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Abstract—Metamaterials are artificial structures with proper-
ties that are rare or non-existent in nature. These properties are
created by the geometry and interconnection of the metamaterial
unit cells. In active metamaterials, sensors and actuators are
embedded in each unit cell to achieve greater design freedom
and tunability of properties after the fabrication. While active
metamaterials have been used in vibration control applica-
tions, the influence of applied control architectures on damping
performance has not been thoroughly studied yet. This paper
discusses the relationship between suitable control architectures
for increased damping in finite active metamaterials and the
number of damped modes. A metamaterial beam consisting of
links with measured and actuated joints is considered. Optimal
controllers for each of the considered scenarios are designed in
the modal domain using linear-quadratic regulator (LQR). We
show that, when all modes of a structure should be damped,
the optimal solution can be reduced to a decentralised controller.
When modes in a smaller range of frequencies are targeted,
distributed controllers show better performance. The results are
confirmed with experiments.

Index Terms—Mechatronic Systems, Vibration Control, Meta-
materials, Active metamaterials, Decentralised control

I. INTRODUCTION

Metamaterials are artificial materials that exhibit properties
not commonly found in nature. For example, electromagnetic
metamaterials can achieve negative permeability and permit-
tivity [1]. Optical metamaterials are used for their negative
refractive index to bend light in the opposite direction [2].
Mechanical metamaterials can have a negative Poisson ratio
or negative Young’s modulus [3]. These exotic properties are a
result of the periodic arrangement of specifically tailored unit
cells to form large lattice structures.

Among those properties, the ability to strongly attenuate
vibrations has sparked great interest in vibration isolation and
damping applications [4]. The metamaterials can be used not
only to attenuate resonances in finite structures but also to
prevent the transmission of vibrations in certain frequency
ranges. Such band gaps can originate from the Bragg scattering
effect or from the inclusion of resonators in unit cells.

By including sensors, actuators and controllers within the
lattice structure, new qualities can be obtained that were
previously limited by the passiveness of the material [5]-[7].
Active elements allow for virtual material properties like real-
time stiffness and damping control without requiring additional
mass or damping elements. For example, in [8] a metamaterial
can alter its elastic modulus based on the internal displacement

of the unit cell. In [9] piezoelectric material is used to increase
the active damping component of a flexible metamaterial
beam.

While active metamaterials have gained increased attention
throughout the last few years, studies on suitable control
architectures for these materials are still limited. In fact,
literature on active metamaterials is predominantly based on
decentralised control alone [9]-[11]. This means that every
sensor and actuator pair is controlled by a local Single-
Input Single-Output (SISO) controller. The reason for this
is often based on practicality. First of all, the controller
complexity is independent on the amount of unit cells, which
makes it applicable for large systems. Secondly, the wiring
and integration of such controllers are straightforward when
implemented on a practical system. Lastly, it allows for the
design of the material on a unit cell level instead of on a
global scale. However, whether decentralised control results
in optimal performance is unclear.

On the other hand, centralised control, in which all unit cells
are connected to a single master control unit, may yield better
results. This is possible because all available information is
combined and utilised for control, which can be achieved with
optimal Multi-Input Multi-Output (MIMO) control techniques
like linear-quadratic regulator (LQR) or H, control. Another
example of a centralised control approach is modal control.
However, implementing a centralised solution is challenging
for large systems due to the fact that extensive amounts of
wiring are necessary, let alone the computational power that
is required [12].

Between these two extrema, a distributed control architec-
ture is a middle-ground solution for metamaterials. In this case,
decentralised controllers are used that can also communicate
with neighbouring sensors. This architecture offers greater
design freedom than in the decentralised case and remains
scalable for implementation in large-scale metamaterials. In
[13] and [14], distributed control has been shown effective
for systems sharing some properties of metamaterials, like
infinite-sized interconnected mass-spring systems and vehicle
platoons. This was done by showing that the optimal LQR
feedback matrix in the Spatial Fourier Domain is inherently
localised. However, in these papers systems with absolute
measurements were considered, whereas active metamaterials
are limited to relative measurements.

