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Abstract We present a technique for the direct opti-
mization of conservative backbone curves in nonlinear
mechanical systems. The periodic orbits on the con-
servative backbone are computed analytically using
the reduced dynamics of the corresponding Lyapunov
subcenter manifold (LSM). In this manner, we avoid
expensive full-system simulations and numerical con-
tinuation to approximate the nonlinear response. Our
method aims at tailoring the shape of the backbone
curve using a gradient-based optimization with respect
to the system’s parameters. To this end, we formu-
late the optimization problem by imposing constraints
on the frequency-amplitude relation. Sensitivities are
computed analytically by differentiating the backbone
expression and the corresponding LSM. At each itera-
tion, only the reduced-order model construction and
sensitivity computation are performed, making our
approach robust and efficient.
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List of symbols

x∈ R
n Displacement vector

M∈ R
n×n Mass matrix

K∈ R
n×n Stiffness matrix

f (x)∈ R
n Nonlinear force vector

ω∈ R Eigenfrequency
φ∈ R

n Mode shape vector
z∈ R

N State vector
A∈ R

N×N State matrix
B∈ R

N×N State mass matrix
F(z)∈ R

N State nonlinear force vector
λ∈ C Eigenvalue
v∈ C

N Right eigenvector
u∈ C

N Left eigenvector
τ∈ C Eigenvector normalization coeffi-

cient
Li ∈ C

N ·2i×N ·2i Order-i cohomological operator
hi∈ C

N ·2i Order-i cohomological vector
W i∈ C

N×2i Order-i Lyapunov subcenter mani-
fold parametrization matrix

Ri∈ C
2×2i Order-i reduceddynamics parametriza-

tion matrix
p∈ C

2 Reduced dynamics coordinates
p̃∈ C

2 Normalized version of p
ρ∈ R Magnitude of p in polar coordinates
θ∈ R Phase of p in polar coordinates
γi∈ R Order-i backbone coefficient
a∈ N

N Extraction vector
z ∈ R Target component of z
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Z∈ R Root mean squared amplitude of z
J∈ R Objective function
μ∈ R

m Design variables
μL∈ R

m Design variables lower bound
μU∈ R

m Design variables upper bound
�	∈ R Target frequency
Z	∈ R Target root mean squared amplitude

1 Introduction

The importance of considering nonlinear effects in the
design phase of a system has been by now widely
demonstrated by an ever-increasing number of devices,
inwhich nonlinearities are notmerely a side effect to be
avoided, but play their own functional role. Examples
of this can be found in micro-mechanical resonators
[1,2], micro-mass sensors [3,4], andmicro-gyroscopes
[5–7]. Other applications include frequency division
[8], frequency stabilization [9,10], vibration energy
harvesting [11,12], vibration mitigation [13–15], non-
linear energy sinks [16], and targeted energy transfer
[17]. Usually, the frequency-amplitude relation of a
nonlinear normal mode (NNM) of a mechanical sys-
tem is tracked by computing the backbone curves (see,
e.g., [18–24]). For instance, in past years, the principle
of similarity [25] has been used to suppress undesir-
able nonlinearities [26] and for tuning the design of
nonlinear vibration absorbers [27].

This variety of applications has been supported by
the development of analytical and computational tools
that enable the analysis of nonlinear systems. Due to
the growing complexity of the applications, these tools
are often limited by the number of unknowns they
can handle, which has led to further developments in
the field of Reduced Order Models (ROM) [28–32].
Despite all these developments, tailoring the nonlin-
ear dynamic response of a system remains a challeng-
ing task. The difficulty lies in finding the optimal set
of system parameters such that the nonlinear response
exhibits desired frequencies at specific amplitudes (see,
e.g., [33]).

To overcome this limitation, optimization strategies
have been laid down in the past. In [34], the equivalent
static loads method [35,36] is used to minimize defor-
mations and stress in large deformation problems. In
this approach, the time response of the nonlinear sys-
tem is evaluated. Then, for each time step, the equiv-
alent static load is computed as the load that produces

the same response as the nonlinear analysis. Therefore,
in the optimization algorithm, the full nonlinear time
response can be replaced by the set of linear static
responses, thus simplifying the sensitivity analysis.
However, the static approximation may not be able to
represent important dynamic phenomena such as reso-
nance and damping effects. In addition, the approach is
not able to capture the nonlinear frequency-amplitude
relation.

For applications where sensitivities are expensive or
cumbersome to evaluate,Genetic algorithms have been
found to be beneficial [37,38]. These methods work by
iteratively evolving a population of candidate solutions
through selection, recombination, and mutation. How-
ever, the cost of multiple nonlinear solutions over the
population of each generation could lead to prohibitive
computational times.

Optimization of nonlinear dynamic problems using
ROMs has also been explored in some works. For
example, an optimal design strategy using (damped)
nonlinear normalmodes (dNNMs) in combinationwith
the extended energy balance method was presented
in [39].Here, a surrogateKringingmodel is constructed
from a number of full simulations for different param-
eter instances. This surrogate model is then used to
obtain an input–output function for the computation
of dNNMs and their sensitivities at unseen parameter
configurations.

Dou et al. [40–42], indirectly optimized the back-
bone curve of geometrically nonlinear beam structures
using a ROM based on normal forms [43]. Specifi-
cally, in [40] the authors developed explicit expres-
sions for an objective function that characterizes the
hardening behavior in terms of the cubic coefficient of
the ROM. Computing analytic sensitivities using the
adjoint method, they were able to maximize/minimize
the hardening behavior of a single mode resonator, and
to maximize the 2:1 modal interaction between two
modes of a T-shaped beam structure. To the best of
the authors’ knowledge, this is the only example of
analytic backbone optimization currently available in
the literature, and motivates the present work. While
the method described in [40] may offer valuable solu-
tions for specific structural problems, its applicability
in broader contexts may be limited by the choice of the
objective function. For instance, the approach may not
be suitable when the nonlinear behavior cannot be fully
represented by a single ROM coefficient. On the other
hand, in [41,42], the authors used a numerical opti-
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mization procedure to maximize/minimize the hard-
ening/softening behavior of the system. At each itera-
tion, the Harmonic Balance method (HBM) [44,45] is
used to compute NNMs, and sensitivities are obtained
with the adjoint method to update the design variables.
Employing theHBM, thismethodhas themerit of being
able to treat a larger class of nonlinearities as compared
to the analytical approach in [40]. At the same time,
some inherent drawbacks of the numerical method will
also be present, especially regarding the HBM sensitiv-
ities [46], as multiple directions can be taken to Taylor
expand the solution. This choice may ill-condition the
sensitivity computation, with unpredictable outcomes,
affecting the optimization results.

