air pocket) will be given in section 10.5.

e In section 10.6 the effect of wave impacts with low frequency force oscillations will be
described. These low frequency force oscillations originate from pulsating air pockets of a
well developed plunging breaker on a vertical wall which encloses a large air pocket.
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TILLY MODEL

SIZES
Bc =20 m bh=10 m
H,=23 m  h=1l5m
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: = 9
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0 extension
+ ¥ ¢ 1016 mm

dl k1 dz k2 d3 k3 d4 k4 d5 k5

INERTIA

my= 29269.9*10° kg
my= 38956.2*10° kg
F— 0 = 3.016*10’ kgm®

d DAMPING
dy = 73.58*10° Ns/m
d, = 73.58*%10° Ns/m
dy = 73.58*%10° Ns/m
dy = 73.58*%10° Ns/m
ds= 73.58*10° Ns/m
ds = 367.9%10° Ns/m

SPRING 6

force ,
91440 kN |

k=1.5*10""N/m
elastic /' | _extension 4
........ 91440 kN

force plastic
74464 8kN [Ty

plastic

>
>

elastic
initial force

30480.0 kN T~ in the Sprj_ng

. =13 0%*10°
+ plastlc 5 k=3.0%10" N/m _
’ extension
+ ¥ 10.16 mm

fig. 10.1

Summary of the mass-(elasto-plastic)spring-dashpot TILLY model

As has been stated before in chapter 9 on page 9 - 3, the only load on the vertical breakwater
which is assumed to be of relevance for the benefit of the analysis of the dynamical behaviour
of the vertical breakwater which is exposed to different kinds of wave impact loads in this
chapter, is the horizontal wave impact load (see for example figure 9.3). All other loads on the
vertical breakwater are assumed to be constant. They will not influence the dynamical
behaviour of a vertical breakwater which is exposed to a wave impact load. More can be found
on page 9 - 3, where a more extensive explanation of this assumption has been given.
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For the benefit of the calculations in this chapter an estimation of the height of the breaking
waves on the vertical breakwater has to be made. The height of the breaking waves on the
vertical breakwater sketched in figure 10.1 can be calculated using the formula presented
equation 4.12 [OUMERACI et al. (1994a)].

- * ok
B =L *| 010254+ 00217 | 12Ke | [ | 22759 4.12)
b b 1+K

L,

¥

It is assumed that the peak period of the breaking waves is equal to 7, = 12 s and the reflection
coefficient K, is equal to 0, which means that the waves are not reflected at all (a conservative
assumption according to equation 4.12). The breaking depth of the waves is d, = 15 m. The
height of the breaking waves can be calculated if the wave length of the breaking waves Ly is
known. This wave length can be calculated using equation 10.1:

T2
g:gptm%ﬁq (10.1)
2n L,

It can be found that L, = 134 m. Using equation 4.12 the height of the breaking waves can be
calculated as: H, = 10.09 m.

In all calculations which will be carried out in this chapter, the peak period of the waves is
assumed to be T, = 12 s and the height of the breaking waves is assumed to be H, = 10 m.

Nota bene:
All calculations of which the results will be presented in this chapter in section

10.2 to 10.6 have been carried out assuming that the different wave impacts act
over the total length of the vertical breakwater or a section of the vertical
breakwater (e.g. a single caisson with a length of 30 m). This means that the waves
which approach the vertical breakwater are assumed to be long crested while m
nature this may often not be the case. It should be kept in mind that this is a very
conservative assumption.
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10.2 Effect of the position of the wave impact force

In this section the influence of the position of the wave impact force on the front wall of a
vertical breakwater is investigated for wave impacts with high peak force and a short duration
(wave impacts of the transition type). The model specifications of the investigated breakwater
can be found in figure 10.1.

In the previous chapters the wave impact load (the total wave impact force, which is the
resultant of the wave impact pressures on the front wall of the vertical breakwater) has been
assumed to act on the vertical breakwater at Still Water Level (SWL). Thus, 15 m above the
seabed (the water depth is 15 m). Takahashi [TAKAHASHI (1995)] concludes that the pressure
intensity peaks at a waterdepth 4,, . If the Irribarren number £>0.5 then impulsive pressures may
occur (see chapter 2) and the ratio of the water depth at the structure d and 4,, determines the
type of wave impact load as follows:

10< hi <12 ventilated shock, Wagner type pressures
d ) .
PR =10 vertical wave front, Transition type pressures (10.2)

07< hi <10 trapped air pocket, Bagnold type pressures

m

As can be seen in the equations 10.2 the maximum wave impact pressure will act somewhere
around SWL. This can also be seen in figure 4.4. The total wave impact force on the vertical
breakwater and the position of this resultant of the wave impact pressures can be calculated if
the distribution of the wave impact pressures on the front wall of the vertical breakwater is
known. As can be seen in figure 4.4 this total wave impact force is located slightly below SWL.

Three different TILLY calculations have been carried out for three different positions of the
resultant of the wave impact pressures on the model described in figure 10.2. All calculations
have been carried out for a transition type wave impact which has been schematised by a
triangular load. One for a total wave impact force (integrated pressures on the front wall of the
vertical breakwater) which acts at SWL (case 1), one for a wave impact force which acts 2 m
below water SWL (case 2) and one wave impact force which acts 2 m above SWL (case 3) (see
figure 10.2). The magnitude of the wave impact of the transition type which has been
investigated is also sketched in figure 10.2. A maximum wave impact force
of Fiymax = 15%p,*g*H,? = 15083 kN/m with a duration of 15 ms is chosen which acts over the
total length (30 m) of the structure; t, = 0.5%; .

DEFINITION SKETCH WAVE IMPACT LOAD
““““ A Fh 0a=15083 kKN/m

""" A
CASC 3 cmmmmmsemmd - <o e e n e oee Sm
case 1 5.5m

wave impact forces
integrated wave impact]
& pac 11.5m

pressures on the
vertical wall of the
breakwater &

v

<Ja=15ms,

fig. 10.2  Position of different wave impact forces of the transition type and triangular load history
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Results of the TILLY calculations can be found in figure 10.3, figure 10.4 and figure 10.5. In
figure 10.3 the horizontal displacement of the bottom of the vertical breakwater is sketched for
the three different cases. A description of the three different cases can be found in figure 10.2.
In figure 10.4 the forces in the spring 6, the horizontal spring (see figure 10.1) are sketched for
the three cases. The forces of spring 1 and spring 5, the two most eccentric vertical springs (see
figure 10.1) are sketched in figure 10.5.

0.0015 . . .
horizontal displacement caisson breakwater bottom

0.001
case 1
A case 2
0.0005 + — = — -case3
m -
0 i L /\: /\ L P .
T T v v Il
1 2 o 3 4 5
-0.0005 Y7 time (s)
Y
-0.001 v

fig. 10.3  Horizontal displacement of the bottom of the vertical breakwater for the three different cases
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fig. 10.4  Forces in spring 6 (the horizontal spring) of the vertical breakwater for the three different cases
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fig. 10.5 Forces in spring 1 and spring 5 of the vertical breakwater for three different cases
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As it can be seen in figure 10.3 the maximum horizontal displacement of the bottom of the
vertical breakwater does not differ very much for the different cases. The initial displacement is
to the right because the wave impact acts on the left side of the vertical breakwater. It can be
seen in figure 10.4 that spring 6 (the horizontal spring) does not become plastic under the
different wave impact conditions. The same counts for spring 1 and spring 5 (the most eccentric
vertical springs, see figure 10.1). The foundation of the breakwater does not fail (no yielding of
the foundation soil) and the vertical breakwater does not slide. Another failure mode, besides
sliding of the vertical breakwater and foundation failure, is overturning. The most dangerous
condition for breakwater overtuming is a wave impact force which acts very high; case 3 is
determinative: the force acts 2 m above SWL. It can be seen in figure 10.5 that the forces in the
vertical spring do not reach the value of 0 kN. This means that the condition described in
equation 7.90 is fulfilled. The vertical breakwater is safe against overturning for all cases.

e<03*B, =03*20=6m (7.90)
Overturning will not be considered as a failure mode anymore in this study because of the fact

that the foundation soil does not yield when the force in the springs becomes 0 kN. The only
failure mechanisms which will be taken into account are sliding and yielding of the foundation.

Thus, it can be concluded that the breakwater is save against sliding, overturning and
breakwater failure for every case, case 1, case 2 and case 3.

The position of resultant of the enormous wave impact pressures to which the vertical
breakwater (with a very common - rectangular - shape) has been exposed does not influence the
displacement of the vertical breakwater very much. The vertical breakwater is safe agamst
sliding, overturning and foundation failure for every investigated position of the resultant of the
wave impact pressures on the vertical breakwater. The conclusion that the position of the wave
impact force is not important is only valid if the foundation of the vertical breakwater does not

fail, and that is true in this case.

In chapter 7 and 8 it has already been found that wave impacts with a very short duration but a
very high peak force are not dangerous for the stability of the examined vertical breakwater.
The results found in this section confirm this conclusion again. An addition to this conclusion
can be given: it does not matter where the wave impact force of the transition type - very high
peak force with a very short duration - acts on the vertical front wall of the breakwater. The
maximum displacement does not change for the different positions if these positions are within a
reasonable range of 2 m above and 2 m below Still Water Level.

Nota bene:
In this report the waterdepth is assumed to be constant: d is 15 m. In nature there

will among other things be an influence of the vertical tide. This vertical tide

causes different water depths in front of the vertical breakwater. This may have the

following consequences:

o If the water depth at the vertical front wall of the breakwater changes, the
height of the breaking waves against the vertical will also change.

e The position of the wave impact forces on the vertical front wall will change

o There will be different buoyancy forces for each water level

This all means that the stability of the vertical breakwater has to be examined for
each water level which can occur at the site where the vertical breakwater is

planned to be built.

In the remainder of this report, all calculations will be carried out for a waterdepth
ofd=15m.
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10.3 Analysis of the formula of Schmidt et al.

In this section an analysis of the formula of Schmidt et al. [SCHMIDT et al. (1992)], see equation
421, will be treated. In the previous chapters, as well as in the previous section, the wave
impact of the transition type has been described by a triangular shaped load history. A wave
impact of the transition type is a wave impact on a vertical wall where only a small amount air
is trapped (see chapter 2). As has been shown in chapter 2 before, a wave impact of the
transition type should in fact be schematised by a “church-roof” load history: a large peak force
with a very short duration, followed by the actual “roof” of the church: a quasi-static wave
force with a much longer duration (see chapter 2 and figure 10.6).

A Force (kN/m)

F h,max )
“church-roof” load

time (s)
ta

It

Lot

fig. 10.6  Church-roof load history

However, in the previous chapters the quasi-static wave force of the “church-roof” load has
been neglected in the calculations. According to Oumeraci et al. [OUMERACI et al. (1994)]
neglecting of the quasi-static force in the calculations is valid if one is only interested in the
maximum response: “The procedure of substituting the actual impact loads by triangular loads
may lead to useful results with respect to engineering application provided that:

o the rise time and the load duration of the triangular pulse are well selected, and

e the actual impact load does not exhibit oscillations after the peak value which may excite the

structure at quasi-resonant conditions.”

