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A B S T R A C T

The microstructure of cement paste determines the overall performance of concrete and therefore obtaining the 
microstructure is an essential step in concrete studies. Traditional methods to obtain the microstructure, such as 
scanning electron microscopy (SEM) and X-ray computed tomography (XCT), are time-consuming and expensive. 
Herein we propose using Denoising Diffusion Probabilistic Models (DDPM) to synthesize realistic microstructures 
of cement paste. A DDPM with a U-Net architecture is employed to generate high-fidelity microstructure images 
that closely resemble those derived from SEM. The synthesized images are subjected to comprehensive image 
analysis, phase segmentation, and micromechanical analysis to validate their accuracy. Findings demonstrate 
that DDPM-generated microstructures not only visually match the original microstructures but also exhibit 
similar greyscale statistics, phase assemblage, phase connectivity, and micromechanical properties. This 
approach offers a cost-effective and efficient alternative for generating microstructure data, facilitating advanced 
multiscale computational studies of cement paste properties.

1. Introduction

Concrete is the most widely used construction material in the world. 
As the main binder, cement paste plays a significant role in formulating 
the overall performance of concrete material. The properties of cement 
paste are governed by its microstructure. Compared to macroscale 
physical tests, studies on the microstructure provide a fundamental way 
to understand and quantify the material properties and behaviors 
(Bentz, 1999). A realistic microstructure is important input (Zhang et al., 
2020) for many microscale modelling frameworks (e.g., continuum 
Finite Element Method (FEM) (Šmilauer and Bittnar, 2006; Rhardane 
et al., 2020), micromechanical homogenization schemes 
(Constantinides and Ulm, 2004; Liang et al., 2017; Gao et al., 2017), and 
discrete lattice models (Schlangen and Garboczi, 1997a, 1997b)), which 
aim to simulate physical properties of cement paste. The microstructural 
input can be obtained by physical experiments such as SEM microscopy 
and XCT, or hydration models such as Hymostruc (van Breugel, 1995; 
Van Breugel, 1993; Ye et al., 2003), μic (Bishnoi and Scrivener, 2009), 

and CemHyd3D (Bentz, 1997). On the one hand, the physical experi-
ments can be time-consuming and expensive. On the other hand, due to 
the highly heterogenous nature of the microstructure and complexity of 
hydration reaction, the hydration models are subjected to certain sim-
plifications and assumptions, such as the spherical shapes of cement 
particles and hydration products, and empirical coefficients in hydration 
kinetics calculations, etc.

The limitation mentioned above urges the need to efficiently obtain 
realistic microstructure input for the microscale computational frame-
works (i.e., FEM, lattice model, etc.) of cement paste. The microstructure 
of heterogenous composites can be conceptualized as a complex prob-
ability distribution governed by random variables of very high di-
mensions. To efficiently reconstruct the microstructure, low-order 
probability functions have been used to approximate the probability 
function of the original microstructure using stochastic optimization 
techniques (Torquato, 2002a). Such methods have been utilized to 
reconstruct the concrete microstructure and calculate the properties 
such as permeability, stiffness, and thermal conductivity (Chung et al., 
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2014; Kim et al., 2019). However, due to the high computational cost, 
only two phases were considered in the low-order probability functions, 
which resulted in an incomplete description of the probability function 
of the original microstructure. Thus, discrepancy in morphology and 
macroscopic properties may still arise (Sahimi and Tahmasebi, 2021), 
even though the low-order probability functions of the synthesized and 
original data are identical.

Deep learning (DL) techniques have shown promise in extracting the 
latent representation from the microstructure of cement paste, which 
can then be used to predict the micromechanical properties (Liang et al., 
2022, 2023a). More interestingly, generative DL such as variational 
autoencoders (VAE) (Kingma and Welling, 2013) and Generative 
Adversarial Networks (GAN) (Goodfellow et al., 2014) has been widely 
applied to synthesize complex microstructures in the last decade, 
described as below. 

• The VAE uses an encoder-decoder structure to approximate the 
probability function of the microstructure with a mixed Gaussian 
distribution by maximum likelihood estimation. The encoder takes 
the microstructure as the input and represents the microstructure 
with a variational Gaussian distribution parameterized by its mean 
and variance. Then, the decoder samples from the variational dis-
tribution and generates the microstructure. The VAE has been used 
to generate two-phase steel and truss lattice metamaterials (Zheng 
et al., 2023a; Kim et al., 2021). However, when it comes to more 
complex datasets, such as high-resolution images, the assumption of 
Gaussian prior and posterior in VAE may result in low-quality and 
blurry images (Prince, 2023).

• Generative Adversarial Network (GAN) employs a generator- 
discriminator structure to generate microstructure through adver-
sarial training. The generator takes random noise as input and gen-
erates microstructures via a deep neural network. The discriminator 
receives both the generated microstructures and real data as input 
and uses another deep neural network to classify them, determining 
whether they are real or generated. The generator and discriminator 
optimize alternately, continuously improving the quality of the 
generated microstructures during training (Goodfellow et al., 2014). 
GANs have been successfully applied to generate various micro-
structures, such as carbon steel and heterogeneous energetic mate-
rials (Safiuddin et al., 2021; Chun et al., 2020; Murgas et al., 2024).

