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A B S T R A C T   

Chemical process systems are becoming more automated and complex, which leads to increased interaction and 
interdependence between the human and technical elements of process systems. This urges the need for updating 
the safety assessment method by treating “safety” as an emergent property of a system. Uncertainty comes 
together with complexity. To enhance system ability of dealing with uncertain disruptions, this paper proposes a 
quantitative resilience assessment method by modeling the failure propagation (initiated by a disruption) across 
the functional units of a system. The Functional Resonance Analysis Method (FRAM) is utilized to model the 
system operation to represent the relationship among its function units and to consider the interactions among 
human-technical factors. Then, a Cascading Failure Propagation Model (CFPM) is developed to quantify the fault 
propagation process and reflect the system functionality changes over time for resilience assessment. The pro-
posed method is applied to a propane-feeding control system. The results show that it can help practitioners 
understand the process of fault propagation and risk increase, identify potential ways to design a more resilient 
system to respond to uncertain disruptions/attacks, and provide a real-time dynamic resilience profile to support 
decision-making.   

1. Introduction 

Chemical process systems store and process large amounts of haz-
ardous materials, which may lead to casualties, extreme property 
damage, and ecological pollution [1–3]. For example, the Amuay re-
finery disaster in Venezuela caused more than 50fatalities, over 100 
people injured, and about 1600 buildings destroyed, resulting in $1 
billion in economic loss [4]. 

To prevent accidents, risk assessment (RA) methods and safety- 
enhancing measures were developed to reduce the probability of an 
accident and mitigate accident consequences [5,6]. RA plays an essen-
tial role in understanding the mechanism of accidents and ensuring 
system safety [7,8]. O’Connor et al. [9] proposed three crucial elements 
of safety, namely, prevention, mitigation, and response, which can be 
integrated as a so-called safety triad. These three factors may seem 
simple, even intuitive. However, reports and investigations of accidents 
have proven that the leading cause of accidents was the lack of foresight 
and the weakness of these three factors [10]. Degradation, common 

cause failures, and other dependencies are overlooked or neglected. Risk 
analysis developed further, though. Ghosh et al. [11] utilized a 
copula-based Bayesian network (BN) and traditional BN to assess the 
failure of the multivariable time-dependent system. Mamudu et al. [12] 
proposed a comprehensive method, which consists of a multilayer per-
ceptron–artificial neural network (ANN) and BN, to assess the risk of the 
system. Zarei et al. [13] used Bow–tie and BN to analyze system risk. Sun 
et al. [14] developed an integrated approach based on the window of 
opportunity and complex network to evaluate the risk of a process 
system. 

The works described above show the significant progress in RA of 
process systems. Nevertheless, recurring accidents show that relying on 
RA alone to identify and counter hazards is insufficient to ensure system 
safety [15]. Nowadays, systems tend to become more complex to meet 
market demand so that non-linear interdependencies, tight coupling, 
and possibly dysfunctional components failure, as Perrow (1984) 
observed, may exhibit more frequently. Ensuing uncertainty, complex 
interaction, and interdependence between components (e.g., human, 
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Fig. 1. The proposed methodology for assessing the system resilience.  
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technical, and organizational elements) have become large and less 
graspable risk factors in the process system. To be better prepared for the 
unforeseen and to deal with uncertainties, resilience thinking should be 
considered. The U.S. Department of Defense (DoD) (Neches, 2012) 
developed an engineering resilient system procedure, stating that the 
system should be able to resist/absorb disturbances, recuperate from 
disruptions, and adapt to changing conditions. Naghshbandi et al. [16] 
pointed out that uncertainty and interdependency significantly influ-
ence the resilience of a complex system. Any malfunction of one 
component or subsystem of a process system can affect other compo-
nents and lead to a state fluctuation (i.e., “domino effect”) in the system. 
To prevent and reduce performance and economic loss, it is essential to 
increase the resilience of the process system to cope with uncertain 
faults or disruptions [17]. Therefore, resilience is vital in ensuring sys-
tem safety and mitigating functionality loss. Besides, resilience engi-
neering (RE) is wider than RA since RE extends the traditional RA to the 
pre-and post-accident phases. 

Resilience as a novel paradigm has attracted the attention of scholars 
[18–20]. Tong et al. [21] introduced an integrated method based on 
dynamic Bayesian network (DBN) to assess the system resilience ac-
cording to absorption, adaption, and restoration ability. To measure 
system resilience, Yang et al. [22] developed a comprehensive approach, 
which comprised deterministic and probabilistic metrics. Jain et al. [23] 
developed a process resilience analysis framework (PRAF). Zinetullina 
et al. [24] presented a hybrid approach, which integrated Functional 
Resonance Analysis Method (FRAM) and DBN to quantify system resil-
ience. Cincotta et al. [25] proposed a method that considers vulnera-
bility and recoverability to raise the system resilience of firefighting 
strategies. Due to disturbance uncertainty, especially in the 
human-technical system, RE is an ideal method to reduce performance 
loss and enhance system safety. In light of different research domains, 
there is no uniform approach for assessing system resilience. The safety 
level of a system depends on its structure and function [26,27]. Almost 
all subsystems of a complex system have interacting components with 
different functions. Therefore, the basis of resilience assessment is 
defining the system boundaries, determining the optimal system per-
formance, correctly analyzing the structure and internal functions of a 
system, and modeling it systematically. Although many current models 
for resilience evaluation in complex systems consider the system 
complexity and interdependencies, the comprehensive understanding of 
the interactions among equipment, human, and organization and their 
impact on system resilience is missing. 

