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Abstract

The aim of the present investigation is to perform both an experimental and a theoretical study
of the behaviour of cracks in GLARE loaded under a combined mode I and mode II loading,
using the angled crack problem. Cracks originating from impact damage in aircraft fuselages
can experience a mixed mode I and I load at the start of their life. For GLARE, the more fi-
brous nature of GLARE compared to aluminium may change the propagation. The experi-
ments were performed on specimens made of GLARE-3, with the main material directions
aligned with the specimen axis. As reference materials, both aluminium 2024-T3 and 7075-T6
are used. For angled cracks, the propagation direction has been predicted by Erdogan and Sih,
Williams and Ewing and Theocaris ez al.

The failure load increased with increasing crack tilt angle for all the studied materials. For

Al 7075-T6 and GLARE-3, also the nett-section stress at failure increased. All models seem to
predict similar crack propagation directions. The model of Williams and Ewing seems to per-
form best in predicting the variation in failure load, mainly due to the one free variable in it.
For Al 2024-T3 the nett section yield criterion did as well as the model of Williams and Ew-
ing. GLARE-3 does not seem to be as sensitive to nett-section yield as AL 2024-T3, nor does
it seem to be as brittle as Al 7075-T6.

The model of Williams and Ewing does not explain the size effects found in residual strength
experiments. The T-criterion of Theocaris ez al. would show the influence of the T-stress on
the plastic zone and thus attempt to model the size effect, but does not seem to work for the
present specimens. The model of Williams and Ewing was used by Finnie and Saith to model
the path stability of cracks. Since however the angled crack and the path unstable crack differ
in propagation mode, both might not be governed by the same value of the variable L.

Since the Westergaard equations do not seem to be valid at the crack tip within the linear theo-
ry of elasticity, the elastic models based on these equations may only be valid in a similarity
approach. Than, the variable 1., in the model of Williams and Ewing and Finnie and Saith
would indicate a fictitious radius indicating the balance between the influence of the stress in-
tensities and the T-stress on crack propagation.
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1 Introduction

Cracks usually are assumed to grow under a mode I loading only. Especially fatigue cracks
will hardly ever experience a mode II loading between initiation and final static failure. Cracks
originating from impact damage however can experience a mixed mode I and II load at the
start of their life. The direction of an impact crack with respect to the loading situation is quite
arbitrary. In general, a through crack perpendicular to the largest internal load in the structure
will give the lowest residual strength. A so called “angled” crack (figure 1.1), with a position
tilted from the generally most serious position perpendicular to the main load, will usually
have a higher residual strength. The angle under which the angled crack will propagate, has
been predicted i.e by Williams and Ewing [1,2] and Theocaris et al. [3,4]. For GLARE [5],
studying the angled crack may be of importance for two questions. Firstly, the more fibrous
nature of GLARE compared to aluminium may change the propagation angle of the angled
crack and thus the residual strength of impact damage. Secondly, Finnie and Saith [6] applied
the criterion of Williams and Ewing to predict the crack path stability of cracks. The crack
path stability of cracks in fuselages [7] might thus be linked to the angled crack problem.

The aim of the present investigation is to perform both an experimental and a theoretical study
of the behaviour of cracks in GLARE loaded under a combined mode I and mode I loading,
using the angled crack. For the specimens made of GLARE-3, the main material directions are
aligned with the specimen axis, not with the crack axis. As reference materials, both alumini-
um 2024-T3 and 7075-T6 are used. Aluminium 2024-T3 would be the counterpart of
GLARE-3 as a possible fuselage material [8]. Aluminium 7075-T6 would form the scientific
bench mark as a material sensitive to stress intensity factors.

The experimentally obtained crack propagation directions and failure loads will be compared
to predictions from the nett-section yield criterion, the maximum tensile hoop stress criterion
of Erdogan and Sih [9], the maximum tensile hoop stress criterion of Williams and Ewing and
the T-criterion of Theocaris et al.




2 Experiments

The present experiments were performed on specimens with a central angled crack, with vary-
ing crack tilt angle. The specimens were made of aluminium 7075-T6, aluminium 2024-T3
and GLARE-3. They were loaded under constant increasing end-displacement. The failure
load was recorded and the shape of the crack propagation studied. These subjects will be dis-
cussed in somewhat more detail in this chapter.

2.1 Materials

In future aircraft, GLARE-3 may be a candidate as fuselage skin material [8]. It would in that
function compete with among others aluminium 2024-T3. In the present experiments,
GLARE-3 with a thickness of 1.4 mm is compared to aluminium 2024-T3 with a thickness of
1.6 mm, anticipating the weight gain when GLARE is used. Both materials are compared to
aluminium 7075-T6 with a thickness of 1.6 mm. Aluminium 7075-T6 is to a much larger ex-
tend governed by the theory of fracture mechanics than 2024-T3 [10, figure 5.17] and would
allow a more reliable comparison of fracture mechanics theories and the present experiments.
The materials used in the experiments are listed in table 2.1.

2.2 Specimen design

The centrally cracked uni-directionally loaded plate was chosen as test specimen. It is easy to
make and test. The specimens were 400 mm long and 160 mm wide (figure 2.1.a). On each end
of the specimens, approximately 55 mm was used to clamp the specimen. The total crack
length 2a was kept equal to 40 mm for all specimens. The cracks were located in the middle of
the specimens, with a varying tilt angle compared to the position perpendicular to the loading.
For each material, six specimens were tested. The tilt angle, varying from 0° to 75° in steps of
15°, was the only difference between the specimens made of one material. The main specimen
dimensions and crack tilt angles are listed in table 2.2 and 2.3.

Small, drilled holes with a diameter of 0.6 mm were used as crack tips. Compared to the
square crack tip as made by the blade of a saw-cut, the round hole is thought to interfere less
with the propagation direction preferred by the crack. Towards the small holes, the crack was
cut with a saw-cut with a blade thickness of approximately 0.35 mm, starting from a hole in the
middle of the crack. In figure 2.1.b, the ideal crack tip is drawn. In all cases, the saw-cut did
enter the small hole, although in many cases not symmetrically.

2.3 Test procedure

The specimens were tested under a static tensile load on an Amsler material testing machine,
under end-displacement control. The specimens made of aluminium 7075-T6 were loaded
with a rate of 3 mm per minute. The specimens made of aluminium 2024-T3 and GLARE-3
were loaded with a rate of 1.5 mm per minute. The maximum applied load was recorded as
failure load. One crack tip was monitored with a microscope.




2.4 Failure load

For all specimens, the maximum applied load was recorded as failure load. Under force con-
trol, the maximum load would be the load at which the instable propagation of the crack
would start. The failure load for the specimens is listed in table 2.4.

2.5 Shape of the crack propagation

The cracks propagated mainly in horizontal directions from the crack tips, with slight down-
ward curves at the start (figure 2.2). The fracture surfaces in the aluminium specimens were all
tilted over 45°.




3 Theories

In engineering fracture mechanics, both plastic failure criteria and elastic failure criteria are
available. The elastic criteria are usually based on Westergaard-type liner elastic solutions
around the crack tip. The plastic criteria are usually based on an assumed failure mode and
perfectly plastic materials.

3.1 Plasticity based failure models

Nett-section yield is a well known failure model for aluminium plates with centre cracks. The
model is based on the little amount of strain hardening for large amounts of plastic deforma-
tions as found e.g. in Al 2024-T3. Due to the large plastic deformation capabilitics of

Al 2024-T3, the entire nett-section of a centre-cracked plate can become plastic before failure.
Along the nett-section, the little amount of strain-hardening will canse an almost constant
stress, despite the larger variation in plastic deformation (figure 3.1). Thus, the loading on the
end of the specimen can be linked to an average nett-section stress:

Prail

Cnett = Wy, 3.

The nett-section yield model assumes that the specimen fails when the nett-section stress has
reached some representative yield stress. For the yield stress, one cold choose e.g. the 0.2%
yield stress or the ultimate stress [11]. For a normal centre cracked plate made of Al 2024-T3,
the nett-section model has been found to describe the failure behaviour for varying crack
lengths (see e.g. [10, figure 5.17]).

The nett-section yield model is intended for plates with a finite width only. For infinite plates,
the Dugdale model [12] provides the same design opportunities. In the Dugdale model, a part
of the crack ear the crack tip is assumed to be bridged by the original material in a perfectly
plastic state (figure 3.2). Both models should merge when the plastic zones around the crack tip
almost reaches the plate edges. However, since both models use simplifications of the plastic
behaviour of the plate, this transition will not be easy to describe theoretically. The Dugdale
model has been applied by Ghassem, Rich, Low and Cartwright{13,11,14] to account for the
plasticity effect in the skin of a stiffened structure.

Limit analysis, known from the theory of plasticity, might suffer from the same problem. In
limit analysis, slip lines are assumed on the plate (figure 3.3). After assuming a representative
shear yield stress along these lines, the failure load can be linked to the material behaviour and
the specimen shape. In experiments, the contraction of the plate has been found [15]. Limit
analysis will not allow for a plastic zone confined within the specimens, since the slip lines
must end at a plate edge.

The Dugdale model can not be used for centre cracked specimens with a tilted crack, since this
would require an analytical solution of a crack with two kinks. The limit analysis might be
used for centre-cracked specimens with a tilted cracks, but only for materials where the plastic
zones reaches the plate edge. For such situations, the nett-section yield model will do equally




well. For centre cracked specimens with tilted cracks, the size of the unbroken ligament is
equal to:

2Wlig =2(W-=-acosa) (3.2

Subsequently, the magnitude of the nett-section failure stress can be linked to the specimen
failure load using equation (3.1).

