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A B S T R A C T   

Evaluating marine system reliability requires considering the interaction of a limit state with the stochastic 
ocean excitation. Given a range of operational profiles, a relevant question is which sea states lead to the worst- 
case system responses, considering the effects of short and long-term variability. If the identified subset of 
operational profiles indeed leads to the worst-case system responses, it is possible to assess lifetime system 
performance without unnecessary computational effort via this directed set of conditions. Environmental con-
tour methods identify rare sea states assumed to excite rare responses but generally do not include response 
dynamics when choosing these sea states. For systems with limit states involving combined loading or with 
multiple failure modes, rare environmental conditions may not exclusively lead to rare responses. In this case, 
the response cannot be severed from the identification of relevant sea conditions but should instead drive that 
identification. This paper illustrates a way to construct response-based reliability contours that identify sea states 
most relevant for analyzing rare responses of marine systems. These sea states are compared with sea states 
identified by environmental contours, showing the effect on perceived system risk levels when system dynamics, 
short-term response variability, and long-term environmental variability are considered.   

1. Introduction 

Due to the computational challenges associated with a long-term 
probabilistic analysis of marine systems, it is of major interest to 
identify relevant sea state conditions expected to most contribute to the 
long-term response. Examining such a subset of potential cases, versus 
all possible cases, allows a more in-depth analysis of the system re-
sponse without spending unnecessary computational effort. Multiple 
methods exist to identify such sea states and generally rely on con-
structing environmental contours of the underlying excitation to iden-
tify rare environments which are assumed to excite equally rare system 
responses. 

Environmental contours are very useful for identifying design 
parameter ranges with an approximate risk level in the initial design 
stages when relevant limit states are relatively unknown. But to identify 
the most relevant sea states to evaluate the reliability or performance of 
a system with a known or approximate limit state, other methods may 
give more meaningful results. This paper establishes such a method to 
construct contours of system reliability given a defined design lifetime, 
range of potential operational profiles, and limit state of interest for 
design purposes. Whereas environmental contours can be used to set 
design parameters based on the expected operational profile range, this 

proposed method is geared towards evaluating that system by identi-
fying a possible testing regime of sea states expected to lead to the 
worst-case system responses. 

The paper is organized as follows. Section 2 gives background on 
environmental contour methods to identify relevant sea states and of-
fers a motivating example for a new method, which is developed in  
Section 3. Section 4 establishes a case study of identifying sea states 
which lead to the highest probability of stiffened ship panel collapse to 
illustrate the method. Sections 5 and 6 examine how excluding the ef-
fects of long-term environmental variability and short-term response 
variability affect the perceived system reliability level. Finally,  
Section 8 discusses the results and Section 9 offers some conclusions. 

2. Identifying relevant sea states 

Environmental contour methods are often used in early design 
stages to identify operating conditions associated with a specific return 
period which can be used to give bounds on design parameters. The 
strength of the method is in its simplicity: the return period of a system 
response in a sea state is assumed to be completely defined by the re-
turn period of the associated contour of environmental parameters, e.g. 
significant wave height and a wave period to define a wave energy 
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spectrum. In this way, the randomness inherent in the ocean environ-
ment is separated from the randomness of the structural response ex-
cited by that environment. 

Many different approaches exist to define such contours, including, 
but certainly not limited to: the traditional Inverse First Order 
Reliability Method (IFORM) (Winterstein et al., 1993), the Inverse 
Second Order Reliability Method (ISORM) (Chai and Leira, 2018), a 
constant probability density approach (Haver, 1987), a direct Monte 
Carlo Simulation (MCS) sampling approach (Huseby et al., 2015), an 
importance sampling MCS approach (Huseby et al., 2014; Vanem, 
2017), and defining contours by identifying highest density regions 
(Haselsteiner et al., 2017) or joint variable exceedances 
(Jonathan et al., 2014). A recent review of many such methods can be 
found in Ross et al. (2020). But regardless of the way the environmental 
contours are defined, a user still must eventually decide which sea 
states along that contour should be evaluated for a short-term analysis, 
see, e.g. Baarholm et al. (2010). 

Other authors have examined response-based approaches to identify 
sea states associated with rare system responses, such as the coefficient 
of contribution method of Baarholm and Moan (2000). Relevant sea 
states for specific loading responses have also been identified along an 
environmental contour based on a representative spectral period that 
maximizes the load variance (Fukasawa et al., 2007) or by relating the 
environmental parameters of the contour to the load response via an 
analytical model (Winterstein et al., 1993). Vanem constructs and 
compares contours of extreme loading responses based on environ-
mental parameters, but ignores short-term variability, using load re-
sponse transfer functions which are solely functions of those environ-
mental parameters (Vanem, 2017). Gouldby et al. similarly link 
environmental parameters to extreme overtopping rates of a flood de-
fense structure via joint exceedance contours. This overtopping rate is 
described as a function of the extreme environmental parameters using 
response surfaces and a statistical wave emulator model (Gouldby et al., 
2017). Other recent research has compared response-based and en-
vironmental contour-based approaches, e.g. Vanem and Guo (2019);  
Vanem et al. (2020); Wang et al. (2018). 

For some marine structures, though, a relevant limit state to eval-
uate a system may not be so easily expressed as a function of the wave 
spectrum significant wave height and wave period. Additionally, it may 
be necessary to consider the short-term variability of a response within 
a given sea state to fully assess the system risk and performance. The 
challenge of accounting for the short and long-term variability while 
predicting extreme responses is discussed by Derbanne et al. (2017). 

2.1. Motivating example 

Such is the difficulty of identifying relevant sea states associated 
with rare system responses: effort is either focused solely on the ex-
citation environment independent of the structure (as in most en-
vironmental contour methods) or solely on the structural response 
given a defined environment (as in, e.g. the dynamic IFORM approach 
offered by Lutes and Winterstein for load combination problems 
(Lutes and Winterstein, 2016)). But a relevant question for evaluating 
the performance or reliability of a marine system is: which sea states, 
each associated with a given probability of occurrence defined by either 
a wave parameter joint distribution or a sea state table, should be used 
to test the system? This question must be considered when defining 
testing regimes for marine systems, either for physical or numerical 
model tests. 

As a motivating example, consider the collapse of a stiffened ship panel 
at a hull location which may be subject to sizable in-plane loading (due to 
global ship bending) and lateral loading (due to potential slam events), with 
a collapse limit state given in Fig. 1. In Fig. 1, the lateral load effect is on the 
y axis while the in-plane load effect is on the x axis. A detailed description 
of the process to define a panel collapse limit state is given in  
Hughes (1983). Stiffened panel failure is due to combined lateral and in- 

plane loading effects, both of which may be non-linear in nature. Panel 
failure may occur due to individual extremes of either load effect or due a 
simultaneous moderate combination of both load effects. A lower-order 
reliability model for stiffened panel collapse due to combined loading was 
used in Seyffert et al. (2019b). That analysis examined panel reliability 
given a pre-defined operational profile representing a 1000-hour exposure 
to Hurricane Camille-type conditions. But that analysis did not consider the 
possibility that another sea state might have led to worse conditions for 
evaluating panel reliability. The effect of sea state harshness versus ex-
posure time was further examined in Seyffert et al. (2019a), since the short- 
term variability of extreme loading values may be important to examine 
reliability due to combined loading effects. 

