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Abstract. Super-resolution restoration is the problem of restoring a high-resolution scene
from multiple degraded low-resolution images under motion. Due to imaging blur and noise, this
problem is ill-posed. Additional constraints such as smoothness of the solution via regularization
is often required to obtain a stable solution. While adding a regularization term to the cost
function is a standard practice in image restoration, we propose a restoration algorithm that
does not require this extra regularization term. The robustness of the algorithm is achieved by a
Gaussian-weighted Le-norm in the data misfit term that does not response to intensity outliers.
With the outliers suppressed, our solution behaves similarly to a maximum-likelihood solution
in the presence of Gaussian noise. The effectiveness of our algorithm is demonstrated with
super-resolution restoration of real infrared image sequences under severe aliasing and intensity
outliers.

1. Introduction

Image restoration belongs to the class of inverse problems. It aims to reconstruct the real
underlying distribution of a physical quantity called the scene from a set of measurements. In
Super-Resolution (SR) restoration [16], the scene is restored from a series of degraded Low-
Resolution (LR) images, each of which is a projection of the real and continuous scene onto
an array of sensor elements. Although the original scene is continuous, image restoration only
produces a digital image representation. The algorithm uses a forward model which describes
how the LR observations are obtained from the unknown High-Resolution (HR) scene. This
model often incorporates the Point Spread Function (PSF) of the optics, the finite-size photo-
sensitive area of each pixel sensor, and the stochastic noise sources.

Two types of degradations are present in a LR image. The first degradation is the reduction
of spatial resolution. This is a collective result of multiple blur sources such as the PSF of
the optics, defocusing, motion blur, and sensor integration. The second type of degradation is
noise. Due to these degradations, SR is an ill-posed problem which means that the solution is
highly sensitive to noise in the observations. A stable solution can only be reached by numerical
approximation which may enforce additional constraints such as smoothness of solution [22],
a.k.a. regularization.
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In the first part of this paper, we present a new solution for robust SR restoration. Different
from the common practice of adding a regularization term to the cost function to suppress
both Gaussian noise and outliers, we handle each of these intensity variations separately. The
influence of outlier observations is suppressed by giving these samples a low contribution weight
in subsequent analysis. This tonal-based weighting scheme is similar to the ones used by
bilateral filtering [23]. After the outliers are suppressed, our solution behaves in similar way
to a maximum-likelihood solution in the presence of additive Gaussian noise only. The iterative
restoration is terminated before noise overwhelms the signal. The moderately amplified noise is
then removed by a fast signal-preserving filter during a postprocessing step.

The second part of this paper is devoted to an objective evaluation of different SR algorithms.
The evaluation relies on image features often found in a HR image such as edges and small blobs.
Different SR results are compared on five quantitative measures including noise, edge sharpness,
edge jaggedness, blob size, and blob contrast. These measurements are plotted on a radar chart
per algorithm to facilitate the comparison of multiple algorithms. Although it is unlikely that
a single algorithm outperforms others on all performance measures, the size of the polygon
that connects the radar points generally indicates which algorithm performs better on a given
dataset.

2. Super-resolution restoration

Image formation is a process in which a continuous input signal, i.e. the scene, is degraded by
several blur and noise sources to produce an output image. Although each component along
the imaging chain introduces its own degradation, the overall process can be modeled as a
convolution of the input signal with a Point Spread Function (PSF) followed by noise addition:

y(x) = w(x) * f(x) + n(x) (1)

where * denotes the convolution operation. y, w, f, and n are the measured signal, the PSF,
the original signal, and noise, respectively. x is the coordinate vector of the continuous spatial
domain.
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(a) Image formation by blur and additive noise (b) Image restoration by deconvolution

Figure 1. Image formation and restoration models.

