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Convergence and Technologies

Integrative Modeling Identifies Key Determinants
of Inhibitor Sensitivity in Breast Cancer Cell Lines
Katarzyna Jastrzebski1, Bram Thijssen1,2, Roelof J.C. Kluin3, Klaas de Lint1,
Ian J. Majewski4, Roderick L. Beijersbergen1, and Lodewyk F.A.Wessels1,2,5

Abstract

Cancer cell lines differ greatly in their
sensitivity to anticancer drugs as a result of
different oncogenic drivers and drug resistance
mechanisms operating in each cell line.
Althoughmanyof thesemechanismshave been
discovered, it remains a challenge tounderstand
how they interact to render an individual cell
line sensitive or resistant to a particular drug. To
better understand this variability, we profiled a
panelof 30breast cancer cell lines in the absence
of drugs for their mutations, copy number
aberrations, mRNA, protein expression and
protein phosphorylation, and for response to
seven different kinase inhibitors. We then con-
structed a knowledge-based, Bayesian compu-
tational model that integrates these data types
and estimates the relative contribution of vari-
ous drug sensitivity mechanisms. The resulting
model of regulatory signaling explained the
majority of the variability observed in drug res-
ponse. The model also identified cell lines with
an unexplained response, and for these we
searched for novel explanatory factors. Among
others, we found that 4E-BP1 protein expres-
sion, and not just the extent of phosphoryla-
tion, was a determinant of mTOR inhibitor
sensitivity. We validated this finding experimentally and found that overexpression of 4E-BP1 in cell lines that normally possess
low levels of this protein is sufficient to increase mTOR inhibitor sensitivity. Taken together, our work demonstrates that
combining experimental characterization with integrative modeling can be used to systematically test and extend our
understanding of the variability in anticancer drug response.

Significance:By estimating howdifferent oncogenicmutations anddrug resistancemechanisms affect the response of cancer cells
to kinase inhibitors, we can better understand and ultimately predict response to these anticancer drugs.
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Major Findings
Our study illustrates the power of combining molecular

characterization of a panel of 30 breast cancer cell lines
with knowledge-based Bayesian computational modeling
to better understand the specific signaling pathways
involved in regulating the observed variability in anticancer
drug response. This approach allowed us to quantify the
contribution of diverse driver mutations and resistance
mechanisms in determining the response to seven kinase
inhibitors. This led us to uncover a novel sensitivity mech-
anism for mTOR inhibitors, namely the overexpression of
4E-BP1.
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Quick Guide to Equations and Assumptions
To integrate the different data typeswith knowledge of the regulatory signaling pathways,we created an integrative computational

model using amodeling frameworkwe call inference of signaling activity. A challenge in constructing such amodel is decidingwhich
aspects of cell biology should be included and which can be omitted. To tackle this challenge, we developed the model iteratively
using the procedure shown in Fig. 1A. We started out with a small, simple network including only the signaling nodes EGFR, ERK,
AKT, and a node depicting proliferation. We then surveyed the literature for signaling events, molecular mechanisms, and recurrent
mutations and copy number aberrations associated with breast cancer or known to be involved in determining drug sensitivity (see
Supplementary Tables S9 and S10 for all references that were used). We iteratively addedmore of these relevant mechanisms to the
model. Specifically, for everymechanismwe created a newmodel with additional nodes to represent themutation, amplification, or
signaling molecule. At each iteration, we tested the goodness of fit with the posterior predictive distribution (see section on testing
the goodness offit) andused themarginal likelihood todecidewhether thenewly addedmechanisms shouldbe retained. Finally, we
stopped the process ofmodel refinement when further additions no longer increased themarginal likelihood or when computation
time grew impractically long.

The resultingmodel is shown in Fig. 1B and includes growth factors, surface receptors, theMAPK and PI3K pathways, mutations,
and copy number aberrations, which occur regularly in breast cancer, kinase inhibitors and their targets, and finally the proliferation
of the cells. The signalingmolecules in themodel (the nodes) are linked using activation functions (the arrows), which describe how
the signal is propagated between molecules.

The activity of a signaling molecule i in cell line j, Ai,j, is calculated as follows:

A�
i;j ¼ Ei;j � bi þ

P
k2parentsA

ðAiÞsk;i � Ak;j þ
P

k2parentsM
ðAiÞsmut;k;i �Mk;j

 !

Ai;j ¼ maxðminðA�
i;j;1Þ; 0Þ

: ðAÞ

The activityA�
i,j is a linear combination of a base activity bi, the upstream signalingmolecules (Ak2parents(i),j)with signaling strength sk,

i, and the upstream mutations (Mk2parents(i),j) with signaling strength smut,k,i, which is then multiplied by the expression of the
signaling molecule itself (Ei,j). The resulting value is clamped between 0 and 1 to give interpretable values that are comparable
throughout the network. For a full description, see the Supplementary Materials and Methods.

Fig. 1C shows the structure of the model in template notation for a small part of the network. To illustrate signal propagation
betweenmolecules, consider, for example, S6K. The activity of S6K, represented in the figure by the variable S6K signal, is a function
of the activity of the upstreamkinasemTORC1 (mTORC1 signal), aswell as of the total amount of S6K in the cell (S6K expression). The
activation function for calculating S6K signal has several parameters, namely the basal activity (S6K base signal), the strength of the
link betweenmTORC1 and S6K (mTORC1!S6K strength). Importantly, the parameters, represented by dashed circles, are shared by
all cell lines. That is, the values of the parameters are the same for all cell lines. So, although each cell line can have a different amount
of mTORC1 activity, a given amount of mTORC1 signal always gives rise to the same amount of input signal to S6K. Note that the
model is not intended tobe aprecise descriptionof all chemical reactionswithin the network, but rather an abstract representationof
relevant regulatory signaling.

Wedonot explicitly include feedback signaling events in themodel. Although feedback signaling is an important aspect of cellular
regulatory networks, we find that even without feedback signals the relative viability after drug treatment can still be described well.
This ismost likely due to the fact that the activity of feedback loopsmay still be indirectly reflected in the steady-state signal strengths.

Themodel provides a framework that allows the integration of all data types to infer the parameter values and signaling activities.
Some variables are observed directly, for example the presence of a mutation, and in this case the value of the node is set to the
observed value directly.Other variables, namely the protein activity, the untreated growth rate, and the viability after drug treatment,
are only observed indirectly. For example, the amount of S6K phosphorylation only indirectly reflects S6K activity. In these cases, we
add a random variable, xi,j, which models the measurement value and which is dependent on the hiddenmodel variables. We then
use a likelihood function for this random variable xi,j to infer the parameters. We use a Student t distribution and center the
distribution on xi,j. The likelihood can be expressed as

Pðyi;j;k j �Þ ¼ tðyi;j;k jm ¼ xi;jð�Þ; s ¼ si; n ¼ 3Þ; ðBÞ

xi;jð�Þ ¼

gi þ ð1� giÞAi;jð�Þ for RPPA data

rjð�Þ for growth data

Djð�Þ for drug response data;

8>>>><
>>>>:

ðCÞ

where xi,jmodels thedata as described above, yi,j,k is themeasurement data, k indexes thebiological replicatemeasurements,Ai,j is the
signaling activity defined above in Eq. A, r is the untreated growth rate, andD is the relative viability (the variables r andD are defined
in the Supplementary Material and Methods). u represents a vector of all model parameters in Eq. A.

