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A B S T R A C T   

Beach Surface Moisture (BSM) is a key attribute in the coastal investigations of land-atmospheric water and 
energy fluxes, groundwater resource budgets and coastal beach/dune development. In this study, an attempt has 
been made for the first time to estimate BSM from terrestrial LiDAR intensity data based on the Support Vector 
Regression (SVR). A long-range static terrestrial LiDAR (Riegl VZ-2000) was adopted to collect point cloud data 
of high spatiotemporal resolution on the Ostend-Mariakerke beach, Belgium. Based on the field moisture sam-
ples, SVR models were developed to retrieve BSM, using the backscattered intensity, scanning ranges and 
incidence angles as input features. The impacts of the training samples’ size and density on the predictive ac-
curacy and generalization capability of the SVR models were fully investigated based on simulated BSM-intensity 
samples. Additionally, we compared the performance of the SVR models for BSM estimation with the traditional 
Stepwise Regression (SR) method and the Artificial Neural Network (ANN). Results show that SVR could 
accurately retrieve the BSM from the backscattered intensity with high reproducibility (average test RMSE of 
0.71% ± 0.02% and R2 of 0.98% ± 0.002%). The Radial Basis Function (RBF) was the most suitable kernel for 
SVR model development in this study. The impacts of scanning geometry on the intensity could also be accu-
rately corrected in the process of estimating BSM by the SVR models. However, compared to the SR method, the 
predictive accuracy and generalization performance of SVR models were significantly dependent on the training 
samples’ coverage, size and distribution, suggesting the need for the training samples of uniform distribution and 
representativeness. The minimum size of training samples required for SVR model development was 54. Under 
this condition, SVR performed similarly to ANN with a test RMSE of 1.06%, but SVR still performed acceptably 
(with an RMSE of 1.83%) even using extremely few training samples (only 16 field samples of uniform distri-
bution), far better than the ANN (with an RMSE of 4.02%).   

1. Introduction 

Beach Surface Moisture (BSM) plays an important role in the coastal 
studies which investigate the land-atmospheric water and energy fluxes 
(McLachlan, 1989), biogeochemical cycling (Legates et al., 2011), 
groundwater resource budgets (Chen and Hu, 2004; Horn, 2002; Smit 
et al., 2019) and coastal beach/dune development (Davidson-Arnott 
et al., 2008; Schmutz and Namikas, 2018). Particularly, it is often cited 
as a key supply limiting factor for the aeolian sediment transport on the 

beach (Anthony et al., 2009; Cornelis and Gabriels, 2003; Darke and 
Neuman, 2008; Edwards and Namikas, 2015). However, BSM is highly 
variable in both time and space. Because it is not only affected by pre-
cipitation, evaporation, groundwater table, sediment size and porosity 
(similarly with the common surface soil moisture) but also by tidal and 
wave action (Atherton et al., 2001; Jin et al., 2020; Nield et al., 2011; 
Yang and Davidson-Arnott, 2005). This thus requires the BSM to be 
measured at a sufficient temporal (e.g., one-hour interval) and spatial (e. 
g., one meter) resolution in order to understand and quantify the aeolian 
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transport process in detail. 
Traditionally, BSM can be acquired through in situ measurements, 

mainly including the sample gravimetric method (Davidson-Arnott, 
2010; Nield et al., 2011; Wiggs et al., 2004), soil moisture probes (Bauer 
et al., 2009; Namikas et al., 2010; Schmutz and Namikas, 2011), 
handheld radiometer and spectroradiometer (Edwards et al., 2013a; 
Edwards et al., 2013b; Zhu et al., 2010), etc. However, these spot-based 
methods have limited meaning in measuring a substantial beach section 
due to the strong temporal and spatial variability of the BSM. The optical 
brightness method (with a ground-based video system) can estimate the 
large-area BSM at a high scanning frequency in a non-contact way 
(Darke et al., 2009; McKenna Neuman and Langston, 2006; Montreuil 
et al., 2018; Yang et al., 2019). However, it is subject to the weather and 
environment (only working in the daytime), especially the sunlight 
conditions, and thus hard to achieve a high measurement accuracy. 
Additionally, the common satellite remote sensing techniques for 
measuring the soil surface moisture on a large scale could not meet the 
requirements of high spatiotemporal resolutions to estimate the BSM 
(Ali et al., 2015; Anderson and Croft, 2009). 

Recently, terrestrial laser scanning (TLS) has shown great promise 
for an accurate BSM estimation because of the advantages of active 
scanning (deployable at daytime and nighttime), high spatial and tem-
poral resolution (through continuous measurements) (Jin et al., 2020; 
Jin et al., 2021; Nield et al., 2014; Ruessink et al., 2014; Smit et al., 
2018; Tan et al., 2020), as well as a large spatial scale (long-range LiDAR 
systems can typically measure a large beach section, such as 400 × 800 
m, with a single scan). According to the radar range equation, the 
backscattered intensity is closely related to the target surface reflec-
tance, and the latter could theoretically be used to derive the BSM when 
other surface properties remain constant (Nolet et al., 2014). Addi-
tionally, the backscattered intensity of a LiDAR system operating in the 
shortwave infrared spectrum is quite sensitive to target surface moisture 
variation, which makes it an ideal tool to monitor BSM changes (Yang 
et al., 2019). 

However, it is difficult to construct a specific model for the complex 
(nonlinear) and unknown relations between the LiDAR intensity and 
BSM, which vary with different LiDAR systems and beach types. Nor-
mally, the surface moisture is estimated by means of stepwise regression 
(SR) methods (Jin et al., 2020; Smit et al., 2018; Tan et al., 2020). 
Firstly, the original backscattered intensity is calibrated using data- 
driven or model-driven approaches based on the radar range equation 
(Höfle and Pfeifer, 2007; Kaasalainen et al., 2011), and then the relation 
between the calibrated intensity and the BSM is fitted based on a priori 
model (e.g., the exponential models) (Nolet et al., 2014; Philpot, 2010; 
Zhu et al., 2010). The procedure of parametric modeling is rather 
complicated and may cause an accumulation of errors. Besides, the radar 
range equation, as the prior knowledge of intensity calibration, may not 
be suitable for some specific terrestrial LiDAR systems in which the 
built-in software of the scanner could automatically reduce the back-
scattered intensity acquired at close ranges (Kaasalainen et al., 2011; 
Kaasalainen et al., 2009b; Tan and Cheng, 2015). 

Another issue is the small number of available BSM samples for the 
stepwise regression modeling, given that the collection of field moisture 
samples is laborious, costly and time-consuming. In addition, for long- 
range LiDAR systems, it is difficult to obtain intensity correction data 
through indoor experiments (due to the length limitation of the labo-
ratory) like the short- and middle-range LiDAR systems (Fang et al., 
2015; Jin et al., 2020; Kaasalainen et al., 2009a; Tan and Cheng, 2015). 
A possible approach to deal with these limitations involves the use of 
non-parametric modeling to interpolate BSM (Ballabio, 2009), such as 
machine learning algorithms. 

Machine learning algorithms provide an alternative method to solve 
the inversion problems of geophysical parameters with only little prior 
knowledge of the theoretical model, such as the Artificial Neural Net-
works (ANN), Decision Tree (DT) and Support Vector Machines (SVM). 
A detailed introduction and comparison about these common machine 

learning algorithms for inversion problems can be found in the review 
literature (Carter and Liang, 2019; Lary et al., 2016; Maxwell et al., 
2018; Mountrakis et al., 2011; Padarian et al., 2020). Recently, the 
Support Vector Regression (SVR), as a version of the SVM for regression, 
has been widely and successfully used in retrieving geophysical and 
biophysical parameters from remote sensing datasets (Ballabio, 2009; de 
Souza et al., 2019; Deiss et al., 2020; Deka, 2014; Hoa et al., 2019; Xiao 
et al., 2018). In these applications, the estimation performance of SVR is 
typically comparable to (or better than) the one using the well-known 
ANN algorithm, due to its advantages of structural risk minimization 
based on a strict statistical theory. Particularly, this method is praised 
for its ability to deal with small training datasets (de Souza et al., 2019). 
Considering that it is hard to collect a large number of moisture samples 
on the study beach due to the time and labor factor, the SVR seems to be 
a suitable method for developing the BSM estimation model. The high 
efficiency of SVR to retrieve large scale soil moisture from the remote 
sensing data (e.g., multi/hyperspectral images and synthetic aperture 
radar data) has been demonstrated (Ahmad et al., 2010; Ezzahar et al., 
2020; Holtgrave et al., 2018; Pasolli et al., 2015; Pasolli et al., 2011). 
However, to our knowledge, no studies have tested SVR (or other ma-
chine learning algorithms) yet for estimating the soil moisture or beach 
surface moisture from the LiDAR intensity data. 

