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1
Introduction

Due to a rise in threats and organised attacks in the Netherlands, the pressure on the system ’Bewaken
en Beveiligen’ (translated to Surveillance & Security) has highly increased (Ministerie van Justitie en
Veiligheid, 2022). This system is responsible for the protection of persons, buildings and services in
the Netherlands against organised attacks or violation of the physical security. The combination of an
increase in high profile persons that need safeguarding and the limited capacity of the workforce has
had consequences for the quality of close protection of these persons (Onderzoeksraad voor Veiligheid,
2023). Therefore, there is a need to reinforce the system in general and more specifically the close
protection of high profile persons. With regards to the system, the minister of Justice and Security
wants a more flexible operational workforce that can adapt to the changes in threats such that the
workforce is deployed at the right place at the right time. One way to achieve this is by investing in
technologies that alleviate the workload of the workforce (Ministerie van Justitie en Veiligheid, 2022).
To this end, the Royal Marechaussee of the Netherlands aims to automate residential security of high
profile persons such that the workforce can be deployed more efficiently. The Marechaussee has a
clear vision on what part of the process should be automated and what part should stay in the hands of
the workforce. The situation will be as follows: the workforce will mainly be situated in a control room
where they have real-time access to all sensors installed for surveillance. An intelligent surveillance
model will autonomously detect suspicious events and alarm the workforce that can act accordingly.
It is therefore important that the workforce has insight into why they have been alarmed and how the
model came to that conclusion. Furthermore, the workforce needs to have trust in the system for a
good cooperation. This can be achieved by mimicking the decision process of the workforce as much
as possible such that errors are minimised (either false positives or false negatives) and only situations
that are relevant are reported. If the system sends an alarm for every person that walks by and ties its
shoe laces, the workforce will soon ignore the alarms. On the other side of the spectrum, if the system
does not alarm enough, the workforce will end up doing all the work. Thus, it is crucial to have an
accurate system that the workforce has trust in. Lastly, digital surveillance will ensure every movement
around a residence is being recorded and if necessary saved. This will make it possible to reanalyse
situations after they have happened. Surveillance can bemademulti-modal, however, this research will
solely focus on real-time video surveillance. By making it autonomous, we are speaking of Intelligent
Video Surveillance (IVS).1

1.1. Application of the Research
With a rise in Closed-Circuit Television (CCTV) cameras comes a rise in IVS systems. These systems
are used in many different areas such as crime prevention, shopping, airport monitoring, elderly care
and traffic control (Shidik et al., 2019). Important with residential security is the relation between entities,
not only in space but also in time. Alarming scenes can exist of a certain object or a certain action but
will most likely be a combination of different actors and the spatio-temporal relation between them. For
example: a person performing an action at a certain suspicious place, a person straying for a longer

1A considerate amount of information in this chapter has been taken from discussions with the Deep Vision team of the
Marechaussee.
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2 1. Introduction

Figure 1.1: The blue area symbolises the application of this research.

time period around the residence, a group of people approaching the house or a sequence of normal
actions which together are considered suspicious. The field of complex event processing looks into
these spatio-temporal combination of simple events and how to detect them (Vilamala et al., 2023).
We therefore focus on IVS for complex events. In conclusion, the application of this research will be
on the intersection of IVS, residential security and complex events, see Figure 1.1, marked by the blue
area.

1.2. Neurosymbolic Artificial Intelligence
To be able to recognise complex events from video data, we need a model that is able to process low-
level data into meaningful abstractions such that it is human-understandable. This is where neurosym-
bolic Artificial Intelligence (AI) comes in. In short, neurosymbolic AI is a combination of subsymbolic
deep learning components with symbolic knowledge reasoning. Combining these two types of AI en-
sures the best of both worlds. The deep learning part excels at recognising patterns and dealing with
noisy data, while the symbolic system deals with high level, goal-oriented reasoning and extrapolation
(Garcez and Lamb, 2023). There are multiple reasons why a neurosymbolic model is interesting for
the use case of the Marechaussee:

1. The combination of neural networks with knowledge reasoning reduces the need for large amounts
of training data. There is no need to learn a model from scratch, but instead new levels of ab-
straction can be reached with the reasoning part. Video surveillance is a data-scarce domain
as there are not many accurately annotated libraries for infrequently occurring activities (Baxter
et al., 2015). This makes a neurosymbolic model suited for the case of residential security.

2. Unlike the black box properties of deep learning, a neurosymbolic model has high explainability
due to the use of human-understandable symbols and abstract reasoning. Furthermore, the
model can exactly trace back how it arrived at a result by showing its line of reasoning. As stated
before, this is a very important aspect for this case.

3. Lastly, a big advantage of using neurosymbolic reasoning is the ability to incorporate expert knowl-
edge into the model in the form of logic. There are many experts on this case that would be happy
to share their knowledge. This ensures not every bit of knowledge will have to be learned from
the data.

However, the implementation of a neurosymbolic model for residential security comes with certain chal-
lenges. The first being how to exactly incorporate this knowledge such that the model is able to reason
with it. There is a diverse collection of neurosymbolic models, types of logic and inference theories
in which the choice of one influences the other. Additionally, there is a need within neurosymbolic
research to be able to handle uncertainty (Sreelekha, 2018). First, the uncertainty that comes with
sensory data such as noise or missing information (i.e. data uncertainty) and secondly the uncertainty
that comes with the definition of events (i.e. pattern uncertainty) (Alevizos and Skarlatidis, 2017). The
spatio-temporal relations of the different objects and actors that arise in surveillance footage can make
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inference a difficult task. Add uncertainty to this mix and we arrive at a major challenge in the neurosym-
bolic AI field at this point, how to perform efficient probabilistic inference in neurosymbolic computation
(Raedt and Kimmig, 2015).

1.3. Research Question
The combination of neurosymbolic AI and complex event detection is not new (Xing et al., 2020; Apri-
ceno et al., 2022; Vilamala et al., 2023) and has seen an increase in popularity over recent years. An
interesting direction in this research field is a type of neurosymbolic AI that maintains the full expressiv-
ity of the logic part while being end-to-end differentiable. Examples are Scallop (Li and Huang, 2023) or
the neural probabilistic logic programming (nPLP) DeepProbLog (Manhaeve et al., 2018). These type
of frameworks have been used for complex event detection but have not yet been tested on real-world
video data (Vilamala et al., 2023). For this research, complex events will be detected with an nPLP
framework due to their theoretical suitability. Furthermore, many researches on neurosymbolic AI for
complex events assume a full video as input such that past, present and future knowledge can be used
(Apriceno et al., 2021; A. Khan et al., 2019). In the case of residential security, we are limited to a
system that works online, where data is processed as it comes in and knowledge about future events
is not available. We then arrive at our research question:

”To what extent is a neural probabilistic logic programming framework suitable for online
complex event detection on real-world surveillance video data while efficiently making use of
available expert knowledge?”

This question will be answered in three steps:

Creating a proof-of-concept: Acknowledging that creating a model capable of performing well in
all situations is an inestimable research, the first step focuses on delivering a proof-of-concept by using
pre-trained models and pre-made software where possible and using a small subset of complex events.
This ensures the research can be focused on the theoretical feasibility of using an nPLP framework
instead of fine-tuning algorithms for higher detection rates.

Research on improving inference: Inference of probabilistic and temporal logic is known to be a
costly task. We therefore look at ways to improve inference efficiency that conform to the limits set by
the surveillance context.

Evaluation based on expressivity, efficiency and adaptability: The proof-of-concept as well as
the theoretical knowledge gathered during the research will be evaluated based on expressivity, effi-
ciency and adaptability.

DeepProbLog (Manhaeve et al., 2018) is a popular nPLP framework and has been used for complex
event detection on synthetic or audio data. It is, however, limited in its ability to reason with temporal
data. Therefore, we extend DeepProbLog with Prob-EC (Skarlatidis et al., 2015), a probabilistic exten-
sion of the Event Calculus (Kowalski and Sergot, 1985) used for temporal representations. We call this
new framework the Hellenwaheri framework, named after the two driving forces behind this research.
As intractability of the inference process is a common theme when dealing with probabilistic data and
spatio-temporal relations, the gaps in improving inference for this framework will be identified. More
specifically, the contributions of the paper are as follows:

1. Combining DeepProbLog with Prob-EC.

2. Designing an nPLP framework for online complex event detection on real-world data.

3. Presenting insights into improving DeepProbLog inference for online complex event detection on
real-world surveillance video data.
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1.4. Outline of the Thesis
We start this thesis by giving an introduction to IVS systems and neurosymbolic AI in Chapter 2 and
how this connects to the case of complex event detection for residential security. Important features of
an IVS system will shortly be treated as well as why neurosymbolic AI is a good fit for the case of IVS. In
Chapter 3, the criteria that the neurosymbolic model should adhere to are discussed. Chapter 4 sum-
marises the main findings of the literature research and how they connect to the current research. The
background knowledge on Probabilistic Logic Programming (PLP) needed to understand the research
is given in Chapter 5. In Chapter 6, the design of the framework is extensively described followed by
the test set-up for the case of surveillance data in Chapter 7. Chapter 8 looks into different possibilities
to improve the inference efficiency of the framework. The output of the framework and its processes
are treated in Chapter 9. Lastly, the research will be discussed in Chapter 10 and concluded in Chapter
11.



2
Neurosymbolic AI for the case of IVS

The application of our research will be on the intersection of residential security, intelligent video surveil-
lance (IVS) and complex events. A neurosymbolic framework will be used to detect the suspicious
behaviour around the residences. These building blocks are introduced in this chapter.

2.1. Intelligent Video Surveillance
With an increase in the use of video surveillance technologies comes the need for more efficient video
analysis. Since 2010, there has been an increase in research on surveillance systems that could au-
tomate (parts of) the video analysis pipeline. In the past, a human would be tasked to monitor all the
cameras from a control room and act upon suspicious or abnormal activity. This is not only inefficient,
but also proven ineffective and is constrained by the limits of human capability (Shidik et al., 2019).
This is where IVS solutions come in. IVS is a method to automate the analysis of video data such that
spaces can be monitored real-time with the goal of enhancing scene understanding. The system acts
as a preliminary filter of potentially dangerous events (Persia et al., 2020) and will timely alert security
personnel for validation. IVS is valuable for many applications and has already been used in domains
such as crime prevention, elder treatment and accident detection (Shidik et al., 2019).

Not only is creating an IVS solution a challenging task on the hardware side (which we will not treat
in this research), but also the different tasks on the software side that need to be performed on different
levels make this a non-trivial issue. Many articles have been published that focus on the implementa-
tion of algorithms to perform singular tasks such as motion detection, object detection, object or event
classification, object tracking, behaviour and activity recognition and database or system operations
(Shidik et al., 2019). These researches have succeeded in alleviating the work of security personnel
(for an overview, see Shidik et al., 2019). However, the complexity of the scenes and events happen-
ing in residential security requires an IVS system that is able to handle diverse types of information
and therefore has multiple levels for processing information. There is also the issue that traditional
surveillance systems trained in a specific context on specific events might be hard to generalise and
are weak when it comes to detecting high-level events. Persia et al., 2020 states that a modern and
effective video surveillance system has ”[...] to be flexible in capability to detect all the potential event
occurrences happening in the monitored environment, and to be adaptable to the context features of
the observed scene”. This highlights an important challenge in building a robust IVS system.

2.1.1. Complex Events
Although anomaly detection would seem a good research direction for this case, the literature usually
refers to anomaly detection as ”finding patterns in data that do not conform to expected behaviour”
(Nawaratne et al., 2020). In other words, information obtained from the raw data is compared to a
normal situation and anomalies are detected based on the difference. The anomalies we are looking for
will be provided by the workforce and incorporated in the model in the form of knowledge which means
we will not be looking for patterns in raw data. As the two methods are fundamentally different, it seems
irrelevant to compare the two and we will leave anomaly detection for what it is. A much more fitting
research direction are complex events. Complex events are spatio-temporal combinations of multiple

5



6 2. Neurosymbolic AI for the case of IVS

Figure 2.1: From Persia et al., 2017b, example architecture for an IVS system

simple events (Vilamala et al., 2023). For example, in video surveillance the events representing that
some people are walking together at the same time (temporal relation), in close distance and in a
similar direction (spatial relations), may indicate the situation that those particular persons are moving
together (complex event).The term is not specific to computer vision tasks but is also used in, for
example, detecting cyber attacks based on IP addresses (Alevizos and Skarlatidis, 2017). In the case
of residential security, a simple event can represent a variety of concepts. It could be a location, a
track, a behaviour, an action and so on. As suspicious behaviour around the residence will often not be
a straightforward atomic event, models designed for complex events are of interest for this research.

Deep learning methods such as Long Short Term Memory (LSTM) or Convolutional 3 Dimensional
(C3D) are popular for complex event detection. However, thesemethods tend to require larger amounts
of data, especially when the complexity of the relations increases (Vilamala, 2022). Furthermore, Ah-
mad and Conci, 2019 state that the performance of deep learning frameworks for complex event de-
tection in videos is generally lower than images due to the high variability of visual content over time.
Deep learning models are limited when it comes to extrapolation or learning complex relations. This
leads to the conclusion that deep learning alone will likely not solve the problem of automated residen-
tial security. There is a general consensus in the literature that to be able to detect complex events,
models need to process low-level and high-level information (Kardas and Cicekli, 2017; Persia et al.,
2017a; Ben Mabrouk and Zagrouba, 2018). Different terms are used to refer to these two levels: low-
and high-level, raw data and symbols, atomic events and complex events. Furthermore, it is often not
a two layer structure but a hierarchical composition extracting new types of information in every layer
(Kardas and Cicekli, 2017; Persia et al., 2017a). For example, a first low-level layer can detect objects
and persons and track these throughout frames. Then medium-level information such as speed, dis-
tance and direction can be extracted. From this, events such as run, walk and stand can be obtained.
Finally, we can extract complex events such as meet, left object, fight. An example of such architecture
is displayed in Figure 2.1 (taken from Persia et al., 2017b).

2.2. Neurosymbolic AI
For decades, there has been a clear separation between the worlds of data driven AI and knowledge
driven AI where researchers in both groups believed their methods would be the best form of AI. Data
driven AI is also referred to as the connectionist approach and knowledge driven AI as the symbolic
approach. Figure 2.2 shows how an apple could be interpreted for both approaches. It is no secret
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Figure 2.2: Representation of an apple in the symbolic and connectionist paradigm.

that deep learning, as part of the data driven approach, has achieved groundbreaking results in appli-
cations such as computer vision, game playing and natural language processing (Hitzler et al., 2023).
However, as we have seen in section 2.1, deep learning is not suited for all tasks and researchers are
agreeing that combining the world of data driven AI and knowledge driven AI might bring us closer to
a higher level of intelligence. Interestingly, both methods have complementary strengths and weak-
nesses.

Deep learning systems are distributed and continuous and their powers lie in their ability to find
patterns in noisy data. Due to their learning capabilities, neural networks have been able to solve many
challenges we face today. It is therefore not surprising that the interest in machine learning from both
industry and scientific parties has grown enormously. There is, however, a reoccurring theme in debates
about this type of AI: their lack of explainability. Especially now when the general public is becoming
more and more concerned about the power of AI, transparent AI systems are essential. Furthermore,
most neural networks need incredible amounts of data to be trained and function properly. This lack
of parsimony requires an extensive amount of computational power and unacceptable levels of energy
consumption 1(Garcez and Lamb, 2023). Lastly, deep learning models are weak when generalising
beyond the training distribution. In conclusion, deep learning techniques have been proven data hungry,
shallow, and limited in their ability to generalise (Marcus, 2020).

This is where symbolic reasoning comes into play. Symbolic AI is localist and discrete. Using
symbolic knowledge offers the possibility to integrate expert knowledge into the program. Furthermore,
explainability is improved as the reasoning steps can be retraced and the model can be interpreted or
validated. Extrapolation of knowledge is also a feature which favours knowledge reasoning (Garcez
and Lamb, 2023). However, knowledge reasoning as we know it, is slow compared tomachine learning,
cannot handle noisy data well and is limited in size due to the need of explicit knowledge-bases (Hitzler
et al., 2023).