This investigation furthers the work of Seyffert et al. (2019a) and 
lays out a rational way to identify sea states to evaluate system relia-
bility or performance given a range of possible operational profiles, a 
defined lifetime exposure, and a limit state of interest. Further, the sea 
states identified by the resulting response-based reliability contours are 
compared to what results from a response-independent environmental 
contour approach and a brute-force simulation approach and the re-
sulting effects on perceived system risk are discussed. 

3. Method to define response-based reliability contours (RBRCs) 

The aim of this method is to construct contours of a system re-
sponse, here reliability (or conversely, failure probability), in all pos-
sible operational profiles while including the effects of short-term re-
sponse variability and long-term environmental variability. Such 
contours can indicate which sea states lead to the worst-case responses 
over the system lifetime, allowing a more in-depth analysis of such 
operational profiles. These sea states are identified using a low-order 
reliability analysis based on extreme value theory and indicators of 
extreme behavior, meaning that any further high-fidelity but compu-
tation-heavy analyses can be focused solely on sea states expected to 
lead to the worst system responses. 

Using indicators of extreme behavior links the stochastic excitation 
environment to rare load effects which contribute to rare system re-
sponses, similar to how load responses of interest are expressed as 
functions of the sea state parameters to identify relevant sea states in  
Winterstein et al. (1993), Vanem (2017) and Gouldby et al. (2017). 

Fig. 1. Collapse of a stiffened panel due to lateral (y axis) and in-plane 
(x axis) loading effects (Hughes, 1983). 
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Indicators of extreme behavior are defined as linear processes whose 
return-period extreme values are excited by inputs which are expected 
to similarly lead to return-period extreme values of a more complicated, 
potentially non-linear process. Given that the indicators are defined as 
linear processes, their return-period extreme values in a given sea state 
can be determined via extreme value theory, as described by  
Ochi (1990). 

An indicator process may result from linearizing a non-linear pro-
cess as in Kim et al. (2011), where the extreme response of linear 
vertical midship bending acts as an indicator for extreme responses of 
non-linear vertical midship bending. In that example, stochastic wave 
elevation profiles which excite return-period extreme linear vertical 
midship bending responses are expected to also excite extreme non- 
linear vertical midship bending responses. An indicator may also be a 
characteristic process not linearly related to the input/ output system 
but somehow related to the output extreme behavior, as in  
Seyffert et al. (2016). In Seyffert et al. (2016), extreme values of a linear 
moving average of a wave elevation profile are used to identify rare 
group-like behavior in the wave elevation, namely rare wave groups. In 
this case, the linear moving average process is an indicator to identify 
the occurrence of rare wave groups. 

In both of the above cases (extreme linear vertical midship bending 
responses acting as an indicator for extreme non-linear vertical midship 
bending responses and extremes of a linear moving average of the wave 
elevation profile acting as an indicator for occurrences of rare wave 
groups) the indicator is a linear process defined independently of the 
sea state but that is also excited by the stochastic parameters, i.e. the 
stochastic wave excitation defined by the sea state parameters. No 
conditional distributions given the sea state are required to define in-
dicators. Indicators may be defined by a range of methods, such as the 
pure linearization of a non-linear process as in Kim et al. (2011), or by 
more advanced approaches like the tail-equivalent linearization method 
(Fujimura and Kiureghian, 2007). The method to construct response- 
based reliability contours (RBRCs) expands on what was presented in  
Seyffert et al. (2019a). The steps are given with respect to the moti-
vating example of stiffened ship panel collapse. 

1. Identify indicators: For stiffened ship panel collapse due to 
combined lateral and in-plane loading effects, RBRCs can be con-
structed using the indicators identified in Seyffert et al. (2019b). The 
lateral and in-plane loading effects were described by non-linear func-
tions of the stochastic relative velocity (RV) and bending moment (BM) 
acting at the panel location, based on the panel and ship dimensions 
and the stochastic wave excitation. Based on the analysis in  
Seyffert et al. (2019b), instances of extreme relative velocity and 
bending moment at the panel location were identified as good in-
dicators of extreme lateral and in-plane loading effects on the panel, 
respectively. So in this case, the indicators are defined by linearizing 
the non-linear processes which govern the stiffened panel collapse. Of 
course, if the chosen indicators are not appropriate the resulting RBRCs 
will not give insight into which sea states are most relevant to evaluate 
the system response. But indeed this is also the case for defining 

analytical response functions, response surfaces, or model emulators 
which attempt to link ocean environment with system responses. In any 
case, the resulting contours will only be useful if the indicators are truly 
representative of the desired non-linear extreme behavior. 

2. Express limit state in the indicator space: The stiffened panel 
limit state illustrated in Fig. 1 is a non-linear function of the lateral and 
in-plane loading effects on the panel, which are themselves non-linear 
functions of the RV and BM acting at the panel location, respectively.  
Seyffert et al. employed a lower-order model of stiffened panel collapse 
using analytical expressions to relate the lateral and in-plane loading 
effects to the stochastic RV and BM excitation, based on stochastic wave 
excitation, and panel properties (Seyffert et al., 2019b). Such expres-
sions allow a direct link between the excitation environment (waves, 
then RV and BM at the panel) and resulting load effects which then 
relate to panel failures via limit state exceedances. Given these analy-
tical relationships, and that the limit state in Fig. 1 is one-to-one, the 
stiffened panel limit state can equivalently be written as a function of 
the RV and BM exciting the panel. 

This modified limit state expresses instances of panel failure based 
on combinations of the indicators RV and BM. As an example, consider  
Fig. 2, which shows a stiffened panel limit state in the original in- 
plane - lateral load space in the left inset. The right inset shows this 
limit state expressed as a function of the BM and RV at the panel lo-
cation. 