This paper investigates the effect of the control architecture
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on the damping performance of metamaterial structures with
relative measurements. More specifically, we design optimal
LQR controllers in the modal domain to damp specific modes
of the system and determine if any localisation is present in
the feedback matrix. To the best of our knowledge, this has
not been researched yet for metamaterials. We consider a finite
metamaterial beam with six discrete elements forming a 1D
grid of unit cells. Each element consists of a joint with active
sensing and actuation capabilities.

The paper is structured as follows. In Section II, the model
is given for the metamaterial beam. In Section III, theory on
LQR is given, which is used to demonstrate the optimal control
structure for this beam in modal domain. In Section IV, ex-
periments are performed to validate the numerical simulations.
The paper ends with a conclusion in Section V.

II. MODEL

In this section, the model for the finite metamaterial beam
is set up, which is based on the schematic in Fig. 1. Rigid
beams of length [ and flexible ”smart” joints alternate to form
a discretized flexible structure. The joints can measure the
relative angular displacement 8,, and apply a control torque
T,,. They each have a mass m and rotational stiffness k.

TN—-1

Fig. 1: Metamaterial beam with relative coordinates and
torque-actuated joints.

A linear algebraic model is constructed by deriving the mass
and stiffness matrices of the system
_ 0T -~ o?V
~ 9606’ ~ 9000
Here T is the kinetic energy, V' the potential energy and

0 = [917...,9 N] represents the angular displacements of
each joint. The potential energy is directly computed as

1 N
_ - 2
V= 2k§1 02. )

D

The kinetic energy is computed by first defining the displace-
ments p = [p2, ... ,pNH]T of each joint in terms of relative

angles
Pn,x Pn—1,z COS(Zn en,):|
| = Prote] |02 )l 3
I:pn,y:| |:pn—1,y:| [SIH(ZI en) ( )
where p; = [0,0]7. Then the Jacobian of the displacement

vector is computed and multiplied with the derivatives of the
rotations to obtain velocities of each mass

v=Vp-0. “4)

Lastly, the kinetic energy is computed

1
T= §mvTU. 5)

The system is linearized around the zero equilibrium and the
values of [, m and k can be taken as arbitrary. For this paper,
N is taken as 6, which is relatively small but allows for the
intuitive analysis of the results.

Through a modal transformation it is possible to obtain
modal mass and stiffness matrices

M=3"TM®d K=3"K®, (6)
where ®7 € R6%6 contains the eigenmodes obtained through

the eigenvalue problem det(K — w?M) = 0. The modal mass
and stiffness matrices are used in a state space model

[ o o T o0 -
Tk ol | e | Y

A B

[ o0

Y=1lo o@|”

where the states z € R!2 represent modal angular dis-
placements and velocities of each joint. The control vector
T . : ..
u = [’tl, . 7TN] contains the active torques on each joint,
I € RY%6 js the identity matrix and 0 € R%*6 is a null matrix.
III. CONTROL ARCHITECTURES

In this section LQR is used on the beam model and the
structure of the feedback matrix is analysed.
A. Linear-quadratic regulator

LQR is an optimal control method that minimises the
quadratic objective function

J :/ (7 Qx + u” Ru)dt
0

s.t. = Az + Bu

®)

for a linear system [15]. The (Q and R matrices are used to
tune the response of the closed-loop system. Here R € R6%6
is chosen as a constant diagonal matrix to penalise all control
inputs equally. The diagonal entries in Q € R12*12 are varied
to damp specific modes, for example, Q(N +1,N +1) =1
will only damp the first mode if all other entries are zero.
The objective function is minimised by solving the Algebraic-
Riccati-Equation (ARE), which results in an optimal cen-
tralised feedback matrix K with feedback control

u=—Kuzx. )]

Since a modal model is considered in this paper, this matrix
needs to be reverted back to physical domain to obtain physical
meaning from the states

Kphysical = K®7, (10)

where Kphysical = [K » K U] contains a stiffening part K, and
damping part K,. By focusing on active damping elements
only, K, remains zero and can be neglected in the remaining
analysis.
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Fig. 2: For each mode of the beam (top) a LQR feedback matrix is computed (bottom). The matrix is plotted from a top-down
view where the magnitude of each entry is indicated with a colour gradient on a range of -1 to 1. Only the velocity states are

shown.

