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Abstract

A dynamic multilevel method for fully-coupled simulation of flow and heat transfer in heterogeneous and
fractured geothermal reservoirs is presented (FG-ADM). The FG-ADM develops an advanced simulation
method which maintains its efficiency when scaled up to field-scale applications, at the same time, it
remains accurate in presence of complex fluid physics and heterogeneous rock properties. The embedded
discrete fracture model is employed to accurately represent fractures without the necessity of unstructured
complex grids. On the fine-scale system, FG-ADM introduces a multi-resolution nested dynamic grid,
based on the dynamic time-dependent solution of the heat and mass transport equations. The fully-coupled
implicit simulation strategy, in addition to the multilevel multiscale framework, makes FG-ADM to be stable
and efficient in presence of strong flow-heat coupling terms. Furthermore, its finite-volume formulation
preserves local conservation for both mass and heat fluxes. Multi-level local basis functions for pressure and
temperature are introduced, in order to accurately represent the heterogeneous fractured rocks. These basis
functions are constructed at the beginning of the simulation, and are reused during the entire dynamic time-
dependent simulation. For several heterogeneous test cases with complex fracture networks we show that,
by employing only a fraction of the fine-scale grid cells, FG-ADM can accurately represent the complex
flow-heat solutions in the fractured subsurface formations.

Introduction

Geothermal energy resources are attractive due to their low carbon footprints (Bertani, 2012; Lund et al.,
2011; Burnell et al., 2012, 2015). Having the potential of providing more sustainable energy, compared with
hydrocarbons, the demands for geothermal energy is expected to increase over the next couple of decades.
Development of accurate scalable simulation methods for fluid flow in geothermal reservoirs is important to
fulfill the societal (including productivity estimation) expectations for successful operational managements
(Moraes et al., 2017; McClure and Horne, 2014).

Field-applicable simulation tools should accurately capture high contrasts in the fluid and heat
transport properties within the reservoir, specially in presence of fractures and faults. This imposes severe
computational challenges, because it demands for imposing high-resolution computational grids over the
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entire large-scale (km) computational geo-models (Praditia et al., 2018). In addition, nonlinear strongly
coupled flow-heat processes lead to stability and convergence issues, specially in presence of phase change
(steam-water flow) (Wong et al., 2018). Moreover, the presence of fractures add to the complexity due
to their severe property contrasts compared to their hosting geological rocks. Geo-chemical interactions
between solid rock and fluid (Morel and Morgan, 1972; Leal et al., 2017) together with geo-mechanical
effects (Rossi et al., 2018; Garipov et al., 2016) are also among the important challenges. These challenges
motivate the development of advanced simulation methods that maintain their accuracy and efficiency
(stability and scalability) when applied to large-scale field-relevant applications (Fung and Dogru, 2007;
Dogru et al., 2009).

In this article, a scalable and efficient simulation method for fluid flow in fractured geothermal reservoirs
is introduced. To ensure stability in presence of strong nonlinear physics, a Fully-IMplicit (FIM) coupling
approach is followed (Younis et al., 2010). Entries of the fine-scale FIM system include three sets of
equations for conservation of mass, fluid energy and rock energy balance. Explicit fractures are modelled
by the Embedded Discrete Fracture Model (Lee et al., 1999, 2001; Li and Lee, 2008; Hajibeygi et al., 2011a;
Moinfar et al., 2014; Fumagalli et al., 2016, 2017). Note that the recently introduced projection EDFM
(pEDFM) method formulates a consistent embedded discrete approach (Tene et al., 2017) for all fracture-
matrix conductivity contrasts. The choice of EDFM is motivated by its convenient formulation and flexible
grid geometries (Norbeck et al., 2016; Shah et al., 2016). It allows, e.g., to generate independent grids
for matrix and fractures, though (as in other computational methods) grid resolution should be adjusted to
maintain the expected numerical accuracy (Pluimers, 2015; Jiang and Younis, 2016).

This EDFM-based FIM discrete system is obtained for pressure, fluid temperature and solid rock
temperature as the main unknowns. Note that for most (or perhaps all) of the geoscience applications, one
can safely assume local thermal equilibrium, under which the fluid and rock temperatures would be equal.
Here, to keep the general framework intact, local thermal non-equilibrium is also allowed (Coats, 1977).

