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Abstract. Wind farm control has been a topic of research for more than two decades. It has been identified as a
core component of grand challenges in wind energy science to support accelerated wind energy deployment and
to transition to a clean and sustainable energy system for the 21st century. The prospect of collective control of
wind turbines in an array, to increase energy extraction, reduce structural loads, improve the balance of systems,
reduce operation and maintenance costs, etc. has inspired many researchers over the years to propose innovative
ideas and solutions. However, practical demonstration and commercialization of some of the more advanced
concepts has been limited by a wide range of challenges, which include the complex physics of turbulent flows
in wind farms and the atmosphere, uncertainties related to predicting structural load and failure statistics, and the
highly multi-disciplinary nature of the overall design optimization problem, among others. In the current work,
we aim at providing a comprehensive overview of the state of the art and outstanding challenges, thus identifying
the key research areas that could further enable commercial uptake and success of wind farm control solutions.
To this end, we have structured the discussion on challenges and opportunities into four main areas: (1) insight
in control flow physics, (2) algorithms and AI, (3) validation and industry implementation, and (4) integrating
control with system design (co-design).

1 Introduction

Wind farms today consist of tens to hundreds of multi-
megawatt turbines working together to provide low-cost en-
ergy to electricity grids across the world. Operating for mul-
tiple decades, these machines constantly interact with turbu-
lent flows from the atmosphere, influenced by local orogra-
phy and further affected by the wakes of upstream turbines.
To ensure reliable and low-cost operation and the best possi-
ble performance in energy production, control solutions are
critical to optimize the turbine power production while bal-
ancing structural loading through the turbine components.

Advancements in wind turbine control solutions, collective
and individual pitch control, yaw control, and more have en-
abled higher energy capture while, at the same time, allow-
ing for lighter weight and lower cost machines (Bossanyi,
2003b).

However, the operation of wind turbines that are clustered
together in a farm is coupled through the flow. Thus, research
and development on control for wind energy applications has
increasingly shifted to the farm level – where the overall
performance, reliability, and cost of the fleet of turbines is
considered. Addressing complexities and uncertainties in the
physics of wind farm phenomena – from the flow to the ma-
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chine dynamics to the interaction with the grid – has proved
challenging and has ultimately limited widespread commer-
cial adoption of more advanced wind farm control solutions.
Due to this, wind farm control has been identified as a key
component of one of the three grand challenges in wind en-
ergy science (Veers et al., 2019) that must be resolved to un-
leash the full potential of wind energy in our future clean and
sustainable global energy system.

Core to the challenge of wind farm control are wakes.
Wake effects have long been recognized as influencing the
efficiency of wind turbine clusters, reducing the total energy
capture compared to turbines that operate in isolation. With
the development of large wind farms in the 1980s in Cali-
fornia, early work looked into the formulation of wake mod-
els in wind farms for use in the optimization of layout (Lis-
saman, 1979; Vermeulen and Builtjes, 1981; Jensen, 1983).
The first attempt to control wake effects – using axial induc-
tion control – was proposed by Steinbuch et al. (1988) with
the aim of increasing energy capture. Since then, many stud-
ies have looked into wind farm flow control (WFFC), aim-
ing not only for improved energy extraction but also for re-
duced structural loads, improved balance of the power grid,
and combinations thereof (see, e.g., Spruce, 1993; Sørensen
et al., 2005, and many more since then).

The focus of this manuscript is on wind farm flow con-
trol. We define it as the coordinated control of the turbines
in the farm, with the aim of influencing the flow (wakes, tur-
bulence) in such a way that it improves the overall figure of
merit of the farm. The latter can be, e.g., overall power ex-
traction, total lifetime, levelized cost of energy, or simply the
lifetime profit. A graphical impression of WFFC is provided
in Fig. 1, highlighting in particular some of the physics that
can be leveraged for influencing the flow (see also Sect. 1.2
for more details). Note that, in the literature, the term wind
farm or wind power plant control includes WFFC but is often
more broadly used. For instance, early work on wind plant
control focused on grid stability under increased penetration
of wind energy, using collective set-point strategies to bal-
ance the power grid, lumping all turbines together into one
power plant model (Schlueter et al., 1983; Javid et al., 1985;
Sørensen et al., 2002; Kristoffersen and Christiansen, 2003).
Similarly, the term supervisory control, while sometimes en-
compassing WFFC, also refers to safe operation, start up and
shut down, etc., for which flow interaction effects are usu-
ally not important. Next to this, the term wind farm control
is sometimes also used in the context of the control of active
and reactive power in the local wind farm power grid (Hansen
et al., 2002). We refer the reader to these and similar works
for broader discussions on wind farm control.

Finally, we note that some earlier reviews and perspec-
tive articles on wind farm control already exist. For instance,
Kheirabadi and Nagamune (2019) provides a comprehensive
review on increasing energy extraction with control. Later,
Andersson et al. (2021) and Shapiro et al. (2022) extend
the analysis to include the provision of grid services ob-

jectives, presenting a review of the corresponding studies.
Houck (2022) provides a review of the studies per investi-
gated flow control strategy with respect to power maximiza-
tion, structural load alleviation, and ancillary services ob-
jectives. A recent work of Eguinoa et al. (2021) discusses
WFFC in the context of electricity markets and grid inte-
gration, providing an initial overview of the capabilities and
prospects of the technology from a large-scale systems per-
spective. Earlier reviews can, e.g., be found in Johnson and
Thomas (2009), Knudsen et al. (2015), and Boersma et al.
(2017). In this work, we extend past review efforts by focus-
ing more broadly on outstanding research challenges in wind
farm control in terms of (1) insight in control flow physics,
(2) algorithms and AI, (3) validation and industry implemen-
tation, and (4) integrating control with system design (co-
design).

In the next subsections, we first briefly review the main
control objectives that are relevant for WFFC (Sect. 1.1) and
the main control approaches (Sect. 1.2) before we further de-
tail the scope of the current manuscript in Sect. 1.3.

1.1 Main control objectives studied to date

Very often, the main target of WFFC is to improve the lev-
elized cost of energy (LCoE). This corresponds to the sum
of all expenses (capital, operation and maintenance (O & M),
and end-of-life costs) discounted to a fixed point in time, di-
vided by the power production along the lifetime of the wind
power plant (Riva et al., 2019). Beyond improving LCoE and
other profitability objectives, wind farm control objectives
may include service provision to the electric grid and/or mit-
igation of adverse social and/or environmental impacts. We
briefly review the different control objectives that are com-
monly considered relevant for wind farm control.

Increasing energy extraction. A recent expert elicitation
(van Wingerden et al., 2020) involving academic and indus-
trial participants reports that a clear majority of the wind farm
(flow) control community considers increased energy pro-
duction to be the most important benefit of the technology.
Its potential value is directly quantifiable for a gain in annual
energy production (AEP) and increased revenue through pro-
ducing more power at a given electricity price. Accordingly,
it is the most studied objective of the wind farm flow con-
trollers, with several examples of multi-fidelity model im-
plementations, wind tunnel experiments, and field tests re-
ported in the literature. Recent reviews with detailed quanti-
tative comparisons can be found in Andersson et al. (2021)
and in Kheirabadi and Nagamune (2019). The level of pre-
dicted gains varies substantially based on the specifics of a
particular case, including the turbine technology, site and re-
source conditions, and more. Moreover, the confidence in the
predicted gains in energy capture depends critically on the
physical complexity of the wind farm flow represented in the
models used as well as on the accuracy of the measurement

Wind Energ. Sci., 7, 2271–2306, 2022 https://doi.org/10.5194/wes-7-2271-2022



J. Meyers et al.: Wind farm flow control 2273

Figure 1. Overview of wind farm flow control (WFFC) concepts and important elements that play a role.

sensors and the degree of sophistication of the considered
data analysis methods.

Reducing structural loading conditions on the turbine(s).
The higher levels of turbulence in the wake and the effects of
asymmetric inflows from partially waked conditions result
in additional structural loading on wake-impinged turbines.
This additional structural loading can affect various compo-
nents, such as the blades, hub, tower, bearings, transmission,
and various actuation systems. Via the reduction of local
wake-added turbulence and/or wake redirection, structural
loading on the wind turbines can be mitigated through farm
flow control. Compared to the increased energy capture ob-
jective, fewer studies investigate the dependencies of struc-
tural loading of wind turbines with regard to wake control
concepts (Kanev et al., 2018; Vali et al., 2019b, 2022). Over-
all, the potential for structural load mitigation may be quite
significant, and confidence in the predictions may be less sen-
sitive to model fidelity and uncertainty (see, e.g., Campag-

nolo et al., 2020). However, the capitalization of structural
load mitigation is harder to assess than changes in the power
production, since the connection among structural loading,
component reliability, remaining component lifetime, and ul-
timately O & M costs is challenging to assess (Clark et al.,
2022; Réthoré et al., 2014). Still, some clear benefits may be
realized both in the pre-construction and project development
phases in terms of wind farm layout and balance of systems
costs as well as during the operational phase (see Sect. 5 for a
more detailed discussion). Furthermore, the business case for
installing structural load-reducing farm flow concepts may
also be of interest for the realization of lifetime extensions of
existing turbines and farms.

Power tracking for ancillary services and balancing mar-
ket participation. As stated earlier, to support the grid stabil-
ity, a simple approach is to lump the farm together into one
power plant model and to use this to optimize the grid sup-
port. Simple set-point distribution schemes, which distribute
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the farm set-point to the different turbines in the farm, are
also commonly available (see, e.g., Kristoffersen and Chris-
tiansen, 2003; Hansen et al., 2006; van Wingerden et al.,
2017). However, for the ancillary services that involve reg-
ulation of the active wind farm power output over time spans
that surpass the turbine-to-turbine flow time, the ability to
control wake interactions may lead to improvements in the
way these services are provided. For example, when a re-
duction in total power output is demanded by the transmis-
sion system operators (TSOs), WFFC can be implemented
to maximize the (potential) energy extraction and to miti-
gate structural loading while sustaining the aggregated power
level within the quality of the TSO requirements (power
tracking) (Ela et al., 2014; Shapiro et al., 2017a; Boersma
et al., 2019). Accordingly, flow control can be implemented
to maximize the reserve power for higher compensation dur-
ing mandatory down-regulation (see, e.g., Siniscalchi-Minna
et al., 2019) as well as for higher value in the balancing mar-
ket and/or to minimize fatigue loads at all the selected tur-
bines (see, e.g., Vali et al., 2019b). Similarly, flow control
can support better asset management under flexible and dy-
namic electricity prices (Kölle et al., 2020; Eguinoa et al.,
2021). In the zero-subsidy era, maximizing the revenue is
likely to be prioritized over AEP gains, i.e., reducing the ac-
tive power during times of low electricity prices (optimiza-
tion of structural loads for a potential increase in lifetime
instead), up-regulation (boosting), and/or active power max-
imization during higher electricity prices, maximization of
the reserve power for the higher prices in the reserve market,
etc.

Other O & M improvements. WFFC concepts can addition-
ally be applied for protection of the power system as well as
of several turbine components. The former is typically de-
livered as other types of ancillary services, such as reactive
power and voltage control, and is addressed in the broader
definition of wind farm control (Hansen et al., 2006). The
latter can be in the form of protection against leading edge
erosion, icing, overheating of power electronics, etc. In or-
der to mitigate leading edge erosion, typically driven by ex-
treme or aggregated rain events, turbine curtailment via re-
duction of tip speed is the state-of-the art approach (Bech
et al., 2018). Similarly, active pitching is considered to be one
of the mitigation techniques for icing on the blades (Sundén
and Wu, 2015). For power electronics, avoiding overheating
of components can be addressed through induction control
(Ma et al., 2019). While these types of control are focused
on the turbine and its components, and while turbine–turbine
interactions through the flow may not play an important role,
these objectives may nevertheless be a relevant contributor
to an overall multi-objective wind farm control optimiza-
tion that includes flow coupling. For example, (leading edge)
erosion-safe mode via reduced tip speed at the upstream tur-
bines can be combined with the objective of structural load
mitigation at the downstream turbines, e.g., through axial
induction wake control strategy, potentially adding to the

relative profit increases recently reported by Hasager et al.
(2020).

Mitigation of environmental and/or societal impacts. Vari-
ations in the rotational speed and pitch are commonly
adopted as aerodynamic noise reduction techniques at wind
farms (see, e.g., Jianu et al., 2012). Additionally, restricted
turbine operation, typically in the form of curtailment or tur-
bine shutdown on demand, is used as a mitigation technique
for bird and bat collisions or for wildlife fatalities in general
(Marques et al., 2014). Again, mitigating control actions are
related to turbine control rather than to wind farm control.
However, inclusion in a multi-objective framework, either as
part of the objective function or as a constraint, may also
lead to interesting interactions with the modes of operation
of WFFC. This can further incentivize the implementation
of the technology at certain sites and support the transition
towards fully integrated WFFC.

1.2 Control approaches

We briefly review current WFFC approaches in terms of their
physical actuation of the wake. The most common mecha-
nisms considered to date include axial induction control and
yaw control, and these are the main focus of the current
work. However, tilt control is also of interest – particularly
for downwind and floating offshore wind turbines – and will
be briefly discussed. In the future, additional actuators in tur-
bine systems may provide other forms of control, e.g., the
use of blade flaps (Barlas and van Kuik, 2007; van Winger-
den et al., 2008), but these are excluded from the current dis-
cussion.

