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Homogeneity and rigidity in Erdős spaces

Klaas P. Hart, Jan van Mill

To the memory of Bohuslav Balcar

Abstract. The classical Erdős spaces are obtained as the subspaces of real sep-
arable Hilbert space consisting of the points with all coordinates rational or all
coordinates irrational, respectively.

One can create variations by specifying in which set each coordinate is allowed
to vary. We investigate the homogeneity of the resulting subspaces. Our two
main results are: in case all coordinates are allowed to vary in the same set the
subspace need not be homogeneous, and by specifying different sets for different
coordinates it is possible to create a rigid subspace.
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Classification: 54F99, 46A45, 54B05, 54D65, 54E50, 54F50

Introduction

We let l2 denote real separable Hilbert space, that is

l2 =

{

x ∈ Rω :
∑

i∈ω

x2
i < ∞

}

.

In this paper we consider (topological) subspaces of l2 that are obtained by taking
a sequence X = 〈Xi : i ∈ ω〉 of subsets of R and then defining

E(X) = {x ∈ l2 : ∀ i xi ∈ Xi}.

If all Xi are equal to one fixed set X we simply write E(X). Since E(R) is just l2
itself we henceforth tacitly assume that X 6= R when we deal with a single set X .

These subspaces are generally known as Erdős spaces because Erdős showed
that E(S) and E(Q) are natural examples of totally disconnected spaces of di-
mension one that are also homeomorphic to their own squares, see [4]. Here S
denotes the convergent sequence {2−n : n ∈ ω} ∪ {0} and Q denotes the set of
rational numbers. These two spaces have been the object of intense study, Chap-
ter 2 of [1] summarizes much of the earlier history and contains references to,
among others, a proof that E(S) and E(P) are homeomorphic, where P denotes
the set of irrational numbers.
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The purpose of this paper is to see what can be said of the spaces E(X)
and E(X) in terms of homogeneity and rigidity. The standard examples E(Q)
and E(P) are homogeneous, they are even (homeomorphic to) topological groups.
Note that this shows that E(S) is homogeneous, even though S is not of course.

The result of L. B. Lawrence from [6], that states that an infinite power of
a zero-dimensional subspace of R is always homogeneous, might lead one to
think that E(X) is always homogeneous too. There are two important differ-
ences though: Xω is a much larger subset of Rω than E(X), and the topology
of E(X) is finer than the product topology. Our first result, in Section 1, shows
that these differences present real obstacles: we construct a subset X of R such
that all autohomeomorphisms of E(X) are norm-preserving.

This of course raises the question whether this can be sharpened to: every
autohomeomorphism of E(X) must be norm-preserving and all spheres centered
at the origin are homogeneous. We will comment on this after the construction.

In the case of a single set one can say for certain that E(X) is not rigid: any
permutation of ω induces an autohomeomorphism of E(X). These are not the
only ‘easy’ autohomeomorphisms of E(X). Assume there is a real number r not
in X such that both X ∩ (r,∞) and X ∩ (−∞, r) are nonempty and consider the
clopen subset C = {x ∈ E(X) : x0, x1 > r} of E(X). One can define f : E(X) →
E(X) to be the identity outside C and have f(x) = (x1, x0, x2, . . .) if x ∈ C. If,
as is quite often the case, X has a dense complement in R then one can create
many ‘easy’ autohomeomorphisms in this way and we are forced to conclude that
the notion of a ‘trivial’ autohomeomorphism of E(X) may be hard to pin down.

To obtain a truly rigid space of the form E(X) one must have all sets Xi

distinct for otherwise exchanging two coordinates would result in a nontrivial
autohomeomorphism. In Section 2 we exhibit a sequence X for which E(X) is
rigid.