B. Analysis in modal domain

LQR is used with the A and B matrices from the state
space model in (7). Since this model is in modal domain, it
is possible to compute the optimal damping matrix for each

individual mode of the beam, see Fig. 2. The result is obtained

. 0 0
by using @ = 0 Qv>’
whose non-zero term denotes the mode to be damped.

The matrices are displayed from a top-down view where
each entry has been given a colour label based on its magni-
tude. Furthermore, the matrices show how each active torque
T, is a function of multiple angular velocities 0,, to damp a
specific mode. It can be seen that all damping matrices are
full, i.e. almost all entries have gains. As a result, damping
one specific mode would require a centralised controller, as
each actuator requires information from all other sensors in
the system. This control problem is closely related to modal
control.

By damping multiple modes simultaneously, the structure
of the LQR matrix changes. It will resemble a summation
of several of the feedback matrices from Fig. 2. However, as
many entries have either a positive or negative gain depending
on which mode is damped, it is evident that combining these
matrices will result in many entries adding up to zero. For
example, in the extreme case where all modes are damped,
it can be concluded that only the diagonal terms will remain
non-zero as those are the only entries that have a common
sign for all modes. A way of proving this is by applying the

LQR algorithm to the beam with Q) =

where @, is a diagonal matrix

0 1) which damps

all modes equally. The result of this is given in Fig. 3. As
only the diagonal gains remain, the centralised solution can
be reduced to six local decentralised controllers and it can be
concluded that the optimal solution for damping all modes is
by using a decentralised architecture.

In many applications, however, the desire is not to damp
the whole frequency range, but focus on lower order modes
as these have a larger contribution on the dynamics. It can

Penalise all modes

1
0.8
0.6
0.4
0.2
0

Tn (Nm)

0, (rad/s)

= N W ke OO

Fig. 3: The LQR feedback matrix if the whole frequency
range is damped. Since the only gains in the matrix are on
the diagonal, the optimal centralised matrix can instead be
implemented by 6 independent decentralised controllers.

be shown that by excluding the fifth and sixth mode in the
penalisation process, entries on the first upper and lower
diagonals will also become non-zero. This is because the fifth
and sixth mode are the only modes that have negative gains
for all these entries, whereas all other modes have mostly
non-negative entries there. In Fig. 4 the LQR algorithm is
applied with additional penalisation of the first four modes

by using Q = 8 6(2) ) where @, = diag(5,5,5,3,1,1). It

can be seen that the optimal control architecture is no longer
decentralised, but also includes relatively high gains on the
first upper and lower diagonal. In other words, damping lower
order modes is more effective when information of the first
neighbour sensors is included in each controller in addition to
the local measurement that was already used. This is because
those sensors mostly have the same rotational direction as the
local measurement for lower order mode shapes. This control
structure resembles a distributed architecture.
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Fig. 4: The LQR feedback matrix when the first four modes are
damped. The highest gains are on the diagonal and first upper
and lower diagonal, which indicates that the control torque in
each joint ideally is a function of its own velocity and that
of its first neighbours. The centralised solution can instead by
implemented by 6 distributed controllers.

TABLE I: Input energies for the impulse response show that
distributed controllers are more efficient than decentralised
controllers.

