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a b s t r a c t 

In this short note we apply the recently proposed data-driven RANS closure modelling framework of 

Schmelzer et al. (2020) to fully three-dimensional, high Reynolds number flows: namely wall-mounted 

cubes and cuboids at Re = 40 , 0 0 0 , and a cylinder at Re = 140 , 0 0 0 . For each flow, a new RANS closure is 

generated using sparse symbolic regression based on LES or DES reference data. This new model is im- 

plemented in a CFD solver, and subsequently applied to prediction of the other flows. We see consistent 

improvements compared to the baseline k − ω SST model in predictions of mean-velocity in complete 

flow domain. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Reynolds averaged Navier-Stokes (RANS) models are notoriously 

naccurate in the presence of massive flow separation, for exam- 

le in the wake of bluff bodies. The steady RANS paradigm – of 

odelling fluctuations at all scales – is fundamentally ill-suited to 

epresenting the complex unsteady dynamics in the wake of e.g. a 

ylinder or wall-mounted cube. Nonetheless, in a wide variety of 

ndustrial applications (notably the automotive industry) it would 

e extremely valuable to have access to RANS closures that give 

easonably accurate predictions in wakes. 

Data-driven turbulence modelling uses data from high-fidelity 

imulations (LES, DNS) or experiments to semi-automatically de- 

ive new closure models, see the surveys [1,2] . The methods of 

upervised machine-learning are used to represent and fit mod- 

ls, e.g. neural networks [3] , random-forests [4–6] , gene-expression 

rogramming [7] , and sparse symbolic regression [8,9] . The latter 

wo methods have the advantage of generating concise expressions 

or closure models, which can be inspected, analysed and imple- 

ented easily. 

In this work we apply the Sparse Regression of Turbulence 

nisotropy (SpaRTA) framework first developed by Schmelzer et al. 

8] . The models produced are explicit algebraic Reynolds-stress 

odels, based on k − ε or k − ω closures, but correcting both the 

urbulence anisotropy, and the t.k.e. production. The required cor- 
∗ Corresponding author. 

E-mail address: r.p.dwight@tudelft.nl (R.P. Dwight). 
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ection fields are solved for by injecting DES, LES or DNS data into 

he RANS equations; and a model is obtained by regressing these 

orrections against mean-flow quantities available to RANS. This 

odel can then be applied to predict a flow for which no refer- 

nce data is available. 

Though the objective of predicting bluff body flows with RANS 

ight seem optimistic, SpaRTA has already been demonstrated 

ith success for flows with significant separation [10] . Also note: 

ur intention here is not to derive new general purpose closure 

odels. At a minimum that would require a more diverse set of 

raining flows. Rather, we wish to demonstrate that our framework 

as the capability of constructing RANS closures that generalize ac- 

eptably for massively detached flows. As such they may be useful 

s components of larger, general purpose models. 

While using the framework of [8] and [10] , this work extends 

hose articles in several ways. We consider flows at significantly 

igher Reynolds numbers ( Re = 140 , 0 0 0 vs Re � 10 , 0 0 0 in [8] ); in

D vs only 2D previously; and we use DES data for the first time. 

he 3D LES data source means that optimization of the symbolic 

egression for large data-sets is required, and we introduce a prac- 

ical technique for library reduction. 

. Methodology: SpaRTA 

The objective is to generate a RANS closure from reference data, 

hat improves predictions for some class of flows. For extended de- 

ails of our methodology, see [8] . In brief: the incompressible RANS 

 − ω SST equations are modified with correction terms b � and R 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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 j ∂ j U i = ∂ j 

[ 
− 1 

ρ
P + ν∂ j U i + νT ∂ j U i − 2 k b �i j , 

] 
, 

U j ∂ j k = P k + R − β∗ωk + ∂ j 
[
( ν + σk νt ) ∂ j k 

]
, 

 j ∂ j ω = 

γ

νt 

(
P k + R 

)
− βω 

2 + ∂ j 
[(

ν + σω νt 

)
∂ j ω 

]

+ CD kω , (1) 

ith ρ the fluid density, U , P the mean velocity and generalized 

ressure, ν , νT = νT (k, ω) the molecular- and turbulence viscosity, 

 , P k = −2 k (b i j + b �
i j 

) ∂ j U i the turbulence kinetic energy and its pro-

uction rate, and ω the specific dissipation rate. See [11] for details 

f remaining terms and coefficients. The baseline SST model uses 

he Boussinesq assumption as a fundamental modelling premise, 

amely 

 i j � −νt 

k 
S i j , S i j := 

1 

2 

(∂ i U j + ∂ j U i ) . 

here b i j is the normalized turbulence anisotropy. The purpose 

f b � is to relax this assumption by allowing for deviations from 

oussinesq. Similarly the SST k -equation is a model for the true 

.k.e. equation; and the new term R is placed to allow for mod- 

lling errors here. In practice R allows for control of turbulence in- 

ensity, and b � for control of turbulence anisotropy. 