The fine-scale system considers both conductive and convective heat transfer terms, and, as described,
allows for different temperature values for fluid and solid rock. In linear simulation stage, it is convenient to
sum the two energy balance equations to obtain one (average) temperature value for both fluid temperature
and solid rock temperature. This allows for reduction of the main unknowns, and is done for the simulation
results of this work.

Even with EDFM-based strategy, the classical FIM systems become too expensive to be solved in real-
field applications. Upscaling the nonlinear formulations does not lead to good approximate solutions and
similarly sensitive systems with the user-defined error control strategies (Cusini et al., 2018b). In this work,
a fully-implicit multilevel multiscale approach is presented to solve this challenge.

On the obtained EDFM-FIM system for fractured heterogeneous geothermal geo-models, at each time
step, a hierarchical multilevel resolution is imposed. The hierarchical resolutions are obtained based on the
zone of interest, typically imposed by the fronts within the solution of the local unknowns. This is the same
strategy as in the Adaptive Mesh Refinement (AMR) methods (Bell and Shubin, 1983; Berger and Oliger,
1984; Hornung and Trangenstein, 1997; Edwards, 1996; Schmidt and Jacobs, 1988; Sammon, 2003; van
Batenburg et al., 2011; Faigle et al., 2014). The offline (preprocessing step) locally computed multiscale
basis functions are used to map the global solution between the hierarchical grids. The locally computed
basis functions maintain the accuracy of the solutions even for highly heterogeneous reservoirs. The basis
functions and construction of the multilevel dynamic FIM system are employed algebraically (Cusini et al.,
2016). As such, the method inherits the term algebraic in its definition. This Algebraic Dynamic Multilevel
(ADM) method is capable of capturing physics of flow and heat transfer at fine-scale resolution close to
the sharp gradients, while for the rest of the domain, basis functions will provide accurate approximate
solutions. A user-defined threshold for the accuracy of the method is allowed, meaning that the procedure
is self-adaptive in selection of the hierarchical nested grids in order to maintain the required accuracy.
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The local basis functions are constructed on multiple coarsening levels for all unknown (i.e., pressure,
fluid temperature and solid rock temperature) at the beginning of the simulation. Here, structured grids
are used at all levels, and the original multiscale basis functions (Hou and Wu, 1997; Jenny et al., 2003;
Hajibeygi et al., 2008) with their algebraic descriptions (Wang et al., 2014) are employed for pressure
and solid rock temperature (conductive heat transfer), while constant interpolation functions (conductive-
convective) are used for fluid temperature on all coarsening levels. One can also use multiscale-based bases
for fluid heat transfer (Praditia et al., 2018) with adaptive local supports (Klemetsdal et al., 2018). We
reiterate that, in this work, all local basis functions are calculated only at the very beginning of the simulation
(offline pre-processing stage) and will not be updated throughout the entire simulation time at all. It is worth
to be mentioned that a homogenisation-based basis function for ADM has been introduced recently (Singh
et al., 2018).

Numerical results for both homogeneous and heterogeneous test-cases are presented to demonstrate the
accuracy and applicability of this method.

The paper is organised as following. The governing equations together with the fine-scale discrete
systems are presented in Section 1. The ADM methodology for fractured geothermal simulation is then
presented in Section 2. Numerical results are reported in Section 3. The paper is finally concluded in Section
4.

Governing Equations and Fine-scale Discretization

In this section, the governing equations for both rock matrix and fractures are described and the discretization
of the coupled system of equations is explained.

Mass Balance
Mass balance equation for non-isothermal single-phase fluid flow reads

Nfrac

a nm 1 m 711 mw * mf;
5 (¢ Pf) — Vs (pfu_fK -Vp ) =prg™ + ) Py Q" (1)
/ i=1
for the rock matrix (m) and
9 (o L khi vl fw ok ofim . ¥ (ot ofifs
a_r(q’"P.f') =¥ b, IV =R i Y (P ’ 2)
. j=1 J#i

for the lower dimensional fracture (f;). Here, ¢ and K are the porosity and permeability of the medium.
Note that K is a tensor. Superscripts m, f; and w denote matrix, fracture i and well, respectively. Subscripts
fcorresponds to fluid, and p and u are the density and viscosity of the fluid respectively. Moreover, g™ and
¢/ are the source terms (i.e., wells). Finally, @/ and @/ are the flux exchange between fracture f; and its
overlapping matrix element m. Note that Q/i/; is the flux from j-th fracture to the i-th fracture. The mentioned
flux exchange terms are non-zero only where matrix-fracture overlap or fracture-fracture intersection exists.
Due to mass conservation, j‘;/ff QMY = — A{J . Qiff"’dA’, and ! Ajfj QMVidA= ]{I QtdA hold.
Ji e ]