In reality, wind farm control relies on actuation at the tur-
bine level. This includes control of the torque set-point of
the generator, the blade pitch angle, and the turbine yaw set-
ting. However, when discussing wind farm control, very of-
ten, collective effects on the flow physics that result from tur-
bine actuation are directly considered as a control input with-
out considering the precise actuation at the turbine level. The
most common example is induction control, in which the ax-
ial induction set-point of the turbine is changed to affect the
wake and its downstream interactions. This may be achieved
in various ways, i.e., by changing the generator torque set-
point (thus changing the tip-speed ratio), the collective blade
pitch angles, or combinations thereof. We should note that,
although these details do not matter much for the effective
wake flow development, they do matter in terms of loads and
power and should be included in the overall control optimiza-
tion. For instance, derating the turbine without pitching the
blades is suboptimal in terms of power extraction, i.e., given
a thrust set-point, there is a unique pitch to tip-speed ratio
combination that maximizes power. When considering yaw
control, changes in the yaw set-point can lead to changes in
the thrust set-point as well, which need to be properly cap-
tured for correct wake behavior. Again, these changes can
include changes in generator torque or blade pitch set-points,

Wind Energ. Sci., 7, 2271–2306, 2022 https://doi.org/10.5194/wes-7-2271-2022



J. Meyers et al.: Wind farm flow control 2275

and precise details can matter a lot for the effective power
output and turbine structural loads. Finally, we note that,
given a selected thrust and yaw set-point, the effective tur-
bine torque (and related power set-point) will have a subtle
effect on the amount of wake rotation induced by the turbine,
but these effects are small, given that modern turbines oper-
ate at high tip-speed ratios.

Before discussing wind farm control strategies in more de-
tail, we distinguish between two main categories, i.e., quasi-
static WFFC and dynamic WFFC. The former approach
changes turbine set-points at a relatively slow pace, adapt-
ing them to background meteorological variations (changes
in wind direction and/or wind speed over the day) but does
not react to physical details that happen at time scales that are
significantly faster than the farm flow through time. Dynamic
wind farm control aims at including faster flow physics, e.g.,
accounting for wind gusts traveling through the farm or for
changes of turbine set-points traveling through wakes. More
advanced dynamic approaches aim at directly influencing the
wake mixing and turbulence. We briefly discuss six com-
binations of strategies that have received a lot of attention
in the literature: static induction control, static yaw control,
static yaw and induction control, dynamic induction control,
dynamic yaw (and induction) control, and dynamic individ-
ual pitch control. In addition, a short treatment of tilt con-
trol (from both a static and dynamic perspective) is intro-
duced. As previously discussed, increased energy extraction
has been the control objective most commonly investigated
so far, but other objectives around structural loading, relia-
bility, and more have also been considered.

Static induction control is the earliest control strategy pro-
posed for wind farm control (Steinbuch et al., 1988). The
main idea is to down-rate upstream turbines, reducing their
axial induction set-point and wake strength in the hope of
increasing energy extraction of waked turbines. Individual
turbine induction set-points can then be optimized at farm
level as a function of wind direction, wind speed, etc. and
can be used in an open-loop scheme to control the farm.
However, although initial results based on simplified wake
models (e.g., Corten and Schaak, 2003; Schepers and van der
Pijl, 2007; Horvat et al., 2012; Tian et al., 2014) were very
promising, in recent years, it was convincingly shown that
potential gains in energy extraction are smaller than origi-
nally predicted (Gebraad et al., 2015; Bartl and Sætran, 2016;
Bartl et al., 2017; Annoni et al., 2016b; van der Hoek et al.,
2019). Among other results, wind tunnel experiments con-
ducted with small-scale turbines in a neutral boundary layer
have shown that, while down-rating does energize the wake,
it also results in a slower recovery, thereby achieving only
modest power gains downstream (Bottasso and Campagnolo,
2020). Similarly, small gains observed in a recent full-scale
field experiment Bossanyi and Ruisi (2021) remain within
statistical uncertainty. Nevertheless, recently, there has been
some renewed interest in static induction control, e.g., in
tightly spaced farms – see Sect. 2.1.1 for further discussion.

Static yaw control exploits the fact that wind turbine wakes
are redirected when the turbine is misaligned with the in-
coming wind direction (Clayton and Filby, 1982; Atkinson
and Wilson, 1986a), which is a simple result from Newton’s
action–reaction principle. An illustration of the effect ob-
served in large-eddy simulation (LES) is shown in Fig. 2
(middle panel). Atkinson and Wilson (1986b) and Parkin
et al. (2001) were among the first to suggest using this mech-
anism to influence operational conditions (energy extraction,
loads) in downstream turbines. Since then, this approach has
received significant attention, with strong potential for en-
ergy gains observed in simulations (Jiménez et al., 2010;
Gebraad et al., 2016), wind tunnels – which provided the
first experimental evidence of this method in Campagnolo
et al. (2016a) and later in Bastankhah and Porté-Agel (2019)
and Campagnolo et al. (2020) – and in the field (Fleming
et al., 2017, 2019; Howland et al., 2019; Ahmad et al., 2019;
Fleming et al., 2020; Doekemeijer et al., 2021; Simley et al.,
2021). Overall, similar to static induction control, wind tur-
bine yaw set-points in a farm can be optimized offline as
a function of wind direction, speed, etc. and applied in an
open-loop control scheme to the farm. The first commercial
products that employ yaw control are currently on the market
(Siemens Gamesa Renewable Energy, 2019). Nevertheless, a
number of challenges remain, as discussed in Sect. 2.1.2.

Static yaw and induction control can potentially be com-
bined. Yawing a turbine to redirect its wake increases the
turbine structural loading. Combining yaw control with de-
rating (under-induction) of the turbine can be used to find a
trade-off between energy extraction and structural load re-
duction at the level of the farm (Bossanyi, 2018; Debusscher
et al., 2022). Another track that has received some attention is
the combination of yaw control and over-induction. In a de-
tailed LES-based optimization study of wind farm controls,
Munters and Meyers (2018a) noted that energy extraction by
(static) yaw control can be further enhanced by combining it
with over-inductive induction control (under high thrust co-
efficient). More recently, the idea was investigated more thor-
oughly by Cossu (2021b), who noted that stronger induction
enhances wake deflection while also reducing the losses in
the upstream yawed turbine.

Dynamic induction control. In dynamic induction control,
turbine thrust set-points are changed much faster, with the
aim of potentially increasing energy extraction over the static
situation. Goit and Meyers (2015) and Goit et al. (2016) were
the first to investigate this approach in an LES-based opti-
mization setting using a receding horizon control approach;
they found theoretical gains that can be quite high. However,
the complexity of LES-based receding horizon control re-
mains too large for practical application. A more practical
approach, based on simple sinusoidal variations of the thrust
set-point, was proposed by Munters and Meyers (2018c) and
was shown to increase wake mixing, thus increasing the en-
ergy extraction at downstream turbines. Later, Frederik et al.
(2020b) provided a first proof of concept in a wind tunnel
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Figure 2. Large-eddy simulation comparing yaw and tilt control versus a baseline setup. Figure from Fleming et al. (2015). Reproduced
with permission.

setting, validating the potential of dynamic induction con-
trol. Nevertheless, many issues need further investigation
(see Sect. 2.2). Finally, we should mention that some stud-
ies, using LES, have also focused on power tracking, dy-
namically changing individual turbine induction set-points
(Shapiro et al., 2017a, 2018b). In this case, the dynamic as-
pect was not so much related to trying to influence turbu-
lent mixing but rather to dynamically responding to changing
wake characteristics due to turbulent wind gusts and chang-
ing turbine set-points that travel through the wakes.

Dynamic yaw (and induction) control. Studies on dynamic
yaw (possibly in combination with dynamic induction) are
more scarce. Munters and Meyers (2018a) used LES-based
optimization to study the potential of various combinations
of yaw and induction control. They found that sinusoidal dy-
namic yaw control can be used to trigger wake meandering
but that the approach is less effective than static yaw control
and further loses its effectiveness with higher turbulence in-
tensities. They further found when combining dynamic yaw
and induction control that most of the effectiveness comes
from the baseline static yaw and over-induction set-points

and that the additional dynamic response to the turbulent
background field only brings smaller improvements. How-
land et al. (2020), also using LES, reported similar conclu-
sions for a neutral atmospheric boundary layer. However, re-
sults may depend, to a large extent, on wind farm layout and
spacing (Munters and Meyers, 2018b).

Dynamic individual pitch control. Cyclic individual pitch
control has been used to control turbine structural loads by
reducing the 1P and 3P blade-passing excitation frequencies
(Bossanyi, 2003a). The use of cyclic pitch for WFFC was
first explored by Fleming et al. (2014) to redirect the wake
in lieu of yawing or tilting the rotor (an approach that could
technically be categorized as “static” wake redirection) and
was then experimentally tested in a wind tunnel by Campag-
nolo et al. (2016b). More recently, in an LES study, Fred-
erik et al. (2020a) used a modulation version of cyclic pitch
control to actuate helical wake modes that improve mix-
ing, and thus power extraction, at downstream turbines. The
method has the advantage of not increasing structural loading
as much as dynamic induction control. See more in Sect. 2.2.

Wind Energ. Sci., 7, 2271–2306, 2022 https://doi.org/10.5194/wes-7-2271-2022
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Tilt control can be used to provide vertical steering of
wakes (see also Fig. 2, bottom panel). While most turbines do
not include actuators or degrees of freedom that would enable
vertical wake steering, such steering may also be achieved
for floating turbines using differential ballast control (Nanos
et al., 2020). Simulation studies (Cossu, 2020, 2021a) and
experimental studies with scaled turbines (Scott et al., 2020;
Nanos et al., 2020; Bossuyt et al., 2021) indicate that de-
flecting the wake towards the ground results in larger power
boosting than when the wake is deflected upward towards the
sky.

1.3 Outline

The rest of the paper is organized around four major areas
with important fundamental challenges but also significant
potential for improvement. In Sect. 2, we review state of the
art and knowledge gaps from the wind farm control perspec-
tive in the physics of turbulence, wakes, and the atmospheric
boundary layer as well as what physics can be influenced.
Then, in Sect. 3, we explore opportunities for improving al-
gorithms, including state estimation and AI or machine learn-
ing. Section 4 addresses outstanding needs in experimental
validation and demonstration at different scales from simula-
tion to field experiments. Finally, in Sect. 5, we look at op-
portunities to integrate wind farm control in the broader con-
text of wind turbines and farm design (i.e., co-optimization
or co-design of control strategies with the physical system).

2 WFFC physics: turbulence, wakes, and the
atmospheric boundary layer

In the current section we first discuss challenges and oppor-
tunities with respect to quasi-steady flow physics in Sect. 2.1.
Subsequently, we discuss aspects of wake dynamics and tur-
bulence in Sect. 2.2. Finally, in Sect. 2.3, the relevance of the
control of mesoscale phenomena, such as wind farm block-
age, are discussed.

2.1 Quasi-steady flow control physics

Static wake control concepts rely on affecting the wake
through relatively slow changes of the control degrees of
freedom of the turbine in a way that affect the time-averaged
properties of the wake. Over the years, this type of control
has been extensively studied, so the response of the wake
to control actions is relatively well documented. Neverthe-
less, open questions remain when considering, e.g., near-
wake behavior, impact of atmospheric conditions, effects of
wake shape, and deficit on structural loads, as further dis-
cussed in Sect. 2.1.1 for steady axial induction control and in
Sect. 2.1.2 for steady yaw control.

2.1.1 Axial-induction-based control

In the past, most research on axial induction has been on in-
creasing energy extraction. However, more recently, several
studies have demonstrated the potential for increased energy
extraction from static induction control to be rather low (see
discussion in Sect. 1.2). Gebraad et al. (2015) showed that
the possible kinetic energy gains in the wake resulting from
under-induction are mainly concentrated at the outer part of
the wake. Since the wake expands as it flows downstream,
this kinetic energy may not be captured by a turbine stand-
ing downstream. However, overall gains in power production
may still be attainable in situations with partial wake overlap.
There are also some indications that under-induction may
lead to increased energy extraction in tightly spaced wind
farms (spacing less than 4 rotor diameters), where the ef-
fect of reducing the initial velocity deficit in the near wake
is dominant (van der Hoek et al., 2019). Also full-scale ex-
periments by Duc et al. (2019) show indications that gains
may be more significant in a tightly spaced pair of wind tur-
bines in fully waked conditions. Furthermore, recent efforts
have shown some opportunities for increasing power produc-
tion depending on the implementation of the control strategy
(Pedersen and Larsen, 2020). Nevertheless, demonstrating in
field experiments effective gains that are statistically signifi-
cant remains challenging (Bossanyi and Ruisi, 2021).

