
Delft Center for Systems and Control

Efficient velocity-based quasi-
linear model predictive control of
wind turbines for side-side tower
periodic load reductions

Maria de Neves de Fonseca

M
as
te
r
of

Sc
ie
nc
e
Th

es
is





Efficient velocity-based quasi-linear
model predictive control of wind

turbines for side-side tower periodic
load reductions

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Maria de Neves de Fonseca

June 22, 2024

Faculty of Mechanical Engineering (ME) · Delft University of Technology



The image on the cover page was generated with the assistance of AI.

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.



Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical Engineering (ME) for acceptance a thesis entitled

Efficient velocity-based qasi-linear model predictive control of wind turbines
for side-side tower periodic load reductions

by
Maria de Neves de Fonseca

in partial fulfillment of the requirements for the degree of
Master of Science Systems and Control

Dated: June 22, 2024

Supervisor(s):
Dr.ir. S.P. (Sebastiaan) Mulders

Reader(s):
Dr.ir. S.P. (Sebastiaan) Mulders

G. de Albuquerque Gleizer MSc

Dr. C. (Cosimo) Della Santina

T. (Tim) Dammann





Abstract

As the world shifts towards sustainable energy, wind power stands out as a compelling solution to
combat climate change. Advances in wind technology, particularly larger turbines, have made it
more cost-competitive. Taller towers and bigger rotors allow modern turbines to access better wind
resources at greater heights, capturing more power and reducing costs.

Yet, achieving economically viable designs for taller towers requires reducing material usage. While
this reduction decreases weight and costs, it also makes towers more prone to fatigue loading and
material damage due to their inherent flexibility. This flexibility can lead to resonant behaviour, par-
ticularly in variable-speed wind turbines, exacerbated by factors like rotor mass and aerodynamic
imbalances. Such resonances can cause material degradation, structural failure, and thus higher
maintenance costs. The challenge of minimizing tower motion in wind turbines has been addressed
with both active and passive conventional control strategies, largely for fore-aft tower movement.
The current advanced control methods for managing tower side-side periodic loads rely on pas-
sive frequency-skipping techniques. However, there is a need for more advanced control methods
capable of actively cancelling these loads. Therefore, this thesis aims to develop an efficient con-
vex model predictive control method known as the velocity-based quasi-Linear Model Predictive
Control (qLMPC) scheme, specifically designed for actively cancelling side-side periodic loads. This
approach omits the need for extensive equilibrium input and state vectors, reducing memory usage
while effectively capturing the system’s nonlinear behaviour.

This study uses a Model Demodulation Transformation (MDT) technique to derive wind turbine
tower dynamics, focusing on the real and imaginary parts of the tower top displacement and velocity
signals. The goal is to minimize these outputs, reducing tower motions caused by periodic side-side
forces. The model includes a wind turbine aerodynamic model, linearized through velocity-based
linearization and controlled using a velocity-based qLMPC controller.

Optimization weights are carefully tuned to balance minimizing power output disruptions with mit-
igating disturbances from side-side periodic loads. Five simulation cases, with varying wind speeds
and load profiles, were conducted. The results show the algorithm’s simplicity, efficiency, and suit-
ability for online applications. In all cases, the optimization objective is achieved, with the tower
top position and velocity converging to zero, demonstrating the control algorithm’s effectiveness in
mitigating side-side periodic loads.
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Chapter 1

Introduction

As the world strives to transition to sustainable energy sources, wind power offers a promising
solution to combat the escalating effects of climate change caused by our continued reliance on fossil
fuels. Recent advancements in wind energy technology, particularly in scaling up wind turbines,
have significantly improved its cost competitiveness. With taller towers and larger rotors, wind
turbines can now tap into superior wind resources at higher altitudes and efficiently capture more
power, driving down overall costs.

However, achieving economically feasible designs for taller towers necessitates a reduction in mate-
rial usage. While this reduction confers benefits such as increased flexibility and reduced structural
weight, it also exposes these towers to higher levels of fatigue. This susceptibility arises due to
the inherent flexibility of tall, slender towers, which can induce resonant behaviour, particularly in
variable-speed wind turbines. Several factors contribute to this side-side resonance, including rotor
mass and aerodynamic imbalances, exacerbating the effects of periodic loading. When the side-
side resonance frequency coincides with the rotor’s rotational frequency or blade-pass frequency,
the resulting amplified periodic loads lead to material fatigue and accelerated material degradation.
Hence, this highlights the critical need for advanced control methods capable of managing the var-
ious structural loads encountered by wind turbines. Consequently, this thesis aims to develop an
efficient convex model predictive control method that mitigates side-side tower periodic loads by
combining existing frameworks found in the literature.

To set the foundation for this research, the upcoming chapter explores recent trends in wind energy
and provides an overview of conventional wind turbine control strategies, specifically for tower
load mitigation. It also outlines the current landscape of wind turbine control methodologies and
the associated challenges. Finally, it clarifies the main research questions found upon reading the ex-
isting literature, goals, and contributions of this thesis, ending with a summary of its organizational
structure.
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2 Introduction

1-1 Sustainability, climate relief, and wind energy

Climate change has emerged as one of the defining challenges of the 21st century, precipitating
unprecedented environmental, societal, and economic consequences on a global scale. As tempera-
tures continue to rise, weather patterns become increasingly erratic, and natural disasters become
more frequent and severe, it is more crucial than ever to mitigate the impacts of climate change.
Renewable energy has emerged as a critical solution to these challenges, offering a pathway to cli-
mate resilience and sustainability [1]. Renewable energy sources, such as wind, solar, hydroelectric,
and geothermal power, have significant environmental benefits when compared to traditional fossil
fuels. Unlike coal, oil, and natural gas, which emit greenhouse gases and contribute to global warm-
ing, renewable energy technologies produce negligible emissions during power generation, except
for biomass and the biodegradable fraction of waste [2].

Currently, the world is moving towards more ambitious goals, such as a net 55% or greater reduc-
tion below 1990 levels by 2030, and a climate-neutrality objective by 2050. Achieving these goals
will require even higher emission cuts by transitioning from fossil fuels to clean, renewable energy.
This means halting deforestation, using land sustainably, and restoring nature until the release of
greenhouse gases into the atmosphere is balanced with the capture and storage of these gases in our
forests, oceans, and soil [3].

Wind power, in particular, has witnessed remarkable expansion in recent decades, exemplified by
the global wind industry’s record installation of 117 GW of new capacity in 2023 - an unprecedented
feat signifying its ascension to prominence. This represents a 50% year-on-year increase from 2022.
Furthermore, in 2023, the wind power industry saw continued global growth, with 54 countries rep-
resenting all continents building new wind power. Hence, the Global Wind Energy Council (GWEC)
revised its 2024-2030 growth forecast upwards by 10%, in response to the establishment of national
industrial policies inmajor economies, gatheringmomentum in offshore wind and promising growth
among emerging markets and developing economies [4]. This surge in wind energy adoption has
been propelled by declining costs, making it increasingly competitive with traditional fossil fuel
sources. For instance, onshore wind turbines have a Levelized Cost Of Energy (LCOE) range of 3.94
to 8.29 €Cent/kWh, which positions them as the second-most cost-effective technology for electricity
production. However, offshore wind turbines are significantly more expensive, with an LCOE range
of 7.23 to 12.13 €Cent/kWh, despite their higher annual mean Full Load Hours (FLH) of up to 4500
hours per year. The increased costs of offshore wind energy generation result from the more expen-
sive installation, operation, and financing, which range from 3000 to 4000 €/kW [5]. Consequently,
while offshore wind power has the potential for high returns, it may require additional investment
and a longer payback period.

It is worth noting that the reduction in the LCOE for wind turbines is primarily due to the increase in
their size over the years - see Figure 1-1. Larger capacity turbines help lower the LCOE by spreading
the fixed costs over a greater number of megawatts. Furthermore, taller towers enable turbines to
access higher wind speeds, which improves their capacity factor. Additionally, larger rotors capture
more energy from the wind, resulting in more megawatt hours of electricity generated per MW
of capacity installed, yielding a higher capacity factor, especially when paired with a reduction in
specific power. This means that a larger rotor captures more energy from the wind flowing through
the rotor swept area, allowing the generator to run closer to or at its rated capacity for a greater
percentage of the time. All these factors contribute to the decrease in LCOE and make wind energy
more cost-effective as discussed in the literature [1, 6, 7].
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1990 2000 2010 2020 2016 2035

Onshore wind
Offshore wind

0.2 MW
30 m
27 m

0.9 MW
58 m
53 m

1.8 MW
80 m
84 m

3 MW
90 m
125 m

6 MW
100 m
150 m

17 MW
151 m
250 m

Power rating
Hub height
Rotor diameter

Figure 1-1: Wind turbines have grown in size over the past few decades. Wider rotors increase
power capture, and taller towers allow high-quality wind to be harnessed at greater heights. This
data was collected from [8, 9].

Overall, the widespread adoption and expansion of wind energy infrastructure offer a viable and
economic pathway towards achieving carbon neutrality and addressing the urgent challenges posed
by the climate crisis.

It is worth noting that while taller towers allow turbines to reach higher wind speeds, they also
present some challenges. In the following section, the challenges posed by larger, slimmer, and
more flexible towers are discussed.

1-2 Challenges of larger, slimmer, and flexible towers

The evolution of wind turbine tower design represents a critical frontier in advancing wind energy
infrastructure, not only as a significant investment in wind power projects but also as a gateway to
new markets in regions with limited wind resources [10]. Central to tower design is the dual ob-
jective of minimizing costs while ensuring structural integrity and manufacturability. This requires
a delicate balance between material mass and manufacturing expenses, with the tower needing to
withstand diverse operating conditions and extreme weather events. As turbine designers pursue
greater hub heights, transportation challenges loom larger, necessitating an approach that augments
tower base diameter while minimizing wall thickness [10]. For onshore applications, transport and
installation difficulties may prevent a further increase in size, but for offshore applications, the dif-
ficulties are fewer. The reduction of operational and other costs could justify the size increase in
offshore applications [11].

A key consideration in tower design is overall stiffness, impacting its natural frequency and struc-
tural dynamics. Stiff-stiff towers, with a natural frequency higher than the blade passing frequency,
offer advantages in stability but may incur higher costs due to increased mass and material require-
ments. Conversely, soft-stiff towers, with a lower natural frequency, and soft-soft towers, with fre-
quencies below both rotor and blade passing frequencies, are generally less expensive and lighter
but demand meticulous dynamic analysis to prevent resonance excitation [12] - see Figure 1-2.
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Soft-soft

Frequency (Hz)

Rotor
frequency (1P) Soft-stiff Blade passing

frequency (3P) Stiff-stiff

Figure 1-2: Stiff-stiff towers, with a natural frequency higher than the blade passing frequency,
offer advantages in stability but may incur higher costs due to increased mass and material re-
quirements. Conversely, soft-stiff towers, with a lower natural frequency, and soft-soft towers,
with frequencies below both rotor and blade passing frequencies, are generally less expensive and
lighter but demand meticulous dynamic analysis to prevent resonance excitation [12, 13].

Traditionally, towers have constituted a substantial proportion of the total turbine capital costs
[10, 14], necessitating a careful trade-off between mass and manufacturing expenses. Conventional
towers face constraints due to land-based transportation limitations, leading to thicker walls for
taller towers and increased weight and costs. However, as wind turbine power rates continue to es-
calate, novel technical solutions emerge to facilitate the development of cost-effective tall towers by
relaxing frequency constraints [15]. In this context, soft-soft tower configurations present a promis-
ing avenue for realizing tall towers. With reduced tower diameters and diminished wall thickness,
soft-soft towers offer increased flexibility. Therefore, these towers can exhibit natural frequencies
within the turbine operational range, increasing the risk of resonance excitation. Hence, the effective
implementation of such innovative tower designs hinges on integrating advanced control solutions
to actively attenuate and prevent prolonged excitation of undesirable frequencies [10, 15].

The next section addresses conventional and advanced control methods for tower load reduction
that have been studied in the literature.

1-3 Control methods for tower load reduction

Wind turbines are complex nonlinear systems exposed to intricate mechanical stresses induced by
wind loads, necessitating a strategic focus on mitigating structural loads for safe and reliable oper-
ation.

Of particular concern is the reduction of tower fatigue loads, which is especially pertinent in offshore
wind turbines. This is underscored by the fact that the tower and foundation costs can comprise up to
40% of the total wind turbine expenditure [14]. Notably, wind turbine towers have limited damping
and are thus susceptible to excitation by wind forces, particularly in the side-side direction, whereas
the fore-aft direction benefits from significant aerodynamic damping.

The subsequent subsections delve into conventional active and passive control methods employed
to alleviate tower loads. These approaches primarily leverage controllers from the Proportional-
Derivative-Integral (PID) family. Additionally, recent advancements in predictive active and passive
control techniques are explored, which offer the capability to address multivariable systems, take
into account system constraints, and effectively balance multiple control objectives.
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1-3 Control methods for tower load reduction 5

1-3-1 Conventional active control methods

To control turbine tower motion induced by wind excitations, conventional methods involve active
load control. The numerically integrated tower-top accelerationmeasurements are scaledwith a gain
that is inversely proportional to the tower-top velocity. This effectively increases the tower damping,
making it more resistant to fatigue loading [13]. In case of fore-aft tower motion, collective pitch is
actuated to provide additional damping. Studies on this have been conducted and can be found in
literature [16, 14, 17]. For side-side tower motion, either generator torque [18] or individual pitching
[19] can be used. However, generator torque can affect power quality as it is directly coupled with
power generation. On the other hand, individual pitching is more expensive due to increased wear
and tear of the pitch mechanism.

1-3-2 Conventional passive control methods

Soft-soft towers, while designed to be flexible and efficient, can increase the chances of tower res-
onance due to rotor frequency excitation. This can lead to severe fatigue loading on the structure,
especially when an intense 1P loading is present due to rotor imbalance caused by aerodynamics or
extra masses. However, this problem can be addressed through a passive control technique called
frequency skipping by speed exclusion zones [13].

Speed exclusion zones, also known as rotational speed windows or tower resonance bridging, can be
helpful when the rotor speed (1P) or blade passing frequency (3P) excites a structural resonance at a
particular operating point [20]. This technique modifies the control system to ensure that no stable
operating points exist within the critical speed range. As a result, the rotor speed drives through the
critical speed range without severely exciting the natural frequency. Typically, this is achieved by
modifying the speed-torque curve of the generator, as explored in [21, 22, 23].

1-3-3 Advanced predictive active control methods

The challenge of reducing towermotion inwind turbines has been addressed in the literature through
active and passive control strategies, as seen in the above subsections. These strategies, which often
rely on PID feedback control loops, aim to prevent prolonged resonance excitation. However, they
may not be able to balance the objectives of maximizing energy production and minimizing fatigue-
induced loads. To address this issue, advanced control strategies such as Model Predictive Control
(MPC) have been proposed due to their ability to accommodate constraints and address multiple
objectives.

Robust MPC (RMPC) techniques have been used in the literature to actively dampen tower motion
in the fore-aft direction, as demonstrated in [24]. Nonlinear MPC (NMPC) is another approach that
assumes prior knowledge of future wind speeds through a Light Detection and Ranging (LIDAR)
system, as discussed in [25] and a related work [26]. This approach can mitigate tower fore-aft
motion in response to abrupt wind speed changes, as outlined in [26]. However, the computational
complexity of solving non-convex Non-Linear Programming (NLP) problems often makes NMPC
impractical for real-time applications.

The research presented in [27] introduces an alternativemethod for obtaining a quasi-Linear Parameter-
Varying (quasi-LPV) model of the wind turbine, using velocity-based linearization. By defining the
wind turbine dynamics as a quasi-LPV system, it becomes possible to apply quasi-Linear Model
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Predictive Control (qLMPC) techniques to control the system. The study showed that qLMPC can
significantly reduce fore-aft acceleration and power variance by nearly thirty times, compared to a
baseline PI controller, when applied to below and above rated winds.

1-3-4 Advanced predictive passive control methods

While the MPC implementations aforementioned are active control strategies, there is a more pas-
sive MPC approach that has been recently explored in [15]. This passive MPC approach incorporates
frequency-skipping capabilities to achieve an optimal balance between minimizing loads and max-
imizing energy production over a prediction horizon. The proposed method is designed to prevent
side-side periodic excitation through a combination of Model Demodulation Transformation (MDT)
and qLMPC techniques. Notably, the optimization problem associated with this approach is convex,
enabling real-time computation.

The following section presents the research questions discovered during the literature review phase
of this thesis, as well as the contributions made throughout the thesis work.

1-4 Research questions and thesis contribution

The current methods for mitigating tower side-side periodic loads predominantly rely on passive,
frequency-skipping approaches. It is important to note that the technique described in [15] effec-
tively prevents extended operation at critical rotational speeds by using frequency-skipping. How-
ever, it lacks the ability to actively counteract or reject periodic loads in practical situations due to
its inability to estimate the unmeasurable and unknown periodic side-side loading. To address this
limitation, [28] introduces a Kalman filter method for online estimation of the periodic loading as
an extension of the work presented in [15].

As previously mentioned, the work presented in [27] explores an alternative approach to obtain-
ing a quasi-Linear Parameter-Varying (quasi-LPV) model of the wind turbine. This involves using
velocity-based linearization instead of the Model Demodulation Transformation (MDT) technique
followed by Jacobian linearization as employed in [15]. This way, a velocity-based quasi-Linear
Model Predictive Control (qLMPC) scheme can be used to control the system. However, the focus
here is on mitigating the fore-aft acceleration of the wind turbine tower rather than the side-side
periodic loading. Nevertheless, this implementation eliminates the need to store equilibrium input
and state vectors, significantly reducingmemory usage compared to the use of Jacobian linearization
as in [15].

