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Maximum Likelihood Decoding for Gaussian Noise
Channels with Gain or Offset Mismatch
Jos H. Weber, Senior Member, IEEE, and Kees A. Schouhamer Immink, Fellow, IEEE

Abstract—Besides the omnipresent noise, other important in-
conveniences in communication and storage systems are formed
by gain and/or offset mismatches. In the prior art, a maximum
likelihood (ML) decision criterion has already been developed for
Gaussian noise channels suffering from unknown gain and offset
mismatches. Here, such criteria are considered for Gaussian
noise channels suffering from either an unknown offset or an
unknown gain. Furthermore, ML decision criteria are derived
when assuming a Gaussian or uniform distribution for the offset
in the absence of gain mismatch.

Index Terms: maximum likelihood decoding, gain mismatch,
offset mismatch, non-volatile memories.

I. INTRODUCTION

In non-volatile memories, such as floating gate memories,
the data is represented by stored charge, which can leak away
from the floating gate. This leakage may result in a shift
of the threshold voltage of the memory cell. The amount of
leakage depends on various physical parameters and, clearly,
on the time elapsed between writing and reading the data
and the magnitude of the charge. The receiver estimates the
mean leakage, but as the estimate is not perfect, a remaining
uncertainty that the receiver must account for in the detection
algorithm is still present. In the prior art [1], [2], it is assumed
that the receiver is completely ignorant of the amount of
leakage. Here, however, we will also consider the case that
the leakage has a particular distribution.

In general, we can say that dealing with varying offset
and/or gain is an important issue in signal processing for
modern storage and communication systems. For example,
methods to solve these difficulties in flash memories have been
discussed in, e.g., [3], [4], and [5]. Also, in optical disc media,
the retrieved signal depends on the dimensions of the written
features and upon the quality of the light path, which may be
obscured by fingerprints or scratches on the substrate, leading
to offset and gain variations of the retrieved signal. Throughout
this letter, we assume that the offset and gain may change from
block to block, but that they do not vary within a block, which
typically is the case for applications with relatively small data
block lengths. Immink and Weber [1] showed that detectors
using the Pearson distance offer immunity to offset and gain
mismatch.

Blackburn [2] derived a maximum likelihood criterion for
the case that both the gain and the offset are completely
unknown, except for the sign of the gain, which is assumed
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to be positive. Here, ML criteria will be derived for the case
that there is no gain mismatch, but there is an unknown offset
and vice versa. Unknown in this context means that we do
assume a certain range from which the gain/offset takes its
values, but that there is no assumption with regard to the
probability distribution on this range. To make an assumption
on such a distribution could be an appropriate thing to do
though, particularly in applications in which the behavior can
be predicted to a certain extent. Therefore, we also develop
criteria for the cases of Gaussian or uniform offset in the
absence of gain mismatch. The main contribution of this letter
is a proof that, for Gaussian noise and offset, the maximum
likelihood criterion is a weighted average of the well-known
Euclidean and Pearson norms, where the weighing coefficients
depend on the ratio of the noise and offset variances.

The remainder of this letter is organized as follows. In
Section II, we introduce the model under consideration and
provide notational convention. Then, in Section III, decision
criteria for decoding purposes are discussed. Next, we present
maximum likelihood criteria, in Section IV under the assump-
tion that the noise is Gaussian and either the offset or the
gain is unknown, and in Section V for the case that the noise
and the offset is Gaussian or uniform, while there is no gain
mismatch. Finally, in Section VI, we draw conclusions.

II. MODEL AND NOTATION

We assume a simple channel model, which is not only
applicable to flash memories, but also to other communication
and storage systems. It reads

r = a(x+ ν) + b1, (1)

where x = (x1, . . . , xn) is the transmitted codeword from
a codebook S ⊂ Rn, where a uniform distribution is as-
sumed, i.e., all codewords are equally likely to be transmitted,
ν = (ν1, . . . , νn) ∈ Rn is the noise vector, where the
νi are independently normally distributed with mean 0 and
standard deviation σ, a and b are real numbers representing
the channel gain and offset, respectively, 1 is the real all-
one vector (1, . . . , 1) of length n, and r ∈ Rn is the received
vector. It is assumed throughout that the transmitted codeword,
noise, gain, and offset are all independent of each other. Note
that the noise value varies from symbol to symbol, while
the gain and offset values are assumed to be constant for all
symbols within a codeword. However, the gain and offset may
vary from block to block, i.e., the values of a and b when
transmitting a codeword may differ from the values in the
previous transmission. In case there is no gain mismatch we
fix a = 1, while in case there is no offset mismatch we fix
b = 0.



