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ABSTRACT
We show that the Connes–Rovelli thermal time associated with the quantum harmonic oscillator can be described as an (unsharp) observable,
that is, as a positive operator valued measure. We furthermore present extensions of this result to the free massless relativistic particle in one
dimension and to a hypothetical physical system whose equilibrium state is given by the noncommutative integral.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0165171

I. INTRODUCTION
It was recognised by Bohr in the early days of quantum mechanics that the formulas E = hν and λ = h/p, with h the Planck constant

suggest the uncertainty relations

Δx Δp ≥ h̵
2

and Δt ΔE ≥ h̵
2

.

Whereas position, momentum, and energy could be given a firm mathematical footing in von Neumann’s mathematical foundations of
quantum mechanics as observables, that is, selfadjoint operators acting on a suitable Hilbert space (“energy” being replaced by a Hamiltonian
operator), this cannot be done for time. In fact, it is a famous observation of Pauli1 that if H (reserving the letter H for Hilbert spaces) is
a semi-bounded Hamiltonian operator, there exists no selfadjoint operator T covariant with the unitary group generated by iH , that is, it
cannot be true that

eitHTe−itH = T − t, t ∈ R.

The common view is that “time,” rather than being an observable, should be regarded as a mere bookkeeping index.
The spectral theorem establishes a one-to-one correspondence between selfadjoint operators on the one hand and projection-valued

measures on the real line. Observing that the orthogonal projections on a Hilbert space H are precisely the extreme points of the set of all
bounded operators T on H satisfying the relation

0 ≤ T ≤ I,

where A ≤ B means that (Ah∣h) ≤ (Bh∣h) for all h ∈ H, a natural generalisation of the notion of a projection-valued measure is obtained upon
replacing orthogonal projections by operators satisfying the above relation. The mathematical theory of the resulting positive operator-valued
measures (POVM) had already been developed in the 1940s by Naimark, and its usefulness in quantum mechanics was first advocated by
Ludwig.2 It was quickly realised that covariant POVMs could be associated with various time measurements, such as arrival time, times of
occurrence, screen time, and time of flight, and rigorous versions of the time-energy uncertainty relation could be proved for some of them;3–8
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see also the overviews in Refs. 9 and 10. For the free falling particle with Hamiltonian

H = P2

2m
−mgQ,

with P and Q the position and momentum operators, respectively, it is even possible to specify a selfadjoint operator covariant with H , namely

T = P
mg

.

This operator measures time as the increase of momentum. The problem of finding a projection-valued measure (PVM) covariant with the
free-particle Hamiltonian remained elusive, however. As Busch5 (pp. 95–96) puts it,

“Seemingly obvious candidates of a time operator conjugate to the free-particle Hamiltonian,

Hfree =
P2

2m
,

are given by suitably symmetrised expressions for the time-of-arrival variable suggested by classical reasoning, for example:

−1
2

m(QP−1 + P−1Q) or −mP1/2QP1/2.

While these expressions formally satisfy the canonical commutation relation, they are not selfadjoint but only symmetric (on suitably
defined dense domains on which they actually coincide, see Sec. 10.4), and they do not possess a selfadjoint extensions. Hence this
intuitive approach does not lead to a time observable in the usual sense of a selfadjoint operator conjugate to the free Hamiltonian.”

The problem of constructing a POVM for this setting, covariant with time translations, has been addressed, for instance, in Ref. 11 using
the time-of-arrival variable − 1

2 m(QP−1 + P−1Q). See also the books,12,13 and, in particular, Example 17.5.13 In a similar vein, a description
of the four space-time coordinates of an event in terms of a POVM defined on the Minkowski space-time covariant with respect to the
Poincaré group has been proposed in Refs. 14 and 15, while “relative” (or “relational”) versions of time covariant POVMs have been studied
in Ref. 16.

The aim of the present paper is to address the problem of finding a POVM associated with the Connes–Rovelli thermal time. This notion
is introduced in Sec. II. After recalling some mathematical preliminaries in Sec. III, we provide in Sec. IV a positive answer for case of the
quantum harmonic oscillator. In Theorem IV.2 we show that the “clock time POVM” associated with the quantum harmonic oscillator as
constructed in Refs. 9 and 17 transforms covariantly (up to a scale factor β) with the modular flow canonically associated with the Gibbs state
e−βN , where N is the number operator. Key to the Proof of Theorem IV.2 is that this Gibbs state is normal. In order to extend the Theorem
IV.2 to states that are not necessarily normal, it turns out to be fruitful to relax the definition of thermal time beyond the normal case while
retaining the algebraic properties of the modular flow. The resulting notion of time, which we will call modular time, is introduced in Sec. V.

Our second main result, Theorem VI.1, identifies a POVM for the modular time of a free massless relativistic particle in dimension one
at equilibrium with a heat bath of inverse temperature β. The main difficulty to overcome is that the equilibrium state associated with the
Hamiltonian ∣D∣ =

√
Δ fails to be normal.

In Sec. VII we consider the semifinite singular trace ω associated with the noncommutative integral. This trace, also known as the Dixmier
trace, is comprehensively covered in the monograph.18 It has deep applications in index theory,19–21 and has fundamental connections with
general relativity22 and the noncommutative geometry approach to the standard model.23 The third main result of this paper, Theorem VII.3,
shows that this trace is associated with a POVM on an abstract Hardy space naturally associated with (the Weyl calculus associated with) ω.

We conclude the paper with some open problems.

II. THERMAL TIME
The notion of thermal time was introduced by Rovelli24 as a tentative solution to the “problem of time” in generally covariant theories

(such as general relativity). Such theories have no preferred time, but only the “internal times” of objects such as clocks. For this reason it has
been proven difficult to give a covariant formulation of thermodynamics, which requires a preferred time to define the notion of equilibrium.
Rovelli observed that in classical Hamiltonian mechanics it is possible to reverse this reasoning: the statistical state of the system can be
used to determine a preferred internal time variable. The time variable determined in this way is then called thermal time. Rovelli’s thermal
time hypothesis is the postulate that this principle is generally applicable and captures the “common sense time flow” experienced as internal
time. In a companion paper,25 Rovelli showed that in a Robertson–Walker universe, the thermal time associated with the cosmic background
radiation precisely recovers the Robertson–Walker cosmological time.