This study sets out to investigate the feasibility of retrieving BSM 
from the LiDAR intensity data using the SVR algorithm, without cor-
recting the impacts of scanning geometry on backscattered intensity in 
advance. Point cloud data of a high spatiotemporal resolution were 
collected using a long-range static terrestrial LiDAR (Riegl VZ-2000) 
(Vos et al., 2017), which was permanently deployed on top of a build-
ing close to the Ostend-Mariakerke beach, Belgium. By referring to the 
relevant studies on the application of SVR in the field of remote sensing 
(de Souza et al., 2019; Xiao et al., 2018), this study conducted in-
vestigations to answer the following: (i) how well (accuracy, repro-
ducibility and generalization capability) SVR performs in estimating 
BSM from the LiDAR intensity data; (ii) whether SVR models can elim-
inate the impacts of the range and incidence angle on the backscattered 
intensity in the process of estimating BSM, considering the high 
dependence of original TLS intensity data on the scanning geometry; (iii) 
what are the minimum number and density of training samples required 
to develop an SVR model, investigating SVR’s potential to deal with 
small sizes of BSM training samples, given that the collection of field 
BSM samples would be relative laborious and time-consuming; and (iv) 
how the SVR algorithm performs in comparison with the traditional SR 
method already tested in previous literature and the well-known ANN 
algorithm. Here, the ANN was used mainly for comparative analysis of 
the performance of SVR and ANN under conditions of limited training 
samples. 

2. Materials and methods 

2.1. Study site 

The study site is a relatively flat sandy beach located at Ostend- 
Mariakerke, Belgium (51.213◦ N, 2.872◦ E), with a slope of approxi-
mately 2◦ (Fig. 1). It is a typical dissipative beach with a width exceeding 
200 m at low tide. The neap tide measures about 3.5 m while the spring 
tide is up to 5 m (Deronde et al., 2008). The mean annual precipitation of 
the site is 748 mm and the mean annual temperature 10.6 ◦C (Montreuil 
et al., 2018). The common wind speed ranges from 3 to 8 m/s, mainly 
coming from the southwest. In addition, the particle size of the sedi-
ments (quartz sand) slightly raises from 291 μm (D50) at the backshore 
to 337 μm (D50) at the intertidal zone, predominantly consisting of fine 
and medium sand (Montreuil et al., 2018). There is neither vegetation 
nor buildings on the beach. 
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2.2. Data collection and pre-processing 

2.2.1. LiDAR data 
The measurements were carried out using a shortwave near-infrared 

laser scanner Riegl VZ-2000 with a laser wavelength of 1,550 nm. The 
scanner’s field of view was 360◦ (horizontal) × 100◦ (vertical). The 
actual effective measurement distance is about 500 m under the cir-
cumstances of this study, with a beam divergence of 0.30 mrad. It is 
worth mentioning that a custom-made shield was used to protect the 
scanner from environmental impacts (e.g., wind, sand and rain). From 
November 2017 to December 2018, the scanner was permanently 
deployed on top of a 42 m high building close to the target beach (Fig. 1, 
(De Sloover et al., 2019)). The target beach was measured repeatedly at 
one-hour intervals to detect the beach topography and surface moisture 
changes. Each scan duration took about 4 min. A total of nine scans were 
used in this study, consisting of eight scans respectively associated with 
the BSM sample collections of eight times during April 18, 19 and 21–26, 
2018 (BSM samples were collected once a day, at low tide), and one scan 
measured at 10:00 on April 17, 2018, used to produce the BSM map of 
the entire study area. 

The scanner recorded both the 3D coordinates (relative to the 
scanner center) and the backscattered intensity of each reflected point. 
The raw coordinates of the point clouds were transformed into the 
Belgian national coordinate system employing twelve reflectors 
deployed on the beach and positioned through an RTK-GPS (Vos et al., 
2017). As part of the Belgian CREST (Climate Resilient Coast) Project, 
this study adopted the Belgian Lambert 72 projected coordinate system 
(EPSG: 31,370) (VLIZ, 2020; Yang et al., 2020). The orthometric height 
was taken towards the TAW (Tweede Algemene Waterpassing) reference 
level (Ostend Height, EPSG: 5,110), which is an equipotential gravity 
surface of about 2.3 m under the conventional geoid EGM96. It is worth 
mentioning that the density of the point clouds gradually reduced with 
the increased scanning distance from ~ 1,400 points/m2 at 60 m to ~ 3 

points/m2 at 440 m, with the horizontal and vertical angular sampling 
steps of 0.03◦. 

2.2.2. Surface moisture samples 
The surface moisture samples were collected at an established sam-

pling grid consisting of 5 × 7 points (Fig. 1), which extended from the 
relatively dry upper-beach to the dissipative intertidal area (Montreuil 
et al., 2018; Schmutz and Namikas, 2018). The location of each sam-
pling point was obtained using an RTK-GPS device. A total of 114 
moisture samples were taken after the TLS scan during April 18–26, 
2018. The sample size was approximately 10 cm × 10 cm with a 
thickness of about 0.5 cm. The sample moisture contents were measured 
in the laboratory using the gravimetric method (calculating the ratio 
between the water weight in the sample and the sample’s total weight) 
(Davidson-Arnott, 2010; Nield and Wiggs, 2011). 

The average intensity, range and incidence angle of each field 
moisture sample was extracted from the corresponding TLS point clouds 
in a 1 × 1 m grid cell, in which the incidence angle was derived based on 
the plane fitting using the nearby points (to obtain the corresponding 
normal vector of the fitted plane) (Jin et al., 2021). In this study, only 
the moisture samples with a scanning range < 250 m (a total of 55 
effective samples) were adopted in the next moisture retrieval because 
the point cloud density at long ranges was too low (especially in the high 
moisture region) to obtain an accurate incidence angle (Jin et al., 2021). 

It should be said that the moisture distribution of these field samples 
was relatively concentrated, mainly at the ranges of 0–1% and 15–20%, 
due to the collection from the established sampling grid at low tide each 
day (Jin et al., 2021). Only a few samples with saturated moisture were 
collected during the TLS measurements (even no high moisture samples 
at the ranges > 350 m). To address this issue, we manually extracted 
additional 35 samples with saturated moisture (the white circles in 
Fig. 1) from the TLS point clouds acquired at 10:00 on April 17, 2018. 
The samples were extracted based on the corresponding high resolution 

Fig. 1. Location of the study area at the Ostend-Mariakerke beach and the field deployment. The Riegl VZ-2000 scanner is deployed on top of a 42 m high building 
close to the target beach (CRS: EPSG 31 370). The red and blue points in the magnified images (the bottom right corner) represent the TLS point clouds used for 
correcting the impacts of scanning geometry on the intensity data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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(centimeter-level) orthophotos simultaneously acquired on the beach by 
means of a drone (DJI Phantom 4 pro). The orthophotos have been 
transformed into the same coordinate reference system as the TLS point 
clouds, by employing the black-white square targets placed on the beach 
surface and positioned through an RTK-GPS. 

