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A	 method	 connecting	 single	 cell	 genomic	 or	 transcriptomic	 profiles	 to	 functional	 cellular	
characteristics,	 in	 particular	 time-varying	 phenotypic	 changes,	would	 be	 transformative	 for	
single	 cell	 and	 cancer	 biology.	 Here,	 we	 present	 fSCS:	 functional	 single	 cell	 selection.	 This	
technology	combines	a	custom-built	ultrawide	field-of-view	optical	screening	microscope,	fast	
automated	 image	 analysis	 and	 a	 new	 photolabeling	 method,	 phototagging,	 using	 a	 newly	
synthesized	visible-light-photoactivatable	dye.	Using	 fSCS,	we	screen,	 selectively	photolabel	
and	 isolate	 cells	 of	 interest	 from	 large	 heterogeneous	 populations	 based	 on	 functional	
dynamics	like	fast	migration,	morphological	variation,	small	molecule	uptake	or	cell	division.	
We	combined	fSCS	with	single	cell	RNA	sequencing	for	functionally	annotated	transcriptomic	
profiling	of	fast	migrating	and	spindle-shaped	MCF10A	cells	with	or	without	TGFβ	induction.	
We	 identified	 critical	 genes	 and	 pathways	 driving	 aggressive	 migration	 as	 well	 as	
mesenchymal-like	 morphology	 that	 could	 not	 be	 detected	 with	 state-of-the-art	 single	 cell	
transcriptomic	 analysis.	 fSCS	 provides	 a	 crucial	 upstream	 selection	 paradigm	 for	 single	 cell	
sequencing	independent	of	biomarkers,	allows	enrichment	of	rare	cells	and	can	facilitate	the	
identification	and	understanding	of	molecular	mechanisms	underlying	functional	phenotypes.		
	
Tumor	heterogeneity	is	a	leading	cause	of	failing	cancer	treatment1,	2.	State-of-the-art	single	cell	
sequencing	methods	 allow	 profiling	 whole	 genomes	 or	 transcriptomes	 of	 individual	 cells3.	 A	
technology	that	allows	enriching	and	profiling	rare	and	sparse	subsets	of	cancer	cells	in	tumor	
samples,	that	differentiates	populations	with	mildly	differing	gene	expression	profiles	and	that	
allows	 linking	 of	 aberrant	 phenotypes	 to	 genomic	 or	 transcriptomic	 profiles4,	 5	would	 have	 a	
transformative	impact	on	cancer	biology,	as	therapy	resistant	cells	 initially	often	exist	 in	small	
quantities,	 gradually	 diverge	 in	 gene	 expression,	 show	 aberrant	 behavior	 (including	 e.g.	
aggressive	migration6,	7	and	morphological	deviations8),	and	lack	reliable	biomarkers9,	10.	Profiling	
these	functionally	diverse	cells	will	allow	unraveling	the	exact	molecular	mechanisms	of	distinct	
cancer	driving	behaviors	of	tumor	subpopulations1-3.		
	
We	 developed	 a	 functional	 single-cell	 selection	 pipeline	 (fSCS)	 to	 select	 well-defined	
subpopulations	of	target	cells	based	on	time-varying	phenotypic	changes,	like	fast	migration	or	
cell	division,	while	maintaining	cell	viability.	We	profile	those	cells	and	correlate	the	sequencing	
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information	with	 functional	characteristics	 (functional	 single	cell	 sequencing,	FUNseq).	 fSCS	 is	
used	to	identify	and	selectively	label	individual	cells	of	interest	(N=1	to	104	simultaneously),	from	
large	heterogeneous	populations	of	cells.	
	
We	 created	 a	 high-throughput	 screening	 microscope,	 (Ultrawide	 Field-of-view	 Optical	
microscope,	UFO,	Fig.	S1),	which	combines	a	large	field	of	view	of	up	to	42	mm2	with	high	spatial	
and	temporal	resolution	(up	to	0.8	µm/pixel,	up	to	30	ms/frame).	Cells	can	be	imaged	in	large	
quantities	 (~20k	 cells,	 Figs.	 1a,	 S2)	 in	 both	 white	 light	 and	 fluorescence.	We	 created	 a	 fast	
automated	 image	 analysis	 pipeline,	 capable	 of	 processing	 tens	 of	 thousands	 of	 cells	
simultaneously	in	fluorescence	measurements	of	labeled	cell	nuclei	(modified	Tracking	Gaussian	
Mixture	model	(mTGMM);	Figs.	1b,	S3,	Supplement).	The	coordinates	of	cells	of	interest	are	fed	
to	a	digital	micromirror	device	(DMD)	or	a	pair	of	galvanometer	scanning	mirrors	(galvo	mirrors),	
which	pattern	light	to	selectively	illuminate	target	cells.	We	achieved	labeling	of	target	cells	with	
patterned	light	(Fig.	1c)	using	either	genetically	engineered	photoactivatable	(i.e.,	PA-GFP11)	or	
photoconvertible	proteins12	(i.e.,	mMaple313),	or	photoactivatable	dyes.	To	make	fSCS	suitable	
for	 expeditious	 single	 cell	 selection	 from	 biopsies	 or	 patient-derived	 primary	 cultures,	 and	
compatible	 with	 ubiquitous	 GFP	 reporter	 lines,	 we	 created	 a	 modified	 rhodamine-based	
photoactivatable	 dye.	 We	 conjugated	 a	 photosensitizer	 moiety,	 thioxanthene14,	 to	 the	
nitrophenyl-protected	rhodamine	(Fig.	S4).	We	increased	the	photoactivation	efficacy	~2.4	fold	
using	visible	405	nm	excitation14.	
	