Our constructions use Sierpiński’s method of killing homeomorphisms from [7],
which in turn is based on Lavrentieff’s theorem from [5]. The latter theorem states
that a homeomorphism between two subsets, A and B, of completely metrizable
spaces can be extended to a homeomorphism between Gδ-subsets, A

∗ and B∗, in
those spaces that contain A and B, respectively (see also [3, Theorem 4.3.20]).
It is well-known that a separable metric space, like l2, contains continuum many
Gδ-subsets and that each such set admits continuum many continuous functions
into l2. As will be seen below this will allow us to kill all unwanted homeomor-
phisms in a recursive construction of length c.

We shall conclude this note with some questions and suggestions for further
research.

1. A non-homogeneous Erdős space

We shall show that there is a subsetX of R for which E(X) is not homogeneous.
In fact our X will be such that the autohomeomorphisms of E(X) must be norm-
preserving. As observed in the introduction we cannot go all the way and make
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E(X) rigid: every permutation of ω induces a unitary operator on l2 that maps
E(X) to itself. Thus, the autohomeomorphism group of E(X) contains, at least,
the symmetry group Sω.

We shall construct a dense subset X of R in a recursion of length c. The
set E(X) will then be dense in l2. If f : E(X) → E(X) is an autohomeomorphism
then we can apply Lavrentieff’s theorem to find aGδ-set A that containsE(X) and
an autohomeomorphism f̄ of A that extends f . By continuity the map f̄ is norm-
preserving if and only if f is. This tells us how we can ensure that E(X) has norm-
preserving autohomeomorphisms only: make sure that whenever A is a dense Gδ-
subset of l2 that contains E(X) and f : A → A is an autohomeomorphism that is
not norm-preserving then E(X) is not invariant under f .

To make our construction run a bit smoother we note that it suffices to en-
sure that every autohomeomorphism f : E(X) → E(X) does not increase norms
anywhere, that is, it satisfies ‖x‖ ≥ ‖f(x)‖ for all x. For if f is an autohome-
omorphism then so is its inverse f−1 and from (∀x) (‖x‖ ≥ ‖f−1(x)‖) we then
deduce (∀x) (‖f(x)‖ ≥ ‖x‖).

We enumerate the set of pairs 〈A, f〉, where A is a dense Gδ-subset of l2 and
f is an autohomeomorphism of A that increases the norm somewhere as 〈〈Aα, fα〉 :
α < c〉.

By transfinite recursion we build increasing sequences 〈Xα : α < c〉 and 〈Yα :
α < c〉 of subsets of R such that for all α

(1) |Xα ∪ Yα| < c,
(2) Xα ∩ Yα = ∅, and
(3) if E(Xα) ⊆ Aα then there is a point xα in Aα such that Xα+1 consists

of Xα and the coordinates of xα, and Yα+1 consists of Yα and at least
one coordinate of fα(xα).

To see that this suffices letX =
⋃

α<c
Xα and assume f is an autohomeomorphism

of E(X) that increases the norm of at least one point. Apply Lavrentieff’s theo-
rem to extend f to an autohomeomorphism f̄ of a Gδ-set A that contains E(X).
Then A is dense and f̄ increases the norm of at least one point so there is an α such
that 〈A, f̄〉 = 〈Aα, fα〉. But now consider the point xα. It belongs to E(Xα+1)
and hence to E(X); on the other hand one of the coordinates of fα(xα) belongs
to Yα+1 and it follows that fα(xα) /∈ E(X) as Yα+1 ∩X = ∅. This shows that f̄
does not extend f , as f(xα) must be in E(X), which is a contradiction.

To start the construction let X0 = Q, to ensure density of E(X), and Y0 = ∅.
At limit stages we take unions, so it remains to show what to do at successor

stages.
To avoid having to carry the index α around all the time we formulate the suc-

cessor step as the following lemma, in which Z plays the role of the union Xα∪ Yα.

Lemma 1.1. Let A be a dense Gδ-subset of l2 and let f : A → A be an auto-

homeomorphism that increases the norm of at least one point. Furthermore let

Z be a subset of R of cardinality less than c. Then there is a point x in A such

that
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(1) none of the coordinates of x and f(x) are in Z, and

(2) at least one coordinate of f(x) is not among the coordinates of x itself.