All modes First four modes
S u? 167 (mNm)? 159 (mNm)?
Max un 6.3 mNm 4.6 mNm

C. Comparison

Both the decentralised and distributed control schemes can
be compared in a numerical simulation by means of a torque-
impulse response on the first unit cell. The control input
in both cases is scaled to be roughly equal such that the
comparison is fair. This is done according to two metrics:

1) Sum of the control inputs squared
2) Maximum control torque in the system

The time and frequency response can be seen in Fig. 5.
In the frequency responses of the closed-loop systems it can
be seen that the distributed controller performs better for the
first four lower order modes. This is favourable for many
active vibration control applications. The fifth and sixth mode
are better damped with a decentralised controller. This is in
agreement with the matrices presented in Fig. 3 and 4. The
control metrics are given in Table I. It can be concluded that
the distributed controllers are more efficient. The maximum
control torque in the system is reduced by almost 27%.
This makes them suitable for smaller and more lightweight
actuators with lower actuator forces. Because each controller is
also only dependent on three sensors in the system, it remains
practical for implementation in large-scale systems. Especially
in large-scale metamaterials where centralised controllers are
not feasible, it makes sense to opt for distributed controllers.
When damping the entire frequency range is desired, on the
other hand, it remains valid to use decentralised controllers.

Comparison of Q matrix
0.06 T T T T T T

T T

No control
0.04fF ——— All modes ]
’ - First four modes
= 0.02f \ ]
£ - “\ P
E N S=—=F P——— ]
-0.02 b
0.04 L L L L L L L L L
0 1 2 3 4 6 7 8 9 10

t (seconds)

60 - q

@ 40f /\ 1
5 )
ol — ]
2 o0 \
20 L L
107" 10° 10'

Frequency (rad/s)

Fig. 5: Time response (top) and frequency response (bottom)
of the two closed-loop systems compared to the uncontrolled
system.

D. Larger systems

Although the analysis is performed on a system of 6 unit
cells, similar numerical results are obtained for larger systems
with relative measurements. In Fig. 6, LQR controllers are
computed that penalise the first half of the modes fifteen times
more than the second half of the modes for N = 10 and
N = 20. The final matrices again show strong localisation
around the diagonal and first upper and lower diagonal.

IV. EXPERIMENTAL VALIDATION

To verify the numerical simulations, distributed controllers
are also experimentally validated for the metamaterial beam
of six unit cells.

A. Setup

The metamaterial beam with torque-actuated joints is con-
structed using rigid 3D printed beams and DC motors as joints.
The beam structure is given in Fig. 7. The DC motors (1) can
measure the relative angular displacement of the rotor 6,, and

=20
1
08
06
0.4
0.2
0
0 15 20
)

1
Tn (Nm

N

0, (rad/s)

5 10 5
Tp (Nm)

Fig. 6: LQR feedback matrices for two larger systems. In both
cases the first N/2 modes are damped with q = 15 whereas
the second half of the modes is damped with q = 1.
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apply a torque T,,. The unit cells are rigidly connected to each
other with blue 3D-printed beams (2). A torsional spring is
attached on top of each rotor in the form of a rubber band (3).
For small angles, the spring force is only dependent on the
relative angular displacement, i.e. Tepring,n = k0,. Each DC
motor has a microcontroller installed underneath (4). This can
control the unit cell and is also able to send information to
its first left and right neighbours through a wired connection.
The maximum torque Tp,x of the motor is 12 mNm, the mass
m of each unit cell is 0.2 kg and the torsional spring stiffness
k is around 48 mNm/rad. The distance ! between unit cells
from rotor to rotor is 75 mm.

The communication speed and sampling rate of the system
is set to 100 Hz. This is around 20 times higher than the
expected maximum frequency content of the system. The
measurements of each motor are sent through a digital low-
pass filter with cut-off frequency at 5 Hz. The velocity is
obtained on the microcontroller by calculating the difference
between two sensor measurements in a sample time. Simulta-
neously, the angular displacement is received from left and
right neighbours, which is used to calculate the neighbour
velocities.