(the oscillations after the peak value of the wave impact force which may excite the structure at
quasi-resonant conditions is treated in section 10.6)

In chapter 7 and chapter 8 the dynamical behaviour of a vertical breakwater due to a wave
impact of the transition type with a very high peak force (13422 kN/m) and a very short
duration (12 ms) has been investigated. The duration of the wave impact and the peak force
have been determined using the formula of Schmidt et al. [SCHMIDT et al. (1992)] see equation
4.21. The main point of interest has been the maximum response of the structure. This
maximum response has been used in the calculations of foundation failure and breakwater
sliding of the vertical breakwater. Thus, according to Oumeraci et al [OUMERACI et al. (1994)]
it has been valid to use only a triangular load history for this analysis of the dynamical
behaviour of the vertical breakwater and its stability. In this section a same kind of analysis will
be carried out so here the quasi-static wave impact force of the “church-roof” wave impact load
will be neglected as well .




Wave impacts on Vertical Breakwaters

In the previous chapters the influence of a wave impact with a very high peak force of
13422 kN/m and a very short duration of 12 ms on the stability of the vertical breakwater -
which among other things is described in figure 10.1 - has been treated. It has been extensively
shown that such a kind of wave impact does not threaten the stability of the vertical breakwater.
This was an important conclusion because a lot of measurements are carried out all over the
world just to measure these very high peaks forces with very short durations, while these forces
seem to be not important for the stability of the vertical breakwater as can be shown by a
dynamical stability analysis.

Other wave impacts of the transition type can be more dangerous than the one with the shortest
duration and the highest peak, as will be shown further on in this section. A wave impact of the
transition type described by the formula of Schmidt et al. [SCHMIDT et al. (1992)}, with a
duration which is in the range of the eigenperiods of the vertical breakwater, is the most
dangerous wave impact for the stability (stability against sliding and foundation failure) of the
vertical breakwater.

For the benefit of the analysis presented in this chapter the quasi-static part of the wave impact
force will be neglected. Within the framework of the given analysis this is permitted according
to Oumeraci et al. [OUMERACI et al. (1994)]. Thus, the transition type wave impact - a single
peak wave impact - will be schematised by a triangular force history as is shown in figure 10.7.

A
F‘h. max

N
Cd

time (s)

fig. 10.7 Triangular force history

In this section it is assumed that the rise time (¢, ) of the wave impact force is the half of the
total duration (r,) of the wave impact with a triangular load history. This seems a reasonable
assumption according to what Schmidt et al. [SCHMIDT et al. (1992)] found in their large scale
hydraulic model tests, see equation 4.23:

03<2 <065 (4.23)

¥
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The duration of a transition type wave impact and the maximum horizontal force of a wave
impact on a vertical breakwater are related. In chapter 4, equation 4.21 has been treated which
describes this relationship between the maximum horizontal wave impact force and the duration
of the wave impact [SCHMIDT et al. (1992)]:

F " -0.344
e 1.24[—") “.21)
p ng b T, P
in which:
H, = breaker height at the front wall of the vertical breakwater
7, = peak period of the waves
P = mass density of sea water (1025 kg/m")
tq = total peak duration
Firmx = maximum horizontal wave impact force on a vertical breakwater per linear
meter ’

Calculations of the response of the vertical breakwater to different kinds of wave impacts of the
transition type are carried out by the use of the TILLY model which is summarised in figure
10.1). The wave impact load of the transition type is supposed to act at Still Water Level
(SWL). The response of the vertical breakwater has been calculated for five different cases. The
input parameters of the formula of Schmidt et al. [SCHMIDT et al. (1992)] are: g = 9.81 m/s?,

Hy=10m,T, =12sandp, = 1025 kg/m’

The most relevant eigenperiod of the vertical breakwater for the stability analysis (sliding and
foundation failure) using the horizontal wave impact force prediction formula of Schmidt et al.
[SCHMIDT et al. (1992)] is the eigenperiod of the horizontal oscillation of the vertical
breakwater; 7, = 0.845 s. The magnitude of this eigenperiod has already been determined in
chapter 7 (see equation 7.44). In figure 8.12 as well as in figure 8.13 it can be seen that the
(horizontal) displacement and the forces (vertical as well as horizontal) in the springs of the
vertical breakwater, which is described by the mass-(elasto-plastic)-spring TILLY model (figure
10.1), are determined by an oscillation with a period which is approximately equal to the
eigenperiod of the horizontal oscillation of the vertical breakwater. This eigenperiod of 0.845 s
is slightly influenced by the amount of damping according to the formulae presented in figure
9.1. It is to be expected that the eigenperiod of the horizontal oscillation is the most important
eigenperiod of the vertical breakwater for the determination of the stability of the vertical
breakwater using the horizontal wave impact force prediction formula of Schmidt et al.
[SCHMIDT et al. (1992)].

In case 3 the duration of the wave impact force of the transition type is 0.5* 7, = 0.4225 s, in
case 4 the duration of the wave impact force of the transition type is 7, = 0.845 s and finally in
case 5 the duration of the wave impact force is 2*7; = 1.69 s. In table 10.1 the wave impact
force per linear meter can be found for each investigated case. In table 10.1 the maximum
momentum: Iy = 0.5%1; *F), e (see figure 4. 14) for each case is given as well. Note that all
calculations will be done for the total length of the vertical breakwater (L. = 30 m) and that all

wave impact loads in table 10.1 are smaller than 15*p,*g*H,* = 15083 kN/m.

i Is] ta/T, []  Fame [KNm] T _[Ns/m]
case 1 0.012 0.001 13422 80532
case 2 0.12 0.01 6079 364725
case 3 0.4225 0.03521 3942 832847
case 4 0.845 0.07042 3106 1312324
case 5 1.69 0.1 2447 2067838

table 10.1 Different loading cases
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In figure 10.8 the maximum impact force versus the maximum impact duration is shown for the
tests which have been carried out by Schmidt et al [SCHMIDT et al. (1992)]. The different cases
which are described in table 10.1 are shown in this figure as well.

Ffff”{ f l(llf”( | Ii(TH'[[ f 7T TTT
Finex { rd } 0.394
— =124 —/—

Correlation Coefllicient R = 0.50

case +

Refative Peak Force Frax /(138“{7‘))

— Iy = lLinpact Duralion 7
Ip = Wave Period
2 1 Hp, = Breaker Height —4
P = Water Density
g = Acceleration of Gravity
1 llIHHL l 1 IIIKIH! - LIl L -
0.0006 0.0020 0.4q08 0,020 0,08 8,20 0.6
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fig. 10.8 Maximum impact force versus impact duration {ScHMIDT et al. (1992)]

The horizontal displacement of the vertical breakwater bottom for the five different cases is
shown in figure 10.9.

horizontal displacement caisson breakwater bottom case 1
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0.006 + - ~ N
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-0.003 -
-0.004 -

—— = = -case?

fig. 10.9  Horizontal displacement of the bottom of the vertical breakwater for five different cases
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It can be seen in figure 10.9 that for this breakwater the most dangerous wave impact of the
transition type which is described by the formula of Schmidt et al. [SCHMIDT et al. (1992)] is
the wave impact with a duration of 0.845 s (case 4) and a magnitude of 3106 kN/m (assuming
t,=0.5%t; for all loading cases). The wave impact of case 4 causes the largest horizontal
displacements of the bottom of the vertical breakwater. The duration of this wave impact is
equal to the most relevant eigenperiod of the vertical breakwater for the stability analysis: the
eigenperiod of the horizontal oscillation of the vertical breakwater: 7, =0.845 s (see again
figure 8.12 and figure 8.13).

The following can be concluded using the wave impact force prediction formula of Schmidt et
al. [SCHMIDT et al. (1992)] and assuming that the rise time of a wave impact is the half of the
total duration of a wave impact for all loading conditions. As long as the duration of the wave
impact force is smaller than the eigenperiod of the horizontal oscillation of the vertical
breakwater: the larger the amount of momentum of a wave impact (see table 10.1), the larger
the maximum displacement of the breakwater (see figure 10.9). The maximum displacement of
the vertical breakwater occurs for the wave impact load which has got the same total duration
as the most relevant eigenperiod of the vertical breakwater for the stability analysis (the
eigenperiod of the horizontal oscillation of the vertical breakwater). When the total duration of
the wave impact force becomes longer, then the maximum displacement of the vertical
breakwater decreases while the total amount of momentum of the wave impact still increases.
This means that besides the total amount of momentum of a wave impact, the total duration
relative to the eigenperiod of horizontal oscillation of the vertical breakwater is detrimental for
the maximum displacement of a vertical breakwater according to the formula of Schmidt et al.
[SCHMIDT et al. (1992)]

The forces in some springs which represent the foundation of the vertical breakwater are shown
in figure 10.10 (for a definition of the different springs see figure 10.1).

1.00E+08 — forces in spring 1, 3, 5 and 6 for case 4
— - — -spring 1
800E+O7 + /N  jeeeans spring 3
6.00E+07 + spring 5
—————spring 6
400E+07 +
2.00E+07 1
N
0.00E+00 /\\/
-2.00E+07 | g e 3 o A S
/ N
-4.00E+07 + e et e e

-6.00E+07

-8.00E+07 +

fig. 10.10 Forcesinspring I, 3, Sand 6

It is obvious to see that the foundation of the vertical breakwater will fail for case 4. In figure
10.10 the forces in spring 1, spring 3, spring 5 and spring 6 are shown. As can be seen in figure
10.1 spring 1 and spring 5 are the two most eccentric vertical springs, spring 3 is the centre
vertical spring and spring 6 is the horizontal spring. As has been stated before in this report
foundation failure of vertical breakwaters is more likely to occur than sliding. This can be seen
in figure 10.10 again. Spring 5 becomes plastic before spring 6 becomes plastic. Failure of the
foundation seems to be the most important failure mechanism for vertical breakwaters. Not only
for quasi-static loads, as has been shown in previous deterministic and probabilistic studies, but
as well as for wave impact loads. Spring 6 reaches its maximum force of 91440 kN only for a
very short while. So only little sliding of the vertical breakwater occurs.
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fig. 10.11 Displacements centre of gravity vertical breakwater

There may be almost no horizontal displacement of the bottom of the vertical breakwater but as
can be seen in figure 10.11 where the displacements of the centre of gravity are shown for case
4 the breakwater is displaced downwards and there is a residual rotation to the right. Note that
the consequence of this residual displacement is that the centre of gravity and the top of the
vertical breakwater are permanently displaced to the right as can be seen in figure 10.12

014 - displacement top °
o121 of the caisson (point B) B
01 + ®
008 1 displacement centre of gravity C
' of the caisson (point C)
0.06 -+ PN
004 + A
1 N\ N
m O t T + ~—
002 @ 1 2 XS 3 4 5
time (s)
004 +
0.06 + . . . .
displacement centre of gravity of the caisson (point C)

fig. 10.12 Horizontal displacement of different points on the vertical breakwater

Figure 10.12 is used for the benefit of the sketch of the residual displacement of the vertical
breakwater after the wave impact of case 4. To show the effect of the wave impact on the
vertical breakwater of case 4 the scale of figure 10.13 is distorted.

fig. 10.13 Residual displacement of the vertical breakwater (distorted scale)
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In the next section it will be shown that the vertical breakwater which is described in figure 10.1
is safe against sliding and yielding of its foundation soil as long as the momentum of the wave
impact to which the breakwater is exposed is less than / = 279000 Ns/m. If a triangular load
history is assumed (see figure 10.7) then the maximum amount of momentum of a wave impact
according to the formula of Schmidt et al. [SCHMIDT et al. (1992)] (equation 4.21) can be
approximated by:

-0.344
Inex = 0.5%t *F) e = 0.5 *1,%1 24%p, *g*H,™* [;LJ
2
Now, the combination of a horizontal wave impact force and total duration of that wave impact
force, according to the formula of Schmidt et al., can be determined which will not cause
breakwater sliding or yielding of its foundation soil (7, = 12 s, H, = 10 m):

Flymax = 6996 kKN/m t; =0.080 s= 80 ms I s = 279000 Ns/m

If this result is compared with the dominant eigenperiod of the oscillation of the vertical
breakwater (7, = 0.845 s) than it can be derived that, according to the formula of Schmidt et al.
[SCEMIDT et al. (1992)], wave impacts with a total duration smaller than 9.5% of the most
dominant eigenperiod of the investigated vertical breakwater (see figure 10.1) are not dangerous
for its stability.

