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Comparing the Pearson and Spearman Correlation Coefficients Across
Distributions and Sample Sizes: A Tutorial Using Simulations and

Empirical Data

Joost C. F. de Winter
Delft University of Technology

Samuel D. Gosling
University of Texas at Austin and University of Melbourne

Jeff Potter
Atof Inc., Cambridge, Massachusetts

The Pearson product–moment correlation coefficient (rp) and the Spearman rank correlation coefficient
(rs) are widely used in psychological research. We compare rp and rs on 3 criteria: variability, bias with
respect to the population value, and robustness to an outlier. Using simulations across low (N � 5) to high
(N � 1,000) sample sizes we show that, for normally distributed variables, rp and rs have similar expected
values but rs is more variable, especially when the correlation is strong. However, when the variables
have high kurtosis, rp is more variable than rs. Next, we conducted a sampling study of a psychometric
dataset featuring symmetrically distributed data with light tails, and of 2 Likert-type survey datasets, 1
with light-tailed and the other with heavy-tailed distributions. Consistent with the simulations, rp had
lower variability than rs in the psychometric dataset. In the survey datasets with heavy-tailed variables
in particular, rs had lower variability than rp, and often corresponded more accurately to the population
Pearson correlation coefficient (Rp) than rp did. The simulations and the sampling studies showed that
variability in terms of standard deviations can be reduced by about 20% by choosing rs instead of rp. In
comparison, increasing the sample size by a factor of 2 results in a 41% reduction of the standard
deviations of rs and rp. In conclusion, rp is suitable for light-tailed distributions, whereas rs is preferable
when variables feature heavy-tailed distributions or when outliers are present, as is often the case in
psychological research.

Keywords: correlation, outlier, rank transformation, nonparametric versus parametric

Supplemental materials: http://dx.doi.org/10.1037/met0000079.supp

The Pearson product–moment correlation coefficient (rp; Pear-
son, 1896) and the Spearman rank correlation coefficient (rs;
Spearman, 1904) were developed over a century ago (for a review
see Lovie, 1995). Both coefficients are widely used in psycholog-
ical research. According to a search of ScienceDirect, of the
18,419 articles published in psychology in 2014, 24.7% reported

an effect size measure of some kind. As shown in Table 1, rp and
rs are particularly popular in sciences involving the analysis of
human behavior (social sciences, psychology, neuroscience, med-
icine). Table 1 further shows that rp is reported about twice as
frequently as rs. Moreover, Table 1 almost certainly underesti-
mates the prevalence of rp, because rp is the default option in many
statistical packages; so when the type of correlation coefficient
goes unreported, it is likely to be rp.

Many more researchers use rp rather than rs, perhaps because
rp appears to match more closely the linear relationship they
aim to estimate. Other reasons why most researchers choose rp

could be because rp allows for inferences such as calculation of
the variance accounted for, or because it is consistent with the
methods of available follow-up analyses, such as linear regres-
sion (or ANOVA) by least squares or factor analysis by max-
imum likelihood. Yet another reason for the widespread use of
rp may be that statistical practices are very much determined by
what SPSS, R, SAS, MATLAB, and other software manufac-
turers implement as their default option (Steiger, 2001, 2004).
For example, in MATLAB, the command corr(x,y) yields the
Pearson correlation coefficient between the vectors x and y. It
requires a longer command (corr(x,y),‘type’,‘spearman’) to cal-
culate the Spearman correlation. Thus, the software may im-
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plicitly give the impression that rp is the preferred option and it
also requires more knowledge of the software commands to
calculate rs.

Some Well-Known and Less Well-Known Properties
of rp and rs

The sample Pearson correlation coefficient rp is defined accord-
ing to Equation 1. Here, we have first performed a mean centering
procedure on the x and y vectors.

rp �
�
i�1

N

xiyi

��
i�1

N

xi
2�

i�1

N

yi
2

(1)

The sample Spearman correlation coefficient rs is calculated in
the same manner as rp, except that rs is calculated after both x and
y have been rank transformed to values between 1 and N (Equation
2). When calculating rs, a so-called fractional ranking is used,
which means that the mean rank is assigned in case of ties. For
example, suppose that the two smallest numbers of x are equal,
then they will be both ranked as 1.5 (i.e., [1 � 2]/2). Again, a mean
centering is first performed (by subtracting N/2 � 1/2 from each of
the two ranked vectors).

rs �
�
i�1

N

xi,ryi,r

��
i�1

N

xi,r
2 �

i�1

N

yi,r
2

(2)

Assuming there are no ties, Equation 2 can be rewritten in
various formats (Equation 3).

rs �
�
i�1

N

xi,r
2 � 1

2�i�1

N

(xi,r � yi,r)
2

�
i�1

N

xi,r
2

� 1 �
�
i�1

N

(xi,r � yi,r)
2

2�
i�1

N

xi,r
2

� 1 �

6�
i�1

N

(xi,r � yi,r)
2

N(N2 � 1)
� 12

N(N2 � 1)�i�1

N

xi,ryi,r (3)

It can be inferred from Equations 1–3 that rp will be high when
the individual points lie close to a straight line, whereas rs will be
high when both vectors have a similar ordinal relationship. As
mathematically shown by Yuan and Bentler (2000), the distribu-
tion of rp depends only on the fourth-order moments (or kurtoses)
of the two variables, not on their skewness (see also Yuan, Bentler,
& Zhang, 2005). After all, rp is a function of second-order sample
moments, and so the variance of rp is determined by fourth-order
moments. The nonparametric measure rs, on the other hand, is
relatively robust to heavy-tailed distributions and outliers; all data
are transformed to values ranging from 1 to N, so the influence
function is bounded (Croux & Dehon, 2010). Several of the above
characteristics of rp and rs are covered in many introductory
statistics books and graduate-level psychology programs. Further-
more, a large number of research papers have previously described
the differences between rp and rs, and have confirmed that rs has
attractive robustness properties (e.g., Bishara & Hittner, 2015;
Fowler, 1987; Hotelling & Pabst, 1936).

Nonetheless, several characteristics of rp and rs may not be well
known to researchers, even for the standard scenario of normally
distributed variables. The derivation of the probability density
function of rp for bivariate normal variables can be traced back to
contributions by Fisher (1915), Sawkins (1944), Hotelling (1951,
1953), and Kenney and Keeping (1951), and was reported more
recently by Shieh (2010):

f(rp) �
(N � 2)�1 � Rp

2�
(N�1)

2 (1 � rp
2)

(N�4)
2

�N(N � 2)��1
2, N � 1

2�(1 � Rprp)
N�

3
2

� 2F1�1
2, 1

2; N � 1
2;

Rprp � 1
2 � (4)

Here, Rp is the population Pearson correlation coefficient, � is
the beta function, and 2F1 is Gauss’ hypergeometric function. The
hypergeometric function is available in software packages (e.g.,
hypergeom ([1/2 1/2], N-1/2, (Rp � rp�1)/2) in MATLAB), but
can also be readily calculated according to a power series, with �
being the gamma function:

2F1�1
2, 1

2; N � 1
2;

Rprp � 1
2 �

� �
i�0

� ���1
2 � i�2

��N � 1
2�

	 · ��N � 1
2 � i�

�Rprp � 1
2 �i

i! � (5)

Shieh (2010) stated “It is not well understood that the underly-
ing probability distribution function of r is complicated in form,
under the classical assumption that the two variables follow a
bivariate normal distribution. The complexity incurs continuous
investigation” (p. 906). Figure 1 illustrates the probability density
function of rp for two sample sizes (N � 5 and 50) and three
population correlation coefficients (Rp � .2, .4, and .8). It can be
seen that the mode of the distribution is greater than Rp and that the
distribution is negatively skewed, with the skew being stronger for
higher Rp and for smaller N.