With knowledge driven AI bringing the first wave of AI in the 1980s, data driven AI bringing the sec-
ond wave in the 2010s, we are now in the third wave that fuses both worlds and brings neurosymbolic

1https://www.theguardian.com/commentisfree/2019/nov/ 16/can-planet-afford-exorbitant-power-demands-of-machine- learning
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AI (Hitzler et al., 2023). In the past two decades, the field of neurosymbolic AI (sometimes also referred
to as neural-symbolic AI) has gained increasing attention among researchers. Combining learning and
reasoning, low-level and high-level knowledge, data driven and knowledge driven computing, statistics
and logic, theory and data, subsymbolic and symbolic paradigms results in a form of AI which is more
powerful than the parts of its sum. Learning can be used for efficient perception and pattern recognition
whereas reasoning can be used for explainability, extrapolation and planning (Hitzler et al., 2023). For
an overview of current applications such as healthcare, finance, natural language processing, image
processing and corresponding literature, see Bouneffouf and Aggarwal, 2022. Neurosymbolic AI has
proven to converge quicker needing less training data for the same or better accuracy compared to
deep learning (Mao et al., 2019; Vilamala et al., 2020). There are, however, also challenges when
integrating the connectionist and symbolic approaches mainly being: effective integration, expressive
reasoning and robust learning (Hitzler et al., 2023). Additionally, Susskind et al., 2021 states that
neurosymbolic models have less potential for parallelism which can cause longer training times.

As already touched upon in the introduction, neurosymbolic AI possesses multiple characteristics
that makes it very suitable for our application:

Explainability As AI is becoming a hot-topic, so is the term explainability. One of the reasons the
general public fears AI is due to its black box characteristics. It often remains a challenge to know how
the model has arrived on a particular result. This feature is of even greater importance when making
decisions about a type of threat that could have severe consequences as is the case in residential
security for high profile persons. The workforce needs to know why the model has chosen to send out
an alarm and what exactly was the contribution of each and every component. Once the alarm has
been triggered, decisions need to bemade in split seconds. Neurosymbolic models give the opportunity
to translate the deep learning outcomes to symbols that are interpretable by the workforce.

Data efficiency Unfortunately (or luckily), there is not a great amount of data available on the subject
of anomalous behaviour. Training a model for a variety of context, temporal relations and complex
relational structures would require enormous amounts of data with a more traditional deep learning
approach. According to the literature, neurosymbolic models need less data to be trained (Mao et al.,
2019; Vilamala et al., 2020) as reasoning permits abstraction and extrapolation.

Incorporation of knowledge Lastly, it would be a waist to not incorporate the amount of knowledge
readily available from the workforce. With years of experience, the workforce has gathered knowledge
that will save training time and provide some guidance by incorporating meaningful semantics. As we
are trying to mimic the decision process of the workforce, their expert knowledge is enormously valu-
able.

In summary, both the field of neurosymbolic AI as well as the field of IVS have seen an increase in
popularity due to the challenges of today’s world. The IVS system needs to be able to detect complex
events and deal with different levels of data. Neurosymbolic AI is exactly able to do that by reasoning
with both low- and high-level data. Designing a robust yet expressive neurosymbolic framework for the
case of IVS remains a challenging task.



3
Criteria of the model

By combining the information from the literature and the Marechaussee and integrating these with the
application of residential security, we arrive at six criteria that the neurosymbolic model should adhere
to. Each criteria will be elaborated on in this chapter and together form the backbone of the research.
The criteria are discussed in no particular order and are all essential for a good functioning of the IVS
framework.

3.1. Integrate Expert Knowledge
There are several advantages that come with Neurosymbolic AI and more specifically with the use of
symbols. One of them is the ability to understand the model and the decisions it makes as symbols
are human understandable. A second is the possibility to integrate expert knowledge. This reduces
the complexity of the learning process and therefore requires less training data (Vilamala, 2022). In
many industries, the need for expert knowledge can be a hurdle due to a lack of expertise. However,
for the specific application of residential security for the Marechaussee where there is an entire work-
force ready to implement their knowledge, the ability to integrate expert knowledge is a big advantage.
This brings along some challenges such as how to properly translate this knowledge and ensure the
detections remain unbiased.

3.2. Probabilistic
Uncertainty is an unavoidable aspect when dealing with real-world complex events and arises at multi-
ple levels in the system. First, there is the uncertainty around noisy observations or due to incomplete
inputs such as after a sensor malfunctioning. This type of uncertainty is categorised as data uncertainty.
Secondly, there can be uncertainty in the definition of the complex event, termed pattern uncertainty
(Alevizos and Skarlatidis, 2017). For example, when a simple event as part of a complex event def-
inition is not detected, or not detected at the right moment. In this research we will mainly focus on
data uncertainty and recommend dealing with pattern uncertainty as future research. For an overview
of different symbolic event recognition methods for all types of uncertainty, see Skarlatidis and Vouros,
2014.

One approach to deal with noisy low-level input is to determine a confidence threshold that detec-
tions or simple events must exceed to be accepted by the model, facilitating the use of a deterministic
model. The disadvantage of this method is that the information contained in the confidence score is
not exploited by the high-level system. This in turn leads to suboptimal event recognition (Skarlatidis
and Vouros, 2014). Processed low-level data usually has a confidence estimate attached to it (Man-
tenoglou et al., 2023). Following Raedt et al., 2023, this confidence score can be interpreted as a
probability distribution. These probabilities can then be translated (using inference) to higher levels
and are accounted for in the output. Probabilistic methods are known to provide a rigorous and unified
framework for processing uncertainty (Alevizos and Skarlatidis, 2017). Pattern uncertainty is handled
partially by using a probabilistic system instead of a crisp system. Simple events are therefore not true
or false, but are true with a certain probability which is being forwarded in the inference process.

9
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3.3. Online Processing
Research on complex event recognition can be divided along two themes: online processing or offline
processing of input data. Offline processing is common in, for example, analysing sports matches. The
analysis happens when the full video is available and one of the main tasks is knowing in what time
frame the complex event happened (Apriceno et al., 2022). In contrary, online recognition happens
while the stream is being processed. Examples can be found in surveillance or autonomous driving
(Suchan et al., 2021). This is what happens in the case of IVS. The workforce needs to be alarmed
almost immediately while a complex event is starting. This brings the challenge of not having informa-
tion available about future time steps, thus there is no point at which we can say with certainty that we
have all the information (Vilamala, 2022). Preferably, the system should work real-time such that it is
able to keep up with the incoming stream, however, this will not be a priority for now.

3.4. Reasoning with Spatio-Temporal Data
The use of video data offers the possibility to analyse temporal events that contain more information
than the still images and can therefore provide more insight into understanding scenes. Furthermore,
spatio-temporal formalisms are naturally grounded in physics and human cognition and should be a
minimal requirement for an intelligent system to be able to generalise in a causally sound manner (Hit-
zler et al., 2023). To make optimal use of this, we need a model that is able to deal with temporal
information and knowledge. Time representation can be made explicit or implicit, meaning respectively
time itself is considered a variable or not (Alevizos and Skarlatidis, 2017). Our focus is on explicit rep-
resentations as this provides important information for the workforce. The spatial aspect mainly refers
to being able to detect multiple entities and their relations in one frame. This gives the possibility to cap-
ture interactions between persons and objects and use features such as tracking and re-identification.
Additionally, we have the possibility to detect multiple simple events per frame as opposed to limiting
the detection to one event per frame (Preece et al., 2021).

3.5. Focus on Logic
There is also a common subdivision in the literature of neurosymbolic models that focus on the neural
aspects or neurosymbolic models that focus on the logic aspect. The former consists of architectures
in which the logic is compiled into the neural network (LTN, TensorLog) or architectures that turn the
logic into a regularisation function and act as constraints (SL, SBR). When logic is used as a constraint,
it acts as a soft constraint which means there is no guarantee it will be followed. The latter consists of
logic programming frameworks extended with neural networks to allow differentiable operations (Deep-
ProbLog) or frameworks that are turned into differentiable versions (∂ILP, NTP) (Raedt et al., 2020).
Raedt et al., 2023 states that to retain full expressivity of both the neural part as the reasoning part,
the two parts should not be integrated. Similarly, Latapie et al., 2022 states that the transformation of
symbolic representations into subsymbolic models brings an inevitable loss of the underlying causal
model. Therefore, we favour logic programming frameworks extended with neural networks where the
logic retains full expressivity. As the raw input data from the videos is in continuous space, the neu-
ral networks will take care of the first processing step. On the other hand, the discrete nature of the
symbolic system consisting of logical descriptions is more suited for the reasoning step.

3.6. End-to-end Differentiable
Lastly, the model should be end-to-end differentiable allowing simplified back propagation through the
model. Making the full pipeline differentiable removes the need for supervision on every level (Apri-
ceno et al., 2021). The full model can then be trained with only supervision on the output (the complex
event probabilities). Obtaining labels for every simple event is a tedious task compared to obtaining
labels for the complex events. First, because there is a much larger number of simple events in the
same input data and secondly, labelling the occurrence of a simple event is not as straightforward as
labelling when a complex event occurs due to larger differences in how the event is interpreted (Vil-
amala, 2022). Furthermore, low-level labelled data is uncommon in the surveillance industry. This
criteria is not necessary for a proper functioning of the system, however, it greatly simplifies training
and therefore makes the framework more usable.
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Figure 3.1: The six criteria the chosen framework should adhere to.

The six criteria are displayed in Figure 3.1. As these criteria will influence the framework chosen,
they play a significant role in this research. Most of them will be discussed in different chapters in this
research.





4
Literature Review

We have approached the literature on neurosymbolic AI for complex events from three angles: a the-
oretical, a practical and a detailed analysis. All three will be treated in this chapter as well as their
conclusions. The theoretical part analyses the literature from, you guessed it, a theoretical perspec-
tive. Here, we will not focus on practical examples but on general knowledge that has been gathered
over the years. In the practical part, we will look at researches that resemble ours and briefly describe
their methods and conclusions. The last part, the detailed analysis, evaluates five frameworks based
on the criteria discussed in Chapter 3. We end this chapter with a summary and how this shapes the
research.

4.1. Theoretical Analysis
A domain that has been concerned with integrating logic with probabilistic reasoning is Statistical Re-
lational AI (StarAI). StarAI looks at methods that can represent, reason and learn with both uncertainty
and complex relational structures (Skarlatidis and Vouros, 2014). Not surprisingly, Marra et al., 2021
have written a survey with a comparison between neurosymbolic AI and StarAI, focused on a logi-
cal perspective. Methods are compared based on seven dimensions. We will discuss two of these
dimensions as they are most relevant to our research.

4.1.1. Logic vs. Probabilistic Paradigm
The first dimension is about what paradigm (either probabilistic or logic) is more preserved. By pre-
serving is meant to what extent the model of the original paradigm can be replicated. The survey states
two approaches for integrating probabilities with logic within the domain of StarAI. The first is based
on probabilistic graphical models (PGM) where the probabilistic paradigm is fully preserved and logic
is added only to generate the PGM. An example is Markov Logic Networks (MLN). Technically, they
do not use probabilities but weights for the rules. This makes them less intuitive and often the weights
have to be learned. Furthermore, the flexibility of these type of models can also increase their compu-
tational complexity due to the possible combinations of variables and time points. However, different
methods have been developed that deal with this complexity.
The second is based on probabilistic logic programming (PLP) where the logic paradigm is fully pre-
served and probabilistic inference is added. PLPs are built on top of Prolog and combine the expres-
sive power of programming languages and graphical models. The most well-known PLP language is
ProbLog (De Raedt et al., 2007), a probabilistic extension of Prolog. These StarAI methods employ
a variant of Sato’s distribution semantics and are therefore able to deal with uncertainty (Raedt and
Kimmig, 2015). This makes the inference more complex but maintains the power of the logic.

4.1.2. Model-Theoretic vs. Proof-Theoretic
The second dimension treats model-theoretic vs proof-theoretic inference. Model-theoretic inference
first grounds the logic by replacing the variables in the clauses with constants. The key idea is to
find truth assignments (or models) of symbols such that they satisfy a given theory. Model-theoretic
techniques use logic as a constraint and can be mapped to undirected graphs, or Markov Networks.
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This compares to neurosymbolic methods that use full clausal logic. Proof-theoretic inference has
the goal to provide proofs for a certain query by performing a sequence of inference steps and uses
the probability distribution. Proof-theoretic techniques use logic for inference and can be mapped to
directed models, or Bayesian networks. This compares to neurosymbolic methods that use definite
clauses and causal logic. Models such as PLP and ∂ILP are proof-theoretic while extended versions
of MLN are model-theoretic.

Grounding, as in model-theoretic reasoning, is claimed to either result in exponential explosion of
the number of boolean variables or severe limitations to the expressive power of the logic (Hitzler et al.,
2023). However, model-based approaches can often handle more scalable systems at inference time
(Marra et al., 2021). With proof-based systems, there is full control and understanding of how the model
uses the logic as it acts as structural constraint and is not encoded in the weights of the network as
with model-based approaches. Therefore, logic can be extended or modified at test-time without the
need to retrain (Marra et al., 2021). These systems also use backward chaining as logical inference.
In contrast to forward reasoning that reasons for all possible worlds, backward reasoning makes use of
the constraints imposed by a query and only considers those relevant worlds. This can make backward
reasoning more efficient, especially in the case of uncertainty.

4.2. Practical Analysis
The world of complex event recognition and neurosymbolic AI is complex and involves many different
frameworks. Each with their own representation, reasoning, inference and learning methods. This
section is dedicated to discussing some researches that use logic for complex event detection.

An example of a framework that uses a very intuitive way of detecting complex events in a surveil-
lance domain is presented in (Persia et al., 2017a). The model is able to efficiently handle time series
and interval data by using temporal relational algebra to process events. The raw data is transformed
to medium-level events using image processing techniques and the high-level event detector combines
the medium-level annotations with the event knowledge base to detect whether one of the known com-
plex events happen in the labelling. Furthermore, there is a GUI on every level in the model such that
the user can interact with the system. In Caruccio et al., 2019, a similar approach is used but it also
provides the modelling of context. The integration of context means different scenarios can be inter-
preted based on their context. The framework does deal with uncertainty and spatio-temporal relations
to some extent but not as much as we would like. For instance, for the temporal relations, entry condi-
tions and effects are used but these are not expressive enough. For uncertainty, they handle pattern
uncertainty by differentiating betweenmandatory or optional simple events. Data uncertainty is handled
as a special property in the description of an element of context or a general context descriptor. In J.
Khan et al., 2020, a neurosymbolic framework is used for event processing. Visual and commonsense
reasoning is used to expand on a (temporal) knowledge graph for a complete scene representation,
after which it is matched to the queried high-level events. A simple approach can be found in A. Khan
et al., 2019 where the Event Calculus is used in combination with Answer Set Programming (ASP) to
detect certain events in video fragments of soccer matches. They conclude that the performance of
their approach is mainly dependent on how strict the complex events are defined. Although working
with real-world video data, the framework does not handle uncertainty in any way. These four solutions
present good results for detecting complex events, however, an important aspect of our model is that
it should be able to handle uncertainty which all three models do not consider.

In Skarlatidis et al., 2015, Prob-EC is used to detect complex events based on rules defined with
the programming language ProbLog. It takes labelled simple events as input and a set of rules defined
by a domain expert. There are two downsides to this method. The first being that all simple events
need to labelled in the input videos, the second being that there is no learning mechanism.

The approach used in Apriceno et al., 2022 is very similar to our case in many ways. Instead of
using DeepProbLog, the authors create their own neurosymbolic model with temporal and probabilistic
relations. The knowledge is represented by a variation of the Event Calculus and determines the
definition of several complex events as well as soft and hard constraints on the sequence and duration
of events. The neural part gives a probability for every complex event in the input video and a probability
for every simple event happening in every time series. Based on these probabilities, the complex and
(the timing of) the simple events are determined by solving a Mixed Integer Linear Programming (MILP)
problem. The neural network is trained to recognise simple and complex events by minimising a loss
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function and using gradient descent to update its weights. However, it lacks spatial relations with
multiple actors and assumes only one simple event per time frame. Furthermore, the event recognition
happens offline.

A military setting for a neurosymbolic model is presented in Preece et al., 2021, where DeepProb-
CEP, based on DeepProbLog, is used to detect complex events in audio and video files. The method
seems promising with great results, however, the test cases are greatly simplified. Once again, it lacks
spatial relations with multiple actors and assumes only one simple event per time frame.

Önal et al., 2013 propose a MLN framework which can handle probabilistic and temporal data to
reason about complex events in surveillance. It also allows dynamic state changes. The downside
of MLN, however, is that it scales badly with the number of predicates and is not very well suited for
temporal relations as it considers time variables in the same way as other variables (Kardas and Cicekli,
2017). This is solved in Kardas and Cicekli, 2017 with approximate inference. With IVS as application,
this research has interesting features. The framework has many properties we are looking for such
as a hybrid model, hierarchical abstraction layers and uncertainty handling. However by using many
separate building blocks, the model is not end-to-end differentiable.