To summarize, all the currently available strate-
gies to optimize the nonlinear dynamic response of a
mechanical system rely either on nonlinear time simu-
lations or the harmonic balance method, with or with-
out reduced ordermodels. These approaches frequently
leverage indirect indicators to gauge the system’s non-
linear response. To our knowledge, there are no meth-
ods that use ROMs to directly optimize the backbone
curves of a nonlinear system.

To this end, the choice of a suitable ROM and the
solution method is particularly critical in an optimiza-
tion process. Indeed, as the references [41,42,47] also
pointed out, the systemcandiffer significantly fromone
optimization iteration to another. This means not only
that the ROMwould need to be constructed repeatedly,
but also that its accuracy canvary and that the solver set-
tings would generally require readjustments. Consider,
for instance, a projection-based reductionmethod (e.g.,
implicit condensation and expansion [48–50], modal
derivatives [51–54]). To retain a constant level of accu-
racy throughout the optimization, such a ROM would
generally require a change in the size of the reduction
basis. On the other hand, the choice of a reduction basis
depends on the problem and often requires user input
that may be difficult to automate. The backbone or the
forced response is then computed using the ROM.Usu-
ally, this is achieved via numerical continuation using
the collocation method (see, e.g., [55]), the harmonic
balancemethod (see, e.g., [45]), or the shootingmethod
(see, e.g, [56]). However, the effectiveness and accu-
racy of these numerical methods often rely on a set
of parameters chosen by the user, such as the number
of harmonics in the HBM, or the arc-length parameter
for numerical continuation. These settings are typically
tailored to the specific application under study. During

the optimization iterations, the system’s behaviormight
shift in unpredictable ways, thus requiring adjustments
to these parameters. This issue poses a challenge in
automating the procedure.Althoughwe cannot exclude
that such an approach can be successively pursued [47],
we deem highly desirable an optimization procedure
that is as independent as possible from user inputs.

In the present work, we develop a method to opti-
mize the conservative backbone curves of a nonlin-
ear mechanical system using the reduced dynamics on
Lyapunov subcenter manifolds (LSM). To this end, we
exploit the recent developments that enable the compu-
tation of such invariant manifolds in high-dimensional
mechanical systems. These methods have been suc-
cessfully applied in the calculation of forced-response
in systems near resonance, [24,32], internal resonances
[57,58], in the study of constrainedmechanical systems
[59].

Our choice of LSM-based ROMs for the optimiza-
tion of backbone curves is motivated by the following
considerations:

1. For generic design configurations without inter-
nal resonances, LSMs provide ROMs that are con-
sistently two-dimensional, which leads to efficient
optimization.

2. An analytic expression for the conservative back-
bone curve is available [24], stemming from the
reduced dynamics of the LSM in polar coordinates.
This avoids any numerical continuation to compute
the backbone.

3. Optimization sensitivities can be computed ana-
lytically, as we will demonstrate. This results in
fast convergence using gradient-based optimization
techniques.

4. a computationally inexpensive a posteriori error
estimate;

5. LSMcanbe approximatedup to arbitrarily orders of
accuracy in an automated fashion for any parameter
configurations.

The paper is organized as follows. In Sect. 2, we
recall the generic description of the nonlinear mechan-
ical system used in this work, along with the main
quantities that are used in the remainder of the paper.
In Sect. 3, Lyapunov subcenter manifolds are briefly
discussed, introducing the notation and the analytic
expression of the backbone curve. In Sect. 4, the opti-
mization problem is set and the optimization routine
is defined, while analytic sensitivities are discussed in
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Sect. 5. Finally, numerical results are shown in Sect. 6
for a spring-mass chain system with nonlinear springs
and for a FE discretized von Kármán clamp-clamp
beam. Conclusions are then drawn in Sect. 7.

2 Mechanical system

Consider the following equation ofmotion for a generic
autonomous, undamped, nonlinearmechanical system:

Mẍ + Kx + f (x) = 0, (1)

where x ∈ R
n is the displacement vector, M and K

are the mass and linear stiffness matrices, respectively,
and f (x) is a displacement-dependent nonlinear term.

The linear normalmodes are obtained by solving the
generalized eigenvalue problem

Kφi = ω2
i Mφi , (2)

where ωi is the i-th eigenfrequency and φi is the asso-
ciated mode shape vector. The mass normalization is
applied, yielding

φT
i Mφi = 1 and φT

i Kφi = ω2
i . (3)

In state space form, the system can be rewritten as a
N-dimensional system (N = 2n) as

Bż = Az + F(z), (4)

being

z =
[
x
ẋ

]
, F(z) =

[
0

− f (x)

]
, (5)

A =
[

0 −K
−K 0

]
, B =

[−K 0
0 M

]
. (6)

For this system, the eigenvalues λ, the right eigen-
vectors v, and the left eigenvectors u write:

λ2i−1 = jωi & λ2i = − jωi , (7a)

v2i−1 =
[

φi
jωiφi

]
& v2i =

[
φi

− jωiφi

]
, (7b)

u2i−1 = τi v̄2i−1 & u2i = τi v̄2i , (7c)

where ¯(•) denotes the complex conjugate operator, and
the constant τi = − 1

2ω2
i
is used to scale the left eigen-

vectors in order to meet the normalization condition:

u∗
i Bv j = δi j , (8)

where (·)∗ denotes the transpose conjugate operator,
and δi j is the Kronecker delta function.

The nonlinear term F(z) can be rearranged as

F(z) =
∑
i∈N

Fi z⊗i , (9)

where Fi ∈ R
N×Ni

is a matrix containing the coef-
ficients of the system nonlinearity, and where z⊗i =
z ⊗ z ⊗ . . . ⊗ z (i-times), with ⊗ denoting the Kro-
necker product. Notice that Eq. (9) describes exactly
only polynomial nonlinearities (such as the ones stem-
ming from large geometric deformations in finite ele-
ment models); for other types of nonlinearities, a poly-
nomial form can still be retrieved either by recasting
[60] or by using a Taylor expansion approximation.

3 LSM computation

Lyapunov subcenter manifolds are nonlinear contin-
uations of two-dimensional modal subspaces asso-
ciated with nonresonant vibration modes in conser-
vative, unforced mechanical systems [19,23]. The
reduced dynamics of an LSM consists of the nonlin-
ear (amplitude-dependent) periodic solutions associ-
ated with the undamped free vibrations along the cor-
responding vibration mode. In this section, we briefly
recall how to obtain LSMs (see, e.g., [23,24]), and how
to analytically extract conservative backbone curves.

We denote byW(E) the two-dimensional LSMcon-
structed around the master modal subspace E of sys-
tem (1).