The notion of thermal time was extended to the quantum domain by Connes and Rovelli26 by interpreting the well-known connection
between Kubo–Martin–Schwinger equilibrium states (KMS states) and the Tomita–Takesaki theory: a normalised state ω on a C∗-algebra A

is a KMS state with respect the Tomita–Takesaki flow in the Gelfand–Naimark–Segal (GNS) representation induced by ω. It is a deep result of
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Connes27 that this flow is essentially unique, in the sense that the flows corresponding to two different normalised states are always the same
up to conjugation by an inner automorphism (a mapping of the form A↦ UAU⋆ for some unitary operator U). In view of its connection
with KMS states, this makes it natural to interpret the Tomita–Takesaki flow as the thermal time associated with the state ω.

III. MATHEMATICAL PRELIMINARIES
In this section we discuss the mathematical preliminaries needed for our purposes. Notation is standard and follows28 unless otherwise

stated.

A. Positive operator-valued measures
We start with recalling the definition and some properties of positive operator-valued measures (POVMs). For more information on

this topic we refer to Refs. 2, 9, 12, and 28–31; Ref. 28 contains complete proofs of all theorems stated below. POVMs arise in a variety of
applications, such as the theory of open quantum systems,32 quantum information theory,33 and the theory of symmetric operators.34

Let H be a complex Hilbert space with inner product (⋅∣⋅) and norm ∥ ⋅ ∥. We use the mathematician’s convention that inner products
are linear in their first argument and conjugate-linear in their second argument. The Banach space of all bounded linear operators on H is
denoted by L (H).

An effect is a bounded operator E ∈ L (H) satisfying 0 ≤ E ≤ I. The set of effects on H will be denoted by E (H). The set of its extreme
points equals P (H), the set of all orthogonal projection on H. This suggests generalising the standard definition of a projection-valued
measure by replacing the role of orthogonal projections by effects. Accordingly, a positive operator-valued measure (POVM) on a measurable
space (Ω, F ) is defined to be a mapping E : F → E (H) assigning to every set F ∈ F an effect EF ∈ E (H) with the following properties:

(i) EΩ = I;
(ii) for all x ∈ H the mapping F ↦ (EFx∣x) defines a measure Ex on (Ω, F ).

The measure defined by (ii) is denoted by Ex. From

Ex(Ω) = (EΩx∣x) = (x∣x) = ∥x∥2

we infer that every measure Ex is finite. It is easy to see that a POVM E : F → E (H) is a projection-valued measure if and only if for all
F, F′ ∈ F we have

EFEF′ = EF∩F′.

The convex set of all probability measures on a measurable space (Ω, F ) is denoted by M+1 (Ω). The quantum analogue of this set is the
set S (H) of all positive trace class operators T on H with unit trace; in the physics literature such operators are referred to as density matrices.
The formula

ω(S) = tr(ST)

establishes a one-to-one correspondence between the operators T ∈ S and the set of all normal states, that is, bounded linear linear functionals
ω : L (H)→ C with the property that∑n≥1ϕ(Pn) = ϕ(P)whenever (Pn)n≥1 is a sequence of disjoint orthogonal projections in H and P is their
least upper bound.

Theorem III.1. If Φ : S (H)→M+1 (Ω) is a convexity preserving mapping, then there exists a unique POVM E : F → E (H) such that
for all T ∈ S (H) we have

(Φ(T))(F) = tr(EFT), F ∈ F .

This theorem establishes the operational role of POVMs as “unsharp observables”: in that it transforms normal quantum states to classical
states.

If J is an isometry from H into another complex Hilbert space H̃ and F ↦ P̃F ∈P (H̃) is a projection-valued measure in H̃, then

F ↦ J⋆P̃FJ ∈ E (H)

is a POVM in H. A celebrated theorem of Naimark asserts that the converse is also true:

Theorem III.2. Let (Ω, F ) be a measurable space and let E : F → E (H) be a POVM. There exists a Hilbert space H̃, a projection-valued
measure P̃ : F →P (H̃), and an isometry J : H → H̃ such that for all F ∈ F we have

EF = J⋆P̃FJ.

For any POVM E : F → L (H) there exists a unique linear mapping Ψ : Bb(Ω)→ L (H) satisfying

Ψ(1F) = QF , F ∈ F ,
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and
∥Ψ( f )∥ ≤ ∥ f ∥∞, f ∈ Bb(Ω),

where Bb(Ω) is the Banach space of all bounded measurable functions on Ω endowed with the supremum norm ∥ f ∥∞ = supω∈Ω∣ f (ω)∣. This
mapping Ψ satisfies

Ψ( f )⋆ = Ψ(f ), f ∈ Bb(Ω).

In contrast to the corresponding functional calculus for PVMs, unless the POVM is a PVM, this calculus fails to be multiplicative. Nevertheless,
in the same way as bounded normal (resp. selfadjoint, unitary) operators are in one-to-one correspondence with PVMs on C (resp. on R, T),
contractions are in one-to-one correspondence with POVMs on the unit circle T and admits the following representation:

Theorem III.3. For every contraction T ∈ L (H), there exists a unique POVM E on the Borel σ-algebra B (T) such that

Tn = ∫
π

−π
einθ dE(θ), n ∈ N.

If E is a POVM with the above property, then T is unitary if and only if E is a projection-valued measure.