To infer the parameter values and signaling activities, we used Bayesian statistics. For all parameters, prior probability
distributions were specified to describe what values the parameters might assume a priori (Supplementary Tables S11 and S12).
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Introduction
Breast cancer is the most commonly diagnosed cancer in

women and the second leading cause of cancer-related death
(1). Decades of research have increased our knowledge of the
molecular basis of this disease, whereas recent large-scale geno-
mics studies have provided detailed information on mutations,
copy number aberrations, and gene expression across different
tumor samples, including breast cancer (2, 3). However, despite
this increasing amount of knowledge, response rates for cancer
treatment remain very low for many cancer subtypes, including
breast cancer.

One of the challenges of cancer treatment is the genetic com-
plexity of the disease, involving different oncogenic drivers or
combinations thereof that allow the tumor to grow and prolif-
erate. In some subtypes of breast cancer, the major oncogenic
drivers are known, as is the case in HER2-amplified breast cancer,
associated with the overexpression and aberrant activation of
HER2 receptor signaling. Targeted treatment againstHER2 indeed
provides clinical benefit (4, 5). However, intrinsic resistance is
frequently encountered, and acquired resistance often develops in
tumors that are initially sensitive (6). A variety of drug resistance
mechanisms to HER2-targeted therapies have been discovered in
cell lines. For example, activation of the PI3K pathway resulting
from mutations in PI3K (7), the loss of PTEN (8), or autocrine
HGF signaling (9) have all been reported as mechanisms of drug
resistance. However, due to the multitude of resistance mechan-
isms, which is further complicated by the cross-talk in down-
stream signaling, it is unclear to what extent each of these
mechanisms is important for determining the sensitivity of a
particular cell line or tumor. In other types of breast cancer, in
particular triple-negative breast cancer, the regulatory signaling
that drives the growth of the tumor is even less clear, although the
PI3K/AKT pathway deregulation has been identified as a recurrent
event (2).

Similar to patients, cell lines showa large degree of variability in
drug response (10–12). Understanding the heterogeneous
response in cell lines is an important starting point for under-
standing patient response. But despite many efforts, fully explain-
ing drug response in vitro remains a challenge. Computational
modeling can be used as a tool capable of untangling the com-
plexity of drug sensitivity and resistance across different cell lines.
There have been various approaches to computational modeling
of drug sensitivity. These approaches can be broadly divided into
two categories: approaches using linear or black box statistical
models (11, 13, 14), and approaches using more detailed mech-
anistic computational models (15, 16). Although both
approaches have recovered known drug sensitivity mechanisms
and identified several novel associations, they have several limita-

tions. For the black box statistical models, such as elastic net
regression (10, 11), random forests (13), support vectormachines
(13), or a clustering-based method named ACME (14), the
models are not sufficiently detailed to capture how molecular
characteristics affect drug sensitivity. For example, the interactions
between molecular aberrations are not explicitly modeled. This
precludes finding all but the strongest associations, despite the
very large number of cell lines that were profiled. In addition,
available knowledge of signaling pathways is not employed,
which could increase the statistical power to find molecular
mechanism that associate with drug sensitivity. In the more
detailed, mechanistic computational models (15, 16) such back-
ground knowledge is used; however, in these cases the number of
cell lines studied has been limited, and it is thus unclear to what
extent the particularmechanisms are important for explaining the
variability across a larger set of cell lines. In addition, these
mechanistic modeling studies used only a single data type, for
example (phospho)protein expression, limiting the insight into
the impact of other molecular aberrations present in the cell
lines examined.

To address these limitations, we set out to combine detailed
computational modeling of drug sensitivity mechanisms with
extensive measurements of multiple data types derived from a
breast cancer cell line panel. We developed a combined experi-
mental/computational modeling approach, which can utilize
background knowledge from the literature and integrate diverse
types of data, including DNA sequencing, RNA sequencing, pro-
tein expression, and protein phosphorylation, with drug response
data. We subsequently employed the computational model to
analyze how the regulatory signaling in each cell line influences
response to each drug. The computationalmodel can also be used
to identify cases where drug response cannot be explained fully by
the existing knowledge. In one case, this lead us to identify and
confirm the level of expression of eukaryotic translation initiation
factor 4E-binding protein 1 (4E-BP1) as adeterminant of response
to mTOR inhibitors in breast cancer cell lines.

Together, we show the utility of employing integrative compu-
tational modeling to combine prior knowledge with measure-
ments of multiple molecular data types to systematically test and
extend our understanding of drug response to kinase inhibitors.

Materials and Methods
Detailed materials and methods are provided in the Supple-

mentary Materials and Methods.

Cell line panel
A panel of 30 breast cancer cell lines was assembled from

various sources, the details and growth conditions of which are

Subsequently, two variants of Monte Carlo sampling were used to calculate the posterior probability distribution of all parameters
(Supplementary Fig. S1).

The major assumptions are thus as follows. First, we assume that the signaling activity is a linear combination of its upstream
inputs. Similarly, proliferation is a linear combination of the activity of several effector signaling molecules. Second, we do not
explicitly model feedback events, but assume that their effect is indirectly reflected in the steady-state signal strengths. Third, we
assume that a signaling molecule with a certain amount of activity always gives rise to the same amount of input activity to its
downstream nodes in every cell line, as the signaling strength sk,i is constant across cell lines. However, note that cell lines can
still have widely different signaling activity due to variation in the mutations present as well as different gene expression levels.
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listed in Supplementary Table S1. Cell lines were authenticated by
suppliers using short tandem repeat profiling. The SK-BR-7 cell
line was obtained from an internal NKI cell bank and authenti-
cated by STR profiling. We further confirmed the identity of the
lines by comparing their mutation profiles (found by DNA
sequencing) with those reported in COSMIC (17). Upon receipt,
all lines were first expanded and early passage stocks frozen in
liquid nitrogen. Lines were kept in culture for no more than 3
months, after which a new cell aliquot was obtained from frozen
stock if needed. All cell lines were tested in-house and found to
be negative for mycoplasma. Doubling times for each cell line
were estimated by fitting exponential curves to confluence
measurements obtained using an IncuCyte FLR/ZOOM instru-
ment (Essen Bioscience). The resulting doubling times are pro-
vided in Supplementary Table S2.

Drug response assays
Prior to carrying out drug response assays, cell line seeding

densities were optimized. Cells seeded as for the cell doubling
time experiments were assessed at the 96-hour endpoint for
percentage confluence, and incubated with CellTiter-Blue (CTB;
Promega) for a measure of metabolic activity. This was to
ensure that cell lines did not exceed 90% confluence at assay
endpoint and that the CTB signal at this density was not
saturated. Seeding densities used for each cell line are listed
in Supplementary Table S1.