Given the signal degradation model (1), image restoration aims to recover an estimate of the
scene f from the corrupted image y. To facilitate the use of numerical analysis, all continuous
signals are represented by its sampled versions. Because of its infinite bandwidth, however, the
continuous scene f is not fully reconstructible. We can only aim to reconstruct a band-limited
version of f, of which the sampled version is z (figure 1a). The restored image Z in figure 1b
is then expected to resolve finer details and possess a better Signal-to-Noise Ratio (SNR) than
the observation y.

Under a discrete-to-discrete formulation, the imaging model in equation (1) can be rewritten
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as a matrix multiplication followed by a vector addition of the lexicographically ordered samples:

n w11 w12 o WIN 21 ni
Y2 w21 W22 - W2 N ) ng

= . R . x| oo+ . (2)
Ym wpMa1 WM2 cc WM,N ZN nnMm

where the measured value of an m-th sample ¥, is a weighted sum of all input samples z,
(r =1..N) plus a noise term:

N

Ym = Z WinrZr + Ny Vm=1.M (3)
r=1

The weights wy, , are sampled values of the PSF centered at the position of the observed sample
Ym. Although this PSF is sampled at all “grid” positions of the HR image z, most of its entries
are zero if the PSF has a limited spatial support. The matrix [w; ;] is therefore often sparse.
Using bold letters to represent the corresponding matrices, (2) can be written as:

y=Wz+n (4)

Equation (4) also models the generation of multiple LR images from a single HR scene [8].
In the case of p LR images, y is a pM x 1 vector of all observed samples from p LR images, z
is still a NV x 1 matrix of the desired HR samples, the pM x N matrix W represents not only a
blur operation but also a geometric transformation and subsampling [3]. The reconstruction of
the HR image z from multiple LR frames y can therefore be seen as a multi-frame deconvolution
operation. In fact, the only difference between multi-frame SR and single-frame deconvolution
is the geometric transformation of the LR frames that often leads to irregular sample positions
of y. As a result, all derivations for SR reconstruction in this section are also applicable to
deconvolution.

If noise is not present, (4) reduces to a linear system which can be solved by singular value
decomposition [19] (in a least-squares sense if pM # N or rank(W) < N). However, due to
noise and the sizable dimensions of W, numerical approximation is often used to solve z. In the
following subsections, we review a maximum-likelihood solution to SR and propose the use of a
robust error norm to improve the solution’s responses to outliers. Using total variation denoise
as a postprocessing step, the new SR algorithm outperforms current methods in handling outliers
and noise from input observations.

2.1. Maximum-likelihood super-resolution

Maximum-Likelihood (ML) super-resolution seeks to maximize the probability that the
measured images y are the results of image formation from a common scene z. With the
knowledge of the PSF, the simulated LR images can be constructed from z as y = Wz, this
differs from the measured images y by a noise term only. If the measurement noise is normally
dlstrlbuted with zero mean and variance o2, the probability that y was actually measured from

' RV
Pr(ylz) = H fep< @mzagm)) (5)

Maximizing (5) is equivalent to minimizing its negative log-likelihood:

1pM 1pM

Clw =5 3 (= im =5 3 €, (6)

m=1
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N
where €, = Ym — Um = Ym — 2 Wm 2 is the simulation error at the m-th output pixel. The

r=
cost function (6) can also be seen a quadratic error norm between the simulated images y and
the measured images y. An ML solution given additive Gaussian distributed noise is therefore
defined as:
zyr = arg min C(z) (7)
z

Equation (7) can be solved by a gradient descent method [12], which starts with an arbitrary
initialization z° and iteratively updates the current estimate in the gradient direction of the cost
function:

2n+1 —oh _ Engn (8)

where " is the step size at iteration n, g" = [g1(2") g2(2") ... gn(2™)]" is the gradient vector of
C(z") whose k-th element is:

pM
gr(z) = 8((;;:) == Wmktm for k=1.N 9)
m=1

The ML solution was first applied to SR by Irani and Peleg [9]. It is also known as the iterative
back-projection method because the data misfit error at each LR pixel is back-projected to the
current HR image to blame those HR pixels that contribute to the error. In equation (9), 2"
is updated with a convolution of the data misfit error with a back-projection kernel, which is
often the PSF itself. If Newton’s method [12] is used instead of the gradient descent method,
the back-projection kernel is proportional to the square of the PSF. An ML algorithm often
converges to a noisy solution. To prevent noise corruption, the iterative process can be stopped
as soon as the relative norm of the back-projected error image exceed a certain threshold [8].
This usually takes fewer than five iterations for all examples in this paper.