Equation 4 allows one to calculate exact p values and confi-
dence intervals. However, the popular and considerably more
straightforward Fisher transformation can also be used in statistical
inference (e.g., Fisher, 1921; Fouladi & Steiger, 2008; Hjelm &
Norris, 1962; Hotelling, 1953; Winterbottom, 1979). For rs, exact
probability density functions are available for small sample sizes,
and over the years various approximations (in terms of bias, mean
squared error, and relative asymptotic efficiency) of the distribu-
tion and its moments have been published (Best & Roberts, 1975;
Bonett & Wright, 2000; Croux & Dehon, 2010; David & Mallows,
1961; David, Kendall, & Stuart, 1951; Fieller, Hartley, & Pearson,
1957; Xu, Hou, Hung, & Zou, 2013). Furthermore, several
variance-stabilizing transformations have been developed for rs.
These transformations, which can be applied in analogous fashion
to the Fisher z transformation for rp, may be practical for statistical
inference purposes (Bonett & Wright, 2000; Fieller et al., 1957;
but see Borkowf, 2002 demonstrating limitations of this concept).

Typically in psychology, investigators undertake research on
samples (i.e., a subset of the population) with the aim of estimating
the true relationships in the population. It is useful to point out that
the expected values of both rp and rs are biased estimates of their
respective population coefficients Rp and Rs (Ghosh, 1966; Zim-
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merman, Zumbo, & Williams, 2003). Zimmerman et al. (2003)
stated “It is not widely recognized among researchers that this bias
can be as much as .03 or .04 under some realistic conditions” (p.
134). Equation 6 provides the expected value of rp (Ghosh, 1966),
while Equation 7 provides the expected value of rs (Moran, 1948;
Xu et al., 2013; Zimmerman et al., 2003). Both these equations
indicate that the population value is underestimated, especially for
small N. This underestimation is relatively small if Rp is small or
moderate. For example, if Rp � .2 (corresponding Rs � .191,
calculated using Equation 9), then E(rp) and E(rs) are .177 and
.160, respectively at N � 5, and .195 and .182 at N � 20. The
underestimation is more severe for Rp between .3 and .9. If Rp �
.8 (Rs � .786), then E(rp) and E(rs) are .754 and .688 at N � 5, and
.792 and .758 at N � 20.

E(rp) �
2���N

2 ��2

(N � 1)���N � 1
2 ��2Rp · 2F1�1

2, 1
2; N � 1

2 ; Rp
2� (6)

E(rs) � 6
	(N � 1)�arcsin(Rp) � (N � 2)arcsin�Rp

2 �� (7)

Equation 7 can be rewritten into a form that clarifies how the
expected value of rs relates to the population value of the Spear-
man coefficient and another well-known rank coefficient, Kend-
all’s tau (Durbin & Stuart, 1951; Hoeffding, 1948).

E(rs) �
(N � 2)Rs � 3Rt

N � 1 (8)

The Pearson, Spearman, and Kendall correlation coefficients at
the population level (i.e., Rp, Rs, Rt) for normally distributed
variables can be described by a closed-form expression (e.g.,
Croux & Dehon, 2010; Pearson, 1907). In other words, for an
infinite sample size, the Pearson, Spearman, and Kendall correla-

tion coefficients differ when the two variables are normally dis-
tributed (Equations 9, 10, and 11).

Rs � 6
	

arcsin�Rp

2 � (9)

Rt � 2
	

arcsin(Rp) (10)

Rs � 6
	

arcsin�sin�1
2	Rt�
2

� (11)

The maximum difference between Rp and Rs is .0181 and occurs

at Rp � .594 ��4	2 � 36
	 � and Rs � .576 � 6

	
arcsin��	2 � 9

	 ��, see
also Guérin, De Oliveira, and Weber (2013). Figure S1 of the
supplementary material illustrates the relationships between Rp, Rs,
and Rt (see also Kruskal, 1958).

Aim of the Present Study

As shown above, the definitions and essential characteristics of
rp and rs are probably well known. However, rp and rs exhibit a
variety of interesting features in the case of bivariate normality. Of
course, in real-life scenarios, psychologists are likely to encounter
non-normal data as well.

In light of the widespread use of correlations in psychology and
the predominance of rp over rs, the goal of this contribution is to
review the properties of the rp versus rs, and to clarify the situa-
tions in which rp or rs should be preferred. We examine the
properties of both coefficients with the aim of providing research-
ers with empirically derived guidance about which coefficient to
use.

We use simulations and analyses of existing datasets to compare
rp with rs for conditions that are representative of those found in

Figure 1. Probability density function of the Pearson correlation coefficient (rp) for three levels of the population
Pearson correlation coefficient (Rp � .2, Rp � .4, Rp � .8) and two levels of sample size (N � 5, N � 50). The area
under each curve equals 1. See the online article for the color version of this figure.
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psychological research. We start out by comparing rp versus rs for
normally distributed variables, which as we indicated above, may
have various unfamiliar properties. We aim to depict the charac-
teristics of rp and rs in an intuitive, graphical manner. Next, we
evaluate rp versus rs when the two variables have a non-normal
distribution, a situation that is common in psychological research.
We also graphically illustrate the strength of rs when one or more
outliers are present. Finally, we provide a demonstration of the
differences of rp versus rs for typical psychological data. The main
contribution of these sampling studies is to explain the relative
performance of rp versus rs as a function of item/scale character-
istics and sample size. In all cases, we compare the two coeffi-
cients in terms of variability, bias with respect to the population
value, and robustness to an outlier.

rp Versus rs With a Normally Distributed Population

Normally Distributed Variables in
Psychological Research

The central limit theorem states that the sum of a large number
of independent random variables conforms to a normal distribu-
tion. Psychologists often aggregate data into constructs, and fur-
thermore, various types of human attributes (such as personality
and intelligence) may be seen as the effect of a large number of
unobserved random processes. Hence, the central limit theorem
can explain why certain psychological variables are approximately
normally distributed (see Lyon, 2014, for a discussion on the
factors that contribute to normality). Intelligence and physical
ability are prime examples of human attributes that follow an
approximately normal distribution (Burt, 1957; Plomin & Deary,
2015). The normal distribution occurs empirically regardless of
whether the attribute is measured on an ordinal scale (e.g., a paper
and pencil intelligence test) or on a ratio scale (e.g., intelligence
defined chronometrically; Jensen, 2006). Let us therefore first
evaluate how rp and rs behave when the two variables are normally
distributed.