For the present experiments, the nett-section failure stress has been derived and listed in table
3.1 to 3.3. As was known, aluminium 2024-T3 is sensitive to nett-section yield (see e.g. [10,
figure 5.17]). In figure 3.6, the nett-section failure stress has been plotted as a function of the
crack tilt angle. The stresses are normalised with the nett-section failure stress from the speci-
men with the 0° crack tilt angle. One may observe that for aluminium 2024-T3, all specimens
failed at approximately the same nett-stress. Assuming a maximum €rror of 0.4 mm in the
half-crack length g, a maximum error of 1.3% could be expected in the nett-section failure
stress. Only the specimen with the 15° crack tilt angle is well outside this margin of error.

Aluminium 7075-T6 behaves much more brittle and for this material the stress intensity factor
provides a better prediction of the failure load than for Al 2024-T3 (seee.g. [10, figure 5.17]).
Especially the specimen with the 75° crack tilt angle shows a much higher nett-section failure
stress than the other specimens. The specimens with the crack tilt angles in between 0° and
75°, show a continuous change of nett-section failure stress, again outside the expected margin
of error. For the specimens with the 15°, 30° and 45° crack tilt angle, the nett-section failure
stress is below the nett-section failure stress of the 0° specimen.

At higher crack tilt angles, the specimens made of GLARE-3 behave qualitatively similar to
aluminium 7075-T6, although quantitatively the change of nett-section failure stress is much
smaller. For the smaller crack tilt angles, the GLARE-3 specimens do not exceed the expected
margins of error. It does not seem that GLARE-3 is as sensitive to nett-section yield as alu-
minium 2024-T3, nor can one say it behaves as brittle as aluminium 7075-T6.

3.2 Elasticity based failure models

Flasticity based failure models for cracked specimens start from the description of the elastic
stresses around the crack tip as found first by Westergaard [16]. Hutchinson, Rice and Rosen-
gren [17,18] included the plastic behaviour of power-hardening materials within the Wester-
gaard-type solutions. None of the theories however takes into account the geometrical non-
linearity at the crack tip (see §3.3). Since the geometrically linear Westergaard-type solutions
are not valid at the crack tip, the failure models based on these equations can only serve as eén-
gineering design tool and not to study the stresses around the crack tip.

Several elasticity based models have been developed. Among them, the maximum hoop stress
model of Erdogan and Sih [9], and the dilatational energy density model of Theocaris ef al.
[3.4] could be mentioned. In both models, both the stress intensity factors and the T-stress can
be included. The importance of the T-stress in describing the stresses around the crack tip has
been shown by e.g. [19] and Smith [20].




3.2.1 The linear elastic stress field around a crack tip

In the limit towards the crack tip, Westergaard-type solutions predict a standard stress distribu-
tion of stresses around any crack tip in an isotropic material, independent of the geometry of
the crack, the geometry of the structure or type of the loading. All non-vanishing stresses
around the crack tip can be quantified with three variables. Two variables - the mode I and
mode II stress intensity factors Ky and Ky - describe the stresses that would become infinite in
an ideally elastic solid. The third variable - the T-stress - describes the stresses that remain fi-
nite and constant around the crack tip. In formula form, the stresses around the crack tip can be
described as:

Ki o .30, Kp o 0 30
o= cos— (1 —sin=sin—) - —=sin- (2+cos~cos—) +T (3.3.a)
K 0 .30 K 6 06 36
1 . 0, o .
o_= cos—~ (1+sin_sin—) + ——sin- cos-cos — (3.3.b)
Ki o.06 30 Kg o . 0 .30
Txy = —/\/5—?008-2- Sln-2-005—2- + ﬁcosi (1 "Slnism'-i-) (3.3.(:)

Here, the stresses are defined in the local cartesian coordinates at the crack tip, at a location de-
fined in the local polar coordinate system at the crack tip (figure 1.1). Using the three variables
K, Ky and T, a similarity approach will allow the comparison of cracks in different structures
and under different loading. The fatigue crack growth rate is mainly governed by the mode I
stress intensity factor K. Fatigue cracks usually grow only under a mode I loading and plastic
effects are usually small enough to eliminate any influence of the T-stress. The T-stress can
however have an influence on the static failure load [19] and on the shape of the crack propa-
gation [7].

Ignoring the finite width, the stress inteasity factors and T-stress for the uni-directionally load-
ed specimen are equal to [21]:

KI = cn/r?a cosza (3.4.2)
Kyp = oJna sin2a (3.4.b)
T = -c cos2a (3.4.0)

In anisotropic solids, the same three variables can be used to describe the stress field around a
crack tip. Now however, the material characteristics modify the actual shape of the stress file
around the crack tip. Expressed in the theory of anisotropic plates [22, 23, 24], the stress field
looks like:
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where:

y; = [cosO + s;5in6 (3.6.3)

and for orthotropic materials:

§; = /r_;_a +1i /r—gf (3.7.2)
Sy = g i, (3.7.b)

E
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y
Ex
a = %, v, (3.7.d)
Similar to isotropic materials:
K; = o./na cos’a (3.8.2)
K = oyJnasin2a (3.8.b)
T = o (sin?a+cos?aRe [s,s,] + sinacosaRe [s; +5,]) (3.8.c)

In anisotropic solids, the similarity approach can only be used to compare different cracks if
the occur in materials with identical material parameters s; and s,.




3.2.2 Maximum hoop stress criterion

The maximum hoop stress criterion, as described e.g. by Erdogan and Sih [9], assumes that a
crack will propagate in the direction where the hoop stress og around the crack tip is maximal
(figure 3.4). In the equations (3.3.a) to (3.3.c), the distribution of the stresses around the crack
tip is specified in the local cartesian x-y coordinate system at the crack tip. Using coordinate
transformation formula’s, the hoop stress in the local polar r-0 coordinate system at the crack
tip can be derived:

Gp = 0,sin’8 +0 cos’0 - 2, sinBeosd 3.9)

The maximum hoop stress criterion only takes into account the part of the stress distribution
described by the mode I and mode II stress intensity factors Ky and Kpy. In brittle materials,
which fail at loads well below their elastic limit, these stress intensity factors would on their
own describe the main part of the stresses around the crack tip. For such materials, the hoop
stress criterion might yield the direction into which the crack will propagate by locating the
maximum of the hoop stress in equation (3.9) with respect to the angle 0. By assuming that the
propagation will start when the hoop stress reaches a critical value, one might also try to pre-
dict the failure load of the specimen. This prediction of the failure load is clearly based on an
engineering approach. in the prediction, the difference between the initial onset of crack prop-
agation and the final failure of the specimen is ignored. While equation (3.9) could be thought
to describe the stresses around the crack tip up to the onset of crack propagation, a significant
amount of stable tearing could both significantly change the crack shape and take the crack tip
well outside the range of validity of the equations (3.3.a) to (3.3.¢c).

The location of the maximum hoop stress in the specimens made of Al 7075-T6 and

Al 2024-T3 have been determined and listed in table 3.4 and 3.5. No comparison is made with
the experimentally observed direction of crack propagation (see paragraph 4). The angle where
the hoop stress becomes maximal is independent of the radial position from the crack tip.
Thus, also the intensity of the maximum hoop stress with changing radial position can be de-
termined, as listed in table 3.4 and 3.5. The intensity of the maximum hoop stress is deter-
mined for a load with the same magnitude as the failure load found in the experiments (table
3.1 and 3.2). Thus, if the maximum hoop stress criterion would be valid, all specimens should
have failed at the same intensity of hoop stress. In figure 3.7, the intensity of the maximal hoop
at failure in each specimen is compared to the intensity at failure in the specimen with the
crack perpendicular to the loading. As can be seen, the specimens failed at decreasing intensi-
ties of the maximum hoop stress. The criterion does for the present specimens not seem to pro-
vide an engineering tool to predict the specimen failure load for the present specimens and
materials.

For the GLARE-3 specimens, the same approach can be used as was used for the aluminium
specimens. In GLARE too, the distribution of the hoop stress og is independent of the radial
position from the crack tip if only the stresses from the mode I and mode 1 stress intensity fac-
tor are considered. Therefore, the hoop stress intensity can be derived using equation (3.9),
once the Stresses Oy, Oy and Ty are known from the equations (3.5.2) to (3.5.¢). Similar to iso-




tropic materials, the stress intensities can be derived using equation (3.8.a) and (3.8.b). Now
however, also the anisotropic material parameters s; an s, are required to obtain the magnitude
of the stresses. In the equations (3.5.a) to (3.5.¢), s; an s; are defined with respect to the local
cartesian coordinate system at the crack tip. The evaluation of s; an s, in the equations (3.7.a)
to (3.7.d) is valid only in the global X-Y specimen coordinate system, since this system coin-
cides with the material axis defining the orthotropy of the material. Thus, they are only the or-
thotropic material parameters s) an sy. One can however transform these easily obtained
orthotropic material parameters to the required anisotropic ma parameters, with equations
similar to equation (3.9). After a notation of Lekhnitskii [22]:

§;COsQ — sina

517 cosa +§) sina (3.10.2)

s,cosa — sina

2= Gosat s, sma G-10.6)

where s; and s; are the orthotropic material parameters from equation (3.7.a) to (3.7.d), and s’
and s’; are the anisotropic material parameters in the local x-y coordinate system at the crack
tip, obtained after a rotation with a magnitude equal to the crack tilt angle a, from the global
specimen system to the local crack tip system.

Using the theoretical material properties as specified in table 2.1, the magnitude and the angu-
lar position of the maximum hoop stress have been determined (table 3.6). The calculations
were made with the specimens loaded by the failure stresses as found in the experiments (table
3.3). Plouting the obtained maximum hoop stresses at failure for all specimens relative to the
maximum hoop stresses at failure for the specimen with the crack perpendicular to the loading
(figure 3.7), one can see that also for GLARE-3 the maximum hoop stress criterion does not
seem to be valid as an engineering design tool.