The use of over-induction, in contrast to the under-
induction that is usually considered in axial induction con-
trol, is a relatively new research area. In below-rated regimes,
it is possible to reduce the power set-point of a turbine while
increasing the turbine thrust set-point. This can be achieved
by increasing the tip-speed ratio while optionally also adapt-
ing the pitch angle (Goit and Meyers, 2015). Such an opera-
tional regime is normally never considered for down-rating,
as it increases turbine structural loading. Over-induction was
first considered in a dynamic induction control context by
Goit and Meyers (2015) (see below). Munters and Mey-
ers (2016) found that, when reducing the response time
of dynamic control towards a static approach, significant
power increases may still be realized using over-induction,
whereas this is not the case for under-induction. Martínez-
Tossas et al. (2022) investigated the wake behavior under
over-induction through LES, showing that it leads to faster
wake breakup as the turbine starts to behave more as a bluff
body, and they derived an empirical model to capture this en-
hanced recovery mechanism. Additional research is needed
in this area, among others, showing the benefit of this mech-
anism for wake mitigation and investigating the effects of
increased structural loading associated with the higher thrust
set-points.

Finally, it is well documented that, in turbine arrays, multi-
ple set-point combinations that yield approximately the same
energy output exist (see, e.g., the wind tunnel experiments
of Bartl and Sætran (2016); Bartl et al. (2017)). This can
be leveraged to minimize overall turbine structural loads
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while providing power output according to a schedule for the
full farm. Recent research in this area can be found in Vali
et al. (2019b), Baros and Annaswamy (2019), Galinos et al.
(2020), and Stock et al. (2020). In order to successfully apply
these concepts, further research and possible test campaigns
are needed to validate wind farm structural load models in re-
lation to the effect that axial-induction-based wind farm con-
trol concepts have on the structural loads on specific compo-
nents of the downstream turbines. This direction of research
may be very relevant for LCoE reductions of wind farms in
the future, particularly if included as part of an overall co-
optimization framework – see Sect. 5 for further discussion.

2.1.2 Wake steering using yaw offsets

At present, wake steering through yaw is probably the most
advanced control approach in terms of commercial realiza-
tion (see, e.g., Siemens Gamesa Renewable Energy, 2019).
Nevertheless, a number of research challenges remain in this
area, mostly related to the complex response of the wake
to yaw set-points and its strong dependence on atmospheric
conditions.

First of all, when the wake is deflected using a yaw offset,
it gradually deforms into a curled shape when moving down-
stream, deforming into a kidney-like cross section (Howland
et al., 2016; Bastankhah and Porté-Agel, 2016; Bartl et al.,
2018; Fleming et al., 2018). As a result of this and the natural
wake rotation induced by the turbine torque, the wake deflec-
tion is also not symmetric with respect to the yaw offset (Bas-
tankhah and Porté-Agel, 2016; Bartl et al., 2018; Fleming
et al., 2018). However, it is well known that the wake shape
can depend strongly on atmospheric conditions. In particular,
stratification (Magnusson and Smedman, 1994; Chamorro
and Porté-Agel, 2010) and wind veer (Abkar and Porté-Agel,
2016; Bromm et al., 2017) are known to have significant ef-
fects on wake behavior. The effect of these parameters in the
presence of yaw is much less studied to date. Also, turbine
control can have an effect on the wake of a yawed turbine:
e.g., the effect of load-reducing individual pitch control on
the behavior of the wake of a wake-steering wind turbine was
investigated using LES in Wang et al. (2020a).

Secondly, the structure of a deflected wake includes the
presence of a “transverse wake” (Atkinson and Wilson,
1985, 1986a), i.e., a lateral flow component (or side-wash)
that results in the lateral displacement of the streamwise ve-
locity deficit. In turbines that are sufficiently close down-
stream of a yawed turbine, this effect (called “secondary
steering”) generates a change in inflow direction, as first ob-
served in LES simulations by Fleming et al. (2018); Wang
et al. (2018) and also confirmed by wind tunnel experiments
in the latter reference. Similarly to above, this phenomenon is
expected to depend on atmospheric conditions such as strati-
fication and wind veer.

In recent years, significant research has focused on de-
veloping wake models that include wake steering, chang-

ing wake shape, and possibly also secondary steering (see,
e.g., Bastankhah and Porté-Agel, 2016; Shapiro et al., 2018a;
Martínez-Tossas et al., 2019; Howland and Dabiri, 2021).
Additional parameterization of atmospheric conditions and
testing in actual control settings are still largely ongoing re-
search topics.

Finally, in terms of loading, static yaw control has mixed
implications that need to be carefully considered. Yaw con-
trol can be used to reduce loading in downstream turbines by
slightly yawing the upstream turbine to reduce partial waking
of downstream machines. At the same time, however, yaw
control that improves energy production may increase par-
tial waking and structural loading of downstream machines
(Herges et al., 2018). Furthermore, the yawed turbine may
also see some increase in structural loading under certain op-
erational conditions (Damiani et al., 2018). Thus, the appli-
cation of static yaw control in practice seeks to balance or
avoid negative structural loading impacts while still achiev-
ing benefits in increased power and energy production (Flem-
ing et al., 2019).

2.2 Dynamic flow control physics

Here, we focus on the challenges related to triggering and in-
teracting dynamically with wakes and turbulence as a means
to control wind farm flow and to speed up wake breakup or
to increase mixing and entrainment into the wakes. Recently,
some first studies suggest that this effect may be leveraged
to significantly increase the energy extraction of wind farms
(Goit and Meyers, 2015; Munters and Meyers, 2018c; Fred-
erik et al., 2020a).

2.2.1 Wake dynamics

From a phenomenological point of view, two different phys-
ical mechanisms that lead to wake breakup have received
significant attention: tip- and/or root-vortex instabilities and
wake meandering. Next to this, vortex rings triggered by the
dynamic modulation of turbine thrust (Munters and Meyers,
2018c) have also received some attention recently. We briefly
discuss these topics here, highlighting possible connections
to control and discussing limitations and challenges.

Tip-vortex and root-vortex instabilities have been inves-
tigated as an explanation for wake breakup and mixing
(Sørensen, 2011; Iungo et al., 2013; Viola et al., 2014; Quar-
anta et al., 2015). These studies mostly looked at linear sta-
bility analysis of single wakes without effectively studying
wind farm control. Nevertheless, e.g., Quaranta et al. (2015)
suggest that carefully selected modulation of the blade rota-
tion leads to faster wake breakup triggered by tip-vortex in-
stability. However, all of these studies are at low turbulence
intensities, for which the wake remains very stable, and dy-
namics are dominated by the helicoidal tip-vortex system. At
higher turbulence intensities, the tip-vortex system is dissi-
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pated relatively quickly, and other nonlinear effects play a
dominant role in wake mixing.

A second phenomenon that has been studied extensively is
wake meandering (Taylor et al., 1985; Medici and Alfreds-
son, 2008; Larsen et al., 2008; España et al., 2011; Kang
et al., 2014; Foti et al., 2018). This type of instability is
mostly triggered by large-scale motions in the background
turbulence and leads to increased dynamic loading on down-
stream turbines. Munters and Meyers (2018a) investigated si-
nusoidally varying yaw control for increased mixing, observ-
ing the triggering of wake meandering. However, the effec-
tiveness of this approach decreased for higher turbulence in-
tensities, as wake meandering in this case is already triggered
(and saturated) by ambient turbulence. Moreover, at low tur-
bulence intensity, static yaw control yielded better results for
the cases studied by Munters and Meyers (2018a), and, al-
though wake meandering will improve power production, the
increased loading may be more of a disadvantage. Neverthe-
less, whenever wake meandering is present, it is quite rele-
vant to include it in control models so that turbines properly
respond to time-varying inflow conditions caused by mean-
dering. To date, wind farm control studies that explicitly in-
clude wake meandering in their models remain scarce (Yang
et al., 2015; Munters and Meyers, 2018a; Doekemeijer et al.,
2020b).

Munters and Meyers (2018c) proposed a sinusoidally
varying thrust coefficient to induce additional mixing in the
wake. This type of actuation leads to the excitation of a train
of large annular vortex rings surrounding the wake that en-
train high-speed fluid into the core of the wake (Munters
and Meyers, 2018c; Yılmaz and Meyers, 2018) (see also
Fig. 3). While Munters and Meyers (2018c) used a simu-
lation setup based on an actuator disk model, Yılmaz and
Meyers (2018) investigated the same type of control using an
actuator line model, using a combination of pitch and torque
control. Later, dynamic induction control was also tested in
a wind tunnel by Frederik et al. (2020b) and by Brown et al.
(2021), while a combined actuator line simulation and ex-
perimental study addressing both power and structural load-
ing is reported by Wang et al. (2020c). However, Munters
and Meyers (2018c) did not find evidence that sinusoidal dy-
namic induction control remains effective when used for any-
thing other than first-row turbines or when used in situations
with high turbulence intensities (for which wake mixing is
already very high). When considering a large farm or large
turbulence intensities, to date, no simple dynamic schemes
that can lead to increased energy extraction were identified
(see also Sect. 2.2.2 below).

Recently, Frederik et al. (2020a) proposed a different type
of dynamic control that is based on a modulation of classi-
cal cyclic pitch control to trigger helicoidal breakup of the
wake. A visualization of the typical breakup pattern is shown
in Fig. 3. The major advantage of this approach over collec-
tive dynamic induction control is that actuation amplitudes
are much smaller and that added turbine structural loading is

much lower, while wake breakup may even be slightly better.
However, to date, this work has remained limited to inflow
with low turbulence intensity and a few turbines only. Exten-
sion to more complex inflow conditions and large farms is
still under investigation.

The field of dynamic control to trigger faster wake breakup
is still very young. Theoretical connections to the field of lin-
ear stability analysis may be of interest but have not been
fully explored. Next to that, methods have only been investi-
gated for rather simple inflow conditions and small turbine
arrays. The effects of stratification, wind shear, veer, etc.
have not yet been studied.

Finally, apart from representing a possible excitation
mechanism for active control, wake dynamics may also play
an important role in the breakup of wakes when exter-
nally forced. For instance, Abraham and Hong (2020) show
that dynamic wake modulation by wind gusts or direction
changes plays an important role in wake recovery. As another
example, offshore-floating wind turbines and their movement
(heave, surge, roll, and platform yaw and pitch) may be an-
other cause of external excitation of the wake (Wise and
Bachynski, 2020) that will gain relevance in the future. Incor-
porating these effects into improved wake models for control
(e.g., in the context of ancillary service power tracking) is
another interesting avenue of future research.

2.2.2 Boundary-layer turbulence

The atmospheric boundary layer is the lower part of the at-
mosphere that is directly influenced by drag and convective
heat exchange with the surface. Its height can vary from
tens of meters to several kilometers, depending on atmo-
spheric conditions, stratification, surface roughness, etc. De-
pending on the stratification regime, the boundary layer can
be very turbulent (unstable conditions) or nearly laminar and
intermittent (very stable conditions). Also, the size of co-
herent turbulent motions in the boundary layer can change
significantly, with a cascade of scales ranging from kilome-
ters down to millimeters in unstable and neutral conditions,
whereas the largest coherent scales in stable conditions tend
to be much smaller. For a classical review of the most im-
portant aspects that play a role, we refer to Stull (1988) and
Garratt (1994).

Given their size, large wind farms interact in complex
ways with the atmospheric boundary layer. The size of mod-
ern turbines places them in the middle of the turbulent spec-
trum (for neutral and unstable conditions), which is impor-
tant for turbine structural loading but also for power variabil-
ity and interactions of atmospheric turbulence with wakes.
The wind farm will also lead to the development of an in-
ternal boundary layer, akin to a classical roughness change.
An illustration of the important interactions that play a role
is shown in Fig. 4. We refer to Stevens and Meneveau (2017)
and Porté-Agel et al. (2020) for recent reviews on the topic
of wind farm–boundary-layer interaction.
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Figure 3. Illustration from an LES study of a stable, normal-operation wake (left panel), wake resulting from (periodic) dynamic induction
control (Munters and Meyers, 2018c) (middle panel), and wake resulting from the helix approach (Frederik et al., 2020a) (right panel) along
downstream distances normalized in turbine diameter (D). Dark blue shading corresponds to an isosurface of the velocity; light blue shading
in the horizontal plane corresponds to velocity magnitude. For further details on simulation setup, etc., see Frederik et al. (2020a).

Figure 4. Illustration of the interaction between the atmospheric boundary layer and large wind farms. From Stevens and Meneveau (2017).
Reproduced with permission.

From a control perspective, the interactions between wind
farms and the atmospheric boundary layer may lead to inter-
esting opportunities. The wind turbines can be seen as flow
actuators and can be potentially controlled to influence wake
mixing, entrainment of high-momentum flow into the farm,
etc., possibly leading to increased energy extraction or re-
duced structural loading. To date, research in this area is
scarce and has been limited to neutral atmospheric condi-
tions only. Goit and Meyers (2015) were the first to consider
wind farm–boundary-layer interaction in an optimal control
setting governed by large-eddy simulations. Later, Goit et al.
(2016) and Munters and Meyers (2017, 2018a, b) followed
up on this work, all focusing on increasing energy extrac-

tion in the wind farm using dynamic induction control. How-
ever, from a control implementation point of view, this ap-
proach is hindered by the large cost associated with using
large-eddy simulations as a control model. Moreover, strong
simplifying assumptions – i.e., perfect knowledge of the state
– and a control model that exactly matches the (virtual) plant
were used (Munters and Meyers, 2017). Unfortunately, phys-
ical insight into the dynamic controls that can be distilled
from this framework into simple and robust control laws re-
mains elusive. Munters and Meyers (2018c) performed a de-
tailed analysis of LES-based optimal control to try and iden-
tify such laws, uncovering sinusoidal induction control as a
mechanism to increase wake mixing (see Sect. 2.2). How-
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ever, this mechanism only works for first-row turbines and
explains only a fraction of the energy gains observed in the
full LES-based dynamic controls. Whether the remaining
part of the gain is related to the control of turbulence and
entrainment in the atmospheric boundary layer or rather to
the physics of wake mixing in more downstream turbines re-
mains unknown.