Selected Population Correlation Coefficients

To describe the behavior of rp and rs for bivariate normal
variables and finite sample sizes, we undertook a simulation
study. To ensure that the ranges of coefficient sizes were
representative of those potentially encountered in psychological
research, we consulted the literature. In published research,
correlations among psychometric test scores, and correlations
between psychological assessment scores and performance cri-
teria, generally range between 0 and .5 (cf. Jensen, 2006; Meyer
et al., 2001; Tett, Jackson, & Rothstein, 1991). One review of
322 meta-analyses showed that the absolute correlation coeffi-
cients in social psychology average at .21, with 95% of the
coefficients between 0 and .5, and the remaining 5% between .5
and .8 (Richard, Bond, & Stokes-Zoota, 2003). Only variables
that are conceptually similar to one another, such as intelligence
test scores and scholastic performance, will correlate as highly
as .8 (Deary, Strand, Smith, & Fernandes, 2007; Frey & Det-
terman, 2004). In short, population correlations between 0 and
.8 reflect the range found in virtually all psychological/behav-
ioral research. Therefore, simulation studies were performed

with population Pearson correlation coefficients that were zero
(Rp � 0), moderate (Rp � .2), strong (Rp � .4), and very strong
(Rp � .8). The corresponding population Spearman correlation
coefficients (Rs) were calculated according to Equation 9.

Selected Sample Sizes

Sample sizes used by psychologists are known to vary widely.
One analysis of hundreds of articles (Marszalek, Barber, Kohlhart,
& Holmes, 2011) showed that in the Journal of Experimental
Psychology in the year 2006, the median total sample size was 18
(Q1 � 10, Q3 � 32), whereas in the Journal of Applied Psychol-
ogy, the mean sample size was 148 (Q1 � 45, Q3 � 269). Fraley
and Vazire (2014) showed that the median sample size in five
high-impact psychological journals in the years 2006–2010 ranged
between 73 (Q1 � 41, Q3 � 143) for Psychological Science and
178 (Q1 � 100, Q3 � 344) for the Journal of Personality (we
calculated the interquartile ranges from the supplementary material
of Fraley & Vazire, 2014). Here we note that personality psychol-
ogy is more likely than experimental psychology to use correlation
coefficients (e.g., Cronbach, 1957; Tracy, Robins, & Sherman,
2009), and so a sample size of about 200 is regarded as typical for
correlational analyses. This sample size is in line with a recent
simulation study that investigated at which sample size correla-
tions stabilize, and which concluded that “there are few occasions
in which it may be justifiable to go below n � 150 and for typical
research scenarios reasonable trade-offs between accuracy and
confidence start to be achieved when n approaches 250” (Schön-
brodt & Perugini, 2013, p. 611).

To cover the range of sample sizes found in psychological
research, we used 25 sample sizes (Ns) logarithmically spaced
between 5 and 1,000. To generate stable estimates of rp and rs, for
each sample size, 100,000 samples of variable 1 (hereafter called
x) and variable 2 (hereafter called y) were drawn, and rp and rs

were calculated for each of the 100,000 samples.

Results of the Simulations

The simulation results for Rp � .2 are shown in Figure 2. The
mean rs is slightly lower than the mean rp, for all sample sizes. For
small sample sizes, the mean rp and mean rs are both slight
underestimates of their respective population values Rp and Rs (see
also Equations 6 and 7). Figure 2 also shows how the absolute
variability decreases with sample size for both rp and rs. However,
rs has a slightly higher variability, with the standard deviation of rs

being about 0.7% greater than the standard deviation of rp, for each
tested sample size. Similarly, the root mean squared error (RMSE)
of rs with respect to Rs is 0.7% greater than the RMSE of rp with
respect to Rp.

Note that rs can take on only a distinct number of values, rapidly
increasing with increasing N (Sloane, 2003; sequence A126972).
For example, for N � 5, rs can be only 1 of 21 different values
(�1, �.9, �.8, . . . , .8, .9, 1; see Figure S2 for an illustration of
the distribution of rp and rs at N � 5). The supplementary material
(Figures S3, S4, and S5) includes the distributions of rp and rs for
Rp � 0, Rp � .4, and Rp � .8. For Rp � 0, rp and rs behave almost
identically. For Rp � .4, the standard deviation of rs is 3% to 4%
higher than the standard deviation of rp, and for Rp � .8, the
standard deviation of rs is as much as 18% higher than the standard
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deviation of rp. The smaller variability of rp compared with rs is
consistent with previous research (Bonett & Wright, 2000; Croux
& Dehon, 2010; Fieller et al., 1957) and suggests that when both
population variables are known to have approximately normal
distributions, rp should be used instead of rs, especially when the
correlation is thought to be strong.

rp Versus rs With a Non-Normally Distributed
Population

Non-Normally Distributed Variables in Psychological
Research

It frequently happens that psychological measurements feature a
non-normal distribution. For example, it is known that psychiatric
and other types of disorders follow a skewed distribution among
individuals (Delucchi & Bostrom, 2004; Keats & Lord, 1962;
McGrath et al., 2004). Yet in other cases, measurement scales may
be limited by artifacts such as ceiling and floor effects (Van den
Oord, Pickles, & Waldman, 2003). One analysis of 693 distribu-
tions of cognitive measures and other psychological variables with
sample sizes ranging from 10 to 30 showed that 39.9% of the
distributions were considered as slightly non-normal, 34.5% as
moderately non-normal, 10.4% as highly non-normal, and a further
9.6% as extremely non-normal (Blanca, Arnau, López-Montiel,
Bono, & Bendayan, 2013). Another analysis of 440 large-sample
distributions of achievement and psychometric data classified 31%
of the distributions as extremely asymmetric, and 49% as having at
least one extremely heavy tail (Micceri, 1989).

Selected Kurtosis of the Marginal Distributions

In light of these kinds of observations, we explored the behavior
of rp and rs for two correlated variables having leptokurtic distri-

butions, meaning that kurtosis was greater than would be expected
from a normal distribution (see Figure 3 for illustration, and
DeCarlo, 1997, for an explanation of kurtosis). The variables x and
y were approximately exponentially distributed (hence, skew-
ness � 2 and kurtosis � 9) and strongly correlated (Rp � .4). We

Figure 2. Simulation results for normally distributed variables having a population Pearson correlation
coefficient of .2 (Rp � .2). The population Spearman correlation coefficient (Rs) was calculated according to
Equation 9. The figure shows the mean, 5th percentile (P5), and 95th percentile (P95) of the Pearson correlation
coefficient (rp) and the Spearman correlation coefficient (rs) as a function of sample size (N). See the online
article for the color version of this figure.

