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ABSTRACT 

A theoretical model i s developed for wave heights and set-up in a 

surf zone. In the time averaged equations of energy and momentvmi the energy 

flux, radiation s t r e s s and energy dissipation are determined by simple 

approximations which include the surface r o l l e r i n the breaker. Comparison 

with measurements shows good agreement. Also the transitions immediately 

a f t e r breaking are analysed and shown to be i n accordance with the above 

mentioned xdeas and r e s u l t s . 
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1. INTRODUCTION 

The proper modeling of wave motion in the surf zone on a l i t t o r a l 

coast has been the goal of many investigations i n pa r t i c u l a r i n the l a s t 

two decades. Yet i n spite of progress both i n terms of a growing stock of 

r e l i a b l e ejcperimental r e s u l t s and i n theoretical understanding of the processes 

the general impression of the situation today i s s t i l l that much remains to 

be done. 

The- present investigation i s mainly theoretical but r e l i e s heavily 

on experimental evidence a t a number of points. I t also i n d i r e c t l y leans 

on the many contributions i n the l i t e r a t u r e which have helped to show that 

conventional wave theories cannot be used to describe surf zone waves. 

As i n most of those contributions we only consider i n t e g r a l properties 

of the waves and work with equations time averaged over a wave period. The 

goal i s only to describe the wave height and mean water l e v e l (set-up) v a r i a ­

tions. This means that the integral wave properties we need to determine 

f i r s t of a l l are energy flux, radiation s t r e s s and energy d i s s i p a t i o n . 

In spite of the fact that integral properties 

should be l e s s s e n s i t i v e to minor inaccuracies i n the d e t a i l s of the wave 

description i t i s generally accepted that l i n e a r wave theory i s too d i f f e r e n t 

to y i e l d a proper description of energy flux and radiation s t r e s s i n the surf 

zone. Some authors have t r i e d to use s o l i t a r y wave theory (see e.g., Divoky 

et a l . , 1968), cnoidal theory or hyperbolic wave theory (James, 1974, i s an 

example) which are other e a s i l y accessible wave theories. For reasons that 
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may become clear from the present contribution these p a r t i c u l a r suggestions 

do not work, but t h i s conclusion i s often concealed by the fact that r e s u l t s 

obtained for the wave heights and set-up also depend on how the energy 

dissipation i s modelled. 

Also the idea of a s i m i l a r i t y solution for the waves has been pursued. 

Such an approach i s more l i k e l y to be able to lead to acceptable r e s u l t s , 

although i n the form presented by Wang s Yang (1980) i t i m p l i c i t l y assumes 

that the wave height to water depth i s a constant which we know i s not the 

case (see e.g., the experimental r e s u l t s by Horikawa s Kuo (1966), and also 

t h i s paper). 

In acknowledgement of the limited success of the theoretical 

investigations and the access to modern measuring techniques such as LDA, 

contributions have been published giving both very detailed measurements of 

velocity and pressure f i e l d s and computations of p a r t i c u l a r l y radiation s t r e s s 

and momentum balance from the basic definitions (see Stive, 1980, and Stive 

& Wind, 1982). 

The p o s s i b i l i t i e s for evaluating the energy dissipation are far more 

r e s t r i c t e d . In princip l e turbulence i s created by two sources: the bottom 

boundary layer and the surface breaker. In practice, however, the bottom 

dissipation i s t o t a l l y outweighted by the dissipation due to breaking, and 

i s consequently neglected here. 

The idea which turns out to be most f r u i t f u l i n determining the 

energy dissipation ( i f a detailed description of the turbulent flow i s not 

attempted) i s based on the resemblance of surf zone waves with bores. This 
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was discussed by LeMehauté (1962) and l a t e r by Divoky et a l . (1968). To 

f i t measiirements, however, they used the motion of a non-saturated breaker 

suggested by LeMehauté (1962), which implies an energy dissipation smaller than 

the dissipation i n a hydraulic jtimp of the same height as the wave. This i s 

the opposite r e s u l t of that found by Svendsen et a l . (1978) who concluded that 

the dissipation i n actual measurements were larger than i n a jump of the same 

heights The. explanation for t h i s controversy probably l i e s i n the dif f e r e n t 

values used for the energy flux. I n section 7 we w i l l see that i n a cnoidal 

•or s o l i t a r y wave (used for assessing the energy flvix by Divoky et a l . ) the 

energy f l u x for a given wave height i s much smaller than i n a surf zone wave. 

Hence the smaller dissipation required by Divoky et a l . for a given (measured) 

wave height decrease. 

In the present paper we simply use the hydraulic jump expression for 

the energy dissipation. This i s i n r e a l i z a t i o n of two f a c t s . 

F i r s t l y Svendsen S Madsen (1981) e s s e n t i a l l y confirmed the conclusion 

±n Svendsen et a l . (1978) tin the following denoted I ) , but th e i r r e s u l t s 

indicate that many factors are involved, and further studies show that the 

deviation from the hydraulic jump dissipation i n most cases i s l e s s than 20%. 

Secondly the other effects studied i n the following are found to be 

more important. 

The paper may be considered a continuation of the work reported i n I . 

To determine the wave height and set-up variation we consider the equations 

of energy and momentum balance, both averaged over the wave period (section 2 ) , 

and i n section 3 derive a closed form solution to the energy equation. In 
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section 4 we investigate an a n a l y t i c a l solution for a special case. This 

reveals that neglecting set-up there i s only one parameter K (given by the 

wave properties at the starting point) which determines the wave heights. 

K i s a combination of the bottom slope parameter S = h L/h ide n t i f i e d for 

shoaling by Svendsen S Hansen (1976) (h i s bottom slope, L wave length and 

h watei: depth), the wave height to water depth r a t i o H/h and the dimensionless 

energy flux B. 

The three wave properties mentioned e a r l i e r (the energy flux, 

radiation s t r e s s and energy dissipation) are determined i n section 5. Here 

i t becomes necessary to concentrate on the inner region (defined i n I ) of 

the surf zone where the waves have become bore-like (Fig. 1 ) . I t i s shown 

that the most important feature i s the existence of a surface r o l l e r which 

to the f i r s t approximation can be considered as a voltime of water c a r r i e d 

with the wave. The r o l l e r almost doubles both energy flxxx. and radiation 

s t r e s s r e l a t i v e to a shallow water wave otherwise of the same shape. 