To ensure that the extracted samples were saturated, the samples 
should simultaneously satisfy the following three demands: (i) the 
sampling points should be located at the transition zone from the flat 
beach to the trough area (or shallow waters); (ii) the very thin water film 
is just starting to appear at the surface of the sampling area; (iii) there 
are at least three reflected points in each sampling area of 1 × 1 m 
(normally no reflected points from the water surface at long ranges due 
to the large incidence angles). Based on the laboratory test results (Jin 
et al., 2020), the gravimetric moisture contents of the 35 saturated 
samples were set to 26%. The results were also verified by the field 
moisture samples collected on the Ostend-Mariakerke and Koksijde- 
Groenendijk beach, Belgium (Jin et al., 2020; Jin et al., 2021). 

The average intensity and range of each saturated sample were 
extracted from the corresponding TLS point clouds (1 × 1 m). The ranges 
of these samples changed from 139 m to 403 m. Because the TLS point 
clouds were too sparse at long ranges, the incidence angles of these 
saturated samples were calculated employing the point clouds derived 
from the corresponding high-resolution orthophotos. The image-derived 
point clouds were in the same coordinate reference system as the TLS 
point clouds and more details about the image-derived point clouds can 
be found in Jin et al. (2021). It is worth mentioning that these samples 
were only utilized as a reference to investigate the impact of sample 
coverage. 

2.2.3. Intensity correction data 
To investigate whether SVR models can eliminate the scanning ge-

ometry impacts on the backscattered intensity in the process of esti-
mating BSM, the SVR training data should cover sufficiently large ranges 
of the scanning range and the incidence angle. Traditionally, these data 
can be obtained from the indoor correction experiments in which the 
target samples were measured at different ranges and incidence angles 
by the TLS (Fang et al., 2015; Jin et al., 2020; Kaasalainen et al., 2009a; 
Tan and Cheng, 2015). However, it is impractical to remove the laser 
scanner from the fixed deployment position (in this study). Moreover, it 
is difficult to find a laboratory with a length exceeding 500 m for indoor 
correction experiments. 

In the present study, the correction data were extracted from the TLS 
point clouds acquired on the upper-beach, which could be considered as 
the natural homogenous target with similar surface properties (Jin et al., 
2021). The surface moisture contents on the upper-beach were 0.05% ±
0.01% at 10:00 on April 18, 2018, obtained by calculating the average of 
the 10 field moisture samples collected on the upper-beach. As shown in 
Fig. 1 (the red point clouds), we selected the point clouds within two 
very narrow arc-like strips (about 30 m length and 40 cm width) for the 
incidence angle correction. The incidence angle ranges of the two arc- 
like strips were 45–87◦ (one sample per degree, a total of 41 samples 
extracted for SVR training) and 57–84◦ (one sample per degree, a total of 
28 samples for SVR testing), respectively. The former covers the ma-
jority of the possible incidence angles in this study (about 54◦ at 61 m 
and 87◦ at 440 m, regardless of the beach terrain relief). More details 
about the pre-processing of correction data are to be found in the pre-
vious literature of Jin et al. (2021). 

Similarly, we selected the point clouds within two 1 m-width long 
strips (the blue point clouds in Fig. 1) for the range correction. The 
average intensity, range and incidence angle of the point clouds were 
calculated at intervals of 1 m. The two strips (for SVR training and 
testing respectively) covered all the required measurement ranges of 
61–440 m, and a total of 39 samples were acquired for each strip (one 
sample per 10 m). 

2.3. Support vector regression 

Support vector regression is a non-parametric regression technique 
developed based on the hypothesis of structural risk minimization 
(Cortes and Vapnik, 1995). It can minimize the empirical risk and ach-
ieve a good generalization for the unseen data, even using few training 
data. Numerous studies have proven the robustness and high efficiency 
of the SVR algorithms for retrieving large-scale soil moisture from 
remote sensing data (Ahmad et al., 2010; Ezzahar et al., 2020; Holtgrave 
et al., 2018; Pasolli et al., 2015; Pasolli et al., 2011). This study focuses 
on retrieving the BSM from the high-resolution LiDAR intensity data 
using the common ε-insensitive SVR (ε-SVR). The detailed mathematical 
expressions of SVR can be found in Cristianini and Shawe-Taylor (2000) 
and Smola and Schölkopf (2004). Here, the basic concept of SVR is 
described below. 

With the ε-SVR, we defined a set of training data 
{
(x1, y1),⋯, (xn, yn)

}
, where x represents the feature vector (x ∈ Rk) and 

y denotes the target output (i.e., the BSM) (y ∈ R). k is the feature 
dimension and n the sample number. The SVR aims to find an appro-
priate function (hyperplane) f(x) to describe the input–output mapping. 
The function f(x) can be linearly expressed as f(x) = wTϕ(x)+ b, where 
w represents the weighting vector and b the bias. ϕ denotes a mapping 
function for projecting the original feature space to a higher- 
dimensional space. The standard form of ε-SVR is expressed as follows 
(Cristianini and Shawe-Taylor, 2000): 

Min :
1
2
‖w‖2

+ C
∑n

i=1

(
ξi + ξ*

i

)

subjectto

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yi − f (xi) ≤ ε + ξi

f (xi) − yi ≤ ε + ξ*
i

ξi, ξ
*
i ≥ 0, i = 1,⋯, n.

(1)  

Here, C is the penalty factor that tunes the trade-off between the model 
generalization and the tolerance for errors (de Souza et al., 2019; Pasolli 
et al., 2011). When using a larger C value, the generalization of the SVR 
models will decrease and it might cause overfitting (C > 0). ξi and ξ*

i 
illustrate the slack variables. ε demonstrates the width of the insensi-
tivity zone (ε > 0). A larger ε value will decrease the amount of the 
selected support vector and might cause training errors (Pan et al., 
2015). For the non-linear cases, the SVR algorithm utilizes the kernel 
functions K

(
xi, xj

)
to transform or linearize the input data, in which K

(
xi,

xj
)
= ϕ(xi)

Tϕ(xj). In this study, we tested four common kernel functions 
as follows (de Souza et al., 2019): 

K(xi, xj)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xi∙xj Linear
(− γxi∙xj + r)d Polynomial

exp
(
− γ
⃒
⃒xi∙xj

⃒
⃒2
)

Radial Basis Function (RBF)
tanh(− γxi∙xj + r)Sigmoid

(2)  

The polynomial degree d and the parameters γ and r can be tuned 
through the cross-validation method (Sunder et al., 2020). Fig. 2 de-
scribes the overall workflow to estimate the BSM from LiDAR intensity 
data with the SVR algorithm. 

2.4. SVR training and evaluation 

In this study, three input features/variables were selected to develop 
SVR models for estimating BSM, i.e., the backscattered intensity, scan-
ning ranges and incidence angles. The selection of input features was 
done by referring to the available scientific literature, in which LiDAR 
intensity data were used to estimate BSM through the SR method (Jin 
et al., 2021; Nield et al., 2014; Philpot, 2010; Smit et al., 2018; Tan et al., 
2020). Among the three input features, the backscattered intensity has a 
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close relationship with beach surface reflectance based on the LiDAR 
equation (Kaasalainen et al., 2011; Kaasalainen et al., 2009a), and the 
reflectance can be used to derive the BSM when other beach surface 
properties (e.g., mineral composition, sand grain size and surface 
roughness) remain constant (Nield et al., 2014; Nolet et al., 2014; 
Philpot, 2010). The scanning ranges and incidence angles were adopted 
as the SVR input features to correct the scanning geometry impacts on 
the intensity in the process of estimating BSM. It is worth mentioning 
that this study used the incidence angle’s cosine value as the SVR input 
feature rather than the incidence angle in radians. This is because the 
backscattered intensity is proportional to the incidence angle’s cosine 
value based on the LiDAR equation (Fang et al., 2015; Xu et al., 2017). 
By using the cosine value, the complexity of the developed SVR models 
might be reduced to some extent. Besides, all input features were 
normalized to the 0–1 range to eliminate the effect of various scales on 
these features (Sunder et al., 2020). 