Conclusion of the analysis presented in this section:

Using the formula of Schmidt et al. [SCHMIDT et al. (1992)] the following conclusions can be
drawn: one cannot say in general which kind of wave impact of the transition type (a wave
impact with a small amount of trapped air) is the most dangerous one according to the formula
of Schmidt et al [SCHMIDT et al. (1992)]. Calculations in this section show that the most
dangerous wave impact has got a duration which is equal to the most dominant period of the
eigenoscillation of the vertical breakwater. Thus, the most dangerous wave impact of the
transition type can only be determined if the dynamical properties of the vertical breakwater are
known. Every vertical breakwater has its own unique dynamical properties, and thus its “own”
most dangerous wave impact of the transition type according to the formula of Schmidt et al.
[SCHMIDT et al. (1992)]. In the design phase of a vertical breakwater a lot of attention should
be paid to the occurrence of wave impacts and their relation to the dynamical properties of the
vertical breakwater itself in order to design a safe and reliable vertical breakwater.

For prototype scale, wave impacts of the transition type with very high peak forces and very
short durations were found not to be dangerous for the stability of the vertical breakwater. For
the investigated vertical breakwater in this section this was the case for wave impacts with a
total duration smaller than 9.5% of the most dominant eigenperiod of the vertical breakwater.
Nevertheless, a lot of model tests are carried out all over the world to measure the very high
peak forces and the very shorts durations even more accurately. These calculations seem not to
be very relevant for the over-all dynamical stability analysis of a vertical breakwater.

The calculations in this section show again that failure of the foundation of the vertical
breakwater (the maximum bearing capacity of the foundation soil is exceeded) is more likely to
occur than shiding of the vertical breakwater.

The following could be found i literature: “Wave impacts with relatively long duration,
although with a relatively low load maximum, are often most dangerous for the stability of
caisson breakwaters, as the duration approaches the same order of magnitude as the natural
oscillation period of the caisson with its foundation” [MAST II MSC (1995)]. This conclusion
- can be confirmed according to the analysis of the formula of Schmidt et al
[SCHMIDT et. al (1992)] in this section. The results found in this section are according to what
Oumeraci et al. [OUMERACI et al.(1994)] found. When the wave impact of the transition type is
schematised by a triangular load history and #, = 0.5¢;, then the maximum response of the
vertical breakwater may be expected for a wave impact with a total duration #; which is equal
to the most dominant eigenperiod of the vertical breakwater, in this case the eigenperiod of the
horizontal oscillation of the vertical breakwater.
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10.4 Analysis of the effect of maximum wave impact forces and
momentum

In chapter 4 the derivation of different horizontal wave impact force prediction formulae has
been treated using the consideration of momentum of a breaking wave on a plane vertical front
wall of a breakwater. In chapter 4 the following figure has been presented for the determination
of maximum wave impact forces related to the rise time of wave impacts (see figure 10.14).

2
167 hmex s

momentum = constant

; 3 L 4
T T T t

4
T

0 ‘02 0.4 06 08 1 12 14 16 ¢
 dimensionless transition time = 0.1493 —> Jd, /g

fig. 10.14 Prediction formula of wave impact forces with the maximum dimensionless wave impact force of 15

Maximum wave impact forces are not important for the stability of a vertical breakwater as
long as the total duration of these wave impact forces is very short since the maximum wave
impact force is limited. According to figure 10.14 the maximum dimensionless wave impact
force is (equation 4.20):

Fh,max
=15 (4.20)

pw*g*Hb2

One of the govemning factors for the stability of vertical breakwaters is the amount of
momentum of the wave impacts to which the vertical breakwater is exposed as will be shown in
this section and has been shown in the previous section before.

The maximum amount of momentum of wave impacts per linear meter, using the horizontal
wave impact prediction formulae presented in figure 10.14, is presented in figure 10.15. The
following input parameters have been used (for a detailed derivation of figure 10.15, see section
4.4):

o g =981 ms’
e H,=10m
L4 db=15m

e p,=1025kg/m’
e t, = 030%; and f, = 0.65*; according to the large scale hydraulic model tests of
Schmidt et al. [SCHMIDT et al.(1992)], see equation 4.23:

f
03<-<0565 (4.23)
d
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fig. 10.15 Maximum momentum for H, =10m, dy =15 mand . =0.65%; and 1, = 0.30*t;

The maximum amount of momentum of a wave impact which the vertical breakwater -
described in figure 10.1 - can resist before the foundation of the vertical breakwater yields has
been calculated by using the TILLY model described in figure 10.1. Yielding of the foundation
soil was found to be the dominant failure mechanism of the vertical breakwater again. This
maximum amount of momentum was found to be:

1=279000 Ns/m

According to figure 10.15 this means a wave impact with a maximum force of
Fhmax = 15%*p,*g*H,2 = 15083 kN/m and a total duration of 37 ms (point C). In this section a
triangular wave impact force history is used again to schematise a wave impact force, according
to figure 10.7. It can be seen in figure 10.15 that this amount of momentum is only very small
compared to the maximum amount of momentum calculated by using the wave impact
prediction formulae which are sketched in figure 10.14. It can be seen in figure 10.16 where the
displacements of the centre of gravity of the vertical breakwater are shown and i figure 10. 17
where the forces in spring 1, spring 5 and spring 6 are shown, that the combination of this wave
impact force and this total duration will not lead to foundation failure, sliding and permanent
displacements of the vertical breakwater. So it can be concluded that the vertical breakwater
described in figure 10.1 is save against foundation failure and sliding for a wave impact with
the maximum wave impact force of Fjmax = 15%p,*g*H,’ and a total duration of 37 ms or
smaller than 37 ms.

For the calculation, of which the results are presented in figure 10.16 and figure 10.17, it has
been assumed that f, = 0.5*7; . Note that for this very short total duration (37 ms) the load
duration #; is predominant for the response of the vertical breakwater, the ratio 7, /fs does not
influence the maximum response of the vertical breakwater according to Oumeraci et al.
[OUMERACI et al. (1994)] and Delft Hydraulics [DELFT HYDRAULICS (1994)]. In their studies it
has been shown that for impulsive loads of short total duration ([¢; ] / [the period of the most
dominant eigenoscillation] < 0.25) the response seems to be almost independent of the load
shape and is essentially determined by the area under the wave impact load curve (momentum):
0.5%¢4 *F), max according to figure 10.7. The relation of £, and / or #; to the eigenperiod(s) of an
investigated vertical breakwater is important.

It can be seen in figure 10.15 that the amount of momentum of two wave impacts with the same
total duration (and which are in the constant branches of the graph) is larger for the wave
impact with the shortest rise time. This wave impact will be the most dangerous for the stability
(stability against sliding or foundation failure) of a vertical breakwater. This is logical because
according to the horizontal wave impact force prediction formulae which have been derived in
chapter 4, using the consideration of momentum of a breaking wave, the wave impact with the
shortest rise time causes the largest wave impact force.
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fig. 10.16 Displacements centre of gravity of the vertical breakwater loading case point C in figure 10.15
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fig. 10.17 Forces in spring 1, 5 and 6 loading case point C figure 10.15

In chapter 4 it has been found that the maximum momentum of a wave impact can be calculated
by using equation 4.42 which has been derived using the formula (equation 4.19) presented in
figure 10.14:

-1
_&7:224*[ Y J (4.19)
P, *g*H, d, /g
d d, t
1fz,>2'24* - Inx=05%p, *g*H,> *224% |“b x4 (4.42)
15 g g rr

It can be shown that the maximum response of a vertical breakwater which is exposed to wave
impacts which represent the same maximum amount of momentum according to equation 4.42 -
see the horizontal, constant, branches in figure 10.15 - is the largest for the wave impact with
the shortest total duration (and the highest peak force). This is point 4 in figure 10.15, point A
is the intersection of the horizontal and linear branch of the graph. This phenomenon can be
seen in figure 10.18 where the horizontal displacement of the bottom of the vertical breakwater -
described in figure 10.1 - is given for two loading cases of wave impacts which represent the
same maximum amount of momentum, this maximum amount of momentum is equal for both

loading cases.
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The first loading case is the loading case indicated by point 4 in figure 10.15 and is a wave
impact with a rise time equal to:

224 |d
t = 24 —”=0.1493*,[~}§—=0.1847s,
15 g ~ Vos1

The maximum response of the vertical breakwater can be expected for the shortest rise times
relative to the total duration: f, = 0.3*¢; (equation 4.23). According to figure 10.15 these wave
impacts represent the largest amounts of momentum. So #; can be calculated as:

t; =0.1847/03=0.6155s
Using equation 4.19, the maximum force of a wave impact with a rise time of 0.1847 s is:

Fimsx = 15*p,*g*H,? = 15083 kN/m

I=0.5%0.6155*15083*10° = 4641953 Ns/m (Check figure in 10.15 — OK!)
The other loading case is a wave impact with a total duration equal to the dominant eigenperiod
of the vertical breakwater, according to section 10.3, this period is the eigenperiod of the

horizontal oscillation of the vertical breakwater, which is 7> = 0.845 s. So:

t; =0.8450 s
t, =0.3*%0.8450=0.2535s

Using equation 4.19, the maximum force of a wave impact with a rise time of 0.2535 s is:

Fmax = 10987 kN/m
I=0.5%0.8450*10987*10° = 4641953 Ns/m (Check in figure 10.15 — OK!)