Hitzler et al., 2023 proposes to annotate every spatio-temporal variable with the probabilistic val-
ues from the low-level processing and implement a reasoner that will support this. It is described
as a promising yet challenging task. As a more simple alternative, the authors suggest to look into
neurosymbolic probabilistic frameworks that can encode spatio-temporal formalisms. Examples are
DeepProbLog and NeurASP.

4.3. Detailed Analysis
To identify the scientific gap related to our research, a more detailed analysis of comparable cases is
necessary. Five frameworks have been selected due to their popularity or due to their resemblance
in some part to our goals. They all have a reasoning part and are applied to either complex event
detection or surveillance applications. The frameworks are evaluated based on the criteria discussed
in Chapter 3. First, a short description per framework is given after which the conclusions of the detailed
analysis will be presented. Table 4.1 shows how the different frameworks score on the criteria.

1. Kardas and Cicekli, 2017: SVAS: Surveillance Video Analysis System - This paper intro-
duces a Surveillance Video Analysis System (SVAS) that is able to learn rules and complex event
definition from complex video events. The Interval-Based Spatio-Temporal Model (IBSTM) is pre-
sented as an event modeling framework, bridging the semantic gap between humans and video
computer systems. SVAS eliminates the need for predefined thresholds in scene or event mod-
els, distinguishing it from many existing studies. The proposed approach employs a hybrid set of
machine learning techniques, including Threshold Models for features, Bayesian Networks, Bag
of Actions, Highly Cohesive Intervals, and Markov Logic Networks.

2. Apriceno et al., 2022: A Neurosymbolic Approach for Real-World Event Recognition from
Weak Supervision - This paper presents a neurosymbolic approach that exploits knowledge
about the events and their temporal relations at training and inference time. A neural network
predicts both if a complex event is happening as well as what simple events are happening in
which time frame. The framework is probabilistic and does not only look at the order or duration
of simple events (hard constraints) but also at obtaining the minimal cost (soft constraints). It uses
a first guess for the complex event happening to look for interpretations of that complex event in
time.

3. Mantenoglou et al., 2023: Online event recognition over noisy data streams - This paper
proposes a framework that computes the most likely max intervals (PMI) for a complex event.
It uses Prob-EC for initial processing after which PIEC is used for finding the intervals. They
designed a special version of PIEC (oPIECbd) that works online (o) with a bounded support set
(b) and leverages interval duration statistics to resolve memory conflicts (d). It proves that using
intervals, as opposed to point-based systems, are much more efficient.

4. Xing et al., 2020: Neuroplex: Learning to Detect Complex Events in Sensor Networks
through Knowledge Injection - This paper introduces a neurosymbolic framework that splits
learning into a perception phase and a reasoning phase. For the perception task, it trains deep



16 4. Literature Review

neural networks to acquire low-level symbolic concepts while allowing the incorporation of sym-
bolic human knowledge for high-level reasoning. The entire model can be trained end-to-end.
Symbolic knowledge is expressed through finite state machines and logical rules.

5. Caruccio et al., 2019: EDCAR: A knowledge representation framework to enhance auto-
matic video surveillance - This paper introduces the Elements and Descriptors of Context and
Action Representations (EDCAR) knowledge representation framework. It enables the represen-
tation of a context and the potential events that might occur in it and works online. Complex
events are modelled by a composition and sequence of actions with different occurrence types
(mandatory, optional, one of, repeatable) and context.
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Kardas 2017 + + + + + + + -
Apriceno 2022 + + + - - - + +

Mantenoglou 2023 - + + +/- + + + -
Xing 2020 + +/- + +/- - + + +

Caruccio 2019 - +/- +/- + + + + -

Table 4.1: Comparative analysis based on the criteria discussed in Chapter 3 for similar researches

A first thing we notice is that, although in different ways, all frameworks allow the integration of expert
knowledge. This does not come as a surprise since the frameworks have been chosen due to their
reasoning part. Secondly, the neurosymbolic models, namely 2 and 4, do not focus on logic. The logic
is either copied by a neural network (4) or acts as a constraint on the loss function (2). Furthermore,
when the framework does maintain the full expressivity of the reasoning part, the framework is not end-
to-end differentiable. The list of criteria contained both end-to-end differentiable and focus on logic.

4.4. Scientific Gap
From the theory it becomes clear that a model theoretic approach that retains the logic paradigm is
favourable for the case of IVS. These are brought together in the field of probabilistic logic program-
ming (PLP). Even though a certain type of model is better suited for an inference task, exact inference
for temporal relations and uncertainty can still become intractable (Marra et al., 2021; Kastrati and
Biba, 2019; Kardas and Cicekli, 2017; Raedt and Kimmig, 2015). Up to date, this remains an open
challenge for both directed and undirected graphical models. A suitable method should be expressive
while keeping computational complexity to a minimum. From the comparable cases, we conclude there
are many different ways to tackle the problem of neurosymbolic AI for complex events. Each having
their own advantages, disadvantages and assumptions. Where one framework falls short on inference
speed, another falls short on the expressiveness of logic or the ability of the model to learn. Lastly, from
the detailed analysis we conclude none of the analysed frameworks combines all criteria. Especially,
the combination of focusing on logic while being end-to-end differentiable is rare. Frameworks found
in the literature that do combine these two aspects are neurosymbolic frameworks such as Scallop (Li
and Huang, 2023), DeepProbLog (Manhaeve et al., 2018), DeepStochLog (Winters et al., 2022) and
DeepProbCEP (Vilamala et al., 2023). While DeepProbLog and DeepProbCEP are based on Prolog
(both are PLP frameworks), DeepStochLog is based on stochastic grammars and Scallop is based on
Datalog and the theory of provenance semiring.

Summing up the conclusions from this chapter leads to the idea of using a neurosymbolic PLP-based
framework for the detection of complex events. These types of frameworks are theoretically suited for
scenarios where probability and complex spatio-temporal relations are present. Furthermore, they ad-
here to all criteria presented in Chapter 3. DeepProbLog is a well-known and well-maintained neural
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probabilistic logic programming (nPLP) framework. Using DeepProbLog for complex event detection
has already been done in Apriceno et al., 2021 and Vilamala et al., 2023. Both researches prove the
ability of DeepProbLog to handle uncertainty and temporal relations and integrate expert knowledge.
However they lack expressivity in how spatio-temporal relations are defined, do not work online and
have only been tested on synthetic or audio data. In DeepProbCEP (Vilamala et al., 2023) for example,
where a sequence of two MNIST digits is detected in a stream, the temporal relation is only defined by
the order of digits and only one simple event per time point is allowed. For these reasons, DeepProbLog
will be used in this research to perform online complex event detection on real-world surveillance data.
To improve expressivity on temporal relations, DeepProbLog is combined with Probabilistic Event Cal-
culus (Prob-EC) (Skarlatidis et al., 2015). To improve expressivity on spatial relations, we allow the
detection of multiple events per frame and use a hierarchical system in the complex event definitions.
We then arrive at the Hellenwaheri framework: a neurosymbolic framework capable of detecting com-
plex events online from real-world video data. In the next chapter, we will go into depth on the working
of DeepProbLog and Prob-EC.





5
Probabilistic Logic Programming

Both DeepProbLog and Prob-EC are extensions of the PLP language ProbLog. This chapter is dedi-
cated to introducing PLP, ProbLog, Prob-EC and DeepProbLog as well as their semantics and inference
process.

5.1. Introduction to PLP
Probabilistic Logic Programming (PLP) is a powerful paradigm that combines elements of logic pro-
gramming and probability theory to model and reason about uncertainty. It combines the expressive
power from directed graphical models and programming languages (Fierens et al., 2013). PLP has
been studied for over 30 years and knows many different frameworks and languages (see Raedt and
Kimmig, 2015 for an overview). Typical PLP languages use a form of Sato’s distribution semantics
(Taisuke, 1995) which is a generalisation of the least model semantics. Under the distribution seman-
tics, a logic program defines a probability distribution over a set, termed a world. We can then calculate
the probability of an atom A for a finite number of worlds by identifying the proportion of the worlds
whose model contains A as true (Riguzzi and Swift, 2018). The distribution semantics are expres-
sive enough to represent Bayesian networks, Markov chains and hidden Markov models (Raedt and
Kimmig, 2015).

5.2. ProbLog
ProbLog (Kimmig et al., 2011) is a probabilistic extension of Prolog and is regarded as a very expressive
directed graphical modelling language. Being Turing-complete, ProbLog is agile and provides flexibility
in how the rules can be defined (Vilamala, 2022). The distribution semantics is well-defined for infinitely
many ground probabilistic facts, however, we focus on the finite case. ProbLog uses negation as failure
which means the negation of an atom is true exactly if the atom cannot be derived from the program.
The Prolog convention is followed by starting variables with an upper case and the rest with a lower
case. (Manhaeve, Dumančić, et al., 2021)

A ProbLog program consists of probabilistic facts of the form 𝑝𝑖 ∶∶ 𝑓𝑖 and definite clauses, or rules.
The probability of a ground instance of the fact 𝑓𝑖 being true is 𝑝𝑖 and false is 1´𝑝𝑖. These facts represent
random variables and are assumed mutually independent. This means that a definite clause, which is
defined as a conjunction of these random variables, has a probability equal to the the product of the
probabilities of these random variables. A ground logic program 𝐿 (meaning all variables have been
replaced) then has a probability distribution equal to:

𝑃p𝐿q “ ∏
𝑓𝑖∈𝐿

𝑝𝑖 ⋅∏
𝑓𝑖∉𝐿

p1 ´ 𝑝𝑖q (5.1)

We call this subset 𝐿 a possible world. As each possible world has a unique least Herbrand model,
𝑃p𝐿q can be used to define the success probability of a query. That is 𝑃𝑠p𝑞q is equal to the sum of the
probabilities of the grounded programs that entail it (Vilamala, 2022):
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Predicate Meaning
happensAtp𝐸, 𝑇q Event 𝐸 occurs at time 𝑇
holdsAtp𝐹 “ 𝑉, 𝑇q The value of fluent 𝐹 is 𝑉 at time 𝑇
initiatedAtp𝐹 “ 𝑉, 𝑇q At time 𝑇, a period of time for which 𝐹 “ 𝑉 is initiated
terminatedAtp𝐹 “ 𝑉, 𝑇q At time 𝑇, a period of time for which 𝐹 “ 𝑉 is terminated

Table 5.1: Main predicates of the Event Calculus.

𝑃𝑠p𝑞q “ ∑
𝐿⊧𝑞

𝑃p𝐿q (5.2)

This formula can be transformed to an equivalent propositional logic formula on which weighted
model counting (WMC) can be performed. WMC refers to the process of calculating the sum of the
weights that correspond to models that satisfy this propositional logic formula. Performing inference on
this formula directly is not efficient (Manhaeve, Dumančić, et al., 2021; Skarlatidis et al., 2015). This
formula cannot simply be transformed to a sum of products. This would entail that all different proofs
are disjoint and thus represent mutually exclusive possible worlds which is not true in the general
case (Skarlatidis et al., 2015). This is referred to as the disjoint-sum problem and is known to be
#P-hard. ProbLog uses knowledge compilation techniques to achieve scalable inference (Vilamala,
2022). Different knowledge compilation methods have been used over the years, each time improving
the inference speed. Most recently Sentential Decision Diagrams (SDD), a graphical representation of
a propositional logic formula, are used to perform efficient inference in polytime.

Another feature supported by ProbLog is the use of non-ground probabilistic facts and annotated
disjunctions (ADs). ADs are expressions of the form 𝑝1 ∶∶ ℎ1; ...; 𝑝𝑛 ∶∶ ℎ𝑛 ∶ ´𝑏1, ..., 𝑏𝑚 . with ∑𝑖 𝑝𝑖 ≤ 1,
where 𝑝𝑖 are the probabilities of the corresponding atoms ℎ𝑖 and 𝑏𝑗 are literals. If all 𝑏𝑖 are true, one
of the heads ℎ𝑗 is true according to the probability 𝑝𝑖 or none of them is true with probability 1 ´ ∑𝑖 𝑝𝑖.
ADs do not change the expressivity of ProbLog as they can be transformed into a set of independent
facts and logical rules. Alternatively, ADs can be used to specify conditional probabilities. (Manhaeve,
Dumančić, et al., 2021)

There are basically three tasks that can be performed with ProbLog (Fierens et al., 2013). The first
is computing the marginal probability of a query. The model is given a query and we want to know what
the probability is of the query being true over all possible worlds. The second is conditional probability
in which we want to the probability of a query being true given some evidence. The last is MPE (most
probable explanation) inference in which we want to find the world for which the probability of a query is
highest, so the most probable world. In this research, ProbLog will be used for the first task. In Chapter
6, the second task will shortly be discussed.

Computing the marginal probability of a query is done by first grounding the program with respect
to the query using backward reasoning. Afterwards, the ground logic program is rewritten into a logic
formula that defines the truth value of the query in terms of the truth values of probabilistic facts. In the
knowledge compilation step, the logic formula is transformed into a SDD which allows for more efficient
WMC. SDDs support polytime model counting, conjunction, disjunction and negation. In the last step,
the SDD is transformed into an Arithmetic Circuit (AC) which is evaluated in a bottom-up fashion by
WMC. (Manhaeve, Dumančić, et al., 2021)

5.3. ProbEC
Prob-EC is a probabilistic extension of the Event Calculus (Kowalski and Sergot, 1985) and is based
on the aforementioned ProbLog. The Event Calculus is a formalism for representing and reasoning
with time. We have adapted the Prob-EC implementation of oPIEC 1 as it uses an online version of
Prob-EC (Mantenoglou et al., 2023). The Event Calculus consists of time points T, events E and fluents
F. Fluents are events which can be initiated and terminated. The main predicates of the Event Calculus
are summarised in table 5.1.

1The corresponding code can be found on https://github.com/Periklismant/oPIEC/tree/main
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Figure 5.1: From Skarlatidis et al., 2015, example of the influence of multiple initiations and terminations on the probability of the
complex event moving.

What makes the Event Calculus interesting is how it has integrated the common-sense law of in-
ertia. The law of inertia states that an event holds at a certain time point if it has been initiated at a
previous time point and not terminated in the meantime. Prob-EC has integrated the law of inertia in
its probabilistic framework as follows: the probability of a complex event being true at time point T is
equal to the probability of the disjunction of the initiation conditions of that complex event at a time point
before T, assuming it has not been broken in the meantime. This leads to the following expression:

𝑃p holdsAt p𝐶𝐸 “ true, 𝑡qq “ 𝑃
`

∨∀𝑡𝑠ă𝑡 p initiatedAt p𝐶𝐸 “ true, 𝑡𝑠q ∧ p¬broken p𝐶𝐸 “ true, 𝑡𝑠 , 𝑡qqq
˘

(5.3)
This means that multiple initiations of the complex event increases its probability while terminations

of the complex event (thus being broken) decreases its probability. An example is shown in Figure 5.1.
When the complex event moving is repeatedly initiated, the probability of the complex event happening
increases. When the complex event is not being initiated nor terminated, the probability stays constant
and when the complex event is terminated the probability decreases.

5.4. DeepProbLog
DeepProbLog is a neurosymbolic framework that is also built on top of ProbLog. The key extension is
the neural predicate or neural annotated disjunction (nAD). nADs are predicates that integrate neural
networks whose outputs are finite probability distributions. Due to this extension, all essential compo-
nents of ProbLog such as the semantics, the inference mechanism and the implementation are retained
(Manhaeve, Dumančić, et al., 2021). More importantly, since both the probabilistic logic and the neural
networks are differentiable, the entire program can be used for gradient-based training with a clear
optimisation criterion namely the probability of the training examples (Manhaeve, Dumančić, et al.,
2021).