The source terms g™ and 4/* are modeled via Peaceman formulation (Peaceman, 1978) as

qmw — PI-A" (pw _pm) qf;w _ PI-A" - (pw _pfi) (3)

1% " A '

where, PI is the well productivity index. A* is the effective mobility between the source term and the
medium. Moreover, the flux exchanges Q™/i, /i and Q/i/; are defined as

Qmﬁ _ C]mﬂ O (pf,- _ pm) (4)
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Q’/Hﬁ - C]f,'m . }&* i (pl” i pfi) (5)
Qfifi = cIfili . \* . (pli — pfiy, (6)

where CI is the connectivity index between the corresponding neighbouring elements (Hajibeygi et al.,

2011b). As an example, the connectivity index between i-th matrix element and j-th fracture element is
calculated as CI;; = %’ where A4 is the area fraction of fracture cell j overlapping with matrix cell i and (d);

is the average distance between these cells (Tene et al., 2016; HosseiniMehr et al., 2018).

Energy Balance for Fluid
Energy balance for fluid reads

Nrac

a 1 | nmw * prpE 3
a_f (q)l”p” U}H) = V ” (pIHfP; Kf”’ . V}'),”) 7V " (q)lﬂ Df;‘i' . VT;”) — Ah(’]}”l — Tfl”) + p" H;!T(l T + ; prf Q,’”_f: i (7)

in the rock matrix (m) and

D (ofio. i i Leen oo ol TP i ey fim
5(¢‘Ipf'U}')_V'(pIH_‘,"EKJ'VP")—V‘(‘I}’ D",--VT} =pr'fiI’ _;_ijfo +Z P,foQ”’ ”+ e (8)

J=1 1#

in the lower dimensional fracture (f}). Here, 7, and 7, are the fluid and solid rock temperature values,
respectively. In addition, Urand Hare the specific internal energy and specific enthalpy in fluid, respectively,
which can be expressed as non-linear functions of pressure temperature (Coats, 1977). D,is the fluid thermal
conductivity. The subscripts f'and r indicate fluid and solid rock. A4 is the surface area involved in the heat
exchange between fluid and solid phase in the rock, and /4 is the conduction-convection heat exchange

coefficient between them. Note that the fracture porosity is assumed to be 1. Therefore the term An(7/ — 7/

is omitted from the fluid energy balance equation for fractures. Moreover, if the thermal equilibrium between
rock and fluid is assumed, this term becomes zero. The conductive heat exchange at the porous surface of

the fracture is denoted by QI’]"}: , which is calculated as
Qg =D (1" =T/), 9)

Here, D = (1—¢™)D" + ¢/ D;;:" is the thermal conductivity of the saturated rock. Here, D, is the rock thermal

conductivity. Note that the fluid conductivity is assumed to be negligible compared with that of the solid
rock.

Energy Balance for Solid Rock
Energy balance for solid rock reads

a m m m m m m m S mfi
& ((a-orpur) v (- Dp-vIr) —anry -1+ ¥ Q. (10)

Here, p, and U, are density and specific internal energy of the solid rock, respectively. The heat exchange
term Q}’jfr‘, is obtained as
1 D (1] - T, (11)

to balance the conductive heat exchange of Eq. (9). Note that there is no solid phase in the fractures, as
such, the energy balance equation for rock only exists for the reservoir matrix.
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Fine-scale Discrete System

The coupled discrete system of equations for Egs. (1), (2), (7), (8) and (10) with three main unknowns
of p, Ty and T, is obtained using a two-point-flux-approximation (TPFA) finite-volume scheme in space
and a backward (implicit) Euler scheme in time (Aziz and Settari, 2002). Independent structured grids are
generated for porous medium and fractures. Non-linear FIM systems are solved using Newton-Raphson
iterative scheme (Aziz and Settari, 2002).