009 - m P point 4 figure 10.15
008 +
0.07 +
0.06 +

005 + horizontal displacement caisson breakwater bottom
004 +

003 +
—td=0.6155

002 + td = 0.8450 ,
0.01 + time (s)

fig. 10.18 Horizontal displacement bottom of the vertical breakwater for maximum wave impact momentum
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It can be seen that point 4 in figure 10.15 gives the largest response of the vertical breakwater:
the maximum response is approximately 9 cm, see figure 10.18. Thus, the wave impact
belonging to point 4 in figure 10.15 is more dangerous for the stability of the vertical
breakwater than the wave impact with a total duration equal to the dominant eigenperiod of the
oscillation of the vertical breakwater because it causes the largest response. In general it can be
concluded that if a vertical breakwater is exposed to two different wave impacts, which both
represent the same amount of momentum, the wave impact with the shortest total duration and
rise time causes the largest response of the vertical breakwater. This is confirmed by the studies
of Oumeraci et al. [OUMERACI et al (1994)] and Delft Hydraulics [DELFT HYDRAULICS
(1994)]. Both wave impacts here represent the same amount of momentum. Thus, the maximum
response for wave impacts with an equal amount of momentum can be expected for the pont at
the intersection of the linear and the constant branch in figure 10.15 (point 4) if the horizontal
wave impact force prediction formulae described in figure 10.14 are used for the benefit of the
calculation of the maximum response of the vertical breakwater exposed to wave impacts. This
is in contrast to what has been found in the previous section! There it has been found that the
most dangerous wave impact for the vertical breakwater was a wave impact with a total
duration equal to the most dominant eigenperiod of the oscillation of the vertical breakwater.
So it needs once again to be stressed that the conclusion which has been drawn in the previous
section, that the wave impact force with a duration equal to the most dommant eigenperiod of
the vertical breakwater is the most dangerous wave impact force, is only valid when the formula
of Schmidt et al. [SCHMIDT et al. (1992)] is applied in breakwater design and when it is
assumed that ¢, = 0.5*¢, for all loading cases.

The forces in the springs of the loading case belonging to point 4 in figure 10.15 ((f=0.6155 s,
Frmse = 15083 kN/m) are shown in figure 10.19. Note that if the forces in the vertical springs
are added, a value which is approximately equal to F,, = 152.4*10° N (see equation 7.88) can be
found.

. R R S Y spmg 1
1.00E+08 | forces in the springs — = cpring?
8.00E+07 + -=-r qung3

— - = -spring 4
6.00E+07 + spring 5
spring 6
4.00E+07 +
N ooe+07 |
0.00E+00
200407 &

-4.00E+07 +
-6.00E+07 + |
-8.00E+Q7 +

fig. 10.19 Forces in the springs for wave impact loading case point 4 in figure 10.15
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1 - displacements centre of gravity vertical breakwater
09 + - ~
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fig. 10.20 Displacements of the centre of gravity for wave impact loading case point A in figure 10.15

Figure 10.20 is used for the benefit of the sketch of the residual displacement of the vertical
breakwater after the breakwater has been exposed to a wave impact with a duration and a force
belonging to point A in figure 10.15. To show the effect of this wave impact (f4 = 0.6155 s,
Fymax = 15083 kN/m) on the vertical breakwater, the scale of figure 10.21 has been distorted.

A

fig. 10.21 Residual displacement of the vertical breakwater (distorted scale)

The conclusion of this section can be written in terms of formulae. If the formula of Klammer et
al. [KLAMMER et al. (1996)] (equation 4.16) is used, together with the maximum dimensionless
wave impact force of 15 (see figure 10.14), for the benefit of the analysis of the dynamical
behaviour of the vertical breakwater which is described in figure 10.1, then the maximum
response of a vertical breakwater can be expected for the force Fjma and the rise time ¢,
described in equation 10.3 and 10.4 (see among other things figure 10.14 and 10.15 e.g. point

A or B):

t, = 2i254 * .‘;i (10.3)
Fromax = 15%p,*g*Hy’ (10.4)

The formula derived by Klammer et al. [KLAMMER et al. (1996)] is given in equation 4.19:

-1
t
=224% A 4.19)
[de /g]

h,max

pw"‘g*flb2
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224, |d . ' . . .
Ift, > * |22 then the maximum momentum of a wave which causes a wave impact is
g
given by equation 4.42 (derived using equation 4.19):
Lux=05%p,, *g*H,> *224% /fi’- s la (4.42)
: g i

In chapter 4 a horizontal wave impact force prediction formula has been derived which takes the
peak period 7, of the waves into account:

-1
e t
Pw g*Hb P .

038 : : : .
If ¢, >—-l——* T, then the maximum momentum of a wave which causes a wave impact is

given by equation 4.44 (derived uéing equation 4.31)
Inw=05%p, *g*H,> *038*T, (4.44)

The maximum wave height of a breaking wave with the maximum amount of momentum on the
vertical front wall of the breakwater which will not cause breakwater sliding or foundation
failure for the most dangerous combination of F}, . and £, or 1, (see figure 10.15, e.g. pomnt 4 or
B) can be calculated knowing that the vertical breakwater which has been described in figure
10.1 1s safe against foundation failure and sliding for a total amount of momentum of /=279000
Ns/m. This has been carried out for different ratios of f, / #; using equation 10.3 and 4 .42, see
table 10.2 as well as for equation 4.44 also given (7, = 12 s). The maximum response of the
vertical breakwater using equation 4.31 and 4.44 will occur for ¢t; = (0.38/15)*T, according to
the results presented in this section (according to equation 10.3).

H o

equation 4.19/4.42 =031 245m
=051 3.17m

t,=0.651t; 3.61m

equation 4.31 /4.44 3.49m

table 10.2 Maximum breaker height allowed

For the calculation of these maximum allowed breaker heights on the vertical breakwater, the
effect of the shape of the wave impact load history (see figure 10.7) on the maximum response
of the vertical breakwater has been neglected.

For wave impacts caused by breakers with these maximum wave heights the vertical breakwater
sketched in figure 10.1 is safe against sliding and foundation failure for all possible total
durations of wave impacts if equation 4.19, derived by Klammer et al. [KLAMMER et al.
(1996)], or equation 4.31 is used for the design of the vertical breakwater together with the
maximum dimensionless horizontal wave impact force of 15 (see among other things figure
10.14). It is to be seen in table 10.2 that these wave heights are only very small compared to the
waterdepth d = 15 m. This again confirms the fact that the horizontal wave impact force
prediction formula derived by Klammer et al. [KLAMMER et al. (1996)] and equation 4.31 are
very conservative.

Using the conservative horizontal wave impact force prediction formula of Klammer et al.
[KLAMMER et al. (1996)] together with the maximum dimensionless wave impact force of 15,
higher breaking waves than presented in table 10.2 against the vertical front wall of the
breakwater - which will not cause sliding or foundation failure - are for instance possible if the
dynamical properties of the breakwater itself are changed.
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In the previous chapter is has been stressed that increasing the mass of the vertical breakwater
and decreasing the stiffness of the foundation are possible solutions for making a vertical
breakwater more safe against wave impacts, because of the fact that the maximum response of
the vertical breakwater will decrease. However, decreasing the stiffness of the foundation may
result in a vertical breakwater which is less stable against quasi-static wave loads because of
the fact that the eigenperiod of the oscillation of the vertical breakwater increases when the
stiffness of the foundation decreases. The following other comments must be made as well: the
mitial pressure in the foundation soil of the vertical breakwater will increase if the mass of the
vertical breakwater is enlarged without changing the dimensions of the vertical breakwater. This
is unfavourable for the stability of the vertical breakwater against foundation soil failure.
Increasing the stiffness of the foundation is unfavourable and decreasing the stiffness of the
foundation is favourable for the stability of the vertical breakwater against sliding and
foundation failure. However, a foundation soil with a low stiffness will probably have got a
smaller strength compared to a stiff foundation soil. Changing the dynamical properties of the
vertical breakwater can have contradictory effects, as can be seen. So one must be very careful
when changing the properties of the vertical breakwater and its foundation.

The conclusions found in this section are somewhat different from the conclusions found in the
previous section. In contrast to the previous section where a horizontal wave impact force
prediction formula has been used which does not represent a constant amount of momentum (the
formula of Schmidt et al. [SCHMIDT et al. (1992)], equation 4.21), the period of the wave
impact load relative to the most dominant eigenperiod of the vertical breakwater (e.g. the period
of horizontal oscillation as has been found in this study) was found to be not normative
anymore if a formula is used which has been derived using the consideration of momentum of a
breaking wave for calculating the response of a vertical breakwater. In this section it has been
found that if a vertical breakwater is exposed to two different wave impacts which both
represent the same amount of momentum, the wave impact with the shortest total duration and
rise time causes the largest response of the vertical breakwater.

These two different conclusions - found in this section and in the previous section - do both
indicate the fact that an extensive analysis of the wave impacts to be expected at the site were a
vertical breakwater is planned to be build is necessary. For the design of a vertical breakwater it
is essential to know which wave impacts are to be expected. The types of wave impacts and the
dynamical properties of a planned vertical breakwater determine the effect of wave impacts on
the (dynamical) behaviour of a vertical breakwater. A (very) large and stiff hydraulic scale
model - which is preferable to overcome scaling problems - can be used to analyse the different
wave impacts to be expected at the location where a vertical breakwater is planned to be built. It
is very important to know which kinds of wave impacts are to be expected. Knowing these wave
impacts: rise times, total durations and peak forces and the dynamical properties of a vertical
breakwater which has been designed, the effect of different wave impacts can be indicated. This
can be done by using the results of the calculations carried out by the use of a mass-(elasto-
plastic)spring-dashpot model of a designed vertical breakwater exposed to wave impacts, as has
been carried out in this study. The results of the analysis of the dynamical behaviour of the
designed vertical breakwater can be used to adapt the actual vertical breakwater to the wave
impacts which are to be expected. Another important thing is that a probabilistic approach for
vertical breakwater design conceming wave impacts seems to be necessary as has been
mentioned before in chapter 4. The chance of occurrence of a maximum wave impact load can
be a governing factor in the design of vertical breakwaters.

The conclusion found in this section has been confirmed by Oumeraci et al. [OUMERACI et al.
(1994)] and by [DELFT HYDRAULICS (1994)]. For different wave impacts with the same amount
of momentum the wave impacts with the shortest rise times and total durations are the most

dangerous ones.
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10.5 Effect of a double peaked wave impact

In chapter 5 the effect of a trapped air pocket on the wave impact load on a vertical breakwater
has been discussed. Two aspects of the trapped air pocket have been treated:

o the double-peaked force history and
o the low frequency force oscillations.

This results in two different kinds of wave impact loads, a double peaked wave impact force and
a wave impact with a peak force followed by low frequency force oscillations.