For drug response assays, cells were seeded at the optimized
density and 24 hours later treated with a 10-point 1:3 dilution
series of a number of inhibitors using a Microlab STAR worksta-
tion fitted with 8 � 1,000 mL channels and 96-probe head
(Hamilton): AZD8055, top dose 3 � 10�5 mol/L; BEZ235,
1 � 10�5 mol/L; GDC0941, 3 � 10�5 mol/L; MK2206,
3 � 10�5 mol/L; PD0325901, 3 � 10�5 mol/L; lapatinib,
3�10�5mol/L; foretinib, 3�10�5mol/L (all fromSelleckchem).
Each condition, including an untreated negative control and a
phenyl arsine oxide (1 � 10�6 mol/L) treated positive control
were set up in technical quadruplicate. Following 72-hour incu-
bation, cellswere stainedwithCTB (1:30dilution) for 4hours and
the signalmeasuredusing anEnvision spectrophotometer (Perkin
Elmer). In the case of the validation experiments with HCC1806
andHCC1937 cell lines expressing 4E-BP1orGFP constructs, cells
were treated in a 9-point 1:3 dilution series of AZD8055, BEZ235,
or GDC0941 using a HP D300 Digital Dispenser (Hewlett-
Packard), while all other experimental conditions remained the
same. Each assay was carried out in biological triplicate. Each
replicate of a dose–response experiment was further analyzed by
normalization to the negative and positive control (the normal-
ized data are provided in Supplementary Table S3) and fitting to a
four-parameter sigmoid function that allowed for the calculation
of the IC50 (dose at which viability is 50% of the untreated
control). The IC50 estimates are provided in Supplementary Table
S4. For model inference, full dose–response curve data were used.

Long-term drug response assays
HCC1806 parental, GFP- and 4E-BP1-expressing cells were

seeded at 600 cells/well, whereas the HCC1937 panel was seeded
at 1,200 cells/well, in 96-well plates. Cells were treated, 24 hours
after seeding, with a 9-point 1:3 dilution series of AZD8055 (top
dose 3.3� 10�6mol/L) or BEZ235 (1.1� 10�6mol/L) using aHP
D300 Digital Dispenser (Hewlett-Packard). Each condition,
including an untreated negative control and a phenyl arsine oxide

(1� 10�6mol/L) treated positive control, were set up in technical
duplicate. Media and drugs were changed every 3 to 4 days over a
period of 10 to 11 days of treatment. Cells were then washed with
PBS, fixed with 3.7% formaldehyde/PBS, and stained in 0.1%
crystal violet solution. Images of dried, stained cells were digitized
on a Perfection V750 PRO scanner (Epson).

Molecular characterization
Steady-state RNA and protein expression was determined

from cells seeded in 60-mm dishes and grown for 48 hours
(seeding densities are listed in Supplementary Table S1). RNA
expression was determined using RNA sequencing by the NKI
Genomics Facility and protein expression was determined in
biological triplicate using reverse-phase protein array (RPPA)
analysis by the MD Anderson Cancer Center RPPA Facility.
DNA was extracted from cell pellets and targeted sequencing
was done using the Human Kinome Capture Kit (Agilent
Technologies), containing baits for kinases and cancer-related
genes. RNA-sequencing data are available at ArrayExpress,
reference E-MTAB-4801, and the normalized read counts are
provided in Supplementary Table S5. DNA sequencing data are
available at the European Nucleotide Archive, reference
PRJEB14120, and the mutation calls and estimated copy num-
ber profiles are provided in Supplementary Tables S6 and S7.
The RPPA data are included as Supplementary Table S8.

Cap-binding pull-down assays
Cells were seeded in 100-mm dishes (BT549 and CAL-120 at

2.5 � 105; Hs 578T at 3 � 105; HCC1806 at 4 � 105; HCC1937
at 6.25 � 105) and cultured for 48 hours, then treated with
AZD8055 (1.11 � 10�7 mol/L), BEZ235 (3.7� 10�8 mol/L), or
vehicle (DMSO) for a further 24 hours. Cells were washed once
with ice-cold PBS and lysed in lysis buffer (25 mmol/L
Tris-HCl, pH 7.6, 1% Triton X-100, 1 mmol/L DTT) supple-
mented with cOmplete protease and phosSTOP phosphatase
inhibitor cocktails (Roche). Lysates were cleared and assayed
for protein concentration, then total protein samples were
prepared using 20 mg of protein lysate. Cap pull-down samples
were prepared by combining 50 mg of total lysate with 20 mL
prewashed m7GTP-agarose (Jena Bioscience), made up to a
total volume of 500 mL with lysis buffer and tumbled at 4�C
overnight. The following day, cap pull downs were washed
three times in ice-cold lysis buffer, then heated at 70�C for 10
minutes in 20 mL 1� Novex LDS Sample Buffer and sample
reducing agent. The eluate from the cap pull downs and the
total protein control samples were then immediately separated
on Novex 4% to 12% gradient gels and immunoblotted using
primary antibodies to 4E-BP1, eIF4G, and HSP90 (for total
lysate samples only), then reprobed to detect eIF4E protein.

Generation of 4E-BP1–overexpressing cell lines
pLX304-4E-BP1 was obtained from the CCSB-Broad Lentiviral

ExpressionCollection,whereas thepLX304-GFP control construct
was generated as outlined previously (18). To produce lentiviral
particles, HEK293T cells were cotransfected with the pLX304-
4E-BP1 or -GFP bearing construct and a lentiviral packaging mix
(pRSV-Rev, pMDLg/pRRE, pCMV-VSV-G; Addgene) using Poly-
ethylenimine (PEI, Linear MW 25,000; Polysciences Inc.). Media
were changed 24 hours after transfection. After a further 24 hours,
viral supernatant was collected and 0.45-mm filtered. HCC1806
and HCC1937 cells were transduced in the presence of
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hexadimethrine bromide (Sigma-Aldrich) and after 48 hours
selected using blasticidin.

Proliferation of 4E-BP1-overexpressing cell lines
HCC1806 parental, GFP-, and 4E-BP1–expressing cells were

seeded at 800 cells/well, whereas the HCC1937 panel was seeded
at 1,000 cells/well, in 384-well plates with 4 to 6 replicates per
condition. Proliferation was monitored using the IncuCyte
ZOOM instrument (Essen Biosciences).

Model, data integration, and inference
An overview of the computational model and modeling pro-

cedure is given in theQuickGuide to Equations andAssumptions,
and visualized in Fig. 1. Themodel inferencewas done using BCM
(19). All files required for running the inference are included in
Supplementary File S1. A detailed description of all equations,
data preprocessing, and inference algorithms is given in the
Supplementary Materials and Methods.

Results
Establishing and characterizing a breast cancer cell line panel

We set out to establish an integrative computational model
capable of explaining observed therapeutic responses based on
molecular measurements. To this end, we sourced and compre-
hensively characterized 30 breast cancer cell lines (Fig. 2; Supple-
mentary Table S1). Given the need for targeted treatment options
for the triple-negative breast cancer subtype, the panel was
enriched for triple-negative cell lines (18), with four ERþ, four
HER2þ, and four ERþ/HER2þ cell lines included to represent the
other major subtypes.

The panel was characterized for response to seven kinase
inhibitors, including AZD8055 (mTOR inhibitor), BEZ235 (dual
mTOR/PI3K inhibitor), GDC0941 (PI3K inhibitor), MK2206
(AKT inhibitor), PD0325901 (MEK inhibitor), lapatinib (dual
EGFR/HER2 inhibitor), and foretinib (cMET/VEGFR2 inhibitor).
The sensitivity of each cell line to these inhibitors was determined
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Modeling procedure and model overviews. A, The procedure used to construct the computational models. We used the literature to construct and iteratively
update themodel until a goodfit for the datawas obtained.B,Simplifiedoverviewof the computationalmodel, showing the signalingnodes (brown), themutations and
gene losses and gains (red), and the kinase inhibitors (green). C, Detailed view of a part of the computational model as a graphical model in template notation.
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in 10-point, 72-hour dose–response assays, in biological triplicate
and technical quadruplicate (summarized by IC50 values in Fig. 2;
Supplementary Fig. S2). The drug sensitivity measurements large-
ly agree with those obtained in the Genomics of Drug Sensitivity
in Cancer screen (Supplementary Fig. S3; refs. 10, 17, 20). How-
ever, our use of a more focused panel of 30 cell lines and seven
drugs allowed us to obtain more precise measurements (Supple-
mentary Fig. S4).