• Recently, GANs have been successfully applied to synthesize cement 
paste microstructures. Assuming a four-phase microstructure of the 
cement paste, Hong et al. (2024) introduced an innovative 
CycleGAN-based framework for generating four-phase cement paste 
microstructures through a two-step process. In the first step, 2D slices 
were generated, which were subsequently used as input for another 
GAN to construct 3D microstructures. Their comprehensive statisti-
cal and micromechanical analyses demonstrated that the generated 

four-phase cement microstructures closely resembled the original 
ones. Similarly, Zhao et al. (2025) employed SliceGAN to generate 
3D microstructures from 2D inputs, emphasizing systematic valida-
tion through in-depth microstructural and image analyses. This 
model bypasses the need for phase assumptions; however, it was 
noted that the fluctuating greyscale values in the microstructures 
may affect the consistency of the results. While these studies have 
significantly advanced the field, it is important to note that the 
reliance on 2D input data can introduce limitations in reflecting the 
true spatial complexity of 3D microstructures. Despite the successful 
application of GANs in generating microstructures of cement paste, 
there are some inherent limitations of the model. Training GANs can 
be notoriously unstable and requires careful tuning of hyper-
parameters and network architecture (Arjovsky and Bottou, 2017). 
Furthermore, GANs are prone to issues such as mode collapse, where 
the generator produces limited variations of outputs, and the van-
ishing gradient problem, which can hinder the training process (Metz 
et al., 2016).

Most recently, Denoising Diffusion Probabilistic Models (DDPM) (Ho 
et al., 2020) have emerged as a powerful alternative for generating 
microstructures, addressing some of the limitations inherent in VAE and 
GAN frameworks. DDPMs employ a forward process that gradually adds 
noise to the microstructure data, transforming it into a Gaussian distri-
bution over several time steps. The reverse process then learns to 
denoise this Gaussian noise step-by-step, ultimately reconstructing the 
microstructure. Essentially, the iterative inference process of the DDPM 
can be viewed as the Hierarchical VAE (Vahdat and Kautz, 2020), an 
improved VAE which produces high-quality images by using iterative 
hierarchical Gaussian priors rather than single Gaussian priors. There-
fore, DDPMs are less prone to generating blurry images compared to 
VAEs. In addition, the training of DDPMs tends to be more stable 
compared to GANs, avoiding issues like mode collapse and the vanishing 
gradient problem (Prince, 2023). DDPM is the basis of current most 
advanced image generators such as OpenAI’s DALL-E2 and Google’s 
Imagen. Based on DDPM, Lyu et al. (Lyu and Ren, 2024) reconstructed 
microstructures of various composite materials such as inclusion mate-
rials, spinodal decomposition materials, chessboard materials, fractal 
noise materials, etc. Similarly, Azqadan et al. (2023) generated micro-
structure images of distinct cast-forged AZ80 magnesium alloy compo-
nents and obtained an average error of around 6.36% of the measured 
microstructural properties between the generated and original images.

In view of the advantages of DDPM over VAE and GAN, this paper 
employs the DDPM to synthesize the microstructural images of cement 
paste. The four-step workflow of this paper is shown in Fig. 1. In step 1, 
based on a database of 15000 SEM images, a DDPM will be constructed 
using a U-Net architecture, and then synthesized microstructures will be 
generated using the trained DDPM. Afterwards, image analysis (step 2), 

Fig. 1. Four-step workflow of this paper.
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phase segmentation (step 3) and fracture analysis (step 4) will be con-
ducted to compare the synthesized and original microstructure.

2. DDPM for cement microstructure synthesis

This section first describes the database of SEM images for charac-
terizing the microstructure of cement paste. Then, the theories, archi-
tecture, and training configurations of the DDPM used in this paper are 
presented.

2.1. Database

This paper uses backscattered electron (BSE) images to characterize 
the microstructure of cement paste and form a database for DDPM 
training. Herein, the sample preparation and image acquisition pro-
cedures will be introduced.

First, CEM I 52.5 Portland cement was used to prepare cement paste 
sample with a w/c ratio of 0.40 in sealed conditions. The cement paste 
was sealed and cured at a constant room temperature of 20 ◦C for 28 
days. The solvent exchange method (Zhang and Scherer, 2011) was then 
used to stop the hydration with isopropanol solution. After arresting the 
hydration, the sample was cut into thin plate-like specimens using a 
micro-dicing saw to ensure parallel top and bottom surfaces. The sample 
preparation involved initial grinding with 4000 grit abrasive paper for 5 
min, followed by polishing using a synthetic silk polishing cloth 
(MD-Dac from Struers) with 3 μm and 1 μm diamond paste in two 
separate 30-min sessions. An oil-based lubricant (DP-Lubricant Brown 
from Struers) was used during polishing to dissipate heat. To remove 
surface debris, the sample was immersed in an ultrasonic bath for 30 s 
between each grinding and polishing interval. The detailed information 

of the specimen preparation can be found in our previous paper (Liang 
et al., 2023a).

BSE images were taken using a FEI QUANTA FEG 650 SEM at an 
accelerating voltage of 15 kV. Prior to imaging, the sample was coated 
with a carbon layer approximately 10 nm thick. A 40 × 40 tile set 
covering the entire area of interest was prescribed, and the BSE images 
were taken automatically using commercial software (Maps 3 from 
Thermo Fisher Scientific) at a nominal magnification of 5000 × . These 
images were then electronically stitched into a single composite image 
(2.7 × 3.4 mm2) as shown in Fig. 2, with a final resolution of 40 nm per 
pixel. Then, 15000 BSE images (100 × 100 μm2) were randomly cropped 
from the composite image and resized to 128 × 128 pixels to form the 
database for DDPM training.