Without insights into the control physics, devising a sim-
ple controller that leverages wind farm–boundary-layer inter-
actions may not be feasible. An alternative would be to build
a real-time controller that directly uses turbulence-resolving
simulations, such as large-eddy simulations, as a control
model. Whether it is feasible to arrive at a controller that can
be used in real time will depend on the minimum resolution
(Bauweraerts and Meyers, 2019) or possible model simpli-
fications (Boersma et al., 2018) that still represent the rele-
vant physics while making the control model sufficiently fast.
Additional challenges are related to the correct estimation of
the full three-dimensional turbulent state (Bauweraerts and
Meyers, 2021) and associated uncertainties (see also Sect. 3).
With further advances in computer architecture and flow sen-
sors, such a brute-force optimal control approach may be-
come feasible in the long term but will most probably remain
out of reach for the next decade.

2.3 Mesoscale effects, blockage, and wind farm wakes

With wind farms growing in size, effects that extend beyond
the scale of the atmospheric boundary layer are becoming
visible. Two effects that have received significant attention
are wind farm wakes and blockage. We hypothesize that wind
farms may interact in other ways with mesoscale systems,
such as land–sea breeze systems, convective cells, etc. How-
ever, to date, these interactions have not been studied in much
detail. Given that wind farms can influence the system on
this scale, there may also be opportunities for control by ei-
ther mitigating effects (e.g., power loss) or by incorporating
mesoscale coupling in a more general optimal control setting.

Wind farm blockage was first observed in field experi-
ments by Bleeg et al. (2018), and they reported possible wind
speed reductions between 2 % and 4 % because of wind flow-
ing around the farm (instead of through it). Schneemann et al.
(2021) performed lidar measurements of the Global Tech I
offshore wind farm in Germany, showing wind speed reduc-
tions of up to 6 %. Furthermore, extensive work has studied
blockage in simulations and in wind tunnel experiments, with
research following two main working hypotheses for the root
cause of blockage. Currently, various new full-scale experi-
ments are underway to further identify wind farm blockage
(see, e.g., Moriarty et al., 2020; RWE Renewables, 2021).

To date, the working hypothesis that has received most
attention relates wind farm blockage to classical hydrody-
namic blockage. Segalini and Dahlberg (2020) performed de-
tailed wind tunnel experiments in neutral conditions, show-
ing blockage effects in the order of 2 % to 3 %. Earlier

wind tunnel studies have shown similar effects for a row
of wind turbines, while in side-by-side arrangements, so-
called in-field blockage may even increase energy extrac-
tion (McTavish et al., 2014). Several simulation studies
have also investigated hydrodynamic blockage, including
Meyer Forsting et al. (2017), Wu and Porté-Agel (2017), and
Bleeg et al. (2018). When simplifying the flow physics to
potential flow and a single axisymmetric open rotor, we ar-
rive at the Betz limit as a direct expression of hydrodynamic
blockage. From this perspective, hydrodynamic blockage in
wind farms would simply be a result of the difference be-
tween the expected Betz optimal point for each turbine and
the effective power extraction in a wind farm setup that is
not anymore axisymmetric (i.e., when jointly considering all
rotor surfaces). From a controls or optimization perspective,
including these additional physics may lead to different op-
erational set-points (and/or designs) when turbines are clus-
tered together. However, while the effect of turbulent mix-
ing of the wake can be neglected in the Betz theory, it will
play a significant role in wind farms, typically reducing wake
deficits, and therefore also influencing blockage. In lidar ex-
periments, Schneemann et al. (2021) observed that the effects
of blockage are fully absent in unstable (highly turbulent) at-
mospheric conditions but are prominently present in stable
atmospheric conditions. Better understanding these effects
and including them in control and design models will be an
important step to improving wind farm set-point optimiza-
tion.

A second working hypothesis that has been suggested as
an important root cause for blockage is the excitation of at-
mospheric gravity waves by wind farms. It is well understood
that gravity waves are excited in the stably stratified free at-
mosphere by orography, such as mountains or hills (see, e.g.,
Teixeira, 2014, for a review). Smith (2010) was the first to
suggest that large wind farms may also excite gravity waves,
with a potential impact on power production because of pres-
sure feedback in the wind farm boundary layer. Allaerts and
Meyers (2017) and Allaerts and Meyers (2018) performed
large-eddy simulations of neutral and stable boundary layers,
also showing that gravity waves may reduce wind speeds up-
stream of the farm, with the effects in stable boundary layers
being significantly larger. Allaerts and Meyers (2019) pro-
posed a fast engineering model to incorporate the effect of
gravity waves in wind farm wake models, partly inspired by a
simpler model proposed by Smith (2010). Using this model,
Lanzilao and Meyers (2021) performed a set-point optimiza-
tion study that tried to mitigate energy losses, finding possi-
ble power gains of 4 % to 14 %, depending on atmospheric
conditions. To date, experimental data that confirm the ex-
istence of gravity waves excited by wind farms are lacking,
and additional research is necessary. Unfortunately, the ef-
fects of gravity waves are very difficult to reproduce in wind
tunnels, so more full-scale data are needed. Finally, we note
that blockage may be a combination of classical hydrody-
namic blockage and wave effects, depending on atmospheric
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conditions. A first attempt to disentangle both effects in sim-
ulations was recently discussed by Centurelli et al. (2021).

Apart from blockage, wind farm wakes have also received
significant attention in recent years. First observations us-
ing satellite imaging already date back to Christiansen and
Hasager (2005) for the Nysted and Horns Rev I farm, show-
ing that farm wakes can persist over long distances in sta-
ble atmospheric conditions. Since then, several other studies
have looked into wind farm wakes (Nygaard and Hansen,
2016; Nygaard and Newcombe, 2018; Platis et al., 2018;
Cañadillas et al., 2020), with wakes extending more than
50 km in some cases (Cañadillas et al., 2020). Compared
to turbine wakes, wind farm wakes decay much slower.
Whether it is possible to improve vertical mixing or to redi-
rect farm wakes by control has not yet been established but
may lead to interesting new research challenges. Whether
such mitigation strategies would be economically viable is
another open question, particularly since interacting farms
are not necessarily owned by the same company.

Finally, we remark that many more mesoscale effects that
influence wind farm operation exist: weather fronts, thun-
derstorms, coastal gradients, gravity waves originating from
orography, etc. However, many of these mesoscale systems
are too large to be directly affected by wind farms. In these
situations, wind farm control boils down to optimally re-
sponding to larger-scale phenomena, e.g., when they are
advected through the farm, while keeping track of flow-
feedback effects at smaller scales, such as turbine wakes.
When considering optimal control, an important challenge
in this context is the identification of these large-scale sys-
tems, as they are not straightforwardly accessible through lo-
cal measurements within the wind farm.

3 Control algorithms

Understanding the control physics that can potentially be
leveraged for WFFC (see Sect. 2) does not suffice to arrive
at an effective and robust wind farm controller. At the core
of WFFC, we have the operational logic and algorithms that
make the decision regarding how to operate the individual
turbines based on the actual conditions to maximize a certain
objective (e.g., power maximization, structural load distribu-
tion, or the provision of ancillary services). There are many
ways to categorize the algorithms, but in general, we can talk
about open-loop control and closed-loop control. We start
this section by explaining these different concepts and by
giving an overview of the state of the art. Later, in Sect. 3.3,
we indicate the synergies with the field of machine learning
and AI.

3.1 Current practice – open-loop control

The current baseline for WFFC is defined by many recently
performed field experiments in which induction and wake
steering are tested (Fleming et al., 2017; Ahmad et al., 2019;

Figure 5. Open-loop control scheme: current practice in wind farm
flow control (Horns Rev-I wake picture courtesy: Vattenfall. Pho-
tographer is Christian Steiness).

Howland et al., 2019; Duc et al., 2019; Fleming et al., 2020;
Doekemeijer et al., 2021; Bossanyi and Ruisi, 2021; Simley
et al., 2021). In all these experiments, the control algorithm is
based on offline-calibrated, steady-state engineering models.
These models are optimized offline for different atmospheric
conditions, and look-up tables (LUTs), which are used online
in combination with external inputs, are generated (Doeke-
meijer et al., 2021). These external inputs – such as mean
wind direction, wind speed, and possibly other atmospheric
conditions such as turbulence intensity, and stability – are
fed into the LUT to determine the optimal control settings.
In traditional control terminology, this architecture can be la-
beled as “open-loop” control, and the performance strongly
depends on the accuracy of the model and is prone to distur-
bances. The information flows as demonstrated in Fig. 5 are
followed within the “open-loop” control scheme.

Although this open-loop approach has been successful in
controlled testing environments to date, it requires human
check-ins of small test sites to confirm correct operation
(Bossanyi and Ruisi, 2021; Fleming et al., 2020; Howland
et al., 2019). To apply WFFC at the scale of whole wind
farms and higher temporal resolutions and to better manage
uncertainties and model errors, robust feedback control is an
important feature which can directly accommodate the ma-
jority of the inherent uncertainties in wind energy produc-
tion.

3.2 The closed-loop paradigm

For wind farm control, the feedback information flows are
demonstrated in Fig. 6. In this feedback control setting, mea-
surements are used in a real-time optimization framework to
determine the next control policy. This framework can deal
with, among other factors, model uncertainty and unknown
disturbances. For example, in Doekemeijer et al. (2019),
the benefits and challenges for closed-loop control are dis-
cussed using the engineering model FLORIS. However, the
level of complexity and detail embedded in closed-loop con-
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Figure 6. Closed-loop control scheme: envisioned framework for
future wind farm flow control (Horns Rev-I wake picture courtesy:
Vattenfall. Photographer is Christian Steiness).

trol can differ significantly, e.g., steady-state-model-based
closed-loop control (acting on quasi-static wake behavior;
see Sect. 2.1), quasi-dynamic-model-based closed-loop con-
trol (including wake delays and responding to mesoscale
variability in the flow field; see Sect. 2.3), and fully dynamic
closed-loop control (predictive control with fully dynamic
feedback to the turbulence and updated states; see Sect. 2.2).
It is evident that the external input, measurement, communi-
cation, and computational requirements necessary to execute
these different types of feedback control can vary greatly (see
also Sect. 3.4).

In academia, little attention has been paid to the practi-
cality of implementing such closed-loop control schemes, as
focus has been on proving the essential concepts, e.g., max-
imum power point tracking (Gebraad and van Wingerden,
2015; Gebraad et al., 2013), game theory (Marden et al.,
2013; Park et al., 2013), extremum seeking control (Johnson
and Fritsch, 2012; Creaby et al., 2009; Ciri et al., 2017), and
dynamic programming (Rotea, 2014; Guo et al., 2020). This
is especially evident, as few of the efforts consider how to
handle sensor uncertainties, actuator uncertainties, and mod-
eling errors and instead focus on maximizing utility under
near-perfect conditions. In the foreseen framework, however,
real-time data will be used continuously to update a dynamic
wind farm model, and in combination with an uncertainty de-
scription, it will be used to make cautious (with a safety mar-
gin) or robust decisions about the control settings of the in-
dividual turbines in a receding-horizon framework. Through
that framework, the turbine’s wake can be controlled, min-
imizing its impact on neighboring wind turbines for realis-
tic conditions. At the core of this model control paradigm is
the fusion of prior knowledge and measurement data (data
assimilation), resulting in data-driven calibrated models that
can be used for real-time decision making. These data-driven
calibrated models or digital twins can also be used for mon-
itoring wind farms. In the remainder of this section, we will

elaborate on the different building blocks of the closed-loop
control paradigm.

Internal model. The internal model contains the essential
first principles to extrapolate and predict the future behavior
of the wind farm as a function of the possible control actions.
There are many steady-state models proposed that can serve
as an internal model, such as Jensen (Jensen, 1983), Frandsen
(Frandsen et al., 2006), Ainslie (Ainslie, 1988), FUGA (Ott
and Nielsen, 2014), or Porté-Agel and Bastankah’s Gaus-
sian wake formulation (Bastankhah and Porté-Agel, 2016).
The main difference among these various methods lies in the
characterization of the steady-state wake and the wake con-
trol effects they include. Several of these models have re-
cently been assembled in open-source wake model libraries
such as FLORIS (National Renewable Energy Laboratory,
2021) or PyWake (DTU Wind Energy, 2021). Also, in recent
years, many dynamic engineering models with the capabil-
ity to predict the dynamic behavior of the wakes as function
of a time-varying control input(s) have been proposed. For
example, WFSIM (Boersma et al., 2018, 2016; Torres et al.,
2011) uses a two-dimensional computational fluid dynam-
ics (CFD) model to predict the dynamic behavior of the dif-
ferent wakes as a function of the time-varying yaw actions.
There are many other (quasi-)dynamic models, with differ-
ent fidelities (representing the flow, possibly the turbines,
etc.) that can take a similar role, such as FLORIdyn (Becker
et al., 2022), FRED (Van Den Broek and van Wingerden,
2020), PossPOW (Göçmen et al., 2019), FastFarm (Jonkman
and Shaler, 2021), HAWC2Farm (Liew et al., 2022), and
the DWM model by Larsen et al. (2008). Another model-
ing approach uses data from field measurements and/or high-
fidelity CFD to generate low-dimensional surrogate models.
This approach, also referred to as data-driven modeling, uses
techniques such as dynamic mode decomposition (DMD) to
generate models (e.g., Liew et al., 2022; Chen et al., 2020;
Annoni et al., 2016a; Cassamo and van Wingerden, 2020)
and/or machine learning approaches (see also Sect. 3.3).
While dynamic or static first-principles models easily gen-
eralize for different wind directions and speeds, these data-
driven models face several computational challenges, since
they need to be trained on representative data. Schreiber et al.
(2020a) proposed a hybrid approach that tries to circumvent
the limitations of purely model-based and purely data-driven
methods by augmenting a baseline engineering model with
correction terms that are learned from data. Depending on the
application, main challenges regarding the internal model in-
clude accuracy, computational load, programming language,
included and represented physics, disturbance modeling, and
fidelity.