Intriguingly, the notion of POVM admits a category-theoretic counterpart, in the sense that a Naimark-type theorem holds and the usual
notion of POVM is recovered in the category of Hilbert spaces and bounded linear operators.35

B. The Tomita–Takesaki flow
We can only give the briefest of descriptions here; for a full account the reader is referred to Refs. 36–38, where the proofs of all statements

can be found.
Let H be a separable complex Hilbert space (in applications it usually is the representation Hilbert space arising from a GNS-like con-

struction), let M ⊆ L (H) be a von Neumann algebra, and let Ω ∈ H be a separating and cyclic element for M . Recall that this means that
whenever A ∈M satisfies AΩ = 0 it follows that A = 0, and that the subspace M Ω = {AΩ : A ∈M } is dense in H. The antilinear operator

S0 : AΩ↦ A⋆Ω,

is well defined as a densely defined operator in H with domain D(S0) =M Ω, and this operator is closable. Its closure will be denoted by S. By
polar decomposition, there exist a unique antiunitary operator J on H and a unique positive selfadjoint operator Δ in H such that

S = JΔ1/2

with equal domains. The operator J and Δ are called the modular conjugation and the modular associated with the triple (M , τ, Ω). These
operators have a number of interesting properties that are of no concern here. Important for us is that Δ induces a one-parameter family of
automorphisms of M by

σt : A↦ Δ−itAΔit , t ∈ R,

the so-called modular flow associated with Ω. The non-trivial point is that the right-hand side belongs to M for all A ∈M . Note that, following
Ref. 26, on the right-hand side we have changed the usual sign convention to enhance compatibility with the physical applications.

Let us now suppose that ω is a state on a C⋆-algebra A with unit I, that is, ω : A → C is a bounded linear functional on A with the
following two properties:

ω(I) = 1, ω(A⋆A) ≥ 0 for all A ∈ A .

There is some redundancy in this definition, in that boundedness is a consequence of the other assumptions. It is an easy consequence of the
Cauchy–Schwarz inequality36 (Lemma 2.3.10) that the set Nω ∶= {A ∈ A : ω(A⋆A) = 0} is a left ideal of A . On the quotient space A /Nω, ω
induces an inner product

(qω(A)∣qω(B))ω ∶= ω(B⋆A),

where qω : A → A /Nω is the quotient mapping. Let Hω be the Hilbert space obtained by completing the quotient with respect to it, and define
πω : A → L (Hω) by

πω(A)qω(B) ∶= qω(AB), B ∈ L (Hω).

Then πω extends to a contractive ⋆-homomorphism from A to Hω, and this mapping is an isometry if and only if the state ω is faithful, that
is, ω(A⋆A) = 0 implies A = 0, or equivalently, if Nω = {0}. The element

Ω ∶= qω(I)
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is cyclic for the range of πω; in particular, Ω is cyclic for the von Neumann algebra Mω generated by the range of πω in L (Hω). Note that for
all A ∈ A we have

ω(A) = (πω(A)Ω∣Ω)ω.

The pair (Hω, πω) is known as the Gelfand–Naimark–Segal (GNS) representation associated with ω. If, in addition to being cyclic, Ω is also
separating for Mω, this places us in the setting of the Tomita–Takesaki theory, and the associated modular flow on Mω will be called the
modular flow associated with the state ω.

The connection with equilibrium thermodynamics is given by a theorem (see Ref. 37, p. 218) that states that if Ω is separating for Mω,
the state ω is a KMS state with respect to the modular flow associated with ω. The precise definition of KMS states is unimportant for our
purposes (for an exhaustive treatment see Ref. 39). What matters is that this notion extends the notion of a Gibbs state, in that every Gibbs state
in KMS; and the notions are equivalent under suitable finiteness conditions. Recall that if H is a Hamiltonian operator with the property that
the bounded operator e−βH is of trace class, then the Gibbs state at inverse temperature β > 0 associated with H is the state ω on L (H2(D))
given by

ω(A) = tr(TβA),

where Tβ ∶= e−βH/tr(e−βH ).

C. Noncommutative L 2-spaces
The noncommutative spaces L2(M , τ), where M is a von Neumann algebra, are usually introduced for faithful semifinite normal traces

τ. Since in Sec. VII we will be dealing with general semifinite traces τ, we will briefly go through the steps of defining L2(M , τ) in that more
general setting.

Let M ⊆ L (H) be a von Neumann algebra over a given abstract separable Hilbert space H, and let τ be a trace τ on L (H), that is, τ is a
mapping from the positive cone in M to [0,∞] such that the following conditions are satisfied:

(i) τ(cA) = cτ(A) for all 0 ≤ A ∈M and scalars c ≥ 0;
(ii) τ(A + B) = τ(A) + τ(B) for all 0 ≤ A ∈M and 0 ≤ B ∈M ;

(iii) τ(A⋆A) = τ(AA⋆) for all A ∈M .

Let

M
1,+
τ ∶= {A ∈M : A ≥ 0, τ(A) <∞},

M
2
τ ∶= {A ∈M : τ(A⋆A) <∞}.

The linear span M1
τ of M1,+

τ is a ⋆-subalgebra of M and the restriction of τ to M1,+
τ uniquely extends to a positive linear functional on M1

τ .
Moreover, M2

τ is a left ideal in M , and for any two A, B ∈M 2
τ one has B⋆A ∈M 1

τ and the Cauchy–Schwarz inequality holds:

∣τ(B⋆A)∣2 ≤ τ(A⋆A)τ(B⋆B)

[see Ref. 40, Lemma 5.1.2, which applies here since condition (iii) implies that tr(UAU⋆) = tr(A) if U is unitary]. By polarisation [see the
proof40 (Proposition 5.2.2)], for all A, B ∈M 2

τ we have
τ(AB) = τ(BA).

By the Cauchy–Schwarz inequality, the set
Nτ ∶= {A ∈M

2
τ : τ(A⋆A) = 0}

is a vector space. As in Ref. 40 (Lemma 5.1.2), Nτ is a left ideal in M2
τ . On the quotient space M2

τ/Nτ we obtain a well defined inner product
by putting

(qτ(A)∣qτ(B))τ ∶= τ(B⋆A), A, B ∈M
2
τ ,

where qτ : M2
τ →M2

τ/Nτ is the quotient mapping. The Hilbert space Hτ is defined as the completion of M2
τ/Nτ with respect to this induced

inner product.