Upon a comprehensive analysis of these topics and their application to mitigating tower side-side
periodic loads, certain aspects were identified as missing from the existing literature. Particularly, to
the author’s knowledge, a strategy that merges the MDT technique with velocity-based linearization
to obtain a single quasi-LPV model of the wind turbine, allowing the qLMPC algorithm to actively
mitigate the effects of the side-side periodic disturbance, has not yet been described in the literature.
Therefore, it was concluded that the following areas deserve further investigation. One research
direction is to explore the application of a qLMPC control scheme combined with a Kalman filter
for estimating and mitigating periodic loads. This method could enable the rejection of periodic
loads instead of merely avoiding operation at critical frequencies. Another research direction is to
evaluate the efficiency of velocity-based linearization of the wind turbine’s nonlinear model after
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1-5 Thesis outline 7

performing MDT, compared to MDT followed by Jacobian linearization. Velocity-based algorithms
naturally possess disturbance rejection capabilities, potentially eliminating the need for disturbance
estimators. This approach may lead to faster computations and offset-free control while rejecting
periodic loads. Additionally, using velocity-based qLMPC removes the need to store equilibrium in-
put and state vectors, significantly reducing memory usage while effectively capturing the system’s
nonlinear behaviour.
Addressing these research areas can contribute to advancing the understanding of wind turbine
control and optimization, ultimately leading to more efficient and reliable wind energy generation
systems. Hence, the following main research question is formulated:

Main research question: Can the tower side-side periodic load be completely mitigated
through the implementation of an efficient velocity-based qLMPC scheme with as little influ-
ence on power production as possible?

Finally, this thesis presents two significant contributions aimed at addressing the main research
question posed earlier. Firstly, the integration of MDT techniques with velocity-based linearization
to create a unified quasi-LPV model of the wind turbine has not been explored in existing literature.
This method effectively captures the system’s nonlinear behaviour without the need to define or
store operating points, as these naturally become the origin when mapped to velocity space. Hence,
this constitutes the first contribution of the thesis.

Contribution 1: Derivation of a quasi-LPV model of the tower and wind turbine aerody-
namics using MDT techniques and velocity-based linearization.

Secondly, conventional methods for mitigating periodic side-side tower loads, crucial for prevent-
ing tower resonance, have been limited to passive, frequency-skipping approaches. By developing a
strategy that allows the qLMPC algorithm to actively mitigate the effects of side-side periodic dis-
turbances, this thesis aims to fill a gap in the literature regarding the active cancellation of side-side
tower periodic loads in wind turbines. Therefore, the final contribution of this thesis is:

Contribution 2: Design of a velocity-based qLMPC control scheme for actively cancelling
periodic loads, specifically focusing on side-side tower periodic load mitigation.

1-5 Thesis outline

The thesis is divided into seven chapters. The first chapter is the introduction. The next three
chapters cover the literature research conducted by the author, explaining fundamental concepts
essential for understanding the control methods used in the thesis. The fourth chapter also presents
results obtained using an illustrative example to enhance comprehension of certain concepts. The
last three chapters focus on the algorithm design, implementation, simulation results and discussion,
conclusions, and future work to be developed.
Chapter 2 introduces the concept of Linear Parameter-Varying (LPV) systems and highlights the
benefits of using this framework to control nonlinear systems or those affected by external signals
whose future values are unknown and unpredictable.
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8 Introduction

Chapter 3 extends to the predictive control of nonlinear systems via quasi-LPV representation.

Chapter 4 presents a mathematical framework of the velocity-based linearization technique to bet-
ter define and understand its relevant characteristics.

Chapter 5 proposes the side-side controller design for reducing undesirable side-side periodic loads
in wind turbine towers while minimizing the impact on power output.

Chapter 6 presents and discusses the results of five simulation cases designed to evaluate the per-
formance and efficiency of the proposed framework.

Chapter 7 draws the main conclusions of this thesis and provides recommendations for future re-
search.
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Chapter 2

Linear and quasi-linear
parameter-varying models

This chapter introduces the concept of Linear Parameter-Varying (LPV) systems and highlights the
benefits of using this framework to control nonlinear systems or those affected by external signals
whose future values are unknown and unpredictable. The notions of LPV embedding and quasi-LPV
systems are also presented as these are two ways of representing nonlinear dynamics in the LPV
framework. To better understand these concepts, the general nonlinear state-space representation
is first introduced, followed by the definition of Linear Time-Invariant (LTI) systems and their well-
established control methods.

2-1 Nonlinear systems

Before diving into the details of Linear Parameter-Varying (LPV) systems, which are the main sub-
ject of this chapter, the concept of nonlinear dynamical systems and their general mathematical
definition are established. Firstly, let it be defined that in a nonlinear dynamical system, the relation
between the input and output of the system is, as the name indicates, nonlinear. This relation is
often shown in the following state-space representation, in continuous time:

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t), u(t)), (2-1)

where f(x(t), u(t)) : Rnx×nu → Rnx and h(x(t), u(t)) : Rnx×nu → Rny are some nonlinear
functions that can depend on the input u ∈ Rnu and state x ∈ Rnx , and y ∈ Rny is the output.

Noteworthy is that Linear Time-Invariant (LTI) and LPV systems can be derived through lineariza-
tion of (2-1). For this, there exist several linearization techniques, such as for instance, Jacobian and
velocity-based linearization. Hence, it is important to note that nonlinear dynamics can be expressed
either by an LTI model in the neighbourhood of an equilibrium point or by a single LPV system that
depends continuously on measurable time-varying parameters [29]. These linear models, explored
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10 Linear and quasi-linear parameter-varying models

in upcoming sections, are notably more manageable than the original nonlinear system. This allows
the application of linear control and design methodologies, in contrast to the considerably more
complex nonlinear approaches.

2-2 LTI systems

Linear Time-Invariant (LTI) systems are a widely studied class of dynamical systems in the literature.
These systems exhibit a constant linear relationship between the input and output, which remains
unchanged over time. This behaviour is commonly represented by a state-spacemodel, in continuous
time, as follows:

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t), (2-2)

whereA ∈ Rnx×nx ,B ∈ Rnx×nu ,C ∈ Rny×nx andD ∈ Rny×nu are continuous functions, u ∈ Rnu

is the input, y ∈ Rny is the output, and x ∈ Rnx is the state variable. Note that in the case of LTI
systems, the continuous functions A, B, C , andD are constant matrices independent of time due to
the time-invariance property.

As might be expected, the LTI state-space model presented in (2-2) can be directly derived from (2-1),
without resorting to linearization techniques, in case f(x(t), u(t)) and h(x(t), u(t)) are linear func-
tions. However, most physical systems are of nonlinear nature when studied across a wide range of
operations. In fact, nonlinear dynamics can be found in most engineering applications. Fortunately,
in practice, even complex nonlinear systems are known to behave approximately linearly within
some range around an operating or equilibrium point. Thus, it is reasonable to describe the sys-
tem’s behaviour using an LTI model when considering just a sufficiently small enough region [30].
Jacobian linearization of the nonlinear system is the most common approach used to derive the LTI
model, as it will be explained in the following. Let (x̄, ū) be an operating point of the original system
withA,B, C , andD being constant matrices that define the LTI state-space model as in (2-2). These
matrices can be obtained from the partial derivatives of the nonlinear functions f(x(t), u(t)) and
h(x(t), u(t)) from (2-1) for when (x(t), u(t)) = (x̄, ū) as shown below:

A := ∂f(x(t),u(t))
∂x

∣∣∣
(x(t),u(t))=(x̄,ū)

, B := ∂f(x(t),u(t))
∂u

∣∣∣
(x(t),u(t))=(x̄,ū)

C := ∂h(x(t),u(t))
∂x

∣∣∣
(x(t),u(t))=(x̄,ū)

, D := ∂h(x(t),u(t))
∂u

∣∣∣
(x(t),u(t))=(x̄,ū)

(2-3)

Hence, it can be concluded that the behaviour of nonlinear dynamical systems around a neighbour-
hood of an equilibrium point can be approximated by an LTI model. This is an important note since
most physical systems, for example, those of mechanical or electrical nature, are nonlinear. When
linearizing these systems and obtaining the respective LTI model, the previously complex dynam-
ics become rather simple to analyze and control, at least in a small range around an equilibrium.
Furthermore, it is possible to use well-known efficient linear control techniques for LTI systems to
control the nonlinear original system in that neighbourhood. In the following subsection, a few
popular control methods for LTI systems are presented.
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2-3 LPV systems 11

2-2-1 Control methods for LTI systems

Control methods for LTI systems are well-established and widely used due to their mathematical
tractability and practical applicability. In the following, commonly used methods to control LTI
systems are briefly presented, and references to popular literature are also provided.

The classic Proportional-Integral-Derivative (PID) control stands out as a straightforward yet effec-
tive technique for regulating systems with uncomplicated dynamics and known parameters [31, 32].
Another well-known technique is the Linear Quadratic Regulator (LQR) considered to be an optimal
control strategy, aiming to minimize a quadratic cost function that includes both state deviations and
control efforts [31, 32, 33]. When it comes to systems with uncertain or noisy dynamics, the Lin-
ear Quadratic Gaussian (LQG) control integrates LQR with a Kalman filter, composing an approach
well-suited for this kind of system [32, 34, 35]. Meanwhile, Model Predictive Control (MPC) is a
popular technique for its ability to handle complex dynamical systems subject to constraints, which
seems to be an absent property in the other discussed control methods. Notably, MPC not only ad-
dresses complexity but also optimizes the system’s response [36]. Lastly, H∞ control is a robust
control strategy particularly effective for LTI systems influenced by uncertainties or disturbances of
considerable magnitude [37].

2-3 LPV systems

As previously mentioned in Section 2-2, in many cases, it is possible to describe the dynamics of a
nonlinear system around an equilibrium or operating point by a Linear Time-Invariant (LTI) model
through the Jacobian linearization of the original nonlinear system. This allows for the use of the
same linear control design techniques mentioned earlier in Subsection 2-2-1. However, when apply-
ing the Jacobian linearization technique, the nonlinear system can only be controlled over a small
region close to the operating point. If the nonlinear system needs to be controlled across a wider
operating range or if the system’s dynamic response is dependent on an external parameter that
cannot be influenced by the designed controller, a more complex mathematical model framework is
necessary [38].

Such a framework is referred to in the literature as a Linear Parameter-Varying (LPV) model, first
introduced by Shamma in 1988 to model gain-scheduling in his PhD thesis [39], and also by Shamma
and Athans later in 1990 [40]. In these types of systems, there is still a linear relationship between
the input and output. However, this relationship may now depend on exogenous non-stationary
parameters. This dependence is shown in the following continuous-time state-space representation:

ẋ(t) = A(θ(t))x(t) +B(θ(t))u(t)
y(t) = C(θ(t))x(t) +D(θ(t))u(t), (2-4)

where A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx and D ∈ Rny×nu are continuous maps, u ∈ Rnu is
the input, y ∈ Rny is the output, x ∈ Rnx is the state variable, and θ ∈ Rnθ is an external parameter
that can depend on time [41]. The latter is also referred to in the literature as external scheduling
variable and its current value is assumed to be measurable, for implementation purposes [38]. The
parameter vector θ(t) belongs to a compact set of admissible values, i.e. θ(t) ∈ Θ ⊆ Rnθ ∀t ≥ 0
[42]. Note that the time dependence of the scheduling parameter will be omitted to shorten notation.
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12 Linear and quasi-linear parameter-varying models

It can be realized that while LTI models of the form (2-2) are stationary, LPV models are not due to
the exogenous time-varying parameter θ. Nevertheless, LTI models can be considered as a subset of
the LPV models when taking the external parameter θ as a constant value.

2-3-1 LPV embedding

As previously stated, the LPV framework was instigated to model gain-scheduling. Gain-scheduling
is a widely used technique to control complex nonlinear systems or processes across a wide range
of operations. This approach emerged as a solution to address the limitations inherent in linearizing
a nonlinear system around a single operating or equilibrium point. Such linearization restricts the
application of LTI control techniques to a narrow vicinity around that specific point.
In contrast, gain-scheduling adopts a more versatile strategy by linearizing the original nonlinear
system across multiple operating points. This results in a collection of local LTI models, each of
which can be effectively controlled using LTI controllers within the neighbourhood of their respec-
tive operating point. In real-time, the dynamic switch, interpolation, or scheduling, between these
diverse LTI controllers is facilitated through the use of available online measurements, often re-
ferred to as the scheduling variable. This enables the construction of a global controller for the
original nonlinear process [38, 41].
Regardless of being a good tool to control complex nonlinear dynamical systems, the classical gain-
scheduling method comes with no guarantees on the robustness, performance, or even nominal
stability of the overall gain-scheduled system as referred in [40]. It is important to realize that as
the local designs rely on LTI approximations of the plant, the designer can ensure that the feedback
system possesses essential feedback requirements, like robust stability, robust performance, and sta-
bility, at each operating point. However, given the inherent nonlinearity of the actual system, the
overall gain-scheduled system might not exhibit any of these traits. Hence, while the individual
subsystems remain stable in a closed-loop for the respective operating points, the overall system’s
stability is not guaranteed. This is influenced by the selected operating points and the timing of
interpolation, which in turn is determined by the defined scheduling variables.
To solve this issue, a global modelling technique known as embedding can be used [38, 43, 44]. In
this case, instead of interpolating several local LTI models to define the global controller, a single
LPV model can be determined. Noteworthy is that LPV models can approximate nonlinear dynam-
ical systems effectively by abstracting away the nonlinearities of the original system through the
introduction of an exogenous parameter θ, resulting instead in a linear, but nonstationary, system
[41]. This is done through the so-called LPV embedding of the nonlinear system. Subsequently, sta-
bility and performance guarantees are provided within the context of the LPV embedding and can
be readily extended to the original nonlinear system, contrary to the classic gain-scheduling design
previously mentioned [42].
The following explanation outlines the process of constructing an LPV embedding for a nonlinear
system. The visualization of these steps is presented in Figure 2-1. Let θ ∈ Θ ⊆ Rnθ denote a
scheduling variable designed in a manner that enables the representation of a nonlinear system in
the form of (2-1) (Figure 2-1a) to be equivalently transposed into an LPV model similar to (2-4):

f(x(t), u(t)) = A(θ)x(t) +B(θ)u(t). (2-5)

Notably, θ could be a function of both states and inputs, allowing for a mapping (x(t), u(t)) → θ
to exist (Figure 2-1b). This is also referred to as quasi-LPV system in the literature, as it will be seen
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(a) (b) (c)

Figure 2-1: Construction of an LPV embedding of a nonlinear system [38, 44]. (a) Original nonlin-
ear system. (b) Characterization of θ. (c) LPV embedding of the nonlinear system.

in Subsection 2-3-2. Now, consider X ⊆ Rnx , an open, bounded, and invariant set aligning with an
operational range of the initial nonlinear system. Consequently, the parameter θ can be transformed
into an external signal, effectively allocated within an appropriate bounded scheduling set denoted
as Θ ⊆ Rnθ . This shift allows the mapping (x(t), u(t)) → θ to be substituted with the inclusion
constraint θ ∈ Θ (Figure 2-1c) [38, 44].

Understanding the admissible trajectories of the LPV embedding is crucial. It is important to note
that the LPV embedding has a much broader range of acceptable trajectories and that these are
actually a superset of the set of trajectories of the initial nonlinear system. Therefore, if a controller
can stabilize the LPV embedding, it is also capable of stabilizing the nonlinear system. To design
controllers for LPV systems, LTI control methods like sensitivity shaping and modelling tools can
be of use as these techniques have been extended to and are accessible for the LPV framework,
as mentioned in [45]. The beauty of this is that these methods will still function effectively on the
original nonlinear system due to the superset property, eliminating the need for much more complex
nonlinear techniques [38], which tend to also be computationally heavier.

2-3-2 Quasi-LPV systems

It is crucial to understand that the categorization of LPV systems hinges on the nature of the schedul-
ing variable θ into two distinct definitions: general or pure LPV systems and quasi-LPV systems.
When θ is defined as an external signal characterized by unknown and unpredictable future values,
it falls under the category of a general LPV system. In such instances, the scheduling parameter is
considered uncertain.

In contrast, when the scheduling parameter θ assumes the role of modelling nonlinear dynamics,
effectively becoming a function of the system’s states and inputs, it becomes possible to predict
its future values. This variant is referred to as a quasi-LPV system, as elaborated upon in existing
literature [46, 47].

A quasi-LPV system conforms to the definition of an LPV system outlined in (2-4), where the time-
varying parameters are determined by functions of inherent signals (i.e, states and inputs), expressed
as:

θ = ϑ(x(t), u(t)). (2-6)

Here, ϑ : Rnx×Rnu → Rnθ denotes a continuous function on the compact set of admissible valuesΘ.
It is worth emphasizing that within quasi-LPV systems, the presence of θ ∈ Θ inherently outlines
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14 Linear and quasi-linear parameter-varying models

a subset of the state space X , establishing a relationship where if x ∈ X , it implies that θ ∈ Θ.
From this, it can be concluded that any stability result derived through a quasi-LPV methodology
can only be defined locally, due to the fact that no stability-related conclusions can be drawn when
θ /∈ Θ⇒ x /∈ X [42].

Noteworthy is that quasi-LPV parameterizations are inherently non-unique, and thus deriving a
quasi-LPV model from a nonlinear system can be challenging and worth special attention. Notably,
two prominent methodologies stand out: the ad-hoc approach and the Jacobian linearization-based
parameterization [42, 46]. Nevertheless, there are other parameterization techniques such as, for in-
stance, velocity-based linearization. This approach leads to a precise representation of the nonlinear
dynamics of the original system, facilitating the assurance of stability along with offset-free control
[48].

As an important remark, the following chapter will predominantly concentrate on the examination
of quasi-LPVmodels for nonlinear systems, covering their control methodologies, particularlyModel
Predictive Control (MPC), and real-world applications.

2-4 Summary

The main concepts covered in this chapter are outlined as follows:

• In the vicinity of an operational or equilibrium point, nonlinear systems can be approximated
as Linear Time-Invariant (LTI) models using a process called linearization. Alternatively, non-
linear systems can be represented as a Linear Parameter-Varying (LPV) model using a global
modelling technique called embedding;

• While LTI models are considered stationary, LPV models are not due to the measurable ex-
ogenous time-varying parameter θ. Nevertheless, LTI models can be considered as a subset of
the LPV models when taking the external parameter θ as a constant value;

• When modelling a system, both external and internal signals, as well as any nonlinearities
affecting the original system, can be represented as a scheduling parameter θ. The choice
between a pure LPV or quasi-LPV representation depends on whether θ models exogenous
signals or nonlinear dynamics, respectively. In the former case, future values of θ are unknown
and their prediction is not possible. Conversely, in the latter case, θ can be expressed as a
function of states and inputs, making its future values predictable;

• LPV models can be used to embed nonlinear dynamics in a linear model, which makes it
possible to extend LTI stability results to nonlinear systems. Additionally, this also allows the
use of powerful LTI control and design techniques that have been proven to effectively work
with LPV models to control the original nonlinear system, without resorting to the use of
complex nonlinear control techniques.
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Chapter 3

Quasi-linear model predictive control

In Chapter 2, the foundations for understanding the concepts of general Linear Parameter-Varying
(LPV) and quasi-LPV models were defined, as well as the relevance of these model types to model
nonlinear dynamical systems or systems affected by exogenous signals. It was especially introduced
that LPV models can be used as a tool to embed nonlinear dynamics in a linear model, allowing
for the extension of Linear Time-Invariant (LTI) control methods and stability results in nonlinear
systems.
This chapter extends to the predictive control of nonlinear systems via quasi-LPV representation.
Hence, it aims to present the fundamentals of Model Predictive Control (MPC) and, mainly, focuses
on the state of the art in MPC via quasi-LPV representation. The state prediction formulation and
control algorithm definition of quasi-Linear MPC (qLMPC) are also provided.

