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Abstract—This paper addresses the problem of determining
the distribution of the return current in electric railway traction
systems. The dynamics of traction return current are simulated in
all three space dimensions by informing the neural networks with
the Partial Differential Equations (PDEs) known as telegraph
equations. In addition, this work proposes a method of choosing
optimal activation functions for training the physics-informed
neural network to solve higher-dimensional PDEs. We propose a
Monte Carlo based framework to choose the activation function
in lower dimensions, mitigating the need for ensemble training
in higher dimensions. To further strengthen the applicability of
the Monte Carlo based framework, experiments are presented
under two loss functions governed by L? and L°° norms. The
presented method efficiently simulates the traction return current
for electric railway systems, even for three-dimensional problems.

Index Terms—Traction return current, electric railway sys-
tems, physics-informed neural networks, Monte Carlo, activation
functions.

I. INTRODUCTION

Locomotives operating on an electric traction system are
the backbone of modern railway transportation infrastructure
[1]. The electric railway traction system consists of the path
between the power station/substation and the locomotive, as
shown in Fig. 1. These locomotives receive the power in the
form of alternating current carried by overhead cables known
as catenaries connected to the substations [2]. The alternating
current is introduced in the locomotive through a pantograph.
This alternating current is then converted to direct current,
which is ultimately used by the locomotive. Additionally, as
any electrical system should have a closed path for the current
to flow, the grounded railway tracks provide a path for the
traction return current. However, the current received back by
the substation is less than the current sent to the locomotive
indicating losses in the traction return current [3], and [4].

The incurred electric losses extensively affect the amount of
electricity that needs to be produced, subsequently affecting
the overall cost of operating railways. Electric losses need to
be estimated precisely to have control over the costs. These
losses necessitate predicting the dynamics of traction return
current. In practice, one method to estimate these losses is
through carrying out experiments on the prototypes [5]. These
prototypes are generally smaller-scale experimental setups
built to compute the traction return current. However, pro-
totypes are costly, and it is difficult to capture all the possible
dynamics and local conditions that hundreds of kilometres of
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Fig. 1. Electric traction system for railways

Return traction current (u)

traction current systems have in real-life [6]. Mathematically,
the traction return current dynamics could be modelled as
a Partial Differential Equation (PDE) known as a telegraph
equation [4], which could be solved to predict the return
current at any instant of time.

In general, from designing an aircraft (Euler equations) to
studying supernovas in astrophysics (Magnetohydrodynamic
equations), PDEs find their place in many scientific models.
The wide variety of applications that PDEs possess makes
solving and finding their solutions necessary. Analytical so-
lutions are desirable but seldom found for PDEs modelling
real-world phenomena. Therefore, numerical approximations
of the solution of PDEs is a very well-researched field. Despite
the tremendous progress in numerical methods such as finite
difference, finite element, finite volume, and spectral methods,
one still faces several challenges such as quantifying un-
certainties and solving multiscale and multiphysics problems
[7], [8], and [9]. Most numerical methods require a mesh
for computation. Mesh generation is tedious and worsens the
problem for complicated geometries and higher-dimensional
problems [7].

In recent years, there has been rapid progress in scien-
tific machine learning, which fuses scientific computing and
machine learning approaches to approximate the solutions
of PDEs. State-of-the-art developments in scientific machine
learning have been covered in detail in the review paper
[10] and references therein. One method for numerically
approximating PDEs using Deep Neural Networks (DNNs) is
to use representation formulas like the Feynman-Kac formula
for parabolic PDEs [11]-[13], whose compositional structure
is used in DNNs to approximate the solution. These methods
have been applied in various situations, including approximat-
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ing very high dimensional problems in mathematical finance
[11]. Another class of methods tries to improve existing
numerical approaches by incorporating deep learning modules,
such as learning parameters of numerical schemes from data
as presented in [14], and [15] among others.

Provided sufficient data, DNNs can approximate any con-
tinuous function, even measurable functions, according to
the universal approximation theorem [16]. Machine learning
has emerged as a viable alternative to the aforementioned
numerical methods. Still, it requires a large amount of data,
possibly expensive and noisy in the case of some biological
and engineering systems. One possible way to avoid this
problem is to collocate the PDE residual at training points,
similar to leveraging the physical equation in the training
process. References [17], and [18] proposed this method for
the first time. However, starting with [19], it has been revived
and expanded in much greater detail in the pioneering work of
Karniadakis and collaborators. The underlying neural networks
are Physics Informed Neural Networks (PINNs).