A nAD has the form: 𝑛𝑛p𝑚𝑞 , r𝑋1, ..., 𝑋𝑘s, 𝑂, r𝑦1, ..., 𝑦𝑛sq ∶∶ 𝑞p𝑋1, ..., 𝑋𝑘 , 𝑂q where 𝑛𝑛 indicates the start
of a nAD, 𝑚𝑞 is a neural network identifier, r𝑋1, ..., 𝑋𝑘s is the input to the neural network and 𝑂, the
output of the neural network, is the probability distribution over the (discrete) domain r𝑦1, ..., 𝑦𝑛s. The
neural network must be a discriminative classifier which can be considered a limitation. Similar to
ADs, the distribution of probabilities from the output is mutually-exclusive over a set of clauses. When
given specific input 𝑖, the probability distribution of the neural predicate is determined as 𝑛𝑛p𝑚𝑞 , 𝑖, 𝑦1q ∶∶
𝑞p𝑖, 𝑦1q; ...; 𝑛𝑛p𝑚𝑞 , 𝑖, 𝑦𝑛q ∶∶ 𝑞p𝑖, 𝑦𝑛q where 𝑛𝑛p𝑚𝑞 , 𝑖, 𝑦𝑗q represents the probability that the neural network
outputs 𝑦𝑗 on input 𝑖. A well known example for an nAD is the classification of MNIST digits into their
corresponding values:

𝑛𝑛p𝑚𝑛𝑖𝑠𝑡𝑛𝑒𝑡, r𝑋s, 𝑌, r0, 1, 2, 3, 4, 5, 6, 7, 8, 9sq ∶∶ 𝑑𝑖𝑔𝑖𝑡p𝑋, 𝑌q

When grounded, this nAD thus returns 10 probabilities, one for every possible number in the output
domain r0, ..., 9s. The output layer of the neural network needs to be normalised. A common way to do
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Figure 5.2: From Manhaeve, Marra, and De Raedt, 2021, parameter learning in DeepProbLog.

this is by adding a softmax layer.
Inference in DeepProbLog is almost identical to inference in ProbLog. The difference happens in

the instantiation of the nADs. During grounding, the nADs are grounded and represent a symbolic
representation of the probabilities which are then exchanged for their true value by making a forward
pass on the relevant neural network. The success probability of the query is then computed by using
these true values for a bottom-up evaluation of the AC. (Manhaeve, Marra, and De Raedt, 2021)

DeepProbLog makes use of discriminative training also known as learning from entailment (Man-
haeve, Dumančić, et al., 2021). Since all elements in the DeepProbLog framework are differentiable,
we can make use of gradient based learning. ProbLog makes use of its generalisation, Algebraic
ProbLog (aProbLog), to not only compute the probabilities but also the gradient using the gradient
semiring. This allows us to calculate the partial derivative of the success probability with respect to a
parameter 𝜕𝑃p𝑞q{𝜕𝑝𝑖 which in turn can be used to perform backpropagation on the parameters of the
neural network. This happens in two steps: first the gradient is propagated to the leaves of the AC,
after which these gradients are propagated to the weights in the neural network. An example of an AC
with partial derivatives with respect to some parameters is depicted in Figure 5.2. The bottom of the
AC represents the inputs from the neural networks that take an image of a digit as input. The top of the
AC represents the query. This way we can use weak supervision by training the neural networks with
only the outputs of the entire DeepProbLog model. An overview of DeepProbLog learning is given in
Figure 5.3.

This chapter has explained the different PLP frameworks being used in this research. This lays an
important foundation for the theoretical discussions later on in the thesis.
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Figure 5.3: Overview of DeepProbLog learning.
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Proposed Approach:

The Hellenwaheri Framework

This chapter will go through the design of the Hellenwaheri framework by treating the different building
blocks and how they came into place. Our framework combines the reasoning and learning power
of nPLP frameworks with the temporal reasoning capabilities of Prob-EC for online detection in real-
world video data. To this end, DeepProbLog is extended with Prob-EC and pre-trained computer vision
algorithms to translate low-level data to simple events. An overview of the system can be found in
Figure 6.1. We end this chapter with a summary on the functioning of the framework.

6.1. Integrating DeepProbLog and Prob-EC
As the documentation on DeepProbLog and Prob-EC was scarce, we relied mainly on the publications
(Skarlatidis et al., 2015; Manhaeve, Dumančić, et al., 2021), code (comments) and examples to find
out the working and possibilities of these frameworks.

From Chapter 5, we know DeepProbLog and Prob-EC are extensions of ProbLog. DeepProbLog
extends ProbLog with the neural predicate that allows information exchange between the neural net-
work and the AC. Prob-EC extends ProbLog with the Event Calculus to be able to define and track
complex events and their probabilities. Prob-EC takes simple events as input and therefore does not
support subsymbolic data as input. It has been used in an online setting in Mantenoglou et al., 2023,
therefore we will be using this version. It replaces the clause terminatedAt(F=true, T) by ini-
tiatedAt(F=false,T).

The main challenge lies in translating Prob-EC partially from the ProbLog program to Python such
that it can efficiently communicate with DeepProbLog while retaining all its functionalities. Prob-EC,
as in Mantenoglou et al., 2023, is completely executed in ProbLog. This means the initiation of the
program, the processing of the simple events at every time point, the caching of the probabilities of
complex events at previous time points and the querying of the complex events itself are all executed
in ProbLog. DeepProbLog requires a ProbLog string as input as well as a query. Furthermore, the
simple events are obtained through the processing of the video frames and the result of the query
is obtained from DeepProbLog. This means that all these processes have to be removed from the
ProbLog program and integrated into the DeepProbLog model. This caused a slight alteration in the
inference process. Prob-EC first grounds the complex events clauses before querying, while Deep-
ProbLog grounds the query and program at once. As the framework works online, frames are being
processed as they come in. A new frame is processed once the processing of the previous frame is
terminated. The speed is thus determined by the processing speed and not the streaming speed.

6.2. Integrating Subsymbolic Information
An important feature of our framework is the ability to detect complex events from real-world data. This
means raw data needs to be converted to symbolic knowledge with which the program can reason. A
first challenge is what subsymbolic information should be translated to symbolic information and how.
A second challenge is where and how do we integrate this information in the Hellenwaheri framework.
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Figure 6.1: Overview of the Hellenwaheri framework designed in this research.

The first challenge has not been a focus point of the research since it is very context dependent and we
are aiming for a proof-of-concept. Section 6.3 discusses the methods used in the proof-of-concept to
translate the subsymbolic data into symbolic representations. The second challenge, however, does
present some interesting choices. A logical step would be to integrate the neural networks with Deep-
ProbLog with the use of the neural predicate. Unfortunately, the neural predicate only functions with
discriminative classifiers which greatly limits the choice of neural networks to work with. For example,
the position of an object or person is a valuable type of information but is not a discrete random vari-
able. This means, such type of information cannot be integrated in the DeepProbLog model through
the neural predicate. Naturally, if a type of simple events can be obtained with a classification network,
it can be integrated as a neural predicate. For all the other cases, we need to find a different way to
integrate the knowledge. The following options have been considered:

1. Integrate the knowledge as evidence. Evidence can be seen as a way to integrate conditional
probability and has a similar set-up to queries. The program is grounded based on the evidence
after which an AC is generated.

2. Add the knowledge to the ProbLog program before building the model.

3. Add the knowledge to the ProbLog program after the model is built.

A first glance at all options already shows a drawback: the information cannot be integrated after
the AC has been compiled. This means the AC will have to be recompiled for every time point which
has a high computational cost (Vilamala, 2022). Additionally, integrating the information before the AC
is compiled causes a second drawback. These processes will not be part of the training loop and the
framework will not be end-to-end differentiable for these neural networks. Keeping this is mind, all three
options have been tested. Option 1 was not possible as evidence needs to be deterministically false
or true. Probabilistic detections are a key component of our framework therefore we will not use the
evidence feature. Option 2 is efficient as the program and model can be initiated at once. However, as
new information is coming in at every time point, the model would have to be rebuilt every time point
which is highly inefficient. Option 3 ensures the model is only initiated once but requires the program
to be updated at every time point due to incoming information. This is computationally the best option,
therefore we have chosen to implement option 3.

6.3. From Subsymbolic to Symbolic
6.3.1. Object detection and tracking
Previous section described how the simple events from low-level data could be integrated in the Deep-
ProbLog model. Rest us now to know what knowledge these simple events will entail. We implement
an object detector as well as an object tracking system to be able to track objects and persons over
different frames. We use YOLOv7 (Wang et al., 2023) with pre-trained weights for object detection due
to its speed and accuracy and SORT (Simple Online and Realtime Tracking) (Bewley et al., 2016) for
2D multiple object tracking. The candidate detections and their coordinates are passed on to SORT
which returns the tracks and IDs of tracked entities. The class of the object, the location in pixels as well
as the ID of the tracked object are translated to simple events. Furthermore, the average displacement
in pixel per frame is calculated over 3 frames as an analogy for speed. With the exception of the class,
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these values are continuous or infinite discrete and thus not the output of a discriminative classifier. As
such, they have been integrated as described in section 6.2.

6.3.2. Human action recognition
An important part of the events that need surveillance are human bound. Human activities can be
categorised into four different levels: gestures, actions, interactions and group activities (Karbalaie et
al., 2022). Keeping the case of residential security in mind, actions and interactions are most interesting
at this point. Gestures and group activities should of course not be discarded but are left as future
research. Detecting interactions is simplified by using hierarchical knowledge reasoning. As discussed
in section 2.2, instead of having to learn to detect an interaction from scratch, the different components
of the interaction can be detected separately and together abstracted to form the interaction. For
example, watching TV can be represented by its different components: a person sitting in front of a
television. Finding a suitable human action recognition model is challenging for the following reasons:

• The model should be solely based on video imagery. Models that assume input data from inertial
sensors or vision sensors, which is not available in the case of residential security, are not usable.

• Ideally, the model is incorporated as a neural predicate as human actions can be categorised
into discrete variables (walking, running, sitting, lying down, etc.). This requires that the input to
the model either comes from the available knowledge or can be deduced from a tensor variable
as part of the query. A tensor variable is a variable that unifies with a tensor. For example,
the neural predicate can take a tensor variable timestamp as input which can be deduced from
the timestamp in the query. This timestamp can be used to obtain the frame (a tensor) of the
input video corresponding to that timestamp on which the human action recognition model can
be evaluated. A second requirement is that the human action recognition model should be end-
to-end differentiable as the loss gradient can only be calculated if all components of the neural
network are differentiable. This allows themodel to be part of the training loop of the DeepProbLog
model. Thus, DeepProbLog takes the input to the neural predicate, performs a forward pass on
it for the given neural network and returns a probability for one of the output categories namely
the human actions. Unfortunately, most action recognition systems are skeleton based meaning
that the framework first translates the image of a person to keypoints that form a skeleton after
which the keypoints are classified into an action. This process is not end-to-end differentiable.

• The model should classify simple human actions such as walk, run, sit, stand, etc. as interactions
will be obtained from the rules. State-of-the-art human action recognition models are trained to
recognise tens or hundreds of (complex) actions. This would unnecessarily complicate our model.

• Many models are trained with a camera at human eye level or lower. The different body parts
are less distinct at a surveillance angle (higher up) which can make action recognition more chal-
lenging.

• Last but not least, the code needs to be publicly available to be incorporated in this framework.
This is often not the case for state-of-the-art models.

Looking at the literature, simple events are often assumed as input such that low-level processing is
not needed (Kardas and Cicekli, 2017; Mantenoglou et al., 2023) or human action recognition is simply
not implemented (Caruccio et al., 2019; A. Khan et al., 2019). In Vilamala, 2022, an activity detection
network is used but only returns if there is an activity in the video happening or not. The outputs of the
neural network are limited to activity and idle. This is not expressive enough for our case. Acknowledg-
ing that meeting all requirements listed above is overly complicating this research, the human action
recognition model will not be implemented as neural predicate. This gives us the possibility to use
a skeleton-based human action recognition model. We combine a pose estimation algorithm1 with a
deep neural network action classifier (Chen, 2021). The actions with their corresponding IDs are then
added as simple events to the ProbLog program as described in section 6.2.

Listing 6.1 shows an example of the simple events that have been obtained from a video for time
point 30. In this example, the simple event jump is obtained from the human action recognition model,
1https://github.com/WongKinYiu/yolov7?tab=readme-ov-file#pose-estimation
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entities such as bicycle, car and person and their coordinates coord are obtained from the object
detector, and avg_displ is calculated from the coordinates and frame numbers.

1 processTimepoint(30):-
2 assertz((0.52::happensAt(jump(id35),30))),
3 assertz((0.76::happensAt(bicycle(id1),30))),
4 assertz((1::holdsAtIE(coord(id1)=(3552,1169),30))),
5 assertz((1::holdsAtIE(avg_displ(id1)=4,30))),
6 assertz((0.32::happensAt(car(id5),30))),
7 assertz((1::holdsAtIE(coord(id5)=(790,844),30))),
8 assertz((1::holdsAtIE(avg_displ(id5)=4,30))),
9 assertz((0.32::happensAt(motorcycle(id12),30))),
10 assertz((1::holdsAtIE(coord(id12)=(819,1058),30))),
11 assertz((1::holdsAtIE(avg_displ(id12)=3,30))),
12 assertz((0.93::happensAt(person(id35),30))),
13 assertz((1::holdsAtIE(coord(id35)=(2872,1651),30))),
14 assertz((1::holdsAtIE(avg_displ(id35)=26,30))),
15 assertz((0.76::happensAt(bicycle(id42),30))),
16 assertz((1::holdsAtIE(coord(id42)=(213,1042),30))),
17 assertz((1::holdsAtIE(avg_displ(id42)=1,30))).

Listing 6.1: Example of simple event inputs from the low-level data for time point 30. The red text represents the IDs to which
the simple event applies, the number before the double colon represents the probability and the last number represents the time
point.

6.4. Cache
From Chapter 5, we know that in Prob-EC the probability that a complex event holds at a time point
depends on the probability that the complex event held previously and was not broken in the meantime.
To be able to keep track of previous probabilities and thus for a correct functioning of Prob-EC, a cache
system is necessary. The cache is integrated by adding it to the ProbLog program before building the
AC. The cache can be seen as a ProbLog program where probabilistic facts are removed and added
based on the time point. In fact, the cache will keep track of all knowledge that was not available at
the start of the video, including the simple events from low-level data. Prob-EC, as integrated in oPIEC
(Mantenoglou et al., 2023), uses a cache system where it saves the probability of the last query for a
complex event. When that complex event is called again, the probability is compared with the current
probability of the queried complex event and if the difference is larger than 0.0001, the new probability
is saved. We use a similar set-up but with some alterations. The cache is maintained outside of the
original ProbLog program. Furthermore, the full query is saved including the time variable. Before
feeding the knowledge base into the DeepProbLog program, the cache is updated by adding new
knowledge and removing superfluous knowledge. This is depicted in Figure 6.2. First, the simple
events from the low-level data for that time point and the queried result from the previous time point
are added. The result has the form 0.67::holdsAt(leaving_bag(id12, id8)=true, 40).
Secondly, by caching the results of the higher level complex events, the lower level data becomes
superfluous. Therefore, all expressions associated with low-level data are removed from the cache
after two timesteps. Lastly, a result of a complex event being true is either removed if that complex
event is detected again with the same track IDs (thus being replaced) or after two time steps. These
measures also ensure that the cache does not grow exponentially in time.

6.5. Querying
We are interested in computing the marginal probability of a complex event at a certain time point. This
is the probability of the complex event being true over all possible worlds at that time point. This can
be achieved by querying the DeepProbLog program for the complex event. Such a query consists of
the predicate holdsAt(F=V, T) in which F is the complex event and V is the value of the complex
event at time point T. For querying, V will always be set to true. An example of such a query is
holdsAt(leaving_bag(Person,Bag)=true,40) that returns the probability of the complex event
leaving_bag(Person,Bag) being true at time point 40. If we have multiple complex events we are
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Figure 6.2: Update of the cache system at a time point T. (SE=simple events, CE=complex events)

interested in, the queries (one for every complex event) can be added in batch mode. DeepProbLog
then grounds the program for every query that are then compiled into different ACs. This means an AC
is compiled for every complex event at every time point. Unfortunately, ProbLog only supports queries
that consist of a single term thus grounding for multiple queries at once is not an option. DeepProbLog
does offer the possibility to cache an AC based on the query. However, as the time variable is included
in the query, the query changes for every time point and the AC cache system can therefore not be
used.

6.6. ProbLog Program
The ProbLog program consists of the Prob-EC clauses as well as the complex event definitions and
the domain knowledge. The complex event definitions and the domain knowledge will be discussed
in Chapter 7 as these are context specific. Prob-EC, however, remains the same for every use case,
see Listing 6.2. When querying for a complex event, the probability of the disjunct of both hold-
sAt(F=V,T) definitions is calculated. The first represents the probability that the complex event has
been initiated at an earlier time point, represented by the cached() predicate, and has not been bro-
ken in the meantime. The second represents the probability that the complex event has been initiated
at the previous time point. For an example on how this influences the probability of a complex event,
we refer to Chapter 5. The predicate processTimepoint(T) ensures that all the simple events from
the low-level data saved in the cache are added to the program. This process is depicted in Figure 6.3.