3-1 Model predictive control

This section provides a brief overview of the concept of Model Predictive Control (MPC). In 1987,
the fundamentals for the MPC framework were first presented with Generalized Predictive Control
(GPC) [49, 50]. MPC is a powerful and widely used control strategy for its ability to consider multiple
objectives and constraints such as the physical limitations of the system’s actuators, and also for
the easy extension to multiple input-multiple output systems [51]. This control technique is also
capable of predicting the system’s future behaviour and choosing the right control actions that yield
an optimal response for the system. These control actions are obtained via an optimization problem
and the optimality is defined concerning a specified performance index [42]. However, it is important
to note that an accurate mathematical model of the system is needed when using this control scheme
to make a proper prediction of the system’s behaviour.
When usingMPC, themodel of the system is often provided in discrete-time, describing the evolution
of the states and output of the system for each time step k:

x(k + 1) = f(x(k), u(k))
y(k) = h(x(k), u(k)), (3-1)
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16 Quasi-linear model predictive control

where f(x(k), u(k)) : Rnx×nu → Rnx and h(x(k), u(k)) : Rnx×nu → Rny are functions that
can depend on the input u ∈ Rnu and state x ∈ Rnx , and y ∈ Rny is the output. Given the
accurate dynamics of the system, its future behaviour can be obtained through a predictionmodel. To
define how far into the future the output y is predicted, a prediction horizonNp ∈ Z+ is established.
Additionally, the control horizon Nc ∈ Z is given to define how far into the future the input u is
predicted. Note thatNc ≤ Np, although it is often assumed thatNc = Np = N ∈ Z+. Nevertheless,
there are several reasons why a control horizon smaller than a prediction horizonmay be chosen. For
example, selecting a smallerNc means that fewer variables need to be computed in the optimization
problem at every control interval, resulting in faster computations. A smaller Nc can also promote
the stability of the controller, although this is not guaranteed. Additionally, if the plant includes
delays, it is essential to haveNc < Np. Otherwise, some manipulated variables (in this case, control
inputs) may not have an effect on any of the plant outputs before the end of the prediction horizon
[52].
It is relevant to mention that in any real system, the actuators have limitations which lead to the
saturation of the control input values u. Moreover, many systems are also constrained in their states
x. Thus, these limitations need to be considered for the prediction of future behaviour to be precise.
For this, the said limitations are presented as constraints usually defined as u ∈ U and x ∈ X ,
respectively, where U ⊂ Rnu and X ⊂ Rnx are sets of admissible values that define feasibility [42].
The sequence of actions Uk inside the prediction horizon N is defined as the following column
vector:

Uk =


u(k)

u(k + 1)
...

u(k +N − 1)

 ∈ RNnu , (3-2)

which is determined through the following optimization problem that is solved online:

min
Uk

Jk(Uk) = min
Uk

N∑
i=1

l(x(k + i), u(k + i− 1)) + Vf (x(k +N))

subject to x(k + i) = f(x(k + i− 1), u(k + i− 1)) ∀i ∈ [1 N ], (3-3)
u(k + i− 1) ∈ U ∀i ∈ [1 N ],
x(k + i− 1) ∈ X ∀i ∈ [1 N ],
x(k +N) ∈ Xf ,

where Jk is the finite horizon cost composed by l(x, u) - the stage cost - and Vf (x) - the terminal cost.
The stage cost l(x, u) is often defined as the following:

l(x, u) = x⊤Qx+ u⊤Ru, (3-4)

where Q = Q⊤ ⪰ 0 ∈ Rnx×nx , R = R⊤ ≻ 0 ∈ Rnu×nu are weighting matrices that can be tuned.
In Equation (3-4), the term x⊤Qx represents a penalty on the deviation of the state x from the origin
and the term u⊤Ru represents the cost of control. Notice that from this, it can be concluded that
the desired state is the origin.
Since the optimal control problem defining the control strategy operates within a finite horizon, it
does not guarantee stability or optimality for the cost function through the use of a receding horizon
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3-2 Efficient quasi-linear model predictive control 17

or MPC. However, stability can be achieved by introducing both a suitable terminal cost function
and a terminal constraint into the optimal control problem.

Incorporating a terminal cost function into the optimal control problem typically introduces minimal
or negligible additional computational complexity for online solvingwhile often leading to enhanced
performance. This terminal cost function must adhere to the criteria of being a local Control Lya-
punov Function (CLF) [36]. The terminal cost, denoted as Vf (x), is typically defined as:

Vf (x) = x⊤Px. (3-5)

Here, it is essential to note that the matrix P is positive definite (P > 0), and Vf (x) satisfies the
conditions of Vf (x) > 0 for all non-zero states (∀x ̸= 0) and Vf (0) = 0.

It is worth mentioning that the set Xf , referred to as the terminal set, is carefully designed to ensure
closed-loop stability. In many cases, the inclusion of the terminal constraint x(k + N) ∈ Xf is
imperative precisely because the terminal cost generally serves as a local CLF defined within the set
Xf , instead of a global CLF. Thus, to harness the benefits of the terminal cost, the terminal state xN

needs to be confined within Xf . Additionally, the terminal set must be control invariant, ensuring
that once the terminal state resides within this set, there exists at least a control action such that the
next state will remain in the terminal set. Nevertheless, it is important to realize that introducing a
terminal constraint may significantly increase the complexity of the optimal control problem [36].

Finally, the optimal input trajectory U∗
k is obtained as the solution to the optimization problem

in (3-3) and its first element u(k)∗ is applied to the system. This concept is known as receding
horizon. In the next time instant k + 1, the same process is repeated and the optimization problem
that minimizes Jk+1 is solved for Uk+1, providing the new control law u(k + 1). The primary
reason for implementing the controller in a receding horizon fashion is to ensure robustness against
unexpected disturbances caused by external factors or discrepancies in the model. Essentially, the
receding horizon approach serves as a means to connect the plant and controller in a closed loop
during each time step, as discussed in [42].

Note that there exist other formulations for the optimization problem and that the cost function can
be defined differently depending on the purpose of the MPC controller, i.e. for the tracking problem,
the reference is also included in the cost function and the latter is defined as the error between the
actual value and the desired one. The formulation presented in this section is based on the one
found in [53] and used in the regulator problem where the objective is to stabilize the origin of the
state-space.

3-2 Efficient quasi-linear model predictive control

As mentioned before, Model Predictive Control (MPC) is a technique used to solve an optimization
problem in real-time while taking into account multiple objectives and constraints. Although MPC
can be applied to systems that are not Linear Time-Invariant (LTI), it is commonly used in systems
that match the form presented in Equation (2-2). This makes the computations fast and efficient,
as the optimization procedure is actually a Quadratic Problem (QP). However, when dealing with
complex nonlinear systems, the computations become more complicated. In these cases, MPC needs
to solve a non-convex Non-Linear Program (NLP) problem, which is not as straightforward as in the
linear case [51, 54] and often not suitable for systems with fast dynamics. It is also important to note
that solving an NLP does not guarantee finding the global optimum [54].
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18 Quasi-linear model predictive control

To overcome this computational issue, various techniques have been developed and studied in the
literature. Nonlinear Model Predictive Control (NMPC) was one of the first methods developed, but
it was computationally challenging for real-time embedded applications due to the added complexity
of the nonlinear components [54], asmentioned above. To address this, sub-optimal NMPC strategies
were developed that approximately solve the problem, leading to near-optimal control. These sub-
optimal NMPC methods were found to be a suitable solution to tackle the computational challenges
[55]. Additionally, several other numerical methods for efficient and fast NMPC were studied to
speed up the operation of NMPC [56]. These techniques are relevant and especially important when
controlling systems with fast dynamics for which optimization procedure needs to be quick enough
to provide the next control action.

In Chapter 2, it was mentioned that many nonlinear systems can be defined in the Linear Parameter
Varying (LPV) framework as either pure LPV systems or quasi-LPV systems. To control these sys-
tems, several MPC approaches have been developed over the years. It is important to remember that
pure LPV models have unpredictable scheduling parameters in the future but are measurable on-
line. This uncertainty makes it difficult to predict the model for MPC. On the other hand, quasi-LPV
systems have scheduling variables determined by the state and/or input, making them predictable.
However, the resulting prediction equations are nonlinear [29, 42].

A recent study by Cisneros et al. introduced a new algorithm known as quasi-Linear Model Pre-
dictive Control (qLMPC) [53]. This strategy involves modelling a nonlinear system as a quasi-LPV
system and using an MPC approach to control it. Due to the linearity property between inputs and
outputs provided by this LPV framework, the drawbacks of the NMPC algorithms can be bypassed.
Unlike certain fast NMPCmethods that depend on amoving linearization, the LPV framework allows
for an exact representation of the nonlinear system without the need for time-consuming lineariza-
tion. As concluded in [53], this method is appealing because it is similar to the implementation
of the standard LTI MPC and has relatively fast computations. This makes it possible to extend
LTI MPC literature results to quasi-LPV, making them readily available for nonlinear systems [42].
Furthermore, if strict stability guarantees are not critical, the predictions can be made without the
terminal constraint, which simplifies the online optimization problem into a QP that is easily solved
using standard solvers, making it suitable for application in fast real-time systems. In the following
subsection, a more concrete formulation of the qLMPC framework is provided.

3-2-1 State prediction formulation

This subsection presents the mathematical formulation of the qLMPC framework developed in [53].
For this, let the following discrete quasi-LPV model in state-space form be considered:

x(k + 1) = A(θ(k))x(k) +B(θ(k))u(k), (3-6)

where u ∈ Rnu is the input, x ∈ Rnx is the state variable, θ(k) = ϑ(x(k), u(k)) ∈ Rnθ is the
scheduling variable, and ϑ ∈ Rnθ , A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx and D ∈ Rny×nu are
continuous maps. Let it be assumed that θ(k) ∈ Θ∀k ≥ 0 with Θ being a compact set. Furthermore,
it is considered that the pair (A(θ), B(θ)) is stabilizable ∀θ ∈ Θ [53].

From this point on, the concepts regarding the formulation of MPC presented in Section 3-1 will be
used. Consider the optimization problem presented in (3-3), with the sequence of control actions Uk

over the prediction horizon N defined in (3-2). The control law, as previously mentioned in Section
3-1, is implemented using a receding horizon. Keep in mind that, for this case, the dynamics of the
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3-2 Efficient quasi-linear model predictive control 19

model, which are included as an equality constraint in the mentioned optimization problem, are the
ones given in Equation (3-6). Therefore, the equality constraint in (3-3) becomes:

x(k + i) = A(θ(k + i− 1))x(k + i− 1) +B(θ(k + i− 1))u(k + i− 1) ∀i ∈ [1 N ]. (3-7)

Another assumption is made that ϑ(Xf × U) ⊂ Θ [53]. Additionally, let the following be defined:

Xk =


x(k + 1)
x(k + 2)

...
x(k +N)

 ∈ RNnx , Tk = ϑ([x(k)⊤ X⊤
k ]⊤, Uk) =


θ(k)

θ(k + 1)
...

θ(k +N − 1)

 ∈ RNnθ ,

(3-8)

where Xk is a column vector of states and Tk is the collection of scheduling variables at each time
step over the prediction horizon N .

Now using definitions (3-2) and (3-8), the following prediction model can be found:

Xk = H(Tk)x(k) + S(Tk)Uk, (3-9)

where the matrices {H,S} are defined as

H(Tk) =


A(θ(k))

A(θ(k + 1))A(θ(k))
...

A(θ(k +N − 1)) . . . A(θ(k))

 , (3-10)

and

S(Tk) =


B(θ(k)) 0 . . . 0

A(θ(k + 1))B(θ(k)) B(θ(k + 1)) . . . 0
... . . . ...

A(θ(k +N − 1)) . . . A(θ(k + 1))B(θ(k)) . . . B(θ(k +N − 1))

 .
(3-11)

Using this, the cost function Jk(Uk) can be re-written as

Jk(Uk) = (H(Tk)x(k) + S(Tk)Uk)⊤Q̃(H(Tk)x(k) + S(Tk)Uk)
+ U⊤

k R̃Uk + Vf (x(k +N)), (3-12)

with Q̃ = diagN (Q) ∈ RN×N and R̃ = diagN (R) ∈ RN×N .

3-2-2 Control algorithm definition

In the following explanation, a description of the algorithm employed in qLMPC is provided. For
this, the following notation is used for the sequences of inputs, states and scheduling parameters for
each time step k and iteration step l: U l

k, X l
k and T l

k, respectively.
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20 Quasi-linear model predictive control

At the start of the process at time step k = 0, only the initial state is considered to be known. The
scheduling parameters are chosen to remain unchanged throughout the prediction horizon for each
iteration step l. As a result, the scheduling trajectories are static, in other words time-invariant. For
example, initially, for l = 0 and at time step k the following sequence of scheduling parameters is
defined:

T 0
k = 1N ⊗ ϑ(x(k), u(k − 1)), (3-13)

with 1N ∈ RN being a vector consisting of ones. This approach results in the initial predicted
state sequence, denoted as X0

k , becoming linear with respect to the initial control input sequence,
referred to as U0

k [53, 15]. Consequently, the quasi-LPV model can be effectively substituted with an
LTI model for each iteration step l.

The scheduling sequence T l
k is gradually adjusted through iterative steps l to reach its optimal value,

denoted as T ∗
k = ϑ(X∗

k , U
∗
k ). In each iteration step l, an optimization problem resembling (3-3)

is solved with Tk replaced by T l
k. For the next iteration step l + 1, a new scheduling sequence

T l+1
k = ϑ(X l

k, U
l
k) is generated using the resulting optimal state and input sequences from the

previous iteration l, namely, X l
k and U l

k.

Furthermore, as previously mentioned and as discussed in [53], if strict stability guarantees are not
mandatory, it is possible to omit the terminal state constraint. This omission enables the optimization
problem to be efficiently solved as a QP as demonstrated in literature [29, 53, 15], for which various
standard solvers are readily available. In case this terminal constraint is desired, the optimization
problem becomes a Second Order Cone Program (SOCP) problem, for which solvers also already
exist [53, 57]. Note that solving a SOCP problem is still considerably more efficient than solving a
nonlinear optimization problem as referred in [53].

The stopping criteria chosen in [53] is based on the norm of the predicted trajectory change. In other
words, the iteration continues until the conditionX l

k−X
l−1
k < ϵ is met, where ϵ is a predefined error

threshold. Once this condition is achieved, the input sequence U l
k is used as an approximation of the

optimal solution U∗
k to (3-3). Consequently, X∗

k can also be derived, allowing the determination of
T ∗

k . The first element of the optimal input sequence is then applied to the system (receding horizon).
It is worth noting that alternative stopping criteria, such as setting a maximum number of iterations
lmax, can also be chosen.

Once an approximation of the optimal solution is reached, the obtained X l
k and U l

k are applied in
the subsequent time step k + 1 to compute T 0

k+1 = ϑ(X l
k, U

l
k) while the iteration count l is reset

to zero. This approach, known as warm-start, aids in achieving faster convergence as concluded in
[53, 15].

For a clearer understanding, the pseudocode for the qLMPC algorithm described above can be seen
in Algorithm 1.

3-2-3 Concluding remarks

In summary, the core concept behind this algorithm involves solving a series of optimization prob-
lems in which, by iteratively predicting the future scheduling parameter trajectory Tk, the quasi-LPV
model (3-6) can be actually replaced by a Linear Time-Varying (LTV) model [29, 42, 53]. This allows
the underlying optimization problem to be solved efficiently as a sequence of QPs [29], which conse-
quently leads to faster computations compared to other NMPC techniques. As reported in [53], this
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3-3 Frameworks and applications 21

Algorithm 1 Pseudocode for the qLMPC algorithm [53]
1: k ← 0
2: Define Q, R, N
3: Initialize reference trajectory, plant model, constants Q̃, R̃
4: Define T 0

k = 1N ⊗ ϑ(x(k), u(k − 1)), x(0) = x0
5: repeat
6: l← 0
7: repeat
8: Solve (3-3) with T l

k for U l
k

9: Predict X l
k through (3-9) using T l

k and U l
k

10: Define T l+1
k = f(X l

k, U
l
k)

11: l← l + 1
12: until stop criterion
13: Apply uk to the plant of the system ▷ Receding horizon
14: Define T 0

k+1 = f(X l
k, U

l
k)

15: k ← k + 1
16: until end

algorithm is relatively easy to implement and its complexity is similar to that of LTI MPC. Further,
the qLMPC algorithm’s computations were proven to be just about 3 times slower than for LTI MPC.

It is relevant to mention that in [57], the qLMPC algorithm was applied for reference tracking for
nonlinear systems in the presence of nonlinear input and state constraints. However, it must be
noted that there were no stability guarantees in this study. By implementing the quasi-LPV frame-
work, it was discovered that the nonlinear optimization problem can be replaced by a standard QP,
even when nonlinear state constraints are present. A simulation example demonstrated that this
approach is a viable alternative to complex trajectory planners for a robotic manipulator when deal-
ing with obstacles, as long as nonlinear constraints are properly encoded as quasi-LPV constraints.
Additionally, the algorithm proved to be computationally efficient, with a speed of 2 orders of mag-
nitude faster than nonlinear optimization-based NMPC.

3-3 Frameworks and applications

Throughout the years, advancements have been made in extending the quasi-Linear Model Pre-
dictive Control (qLMPC) algorithm to nonlinear systems in Input-Output quasi-Linear Parameter-
Varying (IO-qLPV) form [58]. This formmight be preferred in certain cases for practical applicability
due to its simplicity and similar accuracy in identification techniques when compared to the ones
used for the State-Space (SS) form and the lack of uncertainty brought by observers. The nonlinear
optimization problem is solved as a sequence of Quadratic Problems (QPs) to keep computational
complexity low. However, it can be harder to obtain IO-qLPV models analytically and has fewer
tuning parameters, which can bring less flexibility [42].