Fi g . 1 ' . 

Section 6 shows comparison with experimental r e s u l t s i n the inner 

region. Both wave heights and set-up are well predicted. 

When i t comes to the outer region (Fig. 1 ) , however, some paradoxical 

features are i d e n t i f i e d i n the measurements (section 7 ) . The paradox i s r e ­

solved by considering jump conditions analogous to those applied for bores 

and hydraulic jiimps. This implies using the momentum and energy equations 

for the entire outer region. The res u l t s show that the expressions derived 
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in Section 5 for waves in the inner region are consistent with r e s u l t s for 

waves before breaking. 

Throughout the derivations the simplest and lowest order approximations 

have been used. Thus many d e t a i l s such as non-uniform velocity p r o f i l e s , the 

e f f e c t of the strong txirbulence, etc. are simply neglected. The reason i s 

t h a t these aspects, however important, turn out to be minor corrections 

r e l a t i v e to the e f f e c t s included. Hence the following i s meant as an attempt 

to show that i t i s possible for the wave motion i n a surf zone to formulate 

a crude model which reproduces a l l the major features observed i n the 

measurements. 



Fig. 2 

2. THE BASIC EQUATIONS 

We consider the two dimensional problem sketched i n F i g . 2 which also 

shows the definition of variables. 

The three basic equations to be s a t i s f i e d represent the conservation of 

mass, momentum and energy, integrated over depth and averaged over a wave 

period T. 

The conseirvation of mass w i l l not be invoked e x p l i c i t l y but used i n the 

way the p a r t i c l e v e l o c i t i e s i n the wave are evaluated. 

We consider regular progressive waves only and hence the momentum 

equation simply reads 

as 
X X 

9x 
= - pg(h + n) 

an 
ax 

(2.1) 

where S i s the radiation s t r e s s defined (exactly) by ( denoting average 
X X 

over a wave period) 

S = P + F„ 
X X m p 

P = 
m 

2^ 
pu dz 

P -h 

(2.2) 

with the dynamic pressure p̂ ^ given by 

= pgz + p (2.3) 

2-1 
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Using for mean energy flux and V for energy dissipation, the energy 

equation (also averaged over a wave period) becomes 

9E 

= V (2.4) 3x 

The general definition of E^ i s 

'1 

= [(p^ + I p(u^ + v^ + w^)]u dz (2.5) 

I n both (2.3) and (2.5) v e l o c i t i e s and pressures are the instantaneous 

values, so that these definitions also cover the turbulent flow situations i n 

a surf zone. Since, however, any ordered mechanical energy that i s turned 

into turbulence w i l l be reduced to heat within roughly-the following wave 

period we s h a l l choose i n (2.4) to consider only the flux of (ordered) wave 

energy, that i s , consider energy l o s t as soon as i t has been changed to 

turbulence. To i l l u s t r a t e t h i s we write 

^ f = ^f,w-^^f .. 

Where E^ i s the t o t a l flux of turbulent energy (by a l l means, including 

diffusion) and (with v = 0) 

"^f ,w - J 

1 2 2 
(Pj3 + J p(u + w )u dz (2.7) 

-h 

(~ denoting ensemble averaged values) i s the flux of "wave energy." 

Hence (2.4) becomes 

9E, 9E; 

- f ' - ^ = p _ f = (2.8) 
3x 9x t 

where then equals minus the production of turbulent energy 
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But in the steady wave motion considered also equals minus the 

energy dissipation V . 

Hence i n (2.4) we simply use (2.7) for and t h i s means considering 

only ordered wave energy, which i s a choice, not an approximation. 

I t i s convenient for the following analysis to introduce non-dimensional 

measures of both the wave energy flux E , the radiation s t r e s s and the 
I ,w 

energy dissipation. The following definitions are used. 

B = E^ Y(pgcH^) (2=9) 

P = S 2 (2.10) ^ p g H 

D = P^.(4hT/pgH^) (2.11) 

where T i s the wave period and c the speed of propagation for the wave. 



3. A CLOSED FORM SOLUTION TO THE ENERGY EQUATION 

I t tums out that the energy equation can be solved i n closed form 

for a f a i r l y general type of problem. With (2.11) and (2.7) substituted 

C2.4) reads 

f>w ̂  H D (3.1) • 
3x 4HT 

The variation of the wave height i s a combination of three e f f e c t s : 

the change i n water depth (which on a beach causes a wave height increase) , 

the dissipation of energy (tending to reduce the wave height) and the change 

i n shape of the wave (taken i n a rather general sense) which i s re f l e c t e d i n 

the v a r i a t i o n of R, P and D. 

Whereas the f i r s t two of these effects are represented i n the time 

averaged equations, the same time averaging has excluded the p o s s i b i l i t y of 

assessing the change i n wave shape (n, u, p, etc.) d i r e c t l y from the equations 

and the values of B, P and D must be evaluated separately (see sect. 5) . , 

Hence i n the following we assume these parameters are known. 

To obtain a solution to (3.1) we introduce a shoaling c o e f f i c i e n t 

K defined so that a t any depth 
s 

2 2 
c B ( K H ) = c B H = const (3.2) 

^ s r r r r 

where index ^ ref e r s to some chosen reference point. This equation would 

give the H variation i n the absence of dissipation. The actual wave height 

i s then expressed as 

H = K K^H (3.3) 
s d r 

3-1 
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which defines the dissipation coefficient K^. Thus we get using (3.2) which 

implies a/8x(cBK ^) = 0: 
s 

= 2pg K^K^CBK/H^ =2E^^^ 

(' denoting 3/9x) which substituted into (3.1) y i e l d s 

or 

4cBhT 
d 

K' K H D 
d _ s r 
2 ~ ScBhT 

or 

K H D 
s r (3.4) 

8cBhT 

So far no assiomptions have been introduced neither about the type of 

wave considered (except that i t i s regular and progressive) nor about the 

nature of the energy dissipation. Thus (3.4) applies to waves i n the surf 

zone as well as to the attenuation of waves due to bottom f r i c t i o n . (3.4) 

even applies to the growth of waves due to wind energy being added i f we l e t 

n > 0. In the following, however, we concentrate on the surf zone where 

D < 0. 