2

For any vector u ∈ Rn, let u = (1/n)
∑n

i=1 ui denote the
average symbol value, let σu =

(∑n
i=1(ui − u)2

)1/2
denote

the unnormalized symbol standard deviation, and let ∥ u ∥=(∑n
i=1(ui)

2
)1/2

denote the norm.
For any two vectors x and y in Rn, let ⟨x,y⟩ denote the

standard inner product of x and y, i.e.,

⟨x,y⟩ =
n∑

i=1

xiyi =∥ x ∥ · ∥ y ∥ cos θ, (2)

where θ is the angle between x and y, let dE(x,y) =(∑n
i=1(xi − yi)

2
)1/2 be the Euclidean distance between x and

y, and let dP(x,y) = 1−ρx,y be the Pearson distance between
x and y, where ρx,y = (

∑n
i=1(xi − x)(yi − y)) /(σxσy) is

the well-known (Pearson) correlation coefficient. Note that the
Pearson distance is not a metric in the strict mathematical
sense, but in engineering parlance it is still called a ‘distance’
since it provides a useful measure of similarity between
vectors.

III. DECISION CRITERIA

A general decoding technique upon receipt of the vector r is
to choose as the decoder output xo the codeword x̂ ∈ S which
maximizes some probability. This is then often translated into
minimizing a distance-based decision criterion L(r, x̂), i.e.,
xo = argminx̂∈SL(r, x̂). Two criteria are said to be equivalent
if for any r a codeword optimizing the one also optimizes the
other.

Known choices for L(r, x̂) are based on the (squared)
Euclidean distance dE(x,y), i.e.,

LE(r, x̂) =
n∑

i=1

(ri − x̂i)
2 =∥ r− x̂ ∥2, (3)

or on the Pearson distance dP(x,y), i.e.,

LP(r, x̂) =
n∑

i=1

(
ri −

x̂i − x̂

σx̂

)2

. (4)

Actually, the latter expression is not equal to the Pearson
distance between r and x̂, but, as shown in [1], minimizing
(4) is equivalent to minimizing dP(r, x̂). It was also shown
in [1], that in case there is no gain mismatch, i.e., a = 1, a
suitable simpler decision criterion is obtained by removing the
division by σx̂ from (4), i.e.,

LP′
(r, x̂) =

n∑
i=1

(
ri − x̂i + x̂

)2
. (5)

Of particular interest from a performance perspective are
maximum likelihood (ML) decoders, which choose the code-
word of maximum probability given the received vector. Since
we assume that all codewords are equally likely, it follows
from Bayes’ rule that this is equivalent to maximizing the
probability density value f(r|x̂) of the received vector given
the codeword, i.e., xo = argmaxx̂∈Sf(r|x̂). Taking the
logarithm and inverting the sign we obtain the frequently-
used equivalent decision rule xo = argminx̂∈S − log(f(r|x̂)).
Hence, we have

LML(r, x̂) = − log(f(r|x̂)).

In case the gain a and offset b are known, while the noise is
normally distributed with mean zero and variance σ2, an ML
decoder will choose the codeword x̂ that maximizes ϕ((r −
b1)/a− x̂), where

ϕ(ν) =

n∏
i=1

1

σ
√
2π
e−ν2

i /(2σ
2),

or, equivalently, that minimizes
∑n

i=1

(
ri−b
a − x̂i

)2
=

LE((r− b1)/a, x̂). This gives the well-known fact that, in
case both the gain and the offset are known by the receiver,
the Euclidean criterion from (3) is ML when applying fixed
shifting and scaling operations on the received vector before
using the criterion. On the other hand, if there are unknown
gain and offset, it has been demonstrated that the Pearson
criterion from (4) may perform much better than the Euclidean
distance between r and x̂ [1].