Additionally, a velocity algorithmhas been developed forNonlinearModel Predictive Control (NMPC)
[59], where the model can be readily expressed as a quasi-LPV model through velocity-based lin-
earization [60]. Integral action for offset-free control is intrinsic to the velocity algorithm, without
requiring disturbance estimators. It is important to mention that in the original qLMPC framework,
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22 Quasi-linear model predictive control

the parameterization of all equilibrium points is required. However, in the velocity space, all equilib-
rium points are mapped to the origin [42] removing the need for parameterization and even for the
terminal constraint in the formulation of the optimization problem, making computations simpler.
Also, stability can be guaranteed without the need for complex offline computations.

Furthermore, data-driven quasi-LPV MPC has been explored using Koopman operator techniques
[51], which assumes little a priori knowledge of the underlying system in the form of basis functions.
This method has been proven to be effective and efficient in uncovering the dynamics of an unknown
system while using the resulting model for data-driven control. However, establishing stability in
this approach is rather difficult because the basis functions may not completely correspond to the
system, as these are design parameters.

The above-mentioned qLMPC frameworks have been utilized in addressing problems related to the
control of nonlinear dynamical systems. Initially, the effectiveness of the algorithm has been vali-
dated through simulations and experiments with robotic manipulators, as reported in [57] and [48].
Thereupon, wind turbine tower vibration control has been achieved through the use of these frame-
works as described in [15] and [27]. Autonomous vehicles have also been able to solve trajectory-
tracking problems using qLMPC, as outlined in [61]. Furthermore, robotic manipulators have bene-
fited from the velocity-based qLMPC algorithm, which enables offset-free tracking, according to [59].
Additionally, [62] and [29] used qLMPC to control fixed-wing Unmanned Aerial Vehicles (UAVs) for
meteorological purposes and to design an efficient and fast flight controller for flexible aircraft G-
Flights Dimona, respectively.

In conclusion, the qLMPC algorithm has been demonstrated to be a reliable method for controlling
nonlinear dynamical systems in several areas of application. It was shown in the literature that
qLMPC can generate solutions that are very similar to those produced by more complex NMPC
methods, while greatly reducing computational expenses and enabling real-time operation.

3-4 Summary

Below are the main concepts covered in this chapter presented for reference:

• Model Predictive Control (MPC) is a technique that solves an optimization problem in real-time
while considering multiple objectives and constraints. However, when dealing with nonlin-
ear systems, the computations for MPC can become complex. This led to the development
and study of other algorithms such as Nonlinear MPC (NMPC), which proved to be computa-
tionally challenging for real-time embedded applications. To address this issue, sub-optimal
NMPC or fast NMPC methods were also developed. However, the optimization problem in
these cases is still a non-convex Non-Linear Programming (NLP) problem;

• Recently, a new method called quasi-Linear MPC (qLMPC) has been researched and found
to be a reliable way to control nonlinear dynamical systems across various applications. This
algorithm combines the quasi-Linear Parameter-Varying (quasi-LPV) framework andMPC, al-
lowing the optimization problem to become a convex Quadratic Programming (QP) problem.
Studies have shown that qLMPC can generate solutions similar to those produced by tra-
ditional NMPC methods while considerably reducing computational expenses and enabling
real-time operation.
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Chapter 4

Velocity-based quasi-linear model
predictive control

In Chapter 2, it was discussed that quasi-Linear Parameter-Varying (quasi-LPV) parameterizations
are inherently non-unique. Therefore, deriving a quasi-LPV model from a nonlinear system can be
challenging and requires special attention. Nonetheless, it was also mentioned that velocity-based
linearization can be used to obtain directly a quasi-LPV model, providing a precise representation
of the nonlinear dynamics of the original system. According to the literature, this parameterization
technique facilitates the assurance of stability. Moreover, it was noted in Chapter 3 that velocity
algorithms intrinsically have integral action for offset-free control, without requiring disturbance
estimators.

In this chapter, a mathematical framework of the velocity-based linearization technique is presented
to better define and understand its relevant characteristics. The control of a quasi-LPV model ob-
tained through velocity-based linearization using a Model Predictive Control (MPC) scheme is re-
ferred to as velocity-based qLPMC throughout the rest of this thesis and is also given in this chapter.
Later in the chapter, the value of the velocity-based qLPMC algorithm is illustrated through the re-
sults of a simulation of an illustrative example, specifically the forced Van der Poll oscillator, when
controlled in closed-loop by the velocity-based qLPMC.

4-1 Velocity-based linearization towards a quasi-LPV model

This section discusses the mathematical formulation of the velocity-based linearization technique.
This method is used to obtain quasi-Linear Parameter-Varying (quasi-LPV) models directly from the
original nonlinear system. The formulation presented here is based on the work of [60].

When it comes to obtaining a quasi-LPV model, it is important to note that velocity-based lineariza-
tion offers some advantages over the ad-hoc LPV parameterization discussed in Chapter 2. For in-
stance, it is a simple calculation that does not require the designer’s expertise or intuition. On the
other hand, Jacobian linearization-based methods may also be used, as previously noted. However,

Master of Science Thesis Maria de Neves de Fonseca



24 Velocity-based quasi-linear model predictive control

Jacobian linearization may lead to approximation errors and inconvenient affine state-space rep-
resentations. Additionally, Jacobian linearization is only valid in the vicinity of an equilibrium or
operating point, and the size of this neighbourhood is difficult to represent and may be quite small.
In contrast, velocity-based linearization produces an exact and linear state-dependent (or quasi-LPV)
model, as opposed to an affine one. This eliminates the need to store equilibrium or operating points,
which is necessary when using Jacobian linearization.

To better understand how the velocity-based linearization approach works, let the nonlinear system
dynamics be given as

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t), u(t)), (4-1)

where f(x(t), u(t)) : Rnx×nu → Rnx and h(x(t), u(t)) : Rnx×nu → Rny are some nonlinear
functions that can depend on the input u ∈ Rnu and state x ∈ Rnx , and y ∈ Rny is the output. For
simplicity, let it be assumed that the output is only influenced by the states. These dynamics can be
described by the relationship between the state and input derivatives:

ẍ(t) = ▽xf(x(t), u(t))︸ ︷︷ ︸
Ac(x(t),u(t))

ẋ(t) + ▽uf(x(t), u(t))︸ ︷︷ ︸
Bc(x(t),u(t))

u̇(t),

ẏ(t) = ▽xh(x(t))︸ ︷︷ ︸
Cc(x(t),u(t))

ẋ(t). (4-2)

Note that the subscript c in the state, input, and output matrices, Ac(x(t), u(t)), Bc(x(t), u(t)), and
Cc(x(t), u(t)), respectively, stands for continuous-time. Also, it is interesting to realize that the
model in (4-2) is linear in the derivative of the states, and the state-space matrices are now state-
dependent [59]. Another important remark is that the steady-state information is lost during the
process of differentiation when using velocity-based linearization [42]. Nevertheless, the steady-
state information on the output can be recovered by state augmentation, giving a velocity-form
state-dependent linear model such as follows:[

ẏ(t)
ẍ(t)

]
︸ ︷︷ ︸
ẋext(t)

=
[
0 Cc(x(t), u(t))
0 Ac(x(t), u(t))

]
︸ ︷︷ ︸

Ac,ext(x(t),u(t))

[
y(t)
ẋ(t)

]
︸ ︷︷ ︸
xext(t)

+
[

0
Bc(x(t), u(t))

]
︸ ︷︷ ︸

Bc,ext(x(t),u(t))

u̇(t),

y(t) =
[
I 0

]
︸ ︷︷ ︸

Cc,ext

[
y(t)
ẋ(t)

]
︸ ︷︷ ︸
xext(t)

. (4-3)

It can be understood that this can be written as a quasi-LPV model by setting:

θ = H[x(t)⊤, u(t)⊤]⊤ ∈ Rnθ , (4-4)

where H is a selector matrix. Discretizing (4-3) gives:

xext(k + 1) = Ad,ext(θ(k))xext(k) +Bd,ext(θ(k))∆u(k)
y(k) = Cd,extxext(k), (4-5)
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with xext(k) =
[
y(k)

∆x(k),

]
and the subscript d in the state, input, and output matrices, Ad,ext(θ(k)),

Bd,ext(θ(k)), and Cd,ext, respectively, standing for discrete-time. The discretized velocity model can
be obtained through a variety of methods, for instance, a fourth-order Runge-Kutta discretization
method as in [15]. This model is then used in the quasi-Linear Model Predictive Control (qLMPC)
formulation presented in Chapter 3.

It is important to realize that the augmented velocity-form state-dependent linear discrete-time
model in (4-5) has built-in integral action, which is a result of adding the output variable y(k) to
the state vector. On the same note, it is interesting that integral action can handle modelling errors
and disturbances effectively without the need for other disturbance estimators. This comes from the
fact that, with integral action, the control input u is designed to actively counteract any constant
(or very slowly-varying) disturbance or any other deviation from the reference value such that the
error between the output and its reference converges asymptotically to zero. Consequently, integral
action can help achieve offset-free tracking of constant reference signals [63].

However, even though disturbance estimators are not needed when using the model in (4-5), ob-
servers are still often necessary to estimate the unknown or unmeasurable states.

The following section relates the velocity-based linearizationmethod introduced herewith the qLMPC
framework provided in Chapter 3.

4-2 Velocity-based quasi-linear model predictive control

In Chapter 3, the concept of quasi-Linear Model Predictive Control (qLMPC) was introduced. How-
ever, this framework has a limitation when it comes to tracking problems. As per the work of [42],
deriving the terminal set for the optimization problem in (3-3) requires a partition of the state-space.
This means that Linear Matrix Inequalities (LMIs) would have to be solved offline to get a terminal
set, but this approach is only suitable for low-order systems. For higher-order systems, the LMIs
become intractable.

Moreover, ignoring stability guaranteesmakes the approachmore flexible, but it requires a parametriza-
tion of all equilibria or operating points to achieve offset-free control. An alternative approach is to
solve a target selector problem. This method computes the optimal corresponding steady-state input
and state vectors for a desired set point. These vectors are then used as references for the inputs and
states, respectively.

However, when working in the velocity space, all equilibrium or operating points are mapped to
the origin, which makes computations simpler and less time-consuming. This means that the pa-
rameterization of equilibrium or operating points and the terminal constraint in the optimization
problem are not required when using the velocity-based qLMPC framework instead of the original
one. Furthermore, stability can be guaranteed without the need for complex offline computations as
it will be shown, since there is no need to solve LMIs to get a terminal set. This approach will be
further elaborated in this section.
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First, the optimization problem formulation for the velocity-based qLMPC is provided:

min
∆u

Jk(∆u)

s.t.
[
y(k + i)

∆x(k + i)

]
= Ad(θ(k + i− 1))

[
y(k + i− 1)

∆x(k + i− 1)

]
+Bd(θ(k + 1− i))∆u(k + i− 1) ∀i ∈ [1 N ],
u(k + i− 1) = u(k − 1) +

∑i
j=1 ∆u(k + j − 1) ∈ U ∀i ∈ [1 N ],

x(k + i− 1) ∈ X ∀i ∈ [1 N ],
∆x(k +N) = 0, (4-6)

with the cost function being defined as

Jk(∆u) =
∑N

i=1(||y(k + i− 1)− yref||2Q1 + ||∆x(k + i− 1)||2Q2

+ ||∆u(k + i− 1)||2R) + ||y(k +N)− yref||2P (4-7)

Note that the cost function in (4-7) includes a penalization on the extended state vector xext with the
weighting matrix Q1 ∈ Rny×ny acting on y and Q2 ∈ Rn∆x×n∆x on ∆x. There is also a penalty for
the control input ∆u given by the weighting matrixR ∈ Rn∆u×n∆u , and a terminal cost that defines
that, at the end of the horizon, the output should go to its reference value yref.
An important remark about the optimization problem in (4-6) is that the constraint defined as
∆x(k + N) = 0 guarantees that the state corresponding to y(k + N) is a steady state. This is
explained by the fact that setting ∆x(k + N) = 0 at the end of the horizon means that this is a
forced equilibrium, therefore keeping the same input keeps the system in a steady state and is fea-
sible. With this, the recursive feasibility of the optimization problem can be achieved for a set of
feasible initial conditions. Another conclusion that can be readily drawn is that the cost function is
a decaying sequence due to the influence of the terminal cost, and thus the closed-loop is stable. In
other words, Jk+1 ≤ Jk, which implies convergence of the cost function.
The following section illustrates the concepts discussed in this chapter through the results of a sim-
ulation of an illustrative example, specifically the forced Van der Poll oscillator, when controlled in
closed-loop by the velocity-based qLPMC.

4-3 Illustrative example

To demonstrate how the velocity-based quasi-Linear Model Predictive Control (qLMPC) algorithm
can be employed along with its benefits, an illustrative example such as the forced Van der Poll
oscillator was used.
The dynamics of the forced Van der Poll oscillator can be described as:

ẍ = µ(1− x2)ẋ− x+ u

y = x, (4-8)

with µ > 0. This can be re-written as:[
ẋ1
ẋ2

]
=

[
x2

−x1 + µ(1− x2
1)x2 + u

]
y = x1, (4-9)
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with x = x1 and ẋ = x2.

The following subsections present the results obtained from two different simulations of the forced
Van der Poll oscillator. The first simulation uses the linearized model of the system around one
equilibrium point. This model was obtained through Jacobian linearization and is then controlled
using a simple state-feedback controller such as the Linear Quadratic Regulator (LQR). This first
simulation aims to show the downsides of this approach such as the storage of the equilibrium or
operating points. Also, the control of the linearized system is limited to the vicinity of the equilibrium
point around which linearization was performed.

As for the second simulation, a quasi-LPV model of the forced Van der Poll oscillator is used which
was obtained straightforwardly through velocity-based linearization. This system is then controlled
using the velocity-based qLMPC framework discussed in this chapter.

4-3-1 State-feedback control with Jacobian linearization

In this simulation, the dynamics presented in (4-8) are linearized using Jacobian linearization around
the equilibrium xeq = [x1,eq, x2,eq] = [0.5 0]T and ueq = 0.5. The linearized plant is then controlled
using a Linear Quadratic Regulator (LQR). Note that the equilibrium points of this system can be
obtained using the following:[

ẋ1
ẋ2

]
=

[
0
0

]
⇔

[
0 1
−1 µ(1− x2

1)

] [
x1,eq
x2,eq

]
+

[
0
1

]
ueq =

[
0
0

]
⇔

[
x1,eq
x2,eq

]
=

[
ueq
0

]
(4-10)

When performing linearization around an equilibrium or operating point using Jacobian lineariza-
tion, an affine representation of the nonlinear system is obtained as follows:[

δ̇x1
δ̇x2

]
=

[
0 1

−1− 2x1x2µ µ(1− x2
1)

]∣∣∣∣∣(x1,x2)=(x1,eq,x2,eq)
u=ueq

[
δx1
δx2

]
+

[
0
1

]∣∣∣∣∣(x1,x2)=(x1,eq,x2,eq)
u=ueq

δu

=
[

0 1
−1 µ(1− 0.52)

] [
δx1
δx2

]
+

[
0
1

]
δu

y =
[
1 0

] [
x1
x2

]
, (4-11)

with δxi = xi − xi,eq for i = 1, 2, and δu = u− ueq.

It is important to realize the need to subtract the equilibrium point from the linearized dynamics
of the plant. To better illustrate this concept, a simulation was run for both the case when the
equilibrium point was not subtracted from the linearized dynamics of the plant and for when the
model in (4-11) is used instead. The plant for both cases is discretized using the Fourth Order-Runge
Kutta Method with a sampling time of ts = 0.1 seconds. The reference for the output is set to
yref = 0.5. Both plants are controlled in closed-loop using an LQR with the weighting matrices
being defined as Q = diag(80, 0) and R = 0.1. The initial condition at discrete-time k = 0 for
the states is defined as (x1(0), x2(0)) = (1.5, 0) and the simulation is performed for a total of 25
seconds.

As it can be noticed from the time-domain output response of the linearized model of the forced Van
der Poll oscillator illustrated in Figure 4-1, when the equilibrium point is not subtracted from the
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Figure 4-1: Left plot: Time-domain output response of the linearized model of the forced Van der
Poll oscillator around the equilibrium xeq = [x1,eq, x2,eq] = [0.5 0]T and ueq = 0.5 using Jacobian
linearization (blue solid line —) and respective reference (red dashed line - - -). In this case, the
equilibrium point is not subtracted from the dynamics of the linearized mode. Right plot: Control
input provided by the state-feedback LQR controller.

dynamics, the system is not capable of following the set reference, presenting a quite large steady-
state error. On the other hand, when the model in (4-11) is used, the system follows its reference
perfectly without any steady-state error - see Figure 4-2.

As a remark, it is relevant to understand that this was performed for only one equilibrium point.
However, the same could be done for a set of equilibrium points which would provide several dif-
ferent Linear Time-Invariant (LTI) models of the forced Van der Poll oscillator. In this case, all the
equilibrium points would have to be stored such that these could be subtracted from the respective
LTI model obtained through Jacobian linearization.

It is worth noting that many real-life systems have actuation constraints that limit the control ac-
tion. In such cases, the controller may not be able to make the system follow a reference or even
stabilize the linearized system around an equilibrium point. This behavior is demonstrated in the
time-domain output response of the linearized model of the forced Van der Poll oscillator, as seen
in Figure Figure 4-3. When the control input is saturated to u ∈ [−1.3, 1.3], the closed-loop sys-
tem becomes unstable as the plant moves too far from the equilibrium point. Due to the actuation
saturation, it cannot recover to the neighborhood of the equilibrium.