Considering that SVR models’ performance significantly depends on 
the selection of an appropriate kernel function, parameters tuning and 
sufficient and representative samples (Ballabio, 2009; de Souza et al., 
2019; Deiss et al., 2020; Pasolli et al., 2015), this study tested four 
common kernel functions, i.e., linear, polynomial, Radial Basis Function 
(RBF) and sigmoid kernel, using the same training and test data. The 
kernel function with the best estimation performance on test data was 
selected for further SVR evaluation and application. In this study, the 
SVR models’ performance was evaluated using two statistical criteria: 
RMSE (root mean squared error) and R2 (the determination coefficient). 
The grid search method and 10-fold cross-validation were adopted to 
obtain the optimal SVR parameters, in which the parameter combina-
tion with the best cross-validation RMSE was chosen (Hsu et al., 2003; 

Sunder et al., 2020). The trials for each kernel function were repeated 20 
times by comprehensively considering the time cost and the robustness 
of training results. 

The training data comprised 124 field samples, i.e., 44 samples 
collected from the sampling grid (80% of 55 effective samples) and 80 
upper-beach samples for the intensity correction (41 for incidence angle 
correction and 39 for range correction). The test data consisted of 78 
field samples, i.e., 11 samples collected from the sampling grid (20% of 
55 effective samples) that were obtained at the different dates with those 
used in the training phase, and 67 upper-beach samples (28 for inci-
dence angle and 39 for range). The upper-beach samples used for SVR 
training and testing were extracted from the different point clouds strips. 
An overview of the BSM estimation experiments, corresponding samples 
and related figures and tables in this study is given in Table 1. 

Based on the selected kernel function, we retrained the SVR models 
repeatedly 50 times to further evaluate the reproducibility of the SVR 
algorithm. The prediction accuracy (RMSE) of the SVR model was ob-
tained based on the test samples (i.e., 78 field samples). The intensity 
correction results were assessed by calculating the standard deviations 
of the predicted moisture contents respectively based on the incidence 
angle and range correction test samples (i.e., 28 and 39 upper-beach 
samples). The SVR model with the lowest test RMSE of 50 trials was 
selected to produce the beach surface moisture map of the entire study 
area (based on the scan acquired at 10:00 on April 17, 2018), in which 
each TLS point’s incidence angle was calculated employing the high- 
density point clouds derived from the corresponding orthophotos, 
solving the low-density problem of the TLS point clouds at long ranges. A 
detailed introduction can be found in Jin et al. (2021). 

Besides, the predicted moisture contents of the SVR model were 

Fig. 2. Workflow for the estimation of beach surface moisture from the LiDAR intensity data using the SVR algorithm.  
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compared with those estimated by the traditional SR method under the 
same training and test data. A moisture difference map of the two 
methods was produced (using a raster map of 1 × 1 m resolution) to 
further evaluate the SVR model’s generalization ability and intensity 
correction performance. A detailed introduction on the SR method for 
retrieving BSM can be found in previous literature (Jin et al., 2020; Jin 
et al., 2021; Smit et al., 2018; Tan et al., 2020), and will be demonstrated 
briefly in Section 2.5. Also, we tried to validate the impact of the training 
samples’ distribution (or coverage) on the generalization ability of the 
developed SVR models, by adding 35 samples of 26% moisture to the 
original training dataset and retraining (50 times) and testing the SVR 
models (see Table 1). 

In this study, the grid search ranges of the SVR parameters were 
determined based on previous studies (Chang and Lin, 2011; Hsu et al., 
2003) and the sample information as follows: [2-12, 2-2] for the insen-
sitive tubeε; [2-10, 210] for the parameterCandγ; [3, 8] for the degree of 
the polynomial kernel function d; [2-10, 1] for the coefficient r in the 
polynomial and sigmoid kernel functions. To reduce the computational 
time, we first conducted a preliminary grid search using the relatively 
large parameter interval. Then we obtained the final ranges of grid 
search for each parameter based on the cross-validation RMSE. The final 
grid search was carried out using a relatively small parameter interval 
and range. All SVR experiments were carried out utilizing the LIBSVM 
open-source library in Matlab (Chang and Lin, 2011). 

2.5. The statistical model of BSM-intensity 

For comparison purposes, the traditional statistical method (i.e., SR) 
was also adopted to estimate the BSM from the TLS backscattered in-
tensity in this study (Jin et al., 2020; Jin et al., 2021; Smit et al., 2018; 
Tan et al., 2020). Its basic principles are that the original backscattered 
intensity was corrected firstly and then the relation between the BSM 
and the corrected intensity was fitted using least-squares regression. 
Previous studies had shown that the SR method can effectively eliminate 
the influence of the scanning geometry on the intensity data. Besides, 
compared to the machine learning approaches, there is no generaliza-
tion problem for the statistical methods. In this study, the moisture 
contents predicted by the SR method were utilized as a comparative 
reference to evaluate the generalization performance and intensity 
correction results of SVR models, based on the moisture difference map 
of the two methods. According to the study of Jin et al. (2021), the 
original backscattered intensity I can be expressed as: 

I = δecBSM∙
∑N1

i=0

[
βi(cosθ)i]∙

∑N2

i=0
(γiRi) (3)  

Here, δecBSM, 
∑N1

i=0
[
βi(cosθ)i] and 

∑N2
i=0(γiRi) represent three indepen-

dent functions which respectively illustrate the effect of the beach sur-
face moisture BSM, the cosine incidence angle cosθ and the range R on 
the backscattered intensity. δ, βi and γi are the function coefficients.N1 
and N2 denote the polynomial order. The three functions’ parameters 
can be estimated stepwise by the least-square regression based on the 
intensity correction data and the moisture samples. It is worth 
mentioning that the procedure adopted the same data as those used for 
training SVR models (Table 1), and this allows us to compare the two 
methods straightforwardly. The detailed procedures for estimating the 
parameters of Eq. (3) can be found in Jin et al. (2021). After obtaining 
these parameters, the BSM can be derived using the reformulation of Eq. 
(3) as follows: 

BSM =
1
c

ln

(
I

δ(
∑N1

i=0

[
βi(cosθ)i]∙

∑N2
i=0(γiRi))

)

(4)  
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2.6. Investigation of the impact of the training sample size and density 

Normally, SVR requires a training dataset consisting of sufficiently 
large and representative samples to achieve a good generalization (de 
Souza et al., 2019). However, in the actual field experiments, it is 
difficult to collect a large number of field moisture samples on the beach 
due to the time and labor factor. It is thus necessary to investigate what 
the required minimum sample size is to estimate the BSM using the SVR 
algorithm, and how the size and density (distribution) of the training 
samples affect the moisture retrieval accuracy and generalization ability 
of the SVR models. For this purpose, we utilized simulated datasets to 
train and test the SVR models (Table 1). Here, the simulated intensity 
data were generated based on Eq. (3) introduced in Section 2.5, which 
had been strictly derived and verified in previous literature (Jin et al., 
2020; Jin et al., 2021; Tan et al., 2020). During generating the simulated 
intensity data, the ranges of the scanning range, incidence angle and 
BSM can be designed based on the experimental needs to generate suf-
ficiently large (and dense) training samples. Similarly, in previous 
studies (Ahmad et al., 2010; Ait Hssaine et al., 2020; Mirsoleimani et al., 
2019; Notarnicola et al., 2008; Paloscia et al., 2008; Paloscia et al., 
2013; Pasolli et al., 2011), the simulated samples were extensively 
applied for training machine learning models to estimate the soil surface 
moisture from the remote sensing data. 

In this study, the ranges of the input variables (for generating 
simulated intensity data) correspond to those acquired during the field 
measurements (as demonstrated in Table 2). Besides, the simulated data 
have a sufficiently large number of samples and a uniform distribution of 
the input variables, thus presenting more general BSM situations 
(0–25%) than the field samples. It should be noted that the simulated 
training dataset and the test datasets are completely independent of each 
other due to the use of the different values of input variables. Besides, we 
added Gaussian noise to the simulated intensity data for a good repre-
sentation of reality. The noise variance is approximately 0.07, derived 
from the field point cloud data acquired on the upper-beach. 