Figure 3. Depiction (using N � 1,000) of two correlated variables having
an exponential distribution with population Pearson correlation coefficient
(Rp) of .4. Rp was obtained by calculating rp for a sample of N � 107.
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used a fifth-order polynomial transformation method for generat-
ing the correlated non-normally distributed variables (Headrick,
2002). Because Rp and Rs could not be determined exactly, we
defined these parameters by calculating the correlation coefficients
for a very large sample size (N � 107).

Results of the Simulations

Figure 4 shows the distributions of rp and rs for the same range
of sample sizes as those used to create Figure 2. It can be seen that
the expected values of rp and rs are about the same and unbiased
with respect to their respective population values, but rp is more
variable than rs. Specifically, the standard deviation of rp is 13.5%,
26.0%, and 27.3% greater than the standard deviation of rs, for
N � 18, N � 213, and N � 1,000, respectively. Similarly, the
RMSE of rp with respect to Rp is 13.0%, 25.9%, and 27.3% greater
than the RMSE of rs with respect to Rs, for N � 18, N � 213, and
N � 1,000, respectively.

Additional Simulation Results With Other
Kurtosis and rp

If the two variables have greater kurtosis than exponentially
distributed variables, then rp is likely to be even more variable (see
Figure S6 of the supplementary material). Also note that the size
of the correlation coefficient is an important determinant of the
behavior of rp and rs. For example, when choosing Rp � .2 instead
of Rp � .4, the standard deviation of rp is only 8.0%, 14.5%, and
15.5% greater than the standard deviation of rs, for N � 18, N �
213, and N � 1,000, respectively. However, for Rp � .8, the
standard deviation of rp is 13.5%, 36.0%, and 38.9% greater than

the standard deviation of rs, for N � 18, N � 213, and N � 1,000,
respectively (see Figures S10–S13).

In summary, our simulations showed that when the two vari-
ables have leptokurtic distributions, rp is likely to be more variable
than rs. These observations are consistent with theory showing that
the standard deviation of rp is proportional to the kurtosis of the
variables (Yuan & Bentler, 2000). Moreover, our results are in line
with several simulation studies which demonstrated lower vari-
ability of rs compared with rp for (severely) non-normal distribu-
tions (Bishara & Hittner, 2015; Chok, 2010; Kowalski, 1972).
Obviously, our set of simulations provide only a snapshot of the
constellation of the bivariate relationships that may occur in psy-
chological research. Furthermore note that when the two variables
are mesokurtic or platykurtic (i.e., kurtosis 
 3), rp will tend to be
more stable than rs.

rp Versus rs When There are Outliers

It has been well documented that the Pearson correlation coef-
ficient is sensitive to outliers (e.g., Chok, 2010; Croux & Dehon,
2010). Formal treatments of so-called “influence functions” or
“expected resistance” of rp and rs can be found in Blair and
Lawson (1982), Zayed and Quade (1997), and Croux and Dehon
(2010). Herein, we graphically and numerically illustrate how rp

and rs respond to adding a spurious data point in conditions that are
likely to occur in psychological research.

Although sample sizes in psychological research vary widely,
we used N � 200 because this is in line with typical sample sizes
used in applied and personality psychology (Fraley & Vazire,
2014; Marszalek et al., 2011). A sample (N � 200) was drawn
from two standard normal distributions having a moderate inter-

Figure 4. Simulation results for two correlated variables having an exponential distribution (see Figure 3 for a
large-sample illustration of the distribution). The figure shows the mean, 5th percentile (P5), and 95th percentile (P95)
of the Pearson correlation coefficient (rp) and the Spearman correlation coefficient (rs) as a function of sample size
(N). The population coefficients Rp and Rs were obtained by calculating rp and rs, respectively, for a sample of N �
107. See the online article for the color version of this figure.
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relationship in the population (Rp � .2). Next, one data point was
added so that N � 201. The value of the spurious data point was
systematically varied from �5 to 5 with a resolution of 0.05 for the
two variables, x and y. Accordingly, 40,401 (i.e., 201 � 201) rps
and 40,401 rss were determined.

Figure 5 illustrates the influence of the added (201st) data point
on the obtained rp and rs, respectively. It can be seen that rp is
sensitive to this data point. Specifically, rp equaled .231 without
the data point, and has values between .100 (at x � �5, y � 5) and
.312 (at x � 5, y � 5) by including it, with 19% of the rps differing
by more than .05 from the original rp of .231. In contrast, rs is
robust: rs equals .222 without the extra data point, and adding it
results in rs values between .204 and .233. rs is robust to outliers
because the data in x and y are transformed to integers between 1
and N. This means it is impossible for very low or very high values
in x or y to have a large effect on rs.

Of course, in most real data there may be more than one outlier.
Suppose, for example, that one outlier is located at x � 5 and y �
5, then adding a second outlier at all possible positions be-
tween �5 and 5 results in an rp ranging between .186 and .377
(N � 202), with 77% of the rps differing by more than .05 from the
original rp of .231. Now suppose that the first outlier is at x � 5
and y � �5, then adding the second outlier results in an rp

between �.003 and .191. Again, rs is robust, and always between
.186 and .245 when two outliers were present. So, having more
than one outlier can create even more problems for rp, as the
second outlier does not alleviate the distortive effect of the first
outlier.

Five Demonstrations Using Empirical Data

The simulations above are indicative of the differences between
rp and rs for normally and non-normally distributed variables.
However, the simulations do not necessarily reflect situations
encountered by empiricists. To test rp versus rs on data likely to be

found in psychological studies, we undertook a sampling study
using empirical data.

Selected Datasets

Three large datasets were used: a psychometric test battery
(Armed Services Vocational Aptitude Battery; ASVAB), and two
survey-based datasets: 5-point Likert scale data from the Big Five
Inventory (BFI) and 6-point scale data from the Driver Behaviour
Questionnaire (DBQ). The ASVAB, BFI, and DBQ datasets were
all large (N � 11,878, N � 1,895,753, and N � 9,077, respec-
tively), and were therefore used as populations from which we
could draw samples to calculate sample correlation coefficients.
The ASVAB consists of 10 very strongly intercorrelated test
results, each symmetrically distributed with light tails (see Table
2). Recall that the simulation results above showed that rp is less
variable than rs for normally distributed variables that are strongly
correlated, so we expected the ASVAB sampling results to reflect
these findings. The primary difference between the BFI and DBQ
is that the BFI items have low kurtosis because the means of all 44
items are close to the middle option on the 5-point scale (see Table
2). In contrast, the DBQ items are leptokurtic, with the majority of
participants reporting that they “never” make a certain error or
violation in traffic (see also Mattsson, 2012). In light of the above
simulation results, we expected rs to outperform rp for the DBQ
dataset, and to a lesser extent for the BFI dataset.