We	used	CW	lasers	with	either	the	DMD	or	galvo	mirrors	for	phototagging	in	2D	cultures	using	1-
photon	excitation.	The	DMD	is	particularly	useful	to	label	cells	of	interest	in	large	quantities	(Fig.	
S5,	~500	cells	labeled	in	parallel).	We	used	100	fs	pulses	from	a	Titanium-Sapphire	laser	(Ti:Sapph)	
with	 the	 galvo	 mirrors	 for	 cell	 labeling	 in	 three-dimensional	 (3D)	 samples	 using	 2-photon	
excitation	 (Fig.	 S6).	 We	 then	 separated	 the	 selectively	 labelled	 cells	 using	 a	 standard	
fluorescence-activated	cell	sorting	machine	for	downstream	studies	like	single	cell	sequencing.		
	
The	full	fscs	pipeline	is	illustrated	in	Fig.	1.	We	achieve	a	high	tracking	accuracy	of	92.3	%	(number	
of	successful	tracks	per	number	of	total	tracks;	Supplement,	Fig.	S3)	and	high	sensitivity	(97.6	%)	
and	specificity	(99.6	%)	for	cell	division	detection	(Supplement,	Fig.	S7).	We	selectively	label	cells	
of	interest	with	sensitivity	of	97.4%	and	specificity	of	99.9%	(Supplement,	Fig.	S8).	The	activated	
phototagging	dye	is	retained	in	target	cells	for	a	minimum	of	12	hours	in	its	photoactivated	state	
(Supplement,	 Fig.	 S9).	 The	 photoselected	 cells	 maintain	 viability	 after	 the	 fSCS	 protocol	
(Supplement,	 Fig.	 S10)	 and	 can	be	 re-cultured.	We	did	not	 find	any	meaningful	differentially	
expressed	genes	in	randomly	phototagged	cells	in	comparison	to	non-phototagged	cells	in	bulk	
cell	RNA	sequencing	data	(Supplement,	Fig.	S11),	indicating	that	the	phototagging	procedure	did	
not	measurably	impact	the	cells.	
	
fSCS	allows	using	any	microscopically	observable	phenomenon,	 labeled	or	unlabeled,	static	or	
dynamic,	 as	 the	 criterion	 for	 cell	 selection.	 This	 includes	 intracellular	 dynamics	 (e.g.	 small	
molecule	uptake,	Fig.	2a)	and	cellular	dynamics	(e.g.	division,	Fig.	2b).	To	demonstrate	genotype-
phenotype	linking	using	FUNseq,	we	designed	experiments	targeted	to	discovering	the	genetic	
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basis	of	 fast	migration	and	mesenchymal-like	morphology	 transition	 in	cancerous	cells,	as	we	
hypothesized	that	these	would	be	at	the	basis	of	metastatic	behavior6-8,	15.	
From	a	population	of	MCF10A-H2B-GFP	cells,	we	monitored	cellular	migration	trajectories	(Fig.	
3a,b)	 and	 detected	 cells	 with	 mesenchymal-like	 morphology	 (spindle	 shape;	 Fig.3c-e;	
Supplement,	Fig.	S12).	We	identified	and	selected	the	fast-moving	cells	(Fig.	3b,	Fig.	S13)	and	
spindle	cells	(Fig.	3e).	We	also	induced	the	same	cell	line	with	TGFb,	an	inducer	of	the	epithelial-
to-mesenchymal	transition	(EMT)8	in	the	hope	of	enhancing	heterogeneity	in	both	phenotypes	
and	expression	profiles8.		
	
In	a	screen	for	migration	speed	we	phototagged	~150-200	fast-moving	cells	(Fig.	3b,	Fig.	S13)	
from	populations	of	~20k	cells.	We	then	separated	the	phototagged	cells	using	a	fluorescence	
activated	cell	sorter	(FACS)	for	subsequent	single	cell	transcriptomic	sequencing16	together	with	
~250	slow-moving	cells.	In	a	separate	screen	we	phototagged		and	separated	~150-200	spindle-
shaped	cells	(Fig.	3e)	for	analysis	with	~	250	non-spindle	shaped	cells.	
	