The SVR models were trained with the gradually increased training 
samples (e.g., 20, 50, 100…) which were subsampled randomly from the 
22,308 simulated training samples (Table 2). The SVR trials were 
repeated 50 times for each sample size to obtain a robust result (with the 
re-subsampled training samples for each trial). The minimum size of the 
training samples was determined when the prediction accuracy (RMSE) 
of the developed SVR models on the test datasets tended to be steady 
with the increased training sample sizes. Similarly, the influence of the 
sample density was also investigated by gradually increasing the range 
intervals, incidence angle intervals or moisture intervals of the training 
samples (also subsampled from the 22,308 simulated training samples) 
and then assessing the estimation accuracy (RMSE) of the developed 
SVR models on the test datasets. For example, we trained the SVR model 
using the samples with moisture contents of 0%, 13% and 25% (a 
moisture interval of about 13%) or using the samples with a range in-
terval of 100 m. For each sample density case (or feature interval), the 
SVR training was repeated 20 times using the same training set (which 
was sufficient to obtain a robust result based on the findings of pre- 
trials). 

After the training phase, the developed SVR models’ estimation 
performance (RMSE and R2) was assessed based on the simulated 2520 

test samples. Considering that the simulated data might include the 
modeling errors of Eq. (3), the 78 field test samples were also exploited 
to assess the prediction performance of the developed SVR models under 
realistic field conditions. Besides, we also calculated the RMSE values of 
SVR predicted moisture based on the separate test datasets, consisting of 
three sets of simulated test datasets (simulated Range, Angle and 
Moisture test sets in Table 2) and three sets of field test datasets (28 
upper-beach samples for incidence angle, 39 upper-beach samples for 
range and 11 samples from the sampling grid, see Section 2.4). Because 
the simulated Range and Angle test sets had a constant moisture content 
of 3.5% and the upper-beach range and angle test sets had a constant 
moisture content of 0.05%, their RMSE values could be used to assess 
whether the impact of the range and incidence angle on the back-
scattered intensity has been accurately corrected. The RMSE values of 
the separate moisture test sets (field and simulated) were applied to 
assess the prediction accuracy of the trained SVR models under the 
different moisture intervals of training samples. 

2.7. Comparing SVR and ANN for BSM estimation 

Among the different machine learning methods, ANN has played a 
dominant role in soil moisture retrieval in the past three decades (Ali 
et al., 2015; Padarian et al., 2020). In this study, the ANN algorithm was 
also adopted to compare the estimation performance of ANN and SVR 
under conditions of limited training samples. The relevant theoretical 
background and detailed training methods can be found in previous 
literature (Behrens et al., 2005; Kolassa et al., 2018; McCulloch and 
Pitts, 1988; Paloscia et al., 2008). In this study, a three-layer structure 
(3:20:1) was used for ANN model development after several tests. To 
avoid overfitting, we adopted the Bayesian regularization back-
propagation algorithm (Foresee and Hagan, 1997; MacKay, 1992) to 
train the ANN models, which can automatically optimize the number of 
the effective weights and biases used by the networks (Oliferenko et al., 
2013; Zhang et al., 2010). The training was stopped when the ANN 
training achieved the maximum number of iterations (here set at 100 
based on several pre-tests) or the mean square error (MSE) between the 
ANN outputs and the target data was<0.001 (corresponding to ~ 0.8% 
moisture). It should be mentioned that, in the pre-tests, the ANN models’ 
estimation accuracy (MSE) on the calibration dataset tended to be 
steady after 10–30 times iterations. 

The SVR and ANN models were developed using the same training 
and test dataset. The selection of the training dataset was done by 
referring to the experimental results in Section 2.6. In this study, we 
mainly compared the estimation accuracy and generalization ability of 
SVR and ANN algorithms under the same condition of the minimum 
training sample size or density (Table 1). The experiments were repeated 
20 times for the SVR and ANN respectively and the model with the 
lowest test RMSE was used to produce the BSM map of the entire study 
area. Also, we produced the moisture difference maps between the 
predicted moisture by the developed SVR or ANN models and the sta-
tistical model, which were used to evaluate the generalization ability 
and intensity correction performance of the developed SVR or ANN 
models. 

Table 2 
Simulated data using the statistical model.   

Range (m) Incidence Angle (◦) Moisture (%) Count 

Min. Max. Int. Min. Max. Int. Min. Max. Int. 

Training 60 440 10 45 87 2 0 25 1 22,308 
Test 62 438 30 46 84 2 0.5 24.5 3 2,520 
Range test 62 438 10 Constant 63 Constant 3.5 39 
Angle test Constant 115 46 84 1 Constant 3.5 39 
Moisture test Constant 115 Constant 63 0.5 24.5 1 25  

J. Jin et al.                                                                                                                                                                                                                                       
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3. Results 

3.1. Kernel function selection 

At the initial stage of the SVR experiments, the SVR models (for 
estimating BSM) were developed using four different kernel function 
types (linear, polynomial, RBF and sigmoid) based on the field moisture 
samples (Table 1). As shown in Table 3, the average RMSE and R2 of the 
20-times SVR experiments (for each kernel function) were calculated to 
determine the optimal kernel function. The kernel function selection had 
a significant impact on the estimation accuracy of the developed SVR 
models. The SVR models utilizing the RBF kernel performed best on the 
test dataset with the lowest RMSE of 0.71% moisture and the highest R2 

of 0.98, followed by the polynomial kernel (0.86% and 0.96), linear 
kernel (1.91% and 0.84) and sigmoid kernel (2.01% and 0.83). The re-
sults were similar to those from previous studies (de Souza et al., 2019; 
Mountrakis et al., 2011). In addition, compared with the polynomial 
kernel, the RBF kernel had lower computational complexity (only three 
tuning parameters) and less computational time. Thus, the further SVR 
experiments adopted the RBF kernel function in this study. 

3.2. Beach surface moisture estimation 

Based on the methods introduced in Section 2.4, the scatter plot 
(Fig. 3a) shows the SVR model’s training and testing results for the BSM 
estimation based on the field samples. The sample points were located 
closely around the bisector line (solid black line), indicating that the 
trained model performs well for both the training and test data. The 
RMSE and R2 of the test data were 0.68% and 0.98, respectively. In 
addition, the SVR models provided consistent test results for 50 trials 
with an average RMSE of 0.71% ± 0.02% and an average R2 of 0.98% ±
0.002%, showing the high reproducibility of the SVR algorithm. In the 
moisture map (Fig. 3b), the SVR model seemed to perform well in the 
area covered by the training samples (i.e., the area of ranges less than 
250 m and the upper-beach) but did not show satisfactory results at long 
ranges without the training samples covered (the upper-right of Fig. 3b). 

According to the scatterplots in Fig. 4, the SVR predicted moisture 
was fully independent of the incidence angles and ranges. Besides, the 
standard deviation of SVR predicted moisture was quite small, with a 
moisture of 0.04% for the test data of incidence angle correction (the red 
solid triangle in Fig. 4a) and a moisture of 0.46% for the test data of 
range correction (the red solid triangle in Fig. 4b). This indicated that 
the impact of scanning geometry on the intensity had been accurately 
corrected. However, it should be mentioned that both test datasets were 
extracted from the upper-beach with quite low moisture. 

In order to further evaluate the SVR model’s generalization ability 
and intensity correction performance for the areas with the middle and 
high moisture, the SVR predicted moisture contents were compared with 
those retrieved using the SR method (see Section 2.5). As shown in 
Fig. 5a, the SR method performed satisfactorily for the training and test 
dataset, denoting a test RMSE of 0.79% and R2 of 0.97. It should be 
mentioned that the RMSE was relatively lower than those from previous 
studies (Jin et al., 2021; Smit et al., 2018). To some extent, this might be 
caused due to using more low-moisture samples in this study (the lower- 
right of Fig. 5a). The standard deviations of SR predicted moisture based 
on the incidence angle or range correction test data were almost the 

same as those of SVR, with values of 0.09% and 0.45% respectively. This 
indicated that the SR method had correctly eliminated the impact of 
scanning geometry on the intensity data. 