1 % calculates disjunct F=V still holds.
2 holdsAt(F=V,T):-
3 prevTimepoint(T,Tprev),
4 ( processTimepoint(Tprev),fail;true),
5 cached(holdsAt(F=V, Tprev)),
6 \+ broken(F=V, Tprev).
7

8 % calculates disjunct F=V is initiated.
9 holdsAt(F=V,T):-
10 prevTimepoint(T, Tprev),
11 ( processTimepoint(Tprev),fail;true),
12 prevTimepoint(Tprev, Tprevprev),
13 ( processTimepoint(Tprevprev),fail;true),
14 initiatedAt(F=V,Tprev).
15

16 % F=V1 is broken when F is initiated withthe value false.
17 broken(F=V1, T):-
18 initiatedAt(F=false,T).

Listing 6.2: Using my custom listings style

In summary, the framework works as follows (see 6.1 for an overview): the frame at time point
T is used to obtain object detections and pose estimations. The object detections are forwarded to
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Figure 6.3: The probability that a complex event holds at time point T. The summation sign refers to a disjunction and the
multiplication sign refers to a conjunction.

the tracking algorithm which couples the detections to an ID. The skeletons from the pose estimation
algorithm are compared to the tracked detections and, if overlapping, coupled to the same ID. The
information from these low-level processing algorithms is added to the cache which is added to the
ProbLog program that contains the Event Calculus, the complex event definitions and the domain
knowledge. The queries for the complex events and the ProbLog program are given as input to the
DeepProbLog model for inference. DeepProbLog returns a probability for every complex event at time
point T. The cache is updated and the process repeats for the next frame. This chapter has treated all
the building blocks of the Hellenwaheri framework for the general case. The full code is available on
request.
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The Hellenwaheri framework is designed for online complex event detection in real-world surveillance
video data. We begin this chapter with explaining how the framework is adapted for this use case after
which we describe how the framework is evaluated. All runs in this and the next chapter are performed
on a NVIDIA GeForce RTX 2080 Ti GPU with 11.0 GB of GDDR6 memory.

7.1. Dataset
The dataset on which the framework is tested should be video footage, preferably from a surveillance
angle, of suspicious events. Initially, the CAVIAR dataset1 was chosen due to its popularity in complex
event detection researches (Qiu et al., 2020; Skarlatidis et al., 2015; Vilamala, 2022), its surveillance
application and the availability of the simple events at every time point. However, a quick test with
YOLOv7 on the CAVIAR dataset showswhyCAVIAR is undesirable for this research (see Figure 7.1). In
only a few frames, a person was correctly detected while in many frames, there was either no detection
or wrong detections such as birds and skateboards. Essential objects such as a bag were not detected
at all. We suspect this is due to the low quality of the video images of the dataset (384x288) and the
angle that differs from the COCO dataset on which YOLOv7 has been trained. A quick scroll through
the COCO dataset shows most of the images have been taken on human eye level. Looking at the
literature, few have tried to use object detection on CAVIAR and use image processing techniques
rather than deep learning. As this is not scalable, we will not be using CAVIAR for the research. A
quick search into other suitable datasets were not conducive to better results. With the following points
in mind, we have decided to record our own dataset:

• Since the goal of this research is not to train the model (although this is theoretically possible),
there is no need for a large dataset. In contrary, a few videos with suspicious actions can prove
the concept.

• Videos need to be recorded with a static camera, contain human actions preferably in surveillance
context (interactions with objects) and be of good enough quality as we will not be focusing on
improving detection algorithms.

• The results of this research should not depend on the performance of the processing of the com-
puter vision tasks. This is only a part of the full pipeline and can easily be improved in the future.
Either by selecting algorithms that perform better on the task at hand (algorithm trained on im-
ages from surveillance angle) or by using available information to improve detections (camera
calibration parameters).

The dataset consists of several short videos in which a suspicious event happens and one longer
video in which multiple suspicious events happen. The videos have been recorded in such a way that
the objects and actors are clearly visible, there are no occlusions and the weather is good (for Dutch
standards). The videos have a 4k resolution (3840 x 2160 px) with 30 frames per second (fps). Figure
7.2 shows two frames from the dataset.
1https://homepages.inf.ed.ac.uk/rbf/CAVIAR/

31



32 7. Experiment Design

Figure 7.1: YOLOv7 detections of the leaving bag scene in the CAVIAR dataset

Figure 7.2: Two frames from the recorded dataset.

7.2. Computer Vision Layer
The object detection and tracking algorithm have been slightly adjusted to the use case. The classes
used from the object detector are person (0), bicycle (1), car (2), motorbike (3), backpack (24), handbag
(26) and suitcase (28). Furthermore, for a more consistent detection, the different types of bags (back-
pack, handbag and suitcase) are returned as one new class ’bag’. The object detection framework
will not be trained, YOLOv7 is used with pre-trained weights. The human action recognition pipeline is
integrated as follows:

1. Skeletons are obtained from the input image using the pre-trained weights of YOLOv7 for pose
estimation 2. An example can be seen in Figure 7.3.

2. The action classifier requires the 18 keypoints OpenPose notation 3 for the skeletons. This re-
quires a different order of the keypoints as well as an extra keypoint between the shoulder joints.

3. The skeletons have a confidence score attached for every keypoint in the skeleton. Keypoints
with a confidence lower than 0.5 are removed and skeletons with less than five keypoints (with a
confidence score above 0.5) are filtered out.

4. For every remaining skeleton, a bounding box is calculated. The skeleton is given a track ID if
the overlap between the bounding box of a detected person with that track ID and the bounding
box of the skeleton is highest for that skeleton. Furthermore, the overlap should be more than
0.5. This way, only tracked skeletons are kept.

5. The filtered and tracked skeletons of 5 consecutive frames are given as input to the action recog-
nition model (partially taken from Chen, 2021) and classified into one of the following 7 classes:
stand, walk, run, jump, sit, punch, wave. The classes kick and squat from the
original 9 classes have been replaced with walk and sit respectively as these were often con-
fused. The algorithm works as follows: first, the skeleton data is preprocessed, then features of

2https://github.com/WongKinYiu/yolov7?tab=readme-ov-file#pose-estimation
3https://www.researchgate.net/figure/The-body-parts-of-skeleton-model_fig1_329898289
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Figure 7.3: Example of the pose estimation algorithm used for human action recognition.

the skeleton are generated which are fed into the deep neural network that classifies the action.
For a complete overview of the functioning of the algorithm, see Chen, 2021.

7.3. Medium-Level Event Definitions
With the simple events obtained from the low-level data, we can derive multiple medium-level events
that in turn can be used for the definitions of the complex events. These type of events are characterised
by the fact that they cannot directly be obtained from the low-level data but are also not being queried.
avg_displ is a special type of medium-level event as it is integrated as a simple event. This is due
to the dependence on multiple frames which cannot be achieved within ProbLog rules with the current
set-up. We will shortly discuss the medium-level events close and moving_closer used in this
research. The medium-level event clauses are defined in such a way that probabilities are returned
instead of a boolean value. This ensures that the inference process is not stopped at once when
returning False but returns a very low probability. This is also more intuitive as the probability can be
used as a continuous scale to indicate the degree of the medium-level event being true. This can be
seen as a way to deal with pattern uncertainty, i.e. the uncertainty in the event definitions (see Section
3.2).

The distance between two entities can be obtained from the coordinates of these entities. With
enough information such as camera calibration parameters, depth information or known object dimen-
sions, this distance can be calculated in real-world dimensions. However, for the current set-up uses
pixels as distance measure for simplification. Furthermore, if the Marechaussee uses static cameras
with known calibration parameters, this type of information can easily and accurately be obtained. From
the distance between two objects, one can determine if these objects are close or not. The medium-
level event close is integrated probabilistically, see Listing 7.1. The closer the two entities are, the
higher the probability of the medium-level event close, represented by Prob in Listing 7.1 (line 1-
3). The probability is weighed by a parameter D, that is dependent on the context (see Section 7.5).
The clause calculateDistance returns the distance in pixels between two entities. The distance
between the two entities is subtracted with 100 pixels as this is approximately the minimum distance
possible. The probability that close is false is calculated in a similar way, however, the probability
now grows larger when the distance between the two entities increases (line 5-7).

1 Prob::holdsAtMacro(close(Person1, Person2, D) = true, T) :-
2 calculateDistance(Person1, Person2, T, Dist),
3 Prob is max(0,(1-max(0,(Dist-100))/D)).
4

5 Prob::holdsAtMacro(close(Person1, Person2, D) = false, T) :-
6 calculateDistance(Person1, Person2, T, Dist),
7 Prob is min(1,(max(0,(Dist-100))/D)).
8
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9 calculateDistance(Person1, Person2, T, Dist):-
10 \+ Person1 = Person2,
11 holdsAtIE(coord(Person1) = (X1, Y1), T ),
12 holdsAtIE(coord(Person2) = (X2, Y2), T ),
13 XDiff is abs(X1-X2),
14 YDiff is abs(Y1-Y2),
15 SideA is XDiff*XDiff,
16 SideB is YDiff*YDiff,
17 Temp is SideA + SideB,
18 Dist is sqrt(Temp).

Listing 7.1: The medium-level event close is probabilistically true with a weight determined by the distance in pixels between
two entities

The probability for the medium-level event moving_closer is obtained by calculating the distance
between two entities at two consecutive time points, and using the change in distance from the first
time point to the second time point as a weight for the probability. If the change in distance is high the
probability of moving_closer will be high. If the change in distance is negative or zero, the probability
of moving_closer will be zero. Listing 7.2 shows the clause for moving_closer. For this case, we
do not need moving_closer(Person1, Person2) = false.

1 Prob::holdsAtMacro(moving_closer(Person1, Person2) = true, T):-
2 closingDist(D),
3 prevTimepoint(T, Tprev),
4 calculateDistance(Person1, Person2, Tprev, Dist1),
5 calculateDistance(Person1, Person2, T, Dist2),
6 DeltaDist is max(Dist1-Dist2,0),
7 Prob is min(1,DeltaDist/D).

Listing 7.2: The medium-level event moving_closer is probabilistically true with a weight determined by the change in distance
between two entities. For the definition of calculateDistance, see Listing 7.1.

7.4. Complex Event Definitions
For every complex event that we are trying to detect, the rules initiating and terminating that complex
event should be defined. Here, we present two examples of how these rules can be defined. For a
complete overview of the rules, we refer to Appendix A. The complex events we are trying to detect
are leaving_bag and holding_bag. Their definitions are shown in Listing 7.3. The complex event
holding_bag is initiated when a person and a bag are detected close together (line 3-6). Themedium-
level event close is true with a probability that is inversely proportional to the distance between person
and bag (line 6). The complex event is terminated when the complex event leaving_bag is initiated
(line 13). leaving_bag is initiated when a person that was holding a bag in a previous frame, is not
close to that bag anymore (line 17-22). This probability is now directly proportional to the distance
between the person and the bag (line 22). The complex event is terminated when either the person
disappears (line 26-28) or the person is close to the bag again (line 30-33). Together with the Event
Calculus as described in Chapter 6 and some other practical rules, the complex event definitions form
the ProbLog program used for inference in DeepProbLog.

1 % ----- initiate holding_bag
2

3 initiatedAt(holding_bag(Person,Bag) = true, T):-
4 happensAt(person(Person), T),
5 happensAt(bag(Bag), T),
6 holdsAtMacro(close(Person, Bag)=true, T).
7

8 % ----- terminate holding_bag
9

10 initiatedAt(holding_bag(Person,Bag) = false, T):-
11 happensAt(person(Person), T),
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12 happensAt(bag(Bag), T),
13 initiatedAt(leaving_bag(Person, Bag) = true, T).
14

15 % ----- initiate leaving_bag
16

17 initiatedAt(leaving_bag(Person, Bag) = true, T):-
18 happensAt(person(Person), T),
19 happensAt(bag(Bag), T),
20 prevTimepoint(T, Tprev),
21 cached(holdsAt(holding_bag(Person, Bag) = true, Tprev)),
22 holdsAtMacro(close(Person, Bag)=false, T).
23

24 % ----- terminate leaving_bag
25

26 initiatedAt(leaving_bag(Person, Bag) = false, T):-
27 happensAt(bag(Bag), T),
28 \+ happensAt(person(Person), T).
29

30 initiatedAt(leaving_bag(Person, Bag) = false, T):-
31 happensAt(bag(Bag), T),
32 happensAt(person(Person), T),
33 holdsAtMacro(close(Person, Bag)=true, T).

Listing 7.3: The definitions of the complex events leaving_bag(Person,Bag) and holding_bag(Person,Bag)

DeepProbLog returns the probabilities of the queries being true. We can attach a confidence thresh-
old to the output that signifies an alarm going off. If the probability of a complex event happening sur-
passes the threshold, the workforce is alarmed. This threshold is determined after the first experiments.

7.5. Domain Knowledge
Domain knowledge is grounded knowledge about the scene or use case that is manually added by
the domain expert. Assuming residential security is performed with static cameras increases the ease
of implementing domain knowledge. For example, certain areas can be marked as alarming or using
camera calibration parameters, the depth of entities can be calculated. In our case, the domain knowl-
edge mainly translates to threshold parameters. These parameters are statistically determined and
given to the model in the form of facts. These facts are then used for the abstraction of simple events
(such as centre of the bounding box) to medium-level events (such as close, moving_closer or
same_speed). The threshold parameters and their meaning are listed in Table 7.1.

7.6. Evaluation
Expressivity, efficiency and adaptability together encompass the challenges and practicalities that come
with this application. The framework will be assessed quantitatively and qualitatively on how it fulfils
each of the requirements such that a complete and sound conclusion can be formed that answers
the research question. During this evaluation, one should keep in mind that this research delivers a
proof-of-concept for using this type of framework on complex event detection and will therefore not be
compared to other state-of-the-art neurosymbolic models for complex event detection. The adjectives
will now be explained one by one.

7.6.1. Expressivity
Simply said, expressivity in this research signifies the ability of the framework to represent a wide range
of concepts. We do not want the workforce to be limited in what type of suspicious behaviour can be
detected around the residence. Furthermore, expressivity also looks at how well the low-level data is
abstracted to symbolic knowledge. Part of this looks at the effect of uncertainty on the model. Lastly, it
looks at the performance of the model in terms of the accuracy of the detections of the different complex
events.
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Parameter Value Meaning
holdDist 600 The maximum distance, in pixels, between an object and a person for it

to be considered that the person is holding the object.
meetingDist 400 The maximum distance, in pixels, between two persons for them to be

considered as meeting.
closingDis 40 The minimum change in distance, in pixels, over two frames between

two entities for them to be considered as moving closer together.
maxSpeedDif 40 The maximum difference in speed, in pixels per frame, between two en-

tities for them be considered having the same speed.
walkDist 800 The maximum distance, in pixels, between two persons for them to be

considered as walking together.
abruptDispl 200 The minimum displacement, in pixels per frame, of an entity for it to be

considered as doing an abrupt motion.
stationDispl 2.5 The maximum displacement, in pixels per frame, of an entity for it to be

considered as stationary.
movingDispl 10 The minimum displacement, in pixels per frame, of an entity for it to not

be considered as stationary anymore.

Table 7.1: Domain knowledge for the use case of surveillance. The parameters are based on a frame with size 3840x2160 px.

7.6.2. Efficiency
For this research, we will solely focus on time-efficiency and not data-efficiency. The second could
be interesting in a training setting when compared to different frameworks. We leave this for future
research. Time-efficiency represents the time required to prepare the system and the time required
for inference in different scenarios. We will time the processes of the framework for different settings
to assess the influence of different factors on the efficiency and thus speed of the framework. As
mentioned earlier the system operates online and not necessarily real-time. However, it is insightful to
know to what extent the framework could operate real-time. Furthermore, Chapter 6 already pointed
out some unsatisfactory adaptations in terms of the order of processing. These will be discussed in
more detail when analysing the inference efficiency of the framework.

7.6.3. Adaptability
Adaptability refers to how the framework should be adapted such that it is ready for operation. As the
framework is designed to be a proof-of-concept, design choices have been made to simplify the detec-
tion process. We will touch upon the steps that need to be taken for the framework to function properly
as an IVS system and be used by the workforce. Furthermore, the adaptability to different applications
will be discussed as well. This will give insight into the robustness of the framework.

In summary, the framework will be tested on a newly recorded dataset of suspicious events. The
framework should return the probability of a complex event happening at a certain time point. The final
evaluation is based on expressivity, efficiency and adaptability.
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Improving Inference

This chapter looks into the different possibilities to improve the inference speed of the Hellenwaheri
framework. Although knowledge compilation already increases the inference speed, the DeepProbLog
inference mechanism is still inefficient for complex event detection in general and more specifically in
the Hellenwaheri framework. Following Manhaeve, Marra, and De Raedt, 2021, there are two compu-
tational problems in DeepProbLog inference. The first being the need to compute the set of all possible
worlds which can explode and the second being the compilation into an arithmetic circuit which can
be computationally hard. The first problem is also part of the second problem as compilation becomes
simplified and faster by using a subset of all possible worlds for inference. Compiling the AC is the
most costly process of DeepProbLog inference (Vilamala, 2022). We therefore focus on reducing the
compiling time of the AC. The importance of this problem is affirmed by Vilamala. From our point of
view, this can be achieved in two ways. Either the AC should be compiled less often or the compilation
time per AC should be reduced. Both these options will extensively be discussed in this chapter. The
process of compiling the AC refers to all the steps from grounding the program and the query to forming
the SDD (see Section 5.2 for more information).