IV. THERMAL TIME FOR THE QUANTUM HARMONIC OSCILLATOR
As is well known, the (one-dimensional) quantum harmonic harmonic oscillator is described by the Hamiltonian L = 1

2 I +N, where N
is the number operator and 1

2 is the ground state energy. In view of the trivial identity eitLAe−itL = eitN Ae−itN , from the point of view of finding
covariant POVMs it makes no difference whether we work with L or N. Since the number operator N admits a natural presentation on the
space H2(D) (which, incidentally, also suggests a natural approach to the problem of time for the free relativistic particle), we will work with
N instead of L.
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The problem of finding a POVM covariant with the unitary group (eitN)t ∈R has already been solved in the physics literature9 (using
ideas that go back to Ref. 17), where this POVM is interpreted as describing “phase” as a (circle-valued) “unsharp observable.” As was already
observed in this paper, since L can be interpreted as a Hamiltonian this POVM can alternatively be interpreted as describing “(oscillator clock)
time.” The exposition presented here follows the mathematically rigorous treatment of Ref. 28 (Chap. 15).

A . Thermal time as a POVM in H2(D)
Let D denote the open unit disc {z ∈ C : ∣z∣ < 1} in the complex plane. The space H2(D) is defined as the Hilbert space whose elements

are the holomorphic functions f : D→ C whose power series f (z) = ∑n ∈N cnzn satisfies

∥ f ∥2
H2(D) =∑

n∈N
∣cn∣2.

We consider the selfadjoint operator N with domain

D(N) = { f =∑
n∈N

cnzn ∈ H2(D) : ∑
n∈N

n2∣cn∣2 <∞},

given by
Nzn = nzn, n ∈ N,

where zn(z) ∶= zn as a function on D. Then σ(N) = N and the functions zn form an orthonormal basis of eigenvectors for N.
To define phase as a POVM on T we proceed as follows. For Borel sets B ⊆ T we define the operator EB on H2(D) by

EB = J⋆ ○ PB ○ J,

where J : H2(D)→ L2(T) is the isometry given by
J :∑

n∈N
cnzn ↦∑

n∈N
cnen,

J⋆ : L2(T)→ H2(D) is its adjoint, and PB f ∶= 1B f for f ∈ L2(T). It is clear that 0 ≤ EB ≤ I, and accordingly the assignment E : B↦ EB defines
a POVM on T. This construction goes back to Ref. 17, where a selfadjoint operator F on H2(D) is constructed satisfying the Heisenberg
commutation relation

NF − FN = −iI

on a suitable dense domain of function in H2(D). This operator is defined as the Toeplitz operator with symbol arg(z). The problem with this
construction, however, is that there the argument is not uniquely defined; one obtained different operators for different choices. As observed
in Ref. 41 the Heisenberg relation extends to the natural maximal domain of the commutator FN −NF = −iI, but this domain fails to be dense
with respect to the graph norm of N. Moreover, as already observed in Ref. 17, the (stronger) Weyl commutation relations

eisN eitF = e−isteitFeisN

do not hold. The POVM constructed above solves these problems in a satisfactory way, in that it enjoys the following covariance property
with respect to (cf. Ref. 9, Sec. III.5):

Theorem IV.1. The phase observable E is covariant with respect to the unitary C0-group generated by iN, that is, for all Borel subsets B ⊆ T
we have

e−itN EBeitN = Eeit B, t ∈ R,

where eitB = {eitz : z ∈ B} is the rotation of B over t.

The relationship between the POVM E and the operator F is expressed by the relation

F = ∫
T

arg (z)dE(z).

We refer the reader to Refs. 28 and 41 for a proof and a fuller discussion of these matters.
Reinterpreted as “clock time” (cf. Ref. 17), we show next that the POVM E constructed in the previous subsection can be interpreted as

a special instance of the Connes–Rovelli thermal time associated with the Gibbs state

ω(A) ∶= tr(AT), A ∈ L (H2(D)),
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where
T = e−βN/tr (e−βN).

In this formula, the scalar β is interpreted as the inverse temperature. This involves showing that E transforms covariantly with the modular
flow associated with ω by the Tomita–Takesaki theory, which is the content of Theorem IV.2 below. Apart from its own interest, the proof
will serve as a template for our definition of modular time in the next section.

Following Ref. 42 (see also Ref. 37, Chap. V), rather than using the GNS representation associated with ω, we may use the unitarily
equivalent representation π of L (H2(D)) on the Hilbert space L 2(H2(D)) of all Hilbert–Schmidt operators on H2(D) given by

π(A)B ∶= AB, A ∈ L (H2(D)), B ∈ L
2(H2(D)).

In what follows we will write A for π(A).
Since T is of trace class, Ω ∶= T1/2 is Hilbert–Schmidt and therefore defines an element of L 2(H2(D)), and it is immediate that

ω(A) = (AΩ∣Ω), A ∈ L (H2(D)),

where (A∣B) = tr(B⋆A) is the inner product of L 2(H2(D)). As consequence of the unitary equivalence of this representation with the
GNS representation, Ω is cyclic for π [and hence for M , the von Neumann algebra M over L 2(H2(D)) generated by L (H2(D)), view-
ing operators in L (H2(D)) as operators acting on L (L 2(H2(D))) by left multiplication] and separating for M . Moreover, by Ref. 36
(Theorem 2.4.24), M = L (L 2(H2(D))).

On L 2(H2(D)) we consider the unitary operators U(t), t ∈ R, defined by

U(t)S ∶= eiβtN Se−iβtN , S ∈ L
2(H2(D)).