In addition to response data, we profiled the panel for
mutation and copy number by DNA-seq, RNA expression by
RNA-seq, protein expression, and phosphorylation by RPPA as
well as proliferation rate under untreated, steady-state growth
conditions (Fig. 2, bottom right; see Supplementary Figs. S5–
S9, for enlarged versions of the graphs). This molecular char-
acterization was done in the absence of drug treatment. The cell
lines harbor a range of genetic events that occur in breast
tumors and are present at comparable frequencies (see Sup-
plementary Table S13, for a comparison of mutation frequen-
cies with tumors from The Cancer Genome Atlas; ref. 2). This

cell line panel thus represents a relevant model system for the
genetic diversity in breast tumors.

Fitted model provides estimates of regulatory signaling based
on all available data types

To first understand which signaling is relevant for each drug,
we developed a modeling framework, inference of signaling
activity (ISA), to infer the signal strengths and signaling activ-
ities from all available data, as described in the Quick Guide to
Equations and Assumptions and further detailed in the Sup-
plementary Materials and Methods. We constructed a literature-
based model and first fitted this to the response data for each
drug separately, in conjunction with the molecular data mea-
sured in untreated cells. Although all of the interactions includ-
ed in the model are well documented (Supplementary Tables
S9 and S10), their relative contribution or significance is not
known. For example, activating mutations in PIK3CA, the loss
of PTEN, or the expression of growth factors can all lead to
activation of the PI3K pathway. However, it is unclear whether
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Figure 2.

Schematic of the composition and characterization of the panel of breast cancer cell lines. Thirty breast cancer cell lines were sourced and expanded,
representing four major classes of breast cancer subtypes—eighteen triple-negative, four ERþ, four HER2þ, and four HER2þ/ERþ cell lines. These cell lines were then
assayed for their response to seven kinase inhibitors (bottom left, summary of response data with respect to the IC50 metrics per inhibitor and cell line) as well as
characterized on amolecular level using DNA capture andmutation sequencing, RNA sequencing, proteomics (RPPA analysis), and growth rate assays. In the figures
and all supplementary data, abbreviated cell line names are used, in particular, MM stands for MDA-MB. Expanded views of the data plots are included in
Supplementary Figs. S1 and S4–S8.

Integrative Modeling of Inhibitor Sensitivity

www.aacrjournals.org Cancer Res; 78(15) August 1, 2018 4401

on July 23, 2020. © 2018 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst May 29, 2018; DOI: 10.1158/0008-5472.CAN-17-2698 

http://cancerres.aacrjournals.org/


their effects are equally important, and if not, which of them
has a stronger effect in a particular context.

Figure 3A illustrates the model estimates of signaling strengths
(the links between signaling molecules) for lapatinib treatment.
Values of the strength parameters indicate which signaling con-
nections are important for propagating an oncogenic signal down
to the proliferation node. For example, the link between ERBB2
amplification and ERBB2 activation has a strong peak at nonzero
values (the density plot of ERBB2amp!ERBB2), thus indicating
that the ERBB2 amplification gives rise to a proliferative signal. It
is well known that amplification of ERBB2 and the resulting
overexpression and auto-activation of this receptor provides a
strong proliferation signal (21), and that this signal can be
inhibited by lapatinib (22). The model provides estimates for
the downstream signaling (e.g., indicating that ERBB2 signals
more to PI3K than to CRAF) and for the contribution of each of
the resistance mechanisms. PIK3CAmutations indeed contribute
to the proliferative signal (PIK3CAhelical!PI3K), and the model
predicts that PIK3R1mutationsmayhave a similar effect, aswe see
that the parameter describing how much a PIK3R1 mutation
activates PI3K tends toward higher values, and is most likely
nonzero (PIK3R1!PI3K). However, the uncertainty in this
parameter is large, because there is only one cell line that carries
such a mutation, and consequently this parameter is only weakly
constrained. As a last example, the contribution of HGF autocrine
signaling (9) is represented by the parameter controlling how
strongly expression ofHGF leads to activation of theMET receptor
(HGF!MET). The posterior probability distribution of this
parameter closely follows the prior, indicating that this parameter,
and thus the importance of this potential resistance mechanism,
cannot be determined from the current data. Together, this shows
that the ISA modeling approach can be used to infer the contri-
bution of different components driving sensitivity and resistance
from all available data, while taking into account whether the
parameters are identifiable.

We canuse the estimates of the signaling activities (values of the
nodes) to further explore the difference in signaling flow and drug
response between cell lines. Figure 3B shows the estimates for
ERBB2 activity andPIP3 activity in the lapatinib-treated condition
scattered against the untreated condition. From the left panel, it
can be seen that only the eight ERBB2-amplified cell lines show
ERBB2 signaling activity, and that this activity is reduced upon
lapatinib treatment in all these cell lines. In the right panel, we can
see that in the lapatinib-sensitive cell lines, especially the most
sensitive ones BT-474, SK-BR-3, and ZR-75-30, the reduction in
ERBB2 activity also leads to a strong reduction in the PIP3 signal,
whereas in the other cell lines, PIP3 signal persists, especially for
the lapatinib-resistant cell lineHCC1569 (see Supplementary Fig.
S2, for the drug sensitivity estimates). Two non-ERBB2-amplified
cell lines also have a reduced PIP3 signal upon lapatinib treat-
ment, including T-47-D and HCC1806, which stems from their
inferred EGFR activity. This illustrates the utility of the model,
given that there were nomolecular measurements collected in the
treated conditions, and these signaling estimates are inferred from
the untreated molecular data combined with the relative viability
data in the treated condition. A comparison of the inferredmodel
estimates with molecular measurements in treated condition is
described later, after all model adaptations have been considered.

As a second example, for the mTOR inhibitor AZD8055, we
find several factors that are associated with response. As
expected, PIK3CA mutations are strongly activating in this

context and cell lines are apparently dependent on this acti-
vation (Fig. 3C, PIK3CAkinase/helical!PI3K and mTORC1!
proliferation), which has previously been shown (23). In addi-
tion, we find that MYC activation, as a result of gene ampli-
fication, can provide a resistance mechanism to this mTOR
inhibitor (MYCamp!proliferation), providing another valida-
tion of our approach (24).

To facilitate the further exploration of all the signaling esti-
mates, we generated an interface that is available at http://ccb.nki.
nl/software/BCCL_KI_response_model/. This website displays
the signaling strengths in each cell line upon exposure to
drugs. Figure 3D shows an example of BT-474 treated with
lapatinib. In this case, the model indicates that, for example, the
MAPK pathway is barely involved, that there is no drug resistance
provided by this cell line's RPS6KB1 amplification, and that
instead, lapatinib mainly inhibits the PI3K pathway.