Standard	dimensionality	reduction	methods	failed	to	identify	any	clear	clusters	associated	with	
phenotypes	of	 interest	 (Fig.	S14).	This	 is	a	known	problem	in	unsupervised	clustering	analysis	
involving	 samples	 with	 rare	 or	 sparse	 cells,	 or	 populations	 with	 gradually	 changing	 gene	
expression	profiles17.	Even	in	fSCS	enriched	data,	no	well-defined	clusters	are	formed	(both	non-
induced	and	induced	cells)	(Fig.	4a-d,	Fig.	S15).	FUNseq	solves	the	clustering	problem	through	
functional	annotation.	Using	the	prior	information	provided	by	fSCS,	one	can	distinguish	clusters	
with	more	or	less	tagged	cells	(Fig.	4a-d).	We	scored	EMT18	in	fast	(phototagged)	and	slow	(non-
phototagged)	moving	cells	and	spindle	(phototagged)	and	non-spindle	(non-phototagged)	cells,	
in	both	non-induced	and	induced	conditions,	based	on	an	EMT	hallmark	gene	set19	(Fig.	4e,f).	We	
observe	enrichment	for	tagged	cells	at	high	EMT	scores	(Fig.	4e,f).	Supervised	EMT	analysis	shows	
high	coherence	of	EMT-marker	expression	and	a	consistent	higher	expression	of	these	markers	
in	cell	groups	with	a	higher	proportion	of	tagged	cells	in	all	conditions	(Supplement;	Figs.	S16-
S17).	The	overlap	between	the	two	populations	(tagged	vs	untagged)	suggests	that	the	failing	
clustering	without	the	use	of	prior	information	is	due	to	the	gradual	change	in	gene	expression	
between	the	phototagged	and	non-phototagged	cells.		
	
Functional	 annotation	 allows	 direct	 analysis	 of	 differential	 gene	 expression	 between	
phototagged	and	non-phototagged	cells,	bypassing	clustering	methods	completely.	In	non-TGFb-
induced,	fast	migrating	cells,	we	identified	two	driving	pathways:	TGFb	and	NF-κB	(based	on	the	
overexpressed	 genes	 TGFBI	 and	 NFΚBIA,	 ATF3,	 IL1A,	 CDKN1A,	 CXCL2,	 SQSTM1	 and	 LAMB3	
(hallmark	 gene	 set19);	 Figs.	 4g,	 S18a,	 S19a).	 Both	 TGFb	 and	 NF-κB	 were	 also	 identified	 as	
pathways	 driving	 spindle	 shape	 in	 non-TGFb-induced	 conditions,	 based	 on	 the	 differentially	
expressed	genes	TGFBI	and	IER3,	PLAU,	FOSL1,	INHBA	and	SERPINEB2	(hallmark	gene	set19;	Figs.	
4g,	S18a,	S19b).	In	spindle	cells,	differential	gene	expression	analysis	also	identified	Tubulin	and	
Laminin	structural	proteins	(TUBA1B,	TUBA1C,	TUBB,	LAMC2	and	LAMA3	genes),	indicating	these	
playing	a	critical	role	in	maintaining	spindle	shape	(Fig.	4h,	S19c).	Markedly,	neither	these	genes	
nor	TGFb	or	NF-κB	pathways	were	identified	using	clustering	methods	followed	by	differential	
gene	analysis	without	functional	annotation	(Fig.	S15	i,j).	
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In	the	TGFb-induced	condition,	among	TGFb	and	NF-κB	pathways,	only	the	NF-κB	pathway	was	
identified	in	the	fast-moving	cells	(IER3,	LAMB3,	PLAU	and	FOSL1	genes	(hallmark	gene	set19),	Fig.	
4i,	S18b,	S19d).	In	the	spindle	cells,	several	NF-κB	pathway	associated	genes,	though	not	the	full	
pathway,	were	identified	as	significantly	overexpressed	(IER3,	F3	and	FOSL1	genes	(hallmark	gene	
set19),	Fig.	4i,	supplementary	methods	and	Figs.	S18b,	S19e).	As	all	cells	were	induced	with	TGFb,	
it	is	expected	that	TGFb	genes	did	not	show	up	in	a	differential	expression	analysis.	Tubulin	and	
Laminin	structural	proteins	were	again	 identified	 in	spindle	cells	 (TUBA1C,	TUBB,	TUBB4B	and	
LAMC2;	 Fig.	 4j,	 S19f).	 Once	 again,	 these	 genes	 and	 pathways	 were	 not	 identified	 through	
clustering	methods	followed	by	differential	gene	analysis	(Fig.	S15	k,l).		
Validation	 of	 the	 role	 of	 TGFβ	 and	 NF-κB	 pathways	 in	 fast	 migration	 and	 mesenchymal-like	
morphology	confirmed	that	fSCS	correctly	linked	phenotype	to	driving	genotype.	We	conducted	
a	 gene	knockdown	 (RNA	 interference)	 assay	on	MCF10A	 cells	 (Supplementary	methods)	 and	
found	a	strong	decrease	of	fast	migrating	and	spindle	shaped	cells	in	populations	with	knocked	
down	TGFβ	and	NF-κB	(Fig.	S20).		
	