The family (U(t))t ∈R is easily seen to be a unitary C0-group on L 2(H2(D)). By Stone’s theorem, the generator of this group is of the from
iH with H selfadjoint. By the functional calculus of unbounded selfadjoint operators, the operator Δ ∶= e−H is injective and selfadjoint (its
domain being given by this calculus). By the composition rule of the functional calculus, for t ∈ R we obtain

Δ−it = (e−H)−it = eitH = U(t),

where in the last step we used the fact that the unitary group generated by iH also arises through exponentiation in the functional calculus.
In particular, for all A, B ∈ L (H2(D)),

(Δ−itAΩ∣BΩ) = ω(B⋆eiβtN Ae−iβtN).

By spectral theory, for h ∈ D(Δ1/2) the mapping z ↦ Δ−izh is continuous on the closed strip {Imz ∈ [0, 1
2 ]} and holomorphic on its interior.

This, and standard properties of fractional powers, implies that for all A, B ∈ L (H2(D)), both sides of the identity

(Δ−itAΩ∣BΩ) = ω(B⋆eiβtN Ae−iβtN) = tr (B⋆eiβtN Ae−β(it+1)N)

admit a continuous extension to the strip {Im z ∈ [0, β]} which is analytic on the interior, and given by substituting z for t. By the edge of the
wedge theorem (cf. Ref. 39, Proposition 5.3.6) these extensions agree. It follows that for Rez ∈ [0, 1

2 ] we have AΩ ∈ D(Δ1/2) ⊆ D(Δ−iz), and
taking z = 1

2 i results in the identity

(Δ1/2AΩ∣BΩ) = (e−
1
2 βHAΩ∣BΩ) = tr (B⋆e−

1
2 βN Ae−

1
2 βN)

= (ΩA∣BΩ).

Since Ω is cyclic for π in L 2(H2(D)), this implies
Δ1/2AΩ = ΩA.

Denoting by J the antiunitary operator that sends an operator B ∈ L 2(H2(D)) to its adjoint B⋆ ∈ L 2(H2(D)), it follows that

(JΔ1/2)(AΩ) = J(ΩA) = A⋆Ω.

By uniqueness, this implies that J and Δ are the modular conjugation and the modular associated with ω in the representation π, respectively.
Denoting the associated modular flow as before by σtA ∶= Δ−itAΔit , we have the following result:

Theorem IV.2. For all t ∈ R and Borel sets B ⊆ T, the POVM E satisfies

σt(EB) = Eeiβt B.
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Proof. For all A, B ∈ L (H2(D)) we have

Δ−itAΔitBΩ = eitHAe−itHBΩ
= U(t)AU(−t)BΩ

= (eβitN(A(e−iβtN BeiβtN))e−iβtN)Ω
= eβitN Ae−iβtN BΩ.

Since Ω is cyclic in L 2(H2(D)), and L 2(H2(D)) is dense in the weak operator topology of L (H2(D)), it follows that σt(A) = ΔitAΔ−it

= eβitN Ae−iβtN . By Theorem IV.1, for A = EB with B ⊆ R a Borel set this may be rewritten in the form

σt(EB) = eiβtN EBe−iβtN = Eeiβt B.

◻
In conclusion, the thermal time associated with the Gibbs state ω of N recovers the “preferred time” with respect to which it is Gibbs for

the unitary group generated by iN.

V. MODULAR TIME
Scrutinising the above proof, we note that the unitary group (Δit)t ∈R implementing thermal time has two key properties:

1. It acts on a noncommutative L2 space, namely the space of Hilbert–Schmidt operators L 2(H2(D)).
2. It is associated with the cyclic vector Ω = T1/2, where T is an injective positive operator in L (H), in the sense that

ΔitA = TitAT−it ∀A ∈ L (H2(D)).

In the proof, the modularity relation
JΔ1/2(AΩ) = A∗Ω ∀A ∈ L (H2(D))

with J : A↦ A∗, is a consequence of the above properties of (Δit)t ∈R.

This motivates the following definition. Let H be a Hilbert space, and let M ⊆ L (H) be a von Neumann algebra. Recall from Sec. III A
that if τ is a trace on M , then the corresponding noncommutative space L2(M , τ) is denoted by Hτ .

Definition V.1. Let τ be a trace on M and let T be a (possibly unbounded) positive and selfadjoint operator acting in H admitting bounded
imaginary powers. The pair (τ, T) is said to define a modular time if the assignment

t ↦ [A↦ TitAT−it]

defines a unitary C0-group of the form (Δit)t ∈R on Hτ , where Δ is an injective positive selfadjoint operator on Hτ .

For the theory of bounded imaginary powers we refer to Ref. 43.
For operators A ∈M satisfying τ(A⋆A) we use the standard abuse of notation of identifying A with its equivalence class modulo Nτ ,

which is defined as the left ideal of all A ∈M satisfying τ(A⋆A) = 0. Denoting the quotient map by q, the assignment A↦ TitAT−it in the
above definition should more rigorously be interpreted as the assignment

q(A)↦ q(TitAT−it),

initially defined for A ∈M such that τ(A⋆A) <∞. We will omit the mapping q in what follows.
The use of the term “modular” comes from the following fact.

Lemma V.2. Let (τ, T) define a modular time, and let J be the antiunitary operator given by the assignment A↦ A∗ on Hτ . If for all
A ∈ Hτ the operator AT1/2 is well defined as an element of Hτ , then for all A ∈ Hτ it belongs to D(Δ1/2) and

JΔ1/2(AT1/2) = A∗T1/2.

Note that if T is bounded, then the assumption that AT1/2 be well defined as an element of Hτ is satisfied. In the setting of Sec. VII the
operator T is unbounded and the condition will be checked by hand.

Proof. By definition, for all f , g ∈ D(T1/2) we have

(JΔit(AT1/2) f ∣g) = (T1/2T−itA∗Tit f ∣g),
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for all A ∈ Hτ and t ∈ R. Since Δ and T is are injective positive selfadjoint operators, by the edge of the wedge theorem this identity uniquely
extends by continuity and analyticity to

JΔ1/2(AT1/2) = A∗T1/2.