Proof: We take a ∈ A such that ‖a‖ < ‖f(a)‖.
First we show that we can assume, without loss of generality, that a has two

additional properties: 1) all coordinates of f(a) are nonzero, and 2) all coordinates
of f(a) are distinct.

This follows from the fact that the following sets are closed and nowhere dense
in l2:

(1) {x ∈ l2 : xi = 0} for every i, and
(2) {x ∈ l2 : xi 6= xj} whenever i < j.

By continuity and because A is a dense Gδ-subset of l2 we may choose a so that
f(a) is not in any one of these sets.

We claim that there is an i ∈ ω such that f(a)i 6= aj for all j. If not then we can
choose for each i the smallest ki such that f(a)i = aki

. Because all coordinates
of f(a) are distinct the map i 7→ ki must be injective. But then

∞
∑

i=0

f(a)2i =
∞
∑

i=0

a2ki
≤
∞
∑

j=0

a2j ,

which contradicts our assumption that ‖f(a)‖ > ‖a‖.
Fix an i as above. Since limj aj = 0, and f(a)i 6= 0 and f(a)i 6= aj for all j,

we can take ε > 0 such that |f(a)i − aj | ≥ 3ε for all j.
By continuity we can take δ > 0 such that δ ≤ ε and such that ‖x − a‖ < δ

implies ‖f(x)− f(a)‖ < ε.
By the triangle inequality we have |f(x)i −xj | ≥ ε for all j when ‖x−a‖ < δ.
Now we apply Lemma 4.2 from [2]. The conditions of this lemma are that we

have a separable completely metrizable space, for this we take M = B(a, δ) ∩ A.
Next we need a family of countably many continuous functions to one space, for
this we take the coordinate maps πj : x 7→ xj and their compositions with f , that
is ̺j : x 7→ f(x)j; the codomain is the real line R. Finally, we need to know that
whenever C ⊆ R is countable the complement of

⋃

j∈ω

(π←j [C] ∪ ̺←j [C])

in M is not countable. This is true because the preimages of points under the πj

and the ̺j are nowhere dense, so that the complement is a dense Gδ-subset of M .
The conclusion then is that there is a (copy of the) Cantor set K inside

B(a, δ) ∩ A such that all maps πj and ̺j are injective.
Because |K| = c this then yields many points x ∈ K such that xj , f(x)j /∈ Z

for all j. All these points are as required. �

Remark 1.2. One would like to make this example as sharp as possible, for
example by making all spheres centered at the origin homogeneous. This seems
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harder than one might think at first, as some straightforward modifications of the
construction in this section will aft gang agley.

One might try to add some unitary operators as autohomeomorphisms of E(X).
To keep the sets Xα and Yα small these should introduce as few new coordinates
as possible. But even a simple transformation of the first two coordinates as given
by u0 = 3

5
x0 + 4

5
x1 and u1 = − 4

5
x0 + 3

5
x1 is potentially quite dangerous. For

if x0 = x1 then u0 = 9

5
x0 and u1 = − 1

5
x0. This shows that if E(X) is to be

invariant under just this operator then the set X itself must be invariant under
scaling by 9

5
and − 1

5
. This would introduce norm-changing autohomeomorphisms

of E(X).
Another possibility would be to make E(X) invariant under standard reflec-

tions: if ‖a‖ = ‖b‖ then

R(x) = x− 2
x · (a− b)

(a− b) · (a− b)
(a − b)

defines the reflection in the perpendicular bisecting hyperplane of a and b. Un-
fortunately this would mean that as soon as Xα is infinite and dense there would
be c many of these maps, and hence c many coordinates to avoid. This would
make it quite difficult to keep the sets X and Y above disjoint.