We now make the assumption (which w i l l l a t e r be j u s t i f i e d ) that the 

c o e f f i c i e n t s on the r i g h t hand side only depend on the water depth h. (For 

a numerical evaluation of the following solution t h i s assumption may be relaxed 

to include a weak dependence on H as well.) Hence (3.4) may be integrated 

d i r e c t l y giving 



K. K 
'dr 

•X K H D 
s r 

X 
ScBhT 

dx 

where the integration constant i s K^^ = 1 for x^ x^. That i s 

^d = 1 -
•X K DH 

s r 
ScBhT 

- r - l 

dx 

(3.5) 

(3.6) 

Recalling that (3.2) implies 

— '*;r— 
s c B 

(3.7) 

we therefore get for H by substitution into (3.3) 

r 

H 
1 -

8c B T 
r r 

X DK 
3 ^-1 

dx (3.8) 

We see that t h i s closed form solution depends on one combination of the wave 

properties at the reference point, namely 

H , H h 
1 r r 

8c B T 8B h L 
r r r r r 

(3.9) 

C3-8), however, corresponds to a certain change i n x. And since K mainly 
s 

depends on h t h i s means that the bottom slope h i s actually a parameter as 

we l l . For monotonously changing depth we can express t h i s e x p l i c i t l y by 

changing to h as integration variable. This y i e l d 

r 
1 - K 

f X DK h 
s xr 

h h' 
X X 
r 

dh 

with (3.10) 



3-4 

and h i s h at the reference point. Hence the wave height v a r i a t i o n i n 
xr X 

a surf zone w i l l be the same for a l l wave conditions having the same value 

of K at the st a r t i n g point of the computation (which, i n p r i n c i p l e , may be 

any point from the breaking point where D becomes non-zero and shorewards) . 

I t also shows that the bottom slope i t s e l f i s not a proper measure 

of the steepness of the beach. The relevant parameter i s h L/h, which i s 

the same, slope peirameter. as was found for the shoaling of waves by Svendsen 

& Hansen (1976). 

Notice that h includes the set-up, that i s 

h ^ h g ^ + ïï (3.11 

where h ^ ^ i s the depth i n the absence of waves. 
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4. ANALYTICAL SOLUTION FOR A SPECIAL CASE 

One special case i s of p a r t i c u l a r i n t e r e s t as i t renders an a n a l y t i c a l 

solution possible. I t corresponds to a plane beach with D and B constant and 

c = c i/qh. The l a t t e r assxmption with c s l i g h t l y larger than /gh - and hence 

c s l i g h t l y more than Vgh but varying l i k e h. ' - was found i n I to be a good 

approximation. 

In t h i s case the integral i n (3.10) may readily be solved and we get 

with h- = 5 ^ (4.1) 
I =s • t ̂  •••• "• W X U H IJ. i _ 

j , . V 4 ^ , ^ 4 ^ ( ^ . - 3 / 4 _ ^ j 3 h 

In t h i s solution i s included the set-up n determined from the solution 

of the momentum equation. This, however, i s nonlinear i n n and not solvable 

except i f H/(h+n') i s assumed constant (Bowen et a l . (1968)). Although 

t h i s -is not r e a l i s t i c ^ for the major part of the surf zone , n « h and 

hence i n evaluation (4.1) we may either completely neglect n (viz means 

h' - (h/h ) ).or use the above mentioned approximation H/h = a = const. 

The l a t t e r gives the approximation 

^ - '1 ~ "i^^swL - \,sm) 

a, = 
l+2a2p 

or ( i f we neglect i n comparison to h^) 

(4.2) 

^ r ^ SWL 

(1 + a^) - (4.3) 

4-1 
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which d i f f e r from Bowen et a l . ' s r e s u l t i n that a i s not ass\amed equal to 

0.8. 

Figs. 3 
& 4 Figs. 3 and 4 show the variation of H/Ĥ  and H/h*(H^/h^) versus 

h' = Ch/h for different values of KD and n = 0. 
SWL r'SWL 

In these figures we could, for example, consider the reference point 

taken at the breaking point. 

Of p a r t i c u l a r i n t e r e s t i s the variation of the wave height to water 

depth r a t i o H/h. As anticipated H/h i s far from constant for any value of KD. 

For a wide range of KD, however, (which also turns out to be p r a c t i c a l l y 

r e a l i s t i c ) the H/h variation shows a minimum which may be recognized also 

i n many experimental r e s u l t s (see e.g., Horikawa s Kuo (1966)). 

Clearly t h i s phenomenon r e f l e c t s the basic feature mentioned above 

that the wave height variation i s a balance between shoaling and d i s s i p a t i o n . 

This can more readily be seen by writing (3.1) i n the form (for derivation see I ) 

h 

h c B 

h 2c 2B 
H + _D_ 
h 8cTB 

2 
(4.4) 

The f i r s t bracket on the right side represents the shoaling, the l a s t 

term the dissipation. Since at the reference (breaker) point H/h w i l l usually 

be quite large, the second term w i l l dominate provided [D| i s s u f f i c i e n t l y 

large as in a breaker. Hence at a s t a r t (H/h)^ i s negative. As (H/h)^ 

however decreases f a s t e r with H/h than does (H/h)""" the difference between 

the two terms decreases t i l l (H/h) ~ 0. Hence were i t not for other e f f e c t s 

H/h would asyifiptotically approach the value obtained by equating the right 

side to zero. 
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Fig. 5 

At the same time, however, as h decreases for constant h^ both b^/h 

and c^/c increases and near the shore l i n e t h i s effect becomes completely 

dominating resulting i n the shown increase i n H/h. 