PINNSs are universal function approximators that embed the
physical equations described by PDEs along with the given
data-set in the learning process. Prior knowledge of physical
principles acts as a regularization agent in the training of
DNNS, limiting the space of admissible solutions and raising
the accuracy of the function approximation. Embedding this
prior knowledge into neural networks improves the informa-
tion content of the given data, making it easier for the learning
algorithm to capture the correct solution and generalize well
even with a small number of training samples. As a result,
PINN is used to find a high-fidelity optimal solution using
some knowledge of the physical properties of the problem
and some form of training data (even sparse and partial). In a
brief period, PINN has already proven to be a very effective
paradigm for approximating solutions of partial differential
equations, a very partial list of references include [7], [19]-
[21] and references therein.

Developing methods for solving high-dimensional partial
differential equations has been challenging for a long time
[11]. PINNs is a deep learning-based technique that possibly
removes the curse of dimensionality and approximates the so-
lution for high-dimensional PDEs [22], provided the selection
of the optimal activation functions in higher dimensions. In
practice, ensemble training is carried out [22], considering
a range of values of the hyperparameters, for instance, the
number of hidden layers, neurons, residual parameters, and
activation functions, among others. For each configuration in
the ensemble, the resulting model is retrained several times
with different random starting values of the trainable weights
in the optimization algorithm. The one yielding the smallest
testing error for the choice of metric is selected. Although,
very successful in practice, this method is computationally
expensive, particularly in higher dimensions.

This work aims to approximate the traction return current
for electrified railway systems in several space dimensions
through physics-informed neural networks. Training the neural
network for lower dimensions is computationally cheaper

than training it in higher dimensions. We propose a Monte
Carlo based method to choose activation functions for high-
dimensional PDEs through training the neural networks for
lower-dimensional PDEs only. Additionally, the proposed
technique is examined on two loss functions evaluating its de-
pendency on different norms. To the authors’ best knowledge,
the contributions of the current paper are as follows,

« We propose estimating the traction return current for elec-
tric railways systems through physics-informed neural
networks.

« We propose a Monte-Carlo based framework to optimally
choose an activation function for training the neural
networks for higher-dimensional PDEs.

« Experiments are presented for all three dimensions on two
different loss functions governed by L2 and L norms.

The rest of the manuscript is organized as follows. In section
II, the model of the traction return current is described. Section
IIT presents the Monte Carlo based framework for choosing
the activation functions. Section IV contains the numerical
experiments. The paper concludes with sections V and VI
presenting the discussions and conclusions.

II. HYPERBOLIC TELEGRAPH EQUATION

The telegraph equation is a time-dependent scalar equation
with many real-world applications, including the propagation
of traction return current in the transmission lines. In elec-
trical engineering, the telegraph equation describes the spatio-
temporal features of the travelling wave on a long transmission
line [23]. Furthermore, depending on the parameters of the
telegraph equation, the model can describe the parallel flow
of viscous Maxwell’s fluids [24] or propagation of acoustic
waves in Darcy-type porous media [25].

The physical model of the traction return current is dis-
cussed for our work. The study uses a multiconductor trans-
mission line model of the traction line [3]. The model for
this paper is taken from [3], where a system of PDEs is
presented for the telegraph equations. However, the system of
PDEs could be coupled to form a single PDE as presented in
[26] with traction return current as the unknown. We consider
our numerical experiments on a generic transmission line with
simplified coefficient values.

The resulting telegraph equation is a time-dependent scalar
equation. The general form of second order hyperbolic tele-
graph equation [26], [27] is considered as a test problem in
n space dimensions with space time domain (x,¢) € D x T,
where D = [0,1]" C R", and T" C R. The spatial boundary
is denoted by I' and initial temporal boundary is denoted by
Lo,

F = uy — Au+ 20u; + f2u — f(x,t) €))
with initial and Dirichlet boundary conditions,

u(xi,0) = hy (Xl)
(%, 0) = ha(x;)
U(Xbﬂf) =g(t)

V(Xi,t) e D xTy
V(xi, 1) € D x T )
V(Xb,t) el'xT
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Here, hi(x;) and ha(x;) are the initial conditions, and g(t)
is the boundary condition applied on the model. x}, and x; are
the boundary and initial points respectively. We assume the
quantity of interest u(x,t) is the only unknown in the model
which is the traction return current. Numerical experiments
in all possible physical dimensions are presented, which is
n € {1,2,3}. The parameters « and /3 are chosen to be 1.
The forcing term f(x,t) is stated along with the numerical
experiments.

