
D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no

lo
gy

Learning to search & track dynamic targets with graph
representations

Shijie Cong

Learning to search & track dynamic targets with
graph representations

by

Shijie Cong

to obtain the degree of Master of Science
at the Delft University of Technology,

Student number: 5156734
Thesis committee: Dr. Javier Alonso-Mora, TU Delft, supervisor

Dr. Wendelin Böhmer, TU Delft
Álvaro Serra-Gómez, TU Delft, daily supervisor

Cover Image credits: Sam McGhee

Acknowledgement
The last couple of years in TU Delft has been a long journey in my life. When I was here for the first time,
I was an exchange bachelor student and would never imagine what I was doing now. Teachers and
mentors in the Cognitive Robotics department led me into the robotics world and changed my vision
pretty much. I would like to first thank Dr. Javier Alonso-Mora and Álvaro Serra-Gómez for granting
me the opportunity to work in the Autonomous Multi-Robots Lab. Their feedback and support not only
answer my queries but also guide me on how to do research. I want to thank my parents for their
support throughout my life. Finally, I would like to thank my friends, both by my side and those far away.
Their accompany helps me break through those difficulties. In my way, I love you all.

Shijie Cong
Delft, May 2023

i

Summary
Autonomous robots have been widely applied to search and rescue missions for information gathering
about target locations. This process needs to be continuously replanned based on new observations in
the environment. For dynamic targets, the robot needs to not only discover them but also keep tracking
their positions. Previous works focus on either searching for static targets or tracking dynamic targets
given the number of targets and their initial positions. However, the prior information including targets
not moving and initial target states can be difficult to obtain in reality. There are also some efforts to
solve the search and tracking task jointly by switching between the search mode and the track mode
or designing hybrid heuristics. But these methods cannot account for the effect of target movement
during the search process, and the trade-off between search and tracking is sensitive to the heuristics.

To overcome the limitations above, in this thesis, we propose a graph formulation of the search and
tracking of an unknown number of dynamic targets. The search and tracking problem is decoupled into
two parts: search for undiscovered targets and track discovered ones. The search objective is modeled
by minimizing the uncertainty in the environment evolving according to a diffusion mechanism and the
tracking objective is formulated as minimizing the entropy of target belief distributions. Based on that,
we design a novel graph neural network architecture, trained via Reinforcement Learning, that outputs
the next motion primitive for the robot to collect information in the environment. We first evaluate
this framework in the pure search and the pure tracking tasks. The results show that our method
outperforms a variety of baselines both when searching in small and medium-scale environments, and
tracking multiple dynamic targets in medium-scale environments. Then the experiments of the search
and tracking task validate that our method achieves a better trade-off under equally good search or
tracking performance, and scales to a large number of targets.

ii

Contents

Preface i

Abstract ii

1 Introduction 1
1.1 Motivation . 1
1.2 Research objective and contribution . 2
1.3 Thesis overview . 2

2 Related work 3
2.1 Active perception for target search and tracking . 3

2.1.1 Active target search . 3
2.1.2 Active target tracking . 4
2.1.3 Search and tracking . 5

2.2 Reinforcement Learning with spatial graph representations 6

3 Problem formulation 8

4 Methodology 11
4.1 Proposed solution . 11

4.1.1 Graph representation for search and tracking . 11
4.1.2 Policy architecture . 12

4.2 Training setup . 13
4.2.1 Applied tasks . 13
4.2.2 Training conditions . 14
4.2.3 Training algorhtim . 14

5 Experiments and results 16
5.1 Baselines . 16

5.1.1 Next-best-view baseline . 16
5.1.2 GNN baseline . 17

5.2 Test conditions and evaluation metrics . 17
5.3 Pure search task . 18

5.3.1 Capability to generalize to different graph structures 18
5.3.2 Scalability analysis . 18

5.4 Pure tracking task . 20
5.4.1 Two target domains . 20
5.4.2 Scalability analysis . 20

5.5 Search and tracking task . 22
5.5.1 Small-scale environments . 22
5.5.2 Medium-scale environments . 24
5.5.3 Large-scale environments . 24

5.6 Discussion . 26
5.6.1 The effect of the heterogeneous graph structure 26
5.6.2 The adjustable trade-off of search and tracking 26

6 Conclusions and future work 29
6.1 Conclusions . 29
6.2 Limitations and future work . 29

References 30

iii

List of Figures

2.1 The spatial graph built in [41] . 7

3.1 Graph representation of the environment . 8

4.1 Solution structure . 11
4.2 Hierarchy graph representation . 12
4.3 GNN model structure . 13
4.4 Examples of the random environments used in training 14

5.1 Egocentric subgraph of the robot . 16
5.2 Examples of test environments . 18
5.3 Entropy decrease rate of search process over time in the same size of environments as

training stage . 18
5.4 Entropy decrease rate of search process over time in small-scale environments 19
5.5 Entropy decrease rate of search process over time in large-scale environments 19
5.6 Relationship between J̄ and target relative distance . 20
5.7 Experiments with different numbers of targets in the environment 21
5.8 Percentage of 20 targets with candidates within thresholds 21
5.9 Experiments with different numbers of targets in the small-scale environment 22
5.10 Percentage of discovered targets over time with 5 targets in small-scale environments . 22
5.11 Percentage of 5 targets with candidates within thresholds in small-scale environments . 23
5.12 Percentage of discovered targets over time with 20 targets in small-scale environments 23
5.13 Percentage of 20 targets with candidates within thresholds in small-scale environments 24
5.14 Experiments with different numbers of targets in the medium-scale environments 24
5.15 Percentage of discovered targets over time with 20 targets in medium-scale environments 25
5.16 Percentage of 20 targets with candidates within thresholds in medium-scale environments 25
5.17 Percentage of discovered targets over time with 20 targets in large-scale environments 25
5.18 Percentage of 20 targets with candidates within thresholds in large-scale environments 26
5.19 Percentage of discovered targets over time with 20 targets in medium-scale environments 27
5.20 Percentage of 20 targets with candidates within thresholds in medium-scale environments 27

iv

List of Tables

4.1 Hyperparameters for PPO training . 15

5.1 Target tracking performance throughout the episode in large-scale environments with 20
targets . 26

5.2 Target tracking performance throughout the episode in medium-scale environments with
20 targets . 28

v

1
Introduction

1.1. Motivation
Search-and-rescue (SAR) scenarios often involve a race against time. For example, when someone
is lost in a forest for a long time, first responders must locate the victim as quickly as possible. How-
ever, rescuers face several challenges in such time-sensitive situations, including physical limitations,
hazardous environmental conditions, and large operational areas. To aid human rescuers, valuable
information about the environment can be provided to reduce the places that they must search. In
this regard, autonomous robots are a strong candidate for support as they can be deployed to various
settings and reduce the risks that human workers would face otherwise [6]. By automating the environ-
ment information gathering process, robots free up scarce human rescue resources for more critical
tasks such as victim assistance.

Gathering information about victim locations, including victim search and tracking, is vital in a SAR
mission. This task has been explored from different perspectives, such as state estimation [40], sensory
management [9], and decision-making [15]. The first two concern the perception process, whilst the last
one considers the problem of where to make the next information collection. The effective deployment
of the robot for information gathering is the topic of active perception [4]. To reduce the time it takes to
localize humans (i.e. targets), active perception adapts where to perceive according to the information
it receives compared to the passive one. For example, when searching for a victim lost in the forest,
the robot is faced with an unexplored environment with a static or dynamic target. This requires it to
make reactive decisions about where to go next according to environment observations such that the
information needed to localize the target is maximized.

One main approach to solve this problem is to decrease the uncertainty of the entire environment
[39][30]. Thesemethods try to exploremore unobserved areas in the environment to discover the target.
However, this is only feasible for static targets since a dynamic target can move from an unexplored
region into a previously explored one. For a dynamic target, localization not only requires discovering it
but also updating its location over time. There have been research efforts in tracking single and multiple
dynamic targets [15][13]. Current methods rely on assumptions that the number of targets is known
and initial target states are available as prior information as well [36][2]. However, such assumptions
overlook some limitations that cannot be ignored in reality. They do not consider situations when such
prior information is difficult to obtain, such as when the only available information is an unknown number
of victims got lost in a forest.

State-of-the-art planning-based information gathering methods have to face the challenge of com-
putational complexity due to their planning horizon [20][2]. Myopic methods release the computational
burden but also fail to achieve optimal target localization efficiency. For instance, a myopic approach
can fail to collect information from distant areas in the environment. To improve the performance, non-
myopic methods sacrifice computation speed to plan in a long horizon for optimized performance in
terms of energy cost or gained information [10][25]. To improve execution efficiency without sacrificing
localization performance, some attention is given to approaches based on Deep Reinforcement Learn-
ing (DRL). Recent works use DRL to train a policy to maximize the expected information gain of future
observation [15][13]. Thus a trade-off between planning horizon and online computation efficiency is

1

1.2. Research objective and contribution 2

achieved. But still, these methods only solve problems with the assumptions mentioned before. The
research gap between DRL and target search and tracking is huge and worthwhile for further explo-
ration.