TGFb-	and	NF-κB-mediated	pathways	are	among	those	that	have	been	reported	to	drive	EMT8,	20	
(including	among	others	WNT,	Notch,	HIF	and	Ras-ERK).	EMT	describes	a	 collective	biological	
process	that	can	drive	tumor	aggressiveness	and	lead	to	various	cancer-driving	phenotypes,	but	
the	 specific	 link	between	 individual	pathways	and	phenotypes	often	 remains	unclear8,	20.	 The	
above	findings	indicate	that	specifically	TGFb	and	NF-κB	pathways	dominantly	drive	tumorigenic	
fast	 migration	 and	 transition	 to	 mesenchymal-like	 morphology	 even	 in	 non-TGFb	 induced	
conditions.	Moreover,	only	through	FUNseq,	we	directly	link	the	main	driving	pathways	(TGFb	
and	 NF-κB)	 to	 the	 observed	 aggressive	 phenotypes	 (fast	 migration	 and	 mesenchymal-like	
morphology)	 in	 individual	cell	populations,	using	 limited	sample	sizes	 for	the	assay	and	direct	
readout.	 In	 this	 diagnostically	 important	 context,	 these	 pathways	 were	 hidden	 without	 fSCS	
annotation-assisted	analysis.		
	
By	 combining	 ultrawide	 field-of-view	 microscopy	 with	 real-time	 accurate	 cell	 tracking	 and	
phototagging,	fSCS	and	FUNseq	makes	it	possible	to	study	the	intra-population	heterogeneity	of	
phenotype-driving	 pathways	 in	 (patient-derived)	 tumor	 samples	 and	 thereby	 opens	 the	
possibility	for	targeted	and	personalized	interventions.		
	
fSCS	allows	enrichment	of	rare	cells	and	functional	annotation,	which	lets	us	identify	TGFβ	and	
NF-κB	as	pathways	that	cause	fast	migration	and	mesenchymal-like	morphology	independent	of	
external	 TGFβ	 induction	 in	MCF10A	 cells.	Most	 importantly,	 fSCS	 and	 FUNseq	 allows	 linking	
genotypes	with	any	phenotypes	of	interest	observable	under	a	microscope.	The	method	allows	
profiling	dynamically	aggressive	cells,	however	sparse,	such	as	cancer	stem-like	cells	or	cancer-
driving	cells,	for	which	we	lack	reliable	or	universal	biomarkers9,	10,	facilitating	the	understanding	
of	cancer-driving	and	therapeutic	mechanisms.		
	
	
METHODS	
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Ultrawide	Field-of-view	Optical	Microscope	(UFO)	setup	
UFO	is	a	custom-built	microscope,	which		incorporates	a	large	chip-size	CMOS	Point	Grey	camera	
(GS3-U3-123S6M-C,	 4096x3000	 pixels,	 3.45	 µm/pixel,	 FLIR)	 and	 large	 field-of-view	 (FOV)	
objectives	 (Olympus	MVP	 Plan	 Apochromat,	 1x	 and	 0.63x)	 (Fig.	 S1)	 with	 comparatively	 high	
numerical	aperture	(for	the	1x	objective,	NA=	0.5;	for	the	0.63x	objective,	NA=0.25).		
	
This	microscope	images	a	7.3	×	5.7	or	3.65	x	2.83	mm	FOV	with	1.7	μm	or	0.8	μm	spatial	resolution,	
respectively,	 at	 30	 ms	 temporal	 resolution,	 which	 is	 sufficient	 for	 recording	 most	 cellular	
dynamics.	Fast	temporal	dynamics	can	be	reached	with	a	downsized	FOV.		
	
Illumination	is	provided	by	several	CW	laser	lines	(405nm	(2W,	MDL-HD-405,	CNI),	460nm	(800	
mW,	MDL-III-460,	CNI),	532nm	(1500mW,	MGL-FN-532,	CNI)	and	637nm	(1.3W,	MDL-MD-637,	
CNI)).	These	lasers	can	be	projected	to	samples	with	a	custom-designed	45°	AOI	collimated,	3.3	
x	2.2”	trichroic	mirror	(Ravg:	405-460nm,	785-1300nm	and	Rabs:	532/637	nm;	Alluxa).	Fluorescence	
was	 filtered	through	a	custom-designed	2”	 tri-band	emission	 filter	 (Od6avg:	400-465nm	/	527-
537nm	/	632-642nm	/	785-1300nm;	Alluxa)	and	collected	with	an	MVX-TLU	tube	lens	(Olympus	
Telan	 lens).	 The	 custom-made	 trichroic	 and	 emission	 filters	 are	 designed	 in	 such	 a	way	 that	
switching	 filters	 between	 experiments	 is	 not	 required.	 All	 illumination	 (except	 405nm)	 is	
temporally	structured	by	an	acousto-optic	tunable	filter	(Gooch	&	Housego)	and	all	illumination	
is	modulated	spatially	by	a	digital	micromirror	device	(DMD,	V-9501	VIS,	Vialux).	The	DMD	is	re-
imaged	 onto	 the	 sample	 with	 targeted	 illumination	 at	 4.8	µm	 spatial	 resolution	 and	 0.1	ms	
temporal	resolution.	
	