The position of the minimum for H/h can be found from (4.4) to be 

(with c^/c = h^2h) 

h D 

(Notice that both h^ and D are < 0.) I f we introduce K t h i s becomes 

(H/h) . ^ T 

"̂ "̂  = I (KD>4r^)"^ ( 4 . 6 ) (H/h)^ 4 

which may be solved i n combination with (4.1). The r e s u l t i s that the minimum 

for H/h occurs at 

1 4 / 3 

h' . 
mxn 

8 KD 
20 KD - 15 

This value and the corresponding value of H/h are shown i n F i g . 5. 

We also see that for s u f f i c i e n t l y small KD(<' 1.25 i t turns out) the 

wave height w i l l be increasing already from the reference point. This i s 

not l i k e l y to happen for breakers but w i l l sometimes be the situation where 

the dissipation i s caused by bottom f r i c t i o n (that i s seawards of the breaking 

point). 

On the other hand, the situation may also occur that a wave approaching 

a shore w i l l not break at a l l because i t s energy i s being dissipated by bottom 

f r i c t i o n faster than the height can increase due to shoaling, so that i t never 
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reaches a height s u f f i c i e n t for breaking to occur. Obviously t h i s requires 

a very small bottom slope and we see from (3.10) that h^ small leads to K 

large so that even with the small D from bottom f r i c t i o n KD becomes larger 

than 1.2S. (Pig. 4 also incidates that i f breaking i s to be avoided e n t i r e l y 

then h must decrease shorewards. With constant h (however small) the wave 

height w i l l s t a r t to increase sooner or l a t e r and hence the wave w i l l reach 

breaking.) 

The question, however, remains whether B, D and P can be considered 

constants through the surf zone (as assumed i n t h i s section), and what t h e i r 

values w i l l be. 
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5. ENERGY FLUX, RADIATION STRESS AND ENERGY DISSIPATION IN THE SURF ZONE 

The solutions derived above can theoretically be used right from the 

breaking point and shorewards, but i t has often been pointed out (see e.g., 

I ) that the flow i n the so-called "outer region" immediately shoreward of the 

breaking point i s s i g n i f i c a n t l y different from the conditions i n the inner 

region. The tramsitions i n the outer region w i l l be discussed i n Section 7. 

F i r s t , however, values of the dimensionless parameters B, P and D 

are detejnnined i n the inner region. 

The important feature dominating the wave motion i n t h i s region i s 

the surface r o l l e r , which i n essence i s a volume of water carried shorewards 

with the breaker. F i g . 6 shows a t y p i c a l situation, and also indicates a 

t y p i c a l velocity d i s t r i b u t i o n along a v e r t i c a l at the front of the wave. 

F i g . 6 

The r o l l e r i s defined as the re c i r c u l a t i n g part of the flow above 

the dividing streamline (in a coordinate system following the wave). Since 

i t i s resting on the front of the wave the absolute mean veloci t y i n the r o l l e r 

equals the propagation speed c for the wave, and i n the following we use t h i s 

value for the velocity i n the r o l l e r , neglecting the z-variation. 

From t h i s • i t follows that the r o l l e r represents a s i g n i f i c a n t 

enhancement of the ordinary Stokes d r i f t Q . Thus a surf zone wave pote n t i a l l y 

5 

represents a much bigger mass transport than non-breaking waves. The actual 

net mass flux, however, i s in any situation determined by the boundary conditions 

i n the x-direction, and in the general three dimensional case i t w i l l also 

5-1 
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F i g . 7 

depend strongly on the longshore variations of bottom topography and wave 

heights. 

In the present two dimensional study we assume a zero net mass flux 

(Q = 0 ) , which of course implies that there i s a return flow compensating for 

the surface d r i f t . 

From observations we know that i n the inner region the change i n 

wave shape i s slow so the instantaneous volume flux 

rn 
u(x,z,t)dz (5.1) 

-h 

may ba determined as 

Q = c n + Q = U d + Q (5.2) 

where the surface p r o f i l e i s specified so that n" = 0. U i s the wave p a r t i c l e 

v e l o c i t y averaged over depth. As mentioned we s h a l l further assume that Q = 0. 

Although i t i s a crude s i m p l i f i c a t i o n the velocity distribution shown 

i n F ig. 7 w i l l contain a l l the primary information outlined above and we w i l l 

use that. The thickness e of the surface r o l l e r w i l l be zero except i n the 

front which i s i m p l i c i t l y understood i n the following derivations. Hence we 

get 

Q = cn = ce + u^(d-e) 

Outside the r o l l e r we have 

u = c(ri - e)/(d - e) 
o 

(5.3) 

(5.4a) 
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and i n the r o l l e r 

u = c (5.4b) 

The pressure i n the wave motion i s of course not s t a t i c . In combination 

with the rather crude assumptions made above, however, i t i s consistent to assxime 

a s t a t i c pressure variation corresponding to the l o c a l , instantaneous position 

of the free surface. That i s , using (2.3) 

Pj3 = pgn (5.5) 

The Energy Flux B 

With these assumptions we f i r s t calculate the non-dimensional energy 

flux B defined by (2.9). Substituted into (.2.7) t h i s y i e l d s (omitting the 

" which indicates the turbulent ensemble averaging) 

2 
pgcH 

,|pCu2 . „ 2 , (5.6) 

-h ° ^ 

Introducing the assumptions outlined above - which also implies 

neglecting the w^-contribution - we f i r s t get from (2.7) 

^ f , w = R + Ï p^'<3-=Ef,o ^ f ,1 (s-'^) 

-h 

where E i s the f i r s t term i n the integral and E- the second. (5.5) gives 
r,u r , i 

Pj^udz = 
-h 

rn 
pgnudz (5.8) 

-h 

which by virtue of (5.2b) becomes 

^f,0 " P̂ "̂̂ ^ " pgcH^(n/H)^ (5.9) 



Thus the r o l l e r does not contribute to t h i s term. For E we get 

x ,x 

^ f , i = h 
n-e 

u dz + 
o 

c'̂ dz 

1 2 H 
2PgcH ^ ' 

^ 1 3 1 
edt (5.10) 

where c - gh and TI .« h has been used i n the f i r s t term. Since n = 0 we w i l l 

3 2 

find that (ri/H) « (ri/H) , the l a t t e r being an integral of a non-negative 

quantity (see Hansen, l a s a i . 