3.2.3 Williams’ and Ewing’s criterion

Besides the mode I and mode II stress intensity factors, also the T-stress has been known to
have an influence on the failure load of cracked structures [19]. For materials which show
plastic deformations at the crack tip before failure occurs, the T-stress can change the shape
and size of the plastic zone around the crack tip, and thus change the failure load. Williams and
Ewing [1,2] incorporated the T-stress in the maximum hoop stress criterion. To find the proper
balance between the influence of the stress intensity factors and the T-stress, they proposed to
evaluate the hoop stress at some distance r, from the crack tip. They postulated that this dis-
tance was a material parameter. One does not have to assume that the radius 1, is a physical ra-
dius. It might be seen as a fictitious radius determining the balance between the contributions
of the stress intensity factors and the T-stress to the failure load.

Finnie and Saith [6] applied Williams’ and Ewing’s criterion to predict the path instability of
cracks. For path instability, Kosai et al. [25] determined that for aluminium, the material pa-
rameter r. is equal to 1.5 mm. One can not directly assume that the magnitude of r, which de-




termines the crack path stability is identical to the magnitude of r, which determines the crack
propagation direction for a tilted crack. For both situations, the shape of the crack propagation
is different. The tilted crack propagates as a straight crack extension with a kink between the
original crack and the extension. In case of crack path instability, the crack will not show a
kink but instead curve from the straight crack line. However, the magnitude of 1.5 mm for r,
has been applied to study the crack propagation for the tilted cracks in the presently studied
specimens. In table 3.7 and 3.8, the magnitude and the angular position of maximum hoop
stress at a radius of 1.5 mm and a load equal to the experimental failure load has been deter-
mined for the aluminium specimens. As can be seen in figure 3.8, the magnitude of the maxi-
mum hoop stress at failure changes quite significantly for all specimens. One can however
optimize the magnitude of r., in order to obtain a better prediction. As can be seen in table able
3.7 and 3.8 and figure 3.9, the scatter of the magnitude of the maximum hoop stress at failure
can be reduced to 5% when for 1. a value of 1.18 and 2.95 mm is used for respectively

Al 7075-T6 and Al 2024-T3. The difference in r,, for both types of aluminium may be justified
by observing that both have a different plastic behaviour. For a perfectly brittle material the T-
stress should not have an influence on the failure load and r, should thus be equal to zero. Since
compared to Al 2024-T3, Al 7075-T6 is much more brittle, it is not surprising it has a lower r,..

The criterion of Williams and Ewing can be applied to GLARE-3 in two ways. Firstly, one
could study the average hoop stresses in the laminate and assume that one value for r, would
describe the failure process in all layers. For this approach, one might have to assume that the
failure stress varies with the crackdpropagation direction relative to the fibre orientation. For
the present experiments however, the cracks propagated more or less into the same direction
relative to the fibres.

Secondly, one could study the hoop stresses in the aluminium layers only and apply the value
found for 1, as found in the Al 2024-T3 specimens. This approach would only take into ac-
count the elastic presence of the fibre layers in determining the stress distribution. Both ap-
proaches are shown in table 3.9 and figure 3.10. One can see that with an optimized magnitude
of 2.01 mm for 1, the predictions are better for the method using the average stresses than the
predictions using the stresses in the aluminium layers only.

Using tlié presently obtained values for r,, for the presently studied materials, one may try and
predict the path stability of cracks found in such structures. Since all materials have different
magnitudes for r, the path stability of such cracks seems material dependant. Observing from
the presently obtained values, the likelihood of crack path instability under equal loading
seems to decline from Al 2024-T3 to GLARE-3 and to Al 7075-T6. Since such a material de-
pendence has never been shown to exist in experiments, one can not predict whether this de-
pendence exists, whether the values obtained for r,, in the present experiments are not valid in
Finnie and Saith’s criterion, whether the values obtained for r. in the present experiments are
not valid in other types of specimens or whether the criterion of Finnie and Saith may not be
useable as a design tool.
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3.2.4 The T-criterion of Theocaris et al.

The T-criterion of Theocaris et al. [3,4] is designed to perform similar predictions as the maxi-
mum hoop stress criterion in the previous paragraph. It predicts the angle into which a crack
will propagate when it is loaded under a mixed mode loading. Similar to the maximum hoop
stress criterion, it could also be used to predict crack path instability.

In the T-criterion, the energy density is used to determine the direction into which the crack
will propagate. The total energy density T of a material element is split into the dilatational en-
ergy density T,, and the distortional energy density Tp. According to Bisplinghoff er al. [26],
the various energy density for a thin plate in plane stress can be expressed as:

1 1 2 2

T = 2575y (Ox* Oy~ V0,0, +2(1+v)7 ) (3.11)
_ ! 2 1 1=2v

Tv = 5r x*%)° = gaaiew) (3.12)
Ll 2. 2

Tp = E("x*"?r OOy +3T,y) (3.13)

where G is the material’s shear modulus and v its Poisson’s ratio.

Theocaris et al. evaluated the T-criterion on the boundary of the plastic zone as predicted by
the Mises yield criterion [3] (figure 3.5). The shape of this boundary can be computed once the
stresses around the crack tip are known from e.g. equation (3.3.a) to (3.3.¢). In these equations,
both the mode I and mode II stress intensity factors and the T-stress can be retained.

At this point, it may be useful to note that the names “T-stress” and “I-criterion” may indicate
a closer link than actually exists. The T-stress indicates a constant stress in the region of the
crack tip, as used e.g. by Cotterell and Rice [27]. The T-criterion is linked to the distribution of
the total strain energy density T and thus addresses a basically different physical quantity.

Returning to the T-criterion, Theocaris et al. stated that the crack would propagate into the di-
rection where the dilatational part Ty, of the strain energy density has its maximum along the
boundary of the plastic zone. they stated that at this point, the void growth during stable tear-
ing would be maximal since the void growth is controlled by the dilatational part of the energy
density. At the plastic boundary defined by the Mises yield criterion, the deformational energy
density Tp is constant. They argued that “the Tp component prepares the material around the
crack tip for fracture by forming a plastic zone, and the Ty-component provokes crack propa-
gation” by enabling void-growth.

In this study, an attempt will be made to study the predictive value of the T-criterion to the ex-
periments performed on the aluminium specimens. In order to apply this criterion, one re-
quires the yield stress of Al 7075-T6 and Al 2024-T3. Three tensile tests were performed for
each material (table 3.10). The yield stress of Al 7075-T6 and Al 2024-T3 was used to deter-
mine the shape and size of the Mises yield zone in the T-criterion, taking into account the pres-
ence of the T-stress around the crack. The location and magnitude of the maximal dilatational
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energy density along>the Mises yield boundary was determined. Both the magnitude and the
location are presented in table 3.11 and 3.12. Both the magnitude of the dilatational energy
density at the failure location and the radius from that point to the crack tip can be used as fail-
ure criterion [3,4]. As can be seen in figure 3.11 and 3.12, neither seems to work for the present
experiments. For the GLARE-3 specimens, an attempt is not made to apply the T-criterion, al-
though there does not seems to be a theoretical problem for doing so.

3.3 Theoretical validity of the Westergaard equations

Using a geometrically linear theory of elasticity, the Westergaard equation find that the initially
sharp crack tip will become elliptical. The amplitude of this ellipse varies linearly with the am-
plitude of the loading. However, from the very first loading, the crack tip becomes blunt. The
basic condition from the linear theory of elasticity is that the shape of the deformed structure is
represented by the shape of the undeformed structure. To obtain this, the displacements should
remain small and the rotations (or displacement gradients) should remain zero in the limit to
zero loading. This last condition is violated in the Westergaard equations: at the crack tip, the
rotations are 90° in the linear elastic solution, even in the limit towards zero loading. Thus, the
stresses in the crack faces are rotated over 90° and equilibrium is no longer certain. Practically,
the crack tip is stretched due to the geometrically non-linearity beside the bending as described
in the linear elastic solution.
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4 Discussion and conclusions

Looking back at the experiments performed on the three materials and theoretical evaluations
associated with them, the failure model of Williams and Ewing [1,2] seems to work best. This
does not directly prove the validity of the model. The model of Williams and Ewing has one
variable that can be chosen freely, allowing an optimization for the correlation with the exper-
imental results. For the present experiments, this correlation was optimized for the changing
failure load for changing crack tilt angles. For Al 7075-T6 and GLARE-3, the failure load of
all specimens could quite well be linked to the failure load of the specimen with its crack per-
pendicular to the loading (figure 3.14). For Al 2024-T3, its performance did not exceed the
performance of the nett-section yield criterion (figure 3.14). In stiffened, infinite sheets how-
ever, the nett-section yield criterion is difficult to use.

All models seem to predict similar crack propagation directions (see e.g. figure 3.15). The var-
iation in the predicted directions seems smaller than the scatter fund in the present experi-
ments (figure 2.2). In other types of specimens, such as e.g. the compact tension specimen,
more variation in propagation direction might be found. In such specimens too, the influence
of the fibres in GLARE on the crack propagation might be investigated. For the present speci-
mens, the fibre direction was roughly aligned with the expected failure direction for all kink
angles.

The model of Williams and Ewing does not explain the size effects found in residual strength
experiments. In front of a crack loaded by a mode I loading only, the T-stress does not have an
influence on the hoop stress og in the model of Williams and Ewing. The T-stress is however
known to have an influence on residual strength [19]. The T-criterion of Theocaris er al. [3,4]
would show the influence of the T-stress on the plastic zone and thus attempt to model the size

effect. The T-criterion however, does not seem to work for the present specimens (figure 3.11
and 3.12).