3. Discretize indicator space limit state by a combined surro-
gate process: The limit states in the original load effect space and in 
the indicator space can be discretized by a finite number of points that 
span the entirety of the limit state, leading to the ( , )

i
M
M i

a u
Y P
, 0 and (BMi, 

RVi) for the =i n1, , points in Fig. 2. Then, each point on the limit 
state in the BM - RV indicator space can be described by a combined 
surrogate process SPi which is a weighted sum of the indicators BM and 
RV which correspond to the point (BMi, RVi) on the limit state in the 
BM - RV space. This combined surrogate process is described by Eq.  (1): 

= +
= =

= =

SP RV BM
i n

i n

for 1, ,

for 1, ,

i i i

i
RV

max RV RV

i
BM

max BM BM

( , , )

( , , )

i
i n

i
i n (1)  

4. Choose a potential sea state: The RBRCs are defined using a 
cell-by-cell approach over all possible sea states. Therefore, the panel 
reliability is examined via a low-order reliability analysis in each po-
tential sea state considering the combined lifetime exposure to that sea 
state. The possible sea states and the probability of encountering such a 
sea state may be defined by wave tables, as in IACS (2001), or by some 
joint distribution of sea state parameters, as in Bitner-Gregersen (2010). 
Based on the total design lifetime, plus any additional risk parameters, 
each sea state will then have an associated expected exposure period 
based on its probability of occurrence. Since considering a longer ex-
posure can be equated to applying additional risk parameters to a 
shorter exposure, the long-term variability in this study is expressed by 

Fig. 2. Stiffened ship panel limit state described in the in-plane load - lateral load space (left) and in the BM - RV space (right).  
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the combined exposure to each sea state cell. In this particular example, 
the limit state is memoryless, so there are no cumulative effects related 
to the exposure length. 

5. Relate extremes of the combined surrogate processes to 
failure probabilities: The desire now is to estimate the panel failure 
probability in the given sea state (with the lifetime exposure to this sea 
state defined by the probability of sea state occurrence) using extreme 
value theory and the definition of the limit state in the indicator space. 
As the combined surrogate processes, like in Eq.  (1), are linear func-
tions of the indicators BM and RV, which are linearly related to the 
Gaussian wave excitation, there exists a known extreme value dis-
tribution for each SPi for the given sea state and exposure period. 
Comparing this extreme value distribution of the combined surrogate 
process with the limit state expressed in the indicator space gives a 
quick low-order reliability estimate. This reliability estimate is based on 
the probability that extreme values of SPi over the given exposure ex-
ceed the limit state value at point i on the limit state in the BM - RV 
indicator space, as in Eq.  (2): 

= = >

=

p i p SP p SP sp

g sp

(failure at point ) (fail| ) ( ^ )

1 ( )

i i i
sp

i m0
^

,
i

(2) 

where 

=

= = + =

g sp
SP m

sp SP RV BM
SP i

( ) extreme value distribution of the combined
surrogate process , given process cycles
over the exposure to the given sea state

^ value of combined
surrogate process at point on the limit state
in the BM - RV indicator space

i m

i

i i i i i i

i

,

Such a formula is similar to how Haver and Winterstein formulate a 
limit state based on comparing some critical response value with the 
most-likely extreme value of that response in a given sea state 
(Haver and Winterstein, 2008). 

6. Relate conditional failure probabilities to overall failure 
probability in sea state: A method to relate the effects of extreme 
values of multiple stochastic processes and conditional probabilities 
similar to Eq.  (2) to an overall failure probability given excitation from 
many potential combined surrogate processes SPi is addressed in  
Seyffert (2018). The resulting probabilistic framework is used in  
Seyffert et al. (2019b) to efficiently estimate panel reliability in a given 
sea state by estimating how extreme values of the different surrogate 
processes SPi are related over the exposure time. But in general, this 
overall failure probability estimate must be at least p(fail|SPi) for 

=i n1, , , given each possible combined surrogate process SPi. This 
allows a quick estimate of the panel failure probability given an ex-
posure to a single sea state, as in Eq.  (3): 

=p p SP p SP(fail) maximum( (fail| ), , (fail| ))n1 (3)  

The failure probability estimate for a given sea state in Eq.  (3) will 
be improved if the conditional failure probabilities from Eq.  (2) are 
estimated via directed wave simulations, rather than the extreme value 
distribution estimate suggested by Eq.  (2), as in Seyffert et al. (2019a). 
Such probabilities can be efficiently estimated by directed wave simu-
lations by using response-conditioning wave techniques to construct an 
ensemble of waves expected to lead to rare load responses. However, 
the conditional failure probability estimates from Eq.  (2) will be sig-
nificantly more efficient than using simulations, allowing for a fast low- 
order reliability estimate in a given sea state. 

7. Construct RBRCs using failure probabilities in each sea state: 
Steps 4–6 are repeated for each sea state cell and associated exposure 
time in the range of potential operational profiles. Then RBRCs can be 
assembled showing the estimated failure probability in all of the ex-
amined sea states, based on the sea state conditions, exposure period to 
each sea state, and the system limit state definition. 

3.1. Inclusion of short-term response and long-term environmental 
variability 

The defined procedure makes two major assumptions that distin-
guish it from environmental contour methods, apart from including the 
limit state in the identification of relevant sea states. First, this re-
sponse-based reliability contour method identifies relevant sea states 
using their lifetime combined exposure. Based on the design lifetime 
and how the range of operational profiles are defined, each resulting 
sea state has an expected exposure duration. For the presented RBRC 
method, system reliability is examined in each sea state cell using the 
fraction of the lifetime exposure associated with that sea state. In this 
way, the long-term variability of the environmental condition is cap-
tured by the combined exposure time to each sea state cell, rather than 
by a return period associated with these sea conditions, as for en-
vironmental contour methods. 

Generally in environmental contour methods, once relevant sea 
states are identified, they are used to test the system assuming a 3-hour 
storm duration, as suggested by, e.g. (DNV-GL, 2010; 2017; NOR, 
2017). This 3-hr storm duration assumption may be appropriate for rare 
sea states, which will likely not be experienced for much longer than 3 h 
over a system’s lifetime. But while this 3-hr storm duration assumption 
is physically realistic for the stationarity of the ocean environment, the 
system will experience the effects of many milder sea states for sig-
nificantly longer over its lifetime. For systems subject to combined 
loading, where long exposures to milder sea states (the calm, versus the 
storm) can excite the moderate simultaneous loading that leads to 
failure, this 3-hr storm duration assumption may significantly under- 
predict the potential system risk. On the other hand, some sea states 
may be so rare that a 3-hr duration far exceeds the expected duration 
based on the design lifetime and applied risk parameters. Section 5 
examines the effect of this 3-hr sea state duration (i.e. neglecting the 
long-term environmental variability) on the RBRCs and on the per-
ception of the system risk. 

Related to this storm duration limitation is the inclusion of short- 
term response variability. Again, most environmental contour methods 
assume there is no short-term response variability when constructing 
contours and identifying sea states. The short-term variability may be 
included when a sea state is used to test the system, again usually for a 
3-hr duration. Section 6 examines how neglecting short-term response 
variability affects the identification of relevant sea states. Overall, while 
environmental contours are used to formulate design criteria, the 
RBRCs are meant to identify sea states which may be the most relevant 
for testing the reliability or performance of an already-formulated 
system, based on the long-term environmental variability and the short- 
term response variability. 