Solving for corrective fields Given full-field LES or DES data for 

ow A, our preliminary objective is to find corrective fields R ( x ) , 

 

�( x ) – i.e. as functions of the spatial coordinates x := (x, y, z) 

such that when the system (1) is solved for the same flow A, 

he resulting U and k correspond well to LES/DES mean values. 

his is achieved by injecting frozen LES/DES quantities into (1) , 

nd solving for the remaining unknowns R , b � and ω. This pro- 

edure is named k -corrective-frozen-RANS [8] and can be seen as 

 generalization of the “frozen” method for estimating t.k.e. dissi- 

ation rate from LES data [12] . We use DES/LES estimates of the 

eynolds stress tensor and t.k.e. which include contributions from 

oth modelled and resolved stresses. Note that we deliberately 

onflate the k of the k − ω model, and the true t.k.e. at this step. 

he objective is to obtain a system of equations which is predictive 

f true t.k.e., at the cost of perhaps larger correction terms. 

Model Regression To make predictions it is necessary to gen- 

ralize these corrective fields by building a closure model. We 

chieve this by now finding expressions for R (S, �) , b �(S, �) as 

unctions of the mean strain-rate tensor S and rotation rate tensor 

i j := 

1 
2 (∂ j U i − ∂ i U j ) ; quantities available to the RANS solver. In

articular we follow Pope’s integrity basis formulation [13] , which 

pecifies that the most general functional form (under modest as- 

umptions) for b �(S i j , �i j ) can be written: 

 

�
i j (S i j , �i j ) = 

10 ∑ 

k =1 

T (k ) 
i j 

αk (λ1 , . . . , λ5 ) , (2) 

here T (1) := S, T (2) := S� − �S, etc. are basis tensors, λl are the 

ve invariants of S and � [14] , and αk : R 

5 → R are ten, arbitrary

calar-valued functions. By this construction b � is always symmet- 

ic and traceless, the map b �(·) is invariant under rotations, and 

alilean invariant by virtue of the dependence only on ∂ j U i . In 

his work we use only T (1) , . . . , T (4) and λ1 , λ2 , thereby restricting

ur search to quadratic nonlinear eddy-viscosity models, following 

.g. [15,16] . 

Aiming for simple algebraic expressions, we represent each 

k (λ1 , λ2 ) as a linear combination of a large library of basis func- 

ions L = (φ1 , . . . , φL ) : 

k (λ1 , λ2 ) = 

L ∑ 

l=0 

c l k φ
l (λ1 , λ2 ) , k ∈ { 1 , . . . , 4 } , (3)
2 
here the library is generated from products and powers of the in- 

uts L = (1 , λ1 , λ
2 
1 , . . . , λ2 , λ

2 
2 , . . . , λ1 λ2 , . . . ) , see for example [17] .

o avoid models with large numbers of terms, as well as overfit- 

ing, we apply elastic net regression [18] , which encourages spar- 

ity (most coefficients c l 
k 

= 0 ), to find the model form. Let c ∈ R 

4 ×L 

epresent the vector of all model coefficients, then we solve 

in 

c 
‖ b �( x ) − b �( c ; S( x ) , �( x )) ‖ 

2 + θρ‖ c ‖ 1 + θ (1 − ρ) ‖ c ‖ 

2 
2 , 

(4) 

here in practice the first norm is estimated using the points 

f the mesh used to obtain the corrective field b �( x ) . The term

 c ‖ 1 := 

∑ | c i | encourages sparsity of c and the term ‖ c ‖ 2 
2 

:= 

∑ 

c 2 
i 

ontrols the magnitude of nonzero coefficients. Both are blended 

y ρ ∈ [0 , 1] and θ ∈ R 

+ ultimately controls the extent of regu- 

arization. Using path elastic net [19] , a large number of candi- 

ate models for various ρ , θ are obtained, and a second ridge- 

egression step is used to select coefficients. A similar procedure is 

pplied to model R (S, �) : we assume the form R = 2 k∂ j U i ̂
 R i j (S, �) ,

nd use the base-tensor series to model ˆ R i j . 