Residual of mass balance equation for matrix (rj;;) and fractures (,/; ), residual of fluid energy balance
equation for matrix (rgpr) and fractures (r/,,.), and residual of energy balance equation for solid rock (r%z)
form the full residual vector at time-step n as

J1 mn n n 2 n f” frac \ /1 Jn i /m n
" =[(riip)", (’“161[3) ,(’7(/13) e (Mg )" (P )" =(’“£BF) (rEpp)"]T (12)
The vector of pressure unknowns at time-step 7 is denoted as [(p™)", (p/i)", (p2)", .., (p”minc )T Similarly,

the temperature values are defined as (727", (7/1)", (1/2)", ..., (7] )" for fluid and [(7;")")" for the solid rock.
The nonlinear equation »"*/ = 0 is solved iteratively as

or ¥
T

or

+
P =+ an

gp‘ S v+1_|_ ‘ 6Tv+1 67~rv+1 =0, (13)

where the index v denotes the iteration stage. At every Newton iteration, the set of all linearized equations
can be written as a linear system J'dx''! = —*, where, J" is the Jacobian matrix with éx"*/ = [0p, 6T} 07,]".
As a whole, the mentioned linear system of equations is presented as the following

v v+1 v
mm mf mm mf mm dp™" P
vB, JMB, MBr, JMBTf MBr, MB
j &p' )
m m m
Jus, JMB,, JMBT JMBTf Sy, L
mm J’”f Jm Jmf mm ST —_ |
EBF, JEBF, EBFr,  YEBFr, EBFy, ! = EBF (14)
in m v fin STL A
JEBF, JEBr,, Y EBFy, JEBF, ; EBFy, Y EBF
Jmm J’”f min J’“f mm f -
EBR), EBR, EBRT,‘. EBRT EBRy, STI TEBR
' ?‘1\‘?’)4rl "

Here, J¥, 8x} "' and rj are the Jacobian (derivatives) matrix, the vector of updates and the residual vector,
respectively. Also, each block J., contains the derivatives of equation e with respect to the unknown a, i.e.
Joy = 9r./00.. Subscripts MB, EBF and EBR refer to equations of mass balance, energy balance in fluid and
energy balance in the rock, respectively. Note that Jus, = 0 holds, as in the mass balance equation, the fluid
properties do not depend on the rock temperature 7,.

In this work, to reach the non-linear convergence the following conditions have to be satisfied:

[lrimm |2 [resr |2 [lrie8R) |12 |18pl2 [187%|2 1187 ]
< (M) < E(ggF) N EBR) N <gp) A 711> <gr,) A IIT.-’Hv <E(7,) (15)

H"g,wg)“ IE [EBF]” 1L (EBR)”

Here, each of the aforementioned thresholds (e) are user-defined tolerances given as input to the
simulator.

Note that one can combine the energy balance for fluid and rock, under local thermal equilibrium
assumption, so that only one temperature value exists as the main unknown of the energy equation. This
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can be achieved at linear stage by clustering the corresponding rows and columns associated (resembles a
CPR-based approach (Wallis et al., 1985; Cao et al., 2005)).

As mentioned before, the solution of the linear-system (14) is the most computationally expensive step for
field-scale simulations. To resolve this challenge, field-scale relevant simulation approaches aim to develop
a scalable solution strategy for this coupled nonlinear system. Therefore, the FG-ADM method is presented
in the following section.

ADM Method for Fractured Geothermal system (FG-ADM)

The linear system of equations (14) is described and solved on a fully-resolved fine-scale discrete grid.
FG-ADM method provides an alternative solution to the fine-scale system by constructing an algebraically
reduced system on a dynamic multilevel grid resolution, which is defined at the beginning of every time-
step. The resolution of this ADM system is obtained based on a front-tracking (or gradient of solution)

Mrac

error-estimation strategy. Let us assume that N,, grid cells are imposed on the matrix and Ny, = ¥ Ny, fine-
i=1

scale grid cells are imposed on the fractures. The fine-scale domain is obtained at level /= 0. Let N/ be the

m

number of the grid cells in the matrix and Nj the number of the grid cells in fracture 7, both at level /. The
coarsening ratio, y’ (at coarsening level /) can therefore be defined as

I L
7/2(7/7/7/ ): Ny, _ N _,_,_Nfﬂn-ac ' (16)
m> fl' » A Nfpac ]\7/171 ) N;Tl ’ ) N;71
J Jirac
: . . . by o Ny Nb
Note that the coarsening ratios for matrix and fracture f; are, respectively, v, = (S x - x —#) and
' Nm\- Nmr Nm;
N NG . ) . .
Y. = (== x —=4). The coarsening level and the ratios for matrix and fractures are defined independently.
= \5 N g P Y

fig; fim;