4. Case study: stiffened panel collapse on the David Taylor Model 
Basin vessel 5415 

The method to assemble RBRCs allows a designer to pinpoint sea 
states which are expected to lead to the worst-case system responses 
over all possible operational profiles for a specific design option. Again, 
this presents a subtle but important difference from environmental 
contour methods, where contours are defined independently of the 
design and can then be applied to multiple design alternatives. Whereas 
environmental contours can suggest sea states which may be interesting 
for general design options purely based on the rarity of the sea state, the 
RBRCs identify sea states expected to lead to the worst lifetime per-
formance of a specific design option. This section furthers the motiva-
tional example presented in Section 2.1 by identifying relevant sea 
states to evaluate the probability of stiffened panel collapse on the 
David Taylor Model Basin (DTMB) vessel 5415, a modern destroyer-like 
hull with parameters given in Table 1. 
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4.1. Range of operational profiles 

For this analysis the range of operational profiles is defined by wave 
data measured between 1989–2008 in the North Atlantic. The possible 
wave spectral parameters, significant wave height Hs and wave zero- 
crossing period Tz, can be expressed via a 3-parameter Weibull dis-
tribution, as from Bitner-Gregersen (2010). This wave data was pre-
viously used to assemble environmental contours in Vanem and Bitner- 
Gregersen (2012) and Huseby et al. (2013). Parameters to define the 
joint distribution for this North Atlantic region, defined by Bitner- 
Gregersen (2010), are given in Table 2. These parameters describe a 
modified marginal distribution of the significant wave height in Eq.  (4) 
based on the long-term wave climate and will be used for a 2-parameter 
H Ts z Bretschneider spectrum. 

=
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= >( )
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s
a

s
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3

Stiffened ship panel reliability is examined for a 30-year design 
lifetime with a probability of non-exceedance =PNE 0.90 for the most- 
likely extreme responses, resulting in an effective 300-year effective 
exposure. This effective exposure can be determined via linear extreme 
value theory, see, e.g. Ochi (1990), where the extreme value distribu-
tion, g(ym), of a linear process y with probability density function fY and 
cumulative density function FY is defined in Eq.  (5) by the number of 
cycles m expected over a given exposure period. The most probable 
extreme value of the random process y over the m cycles, y ,m is related 
to m in the limit as m → ∞ by Eq.  (7). 

=g y mf y F y( ) ( ){ ( )}m Y m Y m
m 1 (5)  

=d
dy

g y( ) 0
m

m
ym (6)  

m
F y1 1 ( )Y m (7)  

An issue of using the most probable extreme value ym as a design 
value for engineering purposes is that ym has about a 63.2% probability 
of exceedance over the m cycles. Therefore, a risk parameter αr can be 
applied. Then, there is an extreme value ŷm that satisfies Eq.  (8)-(9): 

= =g y dy F y( ) { (^ )} 1
y

m m m
m

r0
m̂

(8)  

=F y
m

1 (^ )Y m
r

(9)  

The formulation of Eq.  (9) allows the definition of an extreme value 
ŷm associated with an exposure (which can be expressed by the number 
of cycles or samples m) and a risk parameter αr. The risk parameter αr is 
used to define the response whose most-likely extreme value over a 
given exposure has the defined probability of non-exceedance 

=PNE 1 r . In this case then, a 30-year lifetime with a probability of 
non-exceedance =PNE 0.90 can equivalently be expressed as a 300- 
year effective exposure by Eq.  (9). 

This 300-year effective exposure and the distribution parameters 
from Bitner-Gregersen (2010) determine the fraction of the 
lifetime exposure devoted to each sea state cell, given a 
0.25 meter × 0.25 second cell dimension, as illustrated in Fig. 3. As a 
cut-off, any sea state cell whose combined lifetime exposure is less than 
1 min is not considered to occur (i.e. has a 0-hour exposure). This is 
done because the method to construct the RBRC’s in Section 3 uses the 
most-likely extreme values of the linear indicators based on extreme 
value theory, which as noted above for Eq.  (7), is only valid as the 
extreme values become large. Considering that the possible wave per-
iods range from 3.5s to 11.5 s, this 1-minute cutoff ensures that a suf-
ficient number of wave cycles are experienced in each sea state cell to 
satisfy the assumptions of extreme value theory. Practically speaking, 
this cutoff means that about 14.3 min of the 300-year effective exposure 
are neglected. These 14.3 min of neglected exposure time are spread 
over 734 sea state cells, where the average exposure time of the ne-
glected sea state cells is 1.17 seconds. 

Given the exposure to each sea state, the RBRCs can identify the 
most relevant sea states for evaluating the reliability of a given panel 
design, based on the tradeoff between the sea state harshness and the 
exposure time expected in that sea state. 

4.2. DTMB 5415 stiffened panel design 

This paper examines three potential stiffened panel design options 
for the inner bottom external shell strake of the DTMB 5415. The 17th 

International Ship and Offshore Structures Congress (committee V.5 Naval 
Ship Design) used existing naval structural rules from 6 different clas-
sification societies to determine an optimal stiffened panel for the 
DTMB 5415 (Ashe et al., 2009). Three panel designs are used for this 
analysis with properties given in Table 3. As in Seyffert et al. (2019a,b) 
only mode 2 and 3 panel failures are considered, relating to the top 
quadrant of Fig. 1. 

4.3. Stiffened panel RBRCs 

Using the process described in Section 3 and the potential opera-
tional profiles described by Eq.  (4) and Table 2, RBRCs are assembled 
for the panels. As described in Seyffert et al. (2019b), extreme relative 
velocity (RV) at the panel location is used as an indicator for extreme 
lateral loading effects on the panel. In the same way, extreme global 
bending moment (BM) at the panel location is used as an indicator for 
extreme in-plane loading effects on the panel. The estimation of the 

Table 1 
DTMB 5415 & stiffened panel particulars.    

Parameter Value  

Overall length 151.18 m 
Length on water line 142.18 m 
Beam on water line 19.06 m 
Draft 6.15 m 
Displacement 8424.4 m3 

Block Coefficient 0.507 
Longitudinal Center of Buoyancy (% Lpp fwd+) -0.683 

Panel Location (fwd of midships +) 13.96 m 
Panel Deadrise Angle 4o 

Web frame spacing 1905 mm 
Plate/ Stiffener Yield Stress 330 MPa 
Steel Young’s modulus, E 190 GPa 

Table 2 
North Atlantic distribution parameters for Eq.  (4) from (Bitner- 
Gregersen, 2010).      