The model of Williams and Ewing was used by Finnie and Saith to model the path stability of
cracks [6,7]. Although Williams’ and Ewing’s failure radius r, as found for the present tilted
cracks, could be used to predict the path stability of mode I cracks, a theoretical problem
should be mentioned. From the tilted position, the crack propagates with a kink. A crack with
an unstable path will curve from that path. Since both propagation types have a different
shape, they may not be governed by the same value of the variable r.. The variable r, might be
seen as a realistic radius from the crack tip at which the material would fail. Since the Wester-
gaard equations, which form the basis of all elastic failure models, are not valid at the crack
tip, this might not be true. The variable r, might more likely be seen as a fictitious radius
showing the balance between the stress intensities and the T-stress in determining the propaga-
tion direction and shape. Than, there might exist a different balance for kinking cracks and for
cracks with unstable paths.

Concluding, one might say that all the materials presently tested, the failure load increases
with increasing crack tilt angle. For Al 7075-T6 and GLARE-3, also the nett-section stress at
failure increased. The model of Williams’ and Ewing seems to perform best in predicting the
variation in failure load, mainly due to the one free variable in it. For Al 2024-T3 the nett sec-
tion yield criterion did as well as the model of Williams and Ewing. GLARE-3 does not seem
to be as sensitive to nett-section yield as AL 2024-T3, nor does it seem to be as brittle as
Al7075-Té.
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GLARE-3
Material property Al gg?ASDTG Al 53‘2/5‘4]-)'1‘3 ti/i l(z;lyélgm
t [mm] 1.6 1.6 14

E, [MPa] 72400 72400 58200

Ey [MPa] 72400 72400 58200
Gy | [MPa] 27200 27200 19300
Vay - 0.33 0.33 0.288
Vyx - 0.33 0.33 0.288

Table 2.1: Properties of the materials used in the experiments

Length L 400 mm
Width W 160 mm
Crack length 2a 40 mm
Crack tilt angle a see table 2.3

Table 2.2: Geometrical properties of the uni-directionally loaded test specimens

Specimen number Crack tilt angle o
I 0°
II 15°
m 30°
Iv 45°
A% 60°
VI 75°

Table 2.3: Crack tilt angle for the various specimens
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Crack tilt Failure load | Failureload | Failure load
Specimen Al 7075-T6 | Al2024-T3 GLARE-3
number ang‘}e @ specimens specimens specimens
¥ Prg N] | Prgg[EN] | Py [kN]
I 0° 73.40 69.66 55.24
o 15° 72.17 67.72 55.90
I 30° 72.68 73.20 58.40
v 45° 78.80 75.36 61.16
\4 60° 89.72 81.80 66.44
VI 75° 122.88 88.68 78.80
Table 2.4: Failure load for all specimens
mqm Failu;e .slress Nomr:s:ist;aﬂure n::ﬂs;r:s s Nol;n::t;-asl trfﬁ;aglsure:
« fail Ofail Onett O nett
[ [Meel Ctail, 0° [MPa] Cpett, 0°
0° 287 1.00 382 1.00
15° 282 0.98 372 0.97
30° 284 0.99 362 0.95
45° 308 1.07 374 0.98
60° 350 1.22 401 1.05
75° 480 1.67 513 1.34

Table 3.1: Failure stress and nett-section failure stress for the aluminium 7075-T6 specimens
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| pareses | | S| e
a fail Otail Opett Onett
e Ml Otail, 0° [MPa] Oett, 0°
0° 272 1.00 363 1.00
15° 265 0.97 349 0.96
30° 286 1.05 365 1.01
- 45° 294 1.08 358 0.99
60° 320 1.17 365 1.01
750 346 1.27 370 1.02

Table 3.2: Failure stress and nett-section failure stress for the aluminium 2024-T3 specimens

el BT =l L
o ail Otail Onett Onett
] [MPal Otail, 0° (MPa] O ett, 0°
0° 247 1.00 329 1.00
15° 250 1.01 329 1.00
30° 261 1.06 333 1.01
45° 273 1.11 332 1.01
60° 297 1.20 339 1.03
75° 352 1.43 376 1.14

Table 3.3: Failure stress and nett-section failure stress for the GLARE-3 specimens
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Crack

Predicted crack

Nominal failure

Fatilure stress .
tilt angle urijz propagation stress
a 06 fail 1T angle 0,04 O, tail
€] [MPaVmm] el p —
O, fail, 0°
0 2273 0 1.00
15 2287 27 1.01
30 2287 43 1.01
45 2182 33 0.96
60 1804 60 0.79
75 1244 66 0.55

Table 3.4: Failure hoop stress in Erdogan’s model for the aluminium 7075-T6 specimens

. Nominal failure
_CraCk Failure stress Predicted (.:raCk stress
tilt angle N2 propagation
a O fail anglc 0, ed Gﬂ, fail
el [MPaVmm] - pr _
O, fail, 0°
0 2156 0 1.00
15 2149 27 1.00
30 2303 43 1.07
9, 2084 53 0.97
60 1647 60 0.76
75 896 66 042

Table 3.5: Failure hoop stress in Erdogan’s model for the aluminium 2024-T3 specimens



. Nominal failure
.Crack Failure stress Predicted gack stress
tilt angle N propagation
O‘e fail Piing Io) .
a angle B4 8, fail

°] [MPa\/mm] ] P

0, fail, 0°
0 1958 0 1.00
15 2031 27 1.04
30 2111 44 1.08
45 1926 53 0.98
60 1505 59 0.77
75 903 65 0.46

Table 3.6: Failure hoop stress in Erdogan’s model applied to the average stresses in the
laminate, for the GLARE-3 specimens

Williams’ model Williams’ model
1.=15 . =118
k tilt
Cr;;: gléﬂ Failure stress Failure stress
o Predicted Predicted
[°] | Absolute | Nominal | propagation | .y ... | Nominal | propagation
Cp e angle G o angle
Og fail 6, fail 8, oq [°] 09 fail 0, fail B,req [°]
[MPa] | 0g gyiyge| [MP2] | g i1 e a
0 741 1.00 0 835 1.00 0
15 716 0.97 15 809 0.97 16
30 691 0.93 33 785 0.94 34
45 711 0.96 53 802 0.96 53
60 731 0.99 69 804 0.96 68
75 791 1.07 30 841 1.01 80

Table 3.7: Failure hoop stress in Williams’ model for the aluminium 7075-T6 specimens
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Williams’ model Williams’ model
=15 I, =295
Cl:;;;m Failure stress Progti Failure stress )
o cted Predxcto@
[°] | Absolute | Nominal | Ppropagation | ... | Nominal | propagation
0o fail O, fail emzltco] 0@ fail Op, fail eanjl;, :
[MPa] |0g cijoe| MPal | 0g rnge|
0 702 1.00 0 502 1.00 0
15 673 0.96 15 477 0.95 13
30 696 0.99 33 486 0.97 30
45 679 0.97 53 485 0.97 53
60 668 0.95 69 512 1.03 72
75 570 0.81 80 491 0.98 82

Table 3.8: Failure hoop stress in Williams” model for the aluminium 2024-T3 specimens

Williams’ model applied to average
stresses in laminate, 1, = 2.01

Williams’ model applied to stresses in
aluminium layers only, 1, = 2.95

Crack tilt
ang.l:l Failure stress Failure stress
o Predicted Predicted
(1| Absoluse | Nominal | propesation |y | Nominal | propegetion
| Cemi | Tefal | o T | Cami | Bl | g “y R
[MPa] |o. .. pred MPal |o, .. pred
0, fail, 0° 0, fail, 0°
0 51 1.00 0 587 1.00 0
15 546 0.99 14 597 1.02 13
30 543 0.98 31 587 1.00 28
45 542 0.98 53 580 0.99 54
60 555 1.01 70 652 1.11 72
75 547 0.99 82 667 1.14 81

Table 3.9: Failure hoop stress in Williams’ model applied to the average stresses in the
laminate and to the stresses in the aluminium layers, for the GLARE-3 specimens




Al17075-T6 Al 2024-T3 GLARE-3
t=1.6mm t= 1.6 mm =14 mm
Specimen
number Yield Ultimate Yield Ultimate Yield Ultimate
stress stress stress stress stress stress
0.2 Oult 902 Oult 0.2 Oult
I 517 561 394 477 316 713
o 515 565 393 472 323 721
m 513 563 392 473 319 734
Average: 515 563 393 474 319 722

Table 3.10: Yield and ultimate stress for the materials used in the experiments
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Distortional strain energy Plastic radius at failure
Crack density at failure location location Predicted
o a:gle Absolute Nominal Absolute Nominal propazgla:(m

[°] Ty ail Ty, tail Tolfail Tol, fail Bpreal’]
INmm/mm3] | Ty g1 00 [mm] Tol, fail, 0°

0 0.637 1.00 3.10 1.00 0

15 0.666 1.05 2.85 0.92 19

30 0.687 1.08 246 0.79 39

45 0.635 1.00 2.18 0.70 60

60 0.495 0.78 1.62 0.52 77

75 0.289 045 091 0.29 93
Cp2 =483 MPa

Table 3.11: The failure model of Theocaris et al. for the aluminium 7075-T6 specimens

Distortional strain energy Plastic radius at failure
Crack density at failure location location Predicted
ult ;ngle Absolute Nominal Absolute Nominal proz:glaetion

] Ty gail Ty, tan1 Tol fail Tpl, fail Bpredl®]
Nmo/mm®] | Ty, gail, 00 [mm] Tol, fail, 0°