8.1. Reduce Compiling Frequency
By ensuring the AC is not compiled for every time point, efficiency can be increased. This problem
has been approached in the literature in different ways. DeepProbLog has a feature that is able to
cache the ACs based on the query. In Vilamala, 2022, the cache feature increases the speed of the
program up to 4 times. In the example of calculating the sum of the MNIST digits, an AC can be
obtained from the cache if the addition that is queried has been queried before. The query addi-
tion(MNIST1,MNIST2,Sum) is used as the key to the cached AC where MNISTi represents the
tensor of an MNIST digit image. For an AC to be re-used, the exact same image for both inputs as
well as the exact same number for the sum should be used. It is important to realise that using the
cache feature of DeepProbLog only speeds up inference if the exact same query is used multiple times.
Looking at complex event detection with the Hellenwaheri framework, the query is never twice the same
due to the time variable in the query. DeepProbLog offers the possibility to replace a variable in the
query after compilation if the variable is used as input for the neural predicate. This is unfortunately not
the case in the Hellenwaheri framework. The downside of the cache system is the memory needed to
cache the ACs. For larger datasets, this can be a limiting factor.

Another approach used to reduce the compiling frequency is PreCompilation (Vilamala, 2022). Pre-
Compilation was designed in the context of temporal relations which introduces a time variable in the
query. The framework allows the re-use of an AC for different time points. It makes use of the fact that
the query only changes due to the time variable and adjusts the program such that it is independent of
the time variable. The AC then only has to be compiled once for every type of query. PreCompilation
replaces the time variables in the program by constant identifiers that are defined in relation to the time
point in the query. This means the size of the AC is constant and only the weights of the nodes (the
probabilities) are changed. When the program is queried at a certain time point, the AC with identifiers
for that type of query is re-used by changing the probabilities of the nodes for the inputs corresponding

37



38 8. Improving Inference

Figure 8.1: From Smet et al., 2022, a tensor-lifted AC for the addition query with tensore variables. The branches are annotated
with the dimensionality of the signal that they carry.

to that time point. This points out a first limitation. The AC needs to be compiled such that all the
inputs or simple events that can arise are nodes integrated in the AC. Vilamala performs an experi-
ment in which the query twoHeads(T) is true if the inputs heads1(T) and heads2(T) are true. In
this case, there will always be two discrete inputs, one for every coin. The AC is then compiled with
these two inputs as nodes of which the probability is changed for different time points. In many cases,
the simple events are not known beforehand which prevents us from integrating them in a general
AC. For example, when obtaining the simple events from real-world video data, we do not know how
many objects will be detected and thus how many simple events we are dealing with. The framework
does work recursively by creating a node in the AC for the probability of the query at a previous time
point. The probability of this node can then be changed at every time point and thus works just like a
cache system. PreCompilation has, however, not been integrated with a neurosymbolic framework yet.

The last approach we will be discussing is using a tensor-lifted AC such as in Smet et al., 2022. This
idea is related to lifted reasoning, a promising research direction for improving inference efficiency in
multiple applications. Lifted reasoning is performed on the level of the original non-grounded program
thus with variables. A tensor-lifted AC exploits the symmetry in a neural probabilistic logic program
that uses neural predicates to facilitate parallelisation. The AC is compiled with a non grounded query
allowing us to re-use the AC for all values of the input variables. However, this only applies to query
variables that unify with a tensor, or tensor-variables as De Smet calls them. This means the AC is only
compiled once for any set of input tensors. From the domains of the neural predicates, all necessary
domains of target tensors can be calculated. The inference process to arrive at these target tensors is
very similar for different tensor values which would result in a very repetitive AC. This symmetry can
be used to tensorise the conjunctions and disjunctions of tensor variables, such that one tensor-lifted
AC can be compiled that only requires grounding once. An example of this type of AC is displayed in
Figure 8.1. Once again, we use the example of performing an addition on the MNIST digits where the
sum of the inputs is tensorised. The probability of the query is calculated by taking a tensor product
(representing the probabilities of all combinations of two MNIST digits) and summing over the results
that lead to the same value in the target domain (0 to 18).

We now look at how this relates to the application of complex event detection. The variables in the
query as used in this research are not tensor variables. If we would, hypothetically, create an AC for all
time points and inputs, the repetition would be found in the inference of the complex event definitions
for different time points. To exploit this symmetry such that a tensor-lifted AC can be used, time should
be made a tensor-variable. The reason why the variable has to be a tensor variable is due to its
independence of other nodes. When looking at an AC, the probabilistic facts and neural predicates are
on the leaves of the AC. Attaching a probability to these nodes represents the start of the bottom-up
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inference process. This means the structure of the AC itself doesn’t change when replacing tensor
variables, only the probabilities of the leaf nodes do. If we want time to be a tensor-variable it should
be used as input to the neural predicate. In principle, the time variable could be used to obtain the
frame from the video corresponding to that time point. This set-up could work if all the simple events
needed to answer the query are obtained through neural predicates. However, this is not possible at
this point in time. Furthermore, the tensor-lifted AC takes all possible values into account. In the case
of having 10 digits and one tensorised inference step with 19 possible outputs, this doesn’t necessarily
create a problem. However, tensorising the logic inference for all complex event definitions and Prob-
EC clauses combined for all the possible inputs would be more problematic. It is worth questioning if
the inference speed would increase.

We have also looked into extending the AC instead of compiling from scratch but this did not provide
any results. Lastly, we have looked at ways to compile one AC for multiple queries but this is not
supported by DeepProbLog.

8.2. Reduce Compiling Time
Exact inference such as in DeepProbLog is a time-consuming process. Approximate inference could
reduce the computational complexity for the inference process. One line of research in approximate
inference tries to find ways to only compute a subset of proofs instead of all proofs which could reduce
compilation time (Manhaeve, Marra, and De Raedt, 2021). Examples are k-best proofs (Renkens et
al., 2012) and DPLA* (Manhaeve, Marra, and De Raedt, 2021). In k-best proofs, only k proofs (𝑃p𝐿q in
Equation 5.2) with the highest probability are used to calculate the approximate success probability of
the query. This calculates a lower bound on the success probability. DPLA* is an extension of k-best
proofs by using different heuristics. For example, a heuristic that is the estimate of the probability of a
partial proof (see Manhaeve, Marra, and De Raedt, 2021 for a more information). Naturally, training
is also affected by approximate inference as inference is used to obtain the output used for training.
One challenge for approximate inference in neurosymbolic models is the fact that the best proofs are
chosen based on the probabilities of facts and neural predicates which are usually not correct at the
beginning of the learning trajectory. DPLA* uses curriculum learning and a form of exploration to over-
come this. Manhaeve, Marra, and De Raedt, 2021 also proves that approximate inference is faster with
pre-trained networks and increased neural predicate accuracy (classification accuracy). The accuracy
is slightly lower than with exact inference but the scalability increases. DPLA* has been integrated in
DeepProbLog. We expect that approximate inference will not considerably influence the compiling time
of the AC as implemented in the Hellenwaheri framework. Due to hierarchical set-up of the program,
the small number of probabilistic facts and the absence of neural facts, the number of proofs will be
small in any situation. Approximate inference could become interesting when all simple events are ob-
tained through neural predicates. Neural predicates may introducemany new nodes and thus inference
directions as the neural predicate is evaluated on every value in the output domain that is consistent
with the logic program. Approximate inference could ensure not all these inference directions are being
followed.

8.3. Proposed Solution
It becomes clear that we are greatly limited by the fact that not all simple events are obtained through
the neural predicates. Let us assume that due to new developments in the future, the simple events
are obtained through neural predicates. Reanalysing the solutions presented earlier based on this
new information yields two interesting possibilities to improve the inference: caching of the ACs and
approximate inference using DPLA*. DPLA* has already been integrated in DeepProbLog and does
not require any adaptations for our application. To be able to use the caching, the query should remain
the same for different time points. We propose a method in which the query does not explicitly contain
a time point but a tensor variable. This means, assuming the ProbLog program remains the same,
the AC does not have to be recompiled as we can query for all complex events at once. Using the
substitution function of DeepProbLog allows us to substitute a variable in the query with a tensor after
compilation. In this case, the substitution would contain the different time points. This means that the
time points attach probabilities to the leaves of the AC (the simple events). A new system for the cache
will have to be designed as the cache is now integrated in the knowledge base before compilation. A
challenge that we expect is the fact that the cached complex events are grounded as opposed to the
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queries. Currently, a query has the form:

holdsAt(leaving_bag(Person,Bag)=true,230)

while a cached complex event has the form:

cached(holdsAt(leaving_bag(id14, id81) = true, 230))

As we do not know what objects or persons will be detected, thus not knowing the IDs, the AC will
not be able to have a node for the grounded cache. A non-grounded cache will be ambiguous in what
cached complex event it refers to.

The practicality of this solution remains to be tested and is left as future research.
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Results

The results of testing the performance of The Hellenwaheri framework are reported in this chapter.
We will first look at the performance of the computer vision layer that transforms the low-level data to
simple events. This layer is mainly responsible for providing the probabilistic facts with which the model
reasons, therefore it is important to analyse these results separately. We then continue this chapter with
the results of the full framework. We provide several examples of complex events that can be defined
for this use case. This will give us an indication of how well the framework can detect the different
complex events. Lastly, we look at the time-efficiency of the framework for different parameters.

9.1. Abstracting Low-Level Data
The lower level processing uses four different algorithms: the detection algorithm, the tracking algo-
rithm, the pose estimation algorithm and the action recognition algorithm. All four will be assessed
visually in this section.

The object detection algorithm takes a frame as input and returns the class, probability and location
of the detections. These detections are forwarded to the tracking algorithm that assigns an ID to them if
they appear in a number of consecutive frames. The results of the detection and tracking algorithm are
analysed by displaying the bounding box of the detections and the tracks over the frames. If not stated
otherwise, all results in this chapter have been obtained with a fps rate of 10 and a lower resolution
of 640x360 as higher resolutions only degraded the tracking performance. This is probably due to
the fact that YOLOv7 was trained with a resolution of 640. Figure 9.1 shows the result for 4 frames,
i.e. 2 frames per video. The results are satisfactory for multiple reasons. First, the tracking algorithm
manages to keep track of the main persons and objects in the video. This can be concluded from the
ID given to the entities, they do not change over time. Even when the person is crouched, such as in
the right lower image, the person retains its ID. Secondly, the bounding boxes are relatively accurate.
In most cases the bounding box correctly frames the entity as a whole. Figure 9.3 displays a case
where the bounding box frames a different part of the entity which causes a sudden change in the
centre coordinates of the entity. These coordinates are translated to the simple event coord which
is then used to form medium-level events. This way, a small artefact in the computer vision layer can
influence the detection of the complex events. In Figure 9.2, we see that the IDs of the two persons
have been switched. This can happen when the persons come too close to each other. The tracking
algorithm uses basic data association principles and does not handle these scenarios well. Thirdly,
the probabilities associated with the detections are often higher than 0.8. This is favourable for the
inference process as performing inference with higher probabilities leads to a more confident detection
for the complex event.

The pose estimation algorithm takes a frame as input and returns a skeleton for every person it
detects. The skeletons can be drawn onto the frame to analyse the results. The different segments of
the skeleton are mostly accurately overlapping the corresponding body parts. Even when a part of the
body is occluded, the pose estimation algorithmmanages to calculate themissing segments. Examples
of this can be seen in Figure 9.4. We conclude the algorithm has a satisfactory performance.

The action recognition algorithm takes the skeletons in OpenPose format as input and returns an
action for every skeleton (see Figure 9.5. If the probabilities of all the classes are under a manually
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Figure 9.1: Detections and tracks for multiple frames.

Figure 9.2: IDs of the tracked entities are switched between the persons in this video. The images have been cropped compared
to the original frame.

Figure 9.3: Example of bounding boxes that frame different parts of the entity, in this case a person. This results in a sudden
change in the simple event coord that keeps track of the centre of the bounding box.
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Figure 9.4: Examples of the output of the pose estimation algorithm when part of the body is occluded. The images have been
cropped compared to the original frame.

Figure 9.5: Examples of the output of the action recognition algorithm. The images have been cropped compared to the original
frame.

defined threshold, the model returns an empty string. The performance of the action classifier is disap-
pointing, especially considering the accuracy of the pose estimation algorithm. Replacing the classes
kick and squat by walk and sit respectively gives slightly better results but the performance still
remains unsatisfactory. Therefore, we are careful with integrating the simple events generated by the
action recognition algorithm in the medium-level or complex event definitions. The action stand is only
recognised when a person does not move for multiple frames with the arms next to the body. For an
example of wrong classifications, see Figure 9.6.

9.2. Complex Event Detection
We now look at the results obtained from the output of the framework as a whole. For the complete
complex event definitions we refer to Appendix A. We have statistically determined the alarming thresh-
old to be 0.6. All use cases described can be queried for all the complex events determined in the rules.
However, often the probability of a complex event does not cross the alarming threshold once in the
video or the complex event refers to persons in the background. Therefore, these complex events are
omitted from the graphs and only one or two complex events are displayed depending on the use case.

Person leaving a bag
The first use case inputs a video in which a person enters the frame with a suitcase, labelled as bag,
that she leaves behind. She does not come back and the video is ended before the person leaves the
frame. As we are interested in leaving_bag complex event, that is how we query the program. The
query holding_bag is added to be able to see the interaction of both complex events as their rules are
dependent on each other (see Listing 7.3). Figure 9.7 shows the output of the framework for this use
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Figure 9.6: Examples of wrong outputs for the action recognition algorithm. The images have been cropped compared to the
original frame.

Figure 9.7: Complex event detection for the complex events leaving_bag and holding_bag for an input video of a person
leaving a bag. The yellow line signifies the alarming threshold.

case with the alarming threshold represented by the yellow line. In the first time points, both complex
events have not been fired yet which explains the lack of data. Firing a rule refers to all conditions
inside the rule being activated such that the rule as a whole is executed. Once a person and a bag
have been detected, the complex event rules are fired and the model returns the probability of both
complex events. We can clearly see how both complex events are influenced by each other. This is
due to the cached(holdsAt(holding_bag())) in the initiation of the complex event leaving_bag
and initiatedAt(leaving_bag()) in the termination of the complex event holding_bag.

We can visualise the frame at which the workforce would be alarmed. This is represented by the
first frame after the threshold of 0.6 has been crossed. The resulting frame can be seen in Figure 9.8.

Leaving a bag and returning to it
The second use case and video shows the same scenario except that the person returns to the bag
after leaving it. The result can be seen in Figure 9.9. Once again, the probabilities of both complex
events follow the events from the video.

Figure 9.10 shows the frame at which the alarm would go off for the complex event holding_bag
(time point 153) which in this case would represent returning to the bag. The frame in which the bag is
left behind is similar to the previous use case.



9.2. Complex Event Detection 45

Figure 9.8: Frame at which the alarm would go off for the complex event leaving_bag for an alarming threshold of 0.6.

Figure 9.9: Complex event detection for the complex events leaving_bag and holding_bag for an input video of a person
leaving a bag and returning to it.

Figure 9.10: Frame at which the alarm would go off for the complex event holding_bag for an alarming threshold of 0.6 after
leaving the bag behind.
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Figure 9.11: Complex event detection for the complex events meeting and walking_together for an input video of two
persons meeting, hugging each other and walking away together.

Figure 9.12: Frame 27 and 66 at which the alarm would go off for the complex events meeting (L) and walking_together
(R) respectively for an alarming threshold of 0.6.

Two people meeting and walking together
The third use case displays two persons walking towards each other, hugging and walking away to-
gether. For this video, we are interested in the complex event meeting and walking_together.
The results are displayed in Figure 9.11. The peak for meeting can be assigned to the hug the per-
sons give each other. The more spread out peak for walking_together can be assigned to the
two persons walking away together. The valley in between the peaks is a consequence of the action
walk not being recognised for both persons. A main drawback of using pixels as a metric for distance
becomes clear in this use case. The distance between the persons as they walk away together is rela-
tively constant in world coordinates. In image coordinates, however, the distance between the persons
halves. Similarly, when two people are walking away from the camera with a constant real world speed,
their speed in pixel will decrease as the distances are smaller far away from the camera. This means
the complex event definitions have to be robust for such depth changes and will accept relatively large
changes in distance or speed. This can lead to less accurate results either in the timing of the complex
event or simply in the existence (or lacking thereof) of the complex event.