Let W : C
2 → R

N be a parametrization of the
2-dimensional LSM W(E) and let p ∈ C

2 denote
the parametrization coordinates. Furthermore, Let R :
C
2 → C

2 be a parametrization of the reduced dynam-
ics, such that

ṗ = R( p). (10)
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Then, for any full system trajectory z(t) on W(E),
we have a reduced dynamics trajectory p(t) such that

z(t) = W( p(t)). (11)

Differentiating Eq. (11) and substituting Eq. (10)
into Eq. (4), we obtain the invariance equation

B
∂W
∂ p

R = AW + F ◦ W . (12)

To compute the LSM and its reduced dynamics, we
need to solve Eq. (12) for the parametrizations W and
R. Following [24], we expand these parametrizations
in Taylor series as

W =
∑
i∈N

W i p⊗i , (13)

R =
∑
i∈N

Ri p⊗i , (14)

where W i ∈ C
N×2i and Ri ∈ C

2×2i are coefficient
matrices to be determined.

Substituting the expansions (13) and (14) into the
invariance Eq. (12), and collecting coefficients of order
i , we obtain a linear system in terms of the unknowns
W i , Ri . At a given order i , the invariance equation
depends only on quantities at orders less than or equal
to i . Hence, the invariance Eq. (12) can be solved recur-
sively up to any arbitrary order. In practice, these linear
equations are vectorized in the so-called cohomologi-
cal equation:

Livec(W i ) = hi (Ri ), (15)

where Li is the order–i cohomological operator, and
the RHS hi is vector depending on the parametriza-
tion coefficients in Ri . The latter can be computed by
selecting a parametrization style. Here, we adopt the
normal form style of parametrization as it allows us
to analytically extract the backbone curve (see, e.g.,
[24]). A cubic order approximation of LSMs and their
reduced dynamics in a normal form style can also be
performed non-intrusively for systems with up to cubic
nonlinearities following the stiffness evaluation proce-
dure (STEP) [61], similarly to [62]. For the sake of
completeness, the expressions of the terms appearing
in Eq. (15) and details about its solution are syntheti-
cally reported in Appendix A.

3.1 Analytical backbone

After solving the invariance equation as described in
Sect. 3, the LSM is computed using only the master
modeφm associated to the two-dimensionalmodal sub-
space E = span(v2m−1, v2m). From the LSM then, the
conservative backbone curve can be analytically deter-
mined (see, e.g., [63]).

If the coordinates p associatedwith themastermode
are chosen in polar form, that is

p(t) = ρ(t)

[
e jθ(t)

e− jθ(t)

]
, (16)

it can be shown that the following frequency–amplitude
(θ̇ − ρ) relationship holds [24]

θ̇ = ω(ρ) = ωm +
∑

i∈N, i≥2

γiρ
i−1, (17)

where γi are coefficients obtained from Ri . For the sake
of completeness, Eq. (17) is derived in Appendix B.
Finally, this expression can be evaluated for a range
of polar amplitudes ρ. For each (ω, ρ) pair we can
then compute the corresponding p(t) over a range
θ(t) ∈ [0, 2π ] and, using Eq. (11), the periodic orbit
associated to each point on the backbone curve can be
retrieved in physical coordinates z(t) using the LSM
parametrization according to Eq. (11).

4 Backbone optimization

4.1 Problem definition

In the previous section, we have briefly recalled the
steps to obtain the backbone curve of a mechanical
system using the LSM reduction. Now, we want to lay
down an optimization procedure to tailor the shape of
such a backbone curve, by defining a discrete number
of amplitude-frequency points. While selecting the tar-
get frequency is straightforward, for the “amplitude”
several options are available. An easy choice would be
to select directly a target ρ in the reduced dynamics,
but this would be of little use for practical cases, where
we want to impose a physical amplitude. In this sense,
any (combination of) dof out of z may serve as a good
candidate to define such an amplitude. Moreover, the
“amplitude” of the periodic response associated to a
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point (θ̇ , ρ) on the backbone, computed through Eqs.
(11) and (17), is not well defined per se: it could be
the maximum value, the amplitude of a spectral com-
ponent, or a Root Mean Squared (RMS) value. In the
present work, we opt for this latter choice, considering
the response of a single dof of interest, identified by
the extraction vector a ∈ N

N as z = aT z. That said, in
general, the optimization problem will take the form

minμ J
s.t. θ̇ (ρ(Z	

j )) − �	
j = 0, ∀ j

μL ≤ μ ≤ μU

(18)

being J the objective function, �	
j the j-th target1 fre-

quency associated with the target RMS amplitude Z	
j ,

μ the parameter vector with upper and lower bounds
(μU/L ). Notice that the equality in Eq. (18) can be
changed into an inequality without loss of generality.
In the following, we explicitly derive an expression for
Z (ρ), which will be used to solve Eq. (18) and, later,
to compute sensitivities.

4.2 Target amplitudes

Let us write an expression for the RMS value of the dof
of interest at a given point (ω, ρ). For convenience, let
us rewrite p as

p = ρ

[
e jθ

e− jθ

]
= ρ p̃(θ), (19)

so that

z(θ, ρ) = aT
∑
i∈N

ρiW i p̃
⊗i . (20)

For a given system, this value is a function of ρ

(constant) and θ , which tracks the evolution of reduced
dynamics in time. To remove the dependence on the
variable θ (and thus on time), we define a set of θk as

θk ∈ [0, 2π ], ∀k = 1, . . . , Nθ (21)

and, for each θk , let us we define

zk(ρ) =
∑
i∈N

ρi aTW i p̃
⊗i
k , (22)

1 We denote target quantities with (•)	.

where

p̃k =
[
e jθk

e− jθk

]
. (23)

Notice that the obtained set of zk corresponds to a
time discretization of the response at the given point
(ω, ρ), with Nθ samples. This way, the RMS value
writes

Z (ρ) =
√√√√ 1

Nθ

Nθ∑
k=1

z2k(ρ). (24)

Using this equation, given a targetRMSvalue Z	,we
can find the value of ρ	 (unknown) by solving Z (ρ	) =
Z	. The resulting ρ	 can be used in Eq. (17) to find the
corresponding frequency θ̇ and solve the optimization
problem defined in (18).

In some cases, Eq. (24) might be too difficult to
be solved. To get a first approximation of its solu-
tion, we can consider only the leading order (i = 1),
thus neglecting all the higher orders. With this approx-
imation, an explicit expression for ρ function of Z is
obtained:

Z ≈ ρ

√√√√ 1

Nθ

Nθ∑
k=1

(aTW1 p̃k)2. (25)

Equation (25) can provide a good approximate solu-
tion to be used as a starting point to initialize the numer-
ical method used to solve Eq. (24).