IV. UNKNOWN GAIN OR OFFSET

Blackburn [2] investigated the case that both the gain a and
the offset b are fully unknown, except for the sign of the gain,
which is assumed to be positive. Since knowledge of the offset
and gain is lacking, the best thing to do, upon receipt of a
vector r, is to set, for any candidate codeword x̂, the gain and
the offset in such a way that the resulting noise is minimized.
Hence, in order to achieve ML decoding, the criterion to be
maximized over all codewords is maxa,b∈R:a>0 ϕ((r−b1)/a−
x̂), which was shown to be equivalent to the minimization of
the explicit criterion

LB(r, x̂) =

{
σ2
x̂(1− ρ2r,x̂) if ρr,x̂ > 0,
σ2
x̂ otherwise.

In this section, we present similar criteria for other important
cases with regard to the assumptions on the gain a and offset
b. In particular, we consider the situations in which there is
either no gain mismatch or no offset mismatch.

A. Unknown offset, no gain mismatch

First, we assume there is no gain mismatch, i.e., a = 1,
but there is an unknown offset b. For the offset we assume
that it takes its values within a certain range, specifically
b1 ≤ b ≤ b2, but we do not make any further assumptions
on the distribution on this interval. In this case, the criterion
to maximize is

max
b∈R:b1≤b≤b2

ϕ(r− b1− x̂), (6)

which leads to the following explicit result.

Theorem 1. In case a = 1 and the unknown offset b is
assumed to be restricted to a range b1 ≤ b ≤ b2, ML decoding
is achieved by minimizing

LMLb(r, x̂) =


LE(r− b11, x̂) if r− x̂ < b1,
LE(r− b21, x̂) if r− x̂ > b2,
LE(r− (r− x̂)1, x̂) otherwise.

Proof: Note that maximizing (6) is equivalent to minimizing
the smallest squared Euclidean distance from the codeword x̂
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to L = {r − c1|b1 ≤ c ≤ b2}, which is a piece of the line
L′ = {r − c1|c ∈ R} in Rn. The point on L′ closest to x̂
is p = r − (r − x̂)1. Hence, the point on L closest to x̂ is
r− b11 if r− x̂ < b1, r− b21 if r− x̂ > b2, and p otherwise,
which gives the stated result.

By letting b1 → −∞ and b2 → ∞, we obtain the criterion

LE(r− (r− x̂)1, x̂) =
n∑

i=1

(ri − x̂i + x̂)2 − nr2

for the case there is no knowledge of the offset at all (just
b ∈ R). Since the last term is irrelevant in the optimization
process, we conclude that this expression is equivalent to the
(modified) Pearson criterion LP′

(r, x̂) from (5), which thus
achieves ML decoding in this case.

B. Unknown gain, no offset mismatch

Next, we assume there is no offset mismatch (b = 0) but
there is a gain a, of which we only assume that it is within the
range 0 < a1 ≤ a ≤ a2. In this case, the criterion to maximize
is maxa∈R:a1≤a≤a2 ϕ(r/a− x̂), which leads to the following
explicit result.

Theorem 2. In case b = 0 and the unknown gain a is assumed
to be restricted to a range 0 < a1 ≤ a ≤ a2, ML decoding is
achieved by minimizing

LMLa(r, x̂) =


LE(r/a1, x̂) if ⟨r, x̂⟩ > 1

a1
∥ r ∥2,

LE(r/a2, x̂) if ⟨r, x̂⟩ < 1
a2

∥ r ∥2,

∥ x̂ ∥2 −
(

⟨r,x̂⟩
∥r∥

)2
otherwise.

Proof: Note that maximizing maxa∈R:a1≤a≤a2 ϕ(r/a − x̂)
is equivalent to minimizing the smallest squared Euclidean
distance d2 from the codeword x̂ to L = {cr|1/a2 ≤ c ≤
1/a1}, which is a piece of the line L′ = {cr|c ∈ R} in
Rn. Let θ be the angle between x̂ and r. The point on L′

closest to x̂ is p = pr with p = (∥ x̂ ∥ cos θ)/ ∥ r ∥=
⟨r, x̂⟩/ ∥ r ∥2, where the latter equality follows from (2).
Hence, the point on L closest to x̂ is r/a1 if p > 1/a1,
r/a2 if p < 1/a2, and p otherwise. This implies that the
smallest squared Euclidean distance from x̂ to L is as given
by LMLa(r, x̂), where the expression in the “otherwise” case
follows from d2 = d2E(x̂,p) =∥ x̂ ∥2 sin2 θ =∥ x̂ ∥2 (1 −
cos2 θ) =∥ x̂ ∥2 −

(
⟨r,x̂⟩
∥r∥

)2
, which concludes the proof.