Parameter Value   

α β γ  
1.094 1.213 0.329  

=i 1 =i 2 =i 3
ai 1.060 0.653 0.405 
bi 0.020 0.408 -0.784 
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failure probability for the panels in Seyffert et al. (2019b) was quite 
accurate and efficient compared to brute-force Monte Carlo Simula-
tions, indicating that the choice of these indicator processes is appro-
priate for the non-linear loading models. Using these linear indicators 
maintains a clear connection between extreme ocean environments (sea 
spectrum defined by H Ts z), extreme indicator responses (RV and BM 
at the panel location), and characteristics which impact panel reliability 
(interaction of lateral and in-plane loading effects with the limit state 
definition), leading to the RBRCs in Fig. 4. These contours were gen-
erated in less than 30 s on a MacBook Pro-personal laptop, 2.3 GHz Intel 
Core i5. 

The contours in Fig. 4 indicate that all panels have a similar range of 
sea states that lead to appreciable failure probabilities which runs from 
about =H 3.5s m =T 4.5z s to about the =H 8.5s m =T 8.5z s sea state. 
For all panels, the worst performances are clustered from the 

=H 4.5s m =T 5.5z s to =H 5.5s m =T 6.5z s sea states. Overall, Panel 
A has the best performance, i.e. the lowest collapse probabilities, fol-
lowed by Panel B and then Panel C. 

5. Effect of long-term environmental variability 

When a sea state is chosen using environmental contour methods, 
this sea state is generally used to test the system assuming a 3-hr storm 
duration, as recommended by, e.g. (DNV-GL, 2010; 2017; NOR, 2017). 
While this limited 3-hr exposure reflects physical limits on sea state 
stationarity for storm conditions, from a statistical side it neglects the 
combined effects on a system over its lifetime exposure to a potential 
sea state. Especially for combined loading problems where simulta-
neous moderate loading can lead to interesting system responses, as-
suming only a 3-hr sea state duration may significantly under predict 
the potential risk from a sea state excitation. But on the other hand, this 
3-hr storm duration may inflate the importance of sea states that are in 
reality much rarer when considering the design lifetime and applied 
risk parameters, potentially leading to over-conservative designs. 

Fig. 5 gives the RBRCs for the panels using the procedure from  
Section 3 but assuming that each considered sea state has a 3-hr 
duration. In this case, the long-term variability of each sea state cell is 

neglected. This test is equivalent to seeking sea states which will lead to 
the worst response in a 3-hr duration, regardless of the rarity of that sea 
state. Also included in Fig. 5 are the RBRCs which do include the long- 
term environmental variability (i.e. Fig. 4) in light grey to better 
compare the location of the resulting contours. 

In this case, the RBRCs neglecting long-term environmental varia-
bility by assuming a 3-hr sea state duration generally range from 

=H 4s m =T 4z s to about the =H 8.5s m =T 7.5z s sea states, are 
much narrower and shifted towards higher significant wave heights and 
lower zero-crossing wave periods, and overall have much higher failure 
probabilities than the contours in Fig. 4. The higher failure probabilities 
for all panels can be attributed to the constant 3-hr sea state duration. 
The sea states leading to the highest failure probabilities for each panel 
in Fig. 5 (neglecting long-term environmental variability) are con-
siderably rarer in the 300-year effective exposure than what the con-
stant 3-h sea state duration suggests. For all panels, the constant 3-hr 
storm duration assumption indicates that the =H 5.0s m =T 5.0z s sea 
state is the most relevant. Based on the wave parameter model de-
scribed in Section 4.1 which includes long-term environmental varia-
bility, this sea state would only be expected to occur for about 1.4 
minutes out of the 300-year effective exposure (as in Fig. 4), far less 
than the 3-hr duration assumed in Fig. 5. 

This disparity indicates the need for engineering judgment when 
considering allowable risk profiles and choosing relevant sea states for 
testing regimes based on that risk profile. Assuming a 3-hr sea state 
duration is a reasonable choice and is common practice, as evidenced 
by its codification in classification society rules. But it could lead to an 
over-conservative design, as might happen in this case. Based on the 
failure probability contours in Fig. 5, none of the panel designs could be 
considered acceptable. However, the worst-case sea states identified by  
Fig. 5 are likely to occur for a far shorter duration than 3-hr over the 
300-year effective exposure when considering the long-term environ-
mental variability. 

Note that this =H 5.0s m =T 5.0z s sea state would have a 3-hr 
duration when considering long-term environmental variability if the 
original 30-year design lifetime was paired with a probability of non- 
exceedance =PNE 0.9992 (based on Eq.  (8)-(9)). This is clearly a very 
different risk profile than the 30-year design lifetime with a probability 
of non-exceedance =PNE 0.90, which gives the contours in Fig. 4. This 
further implies that the constant 3-hr sea state durations leading to the 
reliability contours in Fig. 5 could all be obtained based on the original 
30-year design lifetime with different applied risk parameters for each 
sea state, though that makes comparing the performance of the panels 
in different sea states certainly more challenging. It may be more ju-
dicious to judge a design based on its response when considering the 
long-term environmental variability paired with a universal explicitly- 
defined risk profile. This allows a designer to specify any desired risk 
profile and judge a design’s performance accordingly, rather than de-
signing for a sea state which is far rarer than what the designer is 
concerned about or comparing design responses associated with dif-
ferent risk profiles. 

6. Effect of short-term response variability 

The RBRCs in Fig. 4 give a clear picture of the panel performance in 
each potential sea state with exposures defined by the wave model from  
Eq.  (4) and Table 2 because the panel limit states are known. But for 
many problems, there may not be a known limit state, or it may not be 
so simply defined as to be implemented in the procedure in Section 3. 
These limitations are what make the environmental contour methods 
presented in Section 2 so appealing. Since environmental contours only 
include the rareness of a sea state, no limit state information is neces-
sary. Response-based methods add information on the system dy-
namics, but still at a low level of system detail. Considering the design 
limit state is closely connected to including the effects of short-term 
variability. Assuming there is no short-term variability essentially boils 

Table 3 
Stiffened panel designs for the DTMB 5415 from (Ashe et al., 2009).       

Panel A Panel B Panel C  

Stiffener Design Pressure [kPa] 103.6 60.6 59.75 
Web Design Pressure [kPa] 103.6 33.6 33.89 
Plate Thickness [mm] 11 9 8.1 
Hweb ×  Tweb [mm] 150  ×  9 160  ×  6.2 154.4  ×  6 
Hflange ×  Tflange [mm] 90  ×  14 120  ×  9.8 101.8  ×  8.9 
Stiffener Spacing [mm] 700 672 500 
Bottom Cross-Section Modulus [m3] 4.60 3.77 4.14 
Longitudinal Structure Weight [kg] 21,121 16,520 19,276 

Fig. 3. Hours in each North Atlantic sea state (H sTz) out of 300-year effective 
exposure. 
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the system response down to a single value given the sea state excita-
tion, e.g. a most-probable extreme value, as noted by  
Derbanne et al. (2017). Depending on how this value is calculated, it 
may not have any relation to the design limit state, especially for a 
system with a limit state including multiple failure modes. 