Once again we display the frames at which the alarms would go off for both complex events. In this
case, we only look at the first crossing. For the complex event meeting, this happens at time point 27
and for the complex event walking_together, this happens at time point 66. See Figure 9.12.

Movement of one person
The fourth use case looks at simple movements made by one person. For this, three different com-
plex events are used: stationary, abrupt_move and stationary_sit. They are all relatively
simple as they are solely based on the average displacement or the action sit. The complex event
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Figure 9.13: Complex event detection for the complex event stationary for an input video of a person extensively looking at
a house.

stationary is fired when the coordinates of a person stay relatively constant over time. The same
goes for stationary_sit but also includes the action sit. The complex event abrupt_move is
fired in the opposite case, namely, when the coordinates of a person change abruptly. These complex
events have been integrated in an elementary way and would not provide much information in a real
world scenario. However, the results can give insights into the effect of the granularity of complex event
definitions.

We look at four different scenarios:

1. a person walks past a house and stops to watch it. Complex event: stationary

2. a person walks past a house and stops to take pictures. Complex event: stationary

3. a person starts walking after which it performs some sudden movements and runs away. Com-
plex event: abrupt_move

4. a person walks, sits on the ground, stands up and walks on. Complex event: stationary_sit

The results are displayed in Figures 9.13-9.17 and will be analysed one by one.

In general, the probabilities of the graph in Figure 9.13 correspond to the movement of the person
in the first video. The person stops to watch the house around time point 50 until the end of the video.
The first time point for the complex event stationary always has a high probability. This is due to not
having any prior data points which causes an average displacement of zero. We notice the system is
very sensitive to noise. A small movement causes a drastic change in probability. Figure 9.14 shows
two frames from the video. Frame a represents a frame with high probability for the complex event
stationary and frame b represents the valley in the graph around time point 100. The cyclist causes
a sudden shift in the coordinates of the person watching the house which explains the low probability
at these time points.

The results of the second scenario are displayed in Figure 9.15. Once again we see the peak at
the beginning due to the displacement being zero. The period in which the person stands still to take
pictures (approximately time point 60-125) is very oscillative. By analysing the images, we can see
these oscillations are the consequence of the person extending elbows or arms which in turn causes
sudden changes in the dimensions of the bounding box and thus its centre. Ideally, we would like to
incorporate more precise object detection such that the mobile phone could be identified as well. This
would allow less generic definitions (such as the definition of stationary) and thus more specific
complex events (such as gathering_information).

Scenario 3 looks at the complex event abrupt_move. The first oscillations in Figure 9.16 can be
assigned to the sudden movements. The increase in probability of the complex event at the end can be
assigned to the running motion of the person. We notice that the complex events abrupt_move and
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(a) Frame 71 (b) Frame 101

Figure 9.14: Frames from the input video of a person walking to a house and stopping to watch it. Frame b has a low probability
attached for the complex event stationary for the person watching the house.

Figure 9.15: Complex event detection for the complex event stationary for an input video of a person taking pictures of a
house.

Figure 9.16: Complex event detection for the complex event abrupt_move for an input video of a person making sudden moves
and running away.
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Figure 9.17: Complex event detection for the complex event stationary_sit for an input video of a person walking and sitting
on the ground.

stationary are always fired in videos that entail a person, usually with low probability. This causes
many cached complex events compared to a more granular complex event such as holding_bag that
is only fired if a bag is found in the frame.

In the last scenario, a person sits down around time point 60 and stands up around time point 135.
Even though the action recognition already labels the action as sitting, the complex event still has a low
probability due to the person still being in motion. Once the person sits still, the complex event attains
higher probabilities. Around the time point 120, the action recognition fails to label the sitting person
as sitting and the probability decreases. When it does recognise the action as sitting, the person is in
motion again which explains the low probabilities.

We conclude these simple complex event definitions are very sensitive to small changes in simple
events and cause a lot of unused extra knowledge.

9.3. Profiling
To evaluate the efficiency of the framework, the different processes of the framework are timed for a
variety of set-ups. We time the following processes for every time point:

1. Object detection

2. Pose estimation

3. Tracking

4. Action recognition

DeepProbLog also returns the time taken for grounding the program, compiling the AC and eval-
uating the AC for every query, thus for every complex event. An overview of the processes that are
being timed by DeepProbLog can be found in Figure 9.18. Note that in Chapter 8, when speaking
about compiling the AC, we included the grounding process. In this section, grounding and compiling
are separate processes.

We first look at the relative time taken for the different processes to run. Only one complex event
is queried such that the AC is compiled once per time point. The complex event used is walk-
ing_together with the corresponding video in which two persons meet and walk away together.
The total time and average time per frame are displayed in Table 9.1. We can clearly see that the
grounding step is relatively time consuming compared to the other processes. The first step low-level
processing algorithms (object detection and pose estimation) come second. Both are obtained with
YOLOv7. Summing the average time per frame for all processes results in an average time of 0.1877
s per frame. If the feed would come in at a rate of 30 fps, the frame should be processed in less than
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Figure 9.18: Overview of the three processes timed by DeepProbLog. DAG = Directed Acyclic Graph, SDD = Sentential Decision
Diagram.

Table 9.1: Total time and average time per frame (in seconds) for each process for the full video in which two persons walk
together.

Detection Pose Tracking Action Ground Compile Evaluate

Total time 3.6346 3.8470 0.2349 0.3515 13.0454 0.2393 0.1570
Average time 0.0323 0.0343 0.0020 0.0027 0.1130 0.0021 0.0013

0.03 s. This means the framework speed should be more than 6 times faster for it to work real-time for
a feed with a rate of 30 fps. Note this calculation is based on the main processes of the framework and
omits any auxiliary processes. Furthermore, only one complex event is queried.

Let us now look further into the grounding step. The grounding engine takes the program and
grounds it for the query. In Chapter 8, we concluded that changing the query was not feasible for this
framework. Therefore, we analyse the effect of changing the program. In particular, we look at the
effect of the number of detections and the number of cached events as these are added and removed
from the program before grounding. The rules themselves are fixed for all tests.

The number of detections is adapted by removing the bicycle class from the object detection, or
more specifically from the non-maximum suppression algorithm. This will result in less detections per
frame. We compare the results for the initial 7 classes with the results for the classes without the bicycle
for the video of a person stealing a bike. This video was chosen due to the high number of detections
available. The grounding time per frame is shown in Figure 9.19 for all the frames of the video (with a
fps rate of 10) for both cases. The number of detections approximately halves for the case without the
bicycle class. Important to note is that none of the rules contains the bicycle predicate which means
nothing changes in the number of rules that is fired or not. From the graph, we see a small decrease
in grounding time for the lower number of detections. The total grounding time increases with 10% for
the case with the bicycle class.

The number of cached events increases for the following reasons: querying for a larger number of
complex events, querying for complex events with a lower granularity which are detected more often,
caching all the returned complex events instead of only the ones with the highest probability. The first
two options are intertwined for this use case. The number of complex events are limited which means
querying for more complex events will result in querying for complex events with different granularity.
Furthermore, querying for different complex events will also result in different complex events being
fired which can also influence the grounding time and is difficult to keep track of. Lastly, the program is
grounded for every query at every time point. Querying for more complex events naturally results in a
longer grounding time per time point. All this considered, we will only look at the effect of caching only
the complex events with highest probability per complex event for every time point. This option is the
most independent of the rest of the processes and will, therefore, give the most insight into the effect
of the number of cached events on the grounding time. Again, the video of a person stealing a bike is
used. We query for five complex events. The results can be seen in Figure 9.20. The grounding time
per frame is averaged over all complex events. The grounding time increases for an increasing number
of cached events. Although, the increase in grounding time only becomes apparent around 80 cached
events. When only caching the results with highest probability, the maximum number of cached events
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Figure 9.19: Grounding time per frame for different number of detections with and without the bicycle class.

Figure 9.20: Grounding time per frame for different number of cached events for the case of only caching results with the highest
probability for every complex event (max ans) or caching all the results.

is equal to the number of queried complex events (5 in this case). On the contrary, when caching all
results, the number of cached events increases substantially. This is to be expected. If 5 persons are
detected at a time point, there will be 5 different results for every complex event with one argument
and p5 ´ 1q ˚ 5 “ 20 different results for every complex event with two arguments. Furthermore, due
to the rule of inertia, all cached complex events are returned every time point and thus remain cached,
mostly with probability zero.

The length of the video and the frames per second rate also influence the time to obtain all results
from a video. However, the framework is designed to work online thus we are mainly interested in
the changes that affect the processing time per frame. Increasing resolution, as mentioned earlier,
decreases performance thus the resolution is fixed.

This chapter has analysed the framework in three parts. First, the performance of the algorithms
that form the low-level processing layer is visually analysed based on the custom dataset. Secondly,
the performance of the full framework is assessed on four different use cases with each their own
complex events. Lastly, the time performance of the framework is compared for different settings. The
framework gives good results on average but is very sensitive to noise. The noise has been limited in
the custom dataset which explains the good results. Especially the low level processing layer and the
granularity of the complex events should be adapted for real world scenarios.
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Discussion

We have completed the first two steps of this research as presented in Chapter 1. A proof-of-concept
has been designed and we have looked into possible ways to improve inference in DeepProbLog,
both for complex even detection on real-world surveillance data. In this chapter, the results presented
in Chapter 9 will be discussed as well as the design of the framework as presented in Chapter 6 and
touched upon in Chapter 8. This will provide us with enough information to complete step three, namely
evaluate the Hellenwaheri framework based on expressivity, efficiency and adaptability.

10.1. Discussion of Experiment Results
The extension of DeepProbLog with Prob-EC for real-world complex event detection provides good
results when looking at the output of the framework (the probabilities of the complex events happen-
ing) and comparing this to the input video. The timing of the complex event detection is accurate and
the range of probabilities obtained from the complex event detection is broad enough to be able to
distinguish between a complex event happening or not. As a comparison, the research performed in
Vilamala, 2022 uses a probability threshold of 0.3 for a complex event to be detected. In our case,
this can be increased to 0.6. The main drawbacks of the current framework are the limited simple
events that can be obtained from the frames, the accuracy of the low level processing algorithms and
the processing time for one frame. However, without changing the algorithms and the current set-up,
the performance of the framework can be improved in multiple ways. From the results, we notice that
the probabilities of the complex events oscillate in some cases. This can become a problem if this os-
cillation happens around the threshold for which the workforce is alarmed. To prevent this, an interval
based recognition system on top of the point-based recognition system can be used such as in Man-
tenoglou et al., 2023. This framework is also an extension of Prob-EC. Furthermore, the cache can be
regulated more efficiently. Many cached complex events remain cached with a probability of zero un-
til all frames have been processed. This causes a build up of the cache which increases grounding time.

It is important to realise that the application has greatly been simplified. First, the dataset has pur-
posefully been recorded in such a way that the noise is minimal and the conditions do not complicate
the detection of simple events. There aren’t any occlusions, the angle is optimal, the lighting is good
and main characters in the video do not leave the frame such that tracking is simplified. This ensures
relatively high confidence scores for all detections. Secondly, the complex event definitions for this
research are limited and (over)fitted to the use case. In a real case scenario, the definitions will be
more granular which requires low level processing algorithms with a higher variety in simple events.
For example, Caruccio et al., 2019 also looks at facial expression to distinguish between the complex
event of leaving luggage or a terrorist attack. This problem is clearly visible when trying to detect either
a punching action on a person or two people hugging. Both complex events consist of two people
approaching each other and having some form of physical contact while in standing position. A higher
granularity will also ensure less firing of the complex event and thus a smaller cache. The complex
event stationary for example is fired for every person detected. If the definition would be extended
to a more specific complex event such as standing still for a longer period of time, the complex event
would be fired sporadically. Furthermore, medium-level events should be based on real world coordi-
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nates instead of pixels. This will decrease the sensitivity of the framework to small displacements or
different conditions. The threshold parameters described in Section 7.5 would not work for a different
angle or distance from the camera to the characters in the video. Having more expressive definitions
will most likely result in lower probabilities for the overall complex event detections. This relates to the
third simplification, the algorithms used to translate the low-level data to simple events are pre-trained
off the shelf algorithms. This can, however, also be seen as a complication as training a model on the
proper conditions can improve detection accuracy and confidence scores.

As already pointed out in A. Khan et al., 2019, we notice that the performance of the framework
is very dependent on the definitions of the complex events. A small change in one of the rules can
completely alter the result. Furthermore, the performance of the computer vision algorithms also has
a large impact on the output of the entire model. If, for example, a person is not detected or not
re-identified, the complex event containing the detection of a person as part of its rules immediately
receives a zero probability. This is referred to as pattern uncertainty (Alevizos and Skarlatidis, 2017) and
is partially covered by working with probabilistic medium-level events such as close. A more complete
procedure for pattern uncertainty could improve the detection of complex events. Furthermore, using
more advanced low level processing algorithms can prevent this problem in general. For example,
we could use Deep SORT 1 to include appearance in the tracking process instead of SORT that only
uses data association and state estimation techniques. This means SORT cannot handle occlusions
and re-entering of tracked identities. The speed of the low level processing should also be increased
significantly as the time taken for low level processing is more than twice the time available for the full
processing with a fps rate of 30. Lastly, ensuring the detections and cached events remain minimal
without losing information can improve the grounding time. This is, however, insignificant compared to
the time that would be gained by not having to compile the AC at every time point for every query. This
will be discussed in the next section.

10.2. Discussion of Framework Design
The Hellenwaheri framework has been designed in such a way that the combination of Prob-EC, Deep-
ProbLog and the computer vision layer would function as optimal as possible for complex event detec-
tion in a surveillance setting. This means we have created a framework that performs complex event
detection within the limitations of the different frameworks it consists of. From previous chapters, we
know the design presents one main drawback. That is, the fact that the neural networks used to obtain
simple events from the low level data cannot all be integrated as neural predicate. This has multiple
consequences. First, DeepProbLog was chosen due to its learning capabilities which are now not being
used due to the way the neural networks have been integrated. End-to-end learning is only possible
when the loss can be backpropagated through the neural predicate to the weights of the neural network.
Secondly, inference efficiency can be improved as has been analysed in this research, but once again
many of these improvements would only be possible if the simple events would be obtained through
neural predicates.

This makes us wonder what the other possibilities are regarding complex event detection on real-
world video data in neurosymbolic AI. Many of the renowned researches on (neural) probabilistic logic
programming and statistical relational AI originate from the same research group at KU Leuven. By
appraising and referring to each other, these researches have played a prominent role in this research.
For example, Raedt et al., 2023 states how neurosymbolic AI should have the logic and learning part
as a separate case such that both paradigms can retain their full expressivity. This has led to the
criteria that the model should focus on logic which led us to the DeepProbLog framework of which
Manhaeve is also the author. However, logic integrated in the neural part of the model has proven
to be much faster at inference (Vilamala, 2022). Taking on a broader view, it could be interesting to
compare the performance of frameworks that do not focus on logic but integrate it in the neural part of
the network with frameworks that do focus on logic for the surveillance application. Other neurosymbolic
frameworks that have potential for complex event processing are DeepStochLog, Scallop, NeurASP
and DeepSeaProbLog. They use different inference strategies or semantics which potentially makes
them more suitable for complex event detection on real-world video data. DeepStochLog, Scallop and
NeurASP have been claimed to have better inference processes than DeepProbLog. Their suitability

1https://github.com/nwojke/deep_sort
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for complex event detection on real-world surveillance data remains to be proven. Especially interesting
is DeepSeaProbLog which was published during the course of this research. DeepSeaProbLog is a
generalisation of DeepProbLog that allows for continuous probability distributions. This means that we
are not limited to using a classification network for the neural predicates which has been a limiting actor
in our research. Therefore, more research into DeepSeaProbLog for this application is recommended.

10.3. Evaluation
In this section, the proof-of-concept is evaluated based on expressivity, efficiency and adaptability. This
will provide more insight into the usability of the framework and will permit us to answer the research
question presented in Chapter 1.