For	point-scanning	illumination	via	mirror	galvanometers	(15mm	clear	aperture	mirror,	6240H,	
Cambridge	Technology),	200mW	405nm	laser	(MDL-XS-405,	CNI)	and	Titanium-Sapphire	100fs	
pulsed	laser	(Coherent	Mira900)	were	implemented	and	collimated	at	the	back	focal	plane	of	the	
objective.	The	light	was	then	defocused	to	obtain	10	µm	spot	at	the	sample	and	was	steered	in	
the	sample	plane	using	galvanized	mirrors	in	a	conjugate	plane.	
	
Cell	cultures	
MCF10A-H2B-GFP	
MCF10A-H2B-GFP	breast	epithelial	cells,	a	gift	from	Dr.	Reuven	Agami	(Dutch	National	Cancer	
Institute,	 NKI),	 were	 grown	 in	 DMEM/F-12	 supplemented	 with	 5%	 horse	 serum,	 1%	
penicillin/streptomycin,	EGF	(10ng/mL),	Hydrocortisone	(500ng/mL),	Cholera	Toxin	(100ng/mL)	
and	insulin	(10	µg/mL)	in	a	37°C	incubator	under	5%	CO2.	For	TGFβ1	treatment,	MCF10A	cells	
were	treated	with	human	recombinant	TGFβ1	(R&D	Systems)	for	2	weeks.	
Before	conducting	experiments,	10,000-20,000	cells	were	seeded	on	fibronectin	 (0.1	mg/mL)-
coated	10mm-glass	bottom	dishes	 in	 the	MCF10A	culture	medium	(described	above)	without	
phenol	red.	Experiments	were	performed	16-24	hours	after	plating	on	the	glass-bottom	dishes.	
	
U2OS	cell	culture	
U2OS-H2B-mMaple3	cells	were	grown	in	DMEM	medium	supplemented	with	10%	fetal	bovine	
serum	and	1%	penicillin/streptomycin	in	a	37°C	incubator	under	5%	CO2.		
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Before	conducting	experiments,	30,000	cells/cm2	were	seeded	on	gelatin	 (0.1	mg/mL)-coated	
glass	 bottom	 dishes	 in	 the	 DMEM	 culture	 medium	 (10%	 fetal	 bovine	 serum,	 1%	
penicillin/streptomycin)	 without	 phenol	 red.	 Experiments	 were	 performed	 16-24	 hours	 after	
plating	on	the	glass-bottom	dishes.	
	
mTGMM	
Image	analysis	computation	was	performed	on	a	single	workstation,	Dell	Precision	7920,	with	the	
following	hardware	components:	dual	Intel(R)	Xeon(R)	Gold	6130	CPUs,	32GB	DDR4-2666MHz	
memory,	a	Nvidia	GeForce	1080	GPU.	
	
mTGMM	is	based	on	the	Tracking	Gaussian	Mixture	model21.	In	the	first	step,	raw	images	are	pre-
processed	(for	images	with	heterogeneous	fluorescence	intensity	profile	between	cells:	imtophat	
->	 contrast	 stretching	 ->	 Gaussian	 smoothing;	 for	 images	 with	 relatively	 homogeneous	
fluorescence	intensity	profile	between	cells:	imtophat->Gaussian	smoothing).		
Every	 image	t ∈ 1,2, … , T 	is	 processed	 in	 parallel	 for	 nuclei	 segmentation,	 using	 a	modified	
watershed	approach.	We	record	centroids	and	masks	for	individual	cell-nuclei	at	t.	Foreground	
pixels	are	grouped	into	superpixels	(i.e.,	one	superpixel	is	a	set	of	connected	pixels	that	does	not	
overlap	any	other	superpixel).	 	The	superpixels	are	trimmed	using	 local	Otsu’	thresholding,	to	
determine	the	relation	between	superpixels	and	nuclei:	superpixels	that	are	still	connected	will	
be	grouped	into	one	nucleus,	while	an	isolated	superpixel	represents	a	nucleus	itself.	In	other	
words,	a	nucleus	may	have	one	or	multiple	superpixels.	We	implemented	a	parameter	to	adjust	
a	threshold	value	(in	number	of	pixels)	of	contacted	pixels	between	two	Gaussian	Mixture	Models	
(GMMs,	indicating	two	nuclei).	This	value	is	particularly	sensitive	to	cell	division	and	should	be	
tuned	accordingly	in	different	sample	types.	
The	 intensity	profile	of	a	nucleus	 is	modelled	as	a	2D	Gaussian	distribution.	Nuclei	 tracking	 is	
done	by	forwarding	every	Gaussian	from	time	point	𝑡	to	𝑡 + 1	using	Bayesian	inference,	with	a	
priori	knowledge	that	the	position,	shape,	overall	intensity	of	nuclei	cannot	change	dramatically	
between	two	consecutive	time	points.	Based	on	the	tracking	information	we	generate	a	feature	
table	 with	 records	 of	 cellular	 migration,	 division	 and	 intra-cellular	 intensity	 (details	 in	
Supplement).	
	