Using the posterior predictive distribution to test the goodness
of fit

Although the signaling estimates appear to be reasonable, it is
useful to have a systematic test of how well the fitted model
describes the data. For this we used the posterior predictive
distribution, which describes a new, predicted dataset based on
the fitted model. We can overlay this predicted dataset on the
observed measurements to have a convenient way of identifying
which measurements can and cannot be explained by the model.
Note that the posterior predictive distribution is not used as a
measure of out-of-sample prediction; that is, it does not test how
well the model predicts the behavior of unseen cell lines. Instead,
it is used as a measure of goodness of fit, allowing an exploration
of whether the model can describe the behavior of the cell lines
at hand.

Fig. 4A shows the posterior predictive distribution overlaid on
the measurement data for lapatinib. It is clear that the present
model can accurately describe the relative proliferation of the cell
lines as a function of drug concentration for almost all cell lines.
For example, the sensitivity of the ERBB2-amplified line BT-474
and the resistance of the PIK3CA-mutated and ERBB2-amplified
line MDA-MB-361 (MM361) can both be recapitulated by the
model. Overviews of all posterior predictive checking for the drug
response and phosphorylation data are supplied in Supplemen-
tary Data S1.

Searching for additional explanatory factors of drug sensitivity
reveals novel associations

Although the model explained most of the drug response
variability for lapatinib, we noticed that for some drug–cell line
combinations, the fit was not as precise. For example, for
foretinib, an inhibitor of c-Met and VEGFR2, we noticed that
one cell line in particular, MFM-223, was much more sensitive
than the model could describe (Fig. 4B). We therefore inves-
tigated the experimental data to find a possible reason for this
discrepancy. A discrepancy in a single cell line is not sufficient
to apply statistical tests, but we did note that this cell line has a
strong FGFR2 amplification. We therefore searched the litera-
ture to see whether there is a connection and found that
foretinib has in fact been reported to inhibit FGFR2 in addition
to its original design targets (25). When this additional target of
foretinib is added to the model, we indeed obtain a signifi-
cantly improved fit (Fig. 4B). The sensitivity of other cell lines
like CAL-51 and HCC-1187 to foretinib is still not explained
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exactly, but we have not found other potential explanations for
this in the data or literature, and therefore further studies would
be needed to address this.

We also noticed that the model was not able to explain the
response of some cell lines tomTOR inhibitors (Fig. 4C), butwere
unable to find additional mechanisms in the literature that could
explain these discrepancies. Several cell lines are sensitive to these
inhibitors even though they do not possess any of the factors
known to cause sensitivity, and conversely some cell lines are

resistant despite having such sensitizing factors. For example,
although BT-549, HCC1395, and HCC1937 have all lost PTEN
expression, only BT-549 is sensitive to BEZ235 treatment.

We therefore further interrogated the dataset to find additional
drug sensitivity mechanisms with which we could extend the
model to better explain the experimental observations. With
multiple sensitive cell lines we can use statistical tests. We divided
the cell line panel in groups of sensitive and resistant lines using
Gaussian mixture modeling, and tested whether any genes were
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Figure 3.

Model estimates of signaling in the context of treatment with either lapatinib or AZD8055. A, Marginal posterior probability densities for several of the
model parameters in the context of lapatinib treatment. Only the relevant parts of the model are shown. The densities are estimated using kernel density
estimates with Sheather–Jones bandwidth selection. B, Estimates of the activity of two signaling molecules, ERBB2 and PIP3, in untreated and lapatinib-treated
conditions. A black circle around a point indicates significant difference (posterior probability > 0.975 for the lapatinib-treated signal being less than the
untreated signal). Error bars are not shown here; a versionwith error bars indicating the 90% confidence intervals is included as Supplementary Fig. S19.C, LikeA, but
now in the context of AZD8055 treatment. D, Overview of all signaling activity estimates in the BT-474 cell line, in lapatinib-treated conditions with low and
high dose. Thickness of the signaling bars indicates the strength of the signal, and the scale of gray indicates uncertainty.

Integrative Modeling of Inhibitor Sensitivity

www.aacrjournals.org Cancer Res; 78(15) August 1, 2018 4403

on July 23, 2020. © 2018 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst May 29, 2018; DOI: 10.1158/0008-5472.CAN-17-2698 

http://cancerres.aacrjournals.org/


differentially expressed between these groups at either the RNA or
protein level. The full lists of differentially expressed genes for all
drugs are given in Supplementary Table S14. To further filter the
differentially expressed genes, we also calculated their distance to
the signaling molecules included in the model using protein–
protein interaction networks (26). This provided potential can-
didate regulators that are not only differentially expressed, but are
also functionally closely related to the signaling molecules in the
model (listed in Supplementary Table S14). For both mTOR
inhibitors (AZD8055 and BEZ235), the protein expression level
of 4E-BP1, in addition to 4E-BP1 phosphorylation level, showed
the strongest differential expression (Fig. 4D). At the RNA level,
differential expression of EIF4EBP1 was also associated with
BEZ235 response. Together, these data indicated that cell lines
with high expression of this protein are more sensitive to mTOR
inhibitors (Supplementary Fig. S10).

To test whether the inclusion of this factor provides a better
explanation for the sensitivity of some of the lines to mTOR

inhibitors, we expanded the model to include the protein expres-
sion levels of 4E-BP1. Although 4E-BP1 as a node was already
included as a downstream target of mTORC1 in our previous
models, only its phosphorylation state, not its protein expression
level, was taken into account. Specifically, in Eq. A, the variable Ei,j
was previously based only on the binarized RNAseq expression
data (Supplementary Fig. S11), and we modified this to include
the RPPA protein expression levels (SupplementaryMaterials and
Methods for details). Fig. 4E shows the model with the protein
expression levels of 4E-BP1 included, whereas Fig. 4C shows the
results without 4E-BP1 included. The posterior predictive check-
ing (bottom panel) clearly shows that the expanded model
provides an improved fit to the data for multiple cell lines
(especially for CAL-120, BT-549, CAMA-1, and ZR-75-30), while
not compromising the fit of other cell lines. The log Bayes factor
between the twomodels (the difference in log evidence) is 226 in
favor of the expandedmodel, where a log Bayes factor greater than
5 indicates very strong evidence (27). This indicates that the

B

A

D
BT20 BT474 BT549 CAL120 CAL148 CAL51

CAMA1 HCC1187 HCC1395 HCC1419 HCC1500 HCC1569

HCC1806 HCC1937 HCC1954 HCC38 HCC70 HS578T

MCF7 MFM223 MM157 MM231 MM361 MM436

MM453 MM468 SKBR3 SKBR7 T47D ZR7530

BT20 BT474 BT549 CAL120 CAL148 CAL51

CAMA1 HCC1187 HCC1395 HCC1419 HCC1500 HCC1569

HCC1806 HCC1937 HCC1954 HCC38 HCC70 HS578T

MCF7 MFM223 MM157 MM231 MM361 MM436

MM453 MM468 SKBR3 SKBR7 T47D ZR7530

Foretinib Foretinib

Model 1:
Only MET inhibition

Model 2:
With MET and

FGFR2 inhibition

FGFR2
signal

FGFR2 amplification

ForetinibForetinib

Log evidence: 932.9

Log evidence: 833.9 Log evidence: 1059.8

Log evidence: 959.8

... ...

MET
signal

HGF expression

... ...

FGFR2
signal

FGFR2 amplification

... ...

MET
signal

HGF expression

... ...