The second peak of the double-peaked force history is in fact the first peak of the low frequency
force oscillations. So one could say that it is wrong to consider the second peak and the low
frequency force oscillations separately. This is not true. The first peak of the low frequency
force oscillations is not likely to be damped very much while the other maximum forces after
this peak - or the amplitude - of the low frequency force oscillations (thus, apart from the first
one) are likely to be damped out very soon: the amplitude of these low frequency force
oscillations diminishes very rapidly. Then, one can see two peaks and only very minor force
oscillations in the load history (see figure 10.22). Only under special conditions the low
frequency force oscillations can play an important role in stability of a vertical breakwater
against foundation failure and sliding. The effect of the low frequency force oscillations on the
dynamical behaviour of the vertical breakwater will be shown in the next section. In this section
the effect of a double peaked force history on the vertical breakwater will be treated.

When an air pocket is trapped between the breaker and the caisson front, the impinging breaker
tongue first strikes the wall and induces a first peak (F; ) in the impact force history. It is then
followed by a second peak (F; ) resulting from the subsequent compression of the air pocket
caused by the advancing breaker front. (see figure 16.22)

Force
A

air pocket

front wall
vertical
breakwater

L 4

time

fig. 10.22 Force history of a double peaked wave impact force

10 - 22



Wave Impacts on Vertical Breakwaters

If the second peak occurs within a time:

t<T/A or LT<t<T (10.5)
in which:
T = dominant period of the oscillation of the vertical breakwater

that means while the caisson is moving shoreward, it will have to overcome no or at least only a
part of the structure’s inertia. The cumulative response is expected to be higher than it would be
if only a single impact occurred or if the second peak was applied at a time ¢ with 774 <t < T,

Schmidt et al. [SCHMIDT et al. (1992)] have shown that in the case of a well developed plunging
breaker with a large trapped air pocket - which is the case in this section - the spatial
integration of the impact pressures generally leads, besides a double peaked wave impact load,
to a total force with a duration which may be much larger than usually assumed. The duration
of the total impact force may reach values in the range of 0.15 - 0.6 s in full scale situations.
According to Walkden et al. [WALKDEN et al. (1995)] the reduction in the impact force and the
associated increase in the impact duration are due to the combined influence of the increase in
compressibility of the air/water mixture and the observed change in the wave profile at the
impact. So if a large air pocket is trapped between the breaking wave and the vertical front wall
of the breakwater not only a double peak force may be expected but also a longer duration of
the wave impact.

A comparison has been made between a transition type wave impact which is a single peaked
wave impact (case 1, see figure 10.23) and a double peaked wave impact due to a large trapped
air pocket (case 2, see figure 10.23) by the use of the results of the computations of the mass-
(elasto-plastic)spring-dashpot TILLY model described in figure 10.1. The vertical breakwater
which has been described in figure 10.1 is exposed to these two different wave impact loads (see
figure 10.23). The effect of the longer duration of the impact force in the case of a plunging
breaker which encloses a large pocket of air between the breaker and the vertical front wall of
the breakwater, which also causes the double peaked wave impact force, has also been taken
into account. According to figure 4.4 on page 4 - 6 the horizontal wave impact force (the
resultant of the wave impact pressures) in case of a well-developed plunging (which encloses a
large air pocket between the breaker and the vertical front wall of the breakwater) acts below
Still Water Level. In this case the wave impacts are assumed to act on the front wall of the
vertical breakwater 2 m below SWL. The two load histories have been derived in such a way
that a reliable comparison can be made between the results of the two different kinds of wave
impacts on the TILLY model described in figure 10.1 and the results of the two different kinds
of wave impact loads on the large scale hydraulic model tests which have been carried out by

Oumeraci [OUMERACI (1991)].

The two different wave impacts are sketched in figure 10.23.
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An estimate of the time between the first peak and the second peak can be made by using the

propagation velocity of shallow water waves. The propagation velocity of waves in water with a
depth of d = 15 m is and a wave height of /, =10 m is:

c=4[g(d+05%H,) = /981*(15+05*10) =14.01m/s (10.6)

If the large trapped air pocket has a thickness of approximately D = 2.0 m, then the time
between the first and the second peak A7 can be approximated by:

_D_ 20 443 (10.7)
¢ 1401

The period T of the dominant oscillation of the vertical breakwater is approximately 0.845 s.
7/4 = 0.211 s, so the second peak can occur within the time(s) given by equation 10.5.

CASE 1 CASE 2

A 6079 kN/m

4000 kN/m

2000 kN/m

\ 4
\ 4

0.120 s

0.250 s

fig. 10.23 Force history of the two wave impact loading cases

0.006 T horizontal displacement bottom vertical breakwater
0.005 +
0.004 +
0.0038 +/]
0.002 +

0.001 +
m g 7Ny
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case 1
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fig. 10.24 Horizontal displacement of the caisson breakwater bottom
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It can be seen in figure 10.24 that a double peaked wave impact force causes a larger response
of the vertical breakwater than a single peaked wave impact force. This confirms the theory
which has been presented before: double peaked wave impacts can be more dangerous than
single peaked wave impacts. The larger response of the double peaked wave impact is caused

by:

e the fact that the second peak occurs while the caisson is moving shoreward (in the direction
of the harbour), the second peak does have to overcome no or at least only a part of the
structure’s inertia and

e the fact that the double peaked wave impact force represents a slightly larger amount of
momentum - in spite of the fact that the peak force is smaller - due to the fact that wave
impacts which enclose a large air pockets have got longer total durations.

The results of the comparison of the two different wave impact types carried out by the use of
the TILLY model described in figure 10.1 show good agreement with the results which have
been found in large scale model tests (see figure 10.25) by Oumeraci [OUMERACI (1991)].
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fig. 10.25 Influence of the shape of loading history on the structure response [OUMERACI (1991)]
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10.6 Wave impact force with low frequency force oscillations

When a large amount of air is trapped between a well developed plunging breaker and the front
wall of the vertical breakwater which is described in figure 10.1, low frequency force
oscillations can occur due to the expanding and compressing of the large trapped air pocket.

The period of these force oscillations can be equal to one of the most dominant eigenperiods of
the vertical breakwater as can be calculated with the equation which has been derived in
chapter 5. The relationship between the period of pulsations 7, (in seconds) and the incident
wave height A (in cm) has been found to be:

Tow=0.75*%10% * H (10.8)

The most dominant eigenperiod of the vertical breakwater which has been described by the use
of the TILLY model is 0.845 s. So the wave height H needed is 11.27 m to cause low
frequency force oscillations with a period of 0.845. This is more than the wave height which
has been used in the calculations which have been carried out in the previous sections. But to
demonstrate the effect of low frequency force oscillations due to large amounts of trapped air it
is assumed that the period of the low frequency force oscillations of 0.845 s can occur near the
vertical breakwater which has been described in figure 10.1.

According to Oumeraci et al. [OUMERACI et al. (1994)] the wave impact force loading history
cannot be schematised anymore by a triangular load history as it has been done before in the
previous sections if the maximum response of the vertical breakwater is of interest because of
the fact that the actual wave impact load is now supposed to exhibit oscillations after the peak
value which may excite the structure at quasi-resonance conditions.

A calculation has been made by the use of the TILLY model described in figure 10.1. The
wave impact load with the low frequency force oscillations to which the vertical breakwater
described in figure 10.1 will be exposed is described in figure 10.26. The wave impact has got
a triangular load history with a peak force of 13422 kN/m and a duration of 12 ms (the first
peak, this peak is schematised by a single peaked force for reasons of simplicity, while it could
have been a double peaked force according to the previous section), followed by three periods
of low frequency force oscillations (in total 3*0.845=2.535 s). The amplitude of these
oscillation is approximated by 1678 kN/m (which is '/s ¥13422 kN/m, approximately according
to figure 5.15 on page 5 - 18), the minimum force of the low frequency force oscillations is
0 kN and the maximum force is 2*1678 = 3356 kN/m. Note that the scale of the sketch of the
load history in figure 10.26 is distorted and that the sinusoidal low frequency oscillations are
schematised by a saw-toothed force history.

force wave impact force with low frequency force oscillations
13422 kN/m

3356 kN/m

1678 kN/m

0012s 0.845s
fig. 10.26 Wave impact force: a peak force with low frequency force oscillations
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The wave impact with the low frequency force oscillations is assumed to act 2 m below Still
Water Level just as it has been described in the previous section and can be seen in figure 4.4
on page 4 - 6. The results of this calculation of the load history described in figure 10.26 are
plotted in figure 10.27. In figure 10.27 the response of a vertical breakwater exposed to only
the first peak of the wave impact load history, so a wave impact with a triangular load history
with a peak force of 13422 kN/m and a total duration of 12 ms is sketched as well for reasons
of comparison.

0012 - horizontal displacement caisson breakwater bottom
0.01 +
0.008 +
0.006 +
0.004 +
wave impact with low frequency
0.002 + . .
force oscillations
m g4 ; e ; —
Y
0 1 2 3 4
0002 1 single peaked wave impact ime (s)

fig. 10.27 Horizontal displacement caisson breakwater bottom due to wave impact with low frequency force
oscillations

As it can be seen in figure 10.27, the permanent displacement of the bottom of the vertical
breakwater due to the wave impact described in figure 10.26, the wave impact peak force
followed by low frequency force oscillations, is approximately 7.5 mm. The wave impact with
only the single peaked force and the triangular load history does not cause permanent
displacements. The maximum displacements do also differ a lot: the maximum displacement of
the vertical breakwater which is exposed to the single peaked wave impact is approximately 1
mm, while the wave impact with the low frequency force oscillations causes a maximum
displacement of approximately 11 mm. It can be concluded that the wave impacts with low
frequency force oscillations after the first peak must be regarded as very dangerous. The
occurrence of this kind of wave impacts should be prevented by changing the design of a
planned vertical breakwater if this kind of wave impacts is likely to occur.
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However, the wave impact load described in this section will very rarely occur.
Dr. Shigeo Takahashi told me:

“The low frequency force oscillations are not so important for practical design of vertical
breakwaters, compared with the first and second peak of the force history of a wave impact
caused by a plunging breaker because:

e the trapped air will leak out during compression and the oscillation will damp out (diminish
soon)

e and this leakage will be encouraged due to short-crested waves and oblique waves, as well
as wave overtopping. (Actually the low-frequency force oscillations can be large only in two
dimensional experiments with a very high crown wall.)”

In my opinion this kind of wave impact load should not be neglected, especially not in the case
where the sections of the vertical breakwater (the individual caissons) are not placed accurately
relative to each other or due to other reasons (other kinds of loads on the vertical breakwater)
shifted relative to each other (see figure 10.28).

position where a trapped air pocket easily can occur
. seca side
/ -
/ harbour side
a section of the vertical breakwater (a single caisson)

fig. 10.28 Caissons shifted relative to each other

It is very likely that a wave impact with low frequency force oscillations will occur at the spot
indicated in figure 10.28, because a large trapped air pocket can be formed relatively easy and
_ the air can not leak out because of the vertical concrete walls of the caissons at that spot. This
will cause the breakwater to slide even more and a kind of domino effect may occur, which can
end in displacements of several meters.