The question then is, if a designer has an idea of relevant loading 
effects for system performance, but no limit state definition, can re-
levant sea states still be identified using the idea of the method pre-
sented in Section 3? Consider that rare system responses are likely due 
to rare loading effects on the system. Instead of using environmental 
contours to identify rare sea states, and assuming that such sea states 
excite equally rare responses, the theory of Section 3 can be adapted to 
identify sea states that excite the most-likely extreme load effects, again 
using a cell-by-cell approach and extreme value theory. 

In each sea state cell, the most-likely extreme relative velocity and 
bending moment at the panel location can be approximated based on 
the exposure using extreme value theory. Contours of the most-likely 
extreme relative velocity and bending moment responses at the panel 
location, given the sea state parameters and cell exposure time, are 
shown in Fig. 6. Note that the contours in both insets have a rugged 
appearance in the top left region. This is due to the 1-minute exposure 
cutoff referenced in Section 4.1, where sea state cells with an expected 
exposure of less than 1-minute over the entire 300-year effective ex-
posure are not considered. Again, that choice was made to reflect the 
assumptions of the extreme value theory used in Eq.  (5)–(7), where the 
expressions to calculate the most-likely extreme value are only valid as 
that value becomes large. Therefore, the rugged border of the contours 
in Fig. 6 reflects the boundary between sea states which are and are not 
expected to occur. 

These contours illustrate how relevant sea states might be identified 
if short-term variability is ignored, as the contours in Fig. 6 only give 

the most-likely extreme load value at each sea state cell, whereas the 
RBRCs in Fig. 4 include the effects of short-term variability based on the 
limit state by Eq.  (2). Identifying sea states via these contours is similar 
to the coefficient of contribution method adopted by Baarholm and 
Moan (2000). 

The left inset of Fig. 6 gives the most-likely extreme relative velocity 
response at the panel location, while the right inset gives the most- 
likely extreme bending moment response at the panel location based on  
Eq.  (6), given the sea state and exposure. Fig. 6 does give some insight 
into which sea states are most relevant for panel reliability, especially 
considering the contours of most-likely extreme relative velocity at the 
panel location. The contour region with the highest relative velocity 
values at the panel location corresponds with the region of higher 
failure probabilities for all the panels. In Seyffert et al. (2019b), it was 
found that the panels were more vulnerable to failures due to extreme 
lateral load effects (whose indicator is extreme relative velocity at the 
panel location) than failures due to extreme in-plane load effects 
(whose indicator is extreme bending moment at the panel location), 
explaining why sea states corresponding to high most-likely extreme 
relative velocity responses at the panel location indicate relevant sea 
states for panel performance. In contrast, sea states leading to the most 
extreme bending moment responses at the panel location do not cor-
respond with sea states that lead to appreciable failure probabilities. 

7. RBRC sea states compared to IFORM environmental contours 
and MCS 

Fig. 4 gives contours of the panel failure probability based on the 
contribution of each sea state cell to the entire 300-year effective ex-
posure. From these contours, specific sea states can be identified which 
are expected to excite the highest failure probabilities for the panels. An 

Fig. 4. Failure (collapse) probability contours of panels A, B, and C with sea state duration given by Fig. 3 (considering long-term environmental variability and 
short-term response variability). 

Fig. 5. Response-based reliability contours of panels A, B, and C assuming a 3-hr sea state duration (i.e. neglecting long-term environmental variability), along with 
RBRCs that include the long-term environmental variability from Fig. 4 in light grey. 
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important question is then: which sea states would be identified as 
relevant if an environmental contour approach were used? This can 
help illustrate whether the major assumption of environmental con-
tours: that rare sea states are directly linked to rare system responses, is 
appropriate for such a system as stiffened panel collapse due to com-
bined loading effects. For this comparison, environmental contours 
associated with 300-year, 30-year, and 10-year return periods are 
constructed using the Inverse First Order Reliability Method 
(Winterstein et al., 1993), without including any short-term response 
variability. 

The IFORM contours for this comparison do not include the panel 
response variability because even the simple collapse model presented 
in Section 3, which allows for multiple failure modes and combined 
loading, is too complicated to be expressed solely as a function of the 
sea state parameters Hs and Tz. In general, the omission of the short- 
term variability is handled by inflating the IFORM contours based on 
FORM omission factors, as suggested by DNV-GL (2010).  
Winterstein et al. note that “if the expected largest value of the worst q- 
probability sea state (of duration d) is taken as an estimate for the long 
term q-probability response, the target value is underestimated by 
about 10% or more,” where the q-probability response is the desired 
load probability of exceedance value which defines the sea state 
(Winterstein et al., 1993). 

This issue is generally resolved by inflating the IFORM to look for 
rarer responses, but there is no easy way to determine the magnitude of 
the required safety factor to account for the simplification.  
Winterstein et al. acknowledge that the proper inflation factor is 
structure-dependent, and the correct choice of this factor may require 
in-depth numerical or physical mode tests, as in Baarholm et al. (2010). 
Such an inflation factor may be strongly structure-dependent, and for 
different structural problems IFORM inflation factors have been chosen 
ranging from 0.57 (Sødahl et al., 2006) up to 0.98 (Haver and 
Kleiven, 2004). In general though, only the full probabilistic analysis 
can indicate the “correct” inflation factor for the problem at hand. 

As a benchmark of which sea states are most relevant, brute force 
Monte Carlo Simulations (MCS) are conducted for a test grid of sea 
states. At each sampled sea state cell, 500 MCS are carried out for the 
sea state duration given by Fig. 3. The MCS include the long-term en-
vironmental variability via the lifetime combined exposure to each sea 
state and the short-term response variability via stochastic wave si-
mulations testing the panels for the exposure using the higher-order 
panel collapse model presented in Seyffert et al. (2019b). The test grid 
of the sea states examined by MCS, along with the 300, 30, and 10-year 
IFORM contours are given in Fig. 7. The MCS test points are chosen to 
overlap with similar regions of the contours in Figs. 4–5, relevant sea 
states from the insets of Fig. 6 (highest most-likely relative velocity and 
bending moment extreme values), and the intersection of the contours 
in Fig. 6 with the IFORM contours. This grid of sea states leads to failure 
probability contours from the MCS shown in Fig. 8. The RBRCs from  

Fig. 4 are also plotted in light grey to better compare the location of the 
contours. The MCS were run on an Ubuntu desktop with 12x Intel(R) 
Xeon(R) CPU E5-2609 v3 @ 1.90  GHz, for a total of 12.45 hours of 
computation time. 