AZD8055 AZD8055

BT20 BT474 BT549 CAL120 CAL148 CAL51

CAMA1 HCC1187 HCC1395 HCC1419 HCC1500 HCC1569

HCC1806 HCC1937 HCC1954 HCC38 HCC70 HS578T

MCF7 MFM223 MM157 MM231 MM361 MM436

MM453 MM468 SKBR3 SKBR7 T47D ZR7530

−2 −1 0 1 2

0
1

2
3

4
5 4EBP1

p-4EBP1
IRS1

10% FDR

−2 −1 0 1 2

0
1

2
3

4
5

P
-v

al
ue

 [−
lo

g1
0]

P
-v

al
ue

 [−
lo

g1
0]4EBP1

p-4EBP1
10% FDR

AZD8055 BEZ235

Model 2:
With 4EBP1 total 

protein expression levels

Model 2:
AZD8055

With 4EBP1 total 
protein expression levels

Model 1:
Only 4EBP1

phosphorylation levels

C E

4EBP1 expression
(RPPA)

mTORC1
signal

4EBP1
signal

...

4EBP1 phosphorylation
(S65, RPPA)

mTORC1
signal

4EBP1
signal

...

4EBP1 phosphorylation
(S65, RPPA)

F

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

0.0 0.1 0.2 0.3

0
5

10
15

20
25

4EBP1 expression
coefficient

4EBP1->proliferation

Parameter value

Parameter value

P
ro

ba
bi

lit
y 

de
ns

ity
P

ro
ba

bi
lit

y 
de

ns
ity

Prior
Posterior

BT20 BT474 BT549 CAL120 CAL148 CAL51

CAMA1 HCC1187 HCC1395 HCC1419 HCC1500 HCC1569

HCC1806 HCC1937 HCC1954 HCC38 HCC70 HS578T

MCF7 MFM223 MM157 MM231 MM361 MM436

MM453 MM468 SKBR3 SKBR7 T47D ZR7530

Lapatinib

BT20 BT474 BT549 CAL120 CAL148 CAL51

CAMA1 HCC1187 HCC1395 HCC1419 HCC1500 HCC1569

HCC1806 HCC1937 HCC1954 HCC38 HCC70 HS578T

MCF7 MFM223 MM157 MM231 MM361 MM436

MM453 MM468 SKBR3 SKBR7 T47D ZR7530

0.05
0.1
0.15
0.2
0.25
0.3

Drug concentration

R
el

at
iv

e 
gr

ow
th Measurement

Sum of
squared
errors

PPD:

RPPA log2-ratio
Sensitive Resistant

RPPA log2-ratio
Sensitive Resistant

Figure 4.

Goodness-of-fit testing and model expansions. A, The 90% confidence interval of the posterior predictive distribution for lapatinib drug response (shaded area)
is overlaid on the measurement data (black). The posterior predictive distribution for each cell line is colored by the discrepancy with the data, quantified
using the sum of squared errors over the eight lowest concentrations (the two highest concentrations were excluded because discrepancies at such high
concentrations are likely due to various off-target effects). B, Comparison of two iterations of the model when fitting the foretinib drug response. C, Iterations
of the model without protein expression levels as explanatory factor when fitting the AZD8055 drug response. D, Volcano plot for the association of the
RPPA data with sensitivity estimates to the two mTOR inhibitors. For both inhibitors, 4E-BP1 protein expression levels correlate significantly with sensitivity.
E, New model iteration with protein expression is included as explanatory factor. F, Posterior probability of two parameters controlling 4E-BP1 signaling
in the expanded model. The 4E-BP1 expression coefficient (top) controls how strongly the 4E-BP1 protein expression level limits the signal through 4E-BP1. The
4E-BP1!proliferation parameter (bottom) controls how strongly the 4E-BP1 signal affects proliferation.
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difference is highly significant and that the improvement in fit is
not merely the result of adding more free parameters. Fig. 4F
shows the posterior probability of two parameters of 4E-BP1
signaling in the expanded model. The 4E-BP1 expression coeffi-
cient, shown in the top panel, describes how strongly the protein
expression level of 4E-BP1 affects the amount of signal transmit-
ted. Because the value of this parameter is very high, it indicates
that the total protein expression level is a strong limiting factor for
4E-BP1 signaling in response to mTOR inhibitors. The bottom
panel shows the parameter controlling the strength of 4E-BP1
signaling to proliferation, and as this is also found to be nonzero
with high certainty, it implies that the 4E-BP1 signal is important
for determining proliferation rate under mTOR inhibitor treat-
ment. The computational analysis therefore predicts that the
protein expression level of 4E-BP1 is an important factor in
explaining mTOR inhibitor sensitivity, in addition to the already
known factors determining sensitivity and resistance.

The model uses pretreatment molecular data and measure-
ments of relative viability after drug treatment to infer signaling
activities after drug treatment. To gain more confidence in the
signaling estimates, we compared the estimates with measure-
ments of protein phosphorylation of cells while on treatment
(28), and found that they generally agree (Supplementary Note
S1; Supplementary Fig. S12). We also constructed a reduced
model, which could be fitted to the response data of all seven
inhibitors at the same time (Supplementary Note S2; Supplemen-
tary Fig. S13). Finally, using an extended version of the modeling
formalism (29), we confirmed that even though feedback signal-
ing is likely to be active, the inclusion of such feedback loops does
not affect how well the variability in drug response can be
described (Supplementary Note S3; Supplementary Fig. S14).

The protein expression level of 4E-BP1 is a determinant of
mTOR inhibitor sensitivity

Intrigued by the model prediction that 4E-BP1 protein expres-
sion is associated with mTOR inhibitor response, we investigated
the biological effect of 4E-BP1 expression directly. For this, we
turned to a subset of our panel of breast cancer cell lines that
showed differences in response to AZD8055 and BEZ235
(Fig. 5A). These included three of the most mTOR inhibitor
sensitive cell lines (BT-549, CAL-120 and Hs 578T) all bearing
a gain in the EIF4EBP1 gene-containing genomic region (Supple-
mentary Fig. S15), which also express high levels of 4E-BP1
protein (Fig. 5B; Supplementary Fig. S16), and two insensitive
cell lines (HCC1806 and HCC1937) that do not harbor a gain of
the EIF4EBP1 locus and express low levels of 4E-BP1 protein.
Given that high 4E-BP1 expression may drive cells to recalibrate
signaling in the pathway by increasing the expression and/or
activity of mTOR, we investigated this possibility further. We first
checked whether expression of 4E-BP1 and mTOR were
correlated (Supplementary Fig. S17A). Although three of themost
highly 4E-BP1–expressing cell lines do show an increase inmTOR
expression at the protein level, in the lines chosen for our
functional studies, only CAL-120 shows elevated mTOR expres-
sion. The remaining four lines (BT549, HS578T, HCC1806,
HCC1937) show comparable expression of mTOR, despite vast
differences in both 4E-BP1 expression and response to mTOR
inhibitors. At the RNA level (Supplementary Fig. S17B), these
associations were lost, suggesting that a concurrent posttranscrip-
tional upregulation of mTOR is not a general mechanism of
mTOR inhibitor sensitivity in 4E-BP1–overexpressing cells. We

then investigatedmTOR signaling inmore detail by analyzing the
phosphorylation and protein expression levels of several mem-
bers of the PI3K, mTOR, and MAPK pathways following 24-hour
treatment with two mTOR inhibitors, AZD8055 and BEZ235, in
these five cell lines. This showed that both compounds had
effective on-target activity, leading to reduced phosphorylation
of AKT (S473), S6 (S235/236), and 4E-BP1 (S65) across all five
lines, at similar compound concentrations (Fig. 5B). A minor
compensatory increase in ERK phosphorylation was detected
following inhibitor treatment. These data suggest that the differ-
ence in mTOR inhibitor sensitivity between these five cell lines is
not caused by a difference in the compounds' ability to inhibit
mTOR signaling in these lines.