Synthesis	of	phototagging	dye	
The	 two	 starting	 materials,	 photoactivatable	 rhodamine	 (PA-Rho;	 ortho-nitroveratryl-
oxycarbonyl-5-carboxy-Q-rhodamine)	 (Sigma)	 and	2-amino-thioxanthone	 (Key	Organics),	were	
combined	in	a	one-step	synthesis	where	the	thioxanthone	amine	coupled	to	the	carboxylic	group	
of	PA-Rho	to	form	an	amide	conjugation	(Supplement,	Fig.	S4).	We	added	2-amino-thioxanthone	
(17.2	μmol,	2	equ)	in	dimethylsulfoxide	(DMSO,	0.1	mL,	Sigma)	to	a	solution	of	PA-Rho	(8.6	μmol,	
1	equ)	in	DMSO	(0.8	mL)	with	1.5	equ	of	HATU	coupling	reagent	(in	DMSO,	0.1	mL;	Sigma)	and	4	
equ	of	diisopropylethylamine	(Sigma).	After	stirring	for	16	hrs	under	nitrogen,	the	product	was	
separated	from	unreacted	starting	materials	via	Semi-Prep	HPLC	(retention	time:	23.1	min;	RP-
C18	column	with	a	30	min	gradient	of	50%	to	100%	ACN	containing	0.1%	TFA).	The	product	is	
confirmed	via	LC-MS	(Exp.	m/z:	1142.84,	 [M+H+]:	1142.11).	The	product	 fluorescesces	around	
580	nm	which	makes	it	suitable	for	use	with	GFP	reporter	lines,	unlike	common	photoactivatable	
and	photoconvertible	proteins.	
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Photolabeling	experiment	
with	phototagging	agent	
Cells	of	interest,	determined	through	mTGMM,	were	selectively	photolabeled	via	phototagging	
or	photoconvertible	mMaple3.	For	phototagging,	cells	pre-incubated	with	15	μM	of	phototagging	
reagent	(diluted	in	no	phenol-red	culture	medium)	were	selectively	photolabeled	using	405nm	
light	(100	J/cm2).		
Upon	 selective	 illumination,	 the	 phototagging	 compound	 inside	 of	 the	 target	 cells	 will	 be	
photoactivated	and	can	be	visualized	by	532nm	excitation	(25	mW/cm2)	after	photoactivation	
(activated	 phototagging	 dye:	 lex:	 532nm,	 lem:	 553nm).	 Cells	 without	 405nm	 activation	 will	
remain	dark	upon	532nm	excitation.		
	
with	photoconvertible	mMaple3	
For	photolabeling	using	photoconvertible	mMaple3,	U2OS	cells	expressing	H2B-mMaple3	were	
used.	Before	photoconversion	by	405nm	(10	J/cm2),	mMaple3	can	only	be	imaged	with	blue	light	
(460nm	 in	 the	UFO	 setup,	 10	mW/cm2).	 Upon	 photoconversion	 by	 405nm,	mMaple3	 can	 be	
additionally	 excited	 and	 visualized	 by	 532nm	 excitation	 (15	 mW/cm2).	 Cells	 without	 405nm	
photoconversion	will	remain	dark	upon	green	light	excitation.		
	
Single	cell	RNA	sequencing	analysis	
Single	 cells	were	 collected	 in	 two	 384	well-plates	 (three	 repeats	 for	 the	migration	 data;	 two	
repeats	for	the	morphology	data).	After	sequencing	and	QC	we	had	data	from	465	TGFβ	induced	
cells	 for	 the	migration	 assay	 and	 431	 TGFβ	 induced	 cells	 for	 the	morphology	 assay.	 For	 the	
experiment	on	non-TGFβ	induced	cells,	302	cells	were	analyzed	in	the	migration	assay	and	375	
cells	in	the	morphology	assay,	for	a	total	dataset	of	1573	deep	sequenced	cells	(~100k	reads/cell).	
SORT-seq	sequencing	and	read	alignment	were	performed	as	described	by	Muraro	et	al16	(Single	
Cell	Discoveries).		
	
Quality	control		
All	 the	 single	 cell	 analysis	 is	 performed	 in	 Seurat	 v322,	 23.	 The	 logarithm	of	 the	 feature	 count	
formed	a	clear	bimodal	distribution	(Fig.	S21a,c).	Cells	with	the	feature	counts	larger	than	2,500	
and	fewer	than	10,000	were	selected.	In	addition,	cells	with	a	percentage	of	mitochondrial	counts	
lower	than	30%	were	selected,	again	selecting	one	part	of	a	bimodal	distribution	(Fig.	S21b,d).	
	
Processing	and	feature	selection		
The	analysis	was	performed	on	the	TGFβ-induced	and	non-TGFβ-induced	cells	separately.	Counts	
were	 log	 normalized	 using	 Seurat	 v3’s	 NormalizeData	 function	 followed	 by	 batch	 effect	
correction.	 Batch	 effects	 were	 removed	 using	 Seurat	 v3’s	 canonical	 correlation	 analysis	 and	
anchor	 cell	 identification	 method	 (the	 FindIntegrationAnchors	 function	 followed	 by	
IntegrateData	function)	22,	23,	after	which	variance	associated	with	the	replicate	was	removed.		
Feature	 selection	 was	 then	 performed	 using	 the	 FindVariableFeatures	 function	 (variance-
stabilizing	 transformation	 method)	 from	 Seurat	 v323.	 A	 subset	 of	 3000	 variant	 genes	 were	
selected	for	the	following	analysis.	
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Cell	cycle	regression	
For	the	cell	cycle	scoring,	a	set	of	S	and	a	set	of	G2/M-phase	markers	are	used18	and	the	S.Score	
and	G2M.Score	were	computed	using	the	CellCycleScoring	function	in	Seurat	v3.	For	cell	cycle	
regression,	cell	cycle	genes	were	regressed	out	using	the	ScaleData	function	(vars.to.regress	=	
c("S.Score",	"G2M.Score"))	in	Seurat	v3.		
	