2.2. Denoising diffusion probabilistic model

DDPM comprises a forward diffusion and a reverse denoising pro-
cess, as shown in Fig. 3. Both processes are Markovian, i.e., the state of 
each process at a certain step is only dependent on the state of the 
previous step. The forward diffusion process gradually adds noise to 
contaminate the image x0 from step t = 1 ∼ T, based on predefined 
transition function q(xt |xt− 1), until the image finally becomes standard 
Gaussian noise. Then, the reverse denoising process aims to remove the 
noise step-by-step, using a neural network to approximate the denoising 
transition function pθ(xt− 1|xt). Note that both q(xt |xt− 1) and pθ(xt− 1|xt)

are assumed as Gaussian distribution. Essentially, DDPM can be viewed 
as hierarchical VAE since it assumes the noise in each step as Gaussian 
and generates the image by interactively predicting and removing the 
noise, while the VAE uses one-step mixed Gaussian distribution to 
approximate the original distribution and generate image. Therefore, 
the fitting capacity of DDPM is much less harmed by the assumption of 
“Gaussian distribution” in its transition functions, comparing to the one- 
step VAE.

In the forward diffusion process, the noise-adding procedure can be 
expressed as: 

q(xt |xt− 1)=N
(

xt ;
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − βt

√
xt− 1, βtI

)
(1-1) 

q(x1:T|x0)=
∏T

t=1
q(xt |xt− 1) (1–2) 

where βt is the predefined noise added to the image at step t. For t =

1 ∼ 1000, βt linearly increases from 0.0001 to 0.02. Leveraging the 
additivity of Gaussian distributions, the noised image at step t can be 
directly obtained from x0 and βt, as below: 

q(xt |x0)=N(xt ;
̅̅̅̅
αt

√
x0, (1 − αt)I) (2) 

where αt = 1 − βt, αt =
∏t

i=0αi. Based on Bayes’ rule and Eq (1) and (2), 
the posterior in the forward diffusion process can also be obtained, 
expressed as: 

q(xt− 1|xt)=N(xt− 1; μ̃t(xt , x0), β̃tI) (3-1) 

Fig. 2. BSE images for DDPM training 
(Note: part of the image was used in our paper (Liang et al., 2023a) for pre-
dicting micromechanical properties).

Fig. 3. The forward diffusion and reverse denoising process of DDPM.
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μ̃t(xt , x0)=

̅̅̅̅̅̅̅̅̅
αt− 1

√
βt

1 − αt
x0 +

̅̅̅̅αt
√

(1 − αt− 1)

1 − αt
xt (3-2) 

β̃t =
1 − αt− 1

1 − αt
βt (3-3) 

The transition function in the reverse denoising process is also a 
Gaussian distribution, as below: 

pθ(xt− 1|xt)=N
(
xt− 1; μθ(xt , t), σt

2I
)

(4) 

where σt
2 can be assumed the same as βt or ̃βt , which both lead to similar 

results (Ho et al., 2020). In this paper, we set σt
2 = β̃t. Then, the loss 

function of the training process is defined based on maximum likelihood 
estimation. Similar to VAE, the training is formulated to optimize the 
evidence lower bound (ELBO) on the negative log likelihood, as below: 

E[ − log pθ(x0)] ≤Eq

[

− log
pθ(x0:T)

q(x1:T|x0)

]

= Eq

[

− log p(xT) −
∑

t≥1
log

pθ(xt− 1|xt)

q(xt |xt− 1)

]

(5) 

Rewriting Eq (5) and then the loss function can be obtained, as 
below: 

L=Eq[DKL(q(xT |x0)‖p(xT)) − log pθ(x0|x1)+DKL(q(xt− 1|x0, xt)‖pθ(xt− 1|xt))]

(6) 

where DKL is the Kullback–Leibler divergence (Goodfellow et al., 2016), 
which is a common measure of distance between two probability dis-
tributions and can be calculated by DKL(p(x)‖q(x)) =

∫
p(x)log p(x)

q(x) dx. 
The first term in Eq (5) is a constant term and can be ignored, since both 
q(xT|x0) and p(xT) are standard Gaussian distribution. The second term 
is the reconstruction term. The last term is the distance between the 
posterior of the forward diffusion (Eq (3)) and the transition in the 
reverse process (Eq (4)). Because we set σt

2 = β̃t, minimizing the last 
term is equivalent to fitting μθ(xt , t) with μ̃t(xt ,x0). By reparametrizing 
the second and third term following Eq (3), a simplified loss function for 
the DDPM can be obtained, as below: 

Lsym =Et,x0 ,ϵ

[⃦
⃦
⃦ϵ − ϵθ

( ̅̅̅̅
αt

√
x0 +

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − αt

√
ϵ, t

)⃦
⃦
⃦

2
]

(7) 

where ϵθ
( ̅̅̅̅̅

αt
√

x0 +
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − αt

√
ϵ
)

is the neural network which takes the 
original images x0 and step t as the input and predicts the stepwise noise 
that needs to be removed; ϵ is the noise sampled from a standard 
Gaussian distribution in the forward diffusion process.

2.3. U-net architecture for noise prediction

This paper uses an U-Net architecture (Ronneberger et al., 2015) for 
the noise prediction in Eq (7), as shown in Fig. 4. A classic 
encoder-decoder structure with symmetrical downsampling and 
upsampling paths is used to capture and reconstruct the multiscale 
image features. The input block is composed of a convolutional layer and 
time-embedding layer. This time-embedding layer uses sinusoidal po-
sitional encodings (Vaswani et al., 2017) to convert the timestep into a 
high-dimensional vector, which is then processed through linear layers 
to integrate time step information into the model.