In light of many accident reports and investigations (HSE, 2011; 
[28–30]), when workers observed hazards or faults, to maintain the 
continuation of production (i.e., to reduce the economic loss caused by 
downtime), they are prone to deal with hazards online instead of shut-
ting down the system for maintenance. Owing to the strong in-
terdependencies and interactions between functions caused by a 
digitalized, automated, and complex system, the fault propagated to 
downstream nodes with some probability, which in the end, may bring 
about accidents. For instance, On August 6, 2012, a severe fire accident 
that resulted from a pipe rupture in the crude distillation unit happened 
at Richmond refinery in the USA. The accident steamed from the “4-side 
cut” leaving the Richmond refinery’s C-1100 Crude unit atmospheric 
column [31]. When workers found the loss of containment and reported 
it, the managers decided to perform maintenance without utilizing the 
Stop Work Authority to ensure production continuation, which even-
tually led to the fire accident. Details of the Richmond refinery accident 
can be seen in the investigation report [28]. The accident reports prove 
that faults may propagate to downstream nodes even with online 
maintenance measures, and risk may build up over time until an acci-
dent occurs [32]. Already in the 1970s, Turner (1978) noticed this and 
called it the incubation period. Therefore, it is meaningful to conduct a 
resilience assessment to develop a more resilient system to prevent ac-
cidents and support decision-making. 

In light of Safety-II, Functional Resonance Analysis Method (FRAM) 

is proposed as a systematic approach to analyzing human-technical 
system hazards and interactions between functions [33]. Compared 
with Safety–I, which pays more attention to reducing system failures and 
hazards, Safety–II believes that changes in the performance of system 
functions are inevitable and can lead to high-performance peaks but also 
failures. The system should be resilient and be able to deal with vari-
ability and uncertainty and adapt to changing conditions. FRAM has 
been proven to be an efficient method to reflect better the characteristics 
(i.e., interdependencies and interactions) of complex systems and model 
complex systems systematically. Due to the advantages of FRAM, it has 
been utilized in many research fields [34,35]. However, FRAM is a 
qualitative method making a system more transparent with respect to 
interactions and assesses system safety, but it cannot provide a dynamic 
resilience profile to support decision-making. To overcome this short-
coming, a quantitative approach is developed, including a novel 
cascading failure propagation model (CFPM), to measure system resil-
ience. Cascading failure refers to a failure scenario in which a node 
failure, caused by internal or external disturbance, propagates to the 
downstream nodes and may lead to failure of the entire system. 

The present study aims to develop a comprehensive approach 
comprising FRAM and a novel CFPM to measure resilience systemically. 
Firstly, FRAM is employed to model the system to reflect the complex 
and non-linear relationship between functions. After that, the FRAM 
model is converted into a discrete dynamic model to better represent the 
fault propagation when a fault occurs. Finally, CFPM is presented to 
describe the functionality variation process and measure the process of 
fault propagation and assess the resilience of an example process system 
under real-world engineering situations. 

The remainder of this paper is organized as follows. A brief 
description of the proposed method, including the FRAM model, a novel 
CFPM model, and how to measure system resilience based on the FRAM 
and CFPM, is presented in Section 2. The case study is conducted in 
Section 3. Section 4 discusses the influence of different parameters for 
the CFPM on system functionality and resilience. Finally, Section 5 
concludes this paper. 

2. The proposed methodology 

This section proposes the methodology to assess system resilience, 
which comprises three main parts: 1) modeling the system using the 
FRAM, 2) establishing the CFPM model to quantify the FRAM model and 
system functionality, and 3) measuring the system resilience. To begin 
with, FRAM analysis is carried out to identify interactions and couplings 
between functions. After that, the system is developed as a discrete 
dynamical system based on FRAM, which can be utilized to determine 
function states in different time-varying sequences. Then, the CFPM 
model, consisting of parametric modeling, is proposed to quantify the 
FRAM model to determine the system functionality curve. Finally, 
resilience metric is proposed to measure system resilience. The following 
section describes details of the main steps for the proposed method. The 
specific procedure is shown in Fig. 1. 

2.1. Step I-FRAM modeling 

In conventional safety assessment, systems are regarded as linear, 
which is decomposable and well-understood. The accident occurs 
because some components (e.g., human, organizational, and technical 
factors) in the system have problems. The main task of safety analysis is 
to find hazards and solve them, which belongs to “causality credo”. In this 
idea, the function of a system is viewed as bimodal (i.e., function and 
malfunction) [27]. 