4.3 Accuracy check

On top of all the optimization-related problems, in
our case, we also have to take care that the LSM-
based reducedordermodel accuracy remains consistent
throughout the optimization process. Indeed, it is not
guaranteed that the selected expansion order at iteration
“i” will provide the same accuracy for a new parameter
vector μ at iteration “i+1”. The risk, of course, is that
the optimization output will be completely inaccurate
(even when successful). The problem can be tackled
mainly in two ways, either by selecting a fixed expan-
sion order and performing a final a posteriori assess-
ment of the optimization output (eventually repeating
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Fig. 1 Block scheme for the optimization process. The blocks
relative to the systemmodel are in blue, whereas the LSM blocks
are shown in green. The yellow blocks are the ones related to the
optimization problem. The sensitivity analysis, represented by

the orange blocks, are computed as explained in Sect. 5. If finite
differences are used instead, the orange blocks are removed and
the LSM will be evaluated several times within the optimization
iterations to approximate sensitivities

the optimization with a higher LSM order if the assess-
ment fails), or by estimating the approximation error
during the optimization, so to increase the expansion
order if error tolerances are exceeded. In both cases, an
error estimate is required.

Similarly to [59], we define the residual of the invari-
ance Eq. (12) as

E( p(ρ, θ)) = B
∂W
∂ p

R − AW − F ◦ W . (26)

A common choice is then to take the norm of the
residual as an error measurement, eventually normal-
ized over a reference quantity. In our case, we use as an
error indicator the following normalized residual norm,
averaged over a span θk ∈ [0, 2π ] for k = 1, . . . , Nθ

(as previously done for Eq. (24)):

ε = 1

Nθ

Nθ∑
k=1

||E(ρmax , θk)||2
�(ρmax , θk)

, (27)

where ρmax ≥ ρ	 is the chosen maximum amplitude
to test, and

�(ρ, θ) = max
(||B∂ pW R||2, ||AW ||2, ||F ◦ W ||2

)
.

Finally, defining a tolerance εtol and checking whether
ε < εtol , algorithms can be defined to increase theLSM
expansion order (or even to lower it). Notice that the a
posteriori error in Eq. (27) is computationally inexpen-
sive to evaluate once the manifold and the parametriza-
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tion are known and, therefore, it can be included in the
optimization procedure without introducing a signifi-
cant computational burden.

4.4 Mode–veering check

As recalled in Sect. 3, the LSM used to compute the
backbone curve is defined for a master modal subspace
E , spanned by the two eigenvectors of the first-order
system (Eq. (4)) associated to the linear normal mode
φm . During optimization, however, it may happen that
lower and higher frequency eigenmodes switch places
[64]. This means that if m is kept constant, we may
end up tracking a different mode shape from the initial
one. The usual way to cope with mode veering is to
keep track of the objective modem by using the Modal
Assurance Criterion (MAC, [65]), which measures the
similarity of mode shapes as:

MACi j = |φT
i φ j |2

(φT
i φi )(φ

T
j φ j )

. (28)

Computing the MAC between a set of modes around
the m-th mode at the current iteration and φm at the
previous one, it is possible to change m accordingly.

4.5 Optimization routine

In conclusion, the optimization procedure presented in
this section is sketched inFig. 1, and it allowsus to tailor
the backbone curve of a mechanical system by defin-
ing a discrete set of target points (�	, Z	), while keep-
ing track of the approximation error of the LSM-based
reduced order model and of the target mode to be opti-
mized. Such a scheme can be readily implemented in
available optimization algorithms (e.g. fmincon func-
tion in Matlab) using finite differences to compute gra-
dients. However, given the analyticity of the LSM, in
the next section, we provide explicit expressions for the
sensitivities.

5 Sensitivity analysis

Now, we let the mechanical system depend on some
parameters, collected in the vector μ. For instance, in
a nonlinear spring-mass chain, the parameters can be

chosen as the physical properties of the chain, such
as masses and springs. On the other hand, in the field
of topology optimization of finite element models, the
parameters are related to the particular method used
to discretize the design domain [66–68]. To apply a
gradient-based optimization algorithm, the sensitivi-
ties of the backbone curve with respect to the design
variables μ are required. The derivatives of the matri-
ces and vectors K , M, f , A, B, and F depend on the
formulation of themechanical system under considera-
tion, and are usually straightforward to compute.On the
other hand, the derivative of the conservative backbone
curve requires a more complex procedure that involves
both the cohomological equation defined in Eq. (15)
and the normal form parametrization.

Let us now consider the optimization problem
defined in Eq. (18). Neglecting the sensitivities of J
and of the lower/upper bounds on μ (trivial), we have
to take the derivative of the (j-th) constraint

θ̇ (ρ(Z	)) − �	 � 0, (29)

that can be computed from Eq. (17) as

dθ̇

dμ
= dωm

dμ
+
∑
i=2

dγi
dμ

ρi−1

+
∑
i=2

dρ

dμ
γi (i − 1)ρi−2.

(30)

The sensitivity for γi can be obtained as

dγi
dμ

= 1

2

[− j j
] dRi

dμ
12i . (31)

where 12i ∈ R
2i×1 is a column vector of all ones (see

Appendix B).
The derivative of ωm is computed (along with the

derivative of the linear normal mode ϕm) following
standard procedures used in the optimization and sen-
sitivity analysis of (linear) dynamical problems.Details
are provided in Appendix C.

The sensitivity of ρ, instead, can be computed from
the definition of the target amplitude Z(ρ) in Eq. (24).
Derivations are provided in Appendix D.

Notice that the aforementioned sensitivities depend
on the sensitivities of the LSM with respect to the
parameter μ, i.e., dW i

dμ and dRi
dμ . In particular, the sen-

sitivity of W i is computed taking the derivative of the
cohomological equation as
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Algorithm 1 Sensitivity computation
1: Evaluate ρ solving Eq. (24).
2: Compute sensitivities of ωm and φm (Eq. (C18)).
3: Compute sensitivities of R1 and W1 using Eqs. (E.28) and

(E.29).
4: while i ≤ max order do
5: Compute sensitivities of Ri using Eq. (E.31).
6: Compute sensitivities of W i using Eq. (32).
7: end while
8: Evaluate sensitivity of ρ using Eq. (D25).
9: Evaluate sensitivity of θ̇ using Eq. (30).

Li
dvec(W i )

dμ
= dhi

dμ
− dLi

dμ
vec(W i ), (32)

and the sensitivity of Ri depends on the choice of
parametrization style (normal form in this work). We
provide the explicit expressions of the LSM sensitiv-
ities in Appendix E and discuss the solution of the
under-determined system (32) in Appendix F. Algo-
rithm 1 summarizes the steps we follow for sensitivity
computation.

Remark (computational complexity). With the pro-
posed sensitivity formulation, the computational com-
plexity of one iteration of the optimization has an upper
bound of Nμ OLSM, where Nμ is the number of design
variables, and OLSM is the computational complex-
ity associated to the computation of the LSM. This
limit gives an indication about the maximum number
of design variables that can be used in the optimization
problem.

6 Numerical examples

In this section, we present some numerical examples
where the optimization is carried out in Matlab, using
the in-built function fmincon and a dedicated code
implementing the computation of the LSM and its
derivatives, as described in the previous sections. The
optimization routine is the one described in Fig. 1.