Dimensionality	reduction	and	clustering		
After	cell	cycle	regression,	we	performed	Principle	component	analysis	(PCA)	on	the	subset	of	
highly	dispersed	genes.	We	chose	the	first	5	principle	components	for	SNN-clustering	based	on	
the	jackstraw	procedure24	(Fig.	S22).	Both	in	the	induced	and	non-induced	data,	we	saw	a	loss	of	
significance	in	PC’s	after	the	fifth	principal	component	(Fig.	S22).		
SNN-clustering	was	performed	with	the	FindClusters	 function	 in	Seurat	v322,	23.	The	resolution	
parameter	was	swept	in	the	range	of	0.6	to	1.4	(Fig.	S23	(migration),	S24	(morphology))	(0.6	to	
1.2	should	typically	yield	good	results	according	to	the	package	authors).	For	all	other	parameters	
defaults	were	used.		
	
Module	scoring		
For	the	EMT	scoring	we	used	a	module	of	the	EMT	hallmark	gene	set	described	in	Subramanian	
et.	 al.19.	 The	 scoring	was	 done	with	 the	AddModuleScore	 in	 Seurat22,	 23.	 For	 a	 given	 cell,	 this	
compares	 the	 expression	 of	 every	 gene	 in	 the	module	with	 similar	 genes	 (based	 on	 average	
expression	in	the	whole	set).		
	
Differential	gene	expression	analysis	
Differentially	expressed	genes	between	the	tagged	(fast	or	spindle	cells)	and	untagged	(slow	or	
non-spindle	 cells)	 groups	 (functional	 annotation)	 were	 accessed	 through	 the	 FindMarkers	
function	in	Seurat	v322,	23	using	the	Model-based	Analysis	of	Single-cell	Transcriptomics	(MAST)	
method25	(Bonferroni	adjusted	P	value	<	0.05).		
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Figure	1.	Functional	Single	Cell	selection	(fSCS)	consists	of	ultrawide	field-of-view	miscroscopy,	
fast	and	accurate	cell	tracking,	and	target	cell	identification	and	photoselection.	a)		White-light	
and	 fluorescent	 image	 of	 MCF10A	 cells	 expressing	 H2B-GFP,	 	 imaged	 with	 NA	 0.25.	 Image	
contains	~2x104	cells.	Scale	bar	100	μm.	Magnification	is	digital	only,	i.e.	all	information	in	the	
magnified	 image	 is	 contained	 in	 the	 parent	 image.	b)	Schematic	 of	 the	 software	 pipeline.	 (i)	
Images	are	pre-processed	and	segmented.	(ii)		Cell	tracking	is	performed.	(iii-v)	From	the	post-
tracking	matrix	cellular	features	are	extracted	including	intracellular	intensity	changes	(iii),	cell	
migration	(iv)	and	cell	division	(v).	(vi)	Coordinates	of	cells	of	interest	are	extracted.	c)		Schematic	
of	 the	 hardware	 pipeline.	Movies	 are	 acquired	 on	UFO	 and	 processed	 in	 real	 time	using	 the	
mTGMM	pipeline.	Coordinates	of	cells	of	interest	are	extracted	and	sent	to	DMD	or	galvo	mirrors	
for	 selective	 illumination,	 which	 locally	 converts	 the	 photolabeling	 reporter	 or	 dye.	 The	
photolabeled	cells	are	 separated	via	a	 cell	 sorter	 for	downstream	experiments	 like	 single	 cell	
sequencing.	
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Figure	2.	fSCS	allows	cell	selection	based	on	dynamically	changing	phenotypes.	a)	Cell	selection	
based	on	small	molecule	uptake	rate.	a-i)	Deep	red	nuclear	dye	was	added	to	MCF10A-H2B-GFP	
cells.	The	sample	was	sequentially	imaged	using	460	nm	and	637	nm	excitation	for	20	minutes	at	
6	frames/minute.	a-ii)	Dye	uptake	was	tracked	and	the	three	cells	with	the	fastest	small	molecule	
uptake	rate	were	determined	(highlight).	a-iii)		Magnified	images	of	Cells	1-3.	a-iv)	Cells	1-3	were	
phototagged.	b)	Cell	 selection	based	on	division	 rate.	U2OS-H2B-mMaple3	 cells	were	 imaged	
using	460nm	excitation	for	15	min	at	1	frame/minute.	b-i)	overlay	of	the	first	frame	(green)	and	
last	frame	(blue)	of	the	movie.	b-ii)	5	pairs	of	newly	dividing	cells	were	identified.	b-iii)	Size	traces	
of	5	pairs	of	newly	dividing	cells;	blue:	parent	cells;	green,	red:	daughter	cells.	b-iv)	Cell	lineage	
trace	 of	 the	 newly	 divided	 cells.	 b-v)	 Newly	 divided	 cell	 pairs	 photolabelled	 (red)	 	 after	
photoconversion	of	mMaple3	with	405nm	excitation.	b-vi)	Digitally	magnified	images	of	5	pairs	
of	newly	divided	photolabeled	cells.	Scale	bars:	b-i,v:	200	μm,		b-ii,	vi:	20	μm.	
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Figure	3.	Identification,	isolation	and	selection	of	MCF10A-H2B-GFP	cells	with	fast	migration	
and	mesenchymal-like	morphology.	a)	Migration	trajectory	of	MCF10A-H2B-GFP	cells	analyzed	
and	visualized	by	mTGMM.	b)	Overlay	of	position	of	non-TGFβ	and	TGFβ	induced	MCF10A-H2B-
GFP	cells	at	t=0	(green)	and	t=60	minutes	(blue).	Insets	i-iii:	six	(non-TGFβ	induced)	and	five	(TGFβ	
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induced)	representative	fast	moving	cells	identified	(indicated	by	*)	after	mTGMM	and	labelled	
via	phototagging.	c)	MCF10A-H2B-GFP	cells	stained	with	Deep-red	membrane	dye.	d)	Image	from	
c)	 analyzed	 and	 visualized	 after	 mTGMM	 allowing	 quantification	 of	 cellular	 morphology.	 e)	
Overlay	of	bright-field	image	and	deep-red	membrane	stain	image	(green	color)	of	non-TGFβ	and	
TGFβ	induced	MCF10A-H2B-GFP	cells.	Insets	i-v:	five	representative	non-TGFβ	induced	cells	with	
mesenchymal-like	 morphology	 identified	 after	 mTGMM	 and	 labelled	 via	 phototagging	 (red).	
Insets	vi-x:	five	representative	TGFβ	induced	cells	with	mesenchymal-like	morphology	identified	
after	mTGMM	and	labelled	via	phototagging	(red).	Scale	bars:	200	μm.	
	