2.2. Robust maximum-likelihood super-resolution

Because of the unregularized quadratic error norm in the cost function (6), the original ML
algorithm is not robust against outliers. As a consequence, ringing and overshoot are often seen
in the reconstructed HR image, especially when noise and outliers are present. To reduce such
artifacts, many modifications such as regularization [8, 5] and median back-projection [25] have
been added to the basic ML solution. Irani [9] also suggested a heuristic approach by removing
the contributions of extreme values before back-projecting the errors. In this subsection, we
provide a rigorous mathematical basis to support Irani’s heuristics. Our SR algorithm minimizes
a Gaussian-weighted Lo-norm of the data misfit errors. This robust cost function is minimized
by a conjugate-gradient optimization algorithm [12], which results in a much faster convergence
than the gradient descent algorithm.

2.2.1. Robust estimation using Gaussian error norm To determine whether an estimator is
robust against outliers or not, one needs to review its cost function. The ML solution for SR

pM
aims to minimize a quadratic norm of the simulation error Y. pa(ey,), where:
m=1
pa(x) = 527 Ua(z) = py(z) = @ (10)

The influence function ¥ = p’ defines a “force” that a particular measurement imposes on
the solution [7]. For the quadratic norm, the influence function is linearly proportional to the
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error. A single intensity outlier can therefore bias the solution to an erroneous value. A robust
estimator avoids this by reducing the influence of extreme errors to zero. The Gaussian error
norm [1], for example, satisfies this requirement:

palz) = o} (1—exp (“°y2)) ba(z) = z.exp (T /py2) (1)

where the tonal scale o; controls the acceptance range of inlier variations. As can be seen
from figure 2, the Gaussian norm with o; = 1 resembles the quadratic norm for z < o3 and
it asymptotically approaches one for x > 30;. The Gaussian influence function is negligible
for £ > 30y, which means that it is not susceptible to outliers. Apart from its robustness, the
Gaussian error norm is also popular for its simplicity. The Gaussian influence function differs
from the Lo-norm influence function by only an exponential term (¢ in equation (11) compared
to 19 (10)). As a consequence, a robust estimator that uses the Gaussian error norm yields a
formulation that is comparable to the traditional ML estimator.

o =X ] b=x | Pol)=1mep(oER2) |1 g0 = xexp(-xX72)
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Figure 2. Quadratic error norm versus Gaussian error norm (o; = 1).

Using the Gaussian norm instead of the Ly norm, the cost function of the robust SR estimator
is:
€2,
Zpg €m —Jtle—exp< 5 )] (12)
o

Its partial derivative w.r.t. an output pixel z; (k = 1..N) is:

pM
gk(z) = 85;(:) Z W, kEm €EXP <_ > Z W, kEmCm (13)

2
where ¢, = exp (_em/2at2> can be interpreted as a certainty value of the measured sample

ym- This certainty value is close to one for |e,,| < o and it asymptotically approaches zero
for |e,,| > 30:. As a consequence, the contributions of extreme intensity values are suppressed.
With this robust weighting scheme, our robust ML solution automatically achieves the heuristic
noise reduction scheme suggested by Irani.

2.2.2.  Conjugate-gradient optimization Although the robust cost function (12) can be
minimized by a gradient descent process in the same way as presented in the previous subsection,
a conjugate-gradient optimization algorithm usually converges much faster [12]. The procedure
for conjugate-gradient optimization of the cost function (12) is described as follows. Starting
with a 3 x 3 median filtered image of a shift-and-add super-fusion result [4], the current HR
estimate is updated by:

Zntl = 3" 4 end” for n=0,1,2,... iterations (14)
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where d” = [d1(2") d2(2") ... dn(2")]" is a conjugate-gradient vector, which is derivable from
g".