III. METHOD: PHYSICS-INFORMED NEURAL NETWORK

The framework of PINNs is based on DNN. In DNN,
features map to labels through an iterative composition of
hidden layers. The composition consists of weights, biases,
and linear or non-linear activation function(s). In a standard
supervised learning paradigm, one needs labelled data to
minimize the difference between predicted solution u* and
label u to find the optimal parameters (weights and biases)
through a suitable optimization algorithm. In the case of
forward partial differential equations, the only labelled data
available is in the form of initial and boundary conditions. A
priori, there is no solution available in the whole domain D
x T, making the data at the interior points unlabelled.

e ® ® ® o o o o'p oo e

Neural Network ,  AutoDiff .': Physics  *,
‘ @ : Informed -
: . : Network
._H b,
® "¢
= @i | .

Fig. 2. Physics-informed neural network architecture.

The novel approach of PINNs does not need output data in
the whole domain and takes the leverage of auto-differentiation
and back-propagation in neural networks. In the loss function
of PINNSs, for the interior domain, instead of the labelled
output u, one considers the physical equation along with the
initial and boundary conditions, making PINNs a kind of semi-
supervised technique as shown in Fig. 2.

1) Training Set: To train the neural network, one needs
training set (A), consisting of spatial boundary points (Ay,),
temporal boundary points (A;) and interior points (Aju).
Hence, training set can be written as A = A; UAp U Ajpe. In
this work, the number of training points in A;, Ay, and Ay
are denoted by V;, Ny, and Ny, respectively.

2) Loss function: We aim to obtain the approximate solu-
tion of unknown quantity v by minimizing the loss function
L defined as,

L=Li+L,+\Lr 3)
where,
1 Nint
L — f”bp
= 2
1 Ny,
Ly — — n t) — *|p 4
b Nb;m(xm) 9| “)
1 &
Li= 5 > (0" (xi,0) = BiJP + (1, 0) = 5 ")
I n=1

The term Lz corresponds to the physical equation, Ly, and
L; relate to the boundary and initial data; g* is the PINN
prediction at (xy,¢) and hf, h} are the PINN prediction and
its derivative at (x;, 0), and X is the residual parameter in the
loss function.

The model is trained with two norm possibilities on the
loss function for the numerical experiments. The first norm is
the most commonly used loss function in the PINN literature,
for p = 2, in (4) popularly known as the mean squared error
(MSE). Second-order optimizer L-BFGS is used to find the
optimal parameters to minimize the loss function.

In addition, one more possibility to train the neural network
using L°° norm on the loss function is explored. In this case,
the terms in the loss function take the following form,

Lr= e, WD
Ly = max (lg"(Xb,t0) —g7]) (5)
Li= max (ju"(x;,0) = hi| +[uf (x,0) — h3))

To minimize the maximum absolute loss function, first-order
optimizer ADAM is used to find the optimal solution u. In
addition to predicting the traction return current through the
PINN algorithm, an activation function is also sought, which
performs optimally in several space dimensions. We propose
implementing the PINN algorithm several times in lower
dimensions with distinct choices of activation functions and
storing the error each time. Since the inputs of the problem,
that is, the collocation points in the computational domain, are
generated randomly for different retrainings. Hence, we obtain
a different result for each run, even if all hyperparameters
are kept the same. Similarly, for each choice of activation
function, the PINN algorithm is run several times, keeping
all other hyperparameters the same. Finally, to choose the
optimal activation function for training in higher dimensions,
the mean of the obtained errors for each re-training in 1D
is computed, which is the Monte Carlo algorithm, and the
activation function resulting in the least error is chosen. The
algorithm for a single PINN run could be described in brief
as follows,

Algorithm
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Fig. 3. Mean R vs number of re-trainings for all four activation functions top : L? training Left(a) : one dimension; Mid(b) : two dimension; Right(c) :
three dimension. bottom : L°° training Left(d) : one dimension; Mid(e) : two dimension; Right(f) : three dimension.