The area A of the surface r o l l e r i s defined as 

edt = -
c 

edx = (5.11) 

where X i s the length of the r o l l e r (see Pig. 6 ) . In (5.10) t h i s yields 

1 3 A 1 „2 A h 
^ f , l = 2 P° 1 = 2 

rl 

(5.12) 

which shows that the contribution to the energy flux from the surface r o l l e r 

i s proportional to i t s area i n the v e r t i c a l plane. 

Veiry l i t t l e information i s available about the size of the surface 

r o l l e r . Duncan (1981) has measured A i n a breaker behind a towed hydrofoil, 

and h i s r e s u l t s are shown i n Fig. 8. For the present application we w i l l 

approximate these r e s u l t s with 

A ~ 0.9 H (5.13) 

and hence we get for E_ 
^ f ,w 

^f,w ^ 

r \2 
1 + 0.45 -

IJ 

(5.14) 
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and from (5.6) for B 

- I 
n 

[ H J 
"dt + i . A. = 1 

2 gL T 

n 

[ H J 

dt + 0.45 - (5.15) 
L 

Here L i s a l o c a l quantity defined as cT, not the physical distance 

between two consecutive wave c r e s t s . 

Values of B defined as 
o 

O T 

•T 
IL 

•'0 
H 

2 

dt 

are shown-for waves i n the surf zone i n Fig. 9. The measurements are a l l 

F i g . 9 taken on a 1/34.3 slope at ISVA and the r e s u l t s only show the trend i n the 

varia t i o n . C l e a r l y there i s a s i g n i f i c a n t amount of scattering but also some 

systematic variation with wave parameters (such as the deep water steepness 

H / L ) which needs further documentation and analysis, 
o o 

The main tendency, however, i s quite obviously that from the point 

of breaking B^ increases rapidly from a r e l a t i v e l y small value (indicating a 

rather peaky wave p r o f i l e representing a small energy flux for a gxven wave 

height) towards values around 0.07 - 0.08. The variation may be further 

i l l u s t r a t e d by the examples given i n Table 1 for some simple surface p r o f i l e s . 

Of p a r t i c u l a r i n t e r e s t are the value 0.083 and 0.089 for triangular and 

parabolic wave shapes respectively, because surf zone wave p r o f i l e s often 

resemble such shapes as Pig. 10 shows. 

Fig. 10 
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Table 1 

The Radiation. Stress P 

The radiation s t r e s s defined by (2.2) represents the time averaged 

momentum f l u x . In (2.2) i s included the e f f e c t of the turbulent normal 

stresses as well as any net volume flux superimposed on the wave. 

The l a t t e r , however, we are excluding here. The contribution from 

the turbulent stresses was analysed by Stive s Wind (1982) on the basis of 

experimental data. They concluded that t h i s e f f e c t only increases the rad i a t i o n 

s t r e s s by some 5%. Part of the reason for t h i s modest e f f e c t of strong 

turbulence i s that the v e r t i c a l velocity fluctuations reduce the pressure 

whereas the horizontal fluctuations increase the momentum flux. Hence i n 

the present context we may neglect the turbulent contribution to S ^ . 

Using (5.5) we then get for i n (2.2) 

F 
P 

1 2 1 2 
pgndz - — pgn = -r pgn (5.17) 

J-h ^ ^ 

which by means of (5.16) may be written 
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(5.18) 

For F^ we get, using (5.4a,b) 

F = 
m 

pu dz = p 
-h 

2 2 
u (d-e) + c e 
o 

(5.19) 

Here 

2,^ X 2 
. u (d-e) = c 

o 

2 2 
n - 2rie + e 

d - e 
(5.20) 

which we approximate by using e « d. We also notice that since e 7̂  Q almost 

symmetrically around n = 0 the value of ne must be very small. Hence we get 

F - pc 
m 

2 2 
~ p - H 

2 c ̂ 2 -
e| . e h 
H (5.21) 

From Duncan's r e s u l t s can be found that e/H -0.3 and since e = 0 

2 2 
over most of the wave p r o f i l e i t follows that (e/h) « (ri/H) so that we 

for F get (again using c - v'gh) 
m 

2, A h , 
^m~ ( B ^ - ^ - - ) 

H 

In combination with (5.18) and (5.13) t h i s y i e l d s for S 
X X 

(5.22) 

(5.23) 

or 

P = I + 0.9 7" 
2 o L 

(5.24) 

With the r e s u l t s from Fig. 9 for B^ and a t y p i c a l value of 0.05 - 0.10 for 

h/L we see that the presence of the surface r o l l e r roughly doubles the 

radiation s t r e s s . 
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The Energy Dissipation D 

The t h i r d parameter i n the equations i s the dimensionless energy 

dissipation D. A detailed analysis of D i s quite complicated and i s considered 

unnecessary i n combination with the simplifying assiomptions introduced at a 

number of other points. Svendsen S Madsen (1981) showed that neglecting the 

form change the energy dissipation i n a surf zone wave can be determined by 

D = 1 + _i±i E — Ë ° • (5.25) 

°bore . V - " c 

where a, 8 are c o e f f i c i e n t s for depth averaged velocity and pressure contributions 

i n the momentum and energy equations, and ^ and ^ refer to trough and c r e s t 

respectively. With the assumptions outlined above, however, t h i s expression 

s i m p l i f i e s to 

D = D (5.26) 
bore 

where D i s the energy dissipation i n a bore of the same height as the Wave, 
bore 

The dimensional form of DJ^QJ,Q i s ( C = ^ ^ / ^ ^ ) 

AE = p g Q d ^ i ^ ^ (5.27) 

(see e.g., Henderson (1966)). In a wave Q = u^d^ = ch so t h i s may also be 

written 

AE = pgch (5.28) 
t c 

I f we assume that each breaker suffers a similar dissipation per 

second then the mean dissipation per m̂  bottom area i s A E / L . And substituting 
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t h i s for i n (2.11) then yields 

D = J i — (5.29) 

\% 
Introducing the crest elevation instead of d^ and d.̂. we get 

d = h + n ; d. = h + n ^ - H (5.30) 
C G t C 

and thus 

D = (5.31) 

whick shows that for fixed n /H D does depend s l i g h t l y on H/h. F i g . 11 shows 
c 

the variation and F i g . 12 gives values of from the experiments quoted 

above. As was the case for B the r e s u l t s for n^/H show s i g n i f i c a n t s c a t t e r i n g 

but in the inner region of the surf zone the value i s mostly 0.6 - 0.7 which 

from F i g . 11 i s seen to represent a D nearly independent of H/h. 