Nevertheless, technology is moving fast, making process systems 
more digitalized, automated, and complex. Unlike the previous liner 
system, the current process system in the chemical industry is a typical 
complex system with multiple functions and a complex hierarchical 
structure, which comprises information flow, material flow, and energy 
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flow. The process system operation is always accompanied by hazardous 
factors (e.g., high temperature, pressure, poison, etc.), which may cause 
accidents and even disasters. Besides, the high degree of complexity 
caused by the non-linear interdependencies and interactions between 
functions leads to high variability and uncertainty. Therefore, the 
function of the system may not be seen as bimodal but dynamic and 
uncertain. The main task of safety should shift from discovering and 
solving hazards to coping with faults, disruptions, and system variabil-
ities and maintaining the system in a safe state. 

The conventional resilience assessment approaches cannot suffi-
ciently identify and capture the interactions and coupling between 
functional aspects. The most successful approach to understanding 
complex relationships is FRAM. [33] developed FRAM with a particular 
context of organizational and psychological resilience engineering. The 
method quickly found many applications in accident analysis and others 
(Patriarca et al., 2020) and proved to be very suitable for understanding 
human-technical systems [36], which defines coupling between func-
tions dynamically and promotes a systematic analysis of system function 
and state [37]. FRAM plays a pivotal role in resilience assessment, and it 
could be viewed as a feasible approach for two reasons: 

(1) FRAM can recognize functional interdependencies and in-
teractions for a complex system since it utilizes a bottom-up 
method from operational aspects to facilitate understanding 
process systems.  

(2) FRAM characterizes a system by function instead of structure, 
which can better reflect resilience parameters by actions of 
components [27]. 

To assess system resilience, the first task is to identify how a system is 
functioning. The complexity and uncertainty of human-technical sys-
tems make it difficult to understand a system thoroughly. Therefore, a 
systematic method is vital for reflecting a complex system’s details and 
functions. In this paper, the FRAM is used to characterize the in-
teractions between system functions and better understand how a sys-
tem is under control and maintained in a safe state when a disturbance 
occurs. 

The FRAM follows four principles [33]. (1) A system goes wrong for 
the same reasons as it is successful. (2) The performance of a system is 
often adjusted following the changing environment. (3) The results of a 
system are emergent instead of resultant. (4) The variability of different 
functions produces resonance, which brings about abnormal function 
variability. 

Before the FRAM analysis, the aim of the analysis should be deter-
mined first. In other words, it is essential to clarify whether the analysis 
aims to analyze accidents or to assess system risk [27]. After that, the 
FRAM analysis comprises four steps: 

Step 1: Determining system functions; 
Step 2: Describing variability of functions; 
Step 3: Looking for functional resonance; 
Step 4: Managing function variability. 

Step 1, determining system functions is the basis for FRAM analysis. 
Both Leveson [38] and Hollnagel [33] tackled how to analyze 
human-technical systems. Leveson’s STAMP (system-theoretic accident 
model and processes) is rigidly analyzing all control loops, which from 
the hierarchical top down to the bottom entails more and more details, 
while Hollnagel’s approach is rather loose but requires more system 
understanding from the analyst. In his FRAM, each function is repre-
sented by a hexagonal module or node Fig. 2) with at the vertices the 
following aspects: ((1) Input (I): regarded as what is utilized or changed 
by the function; (2) Output (O): referring to the result of the function; (3) 
Preconditions, which must be met before conducting the function. For 
instance, one of the preconditions for a sensor is a good layout scheme; 
(4) Resources (R), which may constrain a function with regard to 
required availability (e.g., funds, manpower, and materials, etc.); (5) 
Control (C), which is supervising or adjusting a function to produce the 
desired output. (6) Time (T) restricting the function with respect to both 
length of action time and time of execution. Within the function node, no 
detail is modeled. 

Functions are used to explain the actions of the system. FRAM model 
can be developed by defining the functions of which a system consists, 
identifying whether certain aspects are essential for the function in its 
interactions and interdependencies with other functions. In other words, 
the interactions and interdependencies among linked functions are 
viewed as upstream-downstream coupling, shown in its simplest form in 
Fig. 2. 