Fig. 3c represents the difference map between the derived BSM using 
the trained SVR model and the SR model. Compared to the scatter dia-
gram (which utilizes the limited sample points), the moisture difference 
map (over the entire study area) provided more intuitive and continuous 
information to assess the estimation accuracy and generalization ability 
of the trained SVR model. As shown in Fig. 3c, the predicted BSM con-
tents of the SVR were almost equal to those predicted by the statistical 
model in the region covered by the training samples. The absolute 
moisture differences only amounted to less than 2% in this region. 

However, it is noted that the SVR estimation performance signifi-
cantly deteriorated for the ranges exceeding 250 m. Although the 
training data included 39 range correction samples (61–440 m) extrac-
ted from the upper-beach (with moisture of 0.05%), the results still 
seemed to be unsatisfactory for the high-moisture region at ranges 
greater than 250 m. One possible reason is the lack of high-moisture 
training samples at ranges exceeding 250 m. In order to address this 
issue, we tried to reduce the proportion of the low-moisture samples in 
the training dataset or tune the SVR parameters manually, but no sig-
nificant improvement was observed for the estimation accuracy at long 
ranges. This indicates that the SVR needs a well-spread dataset of 
training samples to achieve a good generalization. 

Furthermore, we added 35 samples of 26% moisture (Fig. 6c) to the 
training set and retrained SVR models using the new training set 
(repeated 50 times). The estimation performance of the retrained SVR 
models was quite consistent, with an average RMSE of 1.08% ± 0.05% 
and an average R2 of 0.96% ± 0.004% on the test dataset. The prediction 
performance of the best (one) of the 50 retrained SVR models is shown in 
Fig. 6, with an RMSE of 0.98% and an R2 of 0.97. Similar to Fig. 3, the 
predicted moisture of the retrained SVR model was also independent of 
the incidence angles and ranges (Fig. 7). The standard deviation of SVR 
predicted moisture was 0.01% for the test data of incidence angle 
correction and 0.47% for the test data of range correction. Besides, the 
retrained SVR model performed well in the entire study area, including 
the long ranges. Overall, almost all (absolute) differences between the 
BSM contents that were predicted by the retrained SVR model and the 
statistical model were less than 2%. 

3.3. The impact of the training sample size 

To investigate the SVR’s potential to handle small sample datasets, 
we investigated and compared the estimation performance of the SVR 
models with different sizes or densities of the (simulated) training 
samples (based on the method introduced in Section 2.6). As shown in 
Fig. 8, the data points denote the average RMSE or R2 of 50 trials for 
each sample size, and the error bars indicate the corresponding standard 
deviation. Overall, both the RMSE and R2 of the developed SVR models 
gradually improved with the increased training sample sizes. The two 
statistics tended to be steady while using 200 (randomly subsampled) 
training samples with an RMSE of 1.05% and R2 of 0.95 for the field test 
data. Regarding the simulated test data, the corresponding RMSE and R2 

were 1.29% and 0.97 respectively. The variability (standard deviation) 
of the estimation accuracy also gradually reduced as the increased size 
of the training sample, from 1.28% at 20 training samples to 0.16% at 
200 training samples (for the field test dataset). 

In Fig. 8c, the RMSE values of the separate test datasets were used to 
evaluate the intensity correction performance of the developed SVR 
models (based on the method in Section 2.6). The results illustrated that 
the SVR models’ performance (RMSE) on the separate test datasets was 
similar to the one in Fig. 8a and also attained stabilization when using 
200 (randomly subsampled) training samples, with the RMSE < 1% for 
the range and incidence angle test dataset. This indicated that the im-
pacts of scanning geometry on the backscattered intensity had been 
corrected in the process of estimating BSM when using more than 200 

Table 3 
Performance of the SVR models with four kernel functions.  

Kernel Function Training Testing 

RMSE R2 RMSE R2 

Linear  2.17%  0.88  1.91%  0.84 
Polynomial  1.23%  0.96  0.86%  0.96 
RBF  1.28%  0.96  0.71%  0.98 
Sigmoid  2.26%  0.87  2.01%  0.83  
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(randomly subsampled) training samples. 

3.4. The impact of the training sample density 

Based on the method in Section 2.6, the RMSE and R2 of the SVR 

models varied as a function of the training samples’ distance intervals 
(Fig. 9a–c), incidence angle intervals (Fig. 9d–f) and moisture intervals 
(Fig. 9g–i). With the increased intervals of the three features, the test 
RMSE of the SVR models remained steady (RMSE < 1.5%) until reaching 
the thresholds and then deteriorated sharply (Fig. 9a, 9d and 9 g). In this 

Fig. 3. (a) The scatter diagram of the relation between the measured and SVR predicted sample moisture based on the field samples. (b) The surface moisture map of 
the study area predicted by the developed SVR model. (c) The difference map between the predicted moisture respectively by the trained SVR model and the 
statistical model. The black triangles denote the locations of the 44 field moisture samples (ranges < 250 m) collected at the established sampling grid. 

Fig. 4. (a) The scatter diagram of the relation between the SVR predicted sample moisture and incidence angles based on the field samples. (b) The scatter diagram of 
the relation between the SVR predicted sample moisture and the scanning range. 

Fig. 5. (a) The scatter diagram of the relation between the measured moisture and the statistical model’s predicted moisture, based on the field samples. The model 
parameters are shown at the bottom of the diagram. (b) The surface moisture map of the study area predicted by the statistical model. 
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study, the thresholds were 80 m for the range interval, 42◦ for the 
incidence angle interval, and 13% for the moisture interval. Similar 
trends were also observed for the determination coefficient R2 in Fig. 9b, 
e and h. 

The range intervals of training samples had a greater impact on the 
estimation accuracy of the SVR model than the incidence angle intervals 
and moisture intervals. Especially, the SVR models still performed well 

even with the maximum angle interval of 42◦ (i.e., only including the 
minimum (45◦) and maximum (87◦) incidence angle), with an RMSE of 
1.43% ± 0.74% and R2 of 0.95 ± 0.01 for the field test data (Fig. 9d–e). 
This is mainly because the TLS incidence angle had less impact on the 
backscattered intensity, having less impact on the predicted BSM as a 
result (Jin et al., 2021). Another possible reason is that we used the 
cosine values of incidence angle rather than the incidence angle in 

Fig. 6. (a) The scatter diagram of the relation between the measured and SVR predicted sample moisture, based on the field samples and additional 35 samples of 
26% moisture (black circles). (b) The surface moisture map of the study area predicted by the trained SVR model. (c) The difference map between the predicted 
moisture by the trained SVR model and the statistical model, respectively. The black triangles denote the locations of the 44 field moisture samples (ranges < 250 m) 
collected at the established sampling grid. 

Fig. 7. (a) The scatter diagram of the relation between the SVR predicted sample moisture and incidence angles, based on the field samples and additional 35 
samples of 26% moisture (b) The scatter diagram of the relation between the SVR predicted sample moisture and range. 

Fig. 8. (a) and (b) respectively show the RMSE and R2 variation of the developed SVR models as a function of the sizes of the simulated training samples, based on 
the (simulated and field) comprehensive test dataset. (c) The estimation accuracy (RMSE) of the developed SVR models varied as a function of the simulated training 
samples’ sizes based on the (simulated and field) separate test datasets for range, incidence angle and moisture. 
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radians as the input feature of SVR. The former is linearly correlated 
with the backscattered intensity based on the LiDAR equation (Fang 
et al., 2015; Xu et al., 2017). 