Goal: To find an approximation of the quantity of interest
u.

Step 1: Choose the training set (A = Ap U A; U Ajye)
from the space-time domain D x T

Step 2: Construct feedforward deep neural network with
inputs (x,¢) and output u.

Step 3: Minimize the loss function (4) and (5) with suit-
able optimization algorithm and find the optimal param-
eters (weights and biases).

Step 4: Use the optimal parameters to find the approxi-
mate solution u* at (Tiest, trest) € D X T

IV. NUMERICAL EXPERIMENTS

This section describes the considered neural network ar-
chitecture, along with the test cases. To be consistent in

multiple times, randomizing inputs, weights, and biases re-
sulting in a different R for each run owing to the numerical
optimization algorithm. Table [I]-[VI] present the mean and
standard deviations of all 20 re-trainings. 10000 max-iteration
has been performed for the MSE loss function as second-order
optimizer L-BFGS was used. For the maximum absolute norm
loss function optimized by the first-order optimizer ADAM,
20000 epochs were performed.

A. Test Cases

1) One-dimensional telegraph equation: For the first nu-
merical experiment, one space dimensional model is consider
in the domain, D x T = [0,1] x [0, 1]. The forcing term is
assumed to be, f(x,t) = cos(t)sin(x) — 2sin(t) sin(x), To
make the problem well-posed, initial conditions,

all dimensions, sufficient number of interior training points
(Nint = 16384) and initial and boundary training points
(Np + N; = 16384) are provided in both trainings [8]. The
training points are generated using low discrepancy Sobol
sequences [8]. The considered neural network for the study
contains 4 hidden layers and 20 neurons in each hidden layer.
The residual parameter A is chosen to be 0.1 [8]. The choice
of activation function plays a crucial role in training neural
networks. We consider well-used activation functions in PINN
literature (tanh, sigmoid and softplus) along with the swish
activation function to observe the behaviour of the predicted
solution as the dimensionality increases. For the error metric,

u(z,0) = sin(x), w(x,0) =0,

and Dirichlet boundary conditions are applied as,

u(0,t) =0, w(l,t) = cos(t)sin(1).

The exact solution for this problem is, u(x,t) =
cos(t) sin(z) which is used for the calculation of relative error
percent (R).

TABLE I

relative percentage error R as used in [8] is chosen. One Dimension L? training
Activation Functions Mean Std. Dev
N tanh 1.44 x 1072 | 518 x 103
[[u” — ull2 : =2 =)
R = x 100 6) swish 3.13 x 10 1.79 x 10
[|ul|2 sigmoid 274x 102 | 241 x 10~ 2
softplus 228 x 1072 | 1.84 x 10~2

For each numerical experiment, 20 re-trainings have been
performed. Re-training refers to running the PINN algorithm
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Fig. 5. Test case 1 (a) PINN approximation with L? training; (b) Absolute difference of exact and PINN with L? training; (c) PINN approximation with

L°° training; (d) Absolute difference of exact and PINN with L°° training.

TABLE II TABLE 11T
One Dimension L°° training Two Dimension L2 training
Activation Functions Mean Std. Dev Activation Functions Mean Std. Dev
tanh 2.00879766 | 1.51779322 tanh 0.14199159 | 0.04399127
swish 1.04768208 | 0.72702900 swish 0.19886359 | 0.07910510
sigmoid 2.79106137 | 0.58980483 sigmoid 0.36978569 | 0.12598651
softplus 2.81767620 | 4.05375819 softplus 0.26977729 | 0.20043524
TABLE IV

2) Two-dimensional telegraph equation: Two space dimen-

sional telegraph model (1) is taken as the second test case with Two Dimension L™ training

the computational domain D x T' = [0, 1]? x [0,1]. In this Activation Functions Mean Sud. Dey
putat . =10 9 tanh 7.10643780 | 8.00334820

case the forcing term is, f(x,y,t) = 2cos(t) sin(z) sin(y) — swish 3772776193 | 3.13151448