Another limitation of existing methods is that the representation of the environment only captures
low-level information. In previous search and tracking works, the environment is mostly represented
as a discrete grid map [26][15][21]. Each cell in the map describes the information of a small area
and does not interact with others. Recent advances in target search with semantic information prove
that relational/topological information between landmarks in the environment improves the situational
understanding of the robot and thus its target localization performance [1][32]. Moreover, to deploy
a robot in a large-scale environment with more targets, its decision-making needs to reason about
information with increased complexity. Thus, there is still much room for further exploration in the use
of autonomous robots for target information gathering in SAR.

1.2. Research objective and contribution
In this thesis, to alleviate the limitations mentioned above, we focus on solving the problem of target
search and tracking in a large-scale environment with a DRL policy. The main research question is
formulated as follows:

How can an autonomous robot contribute to searching and tracking an unknown number of
dynamic targets?

To solve this problem, the following research questions will be addressed:

1. How to account for the movement of dynamic targets during the search process?
Compared with static ones, dynamic targets can move to areas that previously observed by the
robot. This question addresses the importance of revisiting observed areas to search for unob-
served targets.

2. How to trade-off between target search and target tracking to maximize the total informa-
tion gain?
This question aims to study the exploration and exploitation problem between searching for undis-
covered targets and focusing on tracking discovered targets when the number of targets is not
known as prior.

3. How to encode target search and tracking related information in the environment repre-
sentation?
This question addresses modeling the target search and tracking mathematically and formulating
it as part of the environment representation.

The main contributions of this research to the state-of-the-art are:

1. The design of a novel graph formulation of the search and tracking of an unknown number of
targets. An entropy diffusion mechanism based on heat diffusion is applied to capture the effect
of moving targets.

2. We present a novel graph neural network architecture to learn a navigation policy.

3. We assess the performance in the search and tracking task. The architecture is also verified to
generalize to pure search and pure tracking tasks.

1.3. Thesis overview
The work in this thesis is presented as follows. In chapter 2, the relevant literature on Active perception
for target search and target tracking, and DRL with graphs are discussed. Chapter 3 formulates the
search and tracking problem with a graph representation. Chapter 4 presents our approach to solve
the search and tracking problem with the graph formulation. Chapter 5 contains three main parts: the
baselines to compare, the test experiment setup and the evaluation metrics, and the experiment results.
Finally, we conclude in Chapter 6.

2
Related work

The search and tracking task has two primary objectives: search for undiscovered targets and track
discovered ones. Although numerous studies have addressed one of them, only aminority have tackled
both simultaneously. Graph neural networks have gained significant popularity in recent years and
are now also applied to RL. Our contributions build upon recent work in active perception for search
and tracking and DRL with spatial graphs. In this chapter, relevant research about active perception
for target search and tracking is reviewed in section 2.1. Then learning-based methods with graph
representations in motion planning are investigated in section 2.2.

2.1. Active perception for target search and tracking
Active perception is the automation and optimization of the perception process through the use of
a dynamic system with actuation and sensing capabilities [4]. In this section, we first review active
perception strategies for target search and target tracking, At the end of this section, we discuss some
efforts that have been made to extend from target tracking to search and tracking.

2.1.1. Active target search
Active target search (ATS) is defined as locating static targets in the environment by collecting infor-
mation about the environment [29]. It requires the robot to make proper viewpoint selections to locate
targets efficiently. When the map of the environment is known and there is no additional information
about target distribution, which means the target is equally possible to appear anywhere in the environ-
ment, ATS is the same as a coverage path planning problem. This problem has been widely addressed
by the robotics community [34][22].

Myopic approaches choose one-step look ahead actions at the current time step. Two important
parts of these methods are the generation of candidate viewpoints and the criteria to evaluate each
of them. The candidates can be derived by sampling near the robot [11] or motion primitives [7]. The
difference is that the former requires the support of another local path planner to navigate to the sam-
pled viewpoint. As for the candidate viewpoint evaluation, there have been many efforts to propose
utility functions for measuring the information gain of each candidate. González-Baños et al. [11] use
the product of the observable area and the exponential function of path length to balance the coverage
gain and the navigation cost. Amarjeet Singh et al.[38] compute the information gain through the mu-
tual information between observed and unobserved regions. Due to the short planning horizon, these
methods are computationally efficient (especially when deploying to a team of robots [7]) but sacrifice
in terms of search time or energy efficiency.

Non-myopic methods, on the other hand, aim to maximize the information objective over a long
time horizon. These methods rely on global [3] or receding horizon [46] optimization approaches. Bäh-
nemann et al. [3] formulate the coverage problem in a known environment as an equality generalized
traveling salesman problem (E-GTSP) on a boustrophedon cell decomposition graph. Cells in the graph
are divided into clusters and the goal is to find the shortest tour path that visits one node in each cluster.
Then an exhaustive exact solution is derived based on Dijkstra. The computation time of this method
is limited by the size of the graph since the amount of edges grows quadratically with the number of

3

2.1. Active perception for target search and tracking 4

nodes, thus it cannot be online deployed. Leonardo Zacchini et al. [46] propose an online method by
constructing a two-layer planner where a higher layer generates viewpoints with rapidly-exploring ran-
dom tree (RRT) in a receding-horizon manner and a lower layer planning a feasible path considering
the kinematic constraints with RRT*. Then the next best viewpoint is selected based on the expected
information gain and the path length. However, in their experiments, with the same mission time, this
approach cannot outperform the classic lawnmower path in terms of coverage.

DRL-basedmethods have been addressedmore recently due to their execution efficiency and ability
to act considering historical observations [48][26]. Policies learned by DRL build a mapping from states
to actions instead of searching over action space explicitly at each time step. In this way, a promising
trade-off between fast execution and information gain performance can be achieved. Delong Zhu et
al. [48] attempt to learn to infer the global visiting order of the environment. To do this, two region
candidates, one from a DRL model and the other from a greedy strategy are evaluated according to
structural integrity. Then the better one is used to generate viewpoint candidates from which the next
best viewpoint is obtained. This suggests that the DRL model doesn’t always generate reasonable
candidates and needs further improvement. Max Lodel et al. [26] propose a hierarchical framework
that combines a high-level viewpoint recommendation with a low-level trajectory planner. The former
is done by a DRL policy and the latter uses a model predictive control (MPC) module. The hierarchical
structure frees the DRL agent from the burden of learning local navigation behaviors (e.g. collision
avoidance), thus improving the exploration performance.

Our method builds upon DRL to learn a non-myopic navigation policy to maximize the information
gain. Previous work focuses on searching for static targets. By modeling undiscovered dynamic tar-
gets as sources of uncertainty in the given environment, we expand the applied fields into searching
for dynamic targets. Compared with the hierarchical DRL-MPC structure [26], our graph formulation
removes unreachable positions (e.g. occupied by obstacles) and unfeasible motion primitives from the
graph representation. In our architecture, the policy only evaluates each feasible action independently
and learns to recommend a reachable viewpoint even without the low-level controller.

2.1.2. Active target tracking
ATS mentioned in the previous section aims only to discover static targets. When dealing with detected
dynamic targets, the objective shifts to estimating their locations, which is called active target tracking
(ATT). Problems in ATT address challenges related to target motions including estimation of target
states, non-myopic planning, cost function, and stochasticity of the targets.

Non-myopic ATT strategies can be divided into two categories: search-based methods [2][36][35],
and optimization-based methods [33][25]. Search-based approaches create a search tree of potential
robot trajectories using known systemmodels for the robot, targets, and observation. Nikolay Atanasov
et al. [2] propose the Reduced Value Iteration (RVI) algorithm to compute an open-loop control policy
that maximizes the objective of mutual information. A pruning technique is applied to reduce the size
of the search tree and guarantee finite execution time while ensuring sub-optimality. Brent Schlotfeldt
et al. [36] present the Anytime Reduced Value Iteration (ARVI) makes improvements upon RVI by
eliminating the need to adjust pruning parameters in RVI while reducing the computation load by reusing
computations from prior iterations.

Both RVI and ARVI only have a sub-optimal guarantee. To get optimal performance and reduce the
size of the search tree, Brent Schlotfeldt et al. [35] use the A* search algorithm with a novel heuristic
based on the bounding of a Kalman filter estimate covariance matrix and prove the heuristic admissible.
However, this method can not deal with continuous motion robots since the search tree can grow much
larger. Thus it needs a roadmap to deploy A* and another low-level controller to execute the trajectory.

Optimization-based methods predict the distribution of the target over a multi-step horizon. Ryan et
al. [33] compute the entropy of the estimated target distribution by the sequential Monte Carlo method
in the context of particle filtering. However, due to the computation complexity of the Monter Carlo
method, this approach cannot be deployed in real-time. To improve the computation efficiency, Chang
Liu et al.[25] present a two-stage sequential MPC-based approach. Similar to previous works, they
supplement an objective about the entropy of the estimation of the target to the MPC cost function.
The objective is defined based on the trace of the Kalman filter.