F i g . 11 also shows that D only varies s l i g h t l y with n^/H. In other 

words, the primary variation of the energy dissipation i s represented by the 

H"̂ /h dependency already accounted for i n the definition (2.11). 
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6. COMPARISON WITH MEASUREMENTS 

The outer and the inner region 

The o r i g i n a l concept of an outer (transition) region and an inner 

(bore) region was primarily based on the v i s u a l observations of wave behaviour 

a f t e r breaking (see I ) . The impression i s one of a gradual change towards the 

bore shape- found^ i n the inner region. Consequently no attempt was made to 

define a proper l i m i t between.the two regions and wave height measurements 

t r u l y do not suggest a natural d e f i n i t i o n . 

The s i t u a t i o n i s quite different when the variations i n mean water 

l e v e l are considered. F i g . 13 shows some examples from Hansen S Svendsen 

(1979) covering a wide range of deep water steepnesses. They a l l exhibit a 

marked change i n the slope of the mean water l e v e l at some distance shoreward 

from the breaking point. A s i m i l a r variation can also be; seen i n other 

investigations such as Bowen et a l . (1968) andT Stive & Wind (1982). The mean 

water l e v e l i s horizontal or weakly sloping over a distance of 5-8 times the 

breaker depth and then a rather sharp increase i n slope occurs. The distance 

of nearly horizontal mean water l e v e l i s comparable to the distance of the most 

obvious transformations of the wave shape following after the i n i t i a t i o n of 

breaking, and so i t w i l l be coherent with the o r i g i n a l concept to define the 

l i m i t between the outer and the inner region as the point where the slope of 

the mean water l e v e l changes. In the following t h i s i s termed the t r a n s i t i o n 

point. 
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Wave conditions i n the inner region 

Physical explanations for these changes are sought i n section 7. 

F i r s t , however, we notice that since the r e s u l t s derived above for the parameters 

B, P and D are based on the wave properties i n the inner zone comparisons with 

experimental data should s t a r t i n t h a t region. I t i s 'convenient to use the 

same reference point i n a l l computations. To s t a r t computations a t the above 

defined t r a n s i t i o n point (and emphasize the a r b i t r a r i n e s s of the reference 

point) we therefore write (3.6) as 

^d ' = r V 
dh + 

h 
•— r 

dh 

t 

DK 

hh 
(6.1) 

which upon d e f i n i t i o n of 

H 

^ t Sc^B^T 

fh^ DK dh 
t s 

h X 
r 

(6.2) 

can be written 

H rh DK 

^d ^ t ^ ° r V 
, hh 

dh (6.-3) 

(which can also ba obtained d i r e c t l y from C3,5)). For the wave height t h i s means 

fh' . - r - l 
Ddh' 

h^ ( c ' B ' ) ^ / \ ' _ 
(6.4) 

where we i n analogy to (4.1b) have defined 

= c/c^ ; B' = B/B^ (6.5) 

K i s given by (3.10b) and K^ by (6.2) which can also be written (see (3.3) and 

(3.7)) 
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r r 

In a l l these expressions index ^ indicates values at the t r a n s i t i o n point. 

Using t h i s ( s l i g h t l y more general) version of the solution derived i n 

section 3 we are s t i l l free to l e t the reference point also be, for example, 

the t r a n s i t i o n point. I n the following computations, however, and the corre­

sponding figures we have chosen the breaker point (B) as reference. 

The momentiam equation (2.1) i s solved simultaneously with the 

determination of the wave height. Hence (3.11) i s used for h i n (6.4). 

With (2.10) and (5.24) substituted (2.1) becomes 

d n ^ J ^ ^ j ( 3 + 0.9 ^)H^] (6.7) 
dx , - dx ' ̂ 2 o L ' 

h+ri 

In the computations we neglect the v a r i a t i o n of B^ and assume that h/L 

^'ïP'. I t i s emphasized again that t h i s means c i s proportional to /gh, not 

equal to (see I ) . For B and n i s used B = 0.075 (see Pig. 9) and n /H 
^ O C O V-

= 0.6 (Fig. 12). ' 

Discussion of r e s u l t s 

Figs. 14, 15 and 16 show a comparison with r e s u l t s for three rather 

d i f f e r e n t wave steepnesses, a l l on a plane slope 1/34.3. I n general the 

agreement i s quite good p a r t i c u l a r l y for the set-up. The l a t t e r i s of p a r t i c u l a r 

i n t e r e s t because the ca l c u l a t i o n s show that n i s much more sen s i t i v e to the 

assumptions made than i s the wave height v a r i a t i o n . As can be expected from 

what was said above the H va r i a t i o n i s v i r t u a l l y independent of the choice of 
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I t i s noticed that i n some of the cases the H-variation i s s l i g h t l y l e s s 

curved than corresponding to the best f i t of measurements, and the values of 

H grow a l i t t l e too large. This tendency w i l l be further amplified i f a larger 

value for n /H i s used (see Pigs. 11 and 12). Both these points can be adjusted 
c 

by using a value of D perhaps 20-30% larger than given by (5.31), which i s 

quite consistent with the r e s u l t s reported e a r l i e r (see I and Svendsen S Madsen, 

1981) that the actual energy di s s i p a t i o n i n a surf zone wave i s larger than i n 

a hydratü-ic jump of the same hèight. 