0. 0310 1.00 4.79 1.00 0

15 0.347 1.12 434 091 18

30 0.380 1.23 430 0.90 38

45 0.370 1.19 342 0.71 60

60 0.281 0.91 236 049 78

75 0.177 0.57 0.80 0.17 92
Cg2 =393 MPa

Table 3.12: The failure model of Theocaris et al. for the aluminium 2024-T3 specimens



Load Oy

Local x-y cartesian

and r-8 polar
coordinate system

r

¥ y
Global X-Y cartesian
coordinate system 0
X
Crack
X
Crack tilt angle a

a: global and local coordinate systems around the angled crack

Crack tilt
angle o

Crack propagation
angle ©

b: shape of expected crack propagation

Figure 1.1: The angled crack in a uni-directionally loaded plate




2a=40 mm

400 mm

see detail

160 mm

a: Test specimen

b: Detail of crack tip

Figure 2.1: Uni-directionally loaded specimen, with centrally, angled crack



Figure 2.3: Crack propagation directions from the angled cracks in the Al 2024-T3 specimens
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igure 2.4: Crack propagation directions from the angled cracks in the GLARE-3 specimens




Crack

Strain distribution (x)

a: Strain distribution along the nett-section in a centre cracked plate

Stress distribution 6(x)

b: Resulting stress distribution for non-hardening alloys

Figure 3.1: Nett-section yield failure model
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Crack tip

Perfectly plastic yield zone
with constant stress

Figure 3.2: Dugdale model with original material in perfectly plastic state bridging the crack
near the tip

Original crack tip

Crack < Edge
contraction

Slip lines

Figure 3.3: Failure mode of centre cracked plate in limit analysis, using slip lines on the plate
surface




Cg T

M

Figure 3.4: Hoop stress around a crack tip in the maximal hoop stress criterion

Mises yield zone

™

Ty varies along edge
Crack

Tp is constant along edge

Figure 3.5: Strain energy density along the edge of the Mises yield zone
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1.40

~g- 7075-T6
T 1.30 5 —— 2024-T3
Nominal —— GLARE-3
nett-stress
csneﬂ:/ Gnett,0°
0.90 T T T T T
0 15 30 45 60 75 90
Cracktiltangle @ [°] ——»
Figure 3.6: Nominal nett-section failure stress
1.20
T 1.10-
Nominal 1.00
failure sress 5 g _
GOn £.:1700 £a:1 O

0,fail’ - 0,fail.0 0.80

0.70 4
—8— Al 7075-T6
0604 | _o— A12024-T3
0.50 - —»— GLARE-3
0.40 T T T T T
0 15 30 45 60 75 90

Crack tilt angle o [°] ———»

Figure 3.7: Nominal failure hoop stress using Erdogan’s model
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1.20

T —=- Al 7075-T6, r.=15mm
—©—  Al12024-T3, I.=15mm

1.10 4

Nominal
failure stress

Cp +.:1/00 £a:
6,fail’“8,fail.0° ;| oo

0.90

0.80 1 I ! i i
0 15 30 45 60 75 90

Crack tilt angle a {°] ——»

Figure 3.8: Nominal failure hoop stress using Williams’ model and Kobayashi’s value for rc

1.20
Al 7075-T6, I.= 1.18 mm &~
Al 2024-T3,r_ =295 mm -6~

1.10 ¢

Nominal
failure stress
%9, £2il/9,fai,0°  1-00
0.90 —
0.80 I T T T

T
0 15 30 45 60 75 90
Crack tilt angle o [°] ——»

Figure 3.9: Nominal failure hoop stress using Williams’ model and an optimized value for rc
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1.20

T 1.15
1.104

Nominal
failure stress

1.05 -

50,£2i/%0 fail0°  1.00

0.95 -
0.90+ —»— GLARE-3, rc = 2.01 average over laminate
0.85 —o— GLARE-3, rc = 2.95 in aluminium layers
0.80 T T — T T
0 15 30 45 60 75 90

Crack tilt angle o [°] ——»

Table 3.10: Nominal failure hoop stress in Williams’ model applied to the average stresses in
the laminate and to the stresses in the aluminium layers, for the GLARE-3 specimens

T

Nominal R
dillatational
strain energy
density
Ty o
—&— 7075-T6
0.204
—e— 2024-T3
0.00 T T T T T
0 15 30 45 60 75 90

Crack tilt angle o [°] ——»

Figure 3.11: Nominal failure dilatational energy density using the model of Theocaris et al.




1.40

T 1.204
Nominal 1.00
plastic radius
rolr0 0° 0.80
0.60 -
0.40
—8— 7075-T6
0.20- —o— 2024-T3
0.00 T T T T T
0 15 30 45 60 75 920

Crack tilt angle & [°] —»

Figure 3.12: Nominal plastic radius at location of maximal dilatational energy density using
the model of Theocaris et al.
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* Y
% Ox. Original position
- of stress

Crack tip

a: undeformed crack tip

Stress rotated
o, over90°

Blunted crack tip

b: crack tip in deformed state, with geometrical non-linearity at crack tip

Figure 3.13: Geometrical non-linearity in the Westergaard equations describing the deforma-
tions around a crack tip




Al 2024-T3, Nett section yield model
A17075-T6, Williams' model r_ = 1.18
A12024-T3, Williams' model r_ = 2.95
GLARE-3, Williams' model average

over laminate r .= 2.01

T 125
1.20

Nominal

failure load 1.15

SRR

90
Crack tilt angle o [?] —»
Figure 3.14: A summary of the predictions of Williams’ and Ewing’s model and the nett-sec-

tion yield criterion
120

——— Al12024-T3, Nett section yield model
105|7® Al17075-T6, Williams' model r, = 1.18
—¥— Al12024-T3, Williams' model r.= 2.95
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Figure 3.15: Crack propagation directions predicted by the failure model of Williams’ and
Ewing’s model and the nett-section yield criterion
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Appendix A: Stress intensities and T-stress in anisotropic plates

Ina uni-directionally loaded plate with an angled crack, the crack tip is loaded both in a mode
I'and in mode II type of deformation (figure a.1.2). Redefining the load on the crack in the lo-
cal crack coordinate axis, one might split the problem into three parts (figure a.1.b to a.1.d).
The first part consists of an uncracked plate loaded in tension and shear (figure a. 1.b). The sec-

shear loads p and q (figure a.1.c and a.1.d). The loads at the crack faces can be expressed in the
original load o on the uni-directionally loaded plate with the angled crack, and the tilt angle o,
First, the stresses at the crack location in the uncracked plate can be evaluated:

)
O'X = osm-a

O'y = OCOos 2(1

T = osihacosa
xy

The stresses Oy and T,y have to be eliminated by respectively pand q:
P=og = ocos’a

Q=71 = osinacosa

For these two problems solutions are known [1] and the stress intensities at the crack tip have
been derived [2]. For the problem of the crack whose faces are loaded by a constant pressure p,
the solution is given as [1]:

o = S;pa g
! 2(s;-s,) &

A spa |

2 2(s,-5)) T,
where:

f

zl~t—«/zf—a2

& = a2

: 2,+ /23 ~a?
2 =

a

The stresses can be derived with the following equations:
o, = 2Re[s{d", (z;) +53¢', (2,)]
o, = 2Re [¢’1 (Zl) +¢'2(Z,_,)]

Ty = “2Re (59" (2)) +5,0', (2,)]
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In order to derive the stress distribution, one requires the derivative of the functions ¢1 and ¢,
with respect to z; and 2z, and thus the derivative of {; and {, with respect to z; and 2z

d. 1 d (a(zl-A/zf—az)\ d (zl—A/z%-az) _ 1(1- 2, )
a

dz az, | 22 | dz a
1 & 1\ 2= (z]-2a°) 1 zf-az

To derive the stress distribution close to the crack tip, one may take the limit of this derivative
towards the crack tip:

e e e )
-4

where:

Yy, = cosO+s5,sind

Similarly:
a,1, 1, Jra 1
&)
dz, ¢, JZ—n;'Jqu
where:

Yy, = c0s0+s5,sin6

Now, in the limit towards the crack tip all non-vanishing stresses are found to be:

575, 1(__«/1_5_ 1) 535, l(l_ﬁiﬂ

o, =2Re|——— pa-|1 — |+ —————pa-
x I:Z(sl—sz)p a 2(sz-sl)p a 2,,,@

$18, pJra/ § s, K, $8, 7§, S,
(_ - ~) = pRe[s;s,] - ——Re (__ - __)
5178 f2nr «/‘471 Jqu Snr (8178, ~/‘V—1 «/"Tz

= Re -p- 1 g_@ L__
: $1=82 J2nr (Jv_l ﬁ;

P
—_ 1t
1]
i
O
]
N
-
| v
_m
11w
N‘ﬂ
—~
w
) ?I'"
o ]
wr
=
[ — ]

T = -2Re 1% pal(l—“/ﬂ:—a 1)+ K pal(l 1)
xy 2(5,-8,) 2 ﬁj{l 2(s,-3)) a 2nr ,jy,
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For the second problem - the cracked plate loaded by a shear load at the crack faces - the solu-
tion is given as:

_ g2 1
* 2(s; -5 §
. _ga 1
*2 = 2(s,-sp &,

Now, the stresses in the limit towards the crack tip are found to be:

c 2R 1’ S% qal(l ma 1 )+ s% qal(l Jma 1 )ﬁl
= e ————— - —_—— —————— - - ——
x L2(sl-—sz) a 2“%/‘71 2(s5=5;) * a 2"‘«//_“;J
- 2 2 2
R 1 q /Tta Sl ‘— 1 sl SZ
= Re: (s +s:,_)q-—-—-———(—-——-—ﬂ = qRe[s; +s,] - ( _)
o =~y 1 J = o )
ro 1(,_Jma 1 1 1(, ~ma 1 Y]
o =2Re‘-—qa—(1 ) —q —(1— )
y i_z {s;—s,) a 21!1' ,\/\y 2(52_51) a '\/ﬁ AL

CRe . L @mac 1l 1y Bmoor1 o1
R W = e ey

;;

T ==-2Re,!'_———Sl qal( - J__a L ) i a-l-(l JE L )—I
i i_z(sl =57 2nr f- 26,-s)  al fomr Jv,) |

Re—q+ 1_g/ma -2 =-q+ KiRe( ! (sl 82)—]
NESEY T (j' f) A DR AW |
In the definition of the stress distribution, the stress intensity factors Ky and Ky have been de-
fined as:

K, = p..na = ocosan/na

Ky = q\.;t; = osinacosa./ta

The stress intensity factors are equal to the stress intensity factors in the corresponding iso-
tropic solutions. It should however be stressed that the stress distribution solutions in aniso-
tropic materials differ basically from the distributions in isotropic solutions. A similarity
approach between cracks in isotropic and anisotropic materials can therefore not be used. Fur-
ther, a similarity approach between different anisotropic solutions can from an elasticity stand
point only be justified if the materials have identical material constants s; and s;.