State estimation or data-assimilation, model calibration,
model adaptation. WFFC depends on the awareness of the
current situation of the flow field within the wind farm, the
state of the turbines, and the ability to predict based on the
current situation or state. In this estimation step, all the avail-
able measurement data are combined with an internal model
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to estimate the current situation or state within the wind farm.
This is classically called state estimation or data assimila-
tion and was recently also referred to as situation awareness.
With an updated state, the data-augmented model, or digi-
tal twin, can be used to predict the future. In control engi-
neering, several types of state estimation techniques – such
as the family of Kalman Filters (Doekemeijer et al., 2018;
Shapiro et al., 2017b; Doekemeijer et al., 2016, 2017) and
direct model inversion techniques (Schreiber et al., 2020a;
van Der Hoek et al., 2021) – are commonly implemented.
Before the state-estimation step (as also shown in Doeke-
meijer et al., 2019), a model calibration step is made – see
e.g., Schreiber et al. (2017) and Doekemeijer et al. (2020a)
for the FLORIS model and Sørensen and Nielsen (2006)
for the Jensen model. More recently, model adaptation tech-
niques (Andersson et al., 2020; Schreiber et al., 2020a) have
been proposed to update the first-principles model using
data which clearly tie in with the field of machine learning
and AI. Besides using these data-augmented models for de-
cision making, they can also be used to provide important
information for monitoring purposes, since indirectly mea-
sured states (also labeled as virtual sensors) can also be re-
constructed. When choosing an estimation strategy, the main
challenges can be listed as follows: model and/or desired out-
put accuracy, sampling time, sensors required, type of model
knowledge required, and convergence speed. Depending on
the time scales, it is expected that different solutions will be
optimal.

Robust decision making. The (mixed) objective function
(e.g., power maximization, structural load minimization, or
power reference tracking) conditioned by the data-calibrated
internal model will be used to make decisions regarding how
actuators are employed over time. In general, the concept of
receding-horizon control is used. Based on the current state
of the wind farm, the control variables are optimized over
a control horizon. The first computed control action will be
implemented, and at the next time step, a new optimization
problem is solved. The optimization problem can be solved
with many different algorithms, such as gradient descent and
adjoint methods (Vali et al., 2019a, 2017). The important
challenges in such decision-making processes are reliability,
adaptability, robustness, the ability of the algorithms to work
with uncertainty, the convergence and convexity of the opti-
mization problem, and the overall computational complexity.

In summary, given its building blocks, the overall chal-
lenge for the closed-loop paradigm is to provide the theoret-
ical foundations, robust integrated designs, and novel opti-
mization routines that will enable the next generation of wind
farm flow estimators and controllers. This envisioned frame-
work is at the crossroads of systems and control engineering,
optimization, and machine learning and has strong synergies
with artificial intelligence.

3.3 Synergies with artificial intelligence and other
digitalization concepts

With the increased availability and accessibility of the data,
the implementation of artificial intelligence (AI) algorithms
has been continuously expanding in the field of wind energy.
This is particularly the case for machine learning, which is
a subset of AI that includes complex statistical techniques
(including multilayered neural networks, also referred to as
deep learning) to enable machines or models to improve at
tasks with experience. Machine learning has been increas-
ingly applied to WFFC workflows over the last few years.
Currently, the main focus is improving the models and es-
timators (see Fig. 6) to reduce uncertainties in the predic-
tions, typically without an explicit representation of the ex-
ternal input uncertainties. This data-informed modeling can
include model adaptations via active learning from opera-
tional data to correct physical model inadequacies (Schreiber
et al., 2020a; Andersson and Imsland, 2020) or can be purely
data driven via, e.g., surrogate modeling (Hulsman et al.,
2020).

A central challenge for the machine learning applications
within WFFC today is related to the fundamental limitations
of the applied algorithms, mainly due to their dependencies
on data and computational resources. The first problem is
represented by the insufficient data in terms of its size (e.g.,
lack of available data), its rate of growth (e.g., delays in data
streams, malfunctioning data storage), its variety (e.g., data
is accessible only for limited turbine types), and overall un-
certainties associated with it. Additionally, observability of
all the necessary features that are to be included to predict
all the relevant states of the wind farm flow is restrained by
the capabilities of the sensors and/or availability of the sig-
nals and channels. Additionally, complex high-dimensional
WFFC problems with many features require even more ob-
servations to achieve statistical significance and to avoid data
sparsity and overfitting (generally referred to as the “curse of
dimensionality”; Bellman, 1961).

With broader use of machine learning, the cost of hosting
and processing the data and the training, updating, and in-
ference of the models is growing rapidly. High performance
computing (HPC) plays an increasingly important role in
addressing such demands, enabling their implementation in
WFFC to grow significantly. Examples of such growth could
be extensive surrogate modeling based on high-fidelity tur-
bine and flow representation in a wind farm environment
(e.g., LES with fully resolved blades; Mittal et al., 2016),
with high spatial and temporal resolutions and long(er) simu-
lation times (Andersen et al., 2020). With all the control hier-
archies included, such analyses would be an essential build-
ing block for comprehensive digital twins (Grieves, 2014) of
the entire power system (e.g., of a region) to help better ad-
vise future planning and operation of renewables.

The knowledge gap in utilizing data-driven workflows
(based on observations) for a WFFC framework is far greater
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than physics-based workflows (based on a set of rules or
physical representation) in terms of the model development
and logical sequence of decisions taken to reach a prediction
for the stakeholders of the technology (Feng, 2019). Accord-
ingly, another important challenge for implementing mod-
ern machine learning tools in WFFC is the complexity of
the algorithms (Marugán et al., 2018). Typically, the models
are employed (by domain scientists) in a black-box manner,
where the accuracy is prioritized over interpretability or ex-
plainability. Although essential, validation in this perspective
is not enough to ensure reliable operation of wind farm(s)
as safety-critical systems under strict constraints. A proba-
bilistic framework and the representation of uncertainty is as
crucial for AI approaches as it is for physics-based model-
ing for WFFC, as recently shown in, e.g., Rott et al. (2018)
and Quick et al. (2020). The transition from deterministic
to probabilistic approaches for AI in wind energy started
with Kalman filters (Bossanyi, 1985) and recently continued
for deep learning with Bayesian neural networks (Liu et al.,
2020; Mbuvha et al., 2021) and with mixture models (Vallejo
and Chaer, 2020; Zhang et al., 2020) capturing the parame-
ter and output uncertainties. Together with other probabilistic
architectures, their application to flow control problems is a
growing research interest.

It is also relevant to investigate which features are impor-
tant in the model predictions and how they are combined
(Díaz et al., 2020). Additionally, decision-level explanations
can be provided by breaking down a single or global model
into smaller sub-models and analyzing the information flow
and series of decisions throughout (Chatterjee and Dethlefs,
2020, 2021). Such efforts are crucial, as the lack of trans-
parency induces additional risks for large-scale deployment
of AI approaches in WFFC. This prevents the transition from
data-supported and data-driven workflows (humans as the
central processor) to AI-driven workflows (AI as the cen-
tral processor) for robust decision making. The advantage of
AI-driven workflows, with AI at the center of the decision-
making process, in a WFFC framework is their capability to
process much higher levels of information much faster and to
capture very detailed trends and variances. They are also ca-
pable of mapping very nonlinear relationships within the op-
eration to define optima that could otherwise be hidden (see,
e.g., Marden et al., 2013; Ahmad et al., 2016; Zhao et al.,
2020). Overall, the AI transformation has great potential to
increase the efficiency and reliability of the WFFC tech-
nology towards the new-generation, fully autonomous wind
power plants that go beyond the “foreseeable” future. It re-
mains to be seen to what extent such transformation will take
place and if AI applications will replace the current model-
based WFFC implementation entirely.

3.4 Controllability, observability, and sensors

When moving from the current open-loop paradigm to
closed-loop WFFC, including the use of advanced data-

assimilation methods, a number of additional theoretical and
practical challenges arise related to the controllability and
observability of the three-dimensional turbulent flow in the
wind farm. Controllability refers to the extent to which flow
states and outputs can be influenced by a limited set of con-
trol actuators, e.g., the turbine blades in WFFC. From a prac-
tical perspective, it is reasonably well documented how the
turbine can influence the quasi-steady flow (see Sect. 2.1),
but much less is known about dynamic control. Although
theoretical controllability results exist for various types of
systems (see, e.g., Kalman, 1963; Lin, 1974), these methods
become intangible for high-dimensional nonlinear systems,
such as wind farm flows.

Observability is the dual of controllability. It identifies
how well flow states and inputs can be determined by a lim-
ited set of measurements and thus provides an upper bound
for the level of flow awareness that can be attained. With
more sophisticated control models and control dynamics,
more sensors will be necessary to provide statistically rele-
vant state and input estimations. In modern wind farms, sen-
sors usually provide local or point measurements, either lo-
cated at turbines (including virtual sensors for wind speed,
shear, etc. – see below), at meteorological masts, or at the
substation. To what extent they suffice as an input to more so-
phisticated dynamic control algorithms with feedback is still
largely unexplored. Nowadays, various remote flow sensing
devices (lidar, sodar, radar, drones) promise to improve flow
awareness. However, both cost and robustness aspects should
be considered when adding more complex sensors into the
mix, which should be more than offset by control gains, es-
sentially leading to an integrated cost optimization problem
(see Sect. 5). Moreover, although extensive work has already
been performed on flow reconstruction from, e.g., lidar mea-
surements (see, e.g., Simley et al., 2011; Mikkelsen et al.,
2013; Schlipf et al., 2013; Simley et al., 2014a, b; Lundquist
et al., 2015; Raach et al., 2017), the more sophisticated three-
dimensional reconstruction of turbulence still faces many
challenges (see, e.g., Lin et al., 2001; Chai et al., 2004; Raach
et al., 2014; Bauweraerts and Meyers, 2021).

When considering sensors for WFFC, a lot of them pro-
vide flow data directly. These include local sensors such as
wind speed anemometers (cup, ultrasonic), air temperature
measurements, wind vanes, and also remote techniques such
as lidar, sodar, and radar. However, with advances in monitor-
ing of the turbine itself, indirect flow measurements that use a
model of the wind turbine to invert the structural responses to
wind input are also possible. These include the measurement
of rotor-equivalent wind speed (see, e.g., Soltani et al., 2013),
the use of blade-root load sensors (strain gauges) to detect
wakes (Bottasso et al., 2018; Bottasso and Schreiber, 2018)
or, in general, to estimate sector-equivalent wind speeds and
hence horizontal and vertical wind shears (Schreiber et al.,
2020b), or the use of load harmonic components to estimate
shears as well as inflow angles (Bertelè et al., 2021). Given
the low cost and relative robustness of the sensors involved,
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the use of these indirect wind measurements (and their time
series) for more advanced reconstruction of the flow field
downstream of the rotor is an interesting avenue of future
research.

Finally, as highlighted throughout this manuscript, WFFC
is part of a multi-objective optimization problem that also
includes turbine structural loading, cost of O & M, etc. (see
also Sect. 5). Thus, for proper feedback control, the flow state
should be identified, and the turbine state is essential. For in-
stance, using load sensors, structural loading can be moni-
tored at crucial spots in turbine components by using digital
twin technology to generate a continuous evaluation of the
accumulated fatigue damage (Pimenta et al., 2020). This type
of turbine self-awareness requires a well-considered sensing
strategy at the level of the turbine and its controller. A further
discussion of these elements is, however, outside the scope of
the current paper.

4 Validation and industrial implementation

The final ambition of research in wind farm control is com-
mercial implementation. However, next to a commercial
cost–benefit analysis and various other aspects (for exam-
ple, certification; see Manjock et al., 2020), it is necessary to
develop a thorough validation and proof of concept of each
new control idea and of its implementation. A recent expert
elicitation on wind farm control identified validation as the
key priority for advancing wind farm control (van Winger-
den et al., 2020).

Several wind farm control concepts have been shown in
the past few years to have the potential to increase wind farm
production. Some concepts have made it to commercial ap-
plication: for example, wake steering is now available as a
commercial product (Siemens Gamesa Renewable Energy,
2019). However, the realization of such commercial oppor-
tunities is invariably supported by comprehensive research
and development programs across many organizations and
countries over several years.