In both the downsampling and the upsampling paths, five down-
sampling and upsampling blocks are used respectively. Each block 
consists of a ResNet block (He et al., 2015) followed by a downsample or 
an upsample layer. ResNet block contains group normalization layers 
(Wu and He, 2018), residual convolutional layers, time projection 
layers, and Silu activation functions (Elfwing et al., 2017). The time 
projection layers takes the time step vector directly from the input layer 
and project it to a new tensor matching the feature tensor size. Then, the 
time step tensor is added to the feature tensor to incorporate the time 
step information. The downsample layer uses a convolution with a stride 
of 2. The upsample layer uses a transposed convolution and 
nearest-neighbor interpolation. Skip connections are used between 
downsampling and upsampling blocks, where feature maps are concat-
enated to preserve spatial information. Attention (Vaswani et al., 2017) 
layers are added both in the downsampling and upsampling paths to 
capture the global context and enhance feature extraction. A mid block 
is positioned between the downsampling and upsampling paths, which 
comprises ResNet layers and attention layers.

2.4. Training and sampling

The U-Net is trained in mini-batches with a batch size of 32 and a 
total training iteration number of 48000. Prior to training, all input 
images, originally comprising grey values within the range [0, 256], are 
first normalized to the [0, 1] interval by dividing each value by 256. 
Subsequently, these normalized values are linearly scaled to the range 
[− 1.0, 1.0] through the transformation xʹ = 2x − 1. The maximum step 
T of the forward diffusion process is 1000. In the training process, the 
time step t is sampled from a uniform distribution of {1,2,3,…,T}, and 
the noise ϵ is sampled from a standard Gaussian distribution. Using the 
original image x0, time step t, and the noise ϵ as input, the diffusion 
process (Eq (2)) can be conducted to get the noised image xt. The U-Net 
can then take the noised image xt and time step t as the input to predict 
the noise, i.e., ϵθ, for the reverse denoising process. Using the gradient 
descent optimizer Adam (Kingma and Ba, 2014), the parameters of the 
U-Net (i.e., θ) are optimized according to the loss function in Eq (7). In 
the gradient descent optimization, a cosine warm-up schedule for the 

Fig. 4. U-Net architecture used for noise prediction in reverse denoising process.

M. Liang et al.                                                                                                                                                                                                                                   Developments in the Built Environment 21 (2025) 100624 

4 



learning rate is used, which comprises a linear warm-up in the first 8000 
iterations and a cosine-shaped decay afterwards, as shown in Fig. 5.

Afterwards, new microstructures can be sampled. First, sample xT 
from a standard Gaussian distribution and then conduct the reverse 
denoising process to get the denoised image xT− 1 using the trained U- 
Net. By repeating such a denoising process from step T to 0, a new 
microstructure can be obtained. In Fig. 6, the reverse denoising process 
for generating new microstructures is shown for four cases at five 
representative steps: x1000, x300, x200, x100, x0. The x1000 is a standard 
Gaussian noise; x300, x200, x100 are partially-denoised microstructure; 
and the x0 is the final microstructure. Fig. 7 presents ten original and 
generated microstructures, respectively. The detailed comparison be-
tween the original and generated microstructures will be conducted by 
comprehensive image analysis, phase segmentation, and lattice fracture 

simulation afterwards.

3. Evaluation framework

An evaluation framework is built up herein to compare the generated 
microstructures with the original microstructures. It is important to note 
that the DDPM used in this study is not designed to replicate specific 
original images. During training, the U-Net learns to predict the noise in 
each reverse denoising step (Fig. 3). In the generation phase, 1000 
denoising steps are applied to synthesize new microstructures starting 
from standard Gaussian noise. As a result, there is no one-to-one cor-
respondence between generated and original images and pairwise 
comparisons are not feasible. Instead, we conducted comprehensive 
dataset-level comparisons to evaluate the global statistical and micro-
mechanical characteristics of the generated microstructures. The dataset 
for evaluation analysis comprises 1280 generated microstructures and 
1280 original microstructures. Based on the evaluation dataset, the 
evaluation analysis is conducted in the following three steps. 

1) Extract and compare the statistical characteristics of the greyscale 
values of generated and original images in the evaluation dataset, i. 
e., the probability density distribution (PDF) and the cumulative 
density distribution (CDF).

2) Based on the PDF and CDF, conduct phase segmentation on the 
evaluation dataset, calculate and compare the phase assemblage of 
the original and generated microstructures, and quantitatively 
analyze the microstructure characteristics.

3) Based on the segmented microstructures, conduct micromechanical 
simulations on the whole evaluation dataset, and compare the 
micromechanical properties and behaviors (i.e., elastic modulus, 
uniaxial tensile strength, and stress-strain curves).

The procedures above aim to provide a comprehensive description of 
the difference between the generated and original microstructures. The 
first step of PDF/CDF analysis is straightforward. The theories and 
methods for phase assemblage analysis and micromechanical analysis 
are introduced in this section and the results are presented in section 4.

Fig. 5. The cosine warm-up schedule of the learning rate.