In anisotropic materials, the mode II crack deformation contributes to the T-stress:
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T= csin2a+pRe [s;s,] +qRe[s, +s,] = © (sin?a.+ cos2aRe [s;s,] +sinacosaRe [s;+s,])
This contribution disappears for isotropic materials:

T = o (sina+cos”aRe [i*] + sinacosaRe [i+i]) = o (sin?a~cos’a) = —ocos2a

[1] S.G. Lekhnitskii, Anisotropic plates. Translated from the 2nd Russian edition by S.W.
Tsai and T. Cheron, Gordon and Breach Science Publishers, New York (1968).

[2] Th. de Jong, Mechanica van composiet materialen. Report LR-431 (In Dutch), Faculty
of Aerospace Engineering, Delft University of Technology, Delft, Netherlands (1984).
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a: uncracked plate loaded in tension and shear
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a: angled crack c: pressure load at crack faces
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d: shear load at crack faces

Figure a.1: Three way split of uni-directionally loaded plate with angled crack
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Appendix B: Stress distribution in laminates

In a laminate, the strains are equal in all layers. They can be expressed in terms of the average
laminate stresses and average laminate flexibilities [1]:

1 “Vyx

E, E
Ex * y x
£ = _vxy 1

y T y

Ex Ey T

*¥lam 1 *Ylam
G
L *Ylam

The stresses in each layer can be computed from these general strains by using he stifness of
the individual layers. If e.g. one would require the stresses in an alumnium layer layer, which
behaves isotropicaly under the general laminate strains, one would find:

(n wE ]
(cx 1-v% 1-v? €x
°%| =|_E_ _E y
L’cx al 1-v? 1-v? Txy lam
L G,

Combining these equations, one can link the tensile and shear stresses in the individual alum-
nium layers to the average stresses in the laminate:

Fl-—vvxy v—vyx
{c}j _ _E E, Ey {ogl
—v2| v- 1-
o " 1=v¢| v-v yx YV olilam
L E, Ey

el = [

Th. de Jong, Mechanica van composiet materialen. Report LR-431 (In Dutch), Facul-

ty of Aerospace Engineering, Delft University of Technology, Delft, Netherlands
(1984).

(1]
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Appendix C: Fortran source codes

Source code used to evaluate the hoop stresses og around a crack tip in an isotropic plate

program isotheta

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

[o!
o] Program to determine the propagation angle of a crack under
c mixed mode I and IZI loading
c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
[o: Variabels used to open the files
c
O e T T T T T T T T T T e e e e e e e e c
c
integer nmax
parameter (nmax=12)
c
integer ipinpf, ipoutf, ipecho
integer iflag
integer ynscrn, ynecho
character*20 mfile,ifile, efile
character*4 letter
parameter (ipout£=8, ipecho=9)
c
C———————— —-— - B . ol
c
C Variabels used to open the plot window
c
T T T T T e e c
c
double precision sigma,pi,a,beta, theta,E,nu
double precision KI,KII,T,fxi,fyi,fxyi,fxii,fyii,fxyii
double precision KINOR, KIINOR, fact
double precision sigmax,sigmay,tauxy,sigmat,themax,rc
double precision betas,betae,betai,sitmax(nmax),stddev
c
integer i, Tyn, j,k
c
data pi / 3.141592654 /
c
Cm— e T T T T T T T T T T T e e e e e c
c
c Input from screen or file
c
T e e e e e —-———C
c
write(6,*) ‘Input from the screen or from a file (s/f)?’
read(5, *) letter
c
if (letter.eq.’f’) then
c
ipinpf = 7
ynscrn = 0
ynecho =0
c
14 continue
c
write (6, *) “‘Type the input-full file naam:’
read(5,*) ifile
c
open(ipinpf,file=ifile,status=’old’,iostat=iflag)
c
if (iflag.ne.0) then
c

write(6,*) ‘The file ‘,ifile, "doesn 't exists.’
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goto 14

c
endif
c
else
c
ipinpf = 5
ynscrn = 1
ynecho =0
c
write(6,*) ‘Do you want an echo-file of the input (y/n)?’
read (5, *) letter
o
if (letter.eq.’y’) then
c
ynecho = 1
c
15 continue
c
write (6, *) ‘Type the full echo-file naam:’
read (5, *) efile
c
open (ipecho, file=efile, status="new’, iostat=1iflagq)
c
if (iflag.ne.0) then
c
write(6,*) ‘The file ‘,efile,’already exists.’
goto 15
c
endif
c
endif
c
endif
c
c c
c
c Output to outf file
c
c c
c
16 continue
c
write(6,*) ‘To which file do you want the output?’
read(5,*) mfile
c « ,
open (ipoutf, file=mfile, status='new’, iostat=iflaq)
c
if (iflag.ne.0) then
c
write(6,*) ‘The file ‘,mfile,’already exists.”’
goto 16
C
endif
c
c - - - --Cc
c
c Input
c
c———- - ———— - - -—— ————C
c
if (ynscrn.eq.l) write(6,*) ‘Crack length a [mm] ?’
read (ipinpf, *) a
if (ynecho.eq.1l) write(ipecho, 1000) a
c

if (ynscrn.eq.l) write(6,*) ‘Damage radius rc ?’

C-A19)
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read (ipinpf, *) rc
if (ynecho.eq.l) write(ipecho,1000) rc

c
if (ynscrn.eq.l) write(6,*) ‘Young's modulus E {MPa] ?’
read (ipinpf, *) E
if (ynecho.eqg.l) write(ipecho,1000) E
c
if (ynscrn.eqg.l) write(6,*) ‘Poisson‘s ratio nu ?’
read (ipinpf, *) nu
if (ynecho.eq.l) write{ipecho, 1000) nu
c
if (ynscrn.eq.l) write(6,*) ‘With or without T-stress (1/0)7?’
read (ipinpf, *) Tyn
if (ynecho.eqg.l) write(ipecho,1300) Tyn
c
if (ynscrn.eq.l) write(6,*) ‘Starting crack angle,
$end crack angle and interval ?’
read (ipinpf, *) betas, betae, betai
if (ynecho.eq.l) write (ipecho,1000) betas, betae, betai
c
c——— _— e e e
c
[of Main program
c
c ———— ——— . . " —" o — . s et . . e ——
c
beta = betas
j=1
c
200 continue
c
if (ynscrn.eq.l) write(6,*) ‘Load stress sigma [MPa] ?’
read (ipinpf, *) sigma
if (ynecho.eq.l) write(ipecho,1000) sigma
c
KI = sigma*sqgrt(pi*a)*sin(pi*beta/180.)**2
KII = sigma*sqgrt(pi*a) *sin(pi*beta/180.) *cos (pi*beta/180.)
c
if (Tyn.eq.l) then
c
T = sigma*cos(2.*pi*beta/180.)
fact = 1.
c
else
c
T = 0.
fact = sqrt(2.*pi*rc)
c
endif
c
c write (ipoutf,1100) KI,KII,T
c
sitmax(j) = 0
c
do 100, i = -180,180
c
theta = pi*i/180.
c
fxi = cos(0.5*theta)*(l.-sin(0.5*theta)*sin(1l.5*theta))
fyi = cos(0.5*theta)*(l.+sin(0.5*theta)*sin(1l.5*theta))
fxyi = cos(0.5*theta)*sin(0.5*theta)*cos(l.5*theta)
fxii =-sin(0.5*theta)*(2.+cos(0.5*theta) *cos(1.5*theta))
fyii = sin(0.5*theta) *cos (0.5*theta) *cos (1.5*theta)
fxyii= cos(0.5*theta)*(1.-sin(0.5*theta) *sin(1.5*theta))
c

KINOR = KI/sqrt(2.*pi*rc)
KIINOR = KII/sgrt(2.*pi*rc)
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sigmax = KINOR*fxi + KIINOR*fxii + T
sigmay = KINOR*fyi + KIINOR*fyii
tauxy = KINOR*fxyi + KIINOR*fxyii
c
sigmat = sigmax*sin(theta)**2 + sigmay*cos(theta)**2
$ - 2.*tauxy*sin (theta) *cos (theta)
c
if (sigmat.gt.sitmax(j)) then
c
sitmax(j) = sigmat
themax = -theta*180./pi
c
endif
c
100 continue
c
write(ipoutf,1100) beta, sitmax(j)*fact,themax
c
beta = beta + betai
j=3+1
c
if (beta.lt. (betae+0.1)) goto 200
c
do 300, k =1, j-1
c
sitmax (k)=sitmax (k) /sitmax (j-1)
write (ipoutf,1100) beta, sitmax (k) *fact
c
300 continue
c
stddev = 0.
c
do 400, k =1, j-1
c
stddev = stddev + ( sitmax(k) - 1. )**2
c
400 continue
c
write (ipoutf, 1000) stddev
c
c e c
c
c End Main program
c
c c
c