A wind farm represents a high-value asset in which many
parties are involved (one or more wind farm owners, a wind
farm operator, an original equipment manufacturer, and pos-
sibly insurers, financiers, and certification bodies). One or
more stakeholders also share in the project revenue gener-
ation as well as in the costs and risks. Thus, demonstra-
tion should not only address the potential of a new inno-
vation (such as a WFFC strategy) but also the quantifica-
tion of the risks of that innovation that are critical to in-
dustrial adoption. Such demonstrations must be grounded
in well-designed simulation experiments and test campaigns
that generate data and results that are realistic, transparent,
and reliable.

In recent years, this has led towards a four-stage approach
to developing confidence and trust in control concepts, or-
dered by increasing cost and effort: (1) proof of concept

in a sufficiently advanced high-fidelity simulation environ-
ment, such as large-eddy simulations; (2) validation of the
control concepts in a (boundary layer) wind tunnel; (3) field
campaign on research turbines or older assets, with a lim-
ited scope (e.g., involving a small number of turbines); and
(4) full-scale field campaign. Initially, a high-fidelity simu-
lation or wind tunnel experiment is a key enabler for fur-
ther R & D investment decisions and for further effort being
put into testing at full scale. In recent years, the sequence
of simulation to scaled testing to field demonstration has
proven to be a model for the commercialization of WFFC
solutions. However, each of these stages faces specific chal-
lenges, with significant room for improvement. These are
further addressed in detail in Sect. 4.1–4.3 below. Finally,
additional aspects with respect to full-scale industrial imple-
mentation are discussed in Sect. 4.4.

4.1 Proof-of-concept studies in high-fidelity simulation
tools

In recent years, LES has emerged as a virtual environment
capable of representing significant features of wind farm
flows (see, e.g., Calaf et al., 2010; Porté-Agel et al., 2011;
Churchfield et al., 2012; Wu and Porté-Agel, 2013; Fleming
et al., 2014; Witha et al., 2014; Wang et al., 2017; Martïnez-
Tossas et al., 2018), making it an ideal choice for the test-
ing of wind farm control strategies (Goit and Meyers, 2015;
Munters and Meyers, 2018c; Vali et al., 2019b; Wang et al.,
2019; Doekemeijer et al., 2020b). The advantages of wind
farm LES include a high degree of control over the simula-
tion and the ability to run counter-factual simulations. For in-
stance, running a case with and without controls while using
the exact same inflow provides a very clear means to compare
performance, something that is not possible in full-scale field
experiments. Additionally, the full flow field can be readily
accessed and analyzed in space and time, contrary to the ex-
perimental scaled and full-scale cases, where synchronous
and high-resolution measurements of the complete field are
not (yet) possible. High-fidelity CFD simulation tools have
become more widely available and are used by an increas-
ing number of research teams (for example, LES codes like
SOWFA by NREL, SP-Wind by KU Leuven, EllipSys3D
LES by DTU, PALM by Leibniz University Hannover, and
TUM.LES by TU Munich, which has specialized in the CFD
replication of wind tunnel experiments). Nevertheless, many
challenges and opportunities remain.

First of all, LESs of wind farms are computationally
expensive, usually requiring high-performance computing.
Simplifying assumptions are often necessary to keep com-
putational resources manageable. Although fully blade-
resolved simulations of wind turbines are becoming feasi-
ble (see, e.g., Kirby et al., 2019; Sprague et al., 2020), these
simulations are currently too expensive to perform over the
sufficiently large spatial and temporal domains that are nec-
essary for wind farm control testing. Therefore, a major sim-
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plification that is usually made is related to the turbine rep-
resentation, which is either based on actuator disk (Sørensen
et al., 1998; Jiménez et al., 2007), actuator line (Sørensen and
Shen, 2002; Troldborg et al., 2007), or actuator sector models
(Storey et al., 2015; Vitsas and Meyers, 2016). For wind farm
control proof-of-concept studies, an actuator line or sector
model coupled to an aeroelastic turbine representation and
its controller is usually preferred, allowing the evaluation not
only of power output but also of turbine structural loading.
However, the accurate representation of some flow charac-
teristics remains a challenge, including the correct represen-
tation of dynamic features related to the blade boundary layer
(dynamic stall, rotational augmentation, three-dimensional
effects) as well as near-wake features related to the tip-vortex
system (Martínez-Tossas et al., 2017; Meyer Forsting et al.,
2019).

Secondly, a representative parametrization of inflow con-
ditions in LES remains an important area of research, with
a large potential impact on the quality of the results. One
aspect of particular importance is the generation of realistic
inflow turbulence. In the past, research has focused on the
development of synthetic turbulence approaches (see, e.g.,
Wu, 2017, for a review), but nowadays it is well established
that precursor methods yield more realistic spatio-temporal
correlations in the flow (Stevens et al., 2014; Munters et al.,
2016). Another aspect that needs attention is that simulations
are often performed using idealized background conditions,
whereas the atmospheric inflow is governed by mesoscale
weather systems that usually display a complex amalgama-
tion of larger-scale flow features. In recent years, research
has focused on coupling mesoscale models to microscale
LES (Muñoz-Esparza et al., 2014; Muñoz-Esparza and Koso-
vić, 2018; Haupt et al., 2020), but issues remain with respect
to the characterization of representative turbulence at the
LES inflow, which is not directly represented in mesoscale
models.

Finally, although LES is quite a mature simulation tech-
nology that has been developed over more than three
decades, some open problems remain with respect to
subgrid-scale modeling, particularly in stably stratified con-
ditions (see, e.g., Couvreux et al., 2020), and with respect to
wall-stress models (required for the simulations of the atmo-
spheric boundary layer) and the representation of complex
terrains.

4.2 Validation in wind tunnel experiments

Wind tunnel testing with scaled models has long supported
scientific research in various engineering fields, and wind en-
ergy is no exception. In addition to the classical characteri-
zation of the aerodynamic performance of airfoils (which,
for wind energy applications, poses its own challenges due
to the combination of high Reynolds numbers and unsteady
inflows), wind tunnel testing has recently moved to the sim-
ulation of clusters of scaled wind turbine models exposed

to flows that mimic the characteristics of the atmospheric
boundary layer. Working hand in hand with simulations and
full-scale experiments, wind tunnel testing contributes to the
understanding of wake physics and the validation of wake
models (Chamorro and Porté-Agel, 2009, 2010; Hu et al.,
2012; Iungo et al., 2013; Viola et al., 2014; Bastankhah and
Porté-Agel, 2015; Howard et al., 2015; Yang et al., 2016;
Bastankhah and Porté-Agel, 2017b; Schreiber et al., 2017)
and, in turn, to the development of wind farm control technol-
ogy (Campagnolo et al., 2016a; Bastankhah and Porté-Agel,
2016; Wang et al., 2017; Campagnolo et al., 2020; Frederik
et al., 2020b; Wang et al., 2020c). Although it is clear that
any wind farm control method has to be demonstrated in the
field before it can achieve full credibility, wind tunnel testing
of control concepts has been gaining increasing popularity in
recent years for proof-of-concept demonstration.

The success of wind tunnel testing is due to some of its dis-
tinguishing characteristics. First, differently from the field,
the ambient conditions in a wind tunnel are precisely measur-
able, repeatable, and – at least to some extent – controllable.
A number of boundary layer wind tunnels worldwide are ca-
pable of generating realistic scaled turbulent flows. Among
these, the large facility at Politecnico di Milano, which fea-
tures a 3.84 m (height) by 13.84 m (width) by 36 m (length)
test section, has been used for some of the most complex
wind farm control experiments to date (Campagnolo et al.,
2016a; Bottasso and Campagnolo, 2020; Campagnolo et al.,
2020; Frederik et al., 2020b; Wang et al., 2020c). In this facil-
ity, in a wake-steering experiment, dynamic changes in wind
direction were simulated using the facility’s large actuated
turntable (Campagnolo et al., 2020) – see Fig. 7. Apart from
size, which is important to limit blockage and to avoid ex-
cessive miniaturization of the models (Bottasso and Cam-
pagnolo, 2020), some facilities have been designed to gen-
erate specific flow conditions that are particularly relevant to
wind energy applications. For example, the wind tunnels at
the University of Surrey (Hancock et al., 2014) and at the
University of Minnesota (Chamorro and Porté-Agel, 2010)
can generate stratified flows, such that not only neutral but
also stable and unstable boundary layers can be investigated;
the WindLab wind tunnel (University of Oldenburg, DE) fea-
tures a large active grid (Neuhaus et al., 2021), which gives
more freedom in the generation of turbulent flows than the
classical passive means (Zasso et al., 2005); the WindEEE fa-
cility (Western University, London, Ontario, CA) (WindEEE,
2020) can generate tornadoes and downbursts, which are rel-
evant for the simulation of extreme operating conditions.

A second distinguishing feature of wind tunnel testing is
that measuring in a laboratory environment is usually easier,
more accurate, and cheaper than in the field. In fact, detailed
characterizations of the inflow and of the wakes can be ob-
tained with a variety of techniques and equipment that differ
in cost, accuracy, spatial and temporal resolution, intrusive-
ness, and setup complexity. These include pressure and hot-
wire probes (Lomas, 1986), particle image velocimetry (PIV)

https://doi.org/10.5194/wes-7-2271-2022 Wind Energ. Sci., 7, 2271–2306, 2022



2288 J. Meyers et al.: Wind farm flow control

Figure 7. Wind tunnel facility of the Politecnico di Milano, with a
three-turbine setup for testing yaw control. Picture reproduced from
Campagnolo et al. (2020). Reproduced with permission.

and its derived techniques (Adrian, 2005), and also – more
recently – scanning lidars (van Dooren et al., 2017). Finally,
when properly scaling a setup to smaller spatial dimensions
while keeping velocity roughly at the same magnitude (as
typically done for wind tunnel testing), the time scales will
also decrease (time flows faster) (Bottasso and Campagnolo,
2020; Canet et al., 2021; Campagnolo et al., 2020) so that
more statistical information can be accumulated over shorter
experimentation times.

A third useful characteristic of scaled testing is that models
can be designed ad hoc to achieve specific goals (Schottler
et al., 2016; Lanfazame et al., 2016; Winslow et al., 2018;
Kelley et al., 2016; Bastankhah and Porté-Agel, 2017a, b;
Campagnolo et al., 2016a; Bottasso and Campagnolo, 2020;
Nanos et al., 2022), and can be extensively instrumented
(Bottasso and Campagnolo, 2020). Advances in 3D printing
(Zhu, 2019), improvements in precision manufacturing and
in the realization of complex composite structures (Campag-
nolo et al., 2014; Bottasso et al., 2014; Parandoush and Lin,
2017), advanced sensors (Qiu et al., 2020), miniaturized ac-
tuators, wireless transmission, and other technological im-
provements are being actively exploited to improve model
building (Bottasso and Campagnolo, 2020). While the small
dimensions often pose constraints, the flexibility offered by
the design of scaled turbine models is hard to match when
compared to full-scale machines. Sophisticated laboratory
characterizations of crucial model components are also pos-
sible (Campagnolo et al., 2014; Wang et al., 2020b). Further-
more, farm layouts and scenarios can be readily changed to
explore different conditions of interest by simply reposition-
ing the scaled model turbines on the wind tunnel floor.

In parallel to these useful characteristics of wind tunnel
testing, it is important to realize that, in general, a scaled
model cannot exactly represent all physical processes that
take place at full scale. Dimensional analysis, through the
Buckingham 5 theorem (Buckingham, 1914), lays the foun-
dations for the systematic development of scaling laws for

the design of model turbines. Depending on the application
and focus of the research, scaled designs can differ signif-
icantly. For instance, in a wind tunnel of the same size, a
focus on rotor aerodynamics may lead to a larger rotor de-
sign than when a study of wake behavior is the sole focus.
Other aspects that can have a decisive impact on design are
a possible focus on reproducing correct (scaled) aeroelastic
behavior (Bottasso et al., 2014) or the inclusion of realistic
turbine actuators. Moreover, the wind tunnel facility that is
used will impose some additional constraints; thus, the de-
sign of a scaled model is an exercise in finding a best com-
promise, as is often the case in many complex engineering
applications.

Canet et al. (2021) reviewed the laws that govern steady
and transient gravo-aeroelastic scaling of wind turbine rotors,
while Bottasso and Campagnolo (2020) applied the results of
the scaling analysis to the design of wind turbine models for
wind tunnel testing; Wang et al. (2021) looked specifically at
the realism of the wakes generated by scaled models for wind
farm control applications. The main findings of these stud-
ies show that, notwithstanding the existence of some mis-
matched effects mostly caused by the chord-based Reynolds
number, with proper design choices, scaled wakes generated
in wind tunnel experiments appear to be remarkably similar
to their full-scale counterparts, except in the immediate prox-
imity of the rotor.

A final aspect that is important when considering scaling
is that a reduction of length scales leads to a reduction of time
scales, i.e., an acceleration of time in the scaled experiment
(Bottasso and Campagnolo, 2020; Canet et al., 2021; Cam-
pagnolo et al., 2020). Thus, control algorithms and actuations
need to be executed much faster in a wind tunnel than at full
scale. This poses constraints on the turbine hardware in terms
of actuation rates and on the computing hardware and soft-
ware in terms of execution speed (Campagnolo et al., 2020).
Therefore, depending on the setup, the testing of complex
control algorithms (e.g., model-predictive control) may not
be feasible or may imply considerable challenges.