The failure probability contours from the MCS in Fig. 8 show a 
strong similarity with the RBRCs shown in Fig. 4 assembled by the 
method in Section 3 based on the range of sea states leading to ap-
preciable and significant failure probabilities. This is impressive con-
sidering that the RBRCs in Fig. 4 come from a low-order reliability 
model based on extreme value theory, and require only 30 s of com-
putation time to generate. In contrast, the MCS test the panel response 
excited by stochastic wave excitation time simulations based on the 
exposure to each sea state and use a higher-order panel collapse model 
involving combined non-linear loading effects, requiring about 12.45 h 
of computation time. Ranges of appreciable failure probabilities from 
the MCS are found in sea states that range from =H 3.5s m =T 4.5z s to 
about =H 8.5s m =T 8.5z s and it is similarly found that Panel A 
overall has the best performance followed by Panels B and then C. 

For Panel A, the sea state with the highest failure probability 
identified by the RBRCs in Fig. 4 is the same sea state indicated by MCS 
that leads to the highest failure probabilities: =H 5.0s m =T 5.75z s. 
Panels B and C similarly pinpoint sea states which are confirmed by 
MCS to lead to very high failure probabilities. These results indicate 
that the sea states identified by the method in Section 3 can indeed be 
taken as a range of sea states which are expected to lead to the worst- 
case panel responses. This can have a major impact for designing testing 
regimes for a system, where choosing relevant sea states is important to 
effectively and efficiently test the lifetime performance of a system. 

Table 4 compares the sea states identified by the MCS in Fig. 8, the 

Fig. 6. Left inset: Most-likely extreme relative velocity (RV) [m/s], right inset: most-likely extreme bending moment (BM) [Nm] at panel location (i.e. neglecting 
short-term response variability). 

Fig. 7. Testing grid for MCS analysis, along with 300-year, 30-year, and 10-year 
IFORM contours. 
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RBRCs in Fig. 4, the RBRCs assuming a constant 3-hr sea state duration 
in Fig. 5, sea states identified by maximized relative velocity and 
bending moment at the panel location, as in Fig. 6, and sea states 
identified by the intersection of the IFORM environmental contours and 
the relative velocity and bending moment contours from Fig. 6. The 
major point of comparison is whether a method identifies sea states 
which indeed lead to the worst-case panel responses, as compared to 
MCS. 

The first 5 rows in Table 4 give the sea state expected to lead to the 
maximum failure probability for each panel design, based on each 
particular method. The first row is the benchmark as it gives the sea 
state from the 500 MCS, based on the examined sea state cells from  
Fig. 7, which leads to the highest failure probability for each panel 
design. The second row gives the sea state leading to the highest failure 
probability for each panel from the RBRCs in Fig. 4. The third row gives 
this sea state based on the RBRCs assuming a constant 3-hr sea state 
duration, from Fig. 5. The fourth row identifies the sea state leading to 
the largest most-likely extreme relative velocity response and the fifth 
row identifies the sea state leading to the largest most-likely extreme 
bending moment responses at the panel location. 

Following are three blocks of two rows, corresponding to examining 
sea states associated with the 300-year, 30-year, and 10-year IFORM 
contours. For each block, the rows give the sea state along the N-year 
IFORM contour associated with the largest most-likely extreme relative 
velocity response and bending moment response at the panel location. 

For each panel block, the first column gives the maximum failure 
probability found by the particular method for the given panel (if the 
method returns a failure probability), with the associated sea state 
significant wave height Hs and zero-crossing period Tz in the second and 

third columns. The fourth column ‘pfail/pfail,max’ gives the ratio of the 
MCS failure probability at the identified sea state to the maximum MCS 
failure probability for that panel over all examined sea states. This ratio 
shows whether a sea state identified by a particular method actually 
leads to the worst-case system response if the system were examined via 
a higher-fidelity model taking into account both long-term environ-
mental variability and short-term response variability, such as MCS. 
This will affect the perceived risk level because if a engineer chooses a 
sea state thinking it leads to the worst possible response, but in reality 
there is another sea state which leads to a worse response, the per-
ception of the system risk will be skewed. 

8. Discussion 

Table 4 indicates that the RBRCs considering both long-term en-
vironmental variability and short-term response variability give a very 
accurate identification of the most relevant sea states for stiffened panel 
failure, based on the failure model used here. For all panels, the RBRC- 
identified sea state would lead to a failure probability that is at least 
95% of the maximum possible failure probability identified by brute- 
force MCS. In addition, comparing Figs. 4 and 8 indicates that the 
RBRCs identify the region of sea states which leads to the highest failure 
probabilities for each panel design. Such low-order RBRCs can be useful 
when defining a testing profile regime for a complex marine system 
which will be tested by some higher-fidelity model. 

Assuming a constant 3-hr sea state duration (i.e. Fig. 5) strongly 
diminishes the likelihood that the identified sea state leads to the worst- 
case panel response when compared to MCS which include that long- 
term environmental variability. Note that the failure probabilities in  

Fig. 8. Failure probability contours assembled by 500 MCS at each sea state cell (considering long-term environmental variability and short-term response varia-
bility), along with RBRCs from Fig. 4 in light grey. 

Table 4 
Comparison of identified sea states & expected failure probabilities from different methods.                

Panel A Panel B Panel C 

method max. p(fail) Hs [m] Tz [s] pf
pf ,max

max. p(fail) Hs [m] Tz [s] pf
pf ,max

max. p(fail) Hs [m] Tz [s] pf
pf ,max

MCS 0.05 5.0 5.75 1.0 0.118 5.5 6.0 1.0 0.536 5.75 6.25 1.0 
RBRC 0.020 5.0 5.75 1.0 0.075 5.0 5.75 0.97 0.436 5.0 6.0 0.95 
3-hr RBRC 0.330 5.0 5.0 0.16 0.671 5.0 5.0 0.10 0.972 5.0 5.0 0.10 
Most-Likely RV - 5.0 6.0 0.60 - 5.0 6.0 0.64 - 5.0 6.0 0.95 
Most-Likely BM - 11.25 10.75 0 - 11.25 10.75 0 - 11.25 10.75 0.01 

300-yr IFORM + Most-Likely RV - 4.5 5.0 0.004 - 4.5 5.0 0.0064 - 4.50 5.0 0.006 
300-yr IFORM + Most-Likely BM - 11.5 9.7 0.12 - 11.5 9.7 0.068 - 11.5 9.7 0.041 

30-yr IFORM + Most-Likely RV - 4.5 5.25 0.59 - 4.5 5.25 0.90 - 4.50 5.25 0.90 
30-yr IFORM + Most-Likely BM - 11.5 10.0 0 - 11.5 10.0 0 - 11.5 10.0 0.026 

10-yr IFORM + Most-Likely RV - 5.0 5.75 0.90 - 5.0 5.75 0.88 - 5.0 5.75 0.90 
10-yr IFORM + Most-Likely BM - 11.5 10.2 0 - 11.5 10.2 0.05 - 11.5 10.2 0.02 
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Fig. 5 are significantly higher than what is predicted by the RBRCs in  
Fig. 4 or the brute-force MCS in Fig. 8. This is because each sea state in  
Fig. 5 is assumed to have a 3-hr duration, whereas the contours in Fig. 8 
determine each sea state exposure based on the long-term environ-
mental variability. But the sea states leading to appreciable failure 
probabilities in Fig. 5 would be expected to have much shorter ex-
posures out of the entire 300-year effective exposure, based on the long- 
term environmental variability model, as reflected by the lower failure 
probabilities for these sea states from the RBRCs and MCS. 