In Step 2, FRAM analysis should focus on the variability of the output 
for the function rather than the variability of the function itself. Three 
ways can make output variables: endogenous variability, exogenous 
variability, and functional upstream-down-stream coupling. In light of 
Hollnagel [33], two methods are available to evaluate the variability of 
functions, i.e., a detailed approach and a simplified way . The detailed 
approach for variability assessment considers seven factors: time, 
duration, force, distance, direction, object, and sequence. The simplified 
method evaluates the variability of functions based on time and preci-
sion. The variability of function output often has the following two 
reasons: first, the change of the function or the change of the environ-
ment leads to the output variability; The second is the output change of 
the upstream function, which causes the downstream function to be 
affected. The variability of the upstream function mainly affects the 
action time and precision of the downstream function. Therefore, it is 
worth noting that this study assesses variability according to time and 
precision. These two phenotypes can be used to characterize most of the 
results. Besides, these phenotypes are universally applicable to any 
function [27]. In Step 3, by understanding the way the system operates 
safely, determining the way of coupling between functions, and 
explaining the typical variability of the functions, the reasons why the 
results of the system operation in a particular situation are different from 
many other smooth situations can be determined. The last step refers to 
managing the performance variability. Variability may result in positive 
or negative impacts. If the impact is positive, it should be expanded 
while ensuring the functionality of the system. On the contrary, the 
negative effects should be eliminated. 

Fig. 2. Six aspects of FRAM function and the coupling between functions [33].  
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2.2. Step II-establishing CFPM to quantify the FRAM model and measure 
system functionality 

FRAM, as discussed above, is an efficient model to develop and 
reflect the complex interactions and interdependencies among func-
tions. The functionality change of a node in the system will cause 
functionality change in downstream nodes, which is called fault prop-
agation. There are two tasks to conduct when measuring a system 
resilience using FRAM: (1) FRAM addresses the spatial in-
terdependencies and interactions of functions and thus models the sys-
tem operation; (2) When the function of a component fails in a process 
system, it will affect the function of downstream nodes with a certain 
probability in the next time interval. The output (i.e., O) of a function for 
an upstream component always influences one or more aspects (i.e., T, 
C, I, P, R) of downstream components to a certain degree [39]. Thus, we 
convert the FRAM into a discrete dynamical system (i.e., a directed 
model) to determine function states in different time-varying sequences. 

Before major accidents occur, there is usually a period of time of 
precursor occurrences during which the system gradually moves toward 
a state of increased risk until an event occurs that leads to losses [32]. 
Risk accumulation is the result of process of fault propagation. Quanti-
fying and understanding this process is of great significance for ensuring 
system safety. To measure the process and explain the mechanism of 
fault propagation, a novel CFPM model is developed. It can be used to 
describe in detail the functionality of each node at different times during 
the process of fault propagation to help practitioners better understand 
the changes in system functionality over time. Moreover, it can be uti-
lized to quantify the fault propagation process and determine the system 
functionality changes over time, which can be employed to measure the 
system resilience. 

A novel CFPM is then established to quantify the temporal in-
terdependencies and interactions of functions according to the FRAM. 

This subsection proposes a new CFPM to quantify the process of fault 
propagation and measure system functionality. As discussed earlier, 
even if the system’s functional problems are observed, operators tend to 
maintain the system online instead of using Stop Work Authority (i.e., 
shutting down the unit) [28]. 

When a node is affected by a disturbance, it will cause the perfor-
mance and functionality of the node to degrade or malfunction. The 
changes in the node’s state will influence its downstream nodes [40]. 
Therefore, the FRAM is converted into a discrete dynamical system, 
which can be utilized to identify a series of time-varying sequences of 
system state [41]. For example, node I is malfunctioning at time t, and at 
the next time increment (i.e., t+1), the fault will spread to node j, while 
node i will recover with a particular probability. The rest can be 
calculated in the same manner. The process for failure propagation is 
shown in Fig. 4. Note that the red line indicates the process of failure 
propagation, and the green line represents the effect of the maintenance 
process (Fig. 3). 

If an operator decides to maintain the malfunctioned nodes, those 
nodes will recover their lost functionality gradually. The failure proba-
bility of node j at time t+1 is shown as Eq. (1), and the failure probability 
of node j at time t+2 can be described as Eq. (2). 

Pj(t+ 1) = Pi(t) × P(j|i) (1)  

Pj(t+ 2) = Pj(t+ 1) × Pj(Ft+2|Ft+1) +
[
1 − Pj(t+ 1)

]
× Pj(Ft+2|St+1) (2)  

where Pi(t) is the failure probability of node i at time t; P(j|i) indicates 
propagation probability of node i malfunction causes node j fails; 
Pj(Ft+2|Ft+1)is transition probability and stands for the failure proba-
bility of node j at time t+2 when node j fails at time t+1; Pj(Ft+2|St+1) is 
transition probability and stands for the failure probability of node j at 
time t+2 when node j successes at time t+1; It is worth noting that if a 
node has no upstream node, it is only affected by itself. 

It is worth noting that Pj(t+2) may be less than 0 in Eq. (2). Thus, 
when Pj(t+2) is equal to 0, node j can be viewed as a normal node in a 
safe state, and its failure probability is 0. 

When node j is affected by node i at time tx (tx ≥ 2), its failure 
probability can be described as Eq. (3): 

Pj(tx) = Pj(tx − 1) × Pj(Ftx |Ftx − 1) +
[
1 − Pj(tx − 1)

]
× Pj(Ftx |Stx − 1) (3) 

When node j is jointly affected by two or more independent nodes, its 
failure probability can be expressed as Eq. (4). This means that as long as 
one of those upstream nodes of node j fails, the state of node j will be 
affected. 