Notwithstanding the indisputable success of wind tunnel
testing in recent years, much remains to be done on many
fronts. For example, PIV and lidars should become more
widely available, because accurate, non-intrusive flow mea-
surements are indispensable for a better understanding of the
flow physics as well as for model validation. The effects of
floating motions on wake behavior and control are not well
understood; however, the scaled testing of floating wind tur-
bines is still in its infancy because of the challenge of repli-
cating at scale (or by hardware-in-the-loop co-simulation)
aerodynamic and hydrodynamic interactions. Improvements
are also necessary to more faithfully replicate at scale the in-
flows that very large modern machines face in various types
of atmospheric conditions together with the effects that ter-
rain orography and vegetation cause on the flow and on wake
behavior. The development of complete high-fidelity digital
simulation-based replicas of experimental setups – includ-
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ing the wind tunnel, the turbine models, and the turbine- and
farm-level control laws – can greatly increase the value of
experimental measurements (Wang et al., 2019).

4.3 Validation via field tests

Full-scale validations implement wind farm controls on in-
dustrial wind turbines and seek to validate wind farm con-
trol models and performance. Some example studies at this
scale include tests at the Summerview wind farm (Alberta,
Canada) (Howland et al., 2019), the Peetz Table Wind
Energy Center (Colorado, United States) (Fleming et al.,
2019, 2020), the Sole du Moulin Vieux farm (Ablaincourt-
Pressoir, France) (Ahmad et al., 2019), and the Sedini wind
farm (Sedini, Italy) (Doekemeijer et al., 2021). The advan-
tage of these tests are that they represent the realized concept
in near-final form, with full-sized turbines in fully realistic
atmospheric conditions. However, the challenge is the much-
reduced controllability and observability of inflow condi-
tions. Since identical conditions can not be guaranteed to be
applied to the plant with and without wind farm controls, sta-
tistical methods must be used to try to quantify changes in
performance. A common approach – for example, in Flem-
ing et al. (2020) and Doekemeijer et al. (2021) – is to test the
wind farm controller on only some of the turbines in the farm
(putting all other turbines in a reference group) and then to
toggle on and off the control group, producing a baseline and
test dataset. By comparing the relative performance of the
turbines being controlled to the reference turbines (through
power ratio or energy ratio comparisons, for example) when
the turbine is off versus on, the effect on power or energy
production can be estimated. Toggle testing has been an es-
tablished practice in testing new controllers for wind turbines
(see Bossanyi et al., 2013). However, wind farm wake con-
trol strategies, unlike turbine control strategies, have a de-
pendence on wind direction that complicates the compari-
son. Additionally, previous tests of turbine control strategies,
based on pitch or torque control, could toggle quickly, mak-
ing 10 min intervals a standard choice. However, in wake
control, the yaw control changes much more slowly, and the
changes in the wake need time to propagate downstream.
These influences have made approximately 1 h toggling typ-
ical of early tests. The establishment of best practices in per-
forming field validation is actively researched and is a fo-
cus point of the new IEA Wind Task 44: Wind Farm Flow
Control (https://iea-wind.org/task44/, last access: 17 Novem-
ber 2022).

To date, there are many opportunities for advances in full-
scale validation. First, collecting data in field campaigns us-
ing more turbines within farms, or even whole farms, and
for longer periods than currently reported will provide much
more certainty in terms of performance. Another opportunity
is to employ more sophisticated measurements to learn about
the fundamental properties and performance of flow control
(for example, lidars, radars, and drones).

There are also opportunities for testing more sophisticated
control models. To date, many of the wind farm controllers
tested in public field trials of wake steering are based pri-
marily on the open-loop paradigm and precomputed look-up
tables. Future field tests should incorporate more recently de-
veloped control strategies, such as the consensus for collec-
tively identifying wind directions (Annoni et al., 2019), or
use online estimation (Doekemeijer et al., 2020b) or robust
design (Rott et al., 2018). Furthermore, consideration of the
underlying turbine yaw control optimized to implement wind
farm control is an important area of ongoing work (Kanev,
2020).

Finally, there are many opportunities to measure and quan-
tify impacts on structural loads in addition to confirming en-
ergy uplifts. While there is some research in the area of field
trials of wind farm controls measuring impact on structural
loads (Damiani et al., 2018), this is another critical area of
ongoing research.

4.4 Industrial implementation

Once a wake control concept has been proven, several steps
need to be taken in industry to achieve commercial appli-
cation in operating wind farms. This is illustrated in Ta-
ble 1, where we suggest definitions of technology readiness
level (TRL) for wind farm control concepts, from the iden-
tification of basic principles (TRL 1) to commercial applica-
tion (TRL 9). Challenges in transitioning from TRL 5 (first
field test) to commercial implementation TRL 9 are further
discussed in this section.

First, the effects of wake control need to be shown to be
reproducible and measurable from sensor data that is readily
available on a wind turbine rather than only seen in an exper-
imental setup with special remote sensing equipment. This
ensures that the performance of a wind farm control con-
cept can be shown to work at several operating wind farms
and that it is therefore scalable as a product. This step of-
ten requires adjustment of the available measurement equip-
ment on commercial wind turbines. The adjustments may in-
clude calibration of the measurements for the alternative op-
erational modes needed for the flow control, which is a re-
quirement that could already be considered early on in the
formulation of research questions and the setup of simula-
tions or wind tunnel tests. Further, a typical practical issue to
be solved is the accurate calibration of wind direction or na-
celle yaw position relative to north at each site, which makes
sure that wake control is done in the appropriate wind direc-
tions. Secondly, if a flow control mode is expected to increase
certain structural loads acting on a wind turbine, an evalu-
ation needs to be performed that shows whether the loads
are still within the envelope that the turbine is designed for.
Moreover, special care needs to be taken in the evaluation
of actuators if they are used in a different way than origi-
nally designed for. For new wind turbine models, the design
load cases could be adjusted to allow for more aggressive
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Table 1. Definition of technology readiness levels (TRLs) for wind farm control concepts, and example references.

TRL General definition Specific definition for wind farm Example for yaw-based wake steering
control concept

1 Basic principles Identification and understanding of Wake deflects when yaw offset is applied (Clayton and Filby, 1982).
observed aerodynamic effect in a wind park

2 Technology concept Understanding how certain Yaw offsets can be controlled strategically to steer a wake
formulated aerodynamic effects could be away from downstream turbines in a way that improves

used, manipulated, and/or controlled to power production of wind park (Atkinson and Wilson, 1986b;
the benefit of wind park performance Medici and Dahlberg, 2003).

3 Experimental proof of Proof of concept in simple setup Wake steering shown in LES to improve power production
concept (for example, two turbines) in wind for two turbines in Jiménez et al. (2010)

tunnel or high-fidelity simulation and Fleming et al. (2015)

4 Technology validated in Control demonstrated in wind LES study with wake-steering park controller for six-turbine
laboratory tunnel test and/or high-fidelity setup (Gebraad et al., 2016) and wind tunnel experiments

simulation with wind park setups with wind turbine scaled models and a wake-steering park
controller (Campagnolo et al., 2016a), both demonstrating
production increase

5 Technology validated in Demonstration of control in field Field campaign evaluating wake-steering controller at a
relevant environment test with several wind turbines wind farm (Howland et al., 2019; Fleming et al., 2019);

production increase demonstrated for two closely spaced
turbines

6 Technology pilot Experimental control software Wake steering demonstrated on a wind farm for particular
demonstrated in relevant demonstrated on wind farm, selected three-turbine arrays and wind direction
environment working in limited range of wind sectors (Doekemeijer et al., 2021)

conditions

7 System prototype Experimental control software Wind park wake-steering controller prototype working on
demonstration in demonstrated on full-scale wind farm, full wind farm; wake steering active in below-rated wind
operational environment working in full range of appropriate wind speeds and in all wind directions where there are wake

conditions interactions between turbines

8 System complete and Park-level control and turbine Implementation of park-level control automatically
qualified controller implementation with commanding yaw offsets in relevant wind conditions;

relevant safety features and turbine software augmented yaw offsets; approved loads
certification based on structural evaluation of yaw-offset operation
loads evaluation

9 System proven in Commercial application of wind Commercial application of wake-steering control in wind
operation farm controls product in wind farms (see e.g., Siemens Gamesa Renewable Energy, 2019)

parks

wind farm control strategies. This requires an integrated co-
optimization of design and control. See Sect. 5 for further
discussion. Thirdly, the park-level control and turbine con-
troller needs to be implemented with the relevant safety fea-
tures. This includes cyber-security measures allowing safe
communication between the wind turbine and wind park-
level control.

The three steps mentioned above allow for the transition
from a field test (TRL 5) to the safe implementation of the
park-level control on a wind park without special human su-
pervision (TRL 8). For transitioning to TRL 9 (commercial
application), not only does the control implementation need
to be deployable on several sites in order to be able to scale
the product, but the commercial value of the control also
needs to be proven. If the objective of the wind farm con-
trol is to improve the wind farm AEP, this may entail vali-

dating model predictions using data from one or more farms
and then using the model to project a longer-term benefit for
specific sites. Alternatively, a more data-driven, site-specific
approach can be used, where the AEP benefit is measured
from a toggle test at a specific site in order to measure the
performance of the wind farm control on that site. Such a
toggle test may take several months to measure the park con-
trol benefit in a large range of wind conditions or even up to a
year to take into account seasonal variations. An example ap-
proach for such a toggle test was presented in Boccolini et al.
(2021). The wind industry further needs to establish relevant
certifications and standards related to the above-mentioned
topics of structural loads evaluation, safety, and wind park
production benefit predictions and measurements. A position
paper on certification practices for wind farm control was re-
cently presented by Manjock et al. (2020).

Wind Energ. Sci., 7, 2271–2306, 2022 https://doi.org/10.5194/wes-7-2271-2022



J. Meyers et al.: Wind farm flow control 2291

It is also important to note that the advancement through
the TRL stages also depends on specific technologies and
site characteristics. Thus, a given control strategy may ad-
vance at different rates for different applications. For exam-
ple, while wake steering is advanced to TRL 9 for land-based
and fixed-bottom offshore wind farms, this is currently not
the case for floating wind energy applications. In addition,
on land, conditions related to complex terrain or other fea-
tures of the wind farm design have yet to be fully validated
from a yaw-based wake-steering perspective. The variation
of performance and the risks of a control strategy for differ-
ent technologies, site designs, and site environmental condi-
tions require ongoing R & D well beyond the first instance of
commercialization.

So far, industry has shown more interest in wind farm
control concepts that result in AEP increase; however, in a
subsidy-free market, more interest may be shown to other
kinds of concepts that allow operators extra flexibility in op-
timizing revenue. A study of market showcases is discussed
by Kölle et al. (2020) and Eguinoa et al. (2021). Further-
more, structural load reductions, providing grid services, and
more may become of interest to industry. For any new con-
trol strategy application, it will be necessary to follow the
R & D processes – from simulation to scaled testing to field
demonstration – described in this section. Moreover, to ac-
celerate the development of new wind farm control products,
the industry could benefit from standardization of the pro-
cesses and of the measurement and controls interfaces, such
as the communications interface between WFFC and the tur-
bine controller.

5 Integrated design and systems perspective

As with other technological systems, the up-front design and
the resulting control strategies that are available are not inde-
pendent. Improved WFFC can inform design processes and
affect design heuristics. For instance, the ability to increase
energy extraction and to reduce structural loads may enable
the ability to build wind farms with increased power density
(with higher AEPs per square kilometer).

Integrated design of the system hardware and software (or
controls) is an emerging research area in wind energy, with
the potential to enable significant innovation (Garcia-Sanz,
2019). Control co-design (CCD), which focuses on concur-
rent design of all relevant disciplines, including controls, has
been recognized as a promising research and technology de-
velopment pathway for wind turbines and, in particular, float-
ing wind turbines (Garcia-Sanz, 2019). However, the com-
munity also recognizes the need to look at holistic design
and control of full wind farms due to the significant cou-
plings of the flow and performance at the wind farm level.
Thus, there is a need to elevate the application of CCD to the
farm level. Essentially, since the location and types of wind
turbines, sensing equipment, and other control-related tech-

nologies in the farm determine the availability and magnitude
of the wind farm control opportunity, there is a coupling of
the up-front design of the farm and the downstream execu-
tion of wind farm control. First, we briefly discuss the state
of the art in wind farm design before elaborating on recent
efforts towards integrated wind farm design and control.

5.1 Progress in wind farm design optimization research

Research in pre-construction wind farm design spans mul-
tiple decades (Herbert-Acero et al., 2014). As discussed in
Sect. 1.1, there are a number of objectives of interest for op-
eration and control, including energy production and cost of
energy. These same metrics are used in the pre-construction
wind farm design process. Historically, AEP was the main
objective, and cost elements have been increasingly incorpo-
rated to enable full LCoE (as a metric to represent a farm’s
overall economic profitability) (Ning et al., 2019).

As discussed in Dykes et al. (2021), the key ingredients of
wind farm multidisciplinary design optimization correspond
to the following:

– Annual energy production. In addition to the size (e.g.,
rotor diameter) and performance features (e.g., rated
power) of the turbines, AEP of a wind farm is also influ-
enced by wake effects. With the objective of maximiz-
ing AEP, the turbine selection, the number of turbines,
and the layout have all been considered in the optimiza-
tion problem.