With the extension from 2D cases in [8] to 3D cases here the 

ize of the data-set in (4) has increased significantly, and symbolic 

egression becomes a significant memory bottleneck due to stor- 

ge of the library L evaluated on the full data-set. We introduce 

 cliqueing procedure motivated by the high multi-collinearity ob- 

erved in L . Specifically we compute the correlation coefficient be- 

ween all pairs of library functions φi , and sort them into cliques 

hose correlation within a clique always exceeds a cut-off (of 

.99). Efficiently finding cliques is an established problem in graph 

heory [20] . We then select the algebraically simplest member of 

he clique to represent the clique, and discard the remainder. Al- 

hough φi are nonlinear in the inputs, a linear measure of correla- 

ion is adequate, as they are combined linearly in (3) . This method 

s reminiscent of elite basis regression [21] , except that we are not 

oncerned with correlation with the target, only with basis func- 

ions amongst themselves. 

. Results 

We examine three flows: a wall-mounted cube in a channel 

Flow A), a wall-mounted cuboid (length:width:height ratio 3:2:2) 

lso in a channel (Flow B), and an infinite circular cylinder (Flow 

). Flows A, B are at Re = 40 , 0 0 0 based on bulk velocity and

ube/cuboid height h , with the channel of height 2 h , and are well-

sed experimental [22] and numerical test-cases [23] . Flow C is at 

e = 140 , 0 0 0 based on cylinder diameter [24] . All three flows in-

lude massive separation, resulting in unsteady wakes with a wide 

ange of time- and length-scales. 

Ground-truth reference fields for Flows A, B are obtained with 

ES [25] simulating a domain of size 14 . 5 h × 9 h × 2 h , the obsta-

le centred at x = 4 h , with periodic boundary-conditions in the 

ross-channel direction, and synthetic channel turbulence at the 

nflow plane [26] , and an averaging time of � 12 . 4 flow-throughs. 

he RANS part of the DES is based on the Spalart-Allmaras one- 

quation model [27] , in contrast to our use of k − ω SST in our 

nhanced RANS. 

For Flow C ground-truth comes from a wall-resolved LES. The 

ylinder has diameter d and simulated length π · d with periodic 

oundaries. The flow is fully turbulent, with synthetic turbulence 

t the inlet plane. For all flows, velocity profiles were compared 

ith existing published results, and found to be sufficiently accu- 

ate for the application. 

The “Cube” model We first apply the SpaRTA methodology to 

low A. Mean velocity profiles for the DES reference and baseline 

ANS are shown in Fig. 1 . The baseline significantly overestimates 

he size of the recirculation region on the top and sides of the 
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Fig. 1. Flow A: Wall-mounted cube comparison. 
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ube, and the wake recovery is very significantly delayed. Frozen 

orrective fields are obtained, and symbolic regression is used to 

educe these to a closure model, giving the following correction to 

 − ω SST: 

 

�
Cube = T (1) (28 . 68 λ1 + 4 . 717 λ2 − 0 . 3560) 

+ T (2) (−88 . 99 λ1 + 68 . 77 λ2 + 13 . 80) 

+ T (3) (20 . 59 λ1 − 0 . 8594) 

+ T (4) (11 . 46 λ1 − 2 . 770 λ2 − 0 . 94412) , 

ˆ 
 Cube = T (1) (−35 . 74 λ1 λ2 − 69 . 58 λ1 

+ 39 . 74 λ2 
2 + 7 . 573 λ2 + 3 . 739) 

+ T (3) (5 . 867 λ1 + 0 . 3755 λ2 
2 − 6 . 784 λ2 − 16 . 48) 

+ T (4) (−2 . 304 λ1 − 0 . 2182 λ2 
2 + 3 . 136 λ2 − 4 . 822) . 
3 
hese corrections are implemented in our solver, a modified ver- 

ion of simpleFoam in OpenFOAM, as a new turbulence model 

this is straightforward and can be completely automated. The 

ANS solver is run with the new model for Flow A as a verification 

heck. The resulting mean-flow is also shown in Fig. 1 , where the 

ow in the entire domain is seen to better represent the reference. 

n particular the flow near the stagnation point, the separation on 

he top and sides, and the wake recovery are all closer to the refer- 

nce – although wake recovery is still somewhat under-predicted. 