The rigorous justification that the elements AT1/2 belongs to D(Δ1/2) can be given on the basis of an element belongs to the domain of a
densely defined closed operator if and only if it belongs to its weak domain (see Ref. 28, Proposition 10.20). ◻

The quantum harmonic oscillator of Sec. IV corresponds to the special case where H = H2(D), M = L (H), τ is the standard trace on
M , and the injective positive operator T ∈ L (H) with tr(T) = 1 was given as T = e−βH/tr(e−βH). In that situation one has T ∈M and
T1/2 ∈ Hτ = L 2(H2(D)).

In the next sections, we construct modular times and POVM on the Borel subsets of R, that satisfy the covariance relation defined below.

Definition V.3. Let (τ, T) define a modular time, and E : B (R)→ E (H) define a POVM. We say that E is covariant with respect to the
modular time if

TitEBT−it = EB+t

for all Borel sets B ⊆ R and all t ∈ R.

It is important to note that we do not insist that the operators EB belong to Hτ . When they do, the covariance relation can be rewritten as

ΔitEBΔ−it = EB+t.

Moreover, we do not insist on having the Hilbert space Hτ arise from Tomita–Takesaki modular theory. Whether or not our constructions
could be modified to have these two additional features (and thus fully embed into Tomita–Takesaki modular theory) is left as an open
problem (see Sec. VIII).

VI. MODULAR TIME FOR THE FREE MASSLESS RELATIVISTIC PARTICLE
In this section we address the problem of modular time for the free massless relativistic particle in dimension 1. Its Hamiltonian ∣D∣ ∶=√

−Δ, where Δ is the second derivative operator, is the Fourier multiplier on L2(R) corresponding to the multiplier x ↦ ∣x∣. Its part in the
closed subspace of all f ∈ L2(R) whose Fourier transform is supported on the nonnegative half line R+ can then be viewed mathematically
as the continuous analogue of the number operator N. This simple observation suggests that we may try to redo the identification of thermal
time more or less mutatis mutandis.

A. Modular time as a POVM in H2(U)
The reasoning of Sec. IV suggests that it should be possible to carry out an analogous construction in which H = H2(D) is replaced by

H, where
U ∶= {(u, v) ∈ R2 : u ∈ R, v > 0}.

The space H2(U) is defined as the Hilbert space of all holomorphic functions f : U→ C for which

∥ f ∥H2(U) ∶= sup
v>0
∥ f (⋅ + iv)∥L2(R)

is finite. Under convolution with the Poisson kernel for the upper half-plane, this space is isometric to the closed subspace in L2(R) consisting
of all functions whose Fourier–Plancherel transform vanishes on the the negative half-line.

If we think of the number operator on H2(D) as being given by the Fourier multiplier operator on L2(T) with multiplier n on the
nonnegative frequencies, it is natural to consider the operator on H2(U) given by the Fourier multiplier operator on L2(R) with multiplier ξ
on the nonnegative frequences. A positive selfadjoint operator on L2(R) implementing this property is the Poisson operator

∣D∣ ∶= (D2)1/2 = (−Δ)1/2,

where Δ is the Laplace operator (not to be confused with the modular operator, which is also denoted by this symbol), and D = 1
i d/dx with

domain
D(∣D∣) ∶= { f ∈ H2(U) : ∣D∣ f ∈ L2(R)}.

It is not hard to prove that the spectrum of this operator equals [0,∞). This operator generates a C0-semigroup of contractions (P(t))t≥0 on
L2(R), the so-called Poisson semigroup, given explicitly as a convolution semigroup

P(t) f = pt∗ f , t ≥ 0, f ∈ L2(R),
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where
pt(x) =

1
π

t
t2 + x2 , t ≥ 0, x ∈ R,

is the Poisson kernel and the convolution g ∗ h, with g ∈ L1(R) and h ∈ L2(R), is defined by

(g ∗h)(x) ∶= ∫
Rd

g(x − y)h(y)dy. (1)

The Fourier multiplier with symbol 1[0,∞) can be expressed in the Borel functional calculus of the selfadjoint operator D as 1R+(D). Let
L2
+(R) denote the range of this operator, that is,

L2
+(R) = { f ∈ L2(R) : f̂ (−ξ) = 0 for almost all ξ ∈ R+}.

Here, f ↦ f̂ is the Fourier–Plancherel transform, defined for functions f ∈ L1(R) ∩ L2(R) by

f̂ (ξ) ∶= 1√
2π∫

∞

−∞
f (x) exp (−ixξ)dx, ξ ∈ R, (2)

and extended to an isometry from L2(R) onto itself by density. With the normalisations chosen in (1) and (2), f ∈ L1(Rd) and let g ∈ L1(Rd)
or g ∈ L2(Rd). For almost all ξ ∈ Rd we have

f̂∗g(ξ) =
√

2π f̂ (ξ)̂g(ξ). (3)

It is well known that, for all f ∈ L2
+(R), the function F defined by

F(x + iy) ∶= P(y) f (x)

belongs to U with ∥F∥H = ∥ f ∥2. In the converse direction, for all F ∈ H the limit

f ∶= lim
y↓0

F(⋅ + iy)

exists, with convergence in the norm of L2(R), and F is recovered from f as F(x + iy) = P(y) f (x). This correspondence defines a unitary
mapping

P : H2(U)→ L2
+(R), P : F → f ,

whose inverse is given by f ↦ F.
Let E : B (R)→ E (H2(U)) be uniquely defined by

P EBF ∶= 1[0,∞)(D)1B(X)P F

for Borel sets B ∈ B (R) and functions F ∈ H2(U). Here, 1B(X) denotes the multiplication operator on L2(R) defined by 1B(X) f : x ↦
1B(x) f (x).

We will show that B↦ EB is a POVM in H2(U), and that it is covariant with respect to the flow S↦ eit∣D∣Se−it∣D∣ on the Hilbert space Hτ ,
where τ is the trace on L (H2(U)) defined by

τ(A) ∶= tr(Ae−β∣D∣).