– Capital expenditure for the balance of systems. CAPEX
for BOS optimization is frequently considered as a key
cost component within the sub-optimization problem
of the electrical or power system (Perez-Moreno et al.,
2018). Alternatively, its own detailed optimization is
performed once a layout has been decided (Pérez-Rúa
et al., 2020). Other costs for BOS, such as the roads for
land-based farms, including the installation and logis-
tics strategies, have also been explored.

– CAPEX for turbines and foundations. Recent research
has investigated the coupled optimization of wind
farm and turbine design and selection (Stanley et al.,
2018, 2019; Stanley and Ning, 2019; Graf et al., 2016)
as well as coupling with the design of offshore support
structures (Perez-Moreno et al., 2018).

– Operational expenditure. Originally, site suitability for
structural loads was considered after a farm layout was
mostly fixed. More recently, surrogate models have al-
lowed the inclusion of structural load models directly in
the wind farm optimization (Riva et al., 2020).

For design, LCoE has served the wind energy community as
a complex but straightforward metric, which allowed wind
farm developers to largely ignore time-varying aspects of
system performance and cost. Through statistical models, the
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time-varying nature of the wind resource was simplified into
a wind rose, and the annual energy production for a given
design was calculated once per design iteration.

Looking towards future electricity systems with large lev-
els of variable sources of energy generation and a shift to-
ward subsidy-free wind energy systems, the need to increase
wind farm profitability will shift the focus from LCoE to-
wards objectives that also account for time-varying revenues
and costs. Initial work in this direction has shown that the
current level of generation of wind energy in a system can
be parameterized to give an indication of the value of new
wind generation as a function of statistical correlations be-
tween wind and market conditions (Simpson et al., 2020).
Other metrics account for the time-varying revenue a wind
farm would see over its lifetime when participating in mer-
chant markets (Beiter et al., 2021). Such metrics could also
be used to evaluate the potential of control strategies as well
as the co-design of the wind farm and control strategy to-
gether. This area of research is still largely unexplored but
promises many new challenges for wind farm design, con-
trol, and the interaction of the two.

From a wind farm design perspective, there are various
potential impacts of using value-based metrics over LCoE.
We expect impacts on the following:

– Wind turbine design. A recent trend has explored the po-
tential of low-wind-speed machines or machines with
low specific power that produce more electricity at
lower wind speeds than conventional wind turbines
(Simpson et al., 2020). Such machines can be designed
to “cut out” at lower wind speeds so that they only op-
erate at lower wind speeds (reducing their LCoE com-
pared to machines that operate over a larger wind speed
range) (Madsen et al., 2020).

– Wind farm machine selection. Increasingly, wind farm
designers can consider a spectrum of technology solu-
tions as manufacturers move to platform models with
a large number of variants, including rotor diameter,
rated power, hub height, and other features. Wind farm
designers can choose between these variants or some
combination of them. With new low-wind turbines, as
in Madsen et al. (2020), it could be possible to create
a wind farm that includes both conventional and low-
wind machines, with revenue under a broader range of
resource and market conditions for higher overall sys-
tem value.

– Wind farm meta-design. A key design lever for value
maximization is the ability to constrain the capacity of
the wind farm relative to the sum of the capacity of in-
dividual assets. This is done by increasing the number
of turbines relative to the rated output of the facility (a
strategy known as over-planting) (Dykes et al., 2019).
This can also be accomplished through hybridization
with other generation technologies (such as solar pho-

tovoltaics) or by combination with storage technologies
(Dykes et al., 2020).

– Wind farm physical design. This addresses the overall
physical layout or placement of machines and the BOS
design.

Physical design is difficult to separate from both topics of
machine selection and meta-design in the process due to sig-
nificant couplings. The type and number of turbines, coupled
with their placement in the farm, will influence the overall
energy production of the farm. Also influencing the energy
production is the overall operation of the plant and thus the
control of the wind farm or hybrid power plant over its life-
time. Thus, holistic optimization of a wind farm necessar-
ily brings together farm design and control. Furthermore, the
introduction of control strategies into the wind farm design
problem, as will be discussed, can impact not just the wind
farm performance but also trade-offs in system performance
and cost.

5.2 Wind farm control co-design (CCD)

As previously mentioned, CCD is a promising field for wind
energy research in general due to the strong couplings be-
tween the physical system design and the design of the soft-
ware control system (Garcia-Sanz, 2019).

5.2.1 Wind farm CCD for AEP and LCoE objectives

Some of the first works looking at the subject of wind farm
applications focused on static yaw-based wake-steering con-
trol and wind farm layout optimization. In Fleming et al.
(2016), combined wake-steering and layout optimization was
shown to increase the energy production of a wind farm at the
same time as the farm power density was increased (moving
the turbines closer together and thus enabling cost reductions
in the balance of systems). Gebraad et al. (2017) extended the
work by considering a full wind rose of wind speed and di-
rection to optimize the plant AEP. More recently, combined
static induction control and layout optimization also demon-
strated some potential for improving farm AEP (Pedersen
and Larsen, 2020).

The above work did not address the structural loading con-
ditions as influenced by either the turbine placement, con-
trol strategy, or both. Recent work by Riva et al. (2020) and
Stanley et al. (2020) looked at the coupling of the layout and
wind turbine structural loading under normal operation. A
key challenge for research in wind farm design and control
optimization applications considering turbine structural load-
ing is the computational costs, as a single optimization itera-
tion can become computationally intensive – even when par-
allelizing across operational cases. This becomes even more
challenging when considering CCD of the control strategy
and farm design together.
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Figure 8. Illustration of interdependencies for CCD considering system design, control strategies, and objectives.

The opportunities and challenges for CCD become larger
as the operating degrees of freedom of the system increase.
Thus, floating wind energy – which involves potential mo-
tions of the platform and turbine system in response to
wind and wave conditions – creates a significant opportunity
and challenge for CCD research (Garcia-Sanz, 2019). First,
floating wind energy may be investigated similarly to fixed-
bottom or land-based wind farms for CCD to benefit AEP,
reduce LCoE, or address other objectives. However, floating
wind energy may introduce additional design levers from the
platform motion that might augment the benefits that can be
realized from CCD (Barter et al., 2020). Furthermore, recent
research has looked at the ability of using yaw-based con-
trol to displace floating wind turbines, thus not only inducing
wake steering but also shifting the entire turbine and trajec-
tory of the wake (Kheirabadi and Nagamune, 2020). To re-
alize such a strategy, floating wind farm design would need
to take into account these displacements in the broader opti-
mization of not just the nominal layout of the project but also
the topology and sizing of system components such as moor-
ing systems, anchors, and the broader collection system.

5.2.2 Wind farm CCD for profitability objectives

Inherent in the entire discussion about wind farm design
for value-based objectives beyond LCoE is an active con-
trol strategy that can no longer be treated as independent
from the farm design itself. Similarly, the design and oper-
ation of wind farms for objectives beyond LCoE introduce
further couplings of physical design and controls. By defini-
tion, over-planting means that some or many wind turbines
in a wind farm will not operate or will operate at derated
conditions, depending on the particular operational or con-
trol strategy. Similarly, hybridization of wind farms, includ-
ing other generation assets, means that there are many objec-
tives to balance: the overall farm revenue against the overall
selection and sizing of the different assets, the physical park
design, and the long-term reliability of the facility, in addi-

tion to minimizing the operational costs for the collection of
assets.

In an LCoE-driven world, the long-term reliability of the
assets is important. But, with discount factors and tax incen-
tives favoring production in the early years of the project
life cycle, designers and operators have focused largely on
producing maximum energy at the lowest possible cost. In-
troducing value-based objectives where there is an explicit
trade-off in the performance and reliability across the gener-
ation assets in a project necessitates a new approach to op-
timization that addresses the operation and control strategy
upfront in the design process. Figure 8 illustrates this trade-
off in a simplistic way. In short, the design of the system
affects the operation and control strategies available, which
in turn affect the overall project profitability (balancing rev-
enues against costs). By taking into account the control strat-
egy in the design process, through CCD, we can improve the
life cycle profitability of the project. For wind energy sys-
tems with significant couplings between individual assets,
due to wakes and their impacts on both downstream machine
power production and structural loading, CCD will be nec-
essary for realizing profitable wind farms in future, highly
variable energy systems.

5.2.3 Wind farm CCD for non-economic objectives

As already discussed, the mitigation of environmental and/or
social impacts can be an important objective of wind farm
control. As with economic metrics, these are important for
wind farm design and CCD as well. Current practice con-
siders the external impacts of the wind farm design and op-
eration or control in isolation. But there may be potential
to further improve the overall farm economic performance
while alleviating negative externalities through the employ-
ment of CCD. One recent example of this is through the mit-
igation of wind farm noise impacts (Cao et al., 2020). Noise
generation and propagation are affected by the design of in-
dividual turbines, their placement in a farm relative to each
other and a potential impact point, and how the turbines are
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operated throughout their lifetime. While Cao et al. (2020)
looked only at the layout influence on noise, allowing for
varying operational strategies for noise along with the design
optimization holds promise for further improvement of the
economic performance of the farm while minimizing noise
impacts. Other externalities to the environment and commu-
nities could be similarly addressed in CCD research.

6 Conclusions

In the current paper, we have identified four major areas in
which important open scientific challenges and opportuni-
ties exist for wind farm control: (1) WFFC physics, (2) algo-
rithms and AI, (3) validation and implementation, and (4) in-
tegrating control with system design (co-design).

With respect to the first area (WFFC physics), we dis-
tinguish between quasi-steady and dynamic control. Quasi-
steady induction control has been extensively studied, but re-
maining opportunities relate to its use for structural load re-
duction and the use of over-induction for increasing energy
extraction. In the field of quasi-static yaw control, further in-
sights in wake shape and its combination with induction con-
trol are interesting open research topics. Overall, the effect
of shear, veer, and atmospheric stability on wake shape are
also still poorly understood. Dynamic control is still in its in-
fancy, with promising first results in the field of individual
pitch control and dynamic induction control, both for wake
breakup. Whether it is possible to control turbulence at a
larger boundary layer scale for improved mixing and energy
extraction also remains an interesting fundamental research
question. Finally, larger mesoscale effects of wind farms –
such as blockage, gravity waves, and wind farm wakes – may
also be susceptible to control action. This area is fully unex-
plored to date and may lead to a lot of opportunities for large
wind farms.

In the second area (algorithms and AI), we highlight the
opportunities and challenges related to a shift from open-
loop control (the current standard, e.g., mostly based on look-
up tables) to closed-loop control as a means to reduce un-
certainty and to reduce model errors. This becomes particu-
larly important when considering more advanced control ap-
proaches in higher-dimensional control spaces. Challenges
relate to the choice and construction of appropriate control
models (the internal model), the necessary state estimation
techniques to construct reliable virtual twins of turbines and
flow, and possible trade-offs between observability and the
type and number of sensors that are required for state es-
timation of more complex models. We foresee that current
progress in machine learning and artificial intelligence will
become a key enabler for solving some of these outstanding
problems.

When considering the third area (validation and imple-
mentation), we highlight in particular the challenges asso-
ciated with testing and implementing new control in modern

wind farms, with investment costs in the billion-euro range.
Direct testing of new ideas on the full scale is simply not
possible, and instead, a careful proof-of-concept and vali-
dation strategy is required. To this end, we foresee that, in
the coming years, the sequence of large-eddy simulations,
wind tunnel experiments, and small field campaigns will play
an ever larger role. Each of these faces its own challenges,
respectively related to model bias, scale similarity, and es-
tablishing statistical significance. Moreover, for actual com-
mercial implementation, additional issues arise, such as con-
troller safety and proof of commercial value for different
sites, among others.

Finally, we highlight a fourth area (co-design), which we
believe to be instrumental in reaching the full potential of
wind farm control. With the evolution towards subsidy-free
wind energy and more variable energy markets, objectives
for wind farm design (and control) are moving from LCoE to
value-based metrics that incorporate the time-varying nature
of energy prices as well as costs. Incorporating wind farm
control in the design optimization process will lead to denser
farms that optimally exploit varying conditions. During high
electricity prices, control can be used to mitigate wake ef-
fects, while during low prices, more emphasis can be given
to structural load reduction and lifetime extension. Moreover,
in either scenario, ancillary service provision may provide
an alternative income base. For instance, in this context, it is
interesting to note that the Belgian government recently in-
creased the capacity of the new Princess Elisabeth offshore
wind development zone by 60 % (from 2.2 to 3.5 GW), based
on the expectation of a shift in the techno-economic optimum
as a result of technological progress (O’Brian, 2021).

In summary, the field of WFFC is an active area of research
and innovation, with many interesting multidisciplinary chal-
lenges and exciting prospects for the increase of the total
value of wind energy for society.

Appendix A

O & M Operations & maintenance
LCoE Levelized cost of energy
AEP Annual energy production
TSO Transmission system operator
LES Large-eddy simulations
LUT Look-up table
CFD Computational fluid dynamics
DMD Dynamic mode decomposition
AI Artificial intelligence
WFFC Wind farm flow control
HPC High performance computing
R & D Research and development
PIV Particle image velocimetry
TRL Technology readiness level
CCD Control co-design
CAPEX Capital expenditure
OPEX Operational expenditure
BOS Balance of system
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