These ATT methods have a strict limitation that the number of targets to track is not only known as
a prior but also equal to the number of robots. That means even if the robot moves fast, its mobility
advantage can not help to track multiple targets. Furthermore, an accurate dynamic model of targets

2.1. Active perception for target search and tracking 5

is needed to predict target trajectory. Inadequate knowledge of dynamics will navigate the robot to
someplace where the target does not exist. However, due to practical limitations, the true target model
is hard to get in reality.

Heejin Jeong et al. [15] present a DRLmethod that learns a robust policy to deal with noisy measure-
ments and inaccurate target models. It also has the capability to deal with multiple targets. However,
like all the other ATT methods, it requires the initial target belief. Although they increase the stochas-
ticity with larger initial uncertainty and initialize the belief away from the true state, it is like having the
robot compensate for a pre-existing mistake.

Our method is inspired by the work of Heejin Jeong et al. [15] that computes the reward based on
the cumulative mutual information about target distributions. By considering the search part, we do not
have to make assumptions that the number of targets and initial target positions are known, which are
obtained by the robot itself during target search.

2.1.3. Search and tracking
In the sections above, strategies for ATS and ATT are investigated respectively. As is introduced in
chapter 1, in realistic situations these two tasks need to be solved jointly when prior information about
the targets is not accessible, which is known as search and tracking (SAT). In this process, the robot
is expected to first explore the environment and the detection of a target provides initial information for
tracking it. For a single target, the solution of SAT is just to first explore and then keep tracking it [10][8].
However, when dealing with multiple targets, the robot needs to make the trade-off between searching
for undiscovered targets and tracking discovered ones since the perception capability of the robot is
limited.

Some ATT methods try to extend the capability from pure tracking to discover the target when the
prior belief is incorrect [25][15]. But as stated in the previous section, these solutions are correcting
an existing error and can not start with empty prior. Heejin Jeong et al. [15] utilize a visit frequency to
encourage the robot to explore unvisited areas. But the visit frequency concerns each cell in the grid
map separately and doesn’t consider the moving behavior of targets.

Jonathan P How et al. [12] introduce the concept of the mode switch, which divides the SAT task into
two sub-tasks. They solve the problem of the unknown number of targets by assuming there’s always
at least an undiscovered target. Thus the robot keeps working on the search mode and switches to
the tracking mode either a new target is discovered or the uncertainty of a previously detected target
exceeds a certain threshold.

Alberto Dionigi et al. [8] follow the idea of the mode switch and learn separate DRL policies for
target search and target tracking respectively. However, this method has several limitations. First, it
focuses on SAT with a single target in the environment and thus only switches from the search mode
to the track mode once the target is detected. Second, it assumes that the target is static during the
search process to compute the probability of target appearance in the environment.

Instead of doing explicit rule-based mode switches, another group of methods puts efforts into bal-
ancing the two sub-tasks by designing hybrid heuristics. Ryan R Pitre et al. [31] present an objective
function to combine the conflicting objectives about target search and target tracking. The objective
function is to maximize the sum of the trace of the estimated covariance matrix over all discovered
targets. They propose that this method concerns the two sub-tasks at the same time. But an obvious
problem is that a poor estimation with high uncertainty can also bring more benefits according to their
definition. This is reflected in their experiment results that their method has a natural preference for
target search rather than target tracking.

Xianfeng Li et al. [23] concern the two objectives separately and propose a combined observation
profit metric to account for their impact. It evaluates the target tracking profit by its relative location in
the Field of View (FoV) and deals with the exploration part in a way similar to the observation frequency
[15]. In order to solve the trade-off, the weights of these two terms need to be calibrated. Furthermore,
this method assumes the total number of targets is known as well.

To relax the limitation of the known number of targets, Peng Yan et al. [44] train a DRL policy
that incorporates the exploration rate of the environment and the observation rate of each target in
the reward function. The trade-off between exploration and exploitation is expected to be learned.
Nevertheless, one shortcoming of this method is that it only considers the observation rate instead of
the uncertainty of the target. This means two consecutive observations at the beginning are considered
to be equivalent to two observations at a certain time interval although the former behavior results in

2.2. Reinforcement Learning with spatial graph representations 6

a larger target state uncertainty. Furthermore, this method assumes the environment is obstacle-free,
which is another limitation that needs further improvement.

The hybrid objectives mentioned above are all composed of a weighted sum of two independent
metrics about target search and target tracking. Julius Ibenthal et al. [14] take the detection uncertainty
and the occlusion effect of obstacles into account and propose a set-membership estimation method
to maintain set estimates about identified, non-identified, and non-detected targets from a geometric
perspective. This approach successfully uses a metric of the volume of the set-membership to evalu-
ate target search and target tracking performance uniformly. However, the search part still does not
consider the target moving behavior.

To solve the SAT task, previous methods either assume targets keep static during the search pro-
cess or assign higher priority to positions not observed for a longer time. The former ignores target
movements and can fail to discover targets moving into observed areas while the latter considers the
importance of each area independent from others. This means the search process is endless since
there are always regions not observed at the moment. However, we apply a diffusion mechanism to
formulate the effect of undiscovered target movement during target search and avoid omissions.

2.2. Reinforcement Learning with spatial graph representations
Graph Neural Network (GNN) applications in RL have gained popularity in recent years. In this section,
we mainly focus on methods that encode spatial graph observations to learn a navigation policy. Zam-
baldi et al. [47] solve a visual navigation task by encoding RGB image observations as fully connected
graphs. Then the multi-head dot product attention [42] is applied to learn different sets of relations.
Theoretically, each head can learn a unique set of edges with their own weights, thus the topological
information can be abstracted. Considering the permutation-invariant property of graphs, this method
assumes that the global position of each node is available.

Lu et al. [27] further apply RL with GNN to learn a navigation policy for searching a semantic object.
Instead of using raw image inputs, this method constructs an abstract map of the environment and
models it as a Markov network [17]. The co-appearance of different objects (e.g. a chair and a desk)
is modeled as a probability distribution with a random vector describing the positions of objects and a
joint probability capturing their relative positions. Then a GNN-based agent is applied to learn it. In this
work, the knowledge graph is required to initialize the graph structure.

Zachary et al. [32], on the other hand, get rid of the dependence of prior knowledge graph and
generates a hierarchical graph representation of the environment with 3D Dynamic Scene Graphs
(DSG). An additive action layer containing nearby sampled nodes is connected to the scene graph for
message passing. With a feature embedding vector computed from the action layer nodes, the RL
agent learns the navigation policy to search for semantic objects. But still, like other works investigated
in section 2.1.1, this method can only deal with static objects.

One comparable work to our research is presented by Ekaterina et al. [41] that models the environ-
ment as a lattice graph shown in figure 2.1 and applies it to a coverage task. To learn a non-myopic
policy, this work stacks a number of GNN layers to get information from distant nodes. However, like
CNNs, GNNs also suffer from the over-smoothing problem [45]. That means as the receptive field
k increases, after k-hop message passing all node features tend to be the same. To solve this, the
method concatenates the output feature of every GNN layer together to compute the final embedding.

Our work is inspired by the work of Ekaterina et al. [41]. However, we design a hierarchical lattice
graph and reduce the receptive field required to reason information from distant nodes. Besides, we
leverage the use of attention-based GNN layers [42] to encode the dynamic environment and learn the
importance of different nodes.

2.2. Reinforcement Learning with spatial graph representations 7

Figure 2.1: The spatial graph built in [41]

3
Problem formulation

Considering a robot that has to explore a 2D environment W ⊂ R2 with static obstacles located at
O ⊂ W . The main goal of the robot is to search for and keep track of the location of an unknown number
of M dynamic targets j ∈ {1, ...,M} within a given horizon F . The state of the robot is x(t) ∈ X := R2

whilst the state of target j is denoted by yj(t) ∈ Y := R2. For all targets we have y(t) = [y1(t), ..., yM (t)].
Information about how many targets to search and prior about target states is unknown to the robot.

The robot does not have access to the ground truth of target positions. Instead, the robot maintains
a belief on each discovered target. We assume targets do not react to the robot, e.g. y(t + 1) is
independent of state x(t) and action u(t) of the robot. Hence, the belief distribution of yj(t) according
to observation history z1:t is denoted as B(yj(t)) = P (yj(t)|z1:t). And Bt = {B(yj(t))}j=1,..,M denotes
the belief of all discovered targets.

To make observation zt, we have the assumption that the robot is equipped with a sensing system
that can detect targets within a certain distance. We assume that the map of the environment and the
exact location of the robot are known to the robot.

Motivated by the success of motion planning with lattices [41], we construct a graph representation
of the environment based on its coarse map. A grid of points is first initialized, then points within
obstacles in the environment are removed and connections between adjacent nodes in free space are
added as in Figure 3.1.