Pj(tx) = Pj(Ftx |Ftx − 1) +
∏n

u=1
(1 − Pu(tx − 1)×P(j|u))

×
[
Pj(Ftx |Stx − 1) − Pj(Ftx |Ftx − 1)

]
(4)  

where u indicates a node that affected node j, n represents the number of 
nodes that affected node j. Node j can be viewed as a malfunctioning 
node whenPj(tx) = 1. 

On the contrary, the state of node j changes only when two or more 
upstream nodes fail at the same time. This is similar to the AND gate in 
the fault tree. In this situation, Eq. (4) can be converted to Eq. (5): 

Pj(tx) = Pj(Ftx |Stx − 1) +

[
∏n

u=1
(Pu(tx − 1)×P(j|u))

]

×
[
Pj(Ftx |Ftx − 1) − Pj(Ftx |Stx − 1)

]
(5) 

The states of each node can be determined by Eqs. (3), (4) and (5). 
Therefore, the functionality for a system (i.e., the whole network that 
was developed based on FRAM) can be measured by those node state at 
time sequence, which can be represented by Eq. (6). 

FS

⎛

⎜
⎜
⎝t) = 1 −

∑m

a=1
fa⋅Pa(t)

∑m

a=1
fa

(6)  

where Fs represents the functionality of the system, m indicates the total 
number of nodes in the system, t means the discrete time, which satisfies 
0 ≤ t ≤ tf , tf is the failure time of the system, fa shows weight of node a, 
which is expressed in Eq. (7). 

fa =
da

m
(7)  

where da indicates the number of nodes connected to node a, m repre-
sents the number of nodes in the system. Note that the more important 
the node, the greater the impact of its state on the system. 

2.3. Step III-resilience metric and assessment 

Once the functionality curve is obtained, the system resilience can be 
represented as a dimensionless ratio [42]. Resilience should be regarded 
as the proportion of functionality restored through maintenance actions. 
In the light of the resilience framework proposed by Bruneau et al. [42], 

Fig. 3. The process of failure propagation on timeline.  
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resilience can be expressed as Eq. (8). 

Я
(
t
⃒
⃒ej) =

φ(t|el) − φ(td|el)

φ(t0) − φ(td|el)
(8)  

whereЯ(t
⃒
⃒ej)indicates system resilience at time t; φ(t

⃒
⃒el)represents sys-

tem functionality at time t; φ(td
⃒
⃒el) is the lowest functionality of the 

system; φ(t0) indicates the initial functionality of the system before the 
occurrence of the fault. Eq. (8) can be changed to Eq. (9) by integrating 
the Eq. (6) on the time term. 

Я(S) =
∫ tx

t0
FS(t)dt

R(t0)(tx − t0)
(9)  

whereЯ(S)indicates the system resilience; R(t0) represents the initial 
functionality of the system before the occurrence of disturbance; tx 
represents the time (tx > t0); t0 is the time that the disturbance occurs. 

However, when the types of functionality curve are different,Я(S)
may give a same value of resilience for different combinations of FS(t) 
and tx [43]. To solve the limitation of resilience metric,Я(S), Sharma 
et al. [44] proposed Center of Resilience and Resilience Bandwidth 
based on probability theory and mechanics. The recovery curve Q(τ) is 
defined as Cumulative Resilience Function (CRF). When the CRF is a 
continuous function of time, the Instantaneous Rate of the Recovery 
Progress (IRRP) can be obtained by the time derivative of the CRF. IRRP 
is regarded as q(τ)=dQ/dτ for all τ∈[0, TR], which is called Resilience 
Density Function (RDF). TR indicates the whole recovery time. Then, the 
recovery process over any time interval (τu, τv] ⊆ [0, TR] is shown in Eq. 

(10). When the CRF is a step function or a combination of continuous 
function and step function of time, the recovery process over any time 
interval can be seen in Sharma et al. [43] 

Q(τu < τ< τv) =

∫τv

τu

q(τ)dτ (10) 

The Center of Resilience ρQ, which combines residual functionality 
and recovery time, is defined as: 

ρQ :=

∫ TR
0 τq(τ)dτ
∫ TR

0 q(τ)dτ
=

Qres

Qtar
ρQ,res +

Qres1

Qtar
ρQ,res1 (11)  

where Qres represents the residual functionality of system, Qtar equals to 
Q(TR), ρQ,res=τ0, Qres1= Qtar - Qres. Due to τ0=0, Eq. (11) can be converted 
into Eq. (12). 

ρQ =
Qres1

Qtar
ρQ,res1 (12) 

The Resilience Bandwidth χQ, as a measure of dispersion of recovery, 
is defined as: 

χ2
Q :=

∫ TR
0 (τ − ρQ)

2q(τ)dτ
∫ TR

0 q(τ)dτ
(13) 

The small χQ means that the recovery process is finished during a 
short period around ρQ. On the contrary, the large one indicates that the 
recovery process is spread in a long time. Once the system functionality 

Fig. 4. The FRAM model for the propane feeding system (adapted from [46]).  