6.1 Uniform spring-mass chain

We first consider a uniform spring-mass chain, as
shown in Fig. 2. We consider the system parameters
as the mass m, the linear spring constant k, and the
cubic spring constant k3, i.e., we have 3 design vari-
ables.We apply fixed boundary conditions to both ends

Table 1 Initial values, lower bounds, and upper bounds of the
design variables for the examples in Sects. 6.1 and 6.2

Design Initial Lower Upper
variable value bound bound

m [kg] 3.0 1.0 10.0

k [N/m] 30.0 10.0 50.0

k2 [N/m2] 3.0 0.1 5.0

k3 [N/m3] 3.0 0.1 5.0

Fig. 2 Scheme of a spring mass chain with uniform properties.
Fixed boundary conditions are applied to both ends of the chain.
In a chain with n masses m, there are n + 1 connections, each
one characterized by linear stiffness k and nonlinear force fN L =
k3�x3

of the chain. In this example, we use a chain made of
5 masses, and we observe the response of the middle
mass at the 1st eigenfrequency.

The optimization problem is stated as:

minμ k3
s.t. θ̇ (ρ(Z	

j )) − �	
j = 0, ∀ j = 1, 2

μL ≤ μ ≤ μU

(33)

where the objective function aims at minimizing the
nonlinear term (cubic spring). The initial conditions
and the limits on the design variables are specified in
Table 1, whereas the target points are

(�	
1, Z

	
1) = (2.0, 0.0),

(�	
2, Z

	
2) = (2.1, 2.0).

Throughout the optimization process, a constant
LSM expansion of order 7 is considered. The solution
is shown in Fig. 3. The backbone of the optimal solu-
tion in Fig. 3 is validated using time simulations, with
forward- and backward-going stepped-sines at differ-
ent forcing levels. To avoid numerical singularities dur-
ing the integration, a damping ratio ξ = 0.05 is used. A
damper of value c = 2mω0ξ is then added in parallel to
each springs. Figure 4 shows the results of the numeri-
cal simulations, along with the conservative backbone,

123



M. Pozzi et al.

Fig. 3 Optimal solution obtained by solving (33) with
(�	

1, Z
	
1) = (2.0, 0.0) and (�	

2, Z
	
2) = (2.1, 2.0). The opti-

mization converges to a solution with m = 1, k = 14.93, and
k3 = 1.34

Fig. 4 Numerical results of the optimal solution in Fig. 3
obtained through frequency sweeps at different forcing levels.
The numerical results are compared to the backbone

showing good agreement. Notice, however, that vali-
dation of the LSM reduction method results has been
extensively discussed in other contributions [24], and
it will not be addressed anymore in the present work.

Remark (feasibility). Not all optimization problems
have a feasible solution. This is the casewhen the target
points are not physically admissible by the system, in
general, or at least within the parameter boundaries.

For instance, the uniform spring-mass chain pre-
sented in this section, having only positive cubic
springs, cannot exhibit a softening behavior. Indeed,

Fig. 5 Backbone for the uniform spring-mass chain system,
computed at the last converged iteration of the optimization prob-
lem defined in Eq. (33). Before failing, the optimization stops at
a solution with m = 3.58, k = 50.12, and k3 = −0.04

trying to solve Eq. (33) with target points

(�	
1, Z

	
1) = (2.0, 0.0),

(�	
2, Z

	
2) = (1.9, 2.0),

that define a nonlinear behavior of the softening type,
results in an unfeasible solution, reported in Fig. 5 for
completeness.

6.2 Non-uniform spring-mass chain

In this section, we consider a nonuniform spring-mass
chain with linear, quadratic, and cubic springs (Fig. 6),
where all the mass and linear, quadratic and cubic stiff-
ness values are treated as independent design variables
(namely, mi , ki , k2,i , k3,i , with i denoting the mass
ordinal). Again, fixed boundary conditions are applied
to both ends of the chain.

In this example, we use a chain made of 3 masses,
and we focus on the response of the middle mass at the
1st eigenfrequency. The optimization problem is stated
as:

minμ

∑3
i=1 mi

s.t. θ̇ (ρ(Z	
1)) − �	

1 = 0
θ̇ (ρ(Z	

2)) − �	
2 ≤ 0

θ̇ (ρ(Z	
3)) − �	

3 ≥ 0
μL ≤ μ ≤ μU

(34)
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Fig. 6 Scheme of a spring mass chain with non uniform prop-
erties. Fixed boundary conditions are applied to both ends of the
chain. In a chain with n different massesmi , there are n+1 con-
nections, each one characterized by different linear stiffness ki
and nonlinear force fN L ,i = k2,i (xi − xi−1)

2 + k3,i (xi − xi−1)
3

Fig. 7 Backbone curve corresponding to the optimal solution,
obtained by solving the problem defined in Eq. (34). The opti-
mization converges to the solution reported in Table 2

where the objective function aims at minimizing the
total mass of the system in order to obtain a lightweight
chain. The initial conditions and the limits on the design
variables are again the ones specified in Table 1 (the
limits are the same ∀i), while the target points are

(�	
1, Z

	
1) = (2.0, 0.0),

(�	
2, Z

	
2) = (1.9, 1.5),

(�	
3, Z

	
3) = (2.1, 2.0),

and describe a softening/hardening behavior of the
system. Again, a constant LSM expansion of order 7 is
considered. The optimal solution is shown in Fig. 7 and
in Table 2. As it can be seen from this result, as opposed
to the one presented in Fig. 5, themore freedom is given
to the optimization problem in terms of design variables
and in terms of the “complexity” of the nonlinear forces
(that here include also quadratic terms), the higher is

Table 2 Optimal solution for the 15 design variables of the non-
uniform spring-mass chain system, obtained by solving the prob-
lem defined in Eq. (34)

Design Optimal values
variable i = 1 i = 2 i = 3 i = 4

mi [kg] 4.427 1.000 4.161 –

ki [N/m] 39.17 21.54 11.81 12.35

k2,i [N/m2] 1.307 1.476 3.109 4.531

k3,i [N/m3] 4.098 3.507 2.498 0.347

the degree with which we can shape the backbone of
the system.