The e f f e c t of including the surface r o l l e r i n B can be understood by 

considering the energy equation i n the form (4.4). In the f i r s t bracket repre-

sentiaq the shoaling mechanism B^B i s much smaller than the other two terms. 

So the value of B mainly enters the. l a s t term,. Hence, the,• incijease i n B due to 

the r o l l e r i s equivalent to a s i m i l a r decrease i n D , and the observation above 

that D i s too small could a l s o be due to an overestimation of B. 

i n F i g s . 14-16 are a l s o included r e s u l t s obtained by omitting the 

sxirface r o l l e r (.dqtted curve corresponding to B = B^ and P = 3/2 B^) . The 

e f f e c t i s quite appreciable. On the other hand, considering that the presence 

of the surface r o l l e r nearly doubles energy fl u x and radiation s t r e s s the 

difference between the f u l l and the dotted l i n e s i n these figures indicates 

t h a t the e f f e c t of also including turbulence, deviation from s t a t i c pressure, 

e t c . would hardly be d i s c e r n i b l e . 

The strongest j u s t i f i c a t i o n , however, for the importance of the surface 

r o l l e r i s obtained by considering the motion in the t r a n s i t i o n region. 



7. THE WAVE MOTION IMMEDIATELY AFTER BREAKING 

I t i s tempting and i l l u s t r a t i v e f i r s t to t r y i f the solution presented 

i n the previous chapters also applies to the region of rapid t r a n s i t i o n r i g h t 

a f t e r the i n i t i a t i o n of breaking. 

F i g . 17 shows a computation of the wave height v a r i a t i o n , s t a r t i n g at 

the breaking point. The agreement i s su r p r i s i n g l y good. (Again e i t h e r D i s . 

s l i g h t l y too small or B too large.) This, however, does not apply to F i g . 18, 

which gives a s i m i l a r comparison for the set-up n/h^^g. The two figures 

together- show the•paradoxical f a c t already hinted at e a r l i e r that the 

radiation s t r e s s i n the t r a n s i t i o n region stays nearly constant even with a 

30-40% decrease i n wave height. Recalling (2.10) t h i s can only be true i f P 

i s increasing, roughly--as; H. ,. 

By considering what happens when the breaking s t a r t s , i t becomes c l e a r 

that the collapse of the wave cannot immediately be matched by d i s s i p a t i o n of 

a''similar amount of energy. I n the f i r s t transformation a large amount of the 

l o s t p o t e n t i a l energy i s converted into forward momentum flux which eventually 

i s concentrated mainly i n the r o l l e r , and t h i s must be the reason for the 

simultaneous increase i n P. 

This i s also consistent with the fa c t that P for very high waves i s 

rather small. There are no r e s u l t s a v a i l a b l e for the skew waves a t the breaking 

point, but the high order r e s u l t s for Stokes waves presented by Cokelet (1977) 

can be used to determine P for very high, symmetrical waves. F i g . 19 shows 

the v a r i a t i o n of P with H/h for two values of h/L. Notice that for the highest 
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waves P i s l e s s than h a l f the value of 3/15 for l i n e a r long waves and 

considerably l e s s than P for cnoidal waves of the same height. 

The increase i n P, however, i s inevitably associated with a 

s i m i l a r increase i n B, the energy flux for a wave of unit height and 

propagation speed. The problem i s the same as for P: very steep waves 

with peaky c r e s t s represent a very small energy flux r e l a t i v e to t h e i r 

height (Fig. 20 shows r e s u l t s s i m i l a r to those for P) and the collapse of 

the c r e s t i n the i n i t i a l stage of breaking leads to a s i g n i f i c a n t increase 

i n B. 

As we w i l l see shortly thèse.shifts i n P and B are also consistent 

with the.r e s u l t found i n Chapter 5, that waves i n the inner region represent 

rather-high values of-radiation s t r e s s and energy flux r e l a t i v e t o - t h e i r 

height and speed. 

But even with no energy di s s i p a t i o n an increase in-B w i l l i n i t s e l f 

r e q uire decreasing wave height. - Hence -fche' question a r i s e s : hov; much of the 

wave height decrease i n the outer t r a n s i t i o n region i s a c t u a l l y due to r e ­

di s t r i b u t i o n of energy (represented by the changes i n P and B) and how much 

i s r e a l energy dissipation? 

This problem and the change i n B and P can be analysed by considering 

the conservation of momentum and energy over the t r a n s i t i o n region as a whole 

i n analogy to the jump conditions that applies to bores and hydraulic jumps 

in open channel flow and to shocks i n compressible flows. 
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Between the breaking point (denoted with s u f f i x g) and the t r a n s i t i o n 

point we have from (2.8) 

^ f , t - ^f,B 
I?dx = (7.1) 

where I i s the width of the t r a n s i t i o n region. We are interested i n determining 

how large a f r a c t i o n i s of the energy d i s s i p a t i o n we would have had, had B 

stayed constant and equal to B^. This energy dissipation would obviously have 

been 

m̂ = P^Bg^o^H^' - C ^ H / ) = E ^ ^ ( ^ J [ ^ ] - 1) 

by v i r t u e of (2.9). Using (2.9) i n (7.1) as w e l l y i e l d s 

2 B. 
1) 

(7.2) 

(7.3) 

so t h a t the r a t i o we are looking for i s 

A = 
v. 

t 
m 

a - 1 
a = 

rH ^2 

^«B 

(7.4) 

In the momentum equation (2.1) we have 3n/3x = 0 and hence. 

using C2.10) 

\ = ^ B ( W ' 
(7.5) 

F i n a l l y since P. and B are given by (5.24) and (5.15), r e s p e c t i v e l y . 

we have by elimination of B between those two 
o 

= f ^ t - V ^ B 
(7.6) 
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Thus i f we know the properties of the wave at breaking we can determine 

B^, and A- In need of more correct information we use (from F i g s . 19 and 

20) for an example with h /L_ = 0.057 

= 0.05 , Pg = 0.07 

and assume the t r a n s i t i o n point i s at h^ = 0.85 with Ĥ /Hg =0.65. We then 

get from (7.4) 

A = 0.33 

which means t h a t only 33% of the energy that corresponds to the decrease i n 

wave height i s a c t u a l l y l o s t - The increase i n B accovints for the r e s t . We 

further get 

C7.5): P =0.166 against (.5.24): P = 0.152 
t 

(7.6): B^ - 0.103 against (5.15): B^ = 0.094 

Thus the value of P and B. required to accomt for the gross change 
l l t — 

i n the radiation stress/mean water l e v e l and the wave height over the t r a n s i t i o n 

region agrees well with the values we can determine for a wave at tha s t a r t of 

the bore region using the ideas from section 5. 