To uncover the mechanism via which 4E-BP1 protein expres-
sion levels could affect response to mTOR inhibitors, we inves-
tigated the effect of inhibitor treatment on the formation of the
eIF4F translation initiation complex (extensively reviewed in
refs. 30, 31). As illustrated in the schematic in Supplementary
Fig. S18A, the eIF4F translation complex is composed of the eIF4E
and eIF4G proteins, among others. 4E-BP1 is known to negatively
regulate this complex by binding and sequestering the eIF4E
subunit. This displaces eIF4G from binding to eIF4E and as a
result the eIF4F complex cannot initiate cap-dependent transla-
tion. The sequestering of eIF4E by 4E-BP1 is, however, inhibited
when 4E-BP1 is phosphorylated by mTORC1 on several sites,
which is the case when nutrients and growth factors are not
limiting. Under nutrient or growth factor depletion, or alterna-
tively following treatment with mTOR inhibitors, 4E-BP1
becomes dephosphorylated, binds to eIF4E, and thus eIF4F
complex activity is repressed (Supplementary Fig. S18B). This
leads to the inhibition of translation, most acutely for mRNAs
with complex 50 untranslated regions (UTR) that include prolif-
eration, survival, and tumor-promoting genes.

We investigated the dynamics of these interactions in the three
mTOR inhibitor sensitive and two insensitive cell lines using the
m7G-cap pull-down assay, which allows the visualization of the
changes in eIF4Gor 4E-BP1binding to eIF4E following treatment,
as compared with their expression in the total protein lysate (Fig.
5C). Our results show that mTOR inhibitor treatment leads to an
increase in the binding of 4E-BP1 to eIF4E in all five cell lines,
irrespective of their mTOR inhibitor response profile. In the
sensitive cell lines, this increase in 4E-BP1 binding was sufficient
to decrease eIF4G binding to eIF4E, as expected. In the insensitive
cell lines though, the binding of 4E-BP1 to eIF4E was unable to
displace eIF4G from eIF4E. This suggests that 4E-BP1 protein
expression in the insensitive cell lines is below a critical threshold
needed to effectively inhibit eIF4F complex formation following
mTOR inhibitor treatment (Supplementary Fig. S18C), and likely
explains the difference inmTOR sensitivity between these two sets
of cell lines.

To further investigate whether an increase in 4E-BP1 protein
expression is sufficient to increase mTOR inhibitor response, we
used a lentiviral vector to overexpress 4E-BP1 in the two
insensitive cell lines, HCC1806 and HCC1937 (Fig. 6A). The
4E-BP1 protein, as well as a GFP control, was effectively
overexpressed in both lines and the former was detectably
phosphorylated. The expression of either protein did not
affect the proliferation of these cell lines, suggesting that the
activity of overexpressed 4E-BP1 was efficiently inhibited by
mTORC1-mediated phosphorylation (Fig. 6B). We next tested
the impact of increased 4E-BP1 protein expression on the
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sensitivity of the cell lines to the mTOR inhibitor AZD8055, the
dual mTOR/PI3K inhibitor BEZ235, as well as the PI3K inhib-
itor GDC0941. As shown in Fig. 6C, in short-term 72-hour drug
treatment assays, the 4E-BP1-overexpressing cell lines were
markedly more sensitive to mTOR inhibitors, responding at
lower drug concentrations and with a decreased overall survival
at higher drug concentrations. In contrast to the mTOR inhi-
bitors, sensitivity of the 4E-BP1-overexpressing cell lines to the
PI3K inhibitor GDC0941 was not increased, implying that it is
specifically the inhibition of mTOR activity that is beneficial in
improving response of highly expressing 4E-BP1 cell lines. We
were also able to validate that 4E-BP1 overexpression increased

sensitivity to mTOR inhibitors over a longer treatment period,
namely 10 days, as shown in Fig. 6D.

Together, the above results show that the level of 4E-BP1
protein expression is a determinant of sensitivity to mTOR inhi-
bitors in breast cancer cell lines, and illustrates the utility of our
computational model in identifying novel determinants of drug
response in cell lines.

Discussion
Cell line panels have the potential to provide us with a better

understanding of the variability in drug response between
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Cell lines overexpressing the 4E-BP1 protein are more sensitive to mTOR inhibitors despite similar extent of target inhibition. A,Dose–response assays (72 hours) to
AZD8055 (mTOR inhibitor) and BEZ235 (dual mTOR/PI3K inhibitor) in cell lines that overexpress the 4E-BP1 protein, BT-549, CAL-120, and Hs 578T (red lines), and
those that do not, HCC1806 and HCC1937 (blue lines). Data represent three independent replicates �SEM. B, Western blotting results of a number of PI3K/MAPK
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(CTL). Representative of three independent experiments is shown. C, Cap pull-down assays to assess the effect of mTOR inhibitor treatment on the formation
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patients. Previous efforts of linking molecular characteristics to
drug sensitivity in cell line panels have identified several known
and novel associations (10, 11, 13–16). Here we showed that by
combining extensive measurements with mathematical model-
ing, a more detailed understanding of variability in drug sensi-
tivity can be achieved. The use of Bayesian statistical analysis
allowed for the simultaneous integration of diverse data types
with prior knowledge from the literature.

Models are by definition a simplified representation of the
system. Two major simplifications that were used here are the
assumption of quasi-steady state and the absence of feedback
signaling. The benefit of using these simplifications is that sig-
nificantly more components of cellular signaling can be included
in the model. It is reassuring that a model with these simplifica-
tions can describe a large part of the variability in short-term drug
response. Studying longer-term drug response and, for example,
adaptive resistancewill likely require the incorporation of dynam-

ics and feedback mechanisms. Using dynamical models or the
inclusion of feedback mechanisms does not pose any theoretical
problems for the modeling approach we used. However, the
computational cost is significantly higher, and additional inter-
vention or time-course data would be needed to constrain the
parameters.