6.3 A von Kármán beam

In this last example, we present the case of a geometri-
cally nonlinear, clamp-clamp von Kármán beam. The
structure is described by a finite element model con-
sisting of 10 von Kármán elements (27 degrees of free-
dom). As design variables, we take the beam thickness
h, the length L , and the amplitudes A1 and A2 which
define the shape of the beam as

y = A1 sin(πx/L) + A2 sin(2πx/L),

being x ∈ {0, L} and y the nodal coordinates of the
beam. The material is characterized by Young’s modu-
lus equal to 90GPa, Poisson’s ratio of 0.3, and density
corresponding to 7850 kg/m3. Given the complexity
of the problem, the derivatives of matrices A, B and
Fi with respect to the parameters (necessary to com-
pute the sensitivities) are hereby computed numerically
using finite differences. The computations have been
carried out inYetAnotherFEcode (v1.3.0) [69], an open
source FE code for Matlab. Initial values and bounds
for the design variables are reported in Table 3. The
optimization problem is stated as follows:

minμ A2L
s.t. θ̇

(
ρ
( 1
5h0

))− ω0 = 0
θ̇
(
ρ
( 2
5h0

))− 0.95ω0 = 0
μL ≤ μ ≤ μU

(35)

where h0 is the initial thickness, and ω0 is the first
eigenfrequency of the system (evaluated using the ini-
tial parameters). During the optimization procedure,
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Fig. 8 Snapshots of three optimization iterations for a finite ele-
ment model of a clamp-clamp beam, discretized with 10 von
Kármán beam finite elements. The design variables are the beam
thickness h, length L , and the amplitude A1 and A2 of two sinu-
soidal shapes. Left column: beam geometry (notice that the beam

thickness is uniform, although it appears distorted due to the dif-
ferent scaling of the two axes). Central column: manifold (light
blue surface) and orbits associated with the target points (red
lines). Right column: backbone curves (black lines), and target
points (red dots)

mode–veering and error checks have been enabled, so
that the first mode is always tracked and so that, when
the errormeasure ε (Eq. (27)) exceeds a threshold value
εtol , the LSM expansion order is increased at the next
iteration. This threshold is empirically selected upon a

convergence study of the LSM on the system, using the
initial design parameters.

The frequency constraints have been satisfied in 5
iterations, whereas the convergence has been reached
in 11 iterations. Figure8 shows the snapshots of three
iterations of the optimization, showing the evolution of
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Table 3 Initial values, lower bounds, and upper bounds of the
design variables for the von Kármán beam example

Design Initial Lower Upper
variable value bound bound

A1 [mm] 0 0 20

A2 [mm] 0 0 20

h [mm] 10 1 100

L [mm] 1000 500 1500

the geometry (left column), the manifold (middle col-
umn), and the backbone curve (right column). Notice
that the expansion order has been increased from 5 to
7 in order to satisfy the accuracy condition (Eq. (27)).
Comparing the final solution using an LSM of orders 7
and 11, only a minor deviation is observed, indicating
order 7 to be sufficient for this example. The compari-
son is shown in Fig. 9.

For the sake of completeness,we report that the over-
all computational timewas about 4.8min on aWindows
laptop equipped with Intel Core i7-1255UCPU@1.70
GHz and 16.0 GB RAM. The peak memory consump-
tion during the optimization was around 2 GB, mainly
associated with the LSM computation. This relatively
high cost is mainly to be imputed to a sub-optimal code
implementation, which can certainly be improved, for
instance, by integrating the sensitivity routines in the
SSMTool [70], which is specialized for Spectral Sub-
manifold (SSM) calculation. Nonetheless, the use of
the LSM and the analytical expressions for sensitiv-
ity computations make the proposed approach efficient
compared to traditional methods that rely on expensive
full-system simulations and numerical continuation.

Finally, we remark once more on the importance
of both selecting feasible targets (i.e., allowed by the
physics) and using a suitable set of parameters. For
instance, in this example, if only the A1 parameter was
retained and a softening behavior (of the like of prob-
lem (35)) was targeted, the optimization would fail.
Indeed, increasing A1 would create an arc shape, which
on the one hand leads to a softening behavior, but on the
other hand also increases the linear natural frequency of
the system, so that the target points cannot be reached.
This limit can be overcome by letting the thickness
and/or the length vary. However, as in many gradient-
based optimization problems, there is no general rule
for selecting the proper design parameters and initial
conditions. Moreover, the number and type of design

Fig. 9 Backbone of the von Kármán beam example, computed
for the optimal solution of problem (35). Order 7 (black, solid
line) and order 11 (blue, dashed) solutions show only a minor
discrepancy at high amplitude

variables usually depend on the specific application,
and they cannot be chosen by the user. For instance, in
many practical examples, the lower and upper bounds
are related to the characteristics of the production pro-
cess or to design limitations. The same consideration
applies for the target points of the optimization prob-
lem, which are defined by the design requirements.
Even so, we can conclude that, as a general rule, the
more the system can “change”, the more freedom we
have in selecting the target points for the backbone, but
this, obviously, comes at the expense of longer compu-
tational times.

7 Conclusions

In this work, we proposed a gradient-based optimiza-
tion procedure for the optimization of the backbone
curve of a generic mechanical system, described by
a set of parameters. This is done by selecting a num-
ber of target frequency-amplitude points and exploiting
the analytic expression of the backbone given by the
LSM, which allowed us to directly evaluate both the
backbone curve and the associated sensitivities, with-
out any numerical solution. An error estimate has also
been introduced in order to make sure that the same
level of accuracy is maintained throughout the opti-
mization process. Theprocedure has proved to be inher-
ently robust, for it does not depend on user inputs, if
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not for the initial expansion order of the LSM (which
is automatically adjusted) and, of course, on the tar-
get points. Finally, numerical examples of two spring-
mass chain systems and of a von Kármán clamp-clamp
beam have been provided, and the feasibility of the
optimization targets has been discussed. Although cur-
rently restricted to a limited number of design variables,
we think that the proposed strategy can be adapted to
topology optimization, e.g. by means of the adjoint
method to compute the sensitivities. Moreover, using
LSMs and the same LSM sensitivities provided in this
work, more applications can be envisioned, such as the
optimization of forced-frequency responses, multiple
modes with internal resonances, and parametric ampli-
fication.
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Appendix A

Cohomological equation The terms appearing in the
cohomological Eq. (15) are listed below:

Li = RT
i,i ⊗ B − I2i ⊗ A, (A1a)

Ri,i =
i∑

k=1

I⊗k−1
2 ⊗ R1 ⊗ I⊗i−k

2 , (A1b)

hi = vec(C i ) − Divec(Ri ), (A1c)

Di = I2i ⊗ (BW1), (A1d)

Ci = (F ◦ W)i − B
i−1∑
j=2

W jRi, j , (A1e)

Ri, j =
j∑

k=1

I2⊗k−1 ⊗ Ri− j+1 ⊗ I2⊗ j−k, (A1f)

(F ◦ W)i =
i∑

j=2

F j

⎛
⎝|q|=i∑

q∈N j

Wq1 ⊗ · · · ⊗ Wq j

⎞
⎠ .