4-3-2 Velocity-based quasi-linear model predictive control

For this simulation, a quasi-Linear Parameter Varying (quasi-LPV) model of the forced Van der Poll
oscillator is used. By performing velocity-based linearization as described in Section 4-1, the follow-
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Figure 4-2: Left plot: Time-domain output response of the linearized model of the forced Van der
Poll oscillator around the equilibrium xeq = [x1,eq, x2,eq] = [0.5 0]T and ueq = 0.5 using Jacobian
linearization (blue solid line —) and respective reference (red dashed line - - -). In this case, the
equilibrium point is subtracted from the dynamics of the linearized mode. Right plot: Control
input provided by the state-feedback LQR controller.
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Figure 4-3: Left plot: Time-domain output response of the linearized model of the forced Van
der Poll oscillator around the equilibrium xeq = [x1,eq, x2,eq] = [0.5 0]T and ueq = 0.5 using
Jacobian linearization (blue solid line —) and respective reference (red dashed line - - -). In this case,
the equilibrium point is subtracted from the dynamics of the linearized mode and the time-domain
output response of the linearizedmodel of the forced Van der Poll oscillator becomes unstable when
saturating the control input to u ∈ [−1.3, 1.3]. Right plot: Control input provided by the state-
feedback LQR controller.
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Figure 4-4: Left plot: Time-domain output response of the quasi-LPV model of the forced Van der
Poll oscillator (blue solid line —) and respective reference (red dashed line - - -). Right plot: Control
input provided by the velocity-based qLPMC algorithm.

ing quasi-LPV model can be defined: ẏẍ1
ẍ2

 =

0 1 0
0 0 1
0 −1− 2µx1x2 µ(1− x2

1)


 yẋ1
ẋ2

 +

0
0
1

 u̇
y =

[
1 0 0

]  yẋ1
ẋ2

 + 0u̇, (4-12)

with the scheduling parameter θ = [x1 x2]T. Note that x1 = y and x2 = ẋ1, which are the first
two elements of the extended state vector. This makes these variables recoverable from the states of
the new quasi-LPV system presented in (4-12).
The state-space representation above is then discretized using the Fourth Order-Runge KuttaMethod
with a sampling time of ts = 0.1s. The optimization problem used for the velocity-based qLMPC
was the same as presented in (4-6). The reference for the output is set to yref = 0.5. Also, the
weighting matrices are defined as Q1 = 80, Q2 = diag(0, 0), R = 0.1 and P = 10Q1, and the
prediction horizon is set toN = 20. The simulation is performed for a total of 25 seconds. The results
for the reference tracking problem can be seen in Figure 4-4, more precisely the system’s output
response and control action provided by the controller. Note that the control action presented here
is the original u and not the increments ∆u provided by the velocity-based algorithm. Furthermore,
Figure 4-5 shows the number of iterations used in each run of the velocity-based quasi-Linear Model
Predictive Control (qLMPC) algorithm and the time taken by each run to find the optimal scheduling
sequence.
It can be understood that the system follows the set reference for the output with a settling time close
to 3 seconds. As for the number of iterations for each run of the algorithm, it can be noticed that this
decreases over time until only one iteration is needed to find the optimal value for the scheduling
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Figure 4-5: Left plot: Number of iterations l needed for the velocity-based qLMPC algorithm to
converge. Middle plot: Number of iterations l needed for the velocity-based qLMPC algorithm to
converge to an error of 10−3 for the first run k = 0. Right plot: Time needed for each run k of the
velocity-based qLMPC algorithm. The computational time decreases with the number of iterations
needed for the algorithm to converge.

Table 4-1: Average run time for a total number of 100 runs when using the velocity-based qLMPC
algorithm to control the quasi-LPV model of the forced Van der Poll oscillator.

Algorithm # of runs Average run time (s)
Velocity-based qLMPC 100 4.5703

sequence. Accordingly, the time needed for each run also decreases. This is explained by the use of
the so-called warm-up technique.

Finally, Table 4-1 shows the average run time for the entire 25-second simulation. It can be seen that
for a total of 100 runs, the average run time was found to be around 4.57 seconds using an AMD
Ryzen 7 3700U with Radeon Vega Mobile Gfx 2.30 GHz processor, which makes this algorithm viable
for online applications.

Another simulation was run with the same controller, however this time the control action is again
saturated such that u ∈ [−1.3, 1.3]. The results for the tracking problem can be seen in Figure 4-
6. As it can be noticed, the system does not reach the set reference as the control action is not
"strong" enough to do so. However, the velocity-based qLMPC is still capable of stabilizing the
system, contrary to what was seen previously with the linearized model around a single equilibrium
point controlled by a simple state-feedback LQR.

As a final note, it should be noted that unlike the findings presented in [53], this method does not
require an offline solution of a set of LMI conditions to ensure the feasibility and stability of the MPC
problem for quasi-LPV systems. Instead, the original states’ derivatives are controlled to converge to
zero at the end of the horizon, leading the system to a steady state, asmentioned earlier. Furthermore,
since the model obtained after performing velocity-based linearization has intrinsic integral action
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Figure 4-6: Left plot: Time-domain output response of the quasi-LPV model of the forced Van
der Poll oscillator (blue solid line —) and respective reference (red dashed line - - -). The time-
domain output response of the quasi-LPV model of the forced Van der Poll oscillator cannot reach
the set reference when saturating the control input to u ∈ [−1.3, 1.3]. However, the velocity-based
qLPMC algorithm is capable of stabilizing the closed-loop system, reaching a steady state. Right
plot: Control input provided by the velocity-based qLPMC algorithm.

as discussed in Section 4-1, the system can reach the reference with zero steady-state error without
the need to save or consider equilibrium or operating points if the control input is unrestricted.
However, if the control input saturates, the system may not reach the set reference since the control
action may not be "strong" enough to achieve it.

The following chapter illustrates how the velocity-based qLMPC algorithm can be used in wind
turbine control when subject to side-side periodic loads.

4-4 Summary

The main concepts covered in this chapter are listed below:

• This chapter discusses the advantages of velocity-based linearization over ad-hoc Linear Parameter-
Varying (LPV) parameterization and Jacobian linearization in obtaining quasi-LPV models.
Velocity-based linearization simplifies calculations without requiring expert intuition. Also,
contrary to velocity-based linearization, Jacobian linearization can lead to errors and inconve-
nient affine representations. Furthermore, velocity-based linearization produces an exact and
linear quasi-LPV model, eliminating the need to store equilibrium points;

• The augmented velocity-form state-dependent linear discrete-time model presented in this
chapter has built-in integral action. Integral action facilitates offset-free tracking of constant
reference signals, contributing to improved control performance;
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• However, even though disturbance estimators are not needed when using the augmented
velocity-form state-dependent linear discrete-time model, observers are still often necessary
to estimate the unknown or unmeasurable states;

• In velocity space, equilibrium points are mapped to the origin, simplifying computations and
eliminating the need for parameterization of the equilibria or operating points and offline
computation of terminal sets. Therefore, stability can be guaranteed without complex offline
computations since there is no need to solve Linear Matrix Inequalities (LMIs) to get a terminal
set.
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Chapter 5

Application in wind turbine control

This chapter presents an interesting development for mitigating undesirable side-side periodic loads
while minimizing the impact on the power output. Previously, a velocity quasi-Linear Model Predic-
tive Control (qLMPC) algorithmwas introduced in [27] for reducing tower fore-aft acceleration. The
quasi-Linear Parameter-Varying (quasi-LPV) framework used in this study accommodates modelling
faults and uncertainties, such as blade or rotor weight imbalances that cause side-side motions in
soft tower configurations, as explored in [15]. However, unlike the algorithm in [15], this algorithm
linearizes the nonlinear model of the system using a velocity-based linearization technique. The
authors suggest that this eliminates the need for computing and storing input and state operating
point vectors, in contrast to the method used in [15], which requires several operating points for
which Jacobian linearization is performed.

It should be noted that velocity-based linearization, discussed in Section 4-1, leads to a precise rep-
resentation of the nonlinear dynamics of the original system, facilitating stability and offset-free
control. Additionally, velocity algorithms have integral action for offset-free control, without re-
quiring disturbance estimators, as previously mentioned.

The proposed framework presented in this chapter combines the approaches presented in [15] and
[27]. The wind turbine tower dynamics are demodulated using a Model Demodulation Transfor-
mation (MDT) technique, and the real and imaginary parts of the tower top displacement signal are
used as outputs of the system. In an ideal scenario, the aim is to bring these outputs to zero, meaning
that the tower top would stand still and negate the side-side periodic force. The model also takes
into account the wind turbine aerodynamics. Here, the nonlinear model is linearized using velocity-
based linearization and controlled using a velocity-based qLMPC controller. The cost function is
defined to balance minimum impact in the power output with minimizing disturbances originating
from the side-side periodic loads.

5-1 Nominal tower and wind turbine aerodynamic models

This section introduces the nominal tower and wind turbine aerodynamic models used as the basis
for the framework developed in this thesis.
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5-1-1 Tower nominal model

The nominal tower dynamics are given in [15] as the following second-order model:[
ẋ1(t)
ẋ2(t)

]
=

[
−d/m −k/m

1 0

] [
x1(t)
x2(t)

]
+

[
1/m

0

]
Fsd(t), (5-1)

with {m, d, k} ∈ R+ being the constant first modal mass, modal damping, and modal stiffness. The
states x1(t) and x2(t) represent the tower’s top velocity and displacement, respectively. Here, Fsd(t)
is the side-side force modelled as:

Fsd(t) = au(τ) cos(ψ(t)) + cTg, (5-2)

with au(τ) ∈ R+ being the amplitude of the excitation, cTg the contribution of Tg in the form of a
static contribution to the tower dynamics, c = 3/2H the ratio between the angular and translational
displacement of the tower motion [64], H the tower height, and ψ(t) ∈ [0, 2π) the rotor azimuth
angle. Note that Fsd(t) is considered to be a generic force in the work of [28].

5-1-2 Wind turbine aerodynamic model

Another definition that will be needed later in this section is the representation of the complete wind
turbine aerodynamics:

ω̇r = Ta−GTg
Jr

, (5-3)
Ta = 1

2ρπR
3V 2Cq(λ, β), (5-4)

Tg = πρR5Cp(λ,β)ω2
r

2Gλ3 = K
Gω

2
r , (5-5)

with Ta ∈ R being the aerodynamic rotor torque, Tg ∈ R+ the generator torque,G ≥ 1 the gearbox
ratio, and Jr ∈ R+ the total rotor inertia. The optimal mode gainK is defined as:

K = πρR5Cp(λ,β)
2λ3 ∈ R+. (5-6)

Furthermore, ρ ∈ R+ is the air density, R ∈ R+ the rotor radius, V ∈ R+ the wind speed, ωr the
rotor speed, Cq ∈ R the aerodynamic torque coefficient, and Cp the power coefficient as a function
of the tip-speed ratio λ = ωrR/V and the pitch angle β.

5-2 Tower demodulated model

This section presents the concept of Model Demodulation Transformation (MDT). The MDT tech-
nique offers the advantage of separating the fast- and slow-varying components of states when
representing a system in the standard state-space form. This separation proves particularly valuable
in the design of model-based controllers, as it effectively isolates the transient and steady-state as-
pects of the system’s behaviour. Notably, this technique was initially employed in [65] to address
challenges in deriving a transient dynamic model for cantilevers in tapping mode atomic force mi-
croscopy.
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In the wind energy sector, the MTD technique has demonstrated significant utility in modelling the
aerodynamics of wind turbines and the tower’s response to side-side periodic loads as a quasi-Linear
Parameter-Varying model (quasi-LPV). This approach generates a quasi-steady signal for the tower
top displacement rather than a periodic one [15]. Hence, this transformation enables the formulation
of a convex optimization problem to mitigate side-side periodic loading using predictive controllers
such as (velocity-based) quasi-Linear Model Predictive Control (qLMPC) addressed in Chapters 3
and 4.

5-2-1 Model demodulation transformation

As mentioned in [15], when a linear system is subjected to a periodic input, it responds with a
periodic output at the same frequency but with a certain phase shift and magnitude relative to the
input. Let the periodic signal be represented as a cosine wave as follows:

xi(t) = ai(τ) cos(ωrt+ ϕ(τ)). (5-7)

Given that the amplitude and phase exhibit a significantly slower rate of change, a new time coordi-
nate is introduced, denoted as τ . This parameter will serve as the descriptor for any functions that
change slowly. As explained in [15, 65], a function f(τ) is called slow when comparing to a rapidly
varying periodic function g(t) with period T if the following property holds:∫ ⊤

0
f(τ)g(t)dt ≈ f(τ)

∫ ⊤

0
g(t)dt. (5-8)

It is relevant to mention that τ is not different from t, as it is merely introduced to distinguish slowly
evolving functions from those that exhibit rapid changes. Then, the signal is re-written using Euler’s
formula:

xi(t) = Re{ai(τ)ej(ωrt+ϕ(τ))}, (5-9)

with j =
√
−1 being the imaginary unit, andRe{·} and Im{·} the real and imaginary components,

respectively. The slow-varying term can be separated from the fast-varying term as follows:

xi(t) = Re{ai(τ)ejϕ(τ)︸ ︷︷ ︸
Xi(τ)

ejωrt}, (5-10)

with xi(τ) ∈ C. The amplitude and phase can be reconstructed using the following relations:

ai(τ) =
√
Re{Xi(τ)}2 + Im{Xi(τ)}2,

ϕi(τ) = arctan
(
Im{Xi(τ)}
Re{Xi(τ)}

)
. (5-11)

Taking the first-time derivative gives

ẋi(t) = Re
{

(Ẋi(τ) + jωrXi(τ))ejωrt
}
. (5-12)

Having these insights into the MDT technique, the following subsection provides the steps to obtain
the wind turbine aerodynamics and tower demodulated model.
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5-2-2 Wind turbine aerodynamics and tower demodulated model

Assuming a constant rotor’s angular velocity over one revolution, the following holds:

ψ(t) =
∫
ωr(t)dt ≈ ωrt, (5-13)

where ωr(t) is the rotor’s angular velocity, which determines the frequency of the periodic excitation
[28]. The side-side force is considered a semi-periodic signal, which means a harmonic signal with
an amplitude and phase that slowly varies. This signal can be broken down into its semi-harmonic
components and rewritten as follows:

Fsd(t) = Re
{
au(τ)ejωrt + c

∑∞
n=0 T

(n)
g (τ)ejnωrt

}
(5-14)

with T (n)
g (τ) ∈ C being the amplitude and phase of the n-th harmonic component of the generator

torque signal. Applying (5-10), (5-12) and (5-14) to the state-space in (5-1) provides the following:

Re
{(
Ẋ1(τ) + jωrX1(τ) + d

mX1(τ) + k
mX2(τ)− 1

mau(τ)
)
ejωrt

− c
m

∑∞
n=0 T

(n)
g (τ)ejnωrt

}
= 0, (5-15)

Re
{(
Ẋ2(τ) + jωrX2(τ)−X1(τ)

)
ejωrt

}
= 0. (5-16)

By multiplying Equations (5-15) and (5-16) by ejωrt following by integration over an oscillation pe-
riod gives: ∫ Tr

0
Re

{(
Ẋ1(τ) + jωrX1(τ) + d

mX1(τ) + k
mX2(τ)− 1

mau(τ)
)
ejωrt

− c
m

∑∞
n=0 T

(n)
g (τ)ejnωrt

}
= 0, (5-17)∫ Tr

0
Re

{(
Ẋ2(τ) + jωrX2(τ)−X1(τ)

)
ejωrt

}
ejωrtdt = 0. (5-18)

Note that by applying the result from (5-8), the following is given:[
Ẋ1(τ)
Ẋ2(τ)

]
=

[
−jωr − d

m − k
m

1 −jωr

] [
X1(τ)
X2(τ)

]
+

[
c
m
0

]
T (1)
g +

[
1
m
0

]
au(τ). (5-19)

As a remark, it is important to realize that only the first harmonic of T (n)
g is taken into account,

denoted as T (1)
g . This is due to the following orthogonality property of harmonic functions:∫ 2π

0
Re

{
γejnθ

}
ejθdθ = 0, ∀n ̸= 1, (5-20)

which leads to the harmonics corresponding to zeroth and higher harmonics being cancelled, as
mentioned in [28].

Defining the state vector q = [q1, q2, q3, q4]⊤ = [Re{X1}, Im{X1},Re{X2}, Im{X2}]⊤ ∈ R4×1,
the input vector u = [Re{T (1)

g }, Im{T (1)
g }}, and adding the representation of the complete aerody-

namics ω̇r as a step to obtain a quasi-LPV model, the system can be re-defined as the following set
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of differential equations:

q̇1 = f1 = − d
mq1 + ωrq2 − k

mq3 + c
mRe{T (1)

g }+ au(τ)
m , (5-21)

q̇2 = f2 = −ωrq1 − d
mq2 − k

mq4 + c
mIm{T (1)

g }, (5-22)
q̇3 = f3 = q1 + ωrq4, (5-23)
q̇4 = f4 = q2 − ωrq3, (5-24)

ω̇r = f5 = Ta−G(Tg+T
(1)
g )

Jr
. (5-25)

Note that

T (1)
g =

√
Re{T (1)

g }2 + Im{T (1)
g }2 cos

(
ωrt+ arctan

(
Im{T

(1)
g }

Re{T
(1)
g }

))
≈ Re{T (1)

g } cos(ωrt) + Im{T (1)
g } sin(ωrt). (5-26)

The instantaneous amplitude and phase of the dynamic system response at frequency ωr are given
as follows:

a2 =
√
q2

3 + q2
4, (5-27)

ϕ2 = arctan
(

q4
q3

)
. (5-28)

The next subsection presents an illustrative example to better understand the working principles
and characteristics of the derived MDT model.

5-2-3 Illustrative example

Figure 5-1 is useful to illustrate the working principles and characteristics of the derivedMDTmodel.
A chirp signal is set as the input for the nominal model of the wind turbine tower with frequency
varying linearly from 0 Hz to 0.191 Hz, which is equivalent to a linearly varying rotational speed
between 0 rad/s and 1.2 rad/s, as also presented in Figure 5-1. The amplitude of the chirp signal
is 1 N and is used to define the tower input signal corresponding to the side-side periodic force
Fsd. The results of the simulation are displayed in the last plot of Figure 5-1 in red. In addition, the
nonlinear dynamics of the demodulated model were also simulated for a linearly varying rotational
speed, which can be seen as the blue line in the same plot of Figure 5-1. It can be understood that the
demodulated model accurately tracks the amplitude of the signal obtained when using the nominal
model, leading to a quasi-steady state signal. This is relevant for the use of qLMPC as a control
algorithm, as the optimization problem needs to be convex.
Note that the model represented by (5-21)-(5-25) is not yet linear. Additionally, the output is a non-
linear combination of the state vector elements. To use the qLMPC algorithm to obtain the optimal
torque control input, the model must first be linearized to obtain the quasi-Linear Parameter-Varying
(quasi-LPV) model. In [15], the Jacobian linearization technique is used by performing linearization
around an operating point. However, there are alternative linearization techniques available, such
as the velocity-based linearization method presented in [27].
Finally, after linearizing the model to obtain a quasi-LPV representation, the system is discretized
using the forward Euler method. The linearized and discretized model is then used in the velocity-
based qLMPC algorithm.
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Figure 5-1: Top plot: Chirp signal set as the input for the nominal model of the wind turbine
tower with frequency varying linearly from 0 Hz to 0.191 Hz. The amplitude of the chirp signal
is 1 N and is used to define the tower input signal corresponding to the side-side periodic force
Fsd. Bottom left plot: Rotational speed linearly ramping up from 0 rad/s to 1.2 rad/s. Bottom
right plot: Time-domain response of the nominal model of the wind turbine tower subject to the
defined chirp signal as input (red solid line —). Time-domain response of the demodulated wind
turbine tower model (blue dashed line - - -). It can be understood that the demodulated model
accurately tracks the amplitude of the signal obtained when using the nominal model, leading to a
quasi-steady state signal.
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5-3 Velocity-based qLMPC for side-side periodic load mitigation

This section mathematically formalizes the velocity-based quasi-Linear Model Predictive Control
(qLMPC) used for side-side periodic loadmitigation. As previously mentioned in Chapter 4, velocity-
based linearization is employed to derive quasi-Linear Parameter-Varying (quasi-LPV) models di-
rectly from the original nonlinear system. Hence, this approach enables the linearization of wind
turbine aerodynamics and the tower demodulated model into a quasi-LPV model. This quasi-LPV
model can subsequently be used in the velocity-based qLMPC algorithm, which is designed to ac-
tively cancel or mitigate the periodic side-side loads on the wind turbine tower.