One important characteristics of the conjugate-gradient optimization process is that it never
updates the HR estimate in the same direction twice. To ensure this condition, the first
conjugate-gradient vector is initialized with d” = —g° and all subsequent vectors are computed

by the Fletcher-Reeves method [6]:

1 T (gn+1)Tgn+1
d" = —g" 4+ g"d" where gh==—""
(g")"g"

The optimal step size €™ at the n-th iteration is calculated by minimizing the next iteration’s
cost function C(2"*1) with respect to ™. Setting the derivative of the cost function w.r.t the
step size to zero and using differentiation by parts, we obtain:

(15)

n+1 n+1 A7L+1
0= facégn) — Z 82;714-1 ) 0z Zg ( n+1) (An) (16)

k=1 k

Equation (16) confirms that the new gradient-descent direction g"*! is orthogonal to the last
update direction d”. After some further expansion of (16) [8], the optimal step size is found to
be:

Z Y™, el n—l—l Z 72 n+1 (17)

N
where v,, = > Wy rgm(2") is a convolution of the gradient image at iteration n with the PSF.
r=1

[cn+1 n+1 n+11T  n+l
1

Although £" depends on a future certainty image ¢! = cy o cpM] , C
approximated by ¢ because the sample certainty remains stable (especially at later iterations).

The iterative optimization process is stopped after a maximum number of iterations is reached
or when the relative norm of the update image against the output image is small enough:
& = |z2"t —3"/|2"| < T (e.g., T = 107%). Since we use an approximation of the future
conﬁdence c" 1, the relative norm & may not always reduce. To prevent a possible divergence
of the robust ML solution, we also terminate the iterative process when the relative norm &
increases. A summary of the conjugate-gradient optimization algorithm is given in table 1.
Note that all formula from (13) to (15) of the robust ML solution differ from the corresponding
formula of the traditional ML solution by the sample confidence ¢ only. It is thus straightforward
to incorporate robustness into existing ML implementations.

can be

2.8. Robust SR with postprocessing noise reduction

Since the Gaussian error norm handles inliers just like the quadratic norm does, the
performance of the Robust ML (RML) deconvolution is similar to that of the ML deconvolution
for normally distributed noise. This is validated in figure 3b and 3¢, which show comparable
deconvolution results of a Gaussian blurred and noisy image (figure 3a, op,sf = 1, 0, = 5) after
five iterations. However, when five percent of salt-and-pepper noise is added to the blurred
and noisy image (figure 3d), overshoots start to appear in the ML estimate (figure 3e). The
result of the RML deconvolution in figure 3f, on the other hand, remains sharp without outliers.
Experiments with more salt-and-pepper noise reveal that the RML deconvolution can handle as
much as 25% outliers before it fails to produce a satisfactory result. There is one requirement
that must be fulfilled to achieve this performance: the initial estimate 2° must be free of outliers.
This is the reason why a 3 x 3 median filter is applied to the shift&add image in step 1 of the
robust SR algorithm in table 1.
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Step 1: Begin at n = 0 with an initial estimate 2° being a 3 x 3
median filtered image of a shift & add solution [4].

Step 2: Compute g” using eq. (13), and initialize the

conjugate-gradient vector as d? = —g?.

Step 3: Compute the optimal step size €™ using eq. (17).

Step 4: Let 2" = 2" +&"d" and " = |/llz"™|.

Step 5: If " < T or &" > " let zryr = 2" and stop.

Step 6: Compute g"*! and let d"*! = —g"*! 4 gnd”,
where 5 = ((g")"g"") /((&")"g").

Step 7: Let n < n+ 1 and go to step 3.

in-l-l —zn

Table 1. A conjugate-gradient optimization algorithm for robust SR restoration.