(a) Coarse grid map (b) Lattice representation

Figure 3.1: Graph representation of the environment

The graph is defined as a 2-tuple G = (V, E), where V represents a set of nodes {vk}k=1,...,N , E is
a set of edges {es,r}. In our case, the edge es,r = (vs, vr) is directed, pointing from the source node
vs to the receiver node vr. As is explained in subsection 2.1.3, SAT has two sub-objectives: searching
for undiscovered targets and tracking discovered ones. To model the search task, we associate each

8

9

node k with a Bernoulli random variable Qk,t ∈ {0, 1}, where Qk,t = 1 indicates k is occupied by an
undiscovered target and the search task is to minimize the uncertainty of undiscovered target appear-
ance {p(Qk,t = 1)}k=1,...,N . We assume that the targets follow a random walk dynamics that there are
five actions with equal probability: {left, right, up, down, stay still}. Then the tracking task is converted
to infer the discovered target states according to their belief distributions, which is modeled as discrete
probability maps:

B(yj(t)) = [pj,1(t), ..., pj,N (t)] (3.1)

Where pj,k(t) is the probability of target j appearance at node k, and B(yj(t)) is maintained by the
prediction step and the update step according to the observation zt:

Bp(yj(t+ 1)) = B(yj(t)) +B(yj(t))L̂ (3.2)
Bu(yj(t+ 1)) = [puj,1(t+ 1), ..., puj,N (t+ 1)] (3.3)

L̂kb =
∑
a

Âkaδkb − Âkb (3.4)

Âkb =
1

dk
(3.5)

δkb =

{
1 if k = b
0 otherwise (3.6)

puj,k(t+ 1) =

 1 Oj,k,t+1 = 1
0 Ok,t+1 = 1

η(pj,k(t)) otherwise
(3.7)

Where Bp(·) and Bu(·) are the predicted and updated belief respectively, δkb is the Kronecker
delta[19], dk is the degree of node k, Oj,k,t and Ok,t are indicator functions from the observation that
Oj,k,t = 1 means target j is observed at node k at time t and Ok,t = 1 means node k is in the FoV of
the robot at time t, η(·) is a normalization operator to keep

∑N
k=1 pj,k(t) = 1.

We assume that the velocity of the robot is nvel faster than the target, thus the prediction is carried
out every nvel steps. At each time step, the update process iterates according to the observation zt.
Recent ATTmethods [36][15] represent target state distributions with continuous belief models (e.g. the
Gaussian distribution), by which only an observation including target j contributes to update its belief
(e.g. through a Kalman filter). However, in our formulation, an observation confirming non-occupancy
by targets also collects valid information for updating B(yj(t)).

We use the entropy to capture the uncertainty of {p(Qk,t = 1)}k=1,...,N and Bt. With the assumption
that target states are independent from each other:

H(Qt,Bt) = H(Qt) +H(Bt) (3.8)

Where

H(Qt) =

N∑
k=1

H(Qk,t) (3.9)

H(Bt) =

M∑
j=1

H(B(yj(t))) (3.10)

H(Qk,t) =

{
0 if Ok,t = 1

g(H(Qk,t−1)) otherwise (3.11)

Where g(H(Qk,t−1)) is the dynamics of H(Qk,t−1).
An explicit advantage of graphs is that information can be propagated between neighbor nodes.

As is mentioned in section 1.2, one challenge when searching for dynamic targets is that targets can
move to previously observed areas. Thus the uncertainty of unobserved nodes is able to flow to their
neighbor observed ones. On the other hand, the uncertainty of nodes with higher entropy should not
decrease since no additional information is obtained. Hence, this kind of entropy diffusion mechanism
is supposed to be unidirectional and the entropy can only propagate from higher values toward lower

10

values. More intuitively, the entropy of unobserved nodes will not get reduced if their adjacent nodes
have lower entropy while nodes get income entropy if their neighbors have lower ones.

Inspired by the 2D heat diffusion equation [28], g(H(Qk,t)) is modeled as following:

dHk,t

dt
= C

∑
b

Akb(Hb,t −Hk,t)

= C(
∑
b

AkbHb,t −
∑
b

AkbHk,t)

= C(
∑
b

AkbHb,t − dkHk,t)

(3.12)

Where Hk,t is short for H(Qk.,t), C is the diffusion coefficient that is related to the estimated target
speed and we assume is given as prior, Akb is the edge weight between node k and b in the adjacency
matrix A. In our model, Akb is computed by the reciprocal of the distance between node k and b.

Given that

dkHk,t =
∑
b

δkbdbHb,t (3.13)

Then we have:

dHk,t

dt
= C

∑
b

(Akb − δkbdb)Hb,t

= −C
∑
b

LkbHb

(3.14)

Where L = D− A is the graph Laplacian matrix, D is the degree matrix of the graph. Therefore:

Hk,t+1 = Hk,t − C∆t
∑
b

LkbHb,t (3.15)

To model the unidirectional diffusion process from higher entropy to lower one, we have:

g(Hk,t) = Hk,t + dHk,t (3.16)

dHk,t := max

{
0,−C∆t

∑
b

LkbHb,t

}
(3.17)

Where Hk,0 is initialized as 1 for all node k.
Based on the formulations above, the objective function is defined here:

max
u0:t−1

F∑
t=1

I(Qt,Bt; zt|z0:t−1) (3.18)

s.t. xt = sr(xt−1,ut−1) (3.19)
yj,t = st(yj,t−1) (3.20)
zt = h(xt, yt) (3.21)

Where sr(·) and st(·) are the dynamics of the robot and targets respectively, N is the number of
nodes in the graph, I(·) represents the mutual information.

The mutual information between (Qt,Bt) and observation zt is the reduction of the conditional en-
tropy in (Qt,Bt) by zt:

I(Qt,Bt; zt|z0:t−1) = H(Qt,Bt|z0:t−1)−H(Qt,Bt|zt, z0:t−1) (3.22)

4
Methodology

In the previous chapter, we propose a graph formulation of the search and tracking problem. In this
way, the search and tracking objective is modeled nodewise in the lattice graph. From now on, we
solve the search and tracking problem based on a graph with encoded information. In this chapter,
we first provide the structure of our proposed solution pipeline, including the graph representation for
the SAT task and the architecture of the GNN-based policy. Then the training setup of our method is
introduced.

4.1. Proposed solution
Figure 4.1 displays the general structure of our solution for a single target scenario. At time t, the robot
gets an action at from the policy, and after executing it, the states of the robot and the target evolve to
xt+1&yt+1. With the new observation zt+1, the graph observation is updated to Gt+1 and sent to the
GNN-RL agent, then the whole process iterates. In the following sections, the graph observation and
the policy structure are discussed in detail.

Figure 4.1: Solution structure

4.1.1. Graph representation for search and tracking
To solve this task, We construct a graph representation that the robot, targets, and all waypoints are
included as part of a computation graph. The robot is considered a node and its action space is discrete:
it chooses one nearby waypoint to move towards.

11

4.1. Proposed solution 12

Besides, inspired by the hierarchical graph structure [32], we use a different approach to make the
robot reason about information from distant nodes instead of stacking many (e.g. up to 15) GNN layers
as the work from Ekaterina et al. [41]. As is shown in Figure 4.2, we add an abstract node outside the
spatial graph and construct a two-layer hierarchy graph representation.

Figure 4.2: Hierarchy graph representation

The abstract node is connected to every node in the free space. Compared with the limited receptive
field in the single-layer graph (shown in Figure 4.2, the robot now can get information from any place
node, even the one in the diagonal corner. Although we do not utilize semantic information in this
research, it can be regarded as working in a single room described by [32]. Each node vi ∈ V is
assigned a six-dimensional feature vector vti:

vti = {1r,H(Qi,t), ξk(Bt), 1a, di,x, di,y} (4.1)

Where 1r&1a are binary variables with 1 indicating node i is occupied with the robot and is the
abstract node respectively, di,x&di,y captures the position of node i relative to the robot node, ξk(Bt) is
a feature to score the information about target belief:

ξk(Bt) =

M∑
j=1

H(B(yj,t))1(pj,k(t)) (4.2)

1(pj,k(t)) =
{
1 pj,k(t) > 0
0 otherwise (4.3)

In our work, a square lattice is used, which means the distance between adjacent nodes is equal.
Hence we do not consider the effect of edge features and edge weights.

4.1.2. Policy architecture
In this part, we present the architecture of the GNN-RL agent in Figure 4.1. The graph observation is
first passed through the GNN model. Since we compute on a large graph with hundreds of nodes, it is
challenging to capture minor node-wise feature changes like distinguishing a few different words in two
almost identical articles. Therefore, instead of generating embeddings of the whole graph, we extract
learned features from neighboring nodes of the robot (in our square lattice case there are maximum
4 neighboring nodes) and send them to a fully connected layer (FC) to get logits of different actions
[L1, L2, L3, L4]. Then with a softmax function, the distribution of the discrete action space is derived.

Here we use the same policy network to evaluate each neighboring node individually. This is be-
cause the action space in our work is exactly the edges in the graph, hence the node with more valuable
features would be preferred and get a higher score. Compared with the other way that evaluates all
neighboring node features at the same time, our structure frees the burden to learn the mapping be-
tween node features and geometric movements.