The same phenomenon can probably occur at the intersection of two vertical breakwater
alignments, see figure 10.29.

position where a trapped air
pocket easily can occur

fig. 10.29 Intersection of two breakwater alignments

10 - 28



Wave Impacts on Vertical Breakwaters

1 1 Conclusions and recommendations

11.1 Introduction

In this chapter, the final chapter, the conclusions and the most important results of this study on
wave impacts on vertical breakwaters will be presented. Throughout the whole report
conclusions and interim results have been presented by using the results of: an extensive study
of literature, own findings and the calculations which have been carried out by means of a
mass-(elasto-plastic)spring-dashpot computer model of a vertical breakwater which is exposed
to wave impacts. This computer model of a vertical breakwater has been used to study the effect
of the variation of the different dynamical properties of a vertical breakwater (e.g. masses, mass
moment of inertia, stiffness and damping) and the effect of different types of wave impacts.

In this chapter a summary of the most important conclusions and results can be found in section
11.2. Some of these conclusions do end up in recommendations which should - in my opinion -
be taken into account when vertical breakwaters are designed. These recommendations will be
formulated in section 11.3. Despite the research which has been carried out within the
framework of this graduation project a lot of gaps remain open. Therefore, some
recommendations for future research will also be given, these can be found in section 11.3 as
well.

11.2 Conclusions and results

This study, which has been carried out within the framework of a graduation project at the
faculty of Civil Engineering of the Delft University of Technology, has put forward the
following conclusions:

e The shape of the breaking waves considerably influences the resulting impact force histories.
There is not one type of wave impact. Three types of wave impacts on breakwaters with a
plane vertical front wall can be distinguished:

1. Wave impacts of the Wagner type: caused by upward deflected breakers, no air is
trapped between the breaker and the plane vertical front wall of a breakwater.

2. Wave impacts of the transition type: caused by breaking waves of the plunging type with
an almost vertical front at the instant of the impact: a small amount of air is trapped
between the breaking wave and the plane vertical front wall of a breakwater. This type of
wave impact causes a very high (single peaked) force with a small total duration. This
type of wave impacts gives the highest total horizontal peak force on vertical
breakwaters.

3. Wave impacts of the Bagnold type: caused by well-developed plunging breakers, a large
amount of air is trapped between the breaking wave and the plane vertical front wall of a
breakwater. This type of wave impact causes a (double peaked) force which can be
followed by low frequency force oscillations caused by the cyclic compression and
expansion of the large amount of trapped air under highly transient pressure fields. The
period of these low frequency force oscillations is related to the amount of trapped air:
the period increases if the amount of trapped air increases. The second peak of the double
peaked wave impact force, which is in fact the first peak of the low frequency force
oscillations is more likely to occur in nature than the low frequency force oscillations,
which will probably diminish soon in most cases due to the leaking out of air.

e The upper limit of wave impact pressures can be found by using the shock wave model.
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e The derivation of different horizontal wave impact force prediction formulae has been
treated using the consideration of momentum of a wave which breaks onto a plane vertical
front wall of a vertical breakwater. These formulae (see equation 4.19 and equation 4.31) do
all give conservative results. Horizontal wave impact forces will most likely always be
smaller in magnitude.

e The larger the amount of trapped air between a breaking wave and the plane vertical front
wall of a breakwater, the longer the rise time of a wave impact and the smaller the peak
force of this wave impact

e If a horizontal wave impact force prediction formulae is used which has been derived by
using the consideration of momentum of a wave which breaks onto a plane vertical front
wall of a vertical breakwater and if a triangular wave impact load history is assumed, then
the largest amount of momentum of two wave impacts with the same total duration can be
expected for the wave impact with the shortest rise time because this wave impact gives the
highest impact force and will thus represent the largest amount of momentum since the total
duration is equal. The latter wave impact will be the most dangerous of the two for the
stability of a vertical breakwater. The amount of momentum is one of the governing
properties of a wave impact load concerning the stability of a vertical breakwater. Another
important characteristic of a wave impact is the relation of #, and / or 7, to the eigenperiod(s)
of a vertical breakwater.

e Goda [GODA (1994)] suggests that there is a maximum force of wave impacts which is
Fimsx =15%p,*g*H,’. Numerous measurements of small scale and large scale hydraulic
models have been investigated. The conclusion of Goda can be confirmed. Although a very
few impacts were found which gave a slightly larger force.

e It is well accepted that wave impact forces in small scale hydraulic model tests will be
greater in magnitude, but shorter in duration than their equivalents at full-scale in invariably
aerated sea water. Compression of trapped air by breaking waves and subsequent
oscillations of air bubbles give model scales which deviate from Froude’s scale law. Impact
loads converted by Froude scaling will over-estimate full-scale loads and will therefore give
an upper limit to the impact force to be expected. By means of the results of hydraulic scale
model tests it has been shown that lower impact forces can be expected from sea water wave
impacts than from similar fresh water wave impacts.

e It has been shown that the low frequency force oscillation after a (double peaked) wave
impact force which is caused by wave impacts with a large trapped air pocket (Bagnold type
wave impacts) is a phenomenon purely caused by a breaking wave itself. The period of these
low frequency force oscillations is proportional to the wave height. The period of the low
frequency force oscillations must be transferred form a hydraulic scale model to full-scale
situations by multiplying the hydraulic scale model value by a length scale instead of the
square root of a length scale (the latter is according to the Froude scaling law).
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o A mass-(elasto-plastic)spring-dashpot computer model of a vertical breakwater has been
derived which can be used to describe the dynamical behaviour of a vertical breakwater
which is exposed to wave impacts. A description of this model can be found in chapter 8 in
figure 8.11. The main sources of uncertainty of the calculations which have been carried out
by the use of the model of the vertical breakwater which has been derived in this study are:

1. The dynamical properties of the vertical breakwater and its foundation:
¢ the masses and mass moment of inertia of the vertical breakwater

e the stiffhess of the foundation soil
e the strength of the foundation soil and the magnitude of the Coulomb friction
coefficient
e the damping of the foundation soil
2. The type of wave impact load and its most relevant characteristics

o The influence of the magnitude of the different parameters of the model of the vertical
breakwater (which is described in chapter 8 in figure 8.11) on its dynamical behaviour and
stability has been studied by subsequently varying one of the parameters while remaining all
other parameters constant, including the wave impact load to which the breakwater 1s
exposed. This parameter study of the mass-(elasto-plastic)spring-dashpot computer model
has proved that especially the masses and mass moment of inertia and the stiffness of the
foundation are detrimental for the maximum response and the stability of the investigated
vertical breakwater:

1. The effect of increasing the stiffness of the foundation is that the maximum response
of the vertical breakwater decreases. However, if the strength of the soil is not changed
increasing of the stiffness of the foundation will enlarge the danger of foundation failure
(i.e. exceeding the maximum bearing capacity of the foundation soil of the vertical
breakwater). It can be concluded that a stiff foundation soil is unfavourable for the
stability of caisson breakwaters, it yields the highest sensitivity to wave impacts.

2. Changing the strength of foundation or the Coulomb friction coefficient may change the
fact which of the investigated failure mechanisms of the vertical breakwater (sliding or
foundation failure) is the most probable failure mechanism.

3. The maximum response of the vertical breakwater which is exposed to wave impacts
is almost not affected by the variation of the damping of the foundation.

4. A large mass of a vertical breakwater is favourable for its stability. The larger the
mass the smaller the (maximum) response of the breakwater. In this respect is must be
stated that it is very unwise to design a vertical composite breakwater with a high rubble
mound with a small width and only a small upright section placed on it. If this vertical
breakwater is exposed to the same wave impacts as a basic vertical breakwater placed on
a thin rubble mound foundation (and with a large mass) it has got a higher probability of
failure. If the upright section of a vertical (composite) breakwater is placed on a high
rubble mound, this rubble mound must have a large width to ensure the fact that the
breaking wave conditions onto the vertical wall of the breakwater change relative to the
design without a high rubble mound (smaller breaking waves onto the vertical front wall
of the upright section).
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o The formula of Schmidt et al. [SCHMIDT et al. (1992)] (see equation 4.21) is the most widely
used horizontal wave impact force prediction formula within the MAST project. This
formula can be used to describe wave impacts of the transition type. For the benefit of the
analysis of this formula which has been presented in this study it has been assumed that the
rise time of the wave impact is the half of the total duration of the wave impact for all
loading conditions. For the vertical breakwater which has been investigated in this study (see
chapter 8 in figure 8.11) the eigenperiod of the horizontal oscillation is the most dominant
period of oscillation. Using the formula of Schmidt et al. [SCHMIDT et al. (1992)] wave
impacts with a duration equal to this dominant period of oscillation of the investigated
vertical breakwater will yield the largest response, although the maximum wave impact force
belonging to this duration (according to the formula of Schmidt et al. [SCHMIDT et al.
(1992))) is small compared to wave impacts with an extremely short duration of say
milliseconds. According to the formula of Schmidt et al. [SCHMIDT et al. (1992)] one cannot
say which wave impact is the most dangerous one for the stability (stability against sliding
and foundation failure i.e. exceeding the bearing capacity of the foundation soil) of a vertical
breakwater. The most dangerous wave impact can only be determined if the dynamical
properties of the vertical breakwater which is exposed to wave impacts are known.

e For prototype scale, wave impacts of the transition type with very high peak forces and very
short total durations were found not to be dangerous for the stability of the vertical
breakwater which has been investigated in this study (see chapter 8 in figure 8.11). For the
investigated vertical breakwater this was the case for wave impacts with a total duration
smaller than 9.5% of the most dominant period of oscillation of the vertical breakwater
(using the formula of Schmidt et al. [SCHMIDT et al. (1992)] with 7, = 12 s and H, = 10 m).
It has been shown that for the investigated vertical breakwater a wave impact of 12 ms with
a triangular load history (it is assumed that the rise time is the half of the total duration of
the wave impact) and a peak force of 13422 kN/m is only felt for approximately 4.5 - 6.5%
in the foundation soil of the vertical breakwater. Nevertheless, a lot of hydraulic scale model
tests are being carried out all over the world just to measure the very high peak forces with
the very shorts durations even more accurately. These measurements seem not to be very
relevant for the over-all dynamical stability analysis of a vertical breakwater.

e For the maximum dimensionless wave impact force of 15, the investigated vertical
breakwater (see chapter 8 in figure 8.11) is safe against sliding and foundation failure (i.e.
exceedance of-the bearing capacity of the foundation soil) for a wave impact with a total
duration smaller than 37 ms, assuming H, = 10 m.

e Oftwo wave impacts which both represent the same amount of momentum, the wave impact
with the shortest rise time and / or total duration has been found to cause the largest
response of the vertical breakwater even if the wave impact with the longest duration has got
a total duration equal to the most dominant period of oscillation of the vertical breakwater
(this is the eigenperiod of horizontal oscillation in the case of the investigated vertical
breakwater in this study, see chapter 8 in figure 8.11).
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e Two phenomena of the Bagnold type wave impact have been studied for the vertical

breakwater which can be found in chapter 8 in figure 8.11:

1. Double peaked wave impacts can be dangerous when second peak occurs within such
an interval that the structure is moving in the same direction as the direction of the wave
impact (i.e. while the vertical breakwater is moving shoreward). The cumulative
maximum response is higher than if only a single impact occurred or if the second peak
would occur while the vertical breakwater is moving in the direction of the open sea.