(a) blurry&noisy—RMSE=10.7

(d) (a)-+outliers — RMSE=34.1 (e) ML of (d) — RMSE=31.8 (f) RML of (d) — RMSE=11.1

Figure 3. First row: robust ML deconvolution produces a similar result as ML deconvolution
for a blurred (opsy = 1) and noisy input (N (0,0, = 5)). Second row: the ML result is hampered
by outliers (5% salt & pepper noise) whereas the robust ML result is insensitive to them.

A poor response of the ML restoration against outliers is the main reason why it is not
preferred over regularized methods such as the Maximum A Posteriori (MAP) restoration [8].
We solved this problem by replacing the quadratic error norm with a robust error norm. Another
drawback of the ML solution is the amplification of noise due to which the solution finally
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converges to a noisy result. Although the iterative process can be stopped before the inverse
solution becomes too noisy, there are always some noise present such as the visible graininess in
figure 3f. A common solution to penalize these fluctuations is adding a smoothness term Y(2)
to the restoration cost function:

Zaap = arg min [[ly — Wa|} + AT (2)] (18)

Some popular regularization functions are Tikhonov-Miller (TM) [13], Total Variation (TV) [21],
and Bilateral Total Variation (BTV) [5]:

Tram(z) = ITz]|3
Trv(z) = V]|,

s o (19)
Tprv(z) = . iz - glomg]|

l=—2m=0

J/_/

l+m>0

where T' is a Laplacian operator, V is a gradient operator, and S’ is a shift operator along
x-dimention by [ pixels. However, smoothing regularization comes at a cost of signal variance
attenuation. The extra term creates a new problem of balancing between the two cost functions
(via the regularization parameter ) [10]. Furthermore, the computational cost of minimizing
the combined cost function is usually high.

Instead of minimizing a combined cost function of a data misfit and a data smoothing term, we
choose to suppress noise by a postprocessing step. This approach is efficient because the image
update per iteration is much simpler without the smoothing term. Although the denoising step
seems extraneous, its purpose is equivalent to that of the data smoothing term in the restoration
equation (18). Postprocessing denoise is applied to the SR image, which usually contains
much fewer pixels than the total number of input LR pixels to be processed by the iterative
regularization. The decoupling of image restoration and image denoising allows the flexibility
of using many available noise reduction algorithms and easily fine-tuning their parameters. In
this section, we use the method of iterated TV refinement [15]. This method was shown to
outperform other TV-based and non-TV-based denoising methods for a variety of noise sources.
Deconvolution followed by denoising is not new in the literature. Li and Santosa [11] used
a similar approach for their computationally efficient TV restoration. ForWaRD [14] (Fourier-
Wavelet Regularized Deconvolution) is another deblurring method that separates noise reduction
from deconvolution.

The result of deconvolution with iterative TV postprocessing is presented in figure 4 together
with the results of other methods. The same salt-and-pepper noisy image from figure 3d is
used as input to all tested algorithms. The parameters to all methods are chosen to minimize
the Root Mean Square Error (RMSE!) of the output and the original image in figure 3c. As
can be seen in figure 4a, the Tikhonov-Miller deconvolution [8] with an optimal regularization
parameter [10] is not robust against outliers. Its solution is also smooth because of a quadratic
regularization norm. Strongly influenced by outliers, the ForWaRD method [14] does not yield
a good result either. Although bilateral TV deconvolution is robust, its result in figure 4d
is slightly more blurred and noisier than our RML+TV result as depicted in figure 4e. Our
RML+TYV deblurred image also scores the smallest RMSE against the ground truth. This
strong performance is partially due to the excellent noise reduction and signal preservation of

! RMSE(f,g) = \/% > (f — 9)?, where N is the number of samples in f, g
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the iterative TV denoising algorithm. As can be seen in figure 4f, the noise residual removed by
the iterative TV method shows very little signal leakage.

P "

(d) bilateral TV (A = 1072, (e) Robust ML + iterative TV (f) noise removed by TV denoising,
optimal step size) — RMSE=9.8  denoising — RMSE=8.6 linear stretch from -10 to 10

Figure 4. Robust deconvolution followed by iterative TV denoising outperforms other
deconvolution methods due to its robustness against outliers. The noise residual removed by
TV denoising shows only a minimal signal leakage.