FG-ADM Operators
The ADM map between the fine-scale system to the dynamic multilevel grid resolution is obtained by
applying sequences of restriction (R) and prolongation (P) operators across multiple levels, which are
assembled from the local basis functions constructed only at the beginning of the simulation. In other words,
at every iteration, the FG-ADM system is assembled as

R-VR S BL... P 8t = —RI..R)n.

g (17)
Jra-anm Ty

Here, R/™! is the restriction operator mapping part of the vector of solutions which are at resolution

[ —1(8%_y) to resolution /(8%,), and P! ,
from level / to level / - 1. The solution of FG-ADM linear system (17) is then mapped to fine-scale as
an approximated resolution &8x; (the reference fine-scale solution is represented as 8x) using sequences of

prolongation operators. More precisely:

is the prolongation operator mapping part of the solution vector

dxo ~ dxy =Py Pl Sy (18)

In the FG-ADM method, the static multilevel multiscale prolongation operatorP/ , is constructed on the
entire domain, which maps the solution from level / to / - 1. However, at each time step, the dynamic grid is
obtained in such a way that only a specific part of the domain is mapped between the mentioned resolutions.
This map is presented as P/, in Eq. (17) and (18), which is referred to as ADM prolongation operator.
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This static multilevel multiscale prolongation operator is a matrix including the blocks of prolongation
operators for all unknowns (i.e., p, T}, T,), and reads:

mm

(B )il [(Py) 11‘;’; 0 0 0
/ [(PP);_I] [(PP);_I] V O min 0 0
B = 0 0 [(PT;); 1 o 0 (19)
0 0 0 [( PTF )5 l]f‘f Y nm
0 0 0 0 (@) 0™ s
Additionally, the static multilevel multiscale restriction operator reads:
R0 0 0 0
o R o 0 0
R-'=[ o o R0 0 (20)
0 0 o R o
]71 m
0 0 0 0 [Rl ] NyxNp_|
which is a finite-volume restriction operator to assure mass conservation, i.e.,
_ 1 if cell s is inside coarser cell ¢,
R (s.1) = . (21)
0 otherwise.

Note that different interpolators are used for each variable (Cusini et al., 2018a; HosseiniMehr et
al., 2018). The pressure prolongation operator (P,)! , uses fully-coupled multilevel multiscale basis

functions, whereas the prolongation operator of fluid temperature (Pr,);_, uses constant interpolators, i.e.,
Py =R ' where the superscript T refers to the transpose operator. The prolongation operator of rock

temperature (P7,)/ | is also assembled by using multilevel multiscale basis functions.

Grid Selection Criterion

FG-ADM uses a user-defined grid selection criterion for the dynamic grid resolution map. At each time
step n, the grid resolution is selected explicitly (based on the solution at time-step n - 1) by employing
a temperature based criterion. Assume Q! and @/ as the set of two neighboring coarse cells / and J at
resolution level /, which contain the index of all finer resolution cells they include. Also, i and j are fine cell
indices, belonging to the sets @/ and Qf, respectively. The quantity A7;; can defined as

ATy =max(|T;—Tj|) Vi€ Q] and V€ Q] (22)
and a grid-block 7/ at grid resolution level / is refined to resolution (/ - 1) if
ATjy > tol, (23)

where, N indicates all grid-blocks at resolution / neighbouring cell /. For the numerical examples of this
article, the variable used for the coarsening criterion is the fluid temperature. Additionally, refinement is
imposed around wells to ensure that the effect of source terms is captured accurately.

Numerical Results

Numerical results of two fractured test cases (one homogeneous and one heterogeneous) are presented in
this section for which the performance of the proposed FG-ADM method is investigated. For error analyses,
the fine-scale solutions are considered as accurate reference ones.
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All test cases share a two-dimensional (2D) 100m x 100m fractured domain. An identical fracture
network consisting of 35 fracture lines is considered for both test cases. A cold water injector well is
present in the bottom left corner of the reservoir whereas a production well is placed at the top right corner.
Both injection and production wells are pressure-constrained with bottom hole pressures of 30MPa and
10MPa, for injection and production, respectively. Temperature of the injected water is at 300K, whereas
the reservoir is at initial temperature of 400K. No-flow boundary condition holds for all boundaries. All
simulations are run till 500 days of simulation time is reached and the results are reported every 20 days (25
reports). The fluid and rock properties used here are presented in Table 1. The Appendix section includes
all the correlations used to compute the remaining fluid properties. Please note that here, we assume the
fluid thermal conductivity is negligible.