Sampling Study 1: ASVAB. The ASVAB dataset is a psy-
chometric dataset consisting of 11,878 subjects who, in the frame-
work of the National Longitudinal Survey of Youth 1979, had
taken a test battery (Bureau of Labor Statistics, 2002; Frey &
Detterman, 2004; Maier & Sims, 1986; Morgan, 1983). The pop-
ulation included 5,951 men and 5,927 women. The mean age of the
subjects was 18.8 years (SD � 2.3). The ASVAB consists of 10
tests (general science [25 items], arithmetic reasoning [30 items],
word knowledge [35 items], paragraph comprehension [15 items],

Figure 5. Simulation results demonstrating the influence of a spurious data point at location (x, y) on the
Pearson correlation coefficient (left figure) and on the Spearman correlation coefficient (right figure). The circles
represent a sample (N � 200) drawn from two standard normal distributions with population Pearson correlation
coefficient (Rp) � .2. The sample Pearson correlation coefficient (rp) � .231. The sample Spearman correlation
coefficient (rs) � .222. The grayscale background represents the absolute deviation from rp (left figure) and the
absolute deviation from rs (right figure), after adding one data point so that N � 201. Isolines are drawn at every 0.005
increment. The vertical bars next to each figure signify the numeric values corresponding to a particular level of
grayness. The value of the data point was systematically varied from �5 and �5 with a resolution of 0.05 for the two
variables, x and y. See the online article for the color version of this figure.
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numerical operations [50 items], coding speed [84 items], auto and
shop information [25 items], mathematics knowledge [25 items],
mechanical comprehension [25 items], and electronics information
[10 items]). The Pearson correlation matrix among the 10 variables
contained 45 (� 10 � (10 � 1)/2) unique elements. The maximum
Rp was .825, occurring between “general science” and “word
knowledge” (corresponding Rs � .834). The distribution of the
variables was symmetric and platykurtic, that is, having somewhat
lighter tails than would be expected from a normal distribution (see
Table 2).

Sampling Study 2: BFI items. The BFI is a 44-item person-
ality questionnaire answered on a Likert scale from 1 � disagree
strongly to 5 � agree strongly. The BFI data (N � 3,093,144)
were obtained via noncommercial, advertisement-free Internet web
sites between 1999 and 2013 as part of the Gosling-Potter Internet
Personality Project (e.g., Bleidorn et al., 2013; Gosling, Vazire,
Srivastava, & John, 2004; Obschonka, Schmitt-Rodermund, Sil-
bereisen, Gosling, & Potter, 2013; Rentfrow et al., 2013; Srivas-
tava, John, Gosling, & Potter, 2003). Only participants who filled
in the English version of the inventory, who answered all items
without giving identical answers to all 44 items, and who were
between 18 to 98 years were included, leaving a dataset of
1,895,753 respondents. The mean age of the respondents was 28.2
(median � 25.0, SD � 10.4). The population included 921,670

women and 651,914 men, and the sex was unknown for a further
322,169 respondents. The average mean response across the 44
items was 3.45 (SD � 0.47), with a minimum mean of 2.48 for the
item “is depressed blue” and a maximum mean of 4.33 for the item
“is a reliable worker.” The BFI correlation matrix contained 946
(� 44 � (44 � 1)/2) unique off-diagonal elements. The maximum
Rp was .597, occurring between “is talkative” and “is outgoing,
sociable” (corresponding Rs � .595). The variables were symmet-
ric with low kurtosis (see Table 2).

Sampling Study 3: BFI scales. Psychological researchers
often conduct their analysis at the scale level instead of the item
level, so we also carried out the sampling study based on the
five BFI scales. The following five sum scores were calculated:
agreeableness (9 items), conscientiousness (9 items), extraver-
sion (8 items), openness (10 items), and neuroticism (8 items).
The 10 off-diagonal Rps ranged between �.32 (for agreeable-
ness vs. neuroticism; corresponding Rs � �.30) and .28 (for
agreeableness vs. conscientiousness; corresponding Rs � .28).
Table 2 shows that the five scales were fairly symmetric with
low kurtosis.

Sampling Study 4: DBQ items. The DBQ dataset consisted
of 9,077 respondents who, as part of a cohort study of learner and
new drivers, had responded to the query “when driving, how often
do you do each of the following?” with respect to 34 items

Table 2
Means, Standard Deviations, Minima, and Maxima of Absolute Population Correlation
Coefficients, and of Population Skewness and Population Kurtosis of the Items/Scales

Measure ASVAB, 45 correlations
BFI items, 946

correlations
BFI scales, 10

correlations
DBQ items, 561

correlations
DBQ scales, 10

correlations

|Rp|
Mean .6273 .1206 .1778 .1713 .4197
SD .1205 .1146 .0985 .0790 .1363
Min .3317 .0002 .0283 .0003 .1511
Max .8247 .5973 .3158 .5106 .5805

|Rs|
Mean .6281 .1223 .1690 .1622 .4157
SD .1207 .1148 .0935 .0748 .1155
Min .3362 .0001 .0309 .0024 .1742
Max .8336 .6029 .3035 .4747 .5362

ASVAB, 10 tests BFI, 44 items BFI, 5 scales DBQ, 34 items DBQ, 5 scales

Skewness
Mean �0.02 �0.37 �0.21 2.19 1.65
SD 0.40 0.42 0.10 1.44 0.72
Min �0.59 �1.33 �0.30 0.50 0.83
Max 0.50 0.42 �0.06 6.42 2.46

Kurtosis
Mean 2.32 2.54 2.89 11.96 8.89
SD 0.18 0.67 0.15 13.90 5.17
Min 2.03 1.80 2.74 3.16 4.03
Max 2.73 4.73 3.08 60.89 16.61

Note. Rp � population Pearson correlation coefficient; Rs � population Spearman correlation coefficient;
ASVAB � Armed Services Vocational Aptitude Battery; BFI � Big Five Inventory; DBQ � Driver Behaviour
Questionnaire. Skewness was defined as the third central moment divided by the cube of the standard deviation.
Kurtosis was defined as the fourth central moment divided by the fourth power of the standard deviation.
Kurtosis of a normal distribution � 3. Rp and Rs were defined as the correlation coefficients for the total sample
(i.e., N � 11,878 for the ASVAB, N � 1,895,753 for the BFI, and N � 9,077 for the DBQ). The population
skewness and population kurtosis have a strong correlation (ASVAB: rs between skewness and kurtosis � �.50
[N � 10 items]), BFI items: rs � �.83 [N � 44 items], BFI scales: rs � �.70 [N � 5 scales], DBQ items: rs �
.99 [N � 34 items], DBQ scales: rs � 1.00 [N � 5 scales]).
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(Transport Research Laboratory, 2008; Wells, Tong, Sexton,
Grayson, & Jones, 2008). The responses ranged from 1 � never to
6 � nearly all the time. The mean age of the respondents was 22.6
years (median � 18.7; SD � 8.1). The population consisted of
5,754 women and 3,323 men. The average mean response across
the 34 items was 1.46 (SD � 0.26), with a minimum mean of 1.05
and a maximum mean of 2.06. The correlation matrix contained
561 (� 34 � (34 � 1)/2) unique off-diagonal elements. The
maximum Rp was .511 (between “Disregard the speed limit on a
motorway” and “Disregard the speed limit on a residential road”)
with a corresponding Rs of .475. Items were highly skewed and
leptokurtic (see Table 2).