2sin(t) sin(z) sin(y). The problem is supplemented with the sigmoid 23.92830481 | 5.15323669

initial conditions softplus 7.51133697 6.83848449

u(z,0) = sin(z) sin(y), u(z,0) =0.
and Dirichlet boundary conditions, In this case the analytical solution is wu(z,y,t) =
cos(t) sin(z) sin(y).
u(z,0,) =0, u(0,y,t) =0, 3) Three-dimensional telegraph equation : In the final
u(1,y,t) = cos(t) sin(1) sin(y), experiment, three space dimensional telegraph equation (1)
u(z, 1,) = cos(t) sin(z) sin(1) in the domain D x T = [0,1]® x [0,1] is considered.
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The forcing term taken for this test case is, f(x,y,z,t)
= 3cos(t) sin(z) sin(y) sin(z) — 2sin(¢) sin(z) sin(y) sin(z),
with the initial conditions,

u(z,y, z,0) = sin(x) sin(y) sin(z), u(z,y,2,0) =0, (7)

and Dirichlet boundary conditions,

u(1,y, z,t) = sin(1) sin(y) sin(z) cos(t),
u(x,1,2,t) = sln(:v)sin(l) sin(z) cos(t),
u(z,y,1,t) = sin(z) sin(y) sin(1) cos(t),
u(0,y, 2,t) = U(l,O,z,t) = u(z,y,0,t) = 0.
TABLE V
Three Dimension L? training
Activation Functions Mean Std. Dev
tanh 0.13847198 | 0.02568810
swish 0.16615373 | 0.05135004
sigmoid 0.42155327 | 0.16187028
softplus 0.26939003 | 0.12027588
TABLE VI
Three Dimension L°° training
Activation Functions Mean Std. Dev
tanh 7.32334883 | 6.32465018
swish 3.48192039 0.80039423
sigmoid 2291893825 | 4.16512679
softplus 8.12778883 5.33127412

For the calculation of relative error percentage (R), the
analytical solution u(x,y,z,t) = cos(t)sin(z) sin(y) sin(z)
is used.

V. RESULTS

Three test cases with two distinct norms on the loss func-
tion, making six cases, are considered in this paper. For all
these six cases, 20 re-trainings have been performed. The
following discussion is based on the statistics of R calculated
after 20 re-trainings. As R could vary on a given run of a
PINN algorithm, it is unjustifiable to compare the activation
functions based on a random run. Hence, it is necessary to have
multiple re-training for each configuration of hyperparameters.
Also, the sample size for the hyperparameters should be large
enough to avoid outliers. For example, if one ran the exper-
iments with the swish and softplus activation functions only
for L? training, the conclusion from 1D and 2/3D would be
inconsistent, as shown in Fig 3(a-b-c). However, this problem
vanishes when a sufficient sample size of four activation
functions is chosen. Two subsequent arguments describe the
importance of re-training.

First, we illustrate this using the plot of mean R vs the
number of re-trainings as presented in Fig. 3. For instance,
in Fig. 3.(a), the mean R for four re-training of softplus
activation function is around 0.05%, which is more than other

activation functions, indicating that softplus performs as the
worst activation function. However, after 20 re-trainings, the
mean R of softplus decreases nearly to 0.02%, making it
the second-best activation function in that case. To further
emphasize the importance of 20 re-training, consider Fig. 3.(f).
There appears to be a large 10% difference in mean R after
four re-training in approximations using softplus and tanh,
but as the re-trainings increase, this difference vanishes. From
Fig. 3., it is evident that the mean R converges to a constant
value as re-training increases. This observation indicates that
20 re-trainings are sufficient to compare the performance of
activation functions, at least for the considered test cases.
An attempt to make inferences and conclusions shall not be
made unless an adequate number of re-training for a particular
problem has been performed.

Second, to support the importance of 20 re-trainings, it
is assumed that the error obtained on each algorithm run is
independent and identically distributed. We assume that each
‘R obtained follows a normal distribution with the mean and
standard deviations as mentioned in Table (I-VI). From Fig.
4.(a), it can be inferred that on a random run, there appears to
be the slightest chance that the error obtained in the predicted
solution with sigmoid activation function will be less than
that of tanh. This chance is very low but can not be ignored.
Fig. 4.(b)-(f). also indicate that reporting the statistics seems
more practical than reporting a random run. Hence, re-training
plays a crucial role in ensuring the results and conclusions’
reliability.