The robotic structure lies on a horizontal air-table to ensure
high vertical stiffness and low friction in traverse directions
(5). The beam is clamped on one side to a motion stage (6).
This can be moved to the left and right and is used to perturb
the system.

Fig. 7: Experimental setup of the cantilever beam on the air-
table. Clamped on one side to a motion stage.

B. Method

Two different perturbations are introduced to validate the
numerical simulations: an oscillating perturbation that only
excites the second mode of the system and a step input that
excites a much larger frequency range. For both scenarios the
decentralised controller in Fig. 3 and a truncated version of the
distributed controller in Fig. 4 will be used that only includes
the diagonal and first upper and lower diagonal gains. The
maximum gains are chosen such that the forces are below
saturation and similar values for the two relevant control
metrics are obtained.

TABLE II: Control metrics for the oscillating perturbation
given by the motion stage that excited mainly the second
mode.

Decentralised control | Distributed control
Su? 7661 (mNm)? 7560 (mNm)?2
Max un 6.2 mNm 5.0 mNm
C. Results

1) Oscillating perturbation: The system is perturbed at a
constant frequency at which only the second mode is present.
The motion stage is programmed to move at a speed of
50 mm/s, acceleration and deceleration of 1200 mm/s? and
a back-and-forth displacement of 50 mm, see Fig. 8. The
summation of all angular rotations is recorded and given in
Fig. 9. The control inputs are given in Table II.

....... 1
Fig. 8: The motion stage is programmed to mainly excite the
second mode demonstrated by the two extremums.

The distributed controllers perform much better than the
decentralised ones as the overall amplification is lower. This
demonstrates that distributed controllers perform better for the
lower order modes of the system. Besides that, the controllers
are more efficient. The maximum control torque in the system
is 20% lower than with decentralised controllers.

2) Step response: A step response is carried out by moving
the motion stage 100 mm with a speed of 500 mm/s and an
acceleration and deceleration of 5000 mm/s?, see Fig. 10.
The aim of this perturbation is to excite as many modes
and frequencies as possible. The angular deviation of the
last unit cell and additionally the summation of all angular
displacements can be seen in Fig. 11. The control inputs of
the experiment are shown in Table III.

The difference between decentralised and distributed con-
trollers is significantly smaller in this case. As higher fre-
quencies are excited in this test, the benefits of distributed
control start to diminish. Still, the highest contributing modes
are the low-order modes and the step response has slightly
lower peaks with the distributed controller, which conforms
the time simulation in Fig. 5.

TABLE III: Control metrics for the step response experiment.

Distributed control
224 (mNm)?
6.8 mNm

Decentralised control
212 (mNm)?2
8.9 mNm

>ug,

Max un,
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Fig. 9: Absolute output of all unit cells due to an oscillating
perturbation.

Fig. 10: Visualisation of the beam in rest and after being
perturbed.

Step response
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Fig. 11: Step response of the last unit cell and summation
of all unit cells. Distributed controllers have slightly lower
magnitudes.

V. CONCLUSION

In this paper we studied the suitability of different control
architectures for metamaterials with active damping elements.
This was done with the use of LQR in modal domain. It has
been shown that effectively damping individual modes requires
a fully centralised architecture. However, once multiple modes
are penalised some control localisation appears. It has been
shown that by damping the whole frequency range, the optimal

LQR feedback matrix is reduced to a decentralised solution.
Furthermore, we showed that a distributed control architecture
is more advantageous for the lower order modes. Compared to
decentralised controllers it had superior damping performance,
while it remains scalable for implementation in large systems.
Besides that, the maximum actuator force is significantly
lower, up to 27% in simulation and 20% in experiments
compared to a decentralised solution. This is an important
result for applications that are limited by actuator force, for
example, when using small and lightweight actuators. The
obtained results show that centralised solutions like modal
control are not needed when only lower order modes need
to be damped. This leads to a significant simplification of the
control network for systems with many sensors and actuators.
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