H. Sun et al.                                                                                                                                                                                                                                     



Reliability Engineering and System Safety 243 (2024) 109878

7

curve is obtained, the ρQ and χQ can be determined based on Eqs. (12) 
and (13). 

3. Case study 

3.1. FRAM modeling and its conversion 

(1) The FRAM model for a propane feeding control system 
A propane feeding control system, which comprises an automatic 

and manual control system, is selected to demonstrate the proposed 
method. The key tasks of establishing FRAM model are identifying 
functions and developing coupling relationship between functions. 

The main control sequence of the propane feeding control system is 
as follows: 1) By setting the desired flow rate and measuring the system 
pressure to maintain the system pressure under control; 2) When the 
pressure exceeds the threshold, the automatic operating valve should be 
opened automatically and send the alarm to workers; 3) At the same 
time, the propane flow rate should be adjusted, and the automated 
system should be monitored; 4) If the automatic operating valve mal-
functions, the workers should open the manual valve to release pressure 
to keep the system safe [45]. According to the control sequence of the 
system, the function of each step and their coupling relationships can be 
determined. The FRAM model for the system has been modeled by Smith 
et al. [46], shown in Fig. 4. 

Owing to the importance of the pressure in the system, Smith et al. 
[46] suggested improving the system by adding another sensor to 
measure the system pressure. The FRAM model of the improved system 
is shown in Fig. 5. In the enhanced system, if sensor 1 (i.e., Measuring 
pressure 1 in Fig. 5) malfunctions, the automatic operating valve cannot 
be activated because the wrong detected pressure might not be greater 
than the pressure threshold. This may lead to an accident when the 

pressure exceeds the threshold since the pressure sensor fails to detect 
and report it. Due to the existence of sensor 2 (i.e., Measuring pressure 2 
in Fig. 5), even if sensor 1 fails to measure the system pressure correctly, 
sensor 2 plays a vital role in detecting the pressure and alerting the 
workers. When the workers are notified by sensor 2, they will monitor 
the system pressure and open the manually operating valve when the 
pressure surpasses the safe threshold. 

Fig. 5. The improved FRAM model for the propane feeding system (adapted from [46]).  

Fig. 6. The discrete dynamic model extracted from the FRAM model for the 
original propane feeding system. 

Fig. 7. The discrete dynamic model extracted from FRAM model for the 
improved propane feeding system. 
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(2) The discrete dynamic model converted from FRAM mode 
As discussed earlier, the output of a function for an upstream node 

always impacts one or more aspects of downstream nodes to a certain 
degree [39]. In other words, if a disturbance occurs at an upstream node, 
it will affect the functionality of this node, and the fault will propagate to 
the downstream node with a particular probability. Therefore, to assess 
the system resilience, the FRAM is converted into a discrete dynamical 
model, which can be used to determine a series of time-varying se-
quences of system states. The discrete dynamic models converted from 
Figs. 4 and 5 can be seen in Figs. 6 and 7. The descriptions of each node 
are shown in Table 1. It is worth noting that this paper assumes that the 
disturbance occurs on node 1. After that, the proposed CFPM is used to 
describe this kind of propagation process, and a resilience metric is 
proposed to measure the resilience of the system and the improved 
system safety, which is specifically described in the next subsection. 

3.2. Quantification of the system resilience 

According to the FRAM model and discrete dynamic model devel-
oped in Section 3.1 (i.e., Figs. 6 and 7), the relationship between each 
node can be determined, which means that when the upstream node 
malfunctions, it will cause functionality change of the downstream 
node. The specific influence of propagation probability is discussed in 
Section 4. 

The proposed CFPM is utilized to quantify system functionality 
during the process of fault propagation. Duo to the interaction and 
interdependence between system nodes, when a node is affected by 
disruptions, the state of downstream nodes will be impacted by the 
affected node. According to state and weight of each node, the system 
dynamic functionality can be determined based on the CFPM model. In 
the light of Eq. (7), Figs. 6, and 7, the weight da of each node can be 
determined and shown in Table 2. 

According to Eqs. (1), (3), (4), and (5), the states of each node in 
different time sequences can be quantified. Once the state of each node 
of the system is obtained, Eq. (6) is then employed to quantify the state 

of the system at a different time (40 time intervals are used to demon-
strate the proposed approach), which can help determine the function-
ality curves, as shown in Fig. 8. Finally, Eq. (9) is utilized to assess 
dynamic resilience of the system, and the results can be seen in Fig. 9. 
The black line indicates the original system, and the red line represents 
the improved system. 