Our GNN model structure is visualized in Figure 4.3. We name nodes in the first layer of the hier-
archy graph as place nodes Vp = {vp}, the 1-hop neighboring nodes of the robot node as neighbor

4.2. Training setup 13

nodes Vn = {vn|vn ∈ Nr}, and the abstract node as va. There are three kinds of edges in our graph
model: Ep1p2

= {ep1,p2
|vp1

, vp2
∈ Vp}, Ena = {en,a|vn ∈ Vn}, and Epa = {ep,a|vp ∈ Vp}. It is intuitive that

the first one is bi-directional while the latter two ones are uni-directional. In GNN, the message-passing
mechanism is based on edges between nodes. We applied different propagation operators for different
edges. For the first one, we apply the graph convolution network (GCN) operator [16] :

Vl
p = D̂−1/2ÂD̂−1/2Vl−1

p Wl−1
p (4.4)

Where Vl
p is the feature vector of all place nodes at layer l, Â = A+ I denotes the adjacency matrix

with inserted self-loops and D̂ is its diagonal degree matrix, W is the learned transformation. For the
latter two kinds of message passing, we apply the graph attention network operator (GATv2) [43]:

vla =
∑
q∈Na

αa,qvl−1
q Wl−1

a (4.5)

αa,q = softmax(aTLeakyReLU(Wl−1
a [va||vq])) (4.6)

Where we have Na = Vn for layer 1 and layer 2, and Na = Vp for layer 3. Then each place node
feature vector is concatenated with the abstract node feature vector and through a fully connected
layer we get the final features for neighbor feature selection block in Figure 4.1. The general idea of
this structure is that we first learn the embedding of local information nearby the robot. Then a global
embedding of the entire environment is learned to extract valuable information from distant nodes
conditioned on the local embedding.

Figure 4.3: GNN model structure

The reward function is defined by the entropy reduction of the environment as Equation 3.18:

rt = wsearch(H(Qt)−H(Qt−1)) + wtrack(H(Bt)−H(Bt−1)) (4.7)

Where wsearch and wtrack are the weights that scale each term. In this way, we can change the
tendency of the robot to prioritize one of the two parts.

4.2. Training setup
4.2.1. Applied tasks
We applied our framework to three tasks:

• The pure search task

• The pure tracking task

• The search and track task

In the pure search task, it is given that there are an unknown number of dynamic targets in the
environment and the diffusion coefficient C is given as a prior according to the estimation of target
speed. In this scenario, the robot needs to reduce the entropy of undiscovered dynamic targets in the
environment (i.e.

∑N
k=1 H(Qk,t)).

4.2. Training setup 14

In the pure tracking task, the initial position of each target is given as prior. Since the speed of
the robot is faster than the target, it is achievable for the robot to track multiple targets. The objective
of the robot is to keep track of discovered targets and reduce the entropy of their distribution in the
environment.

Finally, for the SAT task, there is no prior about the number of targets in the environment or infor-
mation about their positions. Prior about C is still assumed to be given. In this scenario, the robot is
required to both explore the environment to find targets and observe discovered targets to track them.

4.2.2. Training conditions
Our policy is trained in a closed environment of 80×80m2 with the resolution of the graph representation
as 5.5m (i.e. a 15×15 square lattice). We consider the sensor on the robot to be omnidirectional with a
sensing range of 8m. The target follows a random walk model in chapter 3. The training is performed
in randomly generated environments with cluttered obstacles as depicted in Figure 4.4 with the robot
initialized at a random node in the graph. For the search task, considering the diffusion of entropy
brings punishments (i.e. negative rewards) to the robot at the beginning stage, we randomly initialized
the environment as either a sparse entropy source scenario (ρ = 0.05) or a dense entropy source
scenario (ρ = 1). For the tracking task, the environment contains a random number between one to
six targets, and the initial target positions are known to the robot. For the SAT task, we combine the
conditions of the previous two tasks.

Figure 4.4: Examples of the random environments used in training

For the search task, the robot has a maximum of 800 steps to explore the environment. The episode
is finished after reaching the timeout or the maximum entropy of a node is lower than a threshold
(Hterm = 0.1) in our setting). For the tracking task, the robot keeps tracking discovered targets for 250
steps in each episode. For the SAT task, the robot performs the task for 800 steps in each episode.
Values for the reward weights are wsearch = wtrack = 1.

4.2.3. Training algorhtim
The policy is trained with DRL using Proximal Policy Optimization (PPO) algorithm [37] implemented by
the RLlib framework [24]. PPO is an Actor-Critic method [18], where an actor (i.e. the policy) πθ(at|Gt)
parameterized by θ predicts the action distribution at given the observation Gt and the critic V π

ϕ (Gt)
parameterized by ϕ gives an estimate of the expected return based on Gt. The hyperparameters for
training the PPO algorithm are shown in Table 4.1.

The policy and value functions are trained for 3e6 steps using an Intel i7-10875H CPU@2.30GHz
computer. Based on this hardware setup, it takes less than 7ms to compute the policy action per time
step.

4.2. Training setup 15

Table 4.1: Hyperparameters for PPO training

Parameter Value
Lambda λ 0.95
Gamma γ 0.99

Learning rate 2e-4
Value function loss coeff. 0.5

PPO Clip param. 0.2
KL coeff. 0.2
KL target 0.01

Entropy loss coeff. 0.01
Time steps per update 8000
SGD minibatch size 128

Numer of epoch per update 30

5
Experiments and results

In this chapter, we first introduce the baselines to compare with in section 5.1, the test conditions, and
the criteria to evaluate the performance in section 4.2.1. Then the results from different experiments
are analyzed including the pure dynamic target search task in section 5.3, the pure tracking task in sec-
tion 5.4, and the search and tracking task in section 5.5. Finally, the effect of different graph structures
and the trade-off of search and tracking are discussed in section 5.6

5.1. Baselines
In this section, we introduce several baselines we use for comparison: two next-best-viewpoint base-
lines, a GNN baseline inspired by the hierarchical graph structure from [32], and an ablation of our
method.

5.1.1. Next-best-view baseline
For the next-best-view (NBV) baseline, we build an egocentric subgraph of the robot Gs,t without con-
sidering the abstract node. This is constructed by the m-hop receptive field of the robot node. In our
implementation, we have m = 3 shown in Figure 5.1. Then we apply the same entropy diffusion dy-
namics of the environment to Gs,t and domp-step prediction. In our experiments, we have two baseline
settings with mp = 1 and mp = 3 (the same receptive field as our method) respectively. After that, the
candidate with the highest total information gain of search and tracking (i.e. rt) is selected as the ac-
tion. If there are multiple candidates having the same gain, the action is randomly sampled from them.
These methods are qualified since they are exposed to the true entropy diffusion dynamics without
noise.

Figure 5.1: Egocentric subgraph of the robot

16

5.2. Test conditions and evaluation metrics 17

5.1.2. GNN baseline
The first GNN baseline we have is adapted from [32]. In that work, a hierarchical graph representation
of the environment is built through 3D scene graphs. Recalling our hierarchy graph representation in
Figure 4.2, there are multiple types of edges: connecting place nodes and connecting one place node
with the abstract node. Compared with our method, all edges in [32] are modeled homogeneously
bi-directional, and a three-layer GCN is directly applied as the GNN model in Figure 4.3.

Another GNN baseline is an ablation of our method. The local GATv2 operator of layer 1 and layer 2
shown in Figure 4.3 are removed and the global GAT of layer 3 is reserved. This means the query vector
va used to compute the attention coefficient in equation (4.6) is always the same and unconditioned on
the local information, which results in a static attention [5]. The GCN and the static attention baselines
are trained with the same hyperparameter setting and scenarios as our method.

5.2. Test conditions and evaluation metrics
At test time, the pipeline proposed in chapter 4 is used. The targets follow random walk dynamics as
described in chapter 3. The diffusion coefficient is set asC = 0.7 and the velocity gap between the robot
and the target is set as nvel = 8. Each learning method is trained with 3 different seeds. The results of
all seeds are averaged and their standard deviations are computed. For every test, we evaluate and
average the results over 50 episodes with random initial conditions. The same initial conditions of each
episode are maintained over all methods.

Multiple performance indicators are used to evaluate each method and are listed below. Not all
metrics are used in each scenario, relevant ones will be discussed for each result.

• Entropy decrease rate over time

• Percentage of targets discovered over time

• Number of nodes to achieve 95% confidence

• Normalized sum of target belief entropy over time [15]

The entropy decrease rate is computed by the ratio between the entropy reduction and the initial
entropy of the entire environment. For environments with different numbers of nodes, this measures
the ability of target search oriented information gathering uniformly. To evaluate the target tracking
performance at the end of each episode, we first compute the minimum number of candidate nodes to
achieve 95% confidence of each target belief. Then we count the percentage of targets with candidates
within thresholds. Here we refer to three values {4, 8, 15}, which correspond to tracked, not lost, and
almost lost tracking performance respectively. If the minimum number of candidates is larger than
15, we then evaluate it as a lost target. The percentage of discovered targets is used to evaluate the
efficiency of target search during the search and tracking task. The normalized sum of target belief
entropy is inspired from the normalized sum of the log of determinant of covariance [15] and defined
as:

J̄ =
Jmax −

∑F
t=1

∑M
j=1 H(B(yj(t)))

Jmax − Jmin
∈ [0, 1] (5.1)

Where the upper bound Jmax is obtained when there is no observation of any targets in an episode,
and the lower bound Jmin is met when every target is observed at each step (i.e. Jmin = 0). Jmax is
computed by:

Jmax =

M∑
j=1

Np∑
np=1

nvelH(B(yj(0))(I + L̂)np) (5.2)

Where Np is the number of prediction steps in an episode.