Recently, Fey and colleagues described a computational model
of JNK signaling, containing five signaling proteins that provided
prognostic information in patients with neuroblastoma (32),
showing that such computational models may be useful also in
a clinical setting. Their model was informative in a specific subset
of patients, namely those with MYCN-amplified tumors, whereas
in the general population individual biomarkers were still more
informative. This indicates that it is necessary for models to
incorporate various different oncogenic drivers, residing in mul-
tiple signaling pathways, to capture the variability across a wide
range of patients.
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Overexpression of 4E-BP1 in HCC1806 andHCC1937 cell lines is sufficient to increase their sensitivity tomTOR inhibitors.A,Western blotting of lysates fromHCC1806
and HCC1937 cell lines stably overexpressing a 4E-BP1 construct from the CCSB-Broad Lentiviral Expression Collection as comparedwith the parental cell lines and a
GFP-overexpressing controls. B, Proliferation assay of the 4E-BP1-overexpressing lines as compared with the parental and GFP-expressing controls. C, Dose–
response assays (72 hours) to AZD8055 (mTOR inhibitor), BEZ235 (dual mTOR/PI3K inhibitor), and GDC0941 (PI3K inhibitor) in the parental, GFP- and 4E-BP1-
expressing HCC1806 and HCC1937 cell lines. Data represent three independent replicates �SEM. D, Long-term (10 day) dose–response assay to AZD8055 and
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Amethod that integratesmultiple data types to obtain pathway
activation status is PARADIGM (33). Heiser and colleagues have
used a modified version of this method, SuperPathway analysis,
to link pathway activation status to drug response in a large breast
cancer cell line panel (12). They found, among others, that
upregulation of DNA damage response pathways was associated
with sensitivity to cisplatin, although this was not further tested
experimentally. Indeed, PARADIGM and SuperPathway analyses
do not shed light on how this association might work mechanis-
tically, and the involvement of individual components of
the DNA damage response pathway, such as TP53, ATM, and
BRCA1/2, is not investigated. In contrast, the approach presented
here provides detailed signaling flows and estimates the relative
contributions from all drivers and sensitivity mechanisms includ-
ed in the model, making the in silico findings amenable to
experimental validation.

In the course of refining our model, we found that elevated
4E-BP1 protein expression played an important role in the
response of breast cancer cell lines to AZD8055 and BEZ235, two
inhibitors targeting the mTOR kinase. We further validated this
observation in 4E-BP1 overexpression studies, showing that this
provides a pool of an endogenous translation inhibitor available
for activation, and thus inhibition of cap-dependent translation,
via mTOR inhibitor treatment.

On a mechanistic level, these findings are in line with prior
work using transformed mouse embryonic fibroblasts, which
showed that the ratio of eIF4E/4E-BP1 expression can predict
response tomTOR-directed therapy (34). That is, a higher ratio of
eIF4E/4E-BP1 predicted poorer response to mTOR inhibitors.
Consistent with this, EIF4E amplification was reported as a
mechanism of AZD8055 resistance in a SW620 colorectal cell
line model (35). Conversely, a lack of 4E-BP1 expression in
lymphoma cells, thus a reduced ability to restrain eIF4E activity,
has been shown to lead to resistance tomTOR inhibition, an effect
reversed by exogenous expression of the 4E-BP1 protein (36),
similar to our findings in 4E-BP1-overexpressing HCC1806 and
HCC1937 cell lines. An exception to these findings is the report of
elevated 4E-BP1 protein levels in mTOR inhibitor treatment-
resistant luminal subpopulation of prostate cancer cells (37),
although it remains to be investigated whether this observation
is restricted to prostate cancer or the luminal subtype. Most
recently, a study by Wang and colleagues (38) added further
weight to the hypothesis that elevated 4E-BP1 expression can be
a marker of mTOR inhibitor sensitivity. They show that the
combination of an mTOR inhibitor and an HDAC inhibitor, the
latter acting to derepress Snail-mediated 4E-BP1 transcriptional
inhibition, can synergize to inhibit tumor growth in mice.

Notably, in our cell line panel, the overexpression of 4E-BP1
resulted from a copy number gain in the genomic region
encoding EIF4EBP. Focal amplification of the 8p11-12 region,
the region containing EIF4EBP1, is a known event in breast
cancer occurring in approximately 15% of cases, and patients
who harbor this event in their primary tumor have a much
higher likelihood of relapse (39). Previous studies have iden-
tified various genes in this region as potential oncogenes, with
most evidence so far supporting FGFR1 (40–42) and ZNF703
(43–45). These two genes lie close to and on either side of
EIF4EBP1. Our cell line experiments show that overexpression
of 4E-BP1 alone does not affect viability in vitro. Although we
cannot exclude that amplification of 4E-BP1 can contribute to a
transformed phenotype in tumors (such as affecting invasion,

migration, or cell viability in vivo), various studies indicate that
the cellular function of 4E-BP1 is consistent with a role as a
tumor suppressor gene, rather than as an oncogene (34–36,
46–49). It therefore seems plausible that the amplification of
EIF4EBP1 is a passenger event. This raises the possibility that by
selecting for amplification of nearby oncogenes, the tumors
have also introduced a specific "passenger vulnerability"—that
is, a passenger aberration that introduces a vulnerability to a
particular drug. If the drug sensitivity association translates
from cell lines to patients, testing for EIF4EBP1 amplifications
could identify patients who may benefit most from treatment
with mTOR inhibitors such as AZD8055 and BEZ235.

One difference between the cell line and patient data is that the
subtypes in which the gain of EIF4EBP1 is present vary. Although
we identified this event predominantly in the triple-negative and
ERþ breast cancer cell lines, in patients, the 8p11-12 amplicon is
present almost exclusively in ERþ tumors. Interestingly, phase III
clinical trials with the allostericmTOR inhibitor, everolimus, have
been carried out in the ERþ setting, showing a significant improve-
ment in progression-free survival (PFS) in patients who received
everolimus versus placebo in addition to the aromatase inhibitor,
exemestane (50). A subsequent analysis of this data, exploring
associations of PFS with common genetic aberrations, has found
no improvement in PFS in patients with FGFR1 gene amplifica-
tion (generally coamplifying the EIF4EBP1 gene; ref. 51).
Although this may suggest that there is no increased clinical
benefit for mTOR inhibitors in patients with 8p11-12 amplified
tumors, the inhibitory activity of everolimus, a rapalog, versus
active-site inhibitors, such as AZD8055 and BEZ235, differs
substantially. Although everolimus is an allosteric inhibitor of
predominantly mTOR complex 1 (mTORC1), active-site inhibi-
tors are able to target both mTORC1 and mTORC2 (30). Most
importantly, the active-site inhibitors have been shown to result
in a much more potent inhibition of downstream mTOR signal-
ing, specifically with respect to the inhibition of 4E-BP1 phos-
phorylation, whereas in the case of rapalogs this phosphorylation
is restored within hours of treatment (52, 53). As such, it is likely
that the absence of an association between amplification in the
8p11-12 region containing the FGRF1 and EIF4EBP1 genes and
PFS with everolimus treatment observed by Hortobagyi and
colleagues (51) stems from limited inhibition of 4E-BP1 phos-
phorylation. Together, these studies suggest that the benefit of
rapamycin treatment in ERþ tumors results from a mechanism
distinct to that of 4E-BP1 inhibition, but also emphasize the need
for further study to determine the efficacy of active-site mTOR
inhibitors in patients with 8p11-12 amplifications.

We conclude that the combination of mathematical model-
ing of signaling in response to drug treatment with a large panel
of molecularly characterized cell lines demonstrates the use-
fulness of combining large data sets with prior knowledge to
uncover key determinants of drug sensitivity. Although the
work presented here applied the ISA methodology to explain
drug response in a panel of cell lines, our ultimate goal is to
develop this approach into a tool for predicting response in
patients. Further validation on clinical samples is of course
required, but a clear benefit is that the molecular characteri-
zation, needed as input for a model, can be performed directly
on biopsy material. This circumvents a need for ex vivo culture
or lengthy response profiling, making the approach amenable
to clinical application. We believe that such systematic, quan-
titative approaches to the understanding of drug responses hold
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promise as tools for achieving the goal of precision medicine
in cancer.
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