Table 1—FIluid and rock properties.

Property value

Rock thermal conductivity (D,) 4 [W/m.K]
Fluid thermal conductivity (D)) negligible
Rock density (p,) 2750 [kg/m?]
Rock specific heat (C,,) 790 [J/kg.K]
Porosity (¢) 0.2

Fractures permeability 10°m?
Fractures aperture 107m

Grain diameter 0.001 m
Fluid specific heat (C,) 4200 [J/kg.K]

Fine-scale simulation is run on both test cases with local thermal equilibrium assumption, where only
one average temperature is used for both rock and fluid. As mentioned, the results of the FG-ADM method
is compared against those obtained by the fine-scale simulator. The performance of FG-ADM is represented
in fraction of number of active grid cells compared to the total number of fine-scale grid cells. The FG-
ADM error at time step ¢ is calculated as

llxrs(r) —xapm (1)|]2
&) = ; 24
D= sl 24)
where, x represents a generic variable (i.e., pressure p or temperature 7) and the subscript FS refers to fine-
scale.

Test Case 1: 2D fractured reservoir with homogeneous permeability field
A homogeneous rock with isotropic permeability value of K,, = 10-* m? is considered. A 135 x 135 = 18225
Cartesian grid is imposed on the matrix and the fractures are discretised into 1665 grid cells in total. 3
coarsening levels for matrix and 2 coarsening levels for fractures are set, with coarsening ratio of 3 in each
direction for both the matrix and the fractures. The differences of fluid temperatures between neighbouring
cells is used as the coarsening criterion with four different threshold values of AT,= {5,10,20,50}.

Figure 1 shows the results of the fine-scale simulation using thermal equilibrium assumption.
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3.0e+07 4.0e+02
380
25e+7
— 360
— 2e+7
340
SHe+’
1.5e+7 320
1.0e+07 3.0e+02
(a) Pressure - Fine Scale (b) Average Temperature - Fine Scale
Figure 1—Test case 1: Pressure and temperature plots for fine-scale solutions.
3.0e+07
2.5e+7
— 2e+7
1.5e+7
1.0e+07

(a) Fine-scale
error=1.50 x 1073

(c) ADM 8T = 10 (d) ADM T = 20 (e) ADM 3T = 50
error=3.80 x 1073 error="7.70 x 1073 error=1.95x 1072

Figure 2—Test case 1: fine-scale and ADM pressure plots with different threshold values &7.
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(b) ADM 3T — 5
error=6.10x 103

(c) ADM 3T = 10
error= 8.60 x 10~3

Figure 3—Test case 1: fine-scale and ADM temperature plots with different threshold values 37.

(d) ADM 3T =20
error=1.13x 1072

(e) ADM 6T = 50
error=1.88 x 1(

Figures 2 and 3 show, respectively, the pressure and temperature results of fine-scale and FG-ADM
simulations at final time-step (¢ =500 days). Figure 4 shows the average pressure and temperature errors and
the amount of active gird cells throughout the entire simulation time for all four chosen ADM grid selection
criteria. Note that there is always 3.2% of active grid cells in the beginning of the simulation which is mainly
due to the near-well grid refinement (the grid cells around wells are always kept at the fine-scale resolution).

0.015

0.01

0.005

|~ ~Avergare Active Grid Cells [%] (right axis) .. -

-©-Average Perssure Error (left axis)
- 3% -Average Temperature Error (left axis)

\ -

7 30
-4

-

125

120

10 15 20 25 30 35 40
ADM Tolerance

Figure 4—Test case 1: Average Errors and Active Grid Cells.

Test Case 2: heterogeneous permeability field
This test case consists of a heterogeneous matrix with permeability ranging from min(K,,) = 5.9 x 10-¥m?
to max(K,) = 4.2 x 107m2. A 81 x 81 = 6561 Cartesian grid is imposed on the matrix and the fractures
are discretized into 1188 grid cells in total. Same as the previous test case, 3 coarsening levels for matrix
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and 2 coarsening levels for fractures is considered, and coarsening ratio is 3 for the entire domain. Identical
coarsening criterion as in the previous test case is employed for the ADM grid selection (A7,= {5,10,20,50}).

4.0e+02

.