When we investigated the impacts of moisture interval on the SVR 
estimation performance (Fig. 9g–i), the range and incidence angle in-
tervals of training samples were fixed at 80 m and 22◦ respectively 
(rather than 10 m and 2◦). This could reduce the training sample size 
(close to the actual size of field moisture samples) and further investi-
gate the potential of SVR models to deal with small sample datasets. As 
shown in Fig. 9g–i, the SVR models performed well when only using 54 
training samples (i.e., based on the intervals of the 80 m range, 22◦

incidence angle and 13% moisture), with an RMSE of 1.04% ± 0.06% 
and R2 of 0.96 ± 0.01 for the field test data. The estimation accuracy was 
slightly better than the one using 200 randomly selected training sam-
ples in Fig. 8. Besides, when the range interval of training samples 
exceeded the threshold (80 m), the SVR predictive accuracies on the test 
datasets of the other two features also became bad (Fig. 9c,). Similar 
phenomena were also observed in Fig. 9f and 9i. This implies that all the 
three variables of the training samples should be sufficiently dense (at 
least reaching the threshold of each feature interval) to correct the effect 
of scanning geometry and accurately estimate the BSM from the LiDAR 
intensity data. 

3.5. Comparison of SVR with ANN 

As shown in Fig. 10a and Fig. 11a, under the conditions of the 
minimum size and density of the training samples (i.e., the 54 samples in 
Section 3.4), both SVR and ANN achieved a high estimation accuracy, 
with an RMSE of 1.06% and 0.90%, respectively (for the field test 
dataset). The average RMSE of 20 experiments was 1.04% ± 0.06% for 
SVR and 0.93% ± 0.09% for ANN, indicating the high reproducibility 
and estimation accuracy. The difference map of the SVR and SR pre-
dicted moisture was almost monochromic with the (absolute) moisture 
differences < 1% (Fig. 10c). A similar phenomenon was also observed 
for the ANN model in Fig. 11c. This suggested that both the developed 
SVR and ANN models achieved a good generalization and intensity 
correction performance. When training the SVR and ANN models using 
the 200 randomly selected training samples (see Section 3.3), the dif-
ference map of the SVR and SR predicted moisture (not shown) was 
similar to Fig. 10c, but a few scattered points with high moisture dif-
ferences (>2%) were observed at long ranges. Besides, the SVR model 
performed slightly better than the ANN model with fewer points of high 
moisture difference. 

We further compared the prediction performance (especially the 
generalization capability) of the SVR and ANN under extreme 

Fig. 9. The RMSE and R2 variation of the developed SVR models as a function of the distance intervals (a–c), incidence angle intervals (d–f) and moisture intervals 
(g–i) of the simulated training samples. The developed SVR models were evaluated using both the simulated and field test datasets. 
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conditions. Here, 16 field moisture samples (with a relatively uniform 
distribution in range and moisture) were selected from the field training 
dataset used in Fig. 6. The locations of these samples were shown in 
Fig. 12c (2 upper-beach samples with ranges > 360 m not shown). It 
should be noted that there were only samples with moisture of 0.05% 

and 26% (no middle-moisture) at the ranges greater than 250 m. As 
shown in Fig. 12, even only using 16 training samples, the SVR model 
still performed acceptably with a test RMSE of 1.83% and an R2 of 0.88. 
The average test RMSE and R2 of 20 trials was 2.5% ± 0.24% and 0.79 ±
0.03, respectively. Compared with the statistical model’s predicted 

Fig. 10. (a) The scatter diagram of the relation between the actual and SVR predicted sample moisture, based on 54 simulated training samples of a uniform 
distribution. (b) The surface moisture map of the study area predicted by the developed SVR model. (c) The difference map between the predicted moisture contents 
by the trained SVR model and the statistical model, respectively. 

Fig. 11. (a) The scatter diagram of the relation between the actual and ANN predicted sample moisture, based on 54 simulated training samples of a uniform 
distribution (the same for those training the SVR). (b) The surface moisture map of the study area predicted by the trained ANN model. (c) The difference map 
between the predicted moisture contents by the trained ANN model and the statistical model, respectively. 

Fig. 12. (a) The scatter diagram of the relation between the measured and SVR predicted sample moisture, based on 16 field training samples with a uniform 
distribution. (b) The surface moisture map of the study area predicted by the developed SVR model. (c) The difference map between the predicted moisture contents 
by the trained SVR model and the statistical model. The blue lines denote the distribution of the 16 field samples (black triangles and circles). The dashed line denotes 
some points with a moisture difference of 3%–4% at the dune edge. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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moisture (Fig. 12c), the relatively large moisture difference (2%–3%) is 
mainly situated at ranges greater than 250 m. This is possible because of 
the lack of middle-moisture samples at long ranges. Also, there were 
some points with a moisture difference of 3%–4% at the dune edge 
(black dashed line) due to the relatively big topographic relief. 

In contrast, based on the 16 field training samples, the ANN algo-
rithm performed poorly with a test RMSE of 4.02% and R2 of 0.58 
(Fig. 13a). The average RMSE and R2 of 20 trials amounted to 5.09% ±
0.98% and 0.5 ± 0.08, respectively. In particular, the predictions of the 
ANN model significantly deteriorated at long ranges, except in the 
sunken area of the upper-beach (black dashed line in Fig. 13c). 

4. Discussion 

Support vector regression showed good performances in estimating 
BSM from terrestrial LiDAR intensity data (Figs. 3-7), but some meth-
odological decisions might affect its estimation performance. In this 
study, the SVR models utilizing the RBF kernel performed best on the 
test dataset, as has been observed in previous literature (de Souza et al., 
2019; Mountrakis et al., 2011). The grid search method combined with 
10-fold cross-validation was proven to be an effective method to identify 
optimum SVR parameters. However, in the process of tuning parame-
ters, reducing the values of parameter ε will increase the number of 
support vectors and significantly increase the runtime of the model as a 
result. To reduce the computational time, one may first conduct a pre-
liminary grid search using a coarse grid. After identifying a better and 
smaller region on the grid, the final grid search was carried out using 
finer parameter intervals on the small grid. This is similar to the method 
introduced by Hsu et al. (2003). 

In this study, three input features (the backscattered intensity, 
scanning ranges and incidence angles) were selected for training SVR 
models to estimate the BSM. To our knowledge, this is the first use of 
SVR to retrieve BSM from LiDAR intensity data. Thus, the selection of 
input features was done by referring to some literature on traditional SR 
methods for BSM estimation (Jin et al., 2021; Nield et al., 2014; Philpot, 
2010; Smit et al., 2018; Tan et al., 2020). The three input features 
selected were the same as the variables used to develop the BSM- 
intensity model based on the traditional SR method (Jin et al., 2021; 
Tan et al., 2020), which allows us to compare the two methods 
straightforwardly. Besides, based on the three input features, the 
generalization performance of the developed SVR models can also pro-
vide a reference for the study of the TLS backscattered intensity 
correction using SVR. 

Theoretically, the TLS intensity data are also influenced by atmo-
spheric conditions and instrumental mechanisms (Fang et al., 2015; 

Höfle and Pfeifer, 2007). In this study, the TLS instrumental configu-
rations were kept constant throughout. The atmospheric conditions near 
the study beach were also relatively stable, with an air temperature of 
about 14 ± 3 C and a relative humidity of about 77 ± 17% (no pre-
cipitation) during the sampling period. Besides, since the atmospheric 
attenuation is closely related to the scanning range, the developed SVR 
models (using the range as the input feature) might correct the impact of 
atmospheric attenuation on TLS intensity data to some extent. Hence, 
the atmospheric attenuation of TLS intensity data was ignored in this 
study. Additionally, previous studies have shown the soil surface 
roughness plays a key role in retrieving surface soil moisture from the 
backscatter coefficient data of microwave remote sensing (Davidson 
et al., 2000; Ezzahar et al., 2020). However, for terrestrial laser scanning 
(normally based on visible or near-infrared wavelengths), only little 
literature is available and focusses on the impacts of surface roughness 
on TLS backscattered intensity at different incidence angles (Kaasalai-
nen et al., 2009b; Pesci and Teza, 2008). A more detailed study is needed 
to fully investigate the relationship between soil/beach surface rough-
ness and TLS intensity based on a series of controlled experiments (e.g., 
at different soil/sand roughness and considering the beam footprint 
sizes). In this study, the beach surface roughness was assumed to be 
constant, considering that most of the study area was relatively flat and a 
similar mineral composition (quartz sand) and grain size (D50: 291–337 
um) was visible on the beach. 