Theorem VI.1. Under the above assumptions, the following assertions hold:

(1) The assignment B↦ EB defines a POVM in H2(U).
(2) The pair (τ, e−β∣D∣) defines a modular time, in the sense of Definition V.1.
(3) The POVM E is covariant with respect to this modular time, in the sense of Definition V.3.

Proof. To prove (1), we first note that
0 ≤ EB ≤ I,

that is, every EB is an effect. To prove this, set f ∶=P F. Using that f = 1[0,∞)(D) f and that 1[0,∞)(D) and 1B(X) are orthogonal projections,
we obtain
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(EBF∣F)H = (1[0,∞)(D)1B(X) f ∣ f )L2
+
(R)

= (1B(X) f ∣1[0,∞)(D) f )L2
+
(R)

= (1B(X) f ∣ f )L2(R)

= (1B(X) f ∣1B(X) f )L2(R)

and therefore 0 ≤ EB; the inequality EB ≤ I then follows from

(EBF∣F)H2(U) = ∥1B(X) f ∥2
L2(R) ≤ ∥ f ∥2

L2(R) = ∥F∥
2
H2(U)

= (F∣F)H2(U).

Turning to (2), for A ∈ L (H2(U))we have that

tr(eit∣D∣A∗Ae−it∣D∣e−β∣D∣) = tr(A∗Ae−it∣D∣e−β∣D∣eit∣D∣)

= tr(A∗Ae−β∣D∣),

and thus the group defined by (t ↦ [A↦ eit∣D∣Ae−it∣D∣])t ∈R is unitary on Hτ .
We finally prove (3). For all F, G ∈ H2(U), let f =P F and g =P G. We have, using (3),

(EBeit∣D∣F∣G) = (1[0,∞)(D)1B(X)P eit∣D∣F∣P G)

= (1B(X)eit∣D∣
P F∣1[0,∞)(D)P G)

= (1B(X)eit∣D∣ f ∣g)
= (1B(X)eitD f ∣g)

=
√

2π∫
∞

0
[1̂B∗(eiu⋅̂f )](u)̂g(u)du

=
√

2π∫
∞

0
∫
∞

0
1̂B(u − v)eitv f̂ (v)̂g(u)dv du.

At the same time,

(eit∣D∣EB+tF∣G) = (1[0,∞)(D)1B+t(X)P F∣P e−it∣D∣G)

= (1[0,∞)(D)1B+t(X) f ∣e−it∣D∣g)

= (1B+t(X) f ∣1[0,∞)(D)e−it∣D∣g)
= (1B+t(X) f ∣e−itDg)

=
√

2π∫
∞

0
eitu ĝ(u)∫

∞

0
1̂B+t(u − v)̂f (v)dv du

=
√

2π∫
∞

0
eitu ĝ(u)∫

∞

0
f̂ (v)∫

R
e−i(u−v)z1B+t(z)dz dv du

=
√

2π∫
∞

0
eitu ĝ(u)∫

∞

0
f̂ (v)∫

R
e−i(u−v)(z+t)1B(z)dz dv du

=
√

2π∫
∞

0
ĝ(u)∫

∞

0
eitv f̂ (v)∫

R
e−i(u−v)z1B(z)dz dv du

=
√

2π∫
∞

0
∫
∞

0
1̂B(u − v)eitv f̂ (v)̂g(u)dv du.

◻

VII. MODULAR TIME FOR THE NONCOMMUTATIVE INTEGRAL
In this section we consider a von Neumann algebra M contained in L (L2(R)) generated by the Weyl calculus a↦ a(Q, P) of a pair

of operators Q, P (defined later) for compactly based classical symbols a, endowed with the noncommutative integral τ as a semifinite trace,
that is,
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τ(a(Q, P)) ∶= Res(a(X, D)∣D∣−1(I − η(D)))

= 1
2∫R
(a0(x, 1) + a0(x,−1))dx,

where D = 1
i d/dx, X : f ↦ [x ↦ xf (x)], η ∈ C∞c (R) is an arbitrary cut-off function supported on [−1/2, 1/2], and a0 denotes the principal

symbol of a(X, D). Note that this definition only depends on the symbol a (in fact on its principal part) and not on the choice of operators Q, P.
Here Res denotes the noncommutative residue (which can be seen as a Dixmier trace). See Ref. 18 (Chaps. 10 and 11) for more information on
the noncommutative integral, and Ref. 44 for terminology and fundamental results on pseudo-differential operators and the Weyl calculus.

The expression for τ is reminiscent of the states A↦ tr(AT) considered in previous sections, but requires the use of ∣D∣−1 instead of
exp (−β∣D∣). Consequently, the translation group generated by iD will be replaced by the C0 group of imaginary powers (∣D∣it)t ∈R, i.e., the
group generated by iP where

P ∶= ln ∣D∣.

We show that the pair (τ, ∣D∣−1) defines a modular time (Δit)t ∈R in the sense of Definition V.1. We then construct a POVM that is
covariant with respect to this modular time in the sense of Definition V.3. This will be constructed using generalised pseudo-differential
operators of the form a(Q, P) (in the sense of the Weyl calculus defined in Ref. 45), where Q is a suitable replacement for the standard
position operator, adapted to our modified momentum operator P.

Definition VII.1. Let (S(t))t ∈R be the unitary C0-group on L2(R) defined by

S(t) : g ↦ et/2
F
−1(ξ ↦ ĝ(etξ)),

for all t ∈ R. We denote its generator by Q.

Lemma VII.2. The group (S(t))t≥0 satisfies the following Weyl relations:

eisPS(t) = e−istS(t)eisP, ∀s, t ∈ R. (4)

Proof. For f ∈ L2(R) and ξ ∈ R we have

̂eisPS(t)f (ξ) = ∣ξ∣isŜ(t)f (ξ) = et/2∣ξ∣is f̂ (etξ)

as well as
̂S(t)eisPf (ξ) = et/2∣etξ∣is f̂ (etξ) = eistet/2∣ξ∣is f̂ (etξ).