Remark 1.3. It is relatively easy to create situations where some spheres are
not homogeneous. Simply take a set X that has 0 as an element and as an
accumulation point, and an isolated point x, e.g., the convergent sequence S
mentioned in the introduction. In E(X) the sphere H = {y ∈ E(X) : ‖y‖ = |x|}
is not homogeneous.

Indeed, the point x = 〈x, 0, 0, . . .〉 is isolated in H . To see this take ε > 0 such
that {x} = X ∩ (x− ε, x+ ε) and consider any y ∈ H \ {x}. Then y0 6= x because
∑

i y
2
i = x2, hence |y0 − x| ≥ ε and also ‖y − x‖ ≥ ε.

On the other hand, using a nontrivial convergent sequence in X with limit 0 it
is an elementary exercise to construct a nontrivial convergent sequence in H .

2. A rigid example

In this section we construct a rigid Erdős space. As noted before, in this case
we need a sequence X = 〈Xi : i ∈ ω〉 of subsets of R simply because we need to
disallow permutations of coordinates as autohomeomorphisms.

The construction is similar to, but easier than, that in Section 1. We list
the set of pairs 〈A, f〉, where A is a dense Gδ-subset of l2 and f : A → A is
a homeomorphism that is not the identity, as 〈〈Aα, fα〉 : α < c〉.

We now build countably many increasing sequences 〈Xi,α : α < c〉 of subsets
of R, one for each i, and countably many auxiliary sequences 〈Yi,α : α < c〉 such
that Yi,α ∩Xi,α = ∅ for all i and all α.

We start with a sequence 〈Xi,0 : i ∈ ω〉 of pairwise disjoint countable dense
subsets of R and Yi,0 = ∅ for all i.
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At limit stages we take unions and at a successor stage we consider Xα =
〈Xi,α : i ∈ ω〉, the corresponding Erdős space E(Xα), and the pair 〈Aα, fα〉. In
case E(Xα) ⊆ Aα we take a point a ∈ Aα such that fα(a) 6= a and we fix
a coordinate j such that aj 6= fα(a)j , let ε = |aj −fα(a)j |/2, and δ > 0 such that
‖x− a‖ < δ implies ‖fα(x)− fα(a)‖ < ε.

As in the previous section we apply [2, Lemma 4.2] to find a Cantor set in
B(a, δ)∩Aα on which all projections πi and the composition πj ◦fα are injective.
This shows us that we can assume that a is such that ai /∈ Yi,α for all i and
fα(a)j /∈ Xj,α. We then put Xi,α+1 = Xi,α ∪ {ai} for all i, and Yi,α+1 = Yi,α for
all i 6= j, and Yj,α+1 = Yj,α ∪ {f(a)j}.

In the end we let Xi =
⋃

α<c
Xi,α.

As in the previous section if f is an autohomeomorphism of E(X) that is not
the identity then there is an α such that E(X) ⊆ Aα and fα extends f . However,
for the point a chosen at that stage we have a ∈ E(X) and fα(a) /∈ E(X).

3. Some questions

In this last section we formulate two questions that we deem of particular
interest in the context of homogeneity and rigidity in Erdős spaces.

Question 3.1. Given a subset X of R with a dense complement, what are the
‘trivial’ autohomeomorphisms of E(X)?

This is, to some extent, a subjective question, but a first approximation of
‘trivial’ could be “describable without using special properties of X other than
its having a dense complement”. Since at least one E(X) has norm-preserving
autohomeomorphisms only we know that ‘trivial’ should imply that property.

Question 3.2. Is there a set X such that E(X) has norm-preserving autohomeo-
morphisms only and such that all spheres centered at the origin are homogeneous?

Note that one can split the last condition into two possibilities: one can ask
whether the spheres can be made homogeneous as spaces in their own right or
whether one can use autohomeomorphisms of E(X) to establish their homogene-
ity. The failed attempts described in Remark 1.2 were of the latter kind.
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[6] Lawrence L.B., Homogeneity in powers of subspaces of the real line, Trans. Amer. Math.
Soc. 350 (1998), no. 8, 3055–3064.
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