Considering the sea states identified by the largest most-likely ex-
treme relative velocity and bending moment responses at the panel 
location offers mixed results. The contours of most-likely extreme re-
lative velocity responses certainly approximate the range of sea states 
leading to high failure probabilities, but not as precisely as the RBRCs in  
Fig. 4. On the other hand, the contours of most-likely bending moment 
responses at the panel location give no meaningful insight into sea 
states leading to the worst panel responses, though it was noted in  
Seyffert et al. (2019b) the panels were more susceptible to pure lateral 
load-induced failures (excited by the relative velocity) than pure in- 
plane load-induced failures (excited by the bending moment). 

Sea states identified by the N-year IFORM environmental contours 
paired with the most-likely extreme relative velocity and bending mo-
ment response contours offers interesting, and somewhat diverging 
conclusions. The 300-year IFORM contour does not identify sea states 
which lead to appreciable panel failure probabilities, since the range of 
sea states leading to the largest most-likely extreme relative velocity 
values generally fall inside of the 300-year IFORM contour. It is only sea 
states that lead to less extreme relative velocity values that intersect 
with this 300-year contour, meaning that the identified sea states are 
not very relevant for panel failure. 

The 30-year and 10-year IFORM contour intersections with the 
contours of most-likely extreme relative velocity responses identify sea 
states which are much more relevant to panel failure than the 300-year 
IFORM contour. The 10-year IFORM contour paired with the contours 
of most-likely extreme relative velocity responses at the panel location 
identifies sea states that give at minimum 88% of the maximum failure 
probability for all panel designs. Such an identification of sea states is 
also quite useful to designers when designing a testing regime. But this 
result offers a conundrum, that being: what is the appropriate N-year 
environmental contour to use when examining extreme responses of a 
system with a M-year lifetime? The a posteriori examination of these 
environmental contours suggests that 10-year IFORM contour identifies 
more relevant sea states for panel failure than the 300 or 30-year 
contour. But environmental contours are used when there is not such 
detailed system response information to determine which return period 
contour is most relevant for the system response. Certainly the 30-year 
contour might seem more relevant to examine a system with a 30-year 
lifetime (before the additional risk factors are applied). But this analysis 
shows that is not necessarily the case. 

This limitation of knowing which return period is most relevant for 
evaluating system reliability does not pose a challenge for the RBRCs 
presented in Fig. 4 because the long-term environmental variability 
along with an applied risk parameter are taken into account to con-
struct those contours. For all three panel designs, the RBRCs give the 
best identification of relevant sea states for panel reliability of all 
methods as compared to the brute-force MCS. In addition to identifying 
relevant sea states, these contours give a low-order estimate of the 
panel reliability, at least enough to rank relative performance between 
designs. In terms of designing a testing regime for use in a higher-fi-
delity model, either physical or numerical, these RBRCs can help focus 
tests on the most relevant sea states for system performance. 

9. Conclusions 

This paper established a method to construct response-based relia-
bility contours (RBRCs) for complex marine systems excited by 

combined loading effects using indicators of extreme behavior and 
extreme value theory. As an example, these RBRCs were constructed to 
identify sea states which are most relevant for stiffened panel failure for 
three possible panel designs on the David Taylor Model Basin Vessel 
5415. For each panel design, these RBRCs identified a sea state which 
excited a failure probability at least 95% of the maximum failure 
probability expected from brute-force Monte Carlo Simulations taking 
into account both short-term response variability and long-term en-
vironmental variability over all possible operational profiles. In gen-
eral, this offers a major advantage when determining a testing regime to 
evaluate the reliability or performance of a marine system. Based on the 
RBRCs for these panel designs, an engineer could easily identify re-
levant sea states to test the panel performance without wasting com-
putational effort on irrelevant sea conditions. 

This paper also investigated the effects of assumptions generally 
used with environmental contour methods, namely: a constant 3-hr sea 
state duration, which neglects long-term environmental variability, and 
ignoring short-term response variability. 

The RBRCs constructed assuming a constant 3-hr sea state duration 
can identify relevant sea states for testing a design response, but ob-
scure the risk profile associated with such a sea state occurrence based 
on the design lifetime. Ignoring the effects of short-term response 
variability was examined by constructing contours of the most-likely 
extreme load effect which is relevant for system failure, in this case 
relative velocity at the panel location. For some panel designs, parti-
cularly the panels with a worse overall performance, these contours 
also identified relevant sea states for panel failure. Such an approach 
offers a potential solution when a design limit state is unknown but 
important load effects which affect system performance are known. 

Finally, the paper examined whether IFORM environmental con-
tours paired with the contours of the most-likely extreme load effect 
identified the most relevant sea states for stiffened panel collapse. As 
the system lifetime was set at 30 years with an applied risk parameter 
leading to a 300-year effective exposure, a 300-year and 30-year IFORM 
were examined, along with a 10-year contour. Surprisingly the 10-year 
contour paired with the contours of the most-likely extreme relative 
velocity response at the panel location identified the most relevant sea 
states of all the IFORM contours. The ambiguity of choosing the “cor-
rect” return period to examine a system with a given lifetime exposure 
over many potential operational profiles makes applying environmental 
contours to identify relevant sea states for a particular design response 
difficult. 

In general, the RBRCs were most effective at identifying sea states 
most relevant to the system performance, here the probability of stif-
fened ship panel collapse, when taking into account both short-term 
response variability and long-term environmental variability. The su-
perior performance of the RBRCs over the other low-order methods was 
most pronounced for the panels with the lowest failure probabilities, 
indicating that the RBRCs can also be used to identify sea states that 
excite rare responses. By employing indicators of extreme response 
behaviors, sea states which are expected to lead to the most interesting 
system responses can quickly be identified. In this way, a testing regime 
can be efficiently defined so that resources are devoted to operational 
profiles which are expected to lead to the worst-case system responses. 
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