	
	
	
	
	
	
	 	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2021. ; https://doi.org/10.1101/2021.10.12.464054doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.12.464054
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2021. ; https://doi.org/10.1101/2021.10.12.464054doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.12.464054
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure	4.	Functionally	annotated	single	cell	transcriptomic	profiling	(FUNseq)	of	MCF10A-H2B-
GFP	cells	with	fast	migration	and	mesenchymal-like	morphology.	a,	b)	tSNE	plot	of	non-TGFβ	
induced	 fast	 migrating	 (a)	 and	 spindle	 (b)	 cells.	 Dark	 blue:	 cells	 with	 fast	 migration	 (a)	 or	
mesenchymal-like	morphology	(b)	(tagged);	light	blue:	cells	with	slow	migration	(a)	or	endothelial	
morphology	(b)	(untagged).	Numbers	0-3	(a,b)	indicate	the	SNN	cluster	numbers.	c,	d)	tSNE	plots	
of	TGFβ	induced	fast	migrating	(c)	or	spindle	(d)	and	cells.	Dark	blue:	cells	with	fast	migration	(c)	
or	 mesenchymal-like	 morphology	 (d)	 (tagged).	 light	 blue:	 cells	 with	 slow	 migration	 (c)	 or	
endothelial	 morphology	 (d)	 (untagged).	 Number	 0-4	 (c)	 or	 0-3	 (d)	 indicate	 the	 SNN	 cluster	
numbers.	e)	EMT	score	of	fast	(tagged)	and	slow	(untagged)	cells	with	or	without	TGFβ	induction.	
EMT	 scoring	 against	 the	 EMT	 reference	 list	 from	 the	 EMT	 hallmark	 gene	 set	 shown	 in	
Subramanian	et.	al.19	Significance	(*)	was	computed	by	Two-sample	t-test	(***	£	0.001).	f)	EMT	
score	of	spindle	(tagged)	and	non-spindle	(untagged)	cells	with	or	without	TGFβ	induction.	EMT	
scoring	against	the	EMT	reference	list	from	the	EMT	hallmark	gene	set	shown	in	Subramanian	et.	
al.19	 	 Significance	 (*)	was	computed	by	Two-sample	 t-test	 (***	£	 0.001).	g,	h)	 Smear	plots	of	
differentially	 expressed	 genes	 between	 tagged	 and	 untagged	 cells	 (g,	 migration	 data;	 h,	
morphology	data)	in	the	non-TGFβ	induced	condition.	Upregulated	genes	that	passed	multiple	
testing	correction	(p<0.05)	are	shown	in	red.	i,	j)	Smear	plots	of	differentially	expressed	genes	
between	tagged	and	untagged	cells	(i,	migration	data;	j,	morphology	data)	in	the	TGFβ	induced	
condition.	Upregulated	genes	that	passed	multiple	testing	correction	(p<0.05)	are	shown	in	red.		
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