— 360

3.0e+07
[ 25e+7

— 2e+7

[ 1.5e+7
1.0e+07 3.0e+02

(a) Pressure - Fine Scale (b) Average Temperature - Fine Scale

— 340

320

Figure 5—Test case 2: Pressure and temperature plots for fine-scale solutions.

The results of fine-scale simulation for heterogeneous test case are presented in figure 5.

For test case 2, pressure and temperature results of fine-scale together with four FG-ADM simulations
are shown in figures 6 and 7. Similar to test case 1, all the simulations of this test case were run till # =
500days and the plots display the result for final time-step.

Figure 8 illustrates the average pressure and temperature errors as well as the average active grid cells
employed by the ADM approach. For this test case, 7.3% of active grid cells are always considered in the
beginning of simulation due to the fine-scale grid resolution near the injection and production wells.

Conclusion

An Algebraic Dynamic Multilevel method for fully-coupled simulation of single phase flow in fractured
geothermal reservoirs (FG-ADM) was presented. Using the embedded discrete fracture model (EDFM), the
fully implicit system in fine-scale discretization was mapped into a multilevel dynamic grid (independently
defined for matrix and fractures) by employing a sequence of multilevel restriction and prolongation
operators which are sets of local basis multilevel functions. These local basis functions were defined after
selection of the coarse nodes on both matrix and fracture sub-domains on each coarsening level, with
flexible matrix-fracture coupling. Using front-tracking technique, fine-scale grids were employed only
where needed (i.e., around the wells and at the location of the temperature front) detected via the ADM
grid selection criterion. However, different levels of coarse grids are employed wherever the fine-scale
resolution is not needed. The use of multilevel multiscale basis functions guarantees the accuracy of the
global unknowns where coarse grids are imposed. All basis functions were computed at the beginning of
the simulation, and were reused during the entire simulation.
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Figure 6—Test case 2: fine-scale and ADM pressure plots with different threshold values &7.
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Figure 7—Test case 2: fine-scale and ADM temperature plots with different threshold values 37.
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Figure 8—Test case 2: Average errors and active grid cells.

Numerical results for 2D homogeneous and heterogeneous fractured test cases were presented. FG-ADM
results on both test cases were compared to those obtained from a fine-scale simulator. The sensitivity of FG-
ADM to different grid coarsening criteria was also studied. The results, with different amount of dynamic
active grid cells, show that FG-ADM is capable of providing accurate results by employing only a fraction
of the fine-scale grid cells in the domain where needed. Due to the rarefaction of the temperature profile
(highly diffused temperature fronts), more fine-scale grid cells are used at the front for heat transfer. In
addition, the FG-ADM provides a robust algebraic framework which brings a scalable simulation method
for thermal fluid flows. It is expected that by increasing the size of the domain, the average percentage of
active grid cells reduces. Therefore, ADM casts a promising simulation approach for real-field geothermal
reservoir simulations.
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Appendix
correlations
The following correlations were employed to compute fluid and rock properties in the numerical
experiments.
Fluid viscosity: Viscosity-temperature relationship reads (Al-Shemmeri, 2012)
_s 247.8
pp (T) = 2.414 x 1075 x 107-15,
Fluid density: Fluid density is defined as function of pressure and temperature (Coats, 1977) as
Pr(P.T)=pys(T)[1+cw(T)(P—F)].
where Pg= 1 bar. ¢,, (T) and p,(T) are obtained from empirical correlations (Praditia et al., 2018; Wagner
and Kretzschmar, 2008), i.e.,
cw (T) = (0.0839T7 4+ 652.73T —203714) x 10712
prs (T) = —0.0032T% +1.7508T +757.5.

Fluid Entalphy: Fluid enthalpy is defined as function of pressure and temperature (Coats, 1977) as

P
Hf (P T) = Ups +Cpf (T - 7?9) + p_
f

where s = 42000057,
Heat exchange coefficient: Heat exchange coefficient 4 is given as (Nield and Bejan, 2006)

1 D, D,

h™~ Ny 10D

where D, is the grain diameter and D is the rock heat conductive coefficient. In this work, the fluid
conductivity (only used for this equation) is set as k= 0.591W/m.K. Note that &, is the Nusselt number,
which is defined as

N, = 0.225 P9'33R8'67~,
0
where P, (Nield and Bejan, 2006) and R, (Zeng and Grigg, 2006) are the Prandtle and Reynolds numbers,
respectively, i.e.,

P r = —Cpf,uf .
kg
and
Re = —prDp .
uy

Here V' is the Darcy velocity.
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