10.3.1. Expressivity
ProbLog is regarded as a very expressive modelling language which has once again been proven
in this context. We have not been limited in ways we could define the complex event definitions.
However, we have been limited in what simple events could be abstracted from the low-level data.
An increase in the variety of information that can be obtained from the video frames provides more
knowledge to reason with and thus more expressive definitions. Examples are detecting objects such
as a phone and a weapon, facial expressions, accurate body poses or orientation of persons. There
is of course the possibility to have a large amount of computer vision networks that each return a
simple event but this would be very inefficient. Simple events are returned as probabilistic facts that
in turn influence the probabilities of the queried complex events. Obtaining detections with higher
confidences results in complex events with higher probabilities. Writing the rules for any use case is
a challenging task. The rules need to be efficient such that inference time is minimised. This can be
obtained with higher granularity. For example, the complex event holding_bag requires a bag which
means that as long as no bag is detected, this complex event definition will never be fired. This can
prevent unnecessary calculation and clear boundaries between different complex events. However,
having many probabilistic facts as part of a complex event definition will result in a lower probability for
that complex event as we take the conjunction of these predicates. This is a trade-off that needs to
be made. We believe this is a very powerful method to be in control of what should or should not be
detected, but is limited by the simple events that are available from the low level data.

Looking back at the criteria from Chapter 3, the framework adheres to all but one. The framework
can be used online, focuses on logic, is able to integrate expert knowledge, can reason with spatio-
temporal relations and most importantly is probabilistic. However, the framework is not end-to-end
differentiable if we consider the computer vision algorithms to be part of the framework. Neural predi-
cates can still be incorporated into the framework and trained using backpropagation but the computer
vision algorithms will not be part of this training loop.

10.3.2. Efficiency
As mentioned in Chapter 7, in this section we analyse the time-efficiency of the framework as well
as the inference process as a whole. The speed of the framework is unsatisfactory. When using a
single complex event, the time taken to process a frame and return the probability of the complex event
happening should be more than 6 times faster to run real-time with a fps rate of 30. Querying for
more complex events, which is required for real-world scenarios, will only slow down the process even
more. The processing of low-level data takes 0.07 s per frame. With an incoming feed at 30 fps, the
whole processing pipeline should be finished in under 0.03 s. Thus, both the inference speed and the
low-level processing speed should be highly increased for the framework to be used real-time.

In the Hellenwaheri framework, the AC has to be recompiled for every complex event at every time
point. We know that compiling the AC is the most costly process in DeepProbLog inference. There
are three reasons for having to recompile the AC at every time point: the queries, the cached complex
events and the simple events. The query contains a time point which prevents us from re-using the
same query (and thus the same AC). The cached complex events are grounded for the different tracking
IDs identified in the videos which means they are unpredictable. The simple events are not obtained
through the neural predicates but added to the knowledge base before compiling. Chapter 8 discusses
ways to reduce the need for compiling the AC. However, these cannot be implemented for our case
as is. Assuming all the simple events would be obtained though the neural predicates, the time point
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is transformed to a tensor variable and the cached grounded queries are not added to the knowledge
base before compiling, using the AC cache from DeepProbLog could improve efficiency. We wonder
if these improvements are worth the effort as DeepProbLog has been accused of having scalability
issues when the complexity increases Apriceno et al., 2021.

10.3.3. Adaptability
The framework is adaptable in the sense that it does not have to be retrained when adding complex
event definitions. This provides the ability to adapt the framework for altering conditions while in oper-
ation. If properly written, rules and definitions can be used for multiple applications by simply adapting
the domain knowledge parameters.

We now look at how the proof-of-concept should be adapted to be operational. Evidently, the knowl-
edge of the workforce, the experts in this case, will need to be translated to complex and medium-level
event definitions. The knowledge should be translated in such a way that it is correct and does not
contain bias from the workforce. The program will be a large database of complex event definitions,
medium-level event definitions and simple event facts that are fired hierarchically through the different
predicates. A next step consists of choosing or training the networks for the translation of video data to
simple events needed for the complex event definitions. Multiple adaptations to the framework could
improve the accuracy of this step. For example, by introducing a depth camera or using background
subtraction in the case of static cameras. As mentioned earlier, the framework is too slow to work real-
time thus the speed of the framework should drastically be improved. The program will be queried for
many complex events at once at every time point and will thus return the probability of every complex
event at every time point.

An important aspect of every design is the interaction with the user. The framework should comple-
ment the work of the workforce and not completely replace it. It should ensure the workforce does not
get bored and understands the decision process of the framework such that follow-up decisions can
be made swiftly. Ideally, the framework returns its line of reasoning in a human understandable form.
For example, by highlighting entities that have contributed to a raised alarm in the video feed.

10.4. Answer to the Research Question
We have now completed all three steps as introduced in Chapter 1 and are therefore able to answer
the research question:

”To what extent is a neural probabilistic logic programming framework suitable for online
complex event detection on real-world surveillance video data while efficiently making use of
available expert knowledge?”

DeepProbLog itself adheres to all criteria presented in Chapter 3, however, the Hellenwaheri frame-
work does not anymore. The framework is not end-to-end differentiable and thus not trainable due to the
low-level detection layer not being integrated as neural predicates. This makes the inference process
even more inefficient than it already was and causes the framework to be excessively slow. A scenario
where all simple events are integrated through neural predicates is not realistic at this point for nPLP
frameworks due to the limitation on the type of neural network. As a consequence, nPLP frameworks
are too limited for complex event detection on real-world surveillance data. However, DeepProbLog
still remains suitable for complex event detection on more simple scenarios such as audio data (Preece
et al., 2021) or synthetic data (Apriceno et al., 2021). Furthermore, the use of knowledge offers great
advantages such as human understandable symbols and more control over the decisions made by the
framework.
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Due to a rise in organised crime in the Netherlands, the Marechaussee needs to deploy its work-
force more efficiently. To this end, the Marechaussee has shown interest in using an intelligent video
surveillance system for residential security. This research explores the use of neurosymbolic AI, specif-
ically a neural probabilistic logic programming (nPLP) framework, for online complex event detection
in real-world surveillance video data. Complex events refer to situations that involve a spatio-temporal
combination of multiple atomic events. The framework should follow six criteria: (1) Integration of ex-
pert knowledge to reduce complexity and enhance training efficiency; (2) Incorporation of probabilistic
methods to handle uncertainties in real-world complex events; (3) Online processing capability for im-
mediate recognition of complex events in the video stream; (4) Ability to reason with spatio-temporal
data to analyse temporal events and capture interactions; (5) Focusing on logic instead of neural net-
works to retain full expressivity of the logic; and (6) End-to-end differentiability for simplified training.

DeepProbLog, a well documented and maintained nPLP framework, is theoretically able to follow all
six criteria but has been accused of having a low inference speed and has limited temporal reasoning
capabilities. Prob-EC, a probabilistic version of the Event Calculus, is combined with DeepProbLog to
enhance the latter. This forms the Hellenwaheri framework. A proof-of-concept is designed to test the
framework on expressivity, efficiency and adaptability and assess the suitability of this type of frame-
work for the use case.

The results are as follows:

Expressivity As ProbLog is a highly expressive programming language, so is DeepProbLog. This
expressivity is enhanced by integrating Prob-EC. The expressivity of the framework is limited by the
variety and accuracy of the simple events obtained from the video data. The output of the framework is
highly dependent on the simple events generated and their accuracy. Choosing efficient and suitable
algorithms for the computer vision layer is a challenging task due to the noise that comes with real
world data.

Efficiency The low level processing layer and cache have been integrated as part of the ProbLog
program which is highly inefficient. Together with the queries that change for every time point, these
processes force the AC to be recompiled at every time point for every complex event which is the most
time consuming process of the DeepProbLog framework. Furthermore, the low level processing algo-
rithms are slow and are not part of the DeepProbLog training loop which causes the framework to fail
for criteria 6. To address these issues, strategies are explored for reducing the compiling frequency or
decreasing the compiling time. The integration of the low level processing neural networks as neural
predicates could provide end-to-end learning and improve inference efficiency. However, a scenario
where all simple events are integrated through neural predicates is not realistic at this point for nPLP
frameworks due to the limitation on the type of neural network.

Adaptability Focusing on logic has the advantage of allowing the addition of complex event defini-
tions without retraining. This increases the adaptability. To operationalise the framework, correct and
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unbiased rules need to be crafted by experts which can be challenging. Low level processing algo-
rithms need to be carefully selected as these have a large impact on the performance of the system.
The time complexity of the inference, however, remains a bottleneck in deploying the framework and
does not come with a quick fix.

We conclude an nPLP framework is not suitable for complex event detection on real-world surveil-
lance data at this point in time due to the current constraints of ProbLog and DeepProbLog. Alongside
the shortcomings, the framework has shown the great advantages of using knowledge for this use case.
The use of human-understandable symbols provides more explainability and defining and maintaining
rules provides more control over the decisions made by the framework. Neurosymbolic AI should
therefore not be written off, on the contrary, let this research be a foundation and inspiration for using
neurosymbolic AI for complex event detection on real-world data.

We end this thesis with a quote by none other than Isaac Asimov: ”The most exciting phrase to hear
in science, the one that heralds the most discoveries, is not ’Eureka!’ but ’That’s funny…’”
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Event Definitions

1 % Asserts and retracts dynamic predicates which do not appear
2 % in probabilistic facts or rules at the starting program
3 % to avoid unknown predicate errors
4

5 cached(aux).
6 happensAt(aux1,aux2).
7

8

9 % ===== DEFINE STATICALLY DETERMINED FLUENTS
10

11 Prob::holdsAtMacro(close(Person1, Person2, D) = true, T) :-
12 calculateDistance(Person1, Person2, T, Dist),
13 Prob is max(0,(1-max(0,(Dist-100))/D)). % Dist =< Threshold.
14

15 Prob::holdsAtMacro(close(Person1, Person2, D) = false, T) :-
16 calculateDistance(Person1, Person2, T, Dist),
17 Prob is min(1,(max(0,(Dist-100))/D)). % Dist > Threshold.
18

19 Prob::holdsAtMacro(moving_closer(Person1, Person2) = true, T):-
20 closingDist(D),
21 prevTimepoint(T, Tprev),
22 calculateDistance(Person1, Person2, Tprev, Dist1),
23 calculateDistance(Person1, Person2, T, Dist2),
24 DeltaDist is max(Dist1-Dist2,0),
25 Prob is min(1,DeltaDist/D).
26

27 Prob :: holdsAtMacro(same_speed(Person1,Person2)=true, T):-
28 % writeln('Checkpoint 4'),
29 holdsAtIE(avg_displ(Person1)=Speed1,T),
30 holdsAtIE(avg_displ(Person2)=Speed2,T),
31 SpeedDif is abs(Speed1-Speed2),
32 maxSpeedDif(D),
33 Prob is max(0,(1-SpeedDif/D)).
34

35 Prob::holdsAtMacro(abrupt_displ(Displ)=true, T):-
36 abruptDispl(D),
37 Prob is min(1,(Displ/D)).
38

39 Prob::holdsAtMacro(abrupt_displ(Displ)=false, T):-
40 abruptDispl(D),
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41 Prob is max(0,(1-Displ/D)).
42

43 Prob::holdsAtMacro(get_prob_station(Displ)=true, T):-
44 stationDispl(D),
45 Prob is max(0,1-Displ/D).
46

47 Prob::holdsAtMacro(get_prob_station(Displ)=false, T):-
48 movingDispl(D),
49 Prob is min(1,Displ/D).
50

51 calculateDistance(Person1, Person2, T, Dist):-
52 \+ Person1 = Person2,
53 % writeln('Checkpoint 1'),
54 holdsAtIE(coord(Person1) = (X1, Y1), T ),
55 holdsAtIE(coord(Person2) = (X2, Y2), T ),
56 XDiff is abs(X1-X2),
57 YDiff is abs(Y1-Y2),
58 SideA is XDiff*XDiff,
59 SideB is YDiff*YDiff,
60 Temp is SideA + SideB,
61 Dist is sqrt(Temp).
62 % ==================================================
63 % COMPLEX EVENT: holding_bag(Person, Object)
64 % ==================================================
65 initiatedAt(holding_bag(Person,Bag) = true, T):-
66 happensAt(person(Person), T),
67 happensAt(bag(Bag), T),
68 holdDist(D),
69 holdsAtMacro(close(Person, Bag, D)=true, T).
70

71 initiatedAt(holding_bag(Person,Bag) = false, T):-
72 happensAt(person(Person), T),
73 happensAt(bag(Bag), T),
74 initiatedAt(leaving_bag(Person, Bag) = true, T).
75

76 % ==================================================
77 % COMPLEX EVENT: leaving_bag(Person, Object)
78 % ==================================================
79 initiatedAt(leaving_bag(Person, Bag) = true, T):-
80 happensAt(person(Person), T),
81 happensAt(bag(Bag), T),
82 prevTimepoint(T, Tprev),
83 cached(holdsAt(holding_bag(Person, Bag) = true, Tprev)),
84 holdDist(D),
85 holdsAtMacro(close(Person, Bag, D)=false, T).
86

87 initiatedAt(leaving_bag(Person, Bag) = false, T):-
88 happensAt(bag(Bag), T),
89 \+ happensAt(person(Person), T).
90

91 initiatedAt(leaving_bag(Person, Bag) = false, T):-
92 happensAt(bag(Bag), T),
93 happensAt(person(Person), T),
94 holdDist(D),
95 holdsAtMacro(close(Person, Bag, D)=true, T).
96
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97 % ==================================================
98 % COMPLEX EVENT: meeting(Person1, Person2)
99 % ==================================================
100 initiatedAt(meeting(Person1, Person2) = true, T):-
101 happensAt(person(Person1), T),
102 happensAt(person(Person2), T),
103 \+ Person1 = Person2,
104 holdsAtMacro(moving_closer(Person1, Person2) = true, T),
105 meetingDist(D),
106 holdsAtMacro(close(Person1, Person2, D)=true, T).
107

108 initiatedAt(meeting(Person1,Person2) = false, T):-
109 happensAt(person(Person1), T),
110 happensAt(person(Person2), T),
111 meetingDist(D),
112 holdsAtMacro(close(Person1, Person2, D)=false, T).
113

114

115 % ==================================================
116 % COMPLEX EVENT: walking_together(Person1, Person2)
117 % ==================================================
118 initiatedAt(walking_together(Person1, Person2) = true, T):-
119 happensAt(person(Person1), T),
120 happensAt(person(Person2), T),
121 \+ Person1 = Person2,
122 happensAt(walk(Person1), T),
123 happensAt(walk(Person2), T),
124 walkDist(D),
125 holdsAtMacro(close(Person1, Person2, D)=true, T),
126 prevTimepoint(T,Tprev),
127 holdsAtMacro(close(Person1, Person2, D)=true, Tprev),
128 holdsAtMacro(same_speed(Person1,Person2)=true,T).
129

130

131 initiatedAt(walking_together(Person1,Person2) = false, T):-
132 happensAt(person(Person1), T),
133 happensAt(person(Person2), T),
134 walkDist(D),
135 holdsAtMacro(close(Person1, Person2, D)=false, T).
136

137 % ==================================================
138 % COMPLEX EVENT: abrupt_move(Person)
139 % ==================================================
140 initiatedAt(abrupt_move(Person) = true, T):-
141 happensAt(person(Person), T),
142 holdsAtIE(avg_displ(Person)=Displ,T),
143 holdsAtMacro(abrupt_displ(Displ)=true, T).
144

145 initiatedAt(abrupt_move(Person) = false, T):-
146 happensAt(person(Person), T),
147 holdsAtIE(avg_displ(Person)=Displ,T),
148 holdsAtMacro(abrupt_displ(Displ)=false, T).
149

150 % ==================================================
151 % COMPLEX EVENT: stationary(Person)
152 % ==================================================
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153

154 initiatedAt(stationary(Person) = true, T):-
155 happensAt(person(Person), T),
156 holdsAtIE(avg_displ(Person)=Displ,T),
157 holdsAtMacro(get_prob_station(Displ) = true, T).
158

159 initiatedAt(stationary(Person) = false, T):-
160 happensAt(person(Person), T),
161 holdsAtIE(avg_displ(Person)=Displ,T),
162 holdsAtMacro(get_prob_station(Displ) = false, T).
163

164 % ==================================================
165 % COMPLEX EVENT: stationary_sit(Person)
166 % ==================================================
167

168 initiatedAt(stationary_sit(Person) = true, T):-
169 happensAt(person(Person), T),
170 happensAt(sit(Person),T),
171 holdsAtIE(avg_displ(Person)=Displ,T),
172 holdsAtMacro(get_prob_station(Displ) = true, T).
173

174 initiatedAt(stationary_sit(Person) = false, T):-
175 happensAt(person(Person), T),
176 happensAt(jump(Person),T).
177

178 initiatedAt(stationary_sit(Person) = false, T):-
179 happensAt(person(Person), T),
180 holdsAtIE(avg_displ(Person)=Displ,T),
181 holdsAtMacro(get_prob_station(Displ) = false, T).

Listing A.1: Complex and medium-level event definitions
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