5-3-1 Velocity-based linearization of the wind turbine aerodynamics and tower
demodulated model

In this subsection, a quasi-LPV model of the wind turbine demodulated tower model and aerody-
namics is derived through the use of velocity-based linearization.

First, the model presented in (5-21)-(5-25) is linearized using the velocity-based linearization tech-
nique described in (4-2). Also, it is assumed that the wind speed and the disturbance change only at
the beginning of each optimization calculation. Hence, by defining:

x =



q1
q2
q3
q4
ωr
V
au


∈ R7×1, u =

[
Re{Tg(1)}
Im{Tg(1)}

]
∈ R2×1, ẋ = f(x, u) =



q̇1
q̇2
q̇3
q̇4
ω̇r
V̇
ȧu


∈ R7×1, y = h(x, u) =


q1
q2
q3
q4
ωr

 ∈ R5×1,

(5-29)

the following can be derived:

ẍ = ▽xf(x, u)ẋ+ ▽uf(x, u)u̇

=



− d
m ωr − k

m 0 q2 0 1
m

−ωr − d
m 0 − k

m −q1 0 0
1 0 0 ωr q4 0 0
0 1 −ωr 0 −q3 0 0
0 0 0 0 ∂ω̇r

∂ωr
∂ω̇r
∂V 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0


︸ ︷︷ ︸

Ac(x,t)



q̇1
q̇2
q̇3
q̇4
ω̇r
V̇
ȧu


︸ ︷︷ ︸

ẋ

+



c
m 0
0 c

m
0 0
0 0

∂ω̇r
∂Re{T

(1)
g }

∂ω̇r
∂Im{T

(1)
g }

0 0
0 0


︸ ︷︷ ︸

Bc(x,t)

[
Re{Ṫ (1)

g }
Im{Ṫ (1)

g }

]
︸ ︷︷ ︸

u̇

,
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ẏ = ▽xh(x, u)ẋ

=
[
I5×5 05×2

]
︸ ︷︷ ︸

Cc



q̇1
q̇2
q̇3
q̇4
ω̇r
V̇
ȧu


︸ ︷︷ ︸

ẋ

, (5-30)

with

∂ω̇r
∂ωr

= ρπR4

2Jr

∂Cq(λ,β)
∂λ V − 2K

Jr
ωr − G

Jr
(−Re{T (1)

g } sin(ωrt)t+ Im{T (1)
g } cos(ωrt)t), (5-31)

∂ω̇r
∂V = ρπR3Cq(λ,β)

Jr
V − ρπR4

2Jr

∂Cq(λ,β)
∂λ ωr, (5-32)

∂ω̇r
∂Re{T

(1)
g }

= −G
Jr

cos(ωrt), (5-33)

∂ω̇r
∂Im{T

(1)
g }

= −G
Jr

sin(ωrt), (5-34)

and where Ac(x, u) ∈ R7×7 andBc(x, u) ∈ R7×2 are the state and input matrices, respectively, and
Cc ∈ R5×7 is the output matrix.

Having this, a velocity-form state-dependent linear model can be defined as:[
ẏ
ẍ

]
︸︷︷︸
ẋext

=
[
0 Cc
0 Ac(x, u)

]
︸ ︷︷ ︸

Ac,ext(x,u)

[
y
ẋ

]
︸︷︷︸
xext

+
[

0
Bc(x, u)

]
︸ ︷︷ ︸

Bc,ext(x,u)

u̇,

y =
[
I5×5 05×7

]
︸ ︷︷ ︸

Cc,ext

[
y
ẋ

]
︸︷︷︸
xext

. (5-35)

Note that here the output y ∈ R5×1 is chosen to be {q1, q2, q3, q4, ωr}. Also, the state and input
matrices depend on those parameters and the wind speed. Therefore, it can be understood that this
can be written as a quasi-LPV model by setting:

θ = [q1 q2 q3 q4 ωr V ]⊤ ∈ R6×1. (5-36)

The continuous state-space presented in (5-35) is then discretized using the forward Euler method.
Thus, the discrete-time matrices Ad,ext(θ), and Bd,ext(θ), can be defined as:

Ad,ext(θ) = I +Ac,ext(θ)ts ∈ R12×12, (5-37)
Bd,ext(θ) = Bc,ext(θ)ts ∈ R12×2. (5-38)

The matrices from the output are equal in continuous- and discrete-time, thus:

Cd,ext = Cc,ext ∈ R5×12, (5-39)
Dd,ext = Dc,ext = 05×2. (5-40)
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Also, it is relevant to realize that t can be defined in discrete-time as t = kts. Therefore, the following
discrete-time state-space formulation is then used for the rest of this project, when assuming that
the states and disturbances can be measured or known:

xext(k + 1) = Ad,ext(θ(k))xext(k) +Bd,ext(θ(k))∆u(k)
y(k) = Cd,extxext(k), (5-41)

with xext(k) =
[
y(k) ∆x(k)

]⊤
, ∆u(k) = u(k)− u(k− 1), and the subscript d in the state, input,

and output matrices, Ad,ext(θ(k)), Bd,ext(θ(k)), and Cd,ext, respectively, indicating discrete-time.

5-3-2 Velocity-based qLMPC algorithm

The optimization problem at hand is defined earlier in (4-6) minimizing the cost in (4-7), and applied
to the derived model in the previous subsection. Here, the variable y represents the output, which
in this case is {q1, q2.q3, q4, ωr}, while ∆u represents the control input that corresponds to the real
and imaginary components of the first harmonic of T (n)

g . The weight matricesQ1 andR are used to
act on the predicted tower-top displacement and velocity amplitudes and deviation from the optimal
control signal, respectively.

It is important to note that the ||∆u||2R term of the cost function assumes optimal power production
efficiency using the K-omega-squared torque control strategy. Furthermore, it can be deduced that
||y−yref||2Q1

aims to minimize periodic fatigue loads, whereas ||∆u||2R is a combination of impact on
energy production minimization and penalization on the control input. By formulating the objec-
tive in this way, it is possible to achieve a convenient trade-off between the influence in the power
production and load reductions by varying the weight ratio of the matrices R and Q1.

The following section focuses on the results and discussion of five simulation cases performed with
the National Renewable Energy Laboratory (NREL) 5-MW reference wind turbine model.

5-4 Summary

In this chapter the following topics were addressed:

• The wind turbine tower dynamics can be demodulated using a Model Demodulation Trans-
formation (MDT) technique. This way, the amplitude of the tower top displacement is used as
the output of the system. The aim is to bring this output to zero, meaning that the tower top
would stand still and mitigating the effect of the side-side periodic force;

• The model also takes into account the wind turbine aerodynamics. Here, the nonlinear model
is linearized using velocity-based linearization and controlled using a velocity-based quasi-
Linear Model Predictive Control (qLMPC) controller. The cost function is defined to balance
minimum impact in the power output with minimizing disturbances originating from the side-
side periodic loads.
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Chapter 6

Simulation results

This chapter presents the results and respective discussion of five simulation cases designed to eval-
uate the performance and efficiency of the proposed framework. It provides general details of the
simulations for each case, alongwith the parameters for linearization and simulation performedwith
the National Renewable Energy Laboratory (NREL) 5-MW reference wind turbine.

In Figure 6-1 the yellow block represents the quasi-Linear Parameter-Varying (quasi-LPV) model and
the velocity-based quasi-Linear Model Predictive Control (qLMPC) controller used for mitigating the
side-side periodic load on the tower. The focus of this thesis is primarily on the components within
the yellow block. To demonstrate the working principles and effectiveness of the proposed scheme,
four "artificial" simulation cases related to the yellow block are defined. The green block depicts
the nonlinear wind turbine model, which includes rotor aerodynamics and a demodulated nominal
tower model. Additionally, the generator torque controller is integrated into the control scheme
along with the designed velocity-based qLMPC controller to reject the side-side tower periodic load.
The green block extends the control strategy to a fully nonlinear torque-controlled wind turbine,
showcasing its effectiveness in a realistic turbine simulation. The presented control strategy assumes
that all states and disturbances, such as wind and tower side-side periodic load amplitude, are known
and measurable. Consequently, a Kalman filter or any other observer is not included in this setup.
Nevertheless, a Kalman state estimator [28] could be implemented as the final step to complete the
control framework.

Throughout a period of 250 seconds, four different simulation cases were conducted using a closed-
loop system depicted in the yellow block from the block diagram in Figure 6-1. For all cases, the
amplitude of the tower’s side-side periodic load is introduced as a disturbance to the system after 25
seconds. The controller is then enabled after 50 seconds. This setup allows for the observation of
the controller’s effectiveness in mitigating the side-side periodic loading, ultimately resulting in no
displacement at the top of the tower.

For these four cases, the quasi-LPV continuous-time model is discretized using a sampling time of
ts = 0.05 seconds. The four cases are briefly described below:

• Case 1: The wind speed is kept constant at 5.5 m/s. The side-side periodic load amplitude on
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Figure 6-1: The closed-loop systems used for the five simulation cases are shown in the block
diagrams. The yellow block represents the quasi-LPV model and velocity-based qLMPC controller
designed to mitigate the tower’s side-side periodic load. The green block depicts the nonlinear wind
turbine model including the demodulated nominal tower model and rotor aerodynamics along with
the generator torque controller and velocity-based qLMPC controller for side-side tower periodic
load rejection. This control approach assumes that all states and disturbances, including wind and
tower side-side periodic load amplitude, are known and measurable. In more realistic scenarios,
a state and disturbance estimator would be required to estimate the unmeasurable states, wind
speed, and side-side periodic load amplitude. It is important to highlight that this thesis primarily
concentrates on the yellow block.
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the tower is set to 0 N for the first 25 seconds and then increased to 150 N for the rest of the
simulation (Section 6-1).

• Case 2: The wind speed is maintained at a constant 5.5 m/s. The side-side periodic load
amplitude on the tower starts at 0 N for the first 25 seconds and then increases by 10 N at
regular intervals for the remainder of the simulation (Section 6-2).

• Case 3: The wind speed increases linearly from 5.5 m/s to 8.5 m/s. Like in Simulation Case 2,
the side-side periodic load amplitude on the tower is initially 0 N for the first 25 seconds and
then increases by 10 N at regular intervals for the remainer of the simulation (Section 6-3).

• Case 4: The quasi-LPV wind turbine model experiences turbulent wind speeds and a side-side
periodic load amplitude on the tower based on the centrifugal force generated by the rotor and,
thus, dependent on the rotational speed and imbalances in the rotor and blade mass (Section
6-4).

A final simulation case, referred to as Case 5, is designed to validate the effectiveness of the qLMPC
controller in stabilizing a nonlinear model of the wind turbine’s rotor aerodynamics and tower, sub-
jected to side-side periodic loads. For this case, the closed-loop system depicted in the green block
in Figure 6-1 is utilized. Two simulations are conducted, each lasting 50 seconds. A disturbance is
introduced after 5 seconds. In one simulation, the qLMPC controller is enabled from the beginning,
while in the other, the controller remains disabled throughout. Here, the quasi-LPV continuous-time
model is discretized using a sampling time of ts = 0.1 seconds. Below is a brief description of this
simulation case:

• Case 5: The nominal wind turbine rotor model experiences turbulent wind speeds and a side-
side periodic load amplitude on the demodulated nominal tower model, driven by the centrifu-
gal force generated by the rotor. This force is influenced by the rotor’s rotational speed and
imbalances in the rotor and blade mass. In the simulation where the controller is enabled, the
qLMPC utilizes the rotor speed from the nominal rotor model and the states from the demod-
ulated nominal tower model as initial values for each run. The control action determined by
the qLMPC is then applied to the nominal models of both the rotor and tower (Section 6-5).

The parameters used for linearization and simulation performed with the (modified) NREL 5-MW
reference wind turbine in the below-rated operating region can be found in Table 6-1. Originally,
the tower of this reference turbine was classified as soft-stiff. To reclassify it as a soft-soft tower,
its wall thickness is reduced by a factor of 7.5 his reduction decreases the tower’s mass, bringing
its first natural frequency to approximately ωn = 0.7071 rad/s, similar to that of the soft-soft tower
in a simplified wind turbine model. The scaled tower’s modal mass, damping, and stiffness are
represented asm, d, and k in Table 6-1 and the tower’s natural frequency is denoted ωn [13].
As a remark, all the simulations are run using an AMD Ryzen 7 3700U with Radeon Vega Mobile
Gfx 2.30 GHz processor.

6-1 Case 1: Constant wind speed and constant disturbance

This section describes the first simulation setup, presents the results for the first case, and provides
a discussion of the results. The results are presented for different scenarios and tuning parameters
of the quasi-Linear Model Predictive Control (qLMPC) controller.
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Table 6-1: Parameters for linearization and simulation performed with the (modified) NREL 5-MW
reference wind turbine in the below-rated operating region [66, 13].

Parameter Symbol Value Units
Gearbox ratio G 97 -

LSS equivalent inertia Jr 4.0802× 107 kg m2

Rotor radius R 63 m
Tower height H 90 m

Tower modal mass m 3.6200× 105 kg
Tower modal damping d 2.4588× 103 kg s−1

Tower modal stiffness k 1.7677× 105 kg s−2

Tower natural frequency ωn 0.7071 rad s−1

Table 6-2: Weighting matrices used for the first simulation case.

Combination Q1 Q2 R P

1 diag(1,1,1,1,0)×103 diag(1,1,1,1,0,0,0)×103 diag(1,1)×10−8 2Q1
2 diag(1,1,1,1,0)×104 diag(1,1,1,1,0,0,0)×104 diag(1,1)×10−8 2Q1
3 diag(0.1,0.1,10,10,0)×104 diag(0.1,0.1,0.1,0.1,0,0,0)×104 diag(1,1)×10−8 2Q1
4 diag(1,1,10,10,0)×104 diag(1,1,1,1,0,0,0)×104 diag(1,1)×10−8 2Q1

For this simulation case, the wind speed is maintained at a constant value of 5.5 m/s. The side-side
periodic load amplitude on the tower is set to 0 N for the first 25 seconds of the simulation and then
adjusted to 150 N for the remaining simulation time - see Figure 6-2.

The states, previously defined in Chapter 5 as x = [q1; q2; q3; q4;ωr; q̇1; q̇2; q̇3; q̇4; ω̇r; V̇ ; ȧu], are ini-
tialized with x(0) = [0; 0; 0; 0; 0.6113; 0; 0; 0; 0; 0; 0; 0]. The rotor speed is initialized at 0.6113 rad/s
since the wind speed is set to 5.5 m/s at the beginning of the simulation. For the qLMPC controller,
the prediction horizon is set to N = 25. Additionally, for this simulation case, four different combi-
nations of weighting matrices were defined in Table 6-2 to evaluate the trade-off between the control
action and load reductions.

Results and discussion

To gain deeper insights into how the weighting matrices influence the system’s behaviour, four dif-
ferent combinations of these matrices as outlined in Table 6-2 were used to conduct simulations.
Analyzing the modulated signals for wind turbine tower top displacement and side-side periodic
force, depicted in Figure 6-3, over a shorter duration of the simulation provides a window into tran-
sient behaviour.

Notably, as the penalty on tower top displacement increases, the system reaches its steady-state goal
more quickly. Simultaneously, the peak control input within the side-side periodic force modulated
signal decreases (refer to Figure 6-3). This makes sense intuitively: a higher penalty on the states em-
phasizes the importance of the system following the reference or reaching its goal. Thus, the greater
the penalty, the faster the system achieves steady-state. Between Combination 3 and Combination
4, the main difference lies in the increased penalty on velocity and acceleration-related states. By
prioritizing the rapid achievement of zero velocity and acceleration, the system can reach a steady
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Figure 6-2: Left plot: Wind speed. Right plot: Tower side-side periodic load amplitude. The
wind speed is maintained at a constant value of 5.5 m/s. The side-side periodic load on the tower
is set to 0 N for the first 25 seconds of the simulation and then adjusted to 150 N for the remaining
simulation time.

state more quickly and with smaller control actions. Therefore, the remaining results presented in
this chapter were obtained using Combination 4.
It is crucial to note that these signals are derived from control inputs, rotational speed, and de-
modulated tower states obtained through closed-loop simulation, with the quasi-Linear Parameter-
Varying (quasi-LPV) model of the wind turbine tower and aerodynamics serving as the plant, and
the qLMPC acting as the controller.
The behaviour of the quasi-LPV model under constant wind speed, constant disturbance (or tower
side-side periodic loading amplitude), and controlled by the velocity-based qLMPC algorithm, is ana-
lyzed in Figure 6-4. The figure shows the outputs {q1, q2, q3, q4, ωr} as well as the real and imaginary
parts of the first harmonic of the torque signal (control inputs).
For the first 25 seconds, no disturbance or control input is applied, and therefore, all outputs remain
at their initial conditions. After 25 seconds, the disturbance becomes active, and the outputs related
to the real and imaginary parts of the tower’s top velocity and displacement signals start oscillating
with an increase in the oscillation’s amplitude over time. The rotational speed remains constant as
it is not affected by the tower’s dynamics.
After 50 seconds, the controller is enabled, indicated by the outputs related to the real and imaginary
parts of the tower top velocity and displacement signals going to zero as intended in the control
objective. Moreover, the rotational speed exhibits a notable increase as the controller responds to
the disturbance. During the transient phase, the control action shows a significant jump in both
the imaginary and real parts of the first harmonic of the torque signal. Once in steady-state, the
real part settles at approximately −9.35 kNm, while the imaginary part stabilizes around 0 kNm.
Consequently, the rotational speed increases substantially during the transient, stabilizing at around
1.41 rad/s once the system reaches a steady state.
As expected, the imaginary part of the control input diminishes, since the disturbance is a simple
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Figure 6-3: Left plot: Modulated tower top displacement signal. Right plot: Side-side periodic
force. After conducting simulations using four different combinations of weighting matrices, it was
observed that a higher penalty on the states emphasizes the importance of the system following
the reference or reaching its goal. Thus, the greater the penalty, the faster the system achieves
steady-state.

cosine wave with zero phase. This means that only the real part of the control input should be used
to cancel this disturbance.