Fig. 6. Four cases of the reverse denoising process to generate new microstructures 
(Note: Images from the top to bottom row are four different cases; Images from the left to right column corresponds to: x1000,x300,x200,x100,x0)
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3.1. Phase assemblage analysis

The brightness in greyscale of the BSE images is primarily a function 
of the atomic number in the area of interest (Scrivener et al.), which can 
be used to represent the microstructural characteristics. Based on the 
PDF and CDF of the greyscale values, the microstructure of cement paste 
can be typically divided in four different phases, i.e., pores, low-density 
calcium-silicate-hydrate (LD- CSH), high-density calcium-silicate-hy-
drate (HD-CSH), and unhydrated cement (UHC) (Zhang et al., 2018a; 
Constantinides and Ulm; Bernard et al., 2003). The threshold value for 
phase segmentation can be calculated by global thresholding method 
(Wong et al., 2006). The mass ratio between the LD-CSH and HD-CSH Mr 
can be calculated by Jennings’ empirical model (Tennis and Jennings, 
2000), as below: 

Mr =3.017
(w

c

)
α − 1.347α + 0.538 (8) 

where wc is the water/cement ratio; α is the hydration degree and can be 
calculated as below: 

α=

Vh
V

Vh
V + Vu

(9) 

where Vh is the volume fraction of hydration product (i.e., LD-CSH and 
HD-CSH); Vu is the volume fraction of UHC; V is the volume ratio of 
hydration product to reactant, which is assumed as 2.2 according to 
(Van Breugel, 1993). Based on global thresholding method (Wong et al., 
2006) and Eq (8) and (9), the threshold values of the four phases 
including pores, LD-CSH, HD-CSH, and UHC can be calculated and 
therefore the BSE images can be segmented.

3.2. Phase connectivity analysis

This paper characterizes the connectivity of microstructural phases 
by lineal path function (LPF) (Torquato, 2002b), which was proposed to 

quantify the connectivity of microstructural phases. The computation of 
LPF herein is conducted using the open-source PoreSpy library (Gostick 
et al., 2019). By inserting lines of arbitrary length into the microstruc-
tures, the LPF quantifies the connectivity based on the probability of 
lines with specific length that lie wholly within a single phase. LPF has 
been successfully used to compare the statistical identity of cementitious 
microstructures (Hong et al., 2024; Han et al., 2018).

As will be illustrated in the micromechanical analysis and by other 
relevant studies (Hong et al., 2024; Zhang et al., 2019a; Han et al., 
2023), cracks are more prone to propagate through the weak phases of 
the LD-CSH (or outer product) and pore and therefore these two phases 
primarily dominate the micromechanical performance. In this regard, 
this paper computes the LPF of pore and LD-CSH for all the generated 
and original microstructures within the evaluation dataset, which can be 

Fig. 7. Ten cases for comparing the original and generated microstructures: (a) Cases 1–5; (b) Cases 6–10. (Note: The top and bottom rows correspond to the original 
and generated microstructures respectively.)

Fig. 8. Lattice network for micromechanical analysis of cement paste.
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essential statistics to evaluate the effectiveness of the proposed DDPM 
model.

3.3. Micromechanical analysis

The micromechanical analysis is conducted by the Delft Lattice 
Model (Schlangen and Garboczi, 1997a), which has been widely applied 
in simulating various micromechanical behaviors and validated by se-
ries of micromechanical tests (Zhang et al., 2019b; Gan et al., 2020; 
Chang et al., 2022; Šavija et al., 2013a, 2013b). For the micro-
mechanical analysis, consistent with the phase assemblage analysis 
described above, we assumed that the cement paste is a four-phase 
composite that is comprised of pore, LD-CSH, HD-CSH, and UHC. Such 
four-phase assumption was used for lattice model of micromechanical 
analysis in our previous paper (Liang et al., 2022; Gan et al., 2021). Note 
that different assumptions of phases may be used for the model. In this 
paper, we use the four-phase assumption for the micromechanical 
analysis of both original and generated images and compare their 
differences.

Using the segmented microstructure of cement paste, a Lattice 
network can be established with different local micromechanical prop-
erties for different phases, as shown in Fig. 8. For each microstructural 
input, a 128 × 128 array of square cells is generated, and each cell is 
assigned with different element types. Then, sub cells with the side 
length equal to half of the square cells (Zhang et al., 2018b) are 
generated in the center. Within each sub cell, the nodes of the lattice 

beam elements are randomly positioned following a uniform distribu-
tion. Finally, based on the random beam nodes array, Delaunay trian-
gulation is performed to connect the neighboring nodes and form the 
lattice network (Šavija et al., 2014).

Afterwards, based on the segmentation results, virtual uniaxial ten-
sile tests are conducted on the microcubes, by fixing the bottom side and 
applying tensile stress on the top side, as shown in Fig. 9. The specimen 
is loaded until breaking, then the elastic modulus E (i.e., the slope of the 
loading phase) and tensile strength ft (i.e., the peak) can be obtained 
from the stress-strain curve. The local properties of different phases are 
determined according to micromechanical testing results. As shown in 
Table 1, the values of elastic modulus for different phases are obtained 
from deconvolution results of statistical nanoindentation tests (Hu and 
Li, 2014). The values of tensile strength for different phases cannot be 
tested and was obtained by a numerical calibration procedure 
comparing the modelling results of lattice model and the results of 
microscale cantilever bending tests (Gan et al., 2021). In this paper, the 
resolution of each square cell is 0.78 μm, which is less than 5 μm and 
therefore the local properties of each phase are not dependent on w/c 
ratios, according to (Hu and Li, 2015; Vandamme and Ulm, 2013).