1000 format (el2.5)

1100 format (el2.5,2x,el2.5,2x,e12.5)

1200 format (el2.5,2x,el2.5,2x,e12.5,2x,e12.5)

1300 format (el2.5,2x,el2.5,2x,el12.5,2x,e12.5,2x,e12.5)

end

CCCCcCCCcreeeeccececececeececcececeeeeeeceeeeeeeececeecececececececceeeeceeceeceeeeeccecce
c
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Source code used to evaluate the hoop stresses og around a crack tip in an anisotropic
plate

program anitheta
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeeceeceeeeece
c
c Program to determine the propagation angle of a crack under
o} mixed mode I and II loading in an anisotropic plate
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCececee

Variabels used to open the files

—— e e -— —-———C

a0

integer nmax
parameter (nmax=12)

Q

integer ipinpf, ipoutf, ipecho
integer iflag

integer ynscrn, ynecho
character*20 mfile,ifile,efile
character*4 letter

parameter (ipoutf=8, ipecho=9)

Variabels used to open the plot window

- —_—— ————— e c

o000

double precision sigma,pi,a,beta,theta

double precision Ex,Ey,Gxy,nuyx,nuxy,re,ae

double precision E,G,nu

double precision KI,KII,T, fxi, fyi, fxyi, £xii, fyii, fxyii
double precision KINCR, KIINOR, stddev

double precision sigmax,sigmay, tauxy,sigmat, themax, rc
double precision sxr,syr,txyr,sxal, syal,txyal, rotang
double precision betas,betae,betai, sitmax (nmax)
double complex slace, s2acc, sl,s2,phil,phi2, cl
double complex im, betar

integer i, Tyn, Lamyn, j, k

data pi / 3.141592654 /

_______________ — -— -— -C

Input from screen or file

- - — ---c

aQooa0o0an

write(6,*) ‘Input from the screen or from a file (s/f)?’
read (5, *) letter

Q

if (letter.eq.’f’) then

ipinpf = 7
ynscrn = 0
ynecho = 0
continue

write(6,*) ‘Type the input-full file naam:*’
read(5,*) ifile

open (ipinpf, file=ifile, status="0ld’, iostat=iflagq)
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if (iflag.ne.0) then

c
write(6,*) ‘The file ‘,ifile,’doesn‘t exists.’
goto 14
c
endif
c
else
c
ipinpf = 5
ynscrn = 1
ynecho =0
c
write(6,*) ‘Do you want an echo-file of the input (y/n)?’
read (5, *) letter
c
if (letter.eq.’y’) then
c
ynecho = 1
c
15 continue
c
write(6,*) ‘Type the full echo-file naam:’
read (5, *) efile
C
open (ipecho, file=efile, status="new’, iostat=iflaq)
c
if (iflag.ne.0) then
c
write(6,*) ‘The file ‘,efile,’already exists.’
goto 15
c
endif
c
endif
c
endif
c
c - --C
c
c Output to outf file
c
c - c
c
16 continue
c . Co
write(6,*) ‘To which file do you want the output?’
read (5, *) mfile
c
open (ipoutf, file=mfile, status="new’, iostat=iflagqg)
c
if (iflag.ne.0) then
c
write(6,*) ‘The file ‘,mfile,’already exists.’
goto 16
c
endif
c
c e - - c
c
c Input
c
c c
c

if (ynscrn.eq.l) write(6,*) ‘Crack length a [mm] ?’
read (ipinpf, *) a
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if (ynecho.eqg.l) write(ipecho,1200) a

if (ynscrn.eq.l) write(6,*) ‘Damage radius rc ?’
read (ipinpf, *) rc
if (ynecho.eqg.l) write(ipecho,1000) rc

if (ynscrn.eq.l) write(6,~*) ‘Young'‘s modulus Ex [MPa] ?’/
read (ipinpf, *) Ex
if (ynecho.eqg.l) write(ipecho, 1200) Ex

if (ynscrn.eq.l) write(6,*) ‘Young's modulus Ey [MPa] ?’
read (ipinpf, *) Ey
if (ynecho.eqg.l) write(ipecho,1200) Ey

if (ynscrn.eq.l) write(6,*) ‘Shear modulus Gxy [MPa] ?’
read (ipinpf, *) Gxy
if (ynecho.eq.l) write(ipecho,1200) Gxy

if (ynscrn.eq.l) write(6,*) ‘Poisson‘s ratio nuyx ?’
read (ipinpf, *) nuyx
if (ynecho.eq.l) write(ipecho,1100) nuyx

if (ynscrn.eqg.l) write(6,*) ‘Young's modulus E {MPa] ?’
read (ipinpf, *) E
if (ynecho.eq.l) write(ipecho,1200) E

if (ynscrn.eq.l) write(6,*) ‘Poisson‘s ratioc nu ?’
read(ipinpf, *) nu
if (ynecho.eq.l) write(ipecho,1100) nu

if (ynscrn.eq.l) write(6,*) ‘With or without T-stress (1/0)7?’
read (ipinpf, *) Tyn
if (ynecho.eq.l) write(ipecho,1300) Tyn

if (ynscrn.eqg.l) write(6, *) ‘Laminate or homogeneous (1/0)7?’
read (ipinpf, *) Lamyn
if (ynecho.eqg.l) write(ipecho,1300) Lamyn

if (ynscrn.eq.l) write(6, *) ‘Starting crack angle,’ ,
$’ end crack angle and interval 2’

read (ipinpf, *) betas, betae, betai

if (ynecho.eqg.l) write(ipecho,1200) betas, betae, betai

Main program

OO0 000

G = E/(2.*(1l.+nu))
nuxy = nuyx*Ex/Ey

re sgrt (Ex/Ey)

ae (0.5*Ex/Gxy) —nuxy
im (0.,1.)

slacc
$

s2acc
$

cmplx ( sqrt (0.5*cmplx (re—ae)))
im*cmplx (sgrt (0.5*cmplx (re+ae) ))
cmplx (-sqrt (0.5*cmplx (re—ae)))
im*cmplx (sqrt (0.5*cmplx (re+ae)))

+ 0+

beta = betas
j= 1

200 continue

if (ynscrn.eq.l) write(6,*) ‘Load stress sigma [MPa] 2’
read (ipinpf, *) sigma
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-,

if (ynecho.eq.l) write(ipecho,1000) sigma
betar = cmplx((90.-beta)*pi/180.)

sl (slacc*cos (betar)-sin (betar))
(cos (betar)+slacc*sin (betar))

(s2acc*cos (betar)-sin (betar))
/ (cos(betar)+s2acc*sin (betar))

n~

52
KI = sigma*sqrt(pi*a)*sin(pi*beta/180.)**2

KII = sigma*sqrt(pi*a)*sin(pi*beta/180.)*cos (pi*beta/180.)
if (Tyn.eq.1l) then

T = sigma* (cos (pi*beta/180.)**2

+ sin(pi*beta/180.)**2*real (sl*s2)
+ sin(pi*beta/180.)*cos (pi*beta/180.) *real (sl+s2) )
else
T=20
endif

write (ipoutf, 1000) KI,KII,T,sl,s2
0.

sitmax (3)

do 100, i -180,180

theta = pi*i/180.

phil = sqrt( cmplx( cos(theta) ) + sl*cmplx( sin(theta) ) )
phi2 = sqgrt( cmplx( cos(theta) ) + s2*cmplx( sin(theta) ) )
cl = (1.,0.)

fxi =-real( ((sl*s2)/(sl-s2)) * ((sl/phil)-(s2/phi2)) )

fxii =-real( (cl/(sl-s2)) * ((sl**2/phil)-(s2**2/phi2)) )
fyi =-real( (cl/(sl-s2)) * ((s2/phil)-(sl/phi2)) )

fyii =-real( (cl/(sl-s2)) * ((cl/phil)-(cl/phi2)) )

fxyi real( ((sl*s2)/(sl-s2)) * ((cl/phil)-(cl/phi2)) )

fxyii= real( (cl/(sl-s2)) * ((sl/phil)-(s2/phi2)) )

KINOR = KI/sqrt(2.*pi*rc)
KIINOR= KII/sqrt(2.*pi*rc)

sigmax KINOR*fxi + KIINOR*fxii + T

sigmay = KINOR*fyi + KIINOR*fyii
tauxy = KINOR*fxyi+ KIINOR*fxyii

wn »n »

if (Lamyn.eq.l) then

rotang = - pi*(90.-beta)/180.