A discussion of the L? training outcomes is now presented.
In all three dimensions, the L? training proves to provide
a very good approximation of the solution, as shown in
Tables I, III and V. For all three cases, the mean R of
less than 1% is achieved, which shows PINN successfully
removes the curse of dimensionality, as it can be observed
that from second dimension to third dimension telegraph
equation, the error appears in the same order of magnitude.
As it can be observed that from second dimension to third
dimension telegraph equation, there is no change in order of
magnitude. However, tanh comparatively performed the best
in approximating the solution in all dimensions. It is noted
that swish gives the maximum mean R in one dimension, as
shown in Table I, but in two and three dimensions (Table III,
V), swish performed as the second-best activation function.
The performance of softplus and sigmoid showed a gradual
fall as the dimensionality increased. Sigmoid proved to be
the least performing activation function in approximating the
solution in two and three dimensions as the sigmoid-predicted
solution exhibits maximum mean R in those cases. For best
performing activation function tanh, Fig. 5., Fig. 6., and Fig.
7. are presented for visualization. The figures are collected at
10000 random testing points in the domain for a random run.
Fig. 5.(a), Fig. 6.(a), and Fig. 7.(a) present the PINN predicted
solution alongside the exact solution. For a better comparison,
the absolute difference between PINN solution and analytical
solution is shown in Fig. 5.(b), Fig. 6.(b), and Fig. 7.(b) for
L? training.

2022 IEEE SSCI — Special Session on Physics-informed Computational Intelligence: Theories, Models and Applns. 1465

Authorized licensed use limited to: TU Delft Library. Downloaded on January 31,2023 at 07:37:13 UTC from IEEE Xplore. Restrictions apply.



0.00168

0.36 0.00144
0.30 0.00120
0.24 0.00096
0.18 0.00072
0.12 0.00048
g-gg 0.00024
02 04 06 08 02 04 06 08 0.00000
X X

0.009

0.36 0.008
0.30 0.8 0.007
0.24 0.006
FiE 06 0.005
5 G 0.004
0.12 - 0.003
0.06 o.z 0.002
0.00 g'ggé
02 04 06 08 02 04 06 08 :
X X

Fig. 6. Test case 2 at time ¢t = 1 (a) PINN approximation with L? training; (b) Absolute difference of exact and PINN with L? training; (c) PINN
approximation with L°° training; (d) Absolute difference of exact and PINN with L°° training.
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Fig. 7. Test case 3 at time £ = 1 (a) : Absolute difference of exact and PINN with L? training; (b) : Absolute difference of exact and PINN with L>

training.

As shown in Tables II, IV, and VI, for L°° training,
PINN can predict the solution in all three dimensions. The
swish activation function in all dimensions obtains the mean
R of less than 4%. It is observed that apart from swish,
only tanh and softplus could approximate the solution with
under 10% error. As dimensionality rose, softplus and tanh’s
performance began to deteriorate. Sigmoid proves to be the
worst-performing activation function with around 22% mean
‘R in the case of three-dimension, as shown in Table VI. Fig.
5., Fig. 6., and Fig. 7. are illustrated for the best performing
activation function swish. Figures are presented for a random
run on the domain’s 10000 random testing points. The PINN
predicted solution is shown alongside the absolute difference
in Fig. 5.(c), Fig. 6.(c), and Fig. 7.(c). For comparison, Fig.
5.(e), Fig. 6.(e), and Fig. 7.(e) for L training exhibit the
absolute difference between PINN and analytical solutions.

It is worth noting that the purpose of this study is not to
compare the results obtained by L? and L™ training. Rather,
the aim is to explore the potential of L°° training for the
transmission line model and provide another option for the
training process.

VI. DISCUSSION

The presented numerical experiments show that the physics-
informed neural networks efficiently predict the traction return
current. On-field experiments for traction return current are
cost-intensive due to expensive prototypes. In this work, we
leveraged the available knowledge in the form of physical
equations to predict the return current at every temporal
location for one, two and three space dimensions. Results
show that the method successfully addresses the curse of

dimensionality by simulating the three-dimensional problem
with errors comparable to lower dimensions.