The beam elements in the lattice network are assumed as Timo-
shenko beams with circular cross-sections and the element stiffness 
matrix k can be calculated accordingly. Afterwards, the global stiffness 
matrix K can be assembled. The fixed boundary condition is achieved by 
the penalty method, i.e., by assigning a large value (106 GPa) for stiff-
ness on the bottom side. The lattice model is then solved based on the 
linear equations of Timoshenko beam system S = F/K, where S is the 
nodal displacement and F is the nodal force on the top side. The loading 
of the specimen is conducted in 200 load-unload steps. In each step, a 
beam element that meets the maximum stress criterion will be removed, 
which characterizes the damage induced by the immediate constant 
load. According to (Zhang et al., 2017; Schlangen and van Mier, 1992), 
the stress in each lattice element is calculated as follows: 

Fig. 9. Boundary conditions and result analysis of micromechanical analysis.

Table 1 
Local properties of different phases.

Phases fi/MPa E/GPa

UHC 614.7 84.2
LD-CSH 52.2 21.3
HD-CSH 82.8 26.4

Fig. 10. Greyscale statistics of the generated and original images: (a) PDF; (b) CDF.
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σf = αN
N
A
+ αM

M
W

(9) 

where A is the cross-sectional area of every beam element; W is the 
cross-sectional moment of resistance of every beam element (W = πD3/

32, where D is the effective diameter of the lattice element.); N and M 
are the axial force and bending moment of the beam element; αN and αM 
are the influencing factors of axial force and bending moment, which 
normally equal 1.0 and 0.05, respectively, according to (Qian, 2012; 
Šavija et al., 2020; Chang et al., 2020).

4. Results and discussion

This section presents a comparison of the generated and original 

microstructures by evaluating the greyscale statistics, phase assemblage, 
and micromechanical properties. Suggestions for future work are dis-
cussed at the end.

4.1. Image analysis

Based on the evaluation dataset (which comprises 1280 generated 
images and 1280 original images), the PDF and CDF of the greyscale 
values of the generated and original images can be extracted respec-
tively, as shown in Fig. 10. The PDF and CDF of the generated and 
original images highly resemble each other. The CDFs are almost iden-
tical. In the PDFs, the locations of three peaks are almost the same for 
both generated and original images. Slight differences can be found 
regarding the frequency of the PDF, especially at the peaks. Overall, the 
comparison shows that DDPM is able to generate BSE images of cement 
paste with the same overall distribution of greyscale values.

4.1.1. Segmentation
Furthermore, the three threshold values S1, S2, S3 for segmenting the 

microstructures can be calculated based on the PDF and CDF by the 
global threshold method introduced in section 3.1. Greyscale value be-
tween 0 ∼ S1 is range of pore phase and the upper threshold value S1 can 
be determined from the inflection point of the CDF (Fig. 10(b)) (Wong 
et al., 2006). S2 and S3 are the upper threshold values of LD-CSH and 
HD-CSH, respectively. Note that the second peak of PDF corresponds to 
the calcium hydroxide (CH). Despite the distinct peak of CH, the seg-
mentation of the CH phase remains a challenge for BSE images because 
of its complex interpenetrations with other phases (Scrivener, 2004). In 
this paper, we defined the HD-CSH a composite mainly comprised of 
inner product and CH, according to (Zhang et al., 2020; Vandamme, 
2002). The four-phase assumption used in this paper was well identified 
in statistical nano-indentation tests (Liang et al., 2023b; Hu et al., 2016). 
The results of S1, S2, S3 for the generated images are 0.332, 0.401, and 
0.544, while the ones for the original images are 0.329, 0.405, and 
0.546.

4.1.2. Phase assemblage
Segmenting the generated and original images using the threshold 

values above, the four-phase microstructures can be obtained. To 
qualitatively show the segmentation results, four representative cases of 
segmentation are shown in Fig. 11. A common understanding over the 
microstructure of cement paste can already be seen in both the gener-
ated and original images: The CSH can be categorized as HD-CSH and 
LD-CSH, or the so-called inner product and outer product (Taylor, 
1997). The HD-CSH (i.e., inner product) is produced in the space orig-
inally occupied by UHC. Therefore, the HD-CSH should precipitate 
around the UHC and form a rim, as shown in the microstructure of the 
original images (Fig. 11(c–d)). Interestingly, such HD-CSH rim around 
the UHC also clearly forms in the generated microstructures. It should 
also be noted that, despite the four-phase assumption include CH in the 
HD-CSH, the distribution pattern of CH in both the generated and 
original images is still distinguishable. According to (Scrivener et al., 
2016), the CH clusters (identified as HD-CSH) is produced in the 
water-filled space and mixed with outer product (identified as LD-CSH). 
Representative CH clusters are highlighted with red dashed circles in 
Fig. 11 to illustrate their distribution. Accordingly, in the generated 
images we can also see the intertwined distribution of LD-CSH and CH 
clusters distributing in the water-filled space. The distribution pattern of 
LD-CSH and HD-CSH in the generated images indicates that the DDPM 
successfully captures such microstructural features.

However, it should be noted that cementitious microstructures 
exhibit significant variability from sample to sample. For a quantitative 
and reliable evaluation, all microstructures in the evaluation dataset 
were segmented, and key indices—including porosity, UHC ratio, degree 
of hydration (DOH), and the volume ratio of LD-CSH—were calculated 
for both generated and original samples. The mean values and standard 

Fig. 11. Four representative cases of phase segmentation: (a–b) Generated 
microstructures (c–d) Original microstructures. (Note: Red dashed circles mark 
representative CH clusters).
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deviations of these indices are presented in Table 2. The close statistical 
alignment between the generated and original datasets indicates that the 
model not only replicates the average microstructural properties but 
also effectively captures the inherent variability. The relatively large 
standard deviations reflect the natural microstructural heterogeneity of 
cementitious materials. Nevertheless, the generated microstructures 
show slightly higher DOH, more LD-CSH, and lower porosity compared 
to the original (i.e., real) microstructures.