(A1g)

At each order i ≥ 2, the cohomological Eq. (15)
must be solved for the coefficients W i . However, to do
so, the coefficients in Ri are required. We choose the
normal-form style of parametrization of the reduced
dynamics which results in coefficients Ri as (see, e.g.,
[24])

vec(Ri ) = EiN∗
i vec(C i ), (A2)

being Ei and N i matrices whose columns are of the
form

Ei =
[
· · · , eR� ⊗ e j , · · ·

]
, (A3a)

N i =
[
· · · , eR� ⊗ u j , · · ·

]
, (A3b)

where eR
�

and e j are the basis vectors of properly
selected spaces, and where the pair (�, j) denotes an
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Table 4 Dimensions of relevant matrices and vectors involved
in the LSM computation

Name Dimensions

Fi ∈ C
N×Ni

W i ∈ C
N×2i

Ri ∈ C
2×2i

Li ∈ C
N ·2i×N ·2i

hi ∈ C
N ·2i

Di ∈ C
N ·2i×2i+1

C i ∈ C
N×2i

(F ◦ W)i ∈ C
N×2i

Ri, j ∈ C
2 j×2i

EiN∗
i ∈ C

2·2i×N ·2i

inner resonance. Notice that Eq. (A2) can be directly
evaluated once the lower orders are known.

To initialize the computation, a sensible choice is to
set at the leading order (i = 1)

R1 = �E , (A4a)

W1 = V E , (A4b)

where, for the master space E , we defined

�E =
[
jωm 0
0 − jωm

]
, (A5a)

V E =
[

φm φm
jωmφm − jωmφm

]
, (A5b)

U E = τ

[
φm φm

− jωmφm jωmφm

]
, (A5c)

with the normalization factor τ = −1/(2ω2
m).

Table 4 summarizes the dimensions of the matrices
and vectors involved in the cohomological equation.

Appendix B

On the backbone curve coefficients
Differentiating Eq. (16), we get

ṗ = ρ̇

[
e jθ

e− jθ

]
+ ρθ̇

[
je jθ

− je− jθ

]
, (B6)

which, by definition (10), is also equal to

ṗ =
∑
i∈N

Riρ
i
[
e jθ

e− jθ

]⊗i

. (B7)

Due to the inner resonances, matrix Ri takes on a
particular structure, and it can be shown that the only
surviving exponential terms in the above equation are
the ones in ± jkθ with k = 1, while all terms with
k �= 1 multiply null entries of Ri . Also, noticing that
all the terms in e jθ and e− jθ sum up on the first and
second rows, respectively, after somemanipulation, we
can rewrite Eq. (B7) as:

ṗ =
∑
i∈N

ρi
[
e jθ 0
0 e− jθ

]
r i , (B8)

where

r i = Ri12i ∈ R
2×1, (B9)

being 12i ∈ R
2i×1 a column vector of all ones.

Equaling Eqs. (B6) and (B8) and simplifying the
exponential, we get:

{
ρ̇ = 1

2

∑
i∈N ρi

(
ri,1 + ri,2

)
θ̇ = − j 12

∑
i∈N ρi−1

(
ri,1 − ri,2

) (B10)

We now take a generic order i , and rewrite the coef-
ficients ri,1 and ri,2 as

ri,1 = βi,1 + jγi,1,
ri,2 = βi,2 + jγi,2.

(B11)

We know that both ρ and θ are real quantities, and
we need both ρ̇ and θ̇ to be real as well. Thus, we can
write the following conditions:

�(ri,1 + ri,2) = 0 → γi,2 = −γi,1

�(− jri,1 + jri,2) = 0 → βi,2 = βi,1
(B12)

This means that ri,1 and ri,2 are complex conjugate.
Moreover, since we are considering steady state, we
have ρ̇ = 0, so it follows that


(ri,1 + ri,2) = 0 → βi,2 = βi,1 = 0 (B13)
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Therefore, we can simplify the notation as

ri,1 = r̄i,2 = jγi (B14)

In the end, considering that at leading order we have
γ1 = ωm , the conservative backbone in Eq. (17) is
retrieved using:

γi = 1

2

[− j j
]
Ri12i . (B15)

Appendix C

Eigenfrequency sensitivity
The sensitivity analysis involves the derivative of the

master mode shape φm and its relative eigenfrequency
ωm [71,72]. To compute them, we start differentiating
Eq. (2):

−2ωm
dωm

dμ
Mφm +

(
−ω2

m
dM
dμ

+ dK
dμ

)
φm

+
(
−ω2

mM + K
) dφm

dμ
= 0.

(C16)

The mass normalization condition (Eq. (3)) is
derived as well, yielding

2φT
mM

dφm

dμ
+ φT

m
dM
dμ

φm = 0. (C17)

Equations (C16) and (C17) are combined in a linear
system whose unknowns are the derivatives of mode
shape and eigenfrequency:

[−ω2
mM + K −2ωmMφm

−2ωmφT
mM 0

][ dφm
dμ
dωm
dμ

]
=

[(
−ω2

m
dM
dμ + dK

dμ

)
φm

ωmφT
m

dM
dμ φm

]
.

(C18)

Equation (C18) must be solved for each design vari-
able, making the overall computational cost propor-
tional to the size of the optimization problem. In case
of a large number of design variables, for instance as in
topology optimization, this formulation would not be
feasible, and an alternative approach should be used.
Nonetheless, Eq. (C18) can still be used inmany practi-
cal problemswhere a parametric optimization approach
can be used with a limited set of design variables.

Appendix D

Sensitivity of ρ

The value of ρ in Eq. (30) depends on the physi-
cal amplitude that we are considering. As discussed in
Sect. 4.2, ρ is defined setting a target Z	 by2

Z	 =
√

1

Nθ

∑
k

z2k , (D19)

that can be rewritten as

Nθ

(
Z	
)2

︸ ︷︷ ︸
constant

=
∑
k

z2k = Y, (D20)

with

zk =
∑
i

ρi aTW i p̃
⊗i
k =

∑
i

ρi ci,k . (D21)

Taking the absolute variation of Eq. (D20) with respect
to μ, we have

0 = dY

dμ
= ∂Y

∂μ
+ ∂Y

∂ρ

dρ

dμ
, (D22)

where

∂Y

∂μ
=
∑
k

∂Y

∂zk

∂zk
∂μ

= 2
∑
k

∑
i

zkρ
i ∂ci,k

∂μ
, (D23a)

∂Y

∂ρ
=
∑
k

∂Y

∂zk

∂zk
∂ρ

= 2
∑
k

∑
i

zkiρ
i−1ci,k, (D23b)

and

∂ci,k
∂μ

= aT
∂W i

∂μ
p̃k

⊗i . (D24)

Finally, solving Eq. (D22), the sensitivity for ρ

reads:

dρ

dμ
= −

∑
k
∑

i zkρ
i aT ∂W i

∂μ
p̃k

⊗i

∑
k
∑

i zkiρ
i−1aTW i p̃

⊗i
k

. (D25)

2 To ease the reading, in the sums that follow we indicate only
the indexes, whose ranges are implicitly assumed.
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Appendix E

Lyapunov subcenter manifold sensitivities
As mentioned in Sect. 5, all the sensitivities ulti-

mately dependonhow themanifold and its parametriza-
tion change with the design parameters. In this section,
we thus turn our attention to the sensitivities of the
LSM.