Sampling Study 5: DBQ scales. The DBQ analysis was re-
peated at the scale level. The following five sum scales were calcu-
lated (as in Wells et al., 2008): violations (6 items), errors (8 items),
aggressive violations (6 items), inexperience errors (7 items), and slips
(7 items). The 10 off-diagonal Rps ranged between .151 (between
aggressive violations and inexperience errors; corresponding Rs �
.174) and .581 (between violations and aggressive violations; corre-
sponding Rs � .536). As with the DBQ items, the DBQ scales had
high kurtosis, but the scale data were more strongly intercorrelated
than the item data (see Table 2).

Sampling Methods

For each of the five datasets (i.e., ASVAB, BFI items, BFI
scales, DBQ items, and DBQ scales), 50,000 random sample of
N � 200 were drawn with replacement. For each drawn sample,
the Pearson and Spearman correlation matrices were calculated.
Next, for each element of the correlation matrices, we calculated
the absolute of the mean and the standard deviation across the
50,000 samples. To assess how accurately the sample correlation
coefficients corresponded to the population values, we calculated
the mean absolute difference of each rp and rs with respect to
the population values (Rp and Rs). Rp and Rs were defined as the

correlation coefficients for the full population (N � 11,878 for the
ASVAB, N � 1,895,753 for the BFI, and N � 9,077 for the DBQ).

Results of the Five Sampling Studies

A numerical comparison between the performance of rp and rs

is provided in Table 3. It can be seen that for the ASVAB data, rp

gives the same average values as rs, with about 6% lower vari-
ability (i.e., lower SD). For the BFI and DBQ data, the opposite
results were found: the mean absolute difference between rs and Rs

is smaller than the mean absolute difference between rp and Rp. In
other words, Spearman correlation coefficients are closer to their
population value than are Pearson correlation coefficients. Further-
more, for the DBQ data in particular, the mean absolute difference
between rs and Rp is smaller than the mean absolute difference
between rp and Rp. That is, rs even outperformed rp in recovering
rp’s own population value.

Table 3 further shows that the superior performance of rs is
evident for the DBQ dataset (featuring kurtosis � 3 for all items)
and is less evident for the BFI dataset (featuring average kurto-
sis 	 3). rp on average has 2% higher variability (i.e., higher SD)
than rs for the BFI items, 4% higher variability for the BFI scales,
18% higher variability for the DBQ items, and 24% higher vari-
ability for the DBQ scales.

The mean absolute difference of rp (and to a lesser extent of rs)
with respect to the population value is particularly large for pairs
of DBQ items that have distributions with high kurtosis (see Figure
S7 of the supplementary material). The distributions of rp and rs

for the two DBQ items having the highest kurtosis (60.9 and 57.2,
respectively) are illustrated in Figure 6. It can be seen that for this
selected pair of variables, rp was considerably more variable than
rs, with the standard deviation at N � 1,000 being .071 for rp and
.049 for rs. Figure 7 illustrates the variability of rp and rs as a
function of Rp for each of the five sampling studies. It can be seen

Table 3
Means and Standard Deviations of Sample Correlation Coefficients, and Mean Absolute
Difference Between Sample Correlation Coefficients and Population Correlation Coefficients
(N � 200)

ASVAB BFI items BFI scales DBQ items DBQ scales

Measure
Mean across 45

correlations
Mean across 946

correlations
Mean across 10

correlations
Mean across 561

correlations
Mean across 10

correlations

|Mean rp| .6269 .1205 .1772 .1694 .4178
|Mean rs| .6258 .1221 .1683 .1616 .4144
|Mean rp| � |Rp| �.0005 �.0001 �.0005 �.0019 �.0019
|Mean rs| � |Rs| �.0022 �.0002 �.0008 �.0006 �.0013
SD rp .0411 .0732 .0741 .0872 .0750
SD rs .0436 .0715 .0714 .0742 .0605
Mean |rp � Rp| .0327 .0585 .0592 .0697 .0596
Mean |rp � Rs| .0352 .0587 .0602 .0701 .0628
Mean |rs � Rp| .0371 .0574 .0579 .0606 .0522
Mean |rs � Rs| .0347 .0571 .0570 .0593 .0483

Note. Rp � population Pearson correlation coefficient; Rs � population Spearman correlation coefficient;
ASVAB � Armed Services Vocational Aptitude Battery; BFI � Big Five Inventory; DBQ � Driver Behaviour
Questionnaire. Skewness was defined as the third central moment divided by the cube of the standard deviation.
Kurtosis was defined as the fourth central moment divided by the fourth power of the standard deviation.
Kurtosis of a normal distribution � 3. Rp and Rs were defined as the correlation coefficients for the total sample
(i.e., N � 11,878 for the ASVAB, N � 1,895,753 for the BFI, and N � 9,077 for the DBQ).
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that rs is considerably less variable than rp, especially for the BFI
scales, DBQ items, and DBQ scales.

Additional Simulations With N � 25 and N � 1,000

The results in Table 3 and Figure 7 were based on a sample size of
200. To test whether the results depend on sample size, the simula-
tions were repeated for N � 25 and N � 1,000 (see online supple-
mental materials Tables S1 and S2). For N � 25, the variabilities of
rp and rs are obviously higher than for N � 200, but the pattern of
differences between rp and rs is the same. For N � 1,000, the
variabilities of rp and rs are considerably lower than for N � 200, but
again the pattern of differences is the same, with rs having a
lower standard deviation than rp for the BFI and DBQ datasets.
For N � 1,000 it is less likely that the mean absolute difference
between rs and Rp is smaller than the mean absolute difference
between rp and Rp, because at such high sample size, the
correlation coefficients rp and rs are close to their own respec-
tive population values.

Discussion

The Pearson product–moment correlation coefficient (rp) and
the Spearman rank correlation coefficient (rs) are widely used in
psychology, with rp being the most popular. The two coefficients
have different goals: rp is a measure of the degree of linearity
between two vectors of data, whereas rs measures their degree of
monotonicity.

The characteristics of rp and rs have been widely studied for
over 100 years, and in the case of bivariate normality, the distri-
bution of rp is known exactly (Equation 4). The influence functions
of the Pearson and Spearman correlations have been described
exactly as well (e.g., Croux & Dehon, 2010). However, several of
these features of rp and rs may not be known among substantive
researchers, and hence our simulations of normally distributed
variables are presented as a helpful tutorial. In other words, we
illustrated in an intuitive graphical manner the variability, bias, and
robustness properties of both coefficients, with a focus on the
effect sizes and sample sizes that are likely to occur in psycho-
logical research. The relative performance of rp and rs in real
psychological datasets for different item characteristics, sample
sizes, and aggregation methods (i.e., item and scale levels) is
intended to facilitate informed decision making regarding when to
select rp and when to select rs.