Table 2 
Overall microstructural indices of generated and original microstructures.

Indices Generated Original

Porosity (%) 4.10 ± 1.70 4.61 ± 1.80
LD-CSH ratio (%) 42.20 ± 8.18 40.92 ± 8.04
UHC ratio (%) 12.90 ± 8.56 13.22 ± 8.44
DOH 0.757 ± 0.125 0.750 ± 0.123

Fig. 12. LPF function calculated for pore (a) and LD-CSH (b), averaged over generated and original microstructures respectively within the evaluation dataset. (Note: 
r is the line length and D is the width of each microstructure).

Fig. 13. Four representative cases of cracking patterns: (a–b) Generated microstructures (c–d) Original microstructures.
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4.1.3. Phase connectivity
Using the LPF, this paper quantifies the connectivity of the pore and 

LD-CSH phases. The LPF is calculated for all generated and original 
microstructures within the evaluation dataset along both the x- and y- 
axis. The CDF of the averaged LPF over the dataset is shown in Fig. 12. In 
general, the LPF results show strong similarity over pore and LD-CSH 
connectivity between generated and original microstructures. Natu-
rally, the LPF distribution of LD-CSH covers wider range in line length 
(0~0.1 r/D) while the LPF of pores only concentrates over the range of 
0~0.03 r/D, reflecting the inherent size differences between these 
phases. A slight discrepancy was observed in the LD-CSH phase, where 
the generated microstructures exhibited marginally better connectivity. 
This aligns with the phase assemblage analysis, where generated mi-
crostructures showed a slightly higher LD-CSH ratio (Table 2).

To sum up, this section shows that the generated images by the 
DDPM resemble the original microstructures characterized by BSE-SEM. 
The high similarity on the greyscale statistics (Fig. 10), the indices 
(Table 2), and phase connectivity (Fig. 12) shows that DDPM can well 
capture the global microstructural characteristics. Moreover, the 
generated images also indicate similar local microstructural character-
istics, that the HD-CSH mostly forms as a rim surrounding the UHC 
particles. Nevertheless, such indication cannot give quantitative con-
clusions. To this end, micromechanical analysis needs to be conducted, 
whose results are determined by not only global but also local micro-
mechanical characteristics.

4.2. Micromechanical analysis

Using the Delft Lattice Model for micromechanical analysis, this 
section aims to quantify the similarity between the generated and 
original microstructures by qualitatively comparing the cracking pat-
terns and quantitatively comparing the stress-strain curves, elastic 
modulus, and uniaxial tensile strength. Four representative cases of the 
cracking patterns at the last simulation step are shown in Fig. 13. The 
results show that cracks mostly propagate through the LD-CSH, which 
conforms to the classical understandings of the LD-CSH formation from 
the aspect of cement chemistry (Taylor, 1997): LD-CSH (i.e., outer 
product) forms in the water-filled pore space. During hydration, because 
the volume of hydration products is smaller than that of the reactants, 
chemical shrinkage happens and creates pores. Therefore, compared 
with HD-CSH, LD-CSH is a more porous region and therefore the main 
cracks propagate through LD-CSH. Both generated and original micro-
structures are dominated by such cracking patterns, indicating that the 

DDPM captures the fact that LD-CSH has a more porous microstructure 
and therefore is most probable to allow for crack propagation in frac-
turing tests.

The stress-strain curves of the virtual uniaxial tensile tests of the 
whole evaluation dataset are shown in Fig. 14. The results show that 
they have almost the same average stress-strain curve, while the stan-
dard deviation regions almost coincide. Nevertheless, the generated 
microstructures tend to have slightly higher uniaxial tensile strength, 
which is expected if considering the generated images also show slightly 
higher DOH and lower porosity, see Table 2.

Extracting the uniaxial tensile strength and elastic modulus from the 
stress-strain curves, the statistical results of the whole evaluation dataset 
are shown in Fig. 15. The histogram (Fig. 15(a and b)) illustrates that the 
distributions of both strength and elastic modulus in the original and 
generated microstructures visually resemble Gaussian distributions. The 
quantile-quantile (QQ) plot Fig. 15(c and d) compares the theoretical 
quantiles of a standard Gaussian distribution (x-axis) with the actual 
sample values (y-axis) of elastic modulus and strength. Data points 
closely following the 45-degree reference line indicate a strong agree-
ment with Gaussian behavior. The P values are also calculated using 
Kolmogorov–Smirnov (KS) test. All the p values are higher than 0.05, 
further confirming the observation that both the elastic modulus and the 
uniaxial tensile strength of generated and original microstructures 
follow a Gaussian distribution. It is worth noting that the P values are 
highly sensitive to slight variations in the distribution tails, which may 
account for differences observed in KS tests.

The PDFs Fig. 15(e and f) are estimated by fitting the sample data 
with a kernel smoothing function. Herein a Gaussian kernel is used for 
the fitting process. Both the results of elastic modulus and strength show 
almost the same distribution for the generated and original micro-
structures. Comparing the mean values of the generated and original 
microstructures, the strength and elastic modulus are 17.13 MPa vs. 
16.26 MPa and 16.31 GPa vs. 15.88 GPa, with a difference of 5.4% and 
2.7%, respectively, indicating good consistency between the simulated 
micromechanical properties of generated and original images. Similarly, 
it is found here that the generated microstructures have higher strength 
and elastic modulus, which is consistent with the findings in stress-strain 
curves and in DOH and porosity indices in phase assemblage analysis. 
The difference is somewhat larger in uniaxial strength. This is because 
that the uniaxial tensile strength is highly influenced by the weak areas, 
i.e., the porous LD-CSH, as explained in Fig. 13. The randomness of local 
pore sizes and distributions dominates the fracture process and therefore 
results in variance of the strength data (see Fig. 15(b–d)).