This i s taken as another indication that the ideas presented i n that 

section for the properties of waves i n the inner region are at l e a s t q u a l i t a t i v e l y 

correct. 

As mentioned above the constant radiation s t r e s s i n the t r a n s i t i o n 

region must imply 
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P « H"^ ( V . 7 ) 

Most measurements further show that H varie s approximately l i n e a r l y , i . e . , 

H a - ax (7.8) 

a f t e r breaking. Since the v a r i a t i o n of H i s much fas t e r than the v a r i a t i o n 

2 
i n depth, and since E_ H we may neglect c i n (2.8) and write 

1 ^ f - °x 2a DH ^y^gj 
dx B " H 4hLB 

However i f we i n t h i s equation - i n analogy with the s i t u a t i o n i n the bore 

region represented by ( 7 . 6 ) - assume that B « P + const, then ( 7 . 9 ) y i e l d s 

D = 0 which c l e a r l y i s not correct. Hence ( 7 . 9 ) i s not suitable for assessing 

D on the basis of some reasonable conjecture for B. 

So i f one wants to be able to extend the method described i n t h i s paper 

to the t r a n s i t i o n region there i s room for both further experimental i n v e s t i ­

gations and for some empirical interpolation formulas for the develop­

ment of D from zero at the breaking point to the value given by (5.31) 

a t the t r a n s i t i o n point. > 

In the absence of such r e s u l t s there i s always the p o s s i b i l i t y of using 

( 7 . 7 ) for P i n the t r a n s i t i o n region to get the correct n-variation and l e t B 

and D be given by the bore values (5.15) and (5.31) right from the breaking 

point (which we have seen w i l l give approximately the correct H-variation), 

I t i s j u s t that t h i s means B i s discontinuous at the breaking point (which, 

of course i s not true) and i t i s also an unsatisfactory procedure from a p h y s i c a l 

point of view because i t obviously does not model the r e a l processes. 
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8. SUMMARY AND CONCLUDING REMARKS 

The physical mechanisms behind the v a r i a t i o n of wave heights and 

set-up i n the surf zone have been analysed and a t h e o r e t i c a l model has been 

suggested. I t i s based on rather simple approximations for the i n t e g r a l 

properties of the wave motion. Comparison i n the inner region of the s u r f 

zone with ejqperiments shows acceptable agreement. 

An attempt has been made to explain the nature of the transformations 

of the waves i n the t r a n s i t i o n zone right a f t e r breaking (Section 7) . 

The methods for determining the non-dimensional energy flu x B, 

radiation s t r e s s P and energy d i s s i p a t i o n D can e a s i l y be refined, the c r e s t 

elevation rj /H may perhaps more co r r e c t l y be determined by a l i n e a r l y de¬
c 

creasing function, e t c . Such improvements, however, are not l i k e l y to change 

the basic conclusion that the major difference between surf zone waves and 

ordinary waves i s represented by the surface r o l l e r . And as a f i r s t approxi­

mation the r o l l e r can be considered as a volume of water c a r r i e d shoreward 

with the wave. This picture i s found to be i n accordance both with the motion. 

alleged for the inner region and with the changes occurring over the t r a n s i t i o n 

region, 

The author g r a t e f u l l y acknowledges access to the unpublished data 

sent by J . Biihr Hansen and used i n some of the figures. 
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LIST OF CAPTIONS 

1. Regions i n the surf zone Cf rora I ) , 

2. D e f i n i t i o n s . 

3 . H/H from a n a l y t i c solution (4.1) versus (h/h_)^,„. 

f 1 
H 
r 

h 
r 

from a n a l y t i c solution versus Ch/h^l^g. 

Minimum values of H/h^^/(H^/h^) and the value h^^^ of h' at which they 

occvir. 

6. The r o l l e r of a surf zone wave. 

7. The approximation for the horizontal v e l o c i t y p r o f i l e . 

8. Cross section area A for a r o l l e r . Measurements by Duncan (1981) . 

9. Measured values of B defined by (5.16). (Data from Hansen, 1982). 

o 

10. Wave p r o f i l e s i n the surf zone. Derived from measurements i n I . 

11. The v a r i a t i o n of D with H/h and n /H according to (5.31) . 
c 

12. Measurements of n /H i n the surf zone. , (Data from Hansen, 1982). 
c 

13. Measurements of the mean water l e v e l shoreward of tha breaking point. 

Also shown i s the value of l o c a l wave height to breaker height, H/Ĥ . 

(Measurements from Hansen & Svendsen, 1979). 



14. Wave heights and set-up for a wave with deep water steepness H^/L^ = 0.071. 

Theory using (5.4) and (5,7). 

Measurements by Hansen S Svendsen (1979), Case B. 

15. Wave heights and set-up for a wave with deep water steepness H^/L^ = 0.024. 

Theory using (6.4) and (5.7). 

Measurements by Hansen (1982), Case H. 

16. Wave heights and set-up for a wave with deep water steepness H^A^ = 0.0107. 

Theory using (6.4) and (6.7). 

Measurements by Hansen & Svendsen (1979), Case N. 

17. Wave height using (6.4) and (6.7) from the breaking point. 

Measurements by Hansen (1982), Case H. 

13. Set-=-up using (6.4) and (6.7) from the breaking point. 

Measurements by Hansen (1982). 

19. The non-dimensional radiation s t r e s s for symmetrical waves. 

Results from Cokelet (1977), lowest order cnoidal waves. 

20. The non-dimensional energy flux i n symmetrical waves. 

• Results from Cokelet (1977), lowest order cnoidal waves. 
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