Most railways research is based on numerical and data-
based methods. There are several challenges to these meth-
ods, such as prototypes, noisy data, predictions only on
certain locations, and the optimal location of sensors. This
research provides a way forward to leverage the underlying
knowledge and use it for further research in railways. The
neural network’s capacity to efficiently approximate higher di-
mensional/multivariable functions strengthens the motivation.
The universal function approximation theorem guarantees the
function mapping for such a problem. However, the condi-
tions under which (neural network configuration, activation
function, etc.) the function could be learned are uncertain.

One of such uncertain hyperparameters is the choice of
the activation function. For the optimal choice of activation
function in the higher dimensional problem, we proposed to
use Monte Carlo for low-dimensional problems and then use
the obtained activation function in high-dimensional problems.
This framework provides a way to mitigate the need to
perform ensemble training in higher dimensions, which is
computationally expensive. It is also worth noting that this
Monte Carlo based framework could be employed to choose
other hyperparameters like the neuron and layer composition,
among others; however, it is not the scope of this paper.
In general, the proposed algorithm works because for linear
PDEs like the telegraph equation considered for our study;
the dimensionality increase is similar to extrapolating the
dynamics in higher dimensions compared to the previous
lower dimensions. This knowledge allows us to use the same
activation function found in the lower dimensions. However,
choosing a hyperparameter on a single run seems non-intuitive
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as it depends on the seed and differs from system to system,
necessitating an algorithm like Monte Carlo, which computes
the statistics of multiple re-trainings.

Numerical experiments provided the optimal choice of
activation function under two different norms, L? and L°°.
Although the L? norm is most widely employed to train the
neural network for PINNs [10], the L>° norm could potentially
be of interest in cases where the mathematical theories of
convergence and stability for the PDEs under consideration
have been developed and established under > norm. A few
prominent examples of such PDEs include fully nonlinear
PDEs such as the Hamilton-Jacobi-Bellman and the Monge-
Ampere equations, among others [28]. The results of the exper-
iments show that the trend for the optimal choice of activation
function using the Monte Carlo method is not dependent on
norms. For instance, the activation function found for the
L? norm remains valid throughout all dimensions. A similar
trend is observed for the L°° norm as well. The reason for
this behaviour comes from the definition of the Monte Carlo
algorithm. The Monte Carlo algorithm works on the obtained
results after the norm has been applied. Hence, the study offers
a general framework for any loss function and norm choice, at
least for the return traction current problem modelled by the
telegraph equations.

VII. CONCLUSION

This work proposes employing PINNs, a deep learning
approach for predicting traction return current using second-
order hyperbolic telegraph equations in several space dimen-
sions. The presented experiments in all three dimensions
suggest that PINN approximates the solution accurately and
efficiently. In addition, the results lead to the following con-
clusions.

First, the traction return current for railways could be ap-
proximated using only physical equations without the need for
additional data. We provided the data only for the initial time
and the domain boundaries. The current flow is predicted in the
whole space and time domain with minimal error. This clearly
shows that the PINN algorithm approximates the solution
very well. Even for three dimensions, PINN approximates the
solution with under five percent error, removing the curse of
dimensionality.

Second, Numerical experiments demonstrate that the opti-
mal activation function found using the Monte Carlo frame-
work in the lower dimension continues to perform the best
when training the neural network in higher dimensions. This
hyperparameter (activation function) tuning trend is advanta-
geous since tweaking it in lower dimensions is less expensive
than tuning it repeatedly for every higher dimension.

Third, The activation function selection is norm-specific,
even for the same model. The optimal activation function
found for one loss function does not guarantee performance
for other norms on the same loss functions. Results show
swish is possibly a better activation function than tanh when
approximating the traction return current using the telegraph
equation. Although swish did not outperform tanh in L2

training, the results are not bad. Moreover, in the case of L°°,
training swish provides far better results than other activation
functions. Finding the reasoning behind such a trend is beyond
the scope of this work.

In future, the accurate performance of PINNs in estimating
the traction return current can be utilized in the field of
protection relay, especially the travelling wave protection.
According to the travelling wave value collected from the
sensors at the transmission line terminals, we can leverage the
physical equation to know where and when a fault occurs on
the transmission line. In addition, solving the inverse problem
to estimate the parameters of the transmission line could assist
in monitoring the health status of the transmission line.
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