To analyze the impact of the control action derived from the qLMPC controller in mitigating the
effects of the tower’s side-side periodic load, please refer to Figure 6-5. The top left plot shows the
side-side periodic component acting as a disturbance, which begins to influence the system with a
constant amplitude of 150 N after 25 seconds. The top right plot displays the component related to
the torque. In the bottom plots, we observe the sum of both components in the bottom left plot and
a zoomed-in version in the bottom right plot.

It is evident that the torque component significantly mitigates the disturbance caused by the side-
side periodic load on the tower, reducing it from an amplitude of 150 N to 7 N in steady-state. While
the disturbance is not completely eliminated, it is considerably reduced by approximately 95.3%.

As for the modulated signals for the tower top displacement and velocity, it can be observed in
Figure 6-6 that both signals asymptotically converge to zero as intended in the control objective.

The number of iterations needed for the velocity-based qLMPC algorithm to converge is an inter-
esting result to consider - see Figure 6-7. It is noticeable that once a steady state is reached, only
one iteration is needed for the algorithm to converge in each run. This shows that the warm-start
technique, previously mentioned in Chapter 3, is effective in minimizing the number of required
iterations for convergence of the algorithm. Additionally, the time needed for each run of the algo-
rithm remains below 0.06 seconds in steady-state, suggesting that this controller could be used in
online applications.
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Figure 6-4: Top left plot: Outputs {q1, q2}. Top right plot: Outputs {q3, q4}. Bottom left plot:
Output {ωr}. Bottom right plot: Real and imaginary parts of the first harmonic of the torque sig-
nal (control inputs). For the first 25 seconds, there is no disturbance or control input, so all outputs
stay at their initial conditions. After 25 seconds, the disturbance activates, causing oscillations in
the tower’s top velocity and displacement signals. The rotational speed remains constant as it is
unaffected by the tower’s dynamics. At 50 seconds, the controller is enabled, stabilizing the veloc-
ity and displacement signals at zero as intended. The rotational speed increases due to the control
inputs related to the torque signal’s first harmonic. The imaginary part of the control input con-
verges to zero, as the disturbance is a simple cosine wave with zero phase, requiring only the real
part of the control input to cancel it.
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Figure 6-5: Top left plot: side-side periodic component acting as a disturbance, which begins to
influence the system with a constant amplitude of 150 N after 25 seconds. Top right plot: Com-
ponent related to the torque and obtained through the use of the velocity-based qLMPC algorithm.
Bottom left plot: Sum of both components leading to the total side-side periodic force applied
to the tower. Bottom right plot: Zoomed-in version of the bottom left plot to better analyse the
steady-state behaviour of the total side-side periodic force. The torque component significantly
reduces the disturbance caused by the side-side periodic load on the tower, decreasing it from an
amplitude of 150 N to 7 N in steady-state.
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Figure 6-6: Left plot: Modulated signal for the tower top displacement. Right plot: Modulated
signal for the tower top velocity. The plots are shown just for the initial 100 seconds as the behaviour
of the system remains similar for the rest of the simulation time. Both signals asymptotically con-
verge to zero as intended in the control objective.

Maria de Neves de Fonseca Master of Science Thesis



6-2 Case 2: Constant wind speed and stair disturbance 53

50 100 150 200
time (s)

1

2

3

4

5

6

7

8

9

#
It

er
a
ti
on

s
p
er

ru
n

50 100 150 200
time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
im

e
fo

r
ea

ch
ru

n
(s

)

Figure 6-7: Left plot: Number of iterations needed for the velocity-based qLMPC algorithm to
converge per run. Right plot: Time needed for each run of the algorithm. It is clear that once
a steady state is reached, only one iteration is needed for the algorithm to converge in each run.
The time needed for each run remains below 0.06 seconds in steady-state, suggesting that this
controller could be used in online applications.

6-2 Case 2: Constant wind speed and stair disturbance

This section presents the setup, results, and discussion for the second case. For this simulation case,
the wind speed is maintained at a constant value of 5.5 m/s. The side-side periodic load amplitude
on the tower starts at 0 N for the first 25 seconds and then increases by 10 N at regular intervals for
the remainder of the simulation - see Figure 6-8.

The states are initialized with x(0) = [0; 0; 0; 0; 0.6113; 0; 0; 0; 0; 0; 0; 0]. For the quasi-Linear Model
Predictive Control (qLMPC) controller, the prediction horizon is set to N = 25 and the weighting
matrices are the same as the final ones defined in Section 6-1.

Results and discussion

The behaviour of the quasi-Linear Parameter-Varying (quasi-LPV) model under constant wind speed
and stair disturbance, controlled by the velocity-based qLMPC algorithm, is analyzed in Figure 6-9.
After 25 seconds, the disturbance becomes active, causing instability in the tower’s top velocity and
displacement signals. Enabling the controller at 50 seconds reduces oscillations and stabilizes the
system. The imaginary part of the control input goes to zero, as the disturbance is a simple cosine
wave with zero phase, so only the real part is used to cancel the disturbance. The real part of the
control input follows the opposite trend of the disturbance to mitigate or cancel it.

To investigate the impact of the qLMPC controller in mitigating the tower’s side-side periodic load,
refer to Figure 6-10. The top left plot shows the disturbance with gradually increasing amplitude
starting after 25 seconds. The top right plot displays the torque component. The bottom left plot
shows the sum of both components, with a zoomed-in version in the bottom right plot.
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Figure 6-8: Left plot: Wind speed. Right plot: Tower side-side periodic load amplitude. The wind
speed is maintained at a constant value of 5.5 m/s. The side-side periodic load amplitude on the
tower starts at 0 N for the first 25 seconds and then increases by 10 N at regular intervals for the
remainder of the simulation.

The torque component significantly reduces the disturbance caused by the side-side periodic load.
When there is a change in the disturbance, the system is initially affected and the total side-side
force amplitude increases slightly to compensate for the change in the disturbance. However, the
controller quickly brings the total side-side force asymptotically back to a value very close to zero.

As for the modulated signals for the tower top displacement and velocity, it can be observed in
Figure 6-11 that both signals asymptotically converge to zero as intended in the control objective.

The number of iterations needed for the velocity-based qLMPC algorithm to converge is shown in
Figure 6-12. Once a steady state is reached, the algorithm converges in just one iteration. How-
ever, when there is an increase in the disturbance, the controller must compensate for the abrupt
changes, requiring more iterations to converge. Despite this, the controller allows the system to
rapidly re-establish a steady state where only one iteration is needed again for the velocity-based
qLMPC algorithm to converge. Additionally, each run of the algorithm consistently takes less than
0.18 seconds throughout the simulation, indicating that this controller is suitable for online appli-
cations.
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Figure 6-9: Top left plot: Outputs {q1, q2}. Top right plot: Outputs {q3, q4}. Bottom left plot:
Output {ωr}. Bottom right plot: Real and imaginary parts of the first harmonic of the torque
signal (control inputs). After 25 seconds, the disturbance becomes active, leading to unstable be-
haviour in the tower’s top velocity and displacement signals. Adding the controller at 50 seconds
reduces the oscillations and stabilizes the system. As expected, the imaginary part of the control
input goes to zero, since the disturbance is a simple cosine wave with zero phase. On the other
hand, the real part of the control input follows the opposite trend of the disturbance, as desired, to
mitigate or cancel it.
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Figure 6-10: Top left plot: side-side periodic component acting as a disturbance with gradually
increasing amplitude starting after 25 seconds. Top right plot: Component related to the torque
and obtained through the use of the velocity-based qLMPC algorithm. Bottom left plot: Sum
of both components leading to the total side-side periodic force applied to the tower. Bottom
right plot: Zoomed-in version of the bottom left plot to better analyse the steady-state behaviour
of the total side-side periodic force. The torque component significantly reduces the disturbance
caused by the side-side periodic load. Although the system is initially affected by changes in the
disturbance, the controller quickly brings the total side-side force back to nearly zero.
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Figure 6-11: Left plot: Modulated signal for the tower top displacement. Right plot: Modu-
lated signal for the tower top velocity. The plots are shown just for the initial 100 seconds as the
behaviour of the system remains similar for the rest of the simulation time. Both signals asymp-
totically converge to zero as intended in the control objective.
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Figure 6-12: Left plot: Number of iterations needed for the velocity-based qLMPC algorithm to
converge per run. Right plot: Time needed for each run of the algorithm. Once a steady state
is achieved, the algorithm requires only one iteration for convergence. However, when there is
an increase in the disturbance, the controller must compensate for the abrupt changes, requiring
more iterations to converge. Despite this, the controller enables the system to quickly re-establish
a steady state, where only one iteration is needed again for the velocity-based qLMPC algorithm
to converge. Moreover, the time required for each run of the algorithm remains below 0.18 seconds
throughout the simulation, indicating that this controller is suitable for online applications.
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Figure 6-13: Left plot: Wind speed. Right plot: Tower side-side periodic load amplitude. The
wind speed ramps linearly from 5.5 m/s to 8.5 m/s. The side-side periodic load amplitude on the
tower starts at 0 N for the first 25 seconds and then increases by 10 N at regular intervals for the
remainder of the simulation.

6-3 Case 3: Linearly increasing wind speed and stair disturbance

The simulation setup, results and discussion for Case 3 are provided in this section. In the third sim-
ulation setup, the wind speed ramps linearly from 5.5 m/s to 8.5 m/s. The side-side periodic force
has the same behaviour described in Section 6-2 and is shown in Figure 6-13. The states are ini-
tialized with x(0) = [0; 0; 0; 0; 0.6113; 0; 0; 0; 0; 0; 0; 0]. The parameters for the quasi-Linear Model
Predictive Control (qLMPC) controller are the same as in the previous simulation cases.

Results and discussion

As in the previous cases, let’s first analyze the behaviour of the quasi-Linear Paramter-Varying
(quasi-LPV) model under linearly changing wind speed and stair disturbance, controlled by the
velocity-based qLMPC algorithm (see Figure 6-14). This simulation shows behaviour similar to the
previous case in Section 6-2, especially in the demodulated signals for tower velocity and position.
The control inputs also exhibit a similar trend. However, this time the rotational speed increases
from the start, which is expected since the wind speed is linearly increasing and rotational speed
depends on it.

To examine the control action’s impact on mitigating the tower’s side-side periodic load, refer to
Figure 6-15. The torque component significantly reduces the disturbance caused by the side-side
load. Similar to the behaviour seen in the previous simulation, when the disturbance changes, the
system is initially affected, increasing the total side-side force amplitude slightly, but the controller
quickly brings the net side-side force back to nearly zero asymptotically leading the system to a
steady state.

Maria de Neves de Fonseca Master of Science Thesis



6-3 Case 3: Linearly increasing wind speed and stair disturbance 59

0 50 100 150 200 250
time (s)

0

1

2

3

D
em

o
d
.
to

w
er

to
p

ve
lo

ci
ty

(m
/
s)

#10-4

q1

q2

0 50 100 150 200 250
time (s)

-4

-2

0

2

4

D
em

o
d
.
to

w
er

to
p

p
os

it
io

n
(m

)

#10-4

q3

q4

0 50 100 150 200 250
time (s)

0.6

0.7

0.8

0.9

1

R
ot

or
sp

ee
d

(r
ad

/
s)

!r

0 50 100 150 200 250
time (s)

-4

-2

0

2

C
on

tr
ol

in
p
u
t
(k

N
m

) <fT (1)
g g

=fT (1)
g g

Figure 6-14: Top left plot: Outputs {q1, q2}. Top right plot: Outputs {q3, q4}. Bottom left
plot: Output {ωr}. Bottom right plot: Real and imaginary parts of the first harmonic of the
torque signal (control inputs). After 25 seconds, the disturbance becomes active, leading to unstable
behaviour in the tower’s top velocity and displacement signals. Adding the controller at 50 seconds
reduces the oscillations and stabilizes the system. As expected, the imaginary part of the control
input goes to zero, since the disturbance is a simple cosine wave with zero phase. On the other
hand, the real part of the control input follows the opposite trend of the disturbance, as desired, to
mitigate or cancel it.

For the modulated signals of tower top displacement and velocity (see Figure 6-16), both signals
converge to zero as intended.

Regarding the number of iterations for the qLMPC algorithm to converge (see Figure 6-17), one or
two iterations are needed once a steady state is reached. Still, more iterations are required whenever
there is an abrupt increase in the disturbance. The algorithm’s run time remains below 0.1 seconds
for this simulation case, except for one outlier which took around 0.45 seconds.
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Figure 6-15: Top left plot: side-side periodic component acting as a disturbance with gradually
increasing amplitude starting after 25 seconds. Top right plot: Component related to the torque
and obtained through the use of the velocity-based qLMPC algorithm. Bottom left plot: Sum of
both components leading to the total side-side periodic force applied to the tower. Bottom right
plot: Zoomed-in version of the bottom left plot to better analyse the steady-state behaviour of the
total side-side periodic force. The torque component significantly reduces the disturbance caused
by the side-side load. When the disturbance changes, the system is initially affected, increasing the
total side-side force slightly, but the controller quickly brings it back to zero asymptotically.
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Figure 6-16: Left plot: Modulated signal for the tower top displacement. Right plot: Modulated
signal for the tower top velocity. The plots are shown just for the initial 100 seconds as the behaviour
of the system remains similar for the rest of the simulation time. It can be noticed that both the
modulated signals for the tower top velocity and displacement converge to zero.
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Figure 6-17: Left plot: Number of iterations needed for the velocity-based qLMPC algorithm to
converge per run. Right plot: Time needed for each run of the algorithm. One or two iterations
are needed once a steady state is reached. However, more iterations are required whenever there
is an abrupt increase in the disturbance. The algorithm’s run time remains below 0.1 seconds for
this simulation case, except for one outlier which took around 0.45 seconds.

6-4 Case 4: Turbulent wind speed and disturbance based on the
centrifugal force generated by the rotor

This section presents the simulation setup, results, and discussion for Case 4. For this case, the quasi-
Linear Parameter-Varying (quasi-LPV) system of the wind turbine and tower is exposed to turbulent
wind speeds generated using TurbSim, a turbulence simulator developed by the National Renewable
Energy Laboratory (NREL) [67]. The system experiences a disturbance after 25 seconds based on the
centrifugal force generated by the rotor and, thus, dependent on the rotational speed and imbalances
in the rotor and blade mass, defined as:

au = mω2
r

R
2.5×105 . (6-1)

Note that a factor of 2.5 × 105 is chosen to reduce the amplitude of the side-side periodic force to
values between 130 N and 225 N. This is illustrated in Figure 6-18.

The states are initialized with x(0) = [0; 0; 0; 0; 1.0315; 0; 0; 0; 0; 0; 0; 0]. The parameters for the
qLMPC controller are the same as in the previous simulation cases.

Results and discussion

In Figure 6-19 it is observed that the demodulated signals for the velocity and position of the wind
turbine tower become quite unstable once the disturbance affects the system. However, when the
controller is enabled, it counteracts the disturbance, stabilizing the system and causing the demodu-
lated signals of velocity and position to converge to zero. The control inputs once again demonstrate
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Figure 6-18: Left plot: Wind speed. Right plot: Tower side-side periodic load amplitude. The
quasi-LPV system of the wind turbine and tower is exposed to turbulent wind speeds generated
using TurbSim, a turbulence simulator developed by NREL. For further details on the workings of
this simulator, refer to [67]. Additionally, the system experiences a disturbance after 25 seconds,
with an amplitude that depends on the rotational speed and imbalances in the rotor and blade
mass.

that the imaginary part is used only during the transient phase. Once steady-state is reached, the
imaginary part is no longer needed as the disturbance has zero phase. The real part of the control
input is then used to counteract the disturbance. The rotational speed exhibits a behaviour similar
to that of the side-side force amplitude, as expected since it is dependent on the control input and
this has a mirrored behaviour to that of the disturbance.

To examine the control action’s impact on mitigating the tower’s side-side periodic load, refer to
Figure 6-20. The torque component significantly reduces the disturbance caused by the side-side
load. However, this time the controller is less effective in reducing the influence of the disturbance,
resulting in values between −2 N and 1.5 N for the side-side force. Nevertheless, these amplitudes
are quite small considering the wind turbine’s size and mass and represent about around 0.2% of
the original disturbance amplitude.

For the modulated signals of tower top displacement and velocity (see Figure 6-21), both signals
converge to zero as intended.

As for the number of iterations for the quasi-Linear Model Predictive Control (qLMPC) algorithm to
converge presented in Figure 6-17), this can vary as the system is in the presence of turbulent wind
speed and also time-varying disturbance. The algorithm’s run time remains below 0.2 seconds for
this simulation case, except for one outlier which took around 0.43 seconds.

As a final remark for Simulation Case 4, the simulation was run 100 times to calculate the average
run time of the algorithm for the system under more real-life conditions. The average run time was
around 254.51 seconds for the entire 250-second simulation - see Table 6-3. This result demonstrates
that the algorithm is well-suited for real-time applications, providing an efficient qLMPC algorithm
for wind turbine control subject to tower periodic loads.