5.3. Pure search task 18

5.3. Pure search task
5.3.1. Capability to generalize to different graph structures
In realistic scenarios, the robot can be deployed in environments with different maps, and it is impossible
to train the policy with all of them. Therefore, we first have an analysis of the capability of the learned
policy to generalize to different graph structures. To do this, we do tests in environments with/without
random cluttered obstacles as shown in figure 5.2. Same as the training stage, the robot has 800 steps
to search in the environment with potential dynamic targets.

(a) Empty environment (b) Cluttered environment

Figure 5.2: Examples of test environments

Figure 5.3 compares the entropy decrease rate of the search process in the two kinds of envi-
ronments. For each method, the mean and standard deviation of the results are plotted. In the empty
environment, the GCN baseline and our method decrease higher entropy than other methods till around
350 steps, then the GCN baseline curve converges and gets passed by the two NBV baselines. The
NBV baseline with mp = 3 catches up with our method at around 500 steps. Since the entropy de-
crease rate at 500 steps is already higher than 95%, it shows that in most time of the search task in an
empty environment, our method outperforms the others. In the cluttered environment, in general, our
method achieves a higher entropy decrease rate than the others most of the time. Hence, it shows that
the policy is able to generalize to environments with different graph structures. In both tests, the NBV
baseline with a larger prediction horizon results in a better performance as expected.

(a) Empty environment (b) Cluttered environment

Figure 5.3: Entropy decrease rate of search process over time in the same size of environments as training stage

5.3.2. Scalability analysis
Apart from different obstacles, the robot also needs to handle different scales of maps. To verify whether
the learned behavior applies to different sizes of environments, we do tests in two kinds of environ-

5.3. Pure search task 19

ments:

• Small scale environments constructed by an 11 × 11 lattice with half amount of nodes than the
training environment

• Large scale environments constructed by a 21× 21 lattice with double amount of nodes than the
training environment

For each of them, we evaluate the performance in both empty and cluttered environments like in
the previous section. In the small-scale environments, the robot has 200 steps for each episode whilst
for the large-scale ones it has 2000 steps each.

(a) Empty environment (b) Cluttered environment

Figure 5.4: Entropy decrease rate of search process over time in small-scale environments

Figure 5.4 compares the entropy decrease rate over time in small-scale environments. In the empty
environment, the GCN baseline and our method outperform the other methods. In the cluttered envi-
ronment, our method decreases the entropy in the environment quicker than any other baseline. The
performance gap between the two NBV baselines is more explicit when the entropy decrease rate is
higher than 80%. This means when there are few nodes with high entropy in the environment, a longer
horizon helps the robot to find a better solution as expected.

(a) Empty environment (b) Cluttered environment

Figure 5.5: Entropy decrease rate of search process over time in large-scale environments

Figure 5.5 compares the entropy decrease rate over time in large-scale environments. In the empty
environment, the GCN baseline starts with a better performance till 800 steps and then fails to de-
crease more entropy in the environment afterward. Our method only performs better than the two NBV

5.4. Pure tracking task 20

baselines at the first 350 steps, then it gets surpassed and never catches up with them throughout the
process. In the cluttered environment, the GCN baseline faces a similar bottleneck and our method
performs better than the two NBV baselines till around 1300 steps when the entropy decrease rate is
already over 95%. This suggests that the policy is able to generalize to different scales of cluttered
environments but is not scalable to larger empty environments.

5.4. Pure tracking task
5.4.1. Two target domains
In chapter 3, the robot is formulated to have an obvious velocity advantage over the targets. Therefore
it is possible for the robot to continuously gather information about multiple targets by traveling among
them. Nevertheless, if targets are too distant from each other, keeping tracking nearby targets can bring
more information gain than trying to observe all targets. Hence, we first evaluate the performance in
two-target environments. In both empty and cluttered environments, we evaluate each method over 50
episodes and compute the average relative distance between the two targets throughout each episode.

(a) Empty environment (b) Cluttered environment

Figure 5.6: Relationship between J̄ and target relative distance

Figure 5.6 shows the relationship between the relative target distance and the normalized sum of
target entropy J̄ . As is expected, the tracking performance decreases as the average distance between
the two targets increases. When the two targets are relatively close to each other (i.e. the average
distance between them is shorter than 5 grids), the performance of the NBV baseline with mp = 3 is
slightly better than our method. However, when the targets scatter more sparsely in the environment,
the performance of the NBV baseline drops quicker than our method. This suggests that our method
can reason about distant information to improve the tracking performance.

5.4.2. Scalability analysis
As is shown in the previous section, the relative distance between targets has an explicit effect on the
tracking performance. On the other hand, the number of targets is also a key factor. We evaluate each
method in both kinds of environments with up to 20 targets to test their scalability to a larger number of
targets than the training process.

In Figure 5.7, we report each method’s J̄ performance in both kinds of environments with different
numbers of targets. As is expected, there is a drop in the tracking performance when the quantity of
targets increases. It is worth noting that the drop is getting slower with a larger target quantity. One
reason is that as there are more targets in the environment, the robot can get more information due to
a denser target distribution and does not have to waste time traversing among distant targets. When
there are multiple targets in the environment, our method consistently outperforms all other baselines.

Figure 5.8 shows the percentage of 20 targets with candidates within thresholds in the environment.
In both kinds of environments, our method outperforms the other methods by maintaining more tracked
targets within each threshold. In the empty environment, the baselinemethods perform similarly to each
other while in the cluttered environment, the NBV baseline with mp = 3 is the second best method.

5.4. Pure tracking task 21

(a) Empty environment (b) Cluttered environment

Figure 5.7: Experiments with different numbers of targets in the environment

(a) Empty environment (b) Cluttered environment

Figure 5.8: Percentage of 20 targets with candidates within thresholds

5.5. Search and tracking task 22

5.5. Search and tracking task
5.5.1. Small-scale environments
We first evaluate the SAT performance of each method in the small-scale environments used in sec-
tion 5.3.2 with up to 20 targets.

(a) Empty environment (b) Cluttered environment

Figure 5.9: Experiments with different numbers of targets in the small-scale environment

Figure 5.9 shows the J̄ performance of each method in both kinds of environments with different
numbers of targets. The NBV baseline with mp = 3 achieves a better tracking performance than our
method when the number of targets does not exceed 15. It is worth noting that the NBV baseline with
mp = 1, the static attention baseline, and the GCN baseline all have a performance that first grows
and then slowly declines. The difference in this metric can be attributed to two possible reasons. One
is that the earlier detection of more targets increases the difficulty of target tracking. As is reported
in section 5.4.2, the increasing number of targets explicitly results in a drop of J̄ when the number
of targets does not exceed 10. The other reason is that the method prioritizes the search part over
the tracking part. To further verify the speculations above, we compare the behavior of all methods in
environments with 5 and 20 targets respectively as follows.

(a) Empty environment (b) Cluttered environment

Figure 5.10: Percentage of discovered targets over time with 5 targets in small-scale environments

Figure 5.10 compares the percentage of discovered targets over time with 5 targets in the environ-
ment, which quantify the search performance. In the empty environment, our method outperforms all
baselines in general. In the cluttered environment, the NBV baseline withmp = 3 discovers the targets
as fast as our method at first but it takes a longer time to discover all targets. Hence, it is obtained that
our method performs better than the others for the search part.

5.5. Search and tracking task 23

(a) Empty environment (b) Cluttered environment

Figure 5.11: Percentage of 5 targets with candidates within thresholds in small-scale environments

Figure 5.11 compares the target tracking performance at the end of each episode. It shows that our
method does not perform well in both kinds of environments. This confirms our previous speculations
that our method does discover targets quicker than other baselines but the main reason for the second
best J̄ in Figure 5.9 is that our method weights more on searching for undiscovered targets than tracking
discovered ones when there are 5 targets in the environment.

(a) Empty environment (b) Cluttered environment

Figure 5.12: Percentage of discovered targets over time with 20 targets in small-scale environments

Figure 5.12 compares the search performance through the percentage of discovered targets out
of 20. In general, similar to the scenario with 5 targets, our method outperforms the others in both
environments in terms of target search.