2. If the period of the low frequency force oscillations (dueto a large air pocket
which is trapped between a breaking wave of the Bagnold type and the plane vertical
front wall of the breakwater) is in the range of the most dominant eigenperiod of the
vertical breakwater resonance or near resonance phenomena occur. The consequence is
that large permanent displacements of the vertical breakwater are possible if it is exposed
to such a wave impact. However, this wave impact loading type will rarely occur on a
long plane vertical front wall of a vertical breakwater and it seems to be a loading case
which can typically be found in two dimensional hydraulic scale model tests. However,
large trapped air pockets which cause low frequency force oscillations can occur at the
intersection of two breakwater alignments or when different individual caissons of a
vertical breakwater are shifted relative to each other.

e Two failure mechanisms of the investigated vertical breakwater have been treated
extensively: sliding and foundation failure. If foundation and structure parameters are chosen
in accordance with full-scale situations (see chapter 8 in figure 8.11) then foundation failure
i.e. exceeding of the maximum bearing pressure of the foundation soil (approximately 600
kN/m?) is more probable than sliding of the vertical breakwater over its rubble mound
foundation (if a Coulomb friction coefficient of 0.6 is used) under wave impact loading
conditions.

e Changing the dynamical properties of a vertical breakwater may be a solution to make a
vertical breakwater more stable against sliding or foundation failure. Increasing the mass of
a vertical breakwater and decreasing the stiffness of the foundation are the most effective
solutions to make a vertical breakwater more safe against wave impacts, because the
maximum response of the vertical breakwater will decrease. However, changing the
dynamical properties of a vertical breakwater can have contradictory effects. So if one wants
to design a safe vertical breakwater one must be very careful when changing the magnitude
of the parameters which represent the vertical breakwater and its foundation. For instance:

1. Decreasing the stiffness of the foundation, which is favourable for the stability of a
vertical breakwater against wave impacts, may result in a vertical breakwater which is
less stable against quasi-static loads because of the fact that the eigenperiods of the
vertical breakwater increase when the stiffness of the foundation decreases.

2 However, a foundation soil with a low stiffness will probably have a smaller strength
compared to a stiff foundation soil.

3. The initial pressure in the foundation soil of the vertical breakwater will increase if the
mass of the vertical breakwater is increased without changing the dimensions of the
vertical breakwater. This is unfavourable for the stability of the vertical breakwater
against foundation soil failure.

4. However, according to the Mohr-Coulomb model, the strength of the foundation soil will
increase if the magnitude of the load on the foundation soil is increased.
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Returning to the question which has been presented in chapter 1 on page 1 - 3 and page
1-5 (“Are wave impacts important for the stability of vertical breakwaters?”) the following
answers can be given:

e Wave impacts with a very short total duration relative to the eigenperiod(s) of a
vertical breakwater are not important for the stability of a vertical breakwater
(stability against sliding and exceeding of the maximum bearing pressure of the
foundation soil) because the total amount of momentum of the breaking wave is to
small. For the investigated vertical breakwater (see chapter 8 in figure 8.11) the
following results have been found in this study:

1. Using the formula of Schmidt et al. [SCHMIDT et al. (1992)] with T, = 12 s and
H, =10 m, wave impacts with a total duration 7; smaller than 80 ms are not
dangerous for the stability of the vertical breakwater (80 ms is 9.5% of the
eigenperiod of horizontal oscillation ( T = 0.85 s) of the vertical breakwater).

2. Using the maximum horizontal wave impact force (Fjmax =15%p,,*g*H,* N/m) with
H, =10 m, wave impacts with a total duration z; smaller than 37 ms are not
dangerous for the stability of the vertical breakwater (37 ms is 4.4% of the
eigenperiod of horizontal oscillation ( 7 = 0.85 s) of the vertical breakwater).

o However, a lot of research all over the world is carried out just to measure these wave
impacts with very short total durations. These measurements do not seem to be very
relevant for the over-all dynamical stability analysis of a vertical breakwater. In my
opinion these measurements seem to be unwise and a waste of money.

e The stability of a vertical breakwater against wave impacts does entirely depend on the
type of wave impact load (rise time, total duration, magnitude of the peak force, amount
of trapped air) and the dynamical properties of a vertical breakwater and its
foundation soil (masses, mass moment of inertia, stiffness and damping). The maximum
peak force of a wave impact does not necessarily induce the maximum dynamical
response. Wave impacts with relatively low peak forces (relative to Fjmax =15%p,*g*H,’
N/m ) and long total durations (relative to the eigenperiod(s) of a vertical breakwater),
double peaked wave impact forces and wave impacts with low frequency force
oscillations have proved to be more dangerous for the stability of a vertical breakwater.
The amount of momentum is one of the governing properties of a wave impact load
concerning the response and stability of a vertical breakwater. The suggestion
commonly found in the literature that impacts are totally not significant and should not
be used for the design of vertical breakwaters could not be confirmed.
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11.3 Recommendations
Recommendations which can be used for the design of vertical breakwaters:

o In the design phase of a vertical breakwater a lot of attention should be paid to the
occurrence of wave impacts and their relation to the dynamical properties of the vertical
breakwater and its foundation in order to design a safe and reliable vertical breakwater. The
types of wave impacts which are to be expected and the dynamical properties of the planned
vertical breakwater determine the effect of wave impacts on the (dynamical) behaviour of the
vertical breakwater. Knowing these wave impacts: rise times, total durations and peak forces
and the dynamical properties of a vertical breakwater which has been designed, the effect of
different wave impacts can be indicated. A dynamic analysis of the behaviour of a vertical
breakwater by means of a mass-(elasto-plastic)-spring-dashpot model should in my opinion
become a necessary part of the design process for caisson breakwaters which are exposed to
breaking wave loads. The results of the analysis of the dynamical behaviour of the designed
vertical breakwater can be used to adapt the actual vertical breakwater to the wave impacts
which are to be expected. Uncertainties concerning the type of the wave impact loads on, and
the dynamical properties of a vertical breakwater which is the subject of a design study can
be reduced by performing large-scale hydraulic model test and / or full-scale measurements
(site investigations).

e Wave impact forces are very complicated functions of the wave conditions and the geometry
of the structure. Different types of wave impacts can be distinguished. Each type of wave
impact has got different effects on the dynamical behaviour and stability of breakwaters with
plane vertical front walls (i.e. the type of vertical breakwater which has been used in this
study). So, it is very import to investigate which kinds of wave impacts are to be expected at
a site where a vertical breakwater is planned to be built. It is therefore recommended to
perform hydraulic scale model tests, at least for the final design of important (expensive)
vertical breakwaters. These hydraulic scale model tests should be performed in a large and
stiff hydraulic scale model in order to partly overcome scaling problems. In these hydraulic
scale model tests a lot of attention should be paid to the wave impacts with relatively long
durations and low peak forces. Because of the fact that, for instance, wave impacts with a
total duration which is in the range of the dominant eigenperiod of oscillation of a vertical
breakwater have proved to be very dangerous for its stability. To do research on the subject
of the duration of wave impacts seems to be very interesting and necessary. The wave
impacts with high peak forces but very short durations (relative to the dominant eigenperiod
of oscillation of the vertical breakwater) were found no to be dangerous for the stability of a
vertical breakwater. However a lot of attention is being paid to the latter in hydraulic scale
model test. This seems to be wasted time. It seems to be not necessary to do research on the
subject of wave impacts with durations shorter than say 10% of the most dominant
eigenperiod of the vertical breakwater

o Uncertainties concerning the dynamical properties of the vertical breakwater and its
foundation itself can be reduced by site investigations. The results of these site investigations
can be used to make a reliable estimation of the stiffness and damping of the foundation. An
important parameter which has to be investigated thoroughly is the Coulomb friction
coefficient. For example: a low friction coefficient will make sliding the most probable
failure mechanism instead of failure of the foundation (i.e. exceeding of the bearing capacity
of the foundation soil) which has found to be the most probable failure mechanism of a
vertical breakwater in this study.
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e If the analysis by the use of a mass-(elasto-plastic)spring-dashpot model will indicate that
wave impacts will be threatening the stability of a breakwater with a plane vertical front
wall, then the dynamical properties of the structure and foundation can be adapted to a
situation in which wave impacts will not be threatening its stability. However, this
adaptation (replacing for instance the stiffness of the foundation or the mass of the vertical
breakwater by changing the existing foundation soil by another type of foundation soil) is
possible within certain bounds as has been indicated in this report. Other possibilities to
make a vertical breakwater safe against wave impacts may then become interesting such as:
armour blocks (natural and / or artificial) in front of the vertical wall of a caisson
breakwater, a sloping top of the caisson, a perforated front wall. These construction
alternatives are usually more expensive than a caisson with a rectangular shaped cross-
section. An economical analysis will have to indicate which altemative may be the most
promising one.

o If the upright section of a vertical (composite) breakwater is placed on a high rubble mound,
this rubble mound must have a large width to ensure the fact that the breaking wave
conditions onto the vertical wall of the breakwater change relative to the design without a
high rubble mound (smaller breaking waves onto the vertical front wall of the upright
section)

o Spots where large trapped air pockets are to be expected have been indicated in chapter 10
(see figure10.28 and figure 10.29) and have to be prevented because of the fact that at these

spots Bagnold type wave impacts can easily occur. Bagnold type wave impacts have proved
to be very dangerous for the stability of vertical breakwaters.

Some recommendations for future research:

The most important recommendations for future research are in my opinion:

o In this study uplift forces were assumed to be constant in time for different wave loading
conditions. It has been stressed that this is a usefull approximation for the relatively simple
analysis which has been carried out in this study. However, in reality uplift forces are not
constant in time and they vary for different wave (impact) loading conditions. Uplift forces
should not be neglected in the final design phase of a vertical breakwater, they should be
taken into account in a dynamical stability analysis of a vertical breakwater. Full-scale
measurements of uplift forces under breaking wave conditions seems the only way to
overcome the large scaling problems concerning uplift forces in hydraulic scale model tests.
Factors of influence of uplift forces are the permeability and the geometry of the rubble
mound.

e It is interesting to do more research on the subject of the occurrence of wave impact loads.
As could be seen in figure 4.10 there is still not a very reliable statistical distribution of
wave impact forces. The return period of the most dangerous wave impact forces (@
combination of a peak force and a total duration or rise time) may be an important parameter
in a probabilistic design approach of vertical breakwaters.

e There is still a lot of work to do on the subject of scaling of wave impact loads, for instance
the effect of the salinity of the water on the magnitude, the rise time and the total duration of
wave impact forces and the effect of the stiffness of the scale models which are used.
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o Wave impacts with long total durations (relative to the eigenperiod(s) of a vertical
breakwater) but relatively low peak forces (relative to F; omax =15*p, *g*H,’) have proved to
be very dangerous for the stability of vertical breakwaters. Especially wave impacts with
total durations which may lie in the range of the most dominant eigenperiod of the oscillation
of a vertical breakwater. It is detrimental to do a lot of research (large hydraulic scale model
tests) on the subject of wave impacts with relatively long durations. It seems to be wasted
time to do more research on the subject of wave impacts with durations shorter than say
10% of the most dominant eigenperiod of the vertical breakwater which has to be
mvestigated.