The k -profiles in Fig. 1 c show substantial overestimation of k by 

he model. To explain this observation, note that to obtain stable 

ANS simulations it was necessary to relax b � by 50% to gain sta- 

ility, and this factor was used in all simulations in this work. Fur- 

hermore we observed that the R correction term acted to increase 

he production of k , while the contribution of b � acted to decrease 

roduction – especially in the wake. In the frozen corrective fields 

hese effects cancelled to some extent, but the same cancellation 
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Fig. 2. Flow B: Extended cube comparison. 
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as less apparent in the discovered models, and this lead to insta- 

ility of the solution. By introducing 50% relaxation of b � we tend 

o increase k , and the eddy-viscosity beyond that recommended by 

he frozen corrective fields, and thereby stabilize the simulation, at 

he cost of overpredicting k . Note that the k-omega SST produc- 

ion limiter was used, applied to the production term net of the 

 

� correction, but not including the R correction. 

In our experience instabilities are a major issue in data-driven 

ANS modelling. They are mitigated to some extent by our use 

f simple expressions for the closure – and are much worse with 

andom-forest or neural network closures. We recommend further 
4 
ork analysing instability mechanisms and adding instability pe- 

alities to the loss-function. 

To make a prediction, the “Cube” model is applied to Flow B. 

he mean velocity profiles are shown in Fig. 2 . The flow is topo- 

ogically similar to Flow A, as such it is reasonable to hope that 

he model generalizes well. This is indeed the case, with signifi- 

ant improvements over the RANS baseline visible everywhere in 

he domain. Notably, on the longer top and sides of the obstacle, 

he reproduction of the ground-truth is good – while the flow sep- 

ration is quite different. A weakness can be seen in the near wake, 

here in Fig. 2 b a much narrower shear-layer is visible in the ref-
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Fig. 3. Flow C: Infinite cylinder comparison. 
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rence compared to the corrected model, however the wake recov- 

ry is good. 

As a second prediction, the Cube model is applied to Flow C, 

ee Fig. 3 . In this flow the baseline RANS predicts the flow up- 

tream of the obstacle very well, and the correction model does 

ot modify the flow here. Once again however the baseline pre- 

icts much too slow wake recovery, and this is corrected almost 

ompletely by our model based only on data from Flow A. 

The “Cylinder” model To investigate the sensitivity of the data- 

ource on the resulting model and its performance, we apply the 

paRTA methodology using the wall-resolved LES data of Flow C. 

gain the frozen correction fields are found readily, and the sym- 

olic regression approach gives: 

 

�
Cylinder = T (1) (19 . 24 λ1 + 57 . 86 λ2 + 2 . 939) 

+ 9 . 695 · T (2) + 7 . 805 · T (3) + 1 . 171 · T (4) , (5) 
5 
ˆ 
 Cylinder = T (1) (−2 . 823 λ1 + 33 . 82 λ2 + 2 . 586) 

+ 11 . 17 · T (3) − 3 . 107 · T (4) . (6) 

In this case it was possible to find a significantly sparser 

odel that nonetheless reduced the regression error to an ac- 

eptable level. This is likely at least partially thanks to the two- 

imensionality of the mean-flow. Again the model was imple- 

ented in our OpenFOAM-based solver, and Flow C was predicted 

s a verification exercise – see Fig. 3 . Once more the flow is signif-

cantly more accurate than the baseline (and especially in terms of 

ake recovery) except in a small region in the near wake. Notably 

he “Cylinder” model performs worse for this verification exercise, 

han the “Cube” model does in prediction. Again we suspect an is- 

ue with the stability of the RANS solver. The asymmetry observed 

n the cylinder correction model is due to the RANS solver not con- 

erging to a fully steady-state; the plotted profiles represent the 

olution at a single iteration (not averaged). Another factor is the 
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[

[

[

[

[

 

[  

[

[

elatively diverse flow content of the cube data-set compared to 

he cylinder – the choice of training data will be a subject of fu- 

ure work. 

Finally, in Fig. 3 b k -profiles for Flow C are compared. Again both

orrection models improve dramatically on the baseline – which 

assively under-predicts k in the wake – however neither are par- 

icularly accurate. A likely cause is the large-scale dynamics of the 

ármán vortex street, which contribute to the LES estimate of t.k.e. 

ut are missing in RANS. Once more however the free-stream is 

naltered. 

. Conclusions 

We’ve demonstrated the ability to construct custom explicit al- 

ebraic Reynolds stress models for bluff-body flows from LES and 

ES data. We’ve shown the models have a generalization capabil- 

ty, with respect to different geometries and different flows, while 

onsistently outperforming baseline models. This study shows the 

ossibility of using RANS for massively separated flows using suit- 

ble machine-learning techniques, though many questions remain. 

pecifically: Is the method robust to training-data choice? Is sym- 

olic regression general enough to capture the necessary correc- 

ions? How do the b � and R corrections interact in k -production? 

urther work will focus on investigating the stability of automati- 

ally generated models, and scaling up training data from one flow, 

o a large database of flows. 
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