Maintenance measures can mitigate the speed and degree of fault 
propagation. However, repair activity is a process and requires resources 
(e.g., time, money, manpower, etc.) to conduct. It can be seen from Fig. 8 
that the system functionality decreases first, which is caused by fault 
propagation. For the original system, the minimal functionality is 0.45 at 
time t+7. After this, with the repair activity, the functionality for each 
node recovered gradually, and the functionality of the system increases 
over time. For the improved system, the minimal functionality is 0.73 at 
time t+5, which means that the improved system has a greater ab-
sorption capacity to deal with the same disruption events. 

For the original system, the fault is propagated to downstream nodes 
from node 1 at time t, leading to the resilience decrease. Then, the 
system resilience dropped to the minimum value (0.678) at time t+11. 
After that, the effect of maintenance activities is gradually showing up, 
and the state of nodes in the system begins to recover, results in an 

Table 1 
The descriptions of each node in the FRAM model and discrete 
dynamic model.  

Node Description 

1 Measure pressure 1 
2 Set the desired flow rate 
3 Control pressure 
4 Relay pressure 
5 Automatically operate valve 
6 Alert worker 
7 Delegate worker responsibility 
8 Monitor automatic system 
9 Manually operate valve 
10 Control propane flow 
11 Measure pressure 2  

Table 2 
The weight of each node in two different systems.   

The original system The improved system 

Node da da 

1 1 1 
2 2 2 
3 3 3 
4 2 2 
5 4 2 
6 2 2 
7 2 2 
8 5 5 
9 3 3 
10 2 2 
11 – 2  

Fig. 8. The functionality curve for two different systems.  

Fig. 9. The resilience of two different systems.  
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increase in the system resilience. The speed and degree of recovery for 
nodes depend on Pj(Ftx |Ftx − 1). For the improved system, the fault is 
spread to downstream nodes from node 1 at time t, leading to the 
resilience reduce, which is same as the original system. After that, the 
system resilience reduced to the least value (0.826) at time t+8. What 
followed is that the resilience of the system began to increase gradually. 
Comparing the two (i.e., the original system and the improved system) 
can be found that the resilience of the improved system is stronger than 
that of the original system, which is mainly reflected in two aspects. The 
first one is the absorption ability is different. The improved system has a 
stronger absorptive capacity resulting from the added sensors 2. When 
sensors 1 is affected by the disturbance, sensors 2 can measure the 
system pressure and inform the worker to open the manual pressure 
valve to ensure the system safety, which is why the minimum value of 
resilience for the improved system (0.826) is bigger than that of the 
original system (0.678). The second one is the capacity for adaptation 
and restoration. The improved system possesses higher adaptation and 
restoration ability. It can be seen from Figs. 6 and 7, when the distur-
bance occurs at node 1, the fault will propagate to downstream nodes (i. 
e., node 3, 4, 5, 6, 8, 9, and 10) in the original system, while the fault will 
spread to node 3, 4, 5, and 10 in the improved system. The enhanced 
system cuts off the connection between node 5 and node 6, and node 8, 
which means that the interdependence between them is reduced. As a 
result, the number of affected nodes is reduced so that resources can be 
concentrated to repair fewer affected nodes. This is why the resilience of 
the improved system starts to increase earlier than that of the original 
system. The specific information can be seen in Fig. 9. 

By comparing the resilience of the original system and the improved 
system, it can be seen that changing system structure (e.g., set up backup 
equipment) is a potential method to improve system resilience. The 
interdependence between components or nodes will affect the degree of 
fault propagation and the states of each node, thereby affecting the 
system resilience. By optimizing the system, especially by reducing the 
interdependence between nodes, the resilience of the system can be 
significantly enhanced. Therefore, the safety and resilience of a complex 
system can be improved from some aspects: i) increasing the mainte-
nance efficiency and ii) optimizing the system (e.g., adding a standby 
sensor in this case). Other ways to improve system resilience will be 
discussed in detail in the next section. The engineering meaning of the 
proposed approach is to provide a dynamic resilience profile. Besides, it 
can help practitioners design and optimize a more resilient system to 
withstand uncertain disturbances (e.g., cyber-attack, internal and 
external attacks) to ensure system safety. 

4. Discussions 

4.1. The influence of model parameters on the system functionality and 
resilience  

(1) The influence of conditional probability (P(j|i)) 

The original system is used to demonstrate the influence of condi-
tional probability (i.e., P(j|i)) on system resilience. The conditional 
probability P(j|i) can be determined by expert judgements based on the 
specific system (e.g., the degree of interdependence among nodes) when 
practitioners utilize the proposed methodology. Without loss of gener-
ality, several values are used to study the influence of propagation 
probability on system resilience. The results are shown in Fig. 10. 

It can be seen from Fig. 10, with the increase of the conditional 
probability P(j|i), the system functionality decreases, which means that 
by reducing P(j|i) the system resilience can be improved. When the fault 
occurs at node i, the fault will propagate to the downstream nodes (e.g., 
j) with the probability of P(j|i). The smaller the P(j|i), the more resilient 
the system is. In other words, the smaller the P(j|i), the stronger the 
absorption capacity of the component is.  