Figure 5.13 reports the target tracking performance of each method at the end of the episode. In
the empty environment, our method performs similarly to NBV methods. The GCN baseline achieves
the most tracked targets but according to Figure 5.12, it sacrifices to discover all targets and focuses
on several discovered ones. In the cluttered environment, the NBV baseline with mp = 3 and our
method are the top two methods for target tracking without explicit gaps. Based on the results above,
it is obtained that when there are a large number of targets in small-scale environments, our approach
achieves a better search performance while maintaining the tracking performance, especially in the
cluttered environment. This indicates that our method is not trapped by discovered targets to give up
searching for more undiscovered ones.

5.5. Search and tracking task 24

(a) Empty environment (b) Cluttered environment

Figure 5.13: Percentage of 20 targets with candidates within thresholds in small-scale environments

5.5.2. Medium-scale environments
We then present the results in larger environments used in section 5.3.1 with up to 20 targets. Fig-
ure 5.14 compares the J̄ performance of each method in the medium-scale environment with different
numbers of targets. When there are more than 5 targets in the environment, the performance of all the
other methods is close except for the GCN baseline.

(a) Empty environment (b) Cluttered environment

Figure 5.14: Experiments with different numbers of targets in the medium-scale environments

To analyze the search and tracking performance further, we compare the search performance in the
environments with 20 targets in Figure 5.15 whilst the tracking performance at the end of each episode
in Figure 5.16. According to the results, our method outperforms other baselines in searching for
undiscovered targets while sacrificing the target tracking performance. This indicates that in medium-
scale environments, our approach prioritizes target search over target tracking.

5.5.3. Large-scale environments
We further increase the number of nodes in the graph and do tests in large-scale environments used
in section 5.3.2 with 20 targets.

As is shown in Figure 5.17, our method keeps the advantage of searching for undiscovered targets
quicker than other baselines. Compared with its performance in small and medium-scale environments,
the static attention baseline no longer outperforms the NBV methods. According to the tracking perfor-
mance at the end of each episode in Figure 5.18, all the other methods perform similarly except the
GCN baseline. This is because the GCN approach fails to discover all the targets as in Figure 5.17,

5.5. Search and tracking task 25

(a) Empty environment (b) Cluttered environment

Figure 5.15: Percentage of discovered targets over time with 20 targets in medium-scale environments

(a) Empty environment (b) Cluttered environment

Figure 5.16: Percentage of 20 targets with candidates within thresholds in medium-scale environments

(a) Empty environment (b) Cluttered environment

Figure 5.17: Percentage of discovered targets over time with 20 targets in large-scale environments

5.6. Discussion 26

thus the difficulty of target tracking decreases. According to Table 5.1, there is no explicit performance
gap among different methods especially in cluttered environments. Consequentially, under equal per-
formance in target tracking, our method achieves a better trade-off in terms of target search.

(a) Empty environment (b) Cluttered environment

Figure 5.18: Percentage of 20 targets with candidates within thresholds in large-scale environments

Table 5.1: Target tracking performance throughout the episode in large-scale environments with 20 targets

Normalized sum of target belief entropy J̄ (mean/std)↑
Env. Type Empty Cluttered

NBV (mp = 1) 0.435/0.004 0.445/0.001
NBV (mp = 3) 0.453/0.002 0.449/0.001
GCN baseline 0.447/0.007 0.431/0.032
Static attention 0.440/0.029 0.430/0.003
Our method 0.416/0.007 0.443/0.003

5.6. Discussion
5.6.1. The effect of the heterogeneous graph structure
According to the results in the preceding sections, the GCN baseline gets unsatisfactory performances
across most tasks. The primary divergence between the GCN baseline and our method is the manner
in which the hierarchy graph representation is modeled. Specifically, the GCN baseline adopts a ho-
mogeneous style in modeling the edges that connect place nodes and the abstract node, treating them
as the same type. Due to the permutation invariance of the graph, any two place nodes in the homoge-
neous hierarchy graph are 2-hop neighbors through the abstract node. Consequentially, this approach
disrupts the spatial topological structure of the lattice graph representation shown in Figure 3.1. This
means that information from nearby place nodes and distant places nodes are aggregated in the same
way. When evaluating the behavior of the GCN baseline policy, we observe that the robot often gets
trapped at the border of the environment, which reflects that it misses the structural information of the
graph and can not do reasoning properly.

On the other hand, our method uses a heterogeneous graph structure to represent the two types of
edges. In this way, the spatial topology of the original graph is reserved and the edges connected to
the abstract node are used only to aggregate global information according to the local information.

5.6.2. The adjustable trade-off of search and tracking
According to experiment results in section 5.5, as the size of the environments increases, our method
prioritizes target search over target tracking. Recalling the reward function in equation (4.7), csearch
and ctrack scale the search part and the tracking part of the total reward. This means their priority can
be tuned by different weights. To verify this, we compare the policy trained by different weights with the

5.6. Discussion 27

best baseline, the NBV baseline with mp = 3, and its tuned variant to prioritize target search. We test
all methods in medium-scale environments with 20 targets.

(a) Empty environment (b) Cluttered environment

Figure 5.19: Percentage of discovered targets over time with 20 targets in medium-scale environments

Figure 5.19 compares the search performance of each method. The NBV variant performs as well
as our method while the policy emphasizes tracking is attracted by discovered targets and sacrifices
the target search efficiency.

(a) Empty environment (b) Cluttered environment

Figure 5.20: Percentage of 20 targets with candidates within thresholds in medium-scale environments

Figure 5.20 presents the tracking performance at the end of each episode. It shows that there
are small differences between our method and its variant. This is understandable that after most of
the environment has been explored, the robot is doing pure tracking. In this scenario, both policies
are supposed to perform the same. It is also noteworthy that the amount of lost targets by the NBV
variant is larger than our method, especially in the empty environment. When comparing the target
tracking performance throughout the episode in Table 5.2, our method outperforms the NBV variant in
terms of continual tracking, and the variant of our method has an obvious advantage over others. This
proves that our method achieves a better trade-off in search and tracking under equally good search
performance, and the trade-off between search and tracking can be adapted through different weights
on them.

5.6. Discussion 28

Table 5.2: Target tracking performance throughout the episode in medium-scale environments with 20 targets

Normalized sum of target belief entropy J̄ (mean/std)↑
Env. Type Empty Cluttered

NBV (mp = 3) 0.504/0.002 0.517/0.002
NBV (mp = 3) search prioritized 0.425/0.001 0.445/0.001

csearch = ctrack = 1 0.495/0.009 0.503/0.006
csearch = 0.5, ctrack = 3 0.546/0.005 0.585/0.007

6
Conclusions and future work

6.1. Conclusions
In this work, we introduce a framework for the search and tracking of an unknown number of dynamic
targets with a graph representation. A novel graph formulation of the search and tracking problem
is proposed and our framework learns a policy that outputs discrete viewpoint actions through Deep
Reinforcement Learning using a GNN architecture. The effect of undiscovered dynamic targets is
modeled by an entropy diffusion mechanism, and the tracking of discovered targets is converted to
decrease the entropy of target belief distribution. Then the information is encoded into the observation
graph and processed by the policy.

Under this framework, we demonstrate that the robot learns the pure search, pure tracking, as well
as the search and tracking task. Our work could release the assumptions used by previous methods
that the targets are static during the search process and the initial target positions are given as prior.
The results of the experiments have shown that our policy outperforms multiple baselines, is able to
generalize to different types of environments (with or without cluttered obstacles), and scales to envi-
ronments with more than double the amount of targets during the training. Due to the design of the
reward function, the priority of the search part and the tracking part can be adjusted through different
weights for scenarios with different emphases.

6.2. Limitations and future work
There are also some limitations of this work. According to the experiment results of the pure search
task, our policy does not scale well to all kinds of large-size environments. Besides, in this work, we
generate the graph representation of the environment by a square lattice, which can be extended to
other probabilistic roadmap methods (PRM).

As is introduced in Chapter 3, we assume the targets follow the discrete random walk dynamics.
The velocity gap between the target and the robot is modeled by different state update frequencies.
However, this does not reflect the ground truth in realistic conditions. Besides, the random walk model
is difficult to track since the target can move in any direction. In the future, other types of dynamics can
be applied.

In our experiments, we proved that the trade-off of search and tracking can be adjusted by different
weights of the two parts. So far what we do is to set the priority of the robot beforehand according to
the reward function and make the robot decide the switch between target search and target tracking.
In the future, the priority of the robot can be conditioned on historical observations and self-adaptive.

Last but not least, according to the experiment results, it takes the robot much more time to search
over a larger environment and there is a limit to the number of targets one robot can track. In the future,
multiple robots could be deployed for better search and tracking performance.

29

References
[1] Iro Armeni et al. “3d scene graph: A structure for unified semantics, 3d space, and camera”. In:

Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019, pp. 5664–
5673.

[2] Nikolay Atanasov et al. “Information acquisition with sensing robots: Algorithms and error bounds”.
In: 2014 IEEE International conference on robotics and automation (ICRA). IEEE. 2014, pp. 6447–
6454.

[3] Rik Bähnemann et al. “Revisiting boustrophedon coverage path planning as a generalized trav-
eling salesman problem”. In: Field and Service Robotics: Results of the 12th International Con-
ference. Springer. 2021, pp. 277–290.