3. Evaluations of super-resolution algorithms

Many SR algorithms have been proposed during the past twenty years, but little has been done
to compare their performance. The most commonly used methods for comparison are still the
Mean Square Error (MSE) and visual inspection by a human observer. The MSE, applicable only
when the ground truth is available, is a questionable measure. A small MSE also does not always
correspond to a better image quality [24]. Visual inspection, on the other hand, is dependent
not only on the viewers but also on the displays and viewing conditions. In this section, we
propose a range of objective measures to evaluate the results of different SR algorithms. These
quantitative measures are presented in a radar chart per SR image so that their strengths and
weaknesses are easily comparable.

3.1. Objective performance measures for SR

The main goal of SR is to improve the image resolution and to reduce noise and other artifacts.
As a result, we propose the following performance measures: the SNR, image sharpness, image
jaggedness, size and height (contrast) of a smallest available blob. All these quantities are
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measured directly from the SR reconstructed image. Together with other criteria such as the
absence of artifacts, the performance of SR can be objectively evaluated.

The measurement of these quality factors are illustrated on the SR result in figure 5. Figure 5a
shows one of 98 LR input images under translational motion. The SR image in figure 5b is
reconstructed from the LR images using the Hardie method [8] with automatic selection of the
regularization parameter [10]. Edge sharpness and jaggedness are measured from the sharpest
edge in the image (enclosed in a rectangle). A small blob close to the edge is used to measure
how a SR algorithm can retain small features. Due to its nonrobustness, the Hardie algorithm
fails to remove dead-pixel artifacts from the image. These artifacts are even more visible in
figure 5¢, where nonlinear histogram equalization is applied to enhance the image contrast.

(a) Pixel replication (b) 5 iterations of Hardie (opsy = (c) nonlinear stretch of (b)
1.5, A=6.46x107°)

Figure 5. Eight-times zoom from 98 LR images. The rectangle and the arrow point to the edge
and the blob used in later analysis. (a) and (b) are linearly stretched between [18400 20400],
(c) is stretched by adaptive histogram equalization [26].

3.1.1. Signal-to-noise ratio To measure the SNR? of a SR image, the energies of the signal
and the noise are required. Since the ground truth HR image is not available, we estimate the
noise variance from a Gaussian fit to the histogram of a masked high-pass filtered image. The
high-pass filtered image in figure 6a (0, = 3) is segmented into discontinuities (lines, edges, and
texture) and homogeneous regions by a threshold on its absolute intensities. The segmentation
in figure 6b is computed from the least noisy SR result (by the Zomet method), and the same
mask is used for all other SR images. After the noise variance is estimated, the variance of
the noise-free signal is estimated as a difference of the corrupted signal variance and the noise
variance.

8.1.2. Fdge sharpness and jaggedness Another desirable quality of a super-resolved image is
sharpness. We measure the sharpness as the width of the Edge Spread Function (ocs¢) across
a straight edge [20]. Together with the average edge width, the location of the straight edge is
also determined with subpixel accuracy. Edge jaggedness, on the other hand, is measured as
the standard deviation of the estimated edge positions along the straight edge. This position
jaggedness is most likely due to registration errors between the LR frames. We determine the
edge crossing point of each 1-D profile perpendicular to the edge by fitting an error function

2 SNR =10log,,(07/c2), where 07 and o2 are energies of the noise-free signal and noise, respectively.

10
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Figure 6. Noise variance estimation from a single image by a Gaussian fit to the histogram of
homogeneous regions in a high-pass filtered image (op, =3 — 0, = 1.25)

(erf) to the profile (see figure 7d):

(20)

To = arg min
o

I(x) — A.erf (x_x()) - B

Oesf

1

where ¢ is the edge crossing point, x is the coordinate along the 1-D profile, I(x) is the profile
z

intensity, erf(z) = 7% Ik e~t*dt is the error function, A and B are intensity scaling and offset,
0

respectively. The standard deviation of these estimated edge crossing points Zg from the fitted
straight edge is defined as the edge jaggedness.