To summarize, this section presents evidence that the generated 
images have almost the same micromechanical behaviors/properties the 
original images, based on comprehensive micromechanical analysis 
over the evaluation dataset. Since micromechanical behaviors/proper-
ties are generally a combined outcome of multiple microstructural ef-
fects (Hu et al., 2017; Ulm et al., 2010), this section provides strong 
evidence that the generated images are identical to the original images.

4.3. Discussion

This paper presents the application of DDPM in synthesizing realistic 
microstructures of cement paste directly using the BSE images as 
training input. The microstructures generated by the DDPM do not only 
visually resemble the original ones, but also show almost identical 
greyscale statistics, phase assemblage and micromechanical properties, 
indicating that the DDPM is able to capture the underlying micro-
mechanical representation. Without any assumptions and solely 
informed by the BSE images, the DDPM can generate realistic micro-
structure input for microscale studies of cement paste.

To extend the work of this paper to build a more general, versatile, 
and useful tool for the cement and concrete research, the following 
works are recommended. 

Fig. 14. Stress-strain curves.
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• The DDPM of this paper is an unconditional model, i.e., the input of 
this model is only ordinary Portland cement paste with a single w/c 
ratio of 0.40. For more general applications, conditional DDPM 
should be built by incorporating more parameters in the training 
samples, such as w/c ratios, compositions of clinkers, ages, supple-
mentary cementitious materials, etc. It should be noted that 

incorporating these parameters does not require significant changes 
of the DDPM methods and network architectures. These parameters 
can be encoded and embedded in the input images as the time- 
embedding procedures described in section 2.3 (Lyu and Ren, 2024).

• The DDPM in this paper only generates two-dimensional images, 
which of course is a simplification of the real microstructures. Such 

Fig. 15. Statistics of the elastic modulus and strength (a, c, e, g are the histogram, QQ plot, PDF, and CDF of the elastic modulus respectively; b, d, f, h are the 
histogram, QQ plot, PDF, and CDF of the uniaxial tensile strength respectively.).
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limitation is due to the fact that BSE images are two dimensional. If 
sufficient 3D images are available (such as from XCT), then the 
DDPM in this paper can be directly adjusted to use 3D volumes as 
input by simply replacing the 2D convolutional layer as the 3D 
convolutional layer. If only a limited number of 3D images are 
available, then a 3D reconstruction model needs to be built to map 
the 2D images from the DDPM to 3D volumes. This 3D reconstruction 
model can also use the DDPM, which often uses a few 2D slices as 
input and generates 3D output (Hui et al., 2024).

• In this paper, the validation of the generated images is mainly by 
micromechanical analysis. Broader validation schemes are recom-
mended to also include transport properties (such as water perme-
ability, chloride diffusion), volume stability, etc.

• This paper shows that DDPM can extract the latent representation of 
the microstructure of cement paste. Such latent representation can be 
used to either predict the material properties or optimize the mate-
rial design. In (Zheng et al., 2023b), VAE was used as both the image 
generator, and its low-dimensional latent variables were used to 
predict the material properties and conduct the material optimiza-
tion. For DDPM, despite its advantages in image quality, the 
extraction of latent representation is not straightforward. Recent 
studies (Yang and Wang, 2023) show that the noise predicted at a 
few steps are useful for such representation learning, which then are 
useful for property predictions. Following this approach, a condi-
tional DDPM-based inverse design tool for cementitious materials 
can also be constructed.

5. Conclusions

This study introduces the application of Denoising Diffusion Proba-
bilistic Models (DDPM) for the synthesis of high-fidelity cement paste 
microstructures. Comparing with conventional approaches such as SEM, 
XCT, and other microstructure generation methods, the DDPM approach 
offers significant improvements in efficiency and cost-effectiveness, 
while also achieving stable training and high-fidelity image generation 
without the limitation of phase assumption.

The synthesized microstructures exhibit physically meaningful dis-
tributions of LD-CSH, HD-CSH, and UHC, aligning well with classical 
theories of Portland cement hydration. The generated images maintain 
nearly identical greyscale statistics and phase assemblage to the original 
microstructures, ensuring accurate prediction of micromechanical 
properties such as elastic modulus and uniaxial tensile strength. Addi-
tionally, phase connectivity analysis via the lineal path function con-
firms that the model successfully captures spatial relationships within 
the microstructures, a critical aspect often overlooked in prior studies.

The established DDPM framework provides a robust foundation for 
multiscale modeling of cementitious materials, serving as a high-fidelity 
input for property and behavior analysis. The ability to generate realistic 
microstructures strengthens the link between microstructure and ma-
terial properties, facilitating deeper insights into cementitious materials.

Future work should focus on expanding the model’s applicability by 
incorporating diverse parameters such as water/cement ratio, curing 
age, and supplementary cementitious materials. Integrating broader 
validation frameworks, including transport properties and volume sta-
bility, will further enhance its practical value. Additionally, leveraging 
the latent representations learned by DDPM for material property pre-
dictions and optimization can drive innovative design and analysis of 
cementitious materials.
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