(1) The influence of maintenance time interval (TM) and transition 
probabilityPj(Ft+2|Ft+1)

T0 is defined as the time when the fault occurs at a node for the 
system. TM represents the time interval from when the fault occurs at a 
node of the system to the maintenance activity starts. In this case, the 
time interval (i.e., TM) 1 is used to illustrate the proposed approach. 
Besides, other three values of time interval are utilized to study the in-
fluence of time interval on system functionality, which are shown in 
Fig. 11. Maintenance time interval refers to whether the maintenance is 
timely. Fig. 11 shows that the smaller the time interval, the more 
resilient the system is. The system resilience can be raised by decreasing 
the TM. In a real-world situation, this can be achieved by formulating 
relevant inspection policies and finding faults, and repairing them on 
time. 

The transition probability is determined by the repair rate. The more 
maintenance resources, the higher the repair rate, which can reduce the 
value of Pj(Ft+2|Ft+1) and improve system functionality and resilience. 
The recovery process of this kind of interdependent system will rely on 
how maintenance resources are used. Under the circumstance that the 
available maintenance resources are fixed, the more important the node, 

Fig. 10. The system functionality changes with different P(j|i).  Fig. 11. The system functionality changes with different maintenance time.  
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the more maintenance resources should be allocated. If the use of 
maintenance resources is random, then it may cause more physical and 
economic losses. 

4.2. Limitation and scope for future study 

FRAM is a systemic model that considers and represents an essential 
characteristic of a complex system, i.e., interdependencies and in-
teractions between technological, human, and organizational factors. 
Resilience is a system’s capacity to combat disruptions. Thus, resilience 
assessment should be conducted on the basis of a systemic model. This 
study employs FRAM to model the functional interdependencies and 
interactions of a complex system. 

The proposed methodology has some limitations. In this study, 
FRAM is only utilized to identify the functional dependency of a system. 
The strength of function couplings measured by the FRAM model is not 
considered in the CFPM for quantitative resilience assessment. The 
propagation probability (i.e., P(j|i)) is regarded as a conditional proba-
bility similar to those used in a Bayesian network (BN). The greater the 
failure probability of the upstream node, the greater the degree of 
impact on the downstream node. Without loss of generality, the prop-
agation probability P(j|i) is set as 0.8 for illustrative purpose. 

This study focuses on quantifying system resilience by considering 
non-linear interdependencies among human-technical factors. To 
further improve the proposed method, future work can be devoted to 
investigating how to incorporate the strength of function couplings in 
assessing system resilience. FRAM measures the variability of the Output 
rather than the function itself. The Output of a function is affected by 
five aspects: Time, Control, Input, Precondition, and Resource. Each 
aspect has different degrees of influence on the Output, which can be 
determined by its weight. When a disruption occurs at one function, 
variability may occur at one or more of these five aspects. The degree of 
variability can be described by a range of values, which is shown in 
Fig. 12. The variability of Output can be regarded as the state of the 
function, and the strength of function couplings can be viewed as the 
propagation probability. In this way, the system resilience could be 
measured based on these two steps. This work is in progress. 

5. Conclusions 

The rapid development of technology has made process systems 
complex, leading to strong interaction and interdependence between 
components. This brings two problems: (i) it is difficult for conventional 
methods to model the complex system. In other words, there is an urgent 
need for a method that can systematically model the system to accu-
rately reflect the interdependency among the technical, human, and 
organizational factors; (ii) as the interaction and interdependency be-
tween functions is getting closer and robust, once a function is affected 
by a disturbance, it will influence other functions. Besides, there are two 
characteristics of disturbance in the digital age, i.e., diversity (e.g., 

cyber-attack, internal or external attack, intentional attack, etc.) and 
uncertainty (i.e., where, when, and how will it occur). Therefore, there 
is a need to take resilience thinking into account to make the system 
more resilient to deal with uncertain disturbances since building a 
resilient system is preferable to analyzing the system risk. This paper 
creates a comprehensive approach to solving these two problems. To 
analyze the interaction and interdependency between functions, the 
FRAM model is utilized and then converted to a discrete dynamic model 
to reflect the influence relationship between functions. Considering fault 
propagation, a novel CFPM model is proposed to analyze the fault 
propagation process and functionality curve. On that basis, an approach 
to measure system resilience is developed, which is able to provide a 
real-time resilience profile. 

The case study shows that there are four ways to enhance the system 
resilience. The first one is optimizing the system to improve the ab-
sorption capacity, which can be proven by Fig. 9. Secondly, the system 
resilience can be improved by decreasing the conditional probability P(j| 
i) between nodes. Thirdly, the resilience of the system can be boosted by 
reducing TM, that is, taking inspection and maintenance measures 
timely. Lastly, strengthening and optimizing the maintenance resources 
can enhance the system resilience. The main contribution of the pro-
posed approach is to help practitioners comprehensively improve the 
system resilience from different aspects to resist diversified and uncer-
tain disturbances. 
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