Figure 7 illustrates a step-by-step procedure to compute edge sharpness and jaggedness.
Figure 7a shows an elevation view of the Region Of Interest (ROI) enclosed by the dashed box
in figure 5b. Because of shading, the intensity levels on either side of the edge are not flat.
This shading is corrected line-by-line, which results in a normalized step edge in figure 7b. 2-D
Gaussian blur edge fit and individual 1-D er f fit are applied to the normalized edge. The results
are depicted in figure 7c, in which the straight edge is superimposed as a thick dashed line, and
the horizontal edge crossing points are connected by a thin dark line. Because the jaggedness of
the dark line is negligible compared to the edge width (stdev(zg) = 0.12 << 055 = 2.79), this
edge is quite smooth. Figure 7d also shows that the edge profile can be modeled very accurately
by an error function.

1
> )
1.98 @ 1 2
> g 2
B1.94 50-5 é 0%
Q (7] =
N Q
E 1.9 T O g_
2 +—+—+ _input pixel ‘
10 “Ristancé to ed_qg 10
(a) edge from Zomet result (b) normalized edge (c) line fit (d) Gaussian edge profile

Figure 7. Finding the sharpness and jaggedness of a straight edge (oesy = 2.79 £0.12). The
edge is zoomed four-times horizontally in (c¢), in which the thick dashed line is the fitted edge
and the thin jagged line connects all rows’ inflection points.

11
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3.1.8. Reconstruction of small details In addition to edges, small details are also of interest in
many SR tasks. We measure the size and contrast of the smallest detectable blob in the SR image
by fitting a 2-D Gaussian profile to its neighborhood. Figure 8a shows part of the apparatus
that is pointed to by the arrow in figure 5a. This ROI contains two blobs of respectively 3.2
and 2.0 HR pixels radius. The bigger blob is visible in the results of all tested SR algorithms
(figures 5 and 9). However, the contrast of the smaller blob is in some cases too weak to be seen.
The 3-D mesh views of the two blobs and their fitted Gaussian surfaces are plotted in figure 8b
and 8c on the same scale. The Gaussian profile fits well to the image intensities in both cases.
The amplitude (or height) of the smaller blob is about half that of the bigger blob. This can be
verified in figure 8a, in which the contrast of the smaller blob is significantly weaker than that
of the bigger one.

4 — -
10 input image
Z‘X Gaussian blob

=y é‘ ==
%1 %1.98\ @
E E iy
1.96. : j : 1.96..
. \\\ S s 20 \\\\ o
N~ 10\:\\\ - T g 10\:\\\ T //;\20
y S 10 y ST 10
0 \0 X 0 \g X
(a) SR result (b) Top blob: o = 3.2, height=277 (c) Bottom blob: o = 2.0, height=132

(RNC+ML+BF)

Figure 8. Fitting of 2-D Gaussian profiles to small blobs in a SR image.

3.2. Fvaluation results

In this subsection, the results of four robust SR methods are compared against each others
based on the metrics of the presented performance measures. The first two methods from [5]
are the regularized Zomet method, which iteratively updates the SR image by a median error
back projection, and the Farsiu method, which is essentially a Bilateral Total Variation (BTV)
deconvolution of a shift-and-add fusion image. The remaining two methods are from the
authors of this paper. The RNC+ML~+BF method follows a separate reconstruction-restoration
approach as the Farsiu method. First-order Robust Normalized Convolution (RNC) [18] is used
for the reconstruction, Maximum-Likelihood (ML) deconvolution (section 2.1) is used for the
restoration, and an xy-separable Bilateral Filtering (BF) [17] postprocessing step is used for noise
reduction. The RML+BF method, on the other hand, follows a direct multi-frame restoration
approach as the Zomet method. Instead of using the median operator