◻

A. Modular time as a POVM
We will use the group functional calculi for P and Q, defined by

f (P) ∶= 1√
2π∫

R

f̂ (ξ) exp (iξP)dξ,

g(Q) ∶= 1√
2π∫

R

ĝ(ξ) exp (iξQ)dξ,

for f̂ , ĝ ∈ L1(R), as well as the Weyl functional calculus of Ref. 45, defined for a ∈ S0(R2) by

a(Q, P) = 1
2π∫

R2

â(u, v) exp( i
2

u ⋅ v) exp (iuQ) exp (ivP)du dv.

Theorem VII.3. For any Borel set B ∈ B (R) define EB ∈ A by

EB ∶= 1R+(P)1B(Q)1R+(P),

the following assertions hold:
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(1) The assignment B↦ EB defines a POVM on the range space R(1R+(P)).
(2) The pair (τ, ∣D∣−1) defines a modular time, in the sense of Definition V.1.
(3) The POVM E is covariant with respect to this modular time, in the sense of Definition V.3.

Observe that R(1R+(P)) naturally takes over the role of the Hardy spaces used in the Secs. IV and VI.

Proof. To prove (1), we first note that

1B(Q)2 = 1√
2π∫

R
∫
R

1̂B(η)1̂B(ξ) exp (i(ξ + η)Q)dξ dη

= 1√
2π∫

R

1̂B ⋆ 1̂B(ξ) exp (iξQ)dξ = 1B(Q).

Moreover, for all ξ ∈ R and f , g ∈ L2(R) we have
(S(ξ) f ∣g) = ( f ∣S(−ξ)g),

by a change of variables. and thus (1B(Q) f ∣g) = ( f ∣1B(Q)g), and

(EB f ∣ f ) = (1B(Q)1R+(P) f ∣1R+(P) f )
= (1B(Q)21R+(P) f ∣1R+(P) f )
= ∥1B(Q)1R+(P) f ∥2 ≥ 0.

Moreover ∥1B(Q)1R+(P) f ∥2 = (1B(Q)1R+(P) f ∣1R+(P) f ) ≤ ∥1B(Q)1R+(P) f ∥∥ f ∥, which implies EB ≥ 1. For Borel sets (Bn)n ∈N, we also
have

(1⋃
n∈N

Bn(Q) f ∣ f ) = 1√
2π∫

R

∑
n∈N

1̂Bn(ξ)S(ξ)dξ

=∑
n∈N
(1Bn(Q) f ∣ f ),

and (1R(Q) f ∣ f ) = (S(0) f ∣ f ) = ( f ∣ f ). This completes the proof of (1).
For (2), we consider a(Q, P) ∈ Hτ . Using (4), we first note that, for t ∈ R,

∣D∣ita(Q, P)∣D∣−it = 1
2π∫

R2

â(u, v)e
i
2 u⋅v exp (itP) exp (iuQ) exp (i(v − t)P)du dv

= 1
2π∫

R2

â(u, v)e−itue
i
2 u⋅v exp (iuQ) exp (ivP)du dv

= at(Q, P),

where at : (x, ξ)↦ a(x + t, ξ). This implies that t ↦ ∣D∣ita(Q, P)∣D∣−it is a group, and that

∥Tita(Q, P)T−it∥2
Hτ =

1
2∫R
(a2

0(x + t, 1) + a2
0(x + t,−1))dx

= ∥a(Q, P)∥2
Hτ .

To verify the abstract condition in Lemma V.2 that AT1/2 ∈ Hτ be well defined and an element of Hτ , we argue as follows. Noting that a(Q, P)
and a(Q, P)(I − η(exp(P)) are both representatives of the same equivalence class in Hτ , we have that a(Q, P) exp (− 1

2 P) agrees on a dense
set with a(Q, P)(I − η(exp (P)) exp (− 1

2 P) ∈ Hτ .
We argue similarly for (3), using the commutation relation (4) to obtain that, for all t ∈ R and B ∈ B (R),

∣D∣itEB∣D∣−it = 1√
2π

1R+(P)∫
R

1̂B(ξ)eitPeiξQe−itP1R+(P)dξ

= 1√
2π

1R+(P)∫
R

1̂B(ξ)e−itξeiξQ1R+(P)dξ = EB+t.
◻
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VIII. OPEN PROBLEMS
We believe that the following problems are worth investigating:

● Do the results of Sec. VI extend to the free relativistic particle with mass m?
The obstruction to overcome is that the algebra underlying our computations no longer works for the Hamiltonian

√
m2 − Δ with Δ

(the Laplace operator). In all likelihood, techniques involving Dirac operators have to be used to handle this case.
● Embed Theorems VI.1 and VII.3 into the Tomita–Takesaki framework.

As was already pointed out, there are two obstructions to be overcome: (i) both theorems involve a non-normal semifinite trace; (ii)
the operators EB in the POVM’s constructed in these theorems generally do not belong to the von Neumann algebra M used in these
theorems.

● Identify a physical system whose equilibrium state is described by the noncommutative integral.
This question is speculative; we have included the treatment of the noncommutative integral simply because it invited itself on
mathematical grounds.

● Interpret the “observation” of time given in Ref. 46 as a POVM associated with a modular/thermal time.The paper46 provides a com-
pletely different approach to the thermodynamical origin of time compared to the Connes–Rovelli theory. It identifies an information
geometric relationship between time and temperature (derived in a simple model from classical mechanics), and suggests using this
relationship (stating that a curvature is constant equal to −1) as a way to “observe” time.

● Interpret the time POVMs given here in the Page–Wootters formalism (introduced in Ref. 47 and corrected in Ref. 48), i.e., as internal
quantum degrees of freedom).This could well use the relativisation procedure from Ref. 16.
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