Our computer simulations showed that for normally distributed
variables rs behaves approximately the same as rp, with rs being
slightly lower and more variable than rp. The difference between
the standard deviation of rp and rs was minor (	 1%) when the
association was weak or moderate in the population (Rp � 0 and
Rp � .2). However, rs had a substantially higher standard deviation
than rp when the correlation was strong (i.e., a 3% to 4% higher
standard deviation when Rp � .4) or very strong (i.e., 18% higher
standard deviation when Rp � .8).

In psychological research, near-normally distributed data, such
as the ASVAB test scores, do occur. We showed that for the

Figure 6. Sampling results for the two variables of the Driver Behaviour Questionnaire (DBQ) having the
highest kurtosis of the 34 items (population kurtosis � 60.9 and 57.2, respectively; population skewness � 6.42
and 6.05, respectively). The figure shows the mean, 5th percentile (P5), and 95th percentile (P95) of the Pearson
correlation coefficient (rp) and the Spearman correlation coefficient (rs) as a function of sample size (N). The
population coefficients Rp and Rs were defined as the correlation coefficients for the total sample (N � 9,077).
The results were based on 50,000 samples. Note that 8,272 of 9,077 respondents answered “never” to both items,
and hence the correlation coefficient could often not be calculated when the sample size was small. The sampling
was repeated when the correlation coefficient could not be calculated. See the online article for the color version
of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

284 DE WINTER, GOSLING, AND POTTER



strongly intercorrelated and approximately normally distributed
variables of the ASVAB, rp slightly outperformed rs in terms of
variability. The expected values of rp and rs were almost the same,
but the standard deviation of rp was about 6% lower than the
standard deviation of rs. The similarity of rs and rp for normally
distributed psychometric variables is consistent with empirical
sampling research in the physical sciences, where normally dis-
tributed variables tend to be common (McDonald & Green, 1960).
However, in psychological research, heavy-tailed distributions are
common (Blanca et al., 2013; Micceri, 1989). Using a simulation
of two correlated variables with heavy-tailed distributions, we
showed that rs was between 13 and 27% less variable than was rp.

The comparative efficacy of rp versus rs was further explored in
a sampling study of BFI and DBQ survey data at both the item and

scale levels. For these survey datasets, rs turned out to be between
2% and 24% less variable than rp. In fact, for the DBQ dataset, we
found that the sample Spearman correlation coefficient (rs) was a
more accurate approximation of the population Pearson correlation
coefficient (Rp) than was the sample Pearson correlation coeffi-
cient (rp). This inaccuracy of rp with respect to Rp was particularly
large when the two variables had heavy-tailed distributions (see
Figure S7 of supplementary material).

Our simulations further made clear that rs is robust, while rp is
sensitive to an outlier, even for a sample size as high as 200.
Outliers may be caused by a recording error, an error in the
experimental procedure, or an accurate representation of a rare
case (Cohen et al., 2013). It is likely that real-life data are con-
taminated with “faulty data” (Spearman, 1910) or an “accidental

Figure 7. Standard deviation (SD) of the Pearson correlation coefficient (rp) and the standard deviation of the
Spearman correlation coefficient (rs; N � 200) as a function of the population Pearson correlation coefficient
(Rp). The population coefficient Rp was defined as the correlation coefficients for the total sample (N � 11,878
for the ASVAB, N � 1,895,753 for the BFI, and N � 9,077 for the DBQ). Top left: Armed Services Vocational
Aptitude Battery (ASVAB; 45 correlation coefficients). Top right: Big Five Inventory (BFI) items (946
correlation coefficients). Middle left: BFI scales (10 correlation coefficients). Middle right: Driver Behaviour
Questionnaire (DBQ) items (561 correlation coefficients). Bottom left: DBQ scales (10 correlation coefficients).
See the online article for the color version of this figure.
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error” (Spearman, 1904, p. 81), and therefore the robustness of the
Spearman estimator (rs) is a virtue for empirical researchers. Using
Anscombe’s (1960) insurance policy analogy, rs yields a slight
loss of efficiency when bivariate normality assumptions are met,
but this seems a small premium given the impressive protection it
provides against outliers (see Figure 5).

Our study also illustrated the dramatic effect of sample size on
the variability of the correlation coefficients. A sample size of 25
yields average errors that are often even larger than the absolute
magnitude of the correlation coefficient (e.g., Figure 2; Table S1),
which essentially means that the observed correlations are almost
meaningless. The standard deviations of rs and rp decrease approx-
imately according to the square root of sample size, which means
that the standard deviations reduce by approximately 41% when
sample size is doubled (cf. Figure S6). In other words, although
substantial efficiency gains can be achieved by choosing rs instead
of rp, the effect of sample size is much more dramatic, and
therefore we urge researchers to always monitor the confidence
interval of their obtained effects.

So, should a practitioner use rp or rs? Of course, the two
correlation coefficients have different goals: rp represents the
strength of the linear relationship between two vectors of data,
whereas rs describes their degree of monotonicity. Because rp and
rs have different goals, they strictly ought not to be seen as
competing approaches. That is, if one’s aim is solely to assess
whether the individual sample data points are linearly related
(regardless of any nonlinearity that exists), and one’s sample size
is very large, then rp should be used. However, it is likely that
practitioners are interested in obtaining a high quality correlational
measure in terms of low variability, low bias, and high robustness.
In such case, rs clearly has attractive properties compared to rp. If
one expects that the two variables have low kurtosis (i.e., normal
or platykurtic distributions) and outliers are unlikely to be present,
rp is to be recommended. In other circumstances, rs seems to be the
preferred method because of its superior performance in terms of
variability and robustness. The ‘embarrassing’ failure of rp to
accurately estimate its own population value (Rp) in the DBQ
dataset, both at the item and at the scale levels, strongly argues in
favor of using rs for heavy-tailed survey data. Note that the
behavior of rp and rs depends not just on kurtosis, but also on
sample size, the population correlation coefficient, and the type of
nonlinear relationship between the two variables (see supplemen-
tary material). These factors may explain some of the idiosyncratic
behaviors of the datasets (see Table 3). Ambiguity arises when
having to analyze a large set of variables, whereby half of the data
are platykurtic and the other half leptokurtic. In this case, again
using Anscombe’s (1960) insurance parallel, we recommend using
rs instead of rp, because the premium-protection trade-off is not
symmetric. After all, there is a relatively small increase of vari-
ability for the variables that are indeed platykurtic, while rs offers
marked robustness to heavy tails and outliers.

There are, of course, a large number of other types of data
transformations, such as a logarithmic, multiplicative inverse, or
power transformation, that can be successfully applied prior to
calculating the Pearson correlation coefficient (Bishara & Hittner,
2012). However, whereas the rank transformation as used in the
Spearman correlation coefficient is broadly applicable, other types
of data transformation are not. For example, a logarithmic or
square root transformation is impossible on negative numbers

(unless applying an arbitrary offset), and the multiplicative inverse
transformation dilutes any meaningful association when some of
the numbers are close to zero. In other words, it is quite possible
to mess up one’s data by choosing the ‘wrong’ type of transfor-
mation, so that, for example, a normal distribution becomes highly
non-normal. As a result, selecting an appropriate nonlinear data
transformation requires either prior knowledge of the population
distribution or the ethically dubious practice of ‘peeking’ at the
data (Sagarin, Ambler, & Lee, 2014), and it is therefore difficult to
come up with systematic meaningful guidelines. In contrast, the
Spearman correlation appears to be applicable across a broad array
of normal and non-normal distributions.