Other recommendations for future research are;

e In this study it has been assumed that the wave impacts act over the total length of the
vertical breakwater, the waves which cause the wave impacts were assumed to be long-
crested. This is a conservative assumption. Attention should be paid the effect of short-
crested waves. Reviewing short-crested waves may lead to a load reduction on the vertical
breakwater.

e It is interesting to study the effect of water level differences between the sea-side and the
harbour-side of a vertical breakwater. In relation to this it is the influence of the horizontal
tide on the stability of a vertical breakwater is a very interesting point of research. The tide
may influence the buoyant forces as well as the conditions of the breaking waves onto the
plane vertical front wall of the breakwater.

o It is interesting to investigate the interface of the concrete bottom slab of a wvertical
breakwater and its (rubble mound) foundation. Interesting questions to solve are which
processes do take place when a vertical breakwater slides or when the maximum bearing
capacity of the foundation soil is exceeded.

e Liquefaction of the foundation soil due to the storage of pore pressures or residual pore
pressures may be an important failure mechanism of vertical breakwaters. Research on this

subject is difficult but may be important.

e The effect of cyclic wave impact loading on the vertical breakwater has not been
investigated. Cyclic wave impact loading may for instance lead to a different behaviour of
the foundation soil and may lead to totally different conclusions concerning the stability of a
vertical breakwater

o It is interesting to find a reliable relationship between the stiffness of the foundation soil and
the maximum bearing capacity of the foundation soil which has in this study been derived
using the theory of Brinch Hansen.

o Research on alternative foundations of vertical breakwaters, for instance foundation on piles,
seems to be interesting in relation to the stability of vertical breakwaters.

e The vertical breakwater has been assumed to be rigid. The effect of the rigidity of the
concrete caisson on its dynamical behaviour under wave impact conditions is an interesting
point to investigate.
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It may be possible to extend the mass-(elasto-plastic)spring-dashpot TILLY model which
has been derived in this study to include more failure mechanisms. So far only sliding of the
vertical breakwater over its rubble mound foundation and exceedance of the bearing capacity
of the foundation soil have been taken into account. Seaward tilting of the vertical
breakwater has been neglected but can be examined by the use of the TILLY model as well.
Only a different loading situation has to be implemented in the programme listing.

Local failure can lead to overall failure of a vertical breakwater. Rupture of the concrete
front wall of a vertical breakwater of the caisson type may have the consequence that the fill
will flow out of the cells of the caisson. The consequence is that the weight of the caisson
decreases and that overall failure such as sliding of the caisson may occur. Thus, it is
evident that local failure modes must be investigated as well.

A vertical breakwater consists of individual caissons. In stability calculations it is assumed
that these individual caissons are not connected: the individual caissons cannot transfer
forces to each other. It is to be expected that when individual caissons are connected that the
total stability of the connected caissons will increase. It is interesting to study the reliability
of this idea.

The reliability of the extension of the Goda formula by Takahashi, concerning wave impacts,
must be investigated. A comparison between the results of this quasi-static approach of wave
impacts and the dynamical approach of wave impacts as it has been presented in this study is
an interesting subject.
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Enclosures

On the next pages different enclosures are to be found.
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Enclosure 8.1: Listing TILLY program

$ Graduation project "Wave Impacts on Vertical Breakwaters”

$ Project: model vertical breakwater

5 six springs, all of them linear-elastic

$ no damping

$ inital velocities caused by a wave impact load of the transition type
$ H.ATh. Vink, 22 April 1997

INERTIA
129269.9¢3
238956.2¢3
33.016e9

KINEMATICS

Indof=31-120 3 -8.1649658
2ndof=31-120 3 -4.0824829
3ndof=31-120 3 0
4ndof=31-120 3 4.0824829
5ndof=31-120 3 8.1649658
6ndof=31 021 3 115

ELEMENTS

1 springl kine 1
2 spring2 kine 2
3 spring3 kine 3
4 spring4 kine 4
5 springS kine 5
6 spring6 kine 6

SPRING
13.0e9
23.0e9
3 3.0e9
43.0e9
53.0e9
6 15.0e9

INITIAL VELOCITIES
2 0.0620173
3 -0.0028036

EXECUTIVE COMMANDS

DYNAMIC DIRECT INTEGRATION NSTEP=1000 LSTEP=0.005 &
LINEAR GAMMA2=-1 &

PSC=1 POU=10 PGR=1

PLOT FILE

STEP

TIME
DISPLACEMENTS 123
E123456
$123456
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Enclosure 8.2: Listing TILLY program

$ Graduation project "Wave Impacts on Vertical Breakwaters"
$ Project: model vertical breakwater

3 six springs, all of them linear-elastic

$ no damping

3 load: wave impact of the transition type

$ H.ATh. Vink, 22 April 1997

INERTIA
129269.9¢3
238956.2¢3
33.016e9

KINEMATICS

Indof=31-120 3 -8.1649658
2ndof=31-120 3 -4.0824829
3ndof=31-120 3 0
4ndof=31-120 3 4.0824829
S5ndof=31-120 3 8.1649658
6ndof=31 021 3 115

ELEMENTS

1 springl kine 1
2 spring2 kine 2
3 spring3 kine 3
4 spring4 kine 4
5 spring5 kine 5
6 spring6 kine 6

SPRING
13.0¢9
23.0e9
33.0e9
43.0e9
53.0e9
6 15.0e9

LOADING

ti=0.000 20 30

ti=0.006 2 4.0266¢8 3-1.40931e9
1i=0.012 20 30

EXECUTIVE COMMANDS

DYNAMIC DIRECT INTEGRATION NSTEP=1000 LSTEP=0.005 &
LINEAR GAMMA2=-1 &

PSC=1 POU=10 PGR=1

PLOT FILE

STEP

TIME
DISPLACEMENTS 123
E123456
S123456
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Enclosure 8.3: Listing TILLY program

$ Graduation project "Wave Impacts on Vertical Breakwaters"
3 Project: model vertical breakwater

3 six springs, all of them elasto-plastic

3 damping

$ load: wave impact of transition type

$ H.ATh. Vink, 25 April 1997

INERTIA
129269.9¢3
2 38956.2¢3
33.016e9

KINEMATICS

1ndof=31-120
2ndof=31-120
3ndof=31-120
4ndof=31-120
Sndof=31-120

3 -8.1649658
3 -4.0824829
30

3 4.0824829
3 8.1649658

6ndof=31 021 3115

ELEMENTS

1 hygadel kine 1
2 hygade2 kine 2
3 hygade3 kine 3
4 hygade4 kine 4
5 hygadeS kine 5
6 sprelpla6 kine 6
11 fricl kine 1

12 fric2 kine 2

13 fric3 kine 3

14 fricd kine 4

15 fricS kine 5

16 fric6 kine 6

HYGADE

139 -70.7037¢6 0 degr a=0 c=1 init 0 1e8
2 3¢9 -74.4648e6 0 degr a=0 c=1 init 0 1e8
3 3¢9 -74.4648e6 0 degr a=0 c=1 init 0 1e8
4 3¢9 -74.4648¢6 0 degr a=0 c=1 init 0 18
5 3e9 -70.7037¢6 0 degr a=0 c=1 init 0 1e8

SPRELPLA
6 1.5e10 plastic -91.440e6 91.440e6

FRICTION

1 viscous 73.58e6
2 viscous 73.58e6
3 viscous 73.58e6
4 viscous 73.58e6
5 viscous 73.58e6

6 viscous 367.9e6

LOADING

ti=0.000 1152.4¢6 20 30

1i=0.006 2 402.66¢e6 3-1409.31e6
1i=0.012 20 30

INITIAL DISPLACEMENTS

10.01016

EXECUTIVE COMMANDS

DYNAMIC DIRECT INTEGRATION NSTEP=1000 LSTEP=0.005 &
LINEAR GAMMA2=-1 &
PSC=1 POU=10 PGR~=1

PLOT FILE

STEP

TIME
DISPLACEMENTS 123
E123456
$123456
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Enclosure 8.4: Listing TILLY program

$ Graduation project "Wave Impacts on Vertical Breakwaters”

$ Project: model vertical breakwater

3 six springs, all of them elasto-plastic

$ damping .

3 load: maximum wave impact load with triangular load history
$ H. A Th. Vink, 25 April 1997

INERTIA
129269.9¢3
2 38956.2¢3
33.016e9

KINEMATICS

Indof=31-120 3 -8.1649658
2ndof=31-120 3 -4.0824829
3ndof=31-120 3 0 -
4ndof=31-120 3 4.0824829
Sndof=31-120 3 8.1649658
6ndof=31021 3 115

ELEMENTS

1 hygadel kine 1
2 hygade2 kine 2
3 hygade3 kine 3
4 hygade4 kine 4
5 hygade5 kine 5
6 sprelpla6 kine 6
11 fricl kine 1

12 fric2 kine 2

13 fric3 kine 3

14 fric4 kine 4

15 fricS kine 5

16 fric6 kine 6

HYGADE

1 3e9 -70.7037¢6 0 degr a=0 c=1 init 0 1e8
2 39 -74.4648¢e6 0 degr a=0 c=1 init 0 1e8
3 3e9 -74.4648e6 0 degr a=0 c=1 init 0 1e8
4 3¢9 -74.4648e6 0 degr a=0 c=1 init 0 1e8
5 3e9 -70.7037e6 0 degr a=0 c=1 init 0 1e8

SPRELPLA .

6 1.5e10 plastic -91.44086 91.440e6

FRICTION : : Coe
1 viscous 73.58¢6
2 viscous 73.58¢6
3 viscous 73.58e6
4 viscous 73.58¢e6
5 viscous 73.58e6

6 viscous 367.9¢6

LOADING

ti=0.000 1152.4e6 20 30

ti=0.125 *2 452.48625¢6 3-1583.7019e6 -
i=0.250 20 30 »

INITIAL DISPLACEMENTS

10.01016

EXECUTIVE COMMANDS ’ )

DYNAMIC DIRECT INTEGRATION NSTEP=1000 LSTEP=0.005
LINEAR GAMMA2=-1 &
PSC=1 POU=10 PGR=1

PLOT FILE

STEP

TIME
DISPLACEMENTS 123
E123456
§$123456
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FERNANDO OJEDA

El Dique Reina Sofia se convierte en laboratorio europeo

La ampliacién del Dique Reina Sofia del Puerto de La Luz y Las Palmas se ha convertido en un inmejorable
laboratorio para expertos europeos, que analizan estos dias en la capital grancanaria las caracteristicas
de una obra revolucionaria que cuenta ademas con la singularidad de aportar datos fiables sobre el
impacto del mar en la estructura de hormigén. Expertos de ocho paises visitaron ayer el Dique Reina
Soffa, considerado «un hito» en su categorfa. La imagen recoge un momento de la visita de los ingenieros
a la obra portuaria.