V. OFFSET WITH A KNOWN DISTRIBUTION

Thus far, we have assumed that the gain and offset mis-
matches are either absent (i.e., a = 1 and/or b = 0) or
completely unknown, except for the ranges from which they
can take their values. However, a more practical assumption
may be that the receiver has some knowledge about the
amount of gain and/or offset to be expected. Therefore, it is
useful to also consider scenarios in which we assume certain
distributions for the gain and/or offset. In this section, we will
do so for the case that there is no gain mismatch. Hence, we
set a = 1 and let b have a specified probability density function
ζ with mean µ and variance β2, while the noise values νi will
still be assumed to be Gaussian distributed with mean 0 and

variance σ2. Let α denote the ratio of the noise and offset
variances, i.e., α = σ2/β2. Since a receiver can subtract µ1
from r in case the expected offset value µ is not equal to zero,
we may assume µ = 0 without loss of generality, which we
will do throughout the rest of this section.

Since a = 1, the model from (1) reduces to r = x+ν+b1 =
x+d, where d = ν+ b1 can be seen as the total disturbance.
The probability density function of d is denoted by ψ, which
satisfies

ψ(d) =

∫ ∞

−∞
ϕ(d− b1)ζ(b)db, (7)

i.e., it is the convolution of the probability density functions
of the noise and the offset. In order to achieve ML decoding,
we need to maximize ψ(r− x̂) over all candidate codewords.
Next, we will investigate this criterion in case the offset is
assumed to be Gaussian or uniform.

A. Gaussian Offset
When investigating ψ(r − x̂) in case of independent zero-

mean Gaussian noise samples with variance σ2 and Gaussian
offset with mean 0 and variance β2, note that the disturbance
d = ν+ b1 has then a multivariate Gaussian distribution with
mean vector 0 and covariance matrix S, where S is the n×n
matrix with all entries on the main diagonal equal to σ2 + β2

and all other entries equal to β2. Hence, the probability density

function of the disturbance is ψ(d) =
exp(−dS−1dT/2)√

(2π)n|S|
, where

S−1 is the inverse matrix of S, which is found to be the n×n
matrix with all entries on the main diagonal equal to g and all
other entries equal to h, where

g =
σ2 + (n− 1)β2

σ2(σ2 + nβ2)
and h =

−β2

σ2(σ2 + nβ2)
. (8)

Remember that the Euclidean criterion from (3) is ML in case
there is no offset mismatch (b = 0), while the (modified)
Pearson criterion from (5) is ML in case the offset is com-
pletely unknown. In the next theorem, we show that the ML
criterion in case the offset has a normal distribution is in fact
a weighted average of these two criteria. A hybrid method
using a combination of the Euclidean and Pearson measures
for detection purposes was already studied in [6] in a heuristic
way. Here, we present the optimal balance between the two
measures for a Gaussian offset.

Theorem 3. In case a = 1 and the offset b is assumed to be
normally distributed, ML decoding is achieved by minimizing

α

n+ α
LE(r, x̂) +

n

n+ α
LP′

(r, x̂). (9)

Proof: By taking the logarithm of ψ(r − x̂), inverting the
sign, and ignoring irrelevant terms and factors, we find that
maximizing this function is equivalent to minimizing

n∑
i=1

n∑
j=1

(ri − x̂i) (S
−1)i.j (rj − x̂j) =

g

n∑
i=1

(ri − x̂i)
2
+ h

n∑
i=1

n∑
j=1,j ̸=i

(ri − x̂i) (rj − x̂j) =

(g − h)
n∑

i=1

(ri − x̂i)
2
+ hn2(r− x̂)2.
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TABLE I
WER FOR S∗ WITH VARIOUS SETTINGS FOR THE GAUSSIAN NOISE AND

GAUSSIAN OFFSET AND VARIOUS DECODERS.