Considering the difficulty of collecting a large number of field BSM 
samples, this study focused on model simplicity in terms of the minimum 
training sample size and density for SVR model development. Compared 
to the range interval of the training samples, the incidence angle interval 
only has a slight influence on the estimation accuracy of the SVR model. 
Even with the maximum angle interval of 42◦ (i.e., only including the 
minimum (45◦) and maximum (87◦) incidence angle), the SVR models 
still performed well. We also demonstrated that 200 randomly selected 
samples or 54 uniformly distributed samples (both from the simulated 
22,308 training samples) were sufficient for training SVR models to 
accurately estimate BSM. Besides, the SVR models using 54 training 
samples of uniform distribution (Fig. 9g-i) performed slightly better than 
those using 200 randomly selected training samples (Fig. 8). This sug-
gests that the SVR algorithm can achieve high estimation accuracies 
even with few training samples, provided that the training samples are 
representative and distributed evenly. This is similar to those observed 
in previous literature (Ballabio, 2009; Deiss et al., 2020; Pasolli et al., 
2015). It should be noted that the experiments did not cover the ranges 
< 60 m, in which the built-in software of the scanner could automati-
cally reduce the backscattered intensity (not monotonic reduction with 
the increasing range) and more training samples might be required for 

Fig. 13. (a) The scatter diagram of the relation between the measured and ANN predicted sample moisture, based on 16 field training samples with a uniform 
distribution. (b) The surface moisture map of the study area predicted by the trained ANN model. (c) The difference map between the predicted moisture contents by 
the trained ANN model and the statistical model. The black triangles and circles denote the locations of 16 field samples. The dashed line demonstrates some points 
with a moisture difference of 3%–4% in the upper-beach sunken area. 
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the range correction. 
In this study, the SR method was used as a comparative reference to 

evaluate the generalization performance and intensity correction results 
of SVR models (Fig. 5). Based on the difference maps between the 
derived BSM using the SVR and SR models (Fig. 3c, Fig. 6c, Fig. 10c and 
Fig. 12c), we found that the SVR algorithm could accurately correct the 
effect of scanning geometry on the intensity in the process of estimating 
BSM, but the coverage and distribution of the training samples may 
significantly affect the generalization performance of the SVR model. In 
order to achieve good generalization of the SVR model, the training 
samples should cover a wide range of input features (e.g., at least 
covering the possible maximum, minimum and middle moisture, range 
and incidence angle). This finding could provide a reference for col-
lecting field moisture samples or conducting indoor experiments for 
intensity correction in future studies. 

We compared the SVR algorithm with ANN under minimal condi-
tions in terms of the sample size and density (i.e., 54 uniformly 
distributed samples or 200 randomly selected samples), and both 
methods achieved a high estimation accuracy and generalization per-
formance (Figs. 10-11). In actual field measurements, the incidence 
angle rises with the increase of scanning ranges, especially on relatively 
flat beaches. Theoretically, if the training samples cover the required 
scanning ranges (here 60–440 m), the corresponding incidence angles 
(54◦–87◦) will also be covered. Moreover, the incidence angle only 
slightly affected the backscattered intensity. Thus, 18 field samples with 
a uniform distribution over the moisture and range value may be suffi-
cient to develop an SVR model of high estimation performance. This 
finding was demonstrated in Fig. 12, in which the SVR performance was 
still acceptable even using only 16 field training samples of uniform 
distribution. Moreover, the SVR model performed much better than the 
ANN models under this condition, suggesting the better ability of SVR to 
deal with small training samples. 

It should be mentioned that there are some limitations on the 
adopted long-range LiDAR, mainly including the sparse point density at 
long ranges and the beam divergence. In this study, the beach surface 
was assumed to be the extended Lambertian target (Höfle and Pfeifer, 
2007) and the influence of beam divergence was ignored, considering 
that most of the study area was relatively flat. Because it was time- 
consuming to collect surface moisture samples using a large sampling 
size (e.g., 1 × 1 m) and the moisture contents in the later samples might 
vary somewhat during the sampling interval, this study collected surface 
moisture samples with a relatively small sampling size (i.e., 10 × 10 cm). 
However, there were only 1 or 2 TLS scanning points visible (even no 
points at ranges > 200 m) within the small sampling area of 10 × 10 cm. 
Thus, in the pre-processing of the moisture samples, the center locations 
of the moisture samples were connected to a corresponding 1 × 1 m grid 
cell in the TLS scan (rather than 10 × 10 cm grid cell). The average 
intensity, range and incidence angle of each surface moisture sample 
were extracted from the corresponding TLS point clouds of 1 × 1 m grid 
cell (>9 reflected points). To be exact, the average moisture contents 
obtained from the two different sampling sizes might be slightly 
different. In this study, this difference was ignored because the surface 
moistures in the 1 × 1 m grid cell varied little, with an average standard 
deviation of 1.44% moisture (Jin et al., 2021). 

Considering that the SVR algorithm is data-driven, the developed 
SVR models can be used directly in other study sites only if certain 
conditions are fulfilled, namely very similar sand types, surface rough-
ness, atmospheric conditions and the same LiDAR instrument, etc. To 
improve the transferability of the developed SVR models, future studies 
will need to incorporate more input features (e.g., surface roughness and 
atmospheric factors) into the model training. However, it is hard to 
transfer the developed SVR models (based on a long-range LiDAR) to 
other TLS scanning data (e.g., those acquired by the common short- and 
middle-range TLS or the mobile TLS system) without re-training and 
parameter tuning. Compared to the long-range TLS adopted in this 
study, there is normally no problem of low point density for the short- 

and middle-range TLS scanning using a geodetic tripod. However, the 
short- and middle-range TLS requires measurements at multiple scan-
ning positions to cover a substantial beach section. This is quite time- 
consuming and the beach surface moisture in the later scan might 
change a little during the TLS scan interval. 

5. Conclusions 

This study provides, to our knowledge, the first assessment of the 
SVR algorithm to estimate high-resolution BSM from the LiDAR in-
tensity data. A static long-range terrestrial LiDAR (Riegl VZ-2000) was 
applied to collect the point cloud data on the beach with a very high 
spatial (centimeters to decimeters) and temporal (one hour) resolution. 
Since the backscattered intensity depended on the scanning geometry of 
TLS, the scanning range and the incidence angle were employed 
together with the backscattered intensity as the input features to 
develop the SVR models. The grid search method (in combination with 
the 10-fold cross-validation) was used to tune the SVR parameters. 
Based on the results in this study, we conclude that:  

(i) Support Vector Regression (ε-SVR) can accurately estimate beach 
surface moisture contents from the LiDAR intensity data (with an 
average test RMSE of 0.71% ± 0.02% and R2 of 0.98% ± 0.002% 
for 50 times trials), which was slightly better than the traditional 
SR method. The RBF was the most suitable kernel for SVR model 
development in this study.  

(ii) The developed SVR models can eliminate the impacts of scanning 
geometry on the backscattered intensity in the process of esti-
mating BSM, without correcting the backscattered intensity in 
advance.  

(iii) The coverage and distribution of the training samples will 
significantly affect the prediction performance of SVR models. 
For example, SVR performed poorly at long ranges without the 
training samples covered. The minimum size of training samples 
required for SVR model development was 54, provided that the 
samples were distributed widely and evenly (i.e., under the 
feature intervals of 80 m range & 22◦ incidence angle & 13% 
moisture).  

(iv) With sufficient training samples (at least 54 uniformly distributed 
samples or 200 randomly selected samples), the predictive per-
formance of SVR was similar to that of ANN. It is worth noting 
that SVR still performed acceptably (with a test RMSE of 1.83%) 
even using extremely few training samples (only 16 field samples 
of uniform distribution), far better than the ANN (with a test 
RMSE of 4.02%). 
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