[4] Ruzena Bajcsy, Yiannis Aloimonos, and John K Tsotsos. “Revisiting active perception”. In: Au-
tonomous Robots 42.2 (2018), pp. 177–196.

[5] Shaked Brody, Uri Alon, and Eran Yahav. “How attentive are graph attention networks?” In: In-
ternational Conference on Learning Representations. 2022.

[6] Jennifer Casper and Robin R. Murphy. “Human-robot interactions during the robot-assisted urban
search and rescue response at the world trade center”. In: IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics) 33.3 (2003), pp. 367–385.

[7] Mihir Dharmadhikari et al. “Motion primitives-based path planning for fast and agile exploration
using aerial robots”. In: 2020 IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2020, pp. 179–185.

[8] Alberto Dionigi et al. “E-VAT: An Asymmetric End-to-End Approach to Visual Active Exploration
and Tracking”. In: IEEE Robotics and Automation Letters 7.2 (2022), pp. 4259–4266.

[9] Arnaud Doucet et al. “Particle filtering for multi-target tracking and sensor management”. In: Pro-
ceedings of the Fifth International Conference on Information Fusion. FUSION 2002.(IEEE Cat.
No. 02EX5997). Vol. 1. IEEE. 2002, pp. 474–481.

[10] Alex Goldhoorn et al. “Searching and tracking people with cooperative mobile robots”. In: Au-
tonomous Robots 42.4 (2018), pp. 739–759.

[11] Héctor H González-Banos and Jean-Claude Latombe. “Navigation strategies for exploring indoor
environments”. In: The International Journal of Robotics Research 21.10-11 (2002), pp. 829–848.

[12] Jonathan P How et al. “Increasing autonomy of UAVs”. In: IEEE Robotics & Automation Magazine
16.2 (2009), pp. 43–51.

[13] Christopher D Hsu et al. “Scalable Reinforcement Learning Policies for Multi-Agent Control”. In:
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2021,
pp. 4785–4791.

[14] Julius Ibenthal et al. “Target search and tracking using a fleet of UAVs in presence of decoys and
obstacles”. In: 2020 59th IEEE Conference on Decision and Control (CDC). IEEE. 2020, pp. 188–
194.

[15] Heejin Jeong et al. “Deep Reinforcement Learning for Active Target Tracking”. In: 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE. 2021, pp. 1825–1831.

[16] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph convolutional net-
works”. In: arXiv preprint arXiv:1609.02907 (2016).

[17] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

[18] Vijay Konda and John Tsitsiklis. “Actor-critic algorithms”. In: Advances in neural information pro-
cessing systems 12 (1999).

30

References 31

[19] Dexter Kozen and Marc Timme. “Indefinite summation and the Kronecker delta”. In: (2007).
[20] ChristopherMKreucher.An information-based approach to sensor resource allocation. University

of Michigan, 2005.
[21] Miroslav Kulich, Juan JoséMiranda-Bront, and Libor Přeučil. “Ameta-heuristic based goal-selection

strategy for mobile robot search in an unknown environment”. In: Computers & Operations Re-
search 84 (2017), pp. 178–187.

[22] Miroslav Kulich, Libor Přeućil, and Juan José Miranda Bront. “Single robot search for a stationary
object in an unknown environment”. In: 2014 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2014, pp. 5830–5835.

[23] Xianfeng Li et al. “Profit-driven adaptive moving targets search with UAV swarms”. In: Sensors
19.7 (2019), p. 1545.

[24] Eric Liang et al. “RLlib: Abstractions for distributed reinforcement learning”. In: International Con-
ference on Machine Learning. PMLR. 2018, pp. 3053–3062.

[25] Chang Liu and J Karl Hedrick. “Model predictive control-based target search and tracking using
autonomous mobile robot with limited sensing domain”. In: 2017 American Control Conference
(ACC). IEEE. 2017, pp. 2937–2942.

[26] Max Lodel et al. “Where to look next: Learning viewpoint recommendations for informative tra-
jectory planning”. In: 2022 International Conference on Robotics and Automation (ICRA). IEEE.
2022, pp. 4466–4472.

[27] Yi Lu et al. “MGRL: Graph neural network based inference in aMarkov network with reinforcement
learning for visual navigation”. In: Neurocomputing 421 (2021), pp. 140–150.

[28] A v Luikov. Analytical heat diffusion theory. Elsevier, 2012.
[29] Yifei Ma, Roman Garnett, and Jeff Schneider. “Active search for sparse signals with region sens-

ing”. In: Thirty-First AAAI Conference on Artificial Intelligence. 2017.
[30] Farzad Niroui et al. “Deep reinforcement learning robot for search and rescue applications: Explo-

ration in unknown cluttered environments”. In: IEEE Robotics and Automation Letters 4.2 (2019),
pp. 610–617.

[31] RyanRPitre, X Rong Li, andRDelbalzo. “UAV route planning for joint search and trackmissions—
An information-value approach”. In: IEEE Transactions on Aerospace and Electronic Systems
48.3 (2012), pp. 2551–2565.

[32] Zachary Ravichandran et al. “Hierarchical representations and explicit memory: Learning effec-
tive navigation policies on 3d scene graphs using graph neural networks”. In: 2022 International
Conference on Robotics and Automation (ICRA). IEEE. 2022, pp. 9272–9279.

[33] Allison Ryan and J Karl Hedrick. “Particle filter based information-theoretic active sensing”. In:
Robotics and Autonomous Systems 58.5 (2010), pp. 574–584.

[34] Alejandro Sarmiento, Rafael Murrieta-Cid, and Seth Hutchinson. “Amulti-robot strategy for rapidly
searching a polygonal environment”. In: Ibero-American Conference on Artificial Intelligence.
Springer. 2004, pp. 484–493.

[35] Brent Schlotfeldt, Nikolay Atanasov, and George J Pappas. “Maximum information bounds for
planning active sensing trajectories”. In: 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE. 2019, pp. 4913–4920.

[36] Brent Schlotfeldt et al. “Anytime planning for decentralized multirobot active information gather-
ing”. In: IEEE Robotics and Automation Letters 3.2 (2018), pp. 1025–1032.

[37] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint arXiv:1707.06347
(2017).

[38] Amarjeet Singh et al. “Efficient informative sensing using multiple robots”. In: Journal of Artificial
Intelligence Research 34 (2009), pp. 707–755.

[39] Andrew J Smith and Geoffrey A Hollinger. “Distributed inference-based multi-robot exploration”.
In: Autonomous Robots 42.8 (2018), pp. 1651–1668.

References 32

[40] Yoonchang Sung and Pratap Tokekar. “Algorithm for searching and tracking an unknown and
varying number of mobile targets using a limited fov sensor”. In: 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA). IEEE. 2017, pp. 6246–6252.

[41] Ekaterina Tolstaya et al. “Multi-robot coverage and exploration using spatial graph neural net-
works”. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE. 2021, pp. 8944–8950.

[42] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information processing
systems 30 (2017).

[43] Petar Veličković et al. “Graph attention networks”. In: International Conference on Learning Rep-
resentations.

[44] Peng Yan, Tao Jia, and Chengchao Bai. “Searching and tracking an unknown number of targets:
a learning-based method enhanced with maps merging”. In: Sensors 21.4 (2021), p. 1076.

[45] Chaoqi Yang et al. “Revisiting over-smoothing in deepGCNs”. In: arXiv preprint arXiv:2003.13663
(2020).

[46] Leonardo Zacchini, Alessandro Ridolfi, and Benedetto Allotta. “Receding-horizon sampling-based
sensor-driven coverage planning strategy for AUV seabed inspections”. In: 2020 IEEE/OES Au-
tonomous Underwater Vehicles Symposium (AUV). IEEE. 2020, pp. 1–6.

[47] Vinicius Zambaldi et al. “Relational deep reinforcement learning”. In: arXiv preprint arXiv:1806.01830
(2018).

[48] Delong Zhu et al. “Deep reinforcement learning supervised autonomous exploration in office
environments”. In: 2018 IEEE international conference on robotics and automation (ICRA). IEEE.
2018, pp. 7548–7555.

	Preface
	Abstract
	Introduction
	Motivation
	Research objective and contribution
	Thesis overview

	Related work
	Active perception for target search and tracking
	Active target search
	Active target tracking
	Search and tracking

	Reinforcement Learning with spatial graph representations

	Problem formulation
	Methodology
	Proposed solution
	Graph representation for search and tracking
	Policy architecture

	Training setup
	Applied tasks
	Training conditions
	Training algorhtim

	Experiments and results
	Baselines
	Next-best-view baseline
	GNN baseline

	Test conditions and evaluation metrics
	Pure search task
	Capability to generalize to different graph structures
	Scalability analysis

	Pure tracking task
	Two target domains
	Scalability analysis

	Search and tracking task
	Small-scale environments
	Medium-scale environments
	Large-scale environments

	Discussion
	The effect of the heterogeneous graph structure
	The adjustable trade-off of search and tracking

	Conclusions and future work
	Conclusions
	Limitations and future work

	References