Alternative measures of association, such as the percentage bend
correlation (Wilcox, 1994), the Winsorized correlation (Wilcox,
1993), and the Kendall’s tau rank correlation coefficient (rt), may
be even more robust and efficient than rs (see Croux & Dehon,
2010). rt is attractive because it can be interpreted intuitively as the
proportion of pairs of observations that are in the same order on
both variables minus the proportion that are opposite (Cliff, 1996;
Noether, 1981). Other attractive properties of rt are that it is an
unbiased estimator of its population value and that the variance is
given in closed form (Esscher, 1924; Fligner & Rust, 1983; Hol-
lander, Wolfe, & Chicken, 2013; Kendall, 1948; Kendall, Kendall,
& Babington Smith, 1939; Xu, Hou, Hung, & Zou, 2013). How-
ever, Xu et al. (2013) argued that rs has a lower computational load
than rt, and that the variance of rs can be approximated with high
numerical accuracy, leading the authors to conclude that the math-
ematical advantage of rt over rs is not of great importance. Another
issue is that rt converges to markedly different population values
than rp and rs. For typical bivariate normal distributions, rp and rs

are about 50% greater than rt (Equations 9 and 10, Fredricks &
Nelsen, 2007, see also Figure S16). Because present-day research-
ers are familiar with interpreting rp (see Table 1), it seems unlikely
that rt could replace rp. rs on the other hand has the potential to be
used in place of rp, because, as we showed, rs can surpass rp in
estimating Rp. Corrected correlations, such as polychoric correla-
tions, may also be useful alternatives to the Spearman correlation,
especially for multivariate applications. Although multivariate
methods using the polychoric correlation matrix have been imple-
mented in almost all SEM packages, and are still under scrutiny
(e.g., Rhemtulla, Brosseau-Liard, & Savalei, 2012; Yuan, Wu, &
Bentler, 2011), the polychoric correlation has not yet caught on
among substantive researchers (see Table 1).

There are established ways of dealing with outliers, including
outlier removal and robust approaches such as least absolute
deviation, least trimmed squares, M-estimates, and bounded infer-
ence estimators (Cohen et al., 2013; Rousseeuw & Leroy, 2005),
or procedures that take into account the structure of the data
(Wilcox & Keselman, 2012, see Pernet, Wilcox, & Rousselet,
2012 for an open source MATLAB toolbox). However, removing
outliers is an inherently subjective procedure, and retaining too
much flexibility could easily lead to inflated effect sizes and false
positive inferences (Bakker & Wicherts, 2014; Cohen et al., 2013).
It is noted that high kurtosis and outliers can be indicative of
problems in the measurement procedure. Subtle changes in ques-
tionnaire wording or anchoring can have large effects on the
obtained results (Schwarz, 1999). We recommend that researchers
remedy the root causes of outliers and high kurtosis before they
continue their study.
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The choice of correlation coefficient is important not only for
establishing bivariate relationships. Psychologists often intend to
do follow-up analyses, such as to calculate a percentage of vari-
ance explained, to perform an ANOVA or MANOVA, to carry out
a meta-analysis of correlation coefficients, or to establish a matrix
of correlation coefficients to be submitted to a multivariate statis-
tical method such as principal component analysis, factor analysis,
or structural equation modeling. Cliff (1996) argued that perhaps
most of the answers that psychologists want to get from their data
are ordinal ones, and the data they work with have, at best, ordinal
justification. He concluded that ordinal questions should be an-
swered ordinally, instead of trying to answer them with Pearson
correlations, mean differences, and parametric techniques. Using
ordinal statistics has the added benefit that the inferences remain
unchanged if the variables are monotonically transformed (Cliff,
1996). Unfortunately, purely ordinal multivariate statistical meth-
ods are rare and generally less developed than traditional paramet-
ric methods (for a possible exception using Kendall’s tau, see
Cliff, 1996).

Indeed, there has been considerable controversy about the use of
a rank transformation, because corresponding statistical proce-
dures in complex research designs are sometimes unavailable,
inexact, and difficult to interpret (e.g., Fligner, 1981; Sawilowsky,
1990; Zimmerman, 2012). In some cases, the rank transformation
may be even entirely inappropriate. For example, when testing the
null hypothesis of no interactions in a multifactorial layout, the
rank transformation can yield a test statistic that goes to infinity as
the sample size increases (Thompson, 1991; see also Akritas,
1993; Sawilowsky, Blair, & Higgins, 1989). Hence, our present
results, which favor rs over rp, seem to lead to a “cul de sac” for
researchers in psychology.

However, one could set aside such theoretical constraints, and
adopt “a pragmatic sanction” (Stevens, 1951, p. 26). We argue that
there is no good reason to stick to rp for the mere reason that it is
consistent with follow-up analyses such as ANOVA and principal
component analysis. It is easily forgotten that the assumption of
normality is almost always violated in the population, and that calcu-
lating rp on ordinal data, such as those obtained from Likert items, is
not strictly permissible anyway (Stevens, 1946). The debate of rep-
resentational versus pragmatic measurement is a long and bitter one
with deep philosophical roots (e.g., Hand, 2004; Michell, 2008; Vel-
leman & Wilkinson, 1993). We support Lord’s (1953) pragmatic view
that “the numbers don’t remember where they came from” (p. 21),
and we argue that if rs outperforms rp in terms of bias, variability, and
robustness, then there is no justifiable reason for not using rs. We
illustrate this point by submitting an rs correlation matrix and an rp

correlation matrix of the DBQ data to a principal component analysis
(and see Babakus, Ferguson, & Jöreskog, 1987 and Mittag, 1993, for
a similar approach). Results showed that the first six eigenvalues of
the rp correlation matrix were between 26% and 68% more variable
than the eigenvalues of the rs correlation matrix (see online supple-
mental materials Table S3), which means that the factor structure is
more stable if researchers simply base their multivariate analyses on
the rs matrix. In some software packages, it is relatively easy to sub-
mit the rs matrix to a multivariate analysis (e.g., in MATLAB
factoran(corr(X,‘type’,‘spearman’),2,‘xtype’,‘covariance’) performs
a maximum-likelihood factor analysis on the X matrix, extracting two
factors). However, in SPSS, for example, this analysis requires ex-
tensive scripting (Garcia-Granero, 2002). Therefore, we recommend

the simpler approach of transforming all variables to ranks prior to
running the multivariate analysis (e.g., factoran(tiedrank(X),2) in the
MATLAB command window or Transform � Rank Cases from
SPSS’s pull-down menu). Summarizing, a rank-transformation is an
appropriate bridge between nonparametric and parametric statistics
(Conover & Iman, 1981).
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