SXY = sigmax*cos(rotang) **2 + sigmay*sin(rotang)**2
+ 2.*tauxy*sin(rotang) *cos (rotang)

syr = Sigmax*sin(rotang) **2 + sigmay*cos(rotang) **2
- 2.*tauxy*sin(rotang) *cos (rotang)

txyr = - sigmax*cos(rotang)*sin (rotang)
+ sigmay*sin(rotang) *cos (rotang)
+ tauxy*(cos(rotang) **2-sin(rotang) **2)

sxal = ((E/(l.-nu**2.))*(1l.-nuxy*nu)*sxr/Ex)
+ ((E/(l.-nu**2.))* (nu-nuyx) *syr/Ey)
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syal = ((E/{(l.-nu**2.))* (nu-nuxy) *sxr/Ex)
$ + ((E/(l.-nu**2.))=*(l.-nuyx*nu) *syr/Ex)
txyal= txyr*G/Gxy
c
sigmat = sxal*sin(theta-rotang)**2
$ + syal*cos (theta-rotang) **2
$ - 2.*txyal*sin(theta-rotang) *cos (theta-rotang)
c
else
c
sigmat = sigmax*sin(theta)**2 + sigmay*cos (theta)**2
$ - 2.*tauxy*sin(theta) *cos(theta)
c
endif
c
C ———————— e —— ——— T ——— " —y—— S, — Vo —— " — — — —— — o~ —— —— .
c
if (sigmat.gt.sitmax(j)) then
c
sitmax(j) = sigmat
themax = -theta*180./pi
c
endif
c
100 continue
Cc
write (ipoutf, 1000) beta, sitmax(j), themax
c
beta = beta + betai
ij=3+1
c
if (beta.lt. (betae+0.1)) goto 200
c
do 300, k = 1, j-1
c
sitmax (k)=sitmax (k) /sitmax (j-1)
write (ipoutf,1100) beta, sitmax (k)
c
300 continue
c
stddev = O.
c
do 400, k =1, j-1
c
stddev = stddev + ( sitmax(k) — 1. )**2
c
400 continue
c
write (ipoutf, 1000) stddev
c
C —————— — — —— — —— — ———— e, . . . T . . e e e e . e S S —
c
c End Main program
c
PR e e
c
1000 format(el2.5,7(2x,el2.5))
1100 format (£12.5,7(2x,£12.5))
1200 format (£12.0,7(2x,£12.0))
1300 format (i5,7(2x,15))
c
end
C

]

cCcecececeeeeeeeeeeeeceeeeceecececececeeeceececececceeceeceeeeececeeeeceeeecceccecececcecece

C
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Source code used to evaluate the energy density around a crack tip in an isotropic plate

pProgram isotheo
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeee

c
c Program to determine the propagation angle of a crack under
c mixed mode I and II loading
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCCCeecee
c
integer nmax
Parameter (nmax=10)
c
c -—= ~= e e e e c
c
c Variabels used to open the files
c
Cm—————— e ettt - - e
c
integer ipinpf, ipout £, ipecho
integer iflag
integer ynscrn, ynecho
character*20 mfile,ifile,efile
character*4 letter
parameter (ipoutf=8, ipecho=9)
c
c --C
c
c Variabels used to open the plot window
c
(o} o]
c
double precision sigma,pi,a,beta,theta,sigma0,E,G, nu
double precision KI,KII,T,theta0, fx, fy, fxy
double precision TDNOR1, TDNOR2, TDNOR3, TDO, KINOR1, KINOR2
double precision sigmax, sigmay, tauxy, Td, Tv, Ttot, Tdcon
double precision Tvmax (nmax), Tvthmx
double precision betas,betae,betai, stddev
integer i, 3,Tyn,k
c
data pi / 3.141592654 /
c
c—————= - - - —-—= - --C
c
c Input from screen or file
e ‘
c - --c
c
write(6,*) ‘Input from the screen or from a file (s/f)?’
read(5,*) letter
c
if (letter.eq.’f’) then
c
ipinpf = 7
ynscrn = 0
ynecho =0
c
14 continue
c
| write (6, *) ‘Type the input-full file naam:’
| read(5,*) ifile
| c
open (ipinpf, file=ifile, status='0ld’, iostat=iflagqg)
c
if (iflag.ne.0) then
c
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write(6,*) ‘The file ‘,ifile,’doesn‘t exists.’

goto 14
c
endif
c
else
c
ipinpf = 5
ynscrn = 1
ynecho =0
c
write(6,*) ‘Do you want an echo-file of the input (y/n)?’
read (5, *) letter
c
if (letter.eq.’y’) then
c
ynecho =1
c
15 continue
c
write(6,*) ‘Type the full echo-file naam:’
read (5, *) efile
c
open (ipecho, file=efile, status="new’ , iostat=iflaq)
c
if (iflag.ne.(0) then
c
write(6,*) ‘The file ‘,efile,’already exists.’
goto 15
c
endif
c
endif
c
endif
c
C————- -—— e c
c
c Output to outf file
c
c - -—=C
c
16 continue
c
write(6,*) ‘To which file do you want the ocutput?’
read (5, *) mfile
c
open (ipoutf, file=mfile, status="new’, iostat=iflag)
c
if (iflag.ne.0) then
c
write(6,*) ‘The file ‘,mfile,’already exists.’
goto 16
c
endif
c
c - ——— -— - - c
c
c Input
C
c e e e e e e e e - e c
c
if (ynscrn.eq.l) write(6,*) ‘Crack length a [mm] 2?2’
read (ipinpf, *) a
if (ynecho.eq.l) write(ipecho, 1000) a
c

if (ynscrn.eq.l) write(6,*) ‘Yield stress sigma0 [MPa] ?’
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read (ipinpf, *) sigma0
if (ynecho.eq.l) write(ipecho,1000) sigmaO0

c
if (ynscrn.eq.l) write(6,*) ‘Young'‘s modulus E [MPa] ?’
read (ipinpf, *) E
if (ynecho.eq.l) write(ipecho,1000) E
c
if (ynscrn.eq.l) write(6,*) ‘Poisson‘s ratio nu ?’
read (ipinpf, *) nu
if (ynecho.eq.l) write(ipecho,1000) nu
C
if (ynscrn.eq.l) write(6,*) ‘With or without T-stress (1/0)7?‘
read (ipinpf, *) Tyn
if (ynecho.eq.l) write(ipecho, 1050) Tyn
c
if (ynscrn.eq.l) write(6,*) ‘Starting crack angle’,
$’ end crack angle and interval ?’
read (ipinpf, *) betas, betae, betai
if (ynecho.eq.l) write(ipecho, 1100) betas, betae, betai
c
c——-— —— ——— —— ——
c
c Main program
c
c-—.—-— ——
c
G = E/(2.*(1+nu))
c
beta = betas
j=1
c
200 continue
c
if (ynscrn.eq.l) write(6,*) ‘Load stress sigma [MPal] 2’
read (ipinpf, *) sigma
if (ynecho.eq.l) write(ipecho,1000) sigma
c
KI = sigma*sqrt(pi*a)*sin(pi*beta/180.)**2
KII = sigma*sqrt (pi*a)*sin(pi*beta/180.)*cos (pi*beta/180.)
c
if (Tyn.eq.1l) then
c
T = sigma*cos{(2.*pi*beta/180.)
c
else
c
T = 0.
c
endif
c
thetal = -2.*KII/KI
c
Tvmax(j) = 0
c
do 100, i = -180,180
c
theta = pi*i/180.
c
fx = cos(0.5*theta)*(1.-sin(0.5*theta)*sin(l.5*theta))
$ - 0.5*thetal
$ * (-sin(0.5*theta) * (2.+cos (0.5*theta) *cos (1.5*theta)))
fy = cos(0.5*theta)*(1.+sin(0.5*theta)*sin(l.5*theta))
$ - 0.5*theta0
S * (sin(0.5*theta) *cos (0.5*theta) *cos (1.5*theta))
fxy = cos(0.5*theta)*sin(0.5*theta) *cos (1.5*theta)
$ - 0.5*thetal
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Q

(ool

o000 Q
o
o

a0

* (cos(0.5*theta)*(l.-sin(0.5*theta) *sin(1.5*theta)))

write(ipoutf, 1200) theta, £x, fy, fxy

TDNOR1 =
TDNOR2 = ((2.*T*fx)-T*fy)/(6.*G)
TDNOR3 = T**2/(6.*G)
TDO = sigma0**2/(6.*G)
KINOR1 =

/ (2.*(TDNORL1))
KINOR2 =

/ (2.*(TDNORL))
sigmax = KINOR1*fx+T
sigmay = KINOR1l*fy
tauxy = KINOR1l*fxy

(1/(6.*G) ) * ((£x-fy) **2+fx*fy+3*fxy**2)

(—~TDNOR2+S5QRT (TDNOR2 **2-4 . *TDNOR1 * (TDNOR3-TDO0) ) )

(-~TDNOR2-SQRT (TDNOR2**2~-4 . *TDNOR1* (TDNOR3-TDO0) ))

write (ipoutf, 1200) theta, sigmax, sigmay, tauxy

Td TDNOR1*KINOR1**2 + TDNOR2*KINOR1l + TDNOR3
Tv ((1-2.*nu) / ((6.*G) *(2.42.*nu) ) ) * (sigmax+sigmay) **2
Ttot (1./(4.*G*(1.+nu)))

+ &0

2.*(1.+4nu) *tauxy**2)
Tdcon = (1./(6.*G))

(sigmax**2+sigmay**2-2.*nu*sigmax*sigmay

* (sigmax**2+sigmay**2-sigmax*sigmay+3.*tauxy**2)

if (Tv.gt.Tvmax(j)) then

Tvmax (j) = Tv
Tvthmx = -theta*180./pi

endif

write (ipoutf, 1300) theta, Tv, Td, Ttot, Tv/Td

continue

write (ipoutf, *)

write (ipoutf, 1100) beta, Tvmax (j), Tvthmx

write (ipoutf, *)

beta = beta + betai
=3+ 1

if (beta.lt. (betae+0.1)) goto 200
do 300, k =1, j-1

Tvmax (k)=Tvmax (k) /Tvmax (j-1)
write (ipoutf, 1100) beta, Tvmax (k)

continue
stddev = 0.
do 400, k =1, j-1
stddev = stddev + ( Tvmax(k) - 1.
continue

write (ipoutf, 1000) stddev

)**2
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c End Main program

1000 format (el2.5)

1050 format (i5)

1100 format (el2.5,2x,el2.5,2x%,e12.5)

1200 format(el2.5,2x,el12.5,2x,e12.5,2x,e12.5)

1300 format (el2.5,2x,el2.5,2x,el2.5,2x,e12.5,2x,e12.5)

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeecee
C

C-14(14)




Memorandum 667

LT

60142051365