E.1 Preliminary considerations

Before deep diving into the derivatives, let us reformu-
late some terms in a convenient form for the discussion
that will follow. Considering Eq. (A5), we can write:

�E = ωm

[
j 0
0 − j

]
= ωm�̃E , (E.26a)

V E =
[

1 1
jωm − jωm

]
⊗ φm = Ṽ E ⊗ φm, (E.26b)

U E = τ

[
1 1

− jωm jωm

]
⊗ φm = Ũ E ⊗ φm . (E.26c)

Similarly, we can rewrite Eq. (A3b) as

N i =
[
· · · , eR� ⊗ u j , · · ·

]

=
[
· · · , eR� ⊗ ũ j ⊗ φm, · · ·

]

=
[
· · · , eR� ⊗ ũ j , · · ·

]
⊗ φm

=
[
· · · , eR� ⊗

(
Ũ E e j

)
, · · ·

]
⊗ φm

= Ñ i ⊗ φm .

(E.27)

E.2 Leading order terms

First of all, using Eq. (A4a) and (E.26a), we can com-
pute the derivative of R1 simply as

dR1

dμ
= dωm

dμ
�̃E , (E.28)

where thederivative ofωm wasobtained fromEq. (C18).
In a similar way, using Eqs. (A4b) and (E.26b), we

take the derivative according to the chain rule:

dW1

dμ
= ∂ Ṽ E

∂ωm

∂ωm

∂μ
⊗ φm + Ṽ E ⊗ dφm

dμ
, (E.29)

where thederivative ofφm wasobtained fromEq. (C18),
and where

∂ Ṽ E

∂ωm
=
[
0 0
j − j

]
. (E.30)

E.3 Higher order terms

Consider the matrix Ri . This comes from the normal
formparametrization (Eq. (A2)) that involves thematri-
ces Ei , N i , and C i . The derivative of Ri is written as

dvec(Ri )

dμ
= Ei

dN∗
i

dμ
vec(C i )

+ EiN∗
i
dvec(C i )

dμ
,

(E.31)

where Ei is a constant boolean matrix defined in
Eq. (A3a).

The chain rule can be applied to find the derivative
of matrix N i :

dN i

dμ
= ∂ Ñ i

∂ωm

∂ωm

∂μ
⊗ φm + Ñ i ⊗ dφm

dμ
. (E.32)

where

∂ Ñ i

∂ωm
=
[
· · · , eR� ⊗

(
∂Ũ E

∂ωm
e j

)
, · · ·

]
, (E.33)

and

∂Ũ E

∂ωm
= 1

2ω3
m

[
2 2

− jωm jωm

]
. (E.34)

We now focus on the derivation of matrix C i :

dC i

dμ
= d

dμ
[(F ◦ W)i ] − dB

dμ

i−1∑
j=2

W jRi, j

− B
i−1∑
j=2

dW j

dμ
Ri, j − B

i−1∑
j=2

W j
dRi, j

dμ
,

(E.35)
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where

dRi, j

dμ
=

j∑
k=1

I⊗k−1
2 ⊗ dRi− j+1

dμ
⊗ I⊗ j−k

2 , (E.36)

and

d

dμ

[
(F ◦ W)i

] =

=
i∑

j=2

dF j

dμ

( |q|=i∑
q∈N j

Wq1 ⊗ · · · ⊗ Wq j

)

+
i∑

j=2

F j

[( |q|=i∑
q∈N j

dWq1

dμ
⊗ · · · ⊗ Wq j

)

+ · · · +
( |q|=i∑

q∈N j

Wq1 ⊗ · · · ⊗ dWq j

dμ

)]
.

(E.37)

The last thing that remains to be addressed is the
derivative ofmatrixW i , which appears in several terms
(Eqs. (D25), (E.35) and (E.37)). One way to do this is
through the derivative of the cohomological equation
(Eq. (15)), which reads:

dLi

dμ
vec(W i ) + Li

dvec(W i )

dμ
= dhi

dμ
, (E.38)

where

dLi

dμ
= dRT

i,i

dμ
⊗ B

+ RT
i,i ⊗ dB

dμ
− I2i ⊗ dA

dμ
,

(E.39)

and, from Eqs. (A1b) and (E.28):

dRi,i

dμ
=

i∑
k=1

I⊗k−1
2 ⊗ dωm

dμ
�̃E ⊗ I⊗i−k

2

= dωm

dμ
R̃i,i .

(E.40)

The derivative of the RHS of Eq. (E.38) is computed
as

dhi
dμ

= dvec(C i )

dμ

− dDi

dμ
vec(Ri ) − Di

dvec(Ri )

dμ
,

(E.41)

with

dDi

dμ
= I2i ⊗

(
dB
dμ

W1 + B
dW1

dμ

)
. (E.42)

Finally, Eq. (32) is retrieved by solving Eq. (E.38)
(see also Appendix F).

Equation (32) is computationally expensive as it
must be solved for each design variable. As said in
Appendix C, using Eq. (32) to compute the sensitiv-
ity of W i is an approach only suitable for parametric
optimization problemswith a limited set of design vari-
ables.

Appendix F

On the solution of the derivative of the cohomological
equation

In the presence or in the neighborhood of inner res-
onances, the matrix Li may become singular or ill-
conditioned. This issue was discussed at length in [24],
where it was shown that the parametrization (here, the
normal form style) can be chosen so that the RHS of
the cohomological Eq. (15) belongs to the image of the
operator Li , allowing a solution. The derivative of the
cohomological Eq. (32) also suffers from this problem,
and benefits from the same solution, as proved here-
after.

Equation (32), indeed, has solutions only if its right-
hand side lies in the null space of matrix Li . In other
words, the projection of the RHS of Eq. (E.38) onto the
left kernel Ni of matrix Li must be zero.
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In order to prove this, we project Eq. (15) onto Ni

and then we differentiate it:

dN∗
i

dμ

(Livec(W i ) − hi
)

+ N∗
i

(
Li

dvec(W i )

dμ

+ dLi

dμ
vec(W i ) − dhi

dμ

)
= 0,

(F43)

where N i (Eq. (E.27)) is a basis for Ni .
By definition, the projection of Li onto Ni is iden-

tically zero, that is

N∗
i Li = 0. (F44)

Moreover, the first term in Eq. (F43) contains the
cohomological equation, and therefore it is identically
zero as well. Therefore, Eq. (F43) becomes:

N∗
i

(
dhi
dμ

− dLi

dμ
vec(W i )

)
= 0. (F45)

This means that the right-hand side of Eq. (32) lies
in the null space of matrixLi , thus admitting solutions.
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