Maria de Neves de Fonseca Master of Science Thesis



6-4 Case 4: Turbulent wind speed and disturbance based on the centrifugal force generated by the rotor 63

0 50 100 150 200 250
time (s)

-2

-1

0

1
D

em
o
d
.
to

w
er

to
p

ve
lo

ci
ty

(m
/s

)

#10-3

q1

q2

0 50 100 150 200 250
time (s)

-2

-1

0

1

2

D
em

o
d
.
to

w
er

to
p

p
os

it
io

n
(m

)

#10-3

q3

q4

0 50 100 150 200 250
time (s)

1

1.1

1.2

1.3

1.4

R
ot

o
r
sp

ee
d

(r
ad

/
s)

!r

0 50 100 150 200 250
time (s)

-40

-20

0

20

C
o
n
tr

o
l
in

p
u
t
(k

N
m

) <fT (1)
g g

=fT (1)
g g

Figure 6-19: Top left plot: Outputs {q1, q2}. Top right plot: Outputs {q3, q4}. Bottom left
plot: Output {ωr}. Bottom right plot: Real and imaginary parts of the first harmonic of the
torque signal (control inputs). After 25 seconds, the disturbance becomes active, leading to unstable
behaviour in the tower’s top velocity and displacement signals. Adding the controller at 50 seconds
reduces the oscillations and stabilizes the system. As expected, the imaginary part of the control
input goes to zero, since the disturbance is a simple cosine wave with zero phase. On the other
hand, the real part of the control input follows the opposite trend of the disturbance, as desired, to
mitigate or cancel it. The rotational speed exhibits a behaviour similar to that of the side-side force
amplitude, as expected since it is dependent on the control input and this has a mirrored behaviour
to that of the disturbance.

Table 6-3: Average run time for a total number of 100 runs when using the velocity-based qLMPC
algorithm to control the quasi-LPV model of the wind turbine and tower dynamics under the con-
ditions defined for Simulation Case 4.

Algorithm # of runs Average run time (s)
Velocity-based qLMPC 100 254.5182
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Figure 6-20: Top left plot: side-side periodic component acting as a disturbance after 25 seconds
based on the centrifugal force generated by the rotor and, thus, dependent on the rotational speed
and imbalances in the rotor and blade mass. Top right plot: Component related to the torque and
obtained through the use of the velocity-based qLMPC algorithm. Bottom left plot: Sum of both
components leading to the total side-side periodic force applied to the tower. Bottom right plot:
Zoomed-in version of the bottom left plot to better analyse the steady-state behaviour of the total
side-side periodic force. The torque component significantly reduces the disturbance caused by the
side-side load. However, this time the controller is less effective in reducing the influence of the
disturbance, resulting in values between −2 N and 1.5 N for the side-side force.
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Figure 6-21: Left plot: Modulated signal for the tower top displacement. Right plot: Modu-
lated signal for the tower top velocity. The plots are shown just for the initial 100 seconds as the
behaviour of the system remains similar for the rest of the simulation time. Both signals asymp-
totically converge to zero as intended in the control objective.
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Figure 6-22: Left plot: Number of iterations needed for the velocity-based qLMPC algorithm to
converge per run. Right plot: Time needed for each run of the algorithm. The number of iterations
needed for the velocity-based qLMPC algorithm to converge per run can vary as the system is in
the presence of turbulent wind speed and also time-varying disturbance. The algorithm’s run time
remains below 0.2 seconds for this simulation case, except for one outlier which took around 0.43
seconds.

6-5 Case 5: Side-side tower periodic load rejection in the nominal
wind turbine model using a velocity-based qLMPC

This section presents the simulation setup, results, and discussion for Case 5. The fifth simulation
setup is designed to validate the effectiveness of the quasi-Linear Model Predictive Control (qLMPC)
controller in stabilizing a nonlinearmodel of thewind turbine’s rotor aerodynamics and tower, which
are subjected to side-side periodic loads. Two 50-second simulations are conducted: in one simula-
tion, the qLMPC controller is enabled from the beginning, while in the other, the controller remains
disabled throughout. These simulations are run using Simulink. For more information about the
Simulink block diagram, the reader is referred to Appendix A. Note that a shorter simulation time
was chosen in this case for efficiency, as each full 50-second simulation took approximately 30 min-
utes to run. This way, it was possible to promptly re-tune the controller and evaluate the final results
effectively.

The nominal wind turbine rotor model experiences turbulent wind speeds and an artificially chosen
side-side periodic load amplitude on the demodulated nominal towermodel, driven by the centrifugal
force generated by the rotor. The system encounters this force after 5 seconds, with an amplitude
that depends on the rotational speed and imbalances in the rotor and blade mass, defined as in (6-1).

In the simulation where the controller is enabled, the qLMPC uses the rotor speed from the nominal
rotor model and the states from the demodulated nominal tower model as initial values for each run.
The control action determined by the qLMPC is then applied to the nominal models of both the rotor
and tower.

The states are initialized with x(0) = [0; 0; 0; 0; 0.9040; 0; 0; 0; 0; 0; 0; 0]. The parameters for the
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qLMPC controller are consistent with those used in the previous simulation cases, with the excep-
tion of a change in the sampling time from ts = 0.05 seconds to ts = 0.1 seconds. The penalty
on the states related to the output of the system is also adapted to Q1 = diag(1, 1, 1, 1, 0) × 104

(corresponding to Combination 2 from Table 6-2).
The modifications to the controller were necessary due to its inability to converge to the optimal
scheduling sequence with the previous Q1 matrix and sampling time ts when disturbances were
introduced. It was also observed that the optimization algorithm sometimes reached the maximum
number of iterations without finding an optimal solution when using the same parameters as in the
other four simulation cases. These adjustments were crucial since the control target shifted from a
linearized model to the nominal wind turbine model. This shift led to a potential mismatch between
the states in the qLMPC controller, which was based on the linearized model, and the actual states of
the nonlinear system due to differing dynamics. Consequently, re-tuning the controller by relaxing
the penalty on the states and sampling at a lower frequency was essential to ensure the algorithm’s
convergence when applied to the nominal wind turbine model. It is also important to realize that
by increasing the sampling time the prediction horizon increases from 1.25 to 2.5 seconds. Thus,
with the new sampling time, the controller "looks" further into the predicted future behaviour of
the system. Usually, higher prediction horizons are favourable as more information is given to the
controller to better evaluate the optimal action to take in the next time step.

Results and discussion

In Figure 6-23, the wind and rotor speed, side-side tower periodic load amplitude, and tower top
displacement for simulationswith andwithout the velocity-based qLMPC controller can be analysed.
In the simulation where the velocity-based qLMPC controller is disabled, the rotor speed is smaller,
and the amplitude of the side-side periodic force applied to the top of the tower is also smaller
compared to the simulation with the controller enabled.
When examining the tower top displacement with the controller disabled, the disturbance increases
the displacement amplitude. This displacement decreases due to the natural damping from the tower
model but starts to increase again after a few seconds, each time with a lower amplitude. It is inter-
esting to realize that this behaviour is related to the fact that the tower is modelled as a second-order
mass-spring-damper system.
In the simulation where the controller is enabled, once the disturbance is applied, the tower top
displacement amplitude drifts slightly from zero but quickly decreases and converges back asymp-
totically to zero (see zoomed-in plot of the tower top displacement in Figure 6-23). This demonstrates
the efficiency and capability of the designed control algorithm in mitigating the influence of the side-
side periodic load on the tower top displacement when applied to the nominal wind turbine model.
To illustrate the effectiveness of the velocity-based qLMPC controller in reducing the influence of
the side-side periodic load on the tower of the wind turbine, Figure 6-24 is presented. Here it can
be noticed that the force obtained from the designed controller practically mirrors the behaviour of
the side-side periodic load, leading to a net force applied to the tower consisting of just 0.98% of the
original side-side periodic load, on average.
As a final remark, the impact of the torque derived from the velocity-based qLMPC controller on the
overall torque produced (combining the torque controller and the velocity-based qLMPC) is analyzed
in Figure 6-25. The generator torque exhibits significant changes when the torque from the velocity-
based qLMPC is added to that from the torque controller. Notably, a periodic signal is superimposed
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Figure 6-23: Wind and rotor speed, side-side tower periodic load amplitude, and tower top dis-
placement for simulations with (red solid lines —) and without (blue solid lines —) the velocity-
based qLMPC controller. In the simulation without the velocity-based qLMPC controller, the rotor
speed and the amplitude of the side-side periodic force at the tower top are smaller than with the
controller enabled. When the controller is disabled, the disturbance increases the tower top dis-
placement amplitude. Though natural damping reduces the displacement, it increases again after
a few seconds, with each peak smaller than the last. This behaviour is related to the fact that the
tower is modelled as a second-order mass-spring-damper system. With the controller enabled, the
disturbance causes a slight initial drift in the tower top displacement amplitude, but it quickly de-
creases and converges back to zero, demonstrating the controller’s effectiveness in mitigating the
side-side periodic load’s impact on the tower top displacement (see zoomed-in plot of the tower
top displacement).
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Figure 6-24: Side-side periodic load (blue solid line —), velocity-based qLMPC force (red solid
line —), and net side-side force (yellow solid line —). The force generated by the designed controller
closely mirrors the behaviour of the side-side periodic load. This results in a net force applied to
the tower that is only 0.98% of the original side-side periodic load, on average.
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Figure 6-25: Top plot: Total generator power (blue solid line —), and power related to the torque
obtained from the torque controller (red solid line —). Bottom plot: Total generator torque (blue
solid line —), torque obtained from the torque controller (red solid line —), and torque obtained
from the velocity-based qLMPC controller (yellow solid line —). The generator torque undergoes
notable changes when the torque from the velocity-based qLMPC is combined with that from the
torque controller, resulting in a periodic signal overlaying the original torque and, consequently,
the power signal. However, drawing definitive conclusions about the control algorithm’s impact on
power production is premature, as the artificially set side-side tower periodic load amplitude may
not be realistic.

on the original torque signal. The relationship between power and torque is defined by the following
equation:

P = Tωr (6-2)

where P represents the power, and T is the net torque. For this specific simulation, the inclusion of
the velocity-based qLMPC controller markedly altered the trend in generated power, as illustrated
in Figure 6-25. Consequently, a periodic signal is also superimposed on the original power signal,
reflecting its dependence on torque.

However, it is essential to recognize that drawing precise and definitive conclusions about the velocity-
based qLMPC algorithm’s effect on power production is premature. This caution arises as the side-
side tower periodic load amplitude was artificially set and may not yet be sufficiently realistic.
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Chapter 7

Conclusions and recommendations

This chapter draws the main conclusions of this thesis and provides recommendations for future
research. It begins by summarizing the key findings of the study, highlighting how they address
the research questions and objectives outlined in the introductory chapter. The conclusions reflect
on the significance of these findings, emphasizing their potential contributions to advancing the
understanding of wind turbine control and optimization.

7-1 Conclusions

This thesis introduces an innovative approach to wind turbine control, focusing on addressing tower
side-side periodic loads using a quasi-LinearModel Predictive Control (qLMPC) framework. Tall slim
towers possess inherent flexibility that can lead to resonant behavior, particularly in variable-speed
wind turbines, posing risks such as material degradation and structural failure. While conventional
control strategies have primarily targeted fore-aft tower movement, the need for advanced methods
to actively cancel side-side periodic loads persists.

A key aspect of this approach is the utilization of two specific coordinate transformations. TheModel
Demodulation Transformation (MDT) technique extracts wind turbine tower dynamics, with the aim
of minimizing tower top displacement caused by these periodic forces. Additionally, the model in-
corporates wind turbine aerodynamics, linearized using a velocity-based approach, and controlled
with a qLMPC controller. This method balances the impact on power output (actuation effort) and
disturbances from periodic loads. By mapping equilibrium points to the origin in velocity-space,
velocity-based linearization simplifies computations and eliminates the need for offline computa-
tions of terminal sets and Linear Matrix Inequalities (LMIs). Furthermore, this approach omits the
need for extensive equilibrium input and state vectors, reducing memory usage while effectively
capturing the system’s nonlinear behaviour. Hence, these advancements underscore the efficacy of
strategic coordinate transformations in improving wind turbine control strategies.

Simulation parameters for the modified National Renewable Energy Laboratory (NREL) 5-MW ref-
erence wind turbine were presented and simulations across five distinct cases were summarized.
The first four cases increased in complexity, demonstrating the mechanisms and robustness of the
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developed control algorithm. To gain deeper insights into the influence of weighting matrices on the
system’s behaviour, simulations were conducted using four different combinations of these matrices.
Notably, as the penalty on tower top displacement increased, the system reached its steady-state goal
more quickly. Simultaneously, the peak control input within the side-side periodic force-modulated
signal decreased. This is intuitive: a higher penalty on the states emphasizes the importance of the
system following the reference or reaching its goal, leading to a faster achievement of a steady state.
Additionally, prioritizing the rapid achievement of zero velocity and acceleration allowed the system
to reach a steady state more quickly with smaller control actions.

The first four cases are defined to show the effectiveness, efficiency and working principles of the
designed algorithm. In all four simulation cases, the average time required for a single control step
remained below 0.2 seconds. The time needed for each run increased slightly with the complexity of
the wind speed and disturbance signals encountered. However, even in the most complex scenario
(Case 4), the computational time per run was low, demonstrating the algorithm’s suitability for real-
time applications. This efficiency highlights the velocity-based qLMPC algorithm’s effectiveness in
the control of wind turbines for side-side tower periodic load reductions.

In the final simulation case, which incorporated a nonlinear wind turbine aerodynamic and tower
model, it was concluded that the designed controller efficiently rejects tower side-side periodic loads
when controlling a nonlinear model of the wind turbine’s rotor aerodynamics and the demodulated
tower nominal model. This conclusion was supported by comparing it to a simulation where the
system faced the same wind speeds, but the controller was disabled. This comparison underscores
the developed control algorithm’s effectiveness as demonstrated in this thesis. Furthermore, the
impact of the torque from the velocity-based qLMPC controller on the overall torque (which com-
bines torque from both the torque controller and velocity-based qLMPC) was analyzed. When the
velocity-based qLMPC torque is added, the generator torque changes significantly, with a periodic
signal superimposed on the original torque signal. This periodic signal is also reflected in the power.

In conclusion, this thesis aimed to design a velocity-based qLMPC controller to completely mitigate
tower side-side periodic loads with minimal impact on power production, addressing the main re-
search question posed in the introductory chapter. The main research question was divided into
two parts, focusing specifically on designing an efficient velocity-based qLMPC scheme for side-side
tower periodic load reductions. The results presented in this thesis demonstrate that the designed
velocity-based qLMPC algorithm can considerably reduce the influence of side-side tower periodic
loads in wind turbines. However, regarding the impact on power production, it is still not possible to
draw accurate conclusions at this stage. The side-side tower periodic load amplitude was artificially
set and may not yet be realistic. Therefore, further work is needed to obtain conclusive results on
the proposed framework’s impact on power production.

7-2 Recommendations

This thesis demonstrates the efforts to establish an efficient velocity-based quasi-Linear Model Pre-
dictive Control (qLMPC) framework to address tower side-side periodic loads. However, further
improvements can be made, and the following recommendations are provided for future research:

1. An interesting future direction involves conducting high-fidelity simulations using the Open-
FAST tool provided by the National Renewable Energy Laboratory (NREL). In this approach,
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the control actions derived from the qLMPC, based on the quasi-Linear Parameter-Varying
(quasi-LPV) model of the wind turbine, would be integrated into the nominal wind turbine
model provided in the simulation tool. The states from the nominal model could then serve as
initial states for each optimization algorithm run, similar to the method used in Case 5. This
approach would allow for an assessment of the algorithm’s performance in the nominal model
through high-fidelity simulations, enabling more realistic conclusions regarding the control
algorithm’s impact on power production;

2. In the current work presented in this thesis, the states and disturbances are assumed to be
measurable for simplicity. However, in practical scenarios, these loads are frequently unmea-
surable and unknown. Therefore, a recommendation for future work would be to integrate
the designed qLMPC control scheme with a Kalman filter for the online estimation of periodic
loads. Such integration could significantly enhance the controller’s performance by providing
real-time load estimates, thus improving the overall effectiveness of the control system.

3. As discussed in Case 5, it is crucial to recognize that drawing precise and definitive conclusions
about the velocity-based qLMPC algorithm’s impact on power production is not yet feasible.
This limitation arises as the side-side tower periodic load amplitude was artificially set and
may not accurately reflect realistic conditions. Future research will need to address and refine
this aspect to achieve more reliable results.
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Appendix A

Simulink block diagram

In this appendix, the reader can find the Simulink block diagram used to perform the simulations in
Case 5 from Section 6-5. It is important to mention that this Simulink implementation was mostly
obtained from [68], and adapted to the needs of this thesis.

In Figure A-1, the aerodynamic nominal model of the wind turbine rotor is illustrated. The sub-
system’s output is the aerodynamic torque, calculated using the functions within the Rotor block,
which are based on Equation (5-4) from Chapter 5. This aerodynamic torque, along with the torque
from the torque controller and the velocity-based quasi-linear Model Predictive Control (qLMPC)
algorithm, allows for the determination of rotor speed evolution over time using Equation (5-25)
in Chapter 5. Within this scheme, one can also analyze the total torque applied to the system and
the generated power, which is related to both the torque and rotor speed as per Equation (6-2) in
Chapter 6.

As shown in Figure A-2, the demodulated tower nominal model is represented within the Amplitude
Transformation block, which is subjected to a side-side periodic load. Themodel in this block is based
on Equations (5-21)-(5-24) and is depicted in the bottom block diagram of Figure A-2. In this scheme,
the modulated torque signal from the velocity-based qLMPC is defined using Equation (5-26). This
torque signal is then multiplied by the constant c from Chapter 5 to convert torque to force, which
is then combined with the side-side periodic load signal to determine the net side-side force applied
to the wind turbine tower.

Master of Science Thesis Maria de Neves de Fonseca



74 Simulink block diagram

Figure A-1: Top block diagram: Wind turbine rotor’s aerodynamic nominal model, with the
torque from the torque controller and velocity-based qLMPC. The figure also shows the rotor speed
evolution over time. Bottomblock diagram: Functions inside the rotor block used to compute the
aerodynamic torque based on Equation (5-4) from Chapter 5. The output of this subsystem is the
aerodynamic torque. By combining this torque with the torque obtained from the torque controller
and the velocity-based quasi-linear Model Predictive Control (qLMPC) algorithm, the evolution of
the rotor speed over time can be defined using the relation presented in Equation (5-25) in Chapter 5.
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Figure A-2: Top block diagram: Demodulated tower nominal model subjected to the side-side
periodic load. The velocity-based qLMPC controller is used to reduce the influence of the side-side
periodic load. Bottom block diagram: Model within the Amplitude Transformation block based
on Equations (5-21)-(5-24). In this scheme, the modulated torque signal from the velocity-based
qLMPC is defined using Equation (5-26). Then, this torque signal is multiplied by the constant c
discussed in Chapter 5 to convert torque to force. Subsequently, the resulting signal is combined
with the side-side periodic load signal to calculate the overall side-side force applied to the wind
turbine tower, which according to the control objectives should converge to zero.
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