σ β α (3) (5) (9)
(noise) (offset) (σ2/β2) (Euclidean) (Pearson) (ML)
0.2 1 0.04 0.318 0.031 0.029
0.2 0.2 1 0.026 0.031 0.009
0.3 0.2 2.25 0.064 0.130 0.054
0.3 0.01 900 0.025 0.130 0.025

Dividing by g − h and substituting the g and h values from
(8) gives LE(r, x̂)− n2

α+n (r− x̂)2. Substituting n(r− x̂)2 =

LE(r, x̂)−LP′
(r, x̂), which follows from (5) when adding an

irrelevant term nr2, gives (9).
Note that in the offset dominant regime, i.e., β ≫ σ and

thus α being very small, (9) essentially reduces to the modified
Pearson criterion LP′

(r, x̂) from (5). On the other hand, note
that in the noise dominant regime, i.e., β ≪ σ and thus α being
very large, (9) essentially reduces to the Euclidean criterion
LE(r, x̂). Furthermore, it can be observed that for any value
of α, the criterion tends more and more towards the offset-
resistant Pearson distance when n is increasing. This can be
explained by noting that the standard deviation per dimension
is

√
nσ2/n = σ/

√
n for the noise, while it is constant at β

for the offset.
The above-mentioned findings are illustrated in Table I,

where simulated word error rate (WER) results are shown
for the codebook S∗ = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}
of length n = 3 and size 4, in combination with different
decoders and various choices for the noise and offset standard
deviations. Note that in case neither the noise nor the offset
is strongly dominating the other, the ML decoder from (9)
is clearly outperforming both the Euclidean decoder and the
Pearson decoder.

B. Uniform Offset

In case the offset has a non-Gaussian distribution, it may be
difficult to convert ψ(r− x̂) into an explicit distance measure.
As an alternative criterion to be considered, we can take one
in the spirit of the previous section. Since we now know the
offset distribution ζ, we change (6) into

max
b:ζ(b)>0

ζ(b)ϕ(r− b1− x̂). (10)

If ζ is Gaussian, then maximizing this criterion is equivalent
to minimizing (9), hence it is ML. However, this may not be
the case for other offset distributions. If ζ is uniform with
mean 0 and standard deviation β, i.e., the offset is uniformly
distributed on the interval [−β

√
3, β

√
3], then maximizing

(10) is equivalent to minimizing the criterion from Theorem 1
with b1 = −β

√
3 and b2 = β

√
3. Remember that this is ML

in case of unknown offset, since setting the offset such that
the noise is minimized is obviously the best thing to do for
the codeword selection process in this situation. But if we
assume that the offset is uniformly distributed, then we need
to choose upon receipt of a vector r a codeword x̂ such that
ψ(r− x̂) is maximized in order to achieve ML decoding. As
can be seen from (7), this means that the average noise should

TABLE II
WER FOR S∗ WITH VARIOUS SETTINGS FOR THE GAUSSIAN NOISE AND

UNIFORM OFFSET AND VARIOUS DECODERS.

σ β (3) (5) (9) (10) (11)
(noise) (offset) (Eucl.) (Pear.) (MLGauss) (Th. 1) (ML)
0.2 1 0.362 0.031 0.029 0.027 0.026
0.2 0.2 0.019 0.031 0.009 0.010 0.008
0.3 0.2 0.064 0.130 0.054 0.062 0.054
0.3 0.01 0.025 0.130 0.025 0.025 0.025

be minimized, which may lead to another outcome than the
result based on (10). In conclusion, it follows that maximizing∫ β

√
3

−β
√
3

ϕ(r− b1− x̂)db (11)

over all codewords x̂ achieves ML decoding in case of a
uniformly distributed offset.

Numerical illustrations are provided in Table II, where
simulated WER results are shown, again for S∗ =
{(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}, in combination with dif-
ferent decoders and various choices for the noise and offset
standard deviations. Note that the decoders from (9) and (10)
both show close to ML performance for the considered cases.

VI. CONCLUSIONS

Maximum likelihood decision criteria for Gaussian noise
channels with gain and/or offset mismatch have been pre-
sented for four cases: (i) known gain and unknown offset,
(ii) unknown gain and known offset, (iii) known gain and
Gaussian distributed offset, and (iv) known gain and uniformly
distributed offset. Most noteworthy, it was found that, in case
(iii), the ML criterion is a weighted average of the (squared)
Euclidean distance and the (modified) Pearson distance be-
tween the received vector and the candidate codeword. The
weighing coefficients depend on the ratio of the variances of
the noise and the offset. They reflect the trade-off between
the immunity to offset mismatch of Pearson distance based
detection and the higher noise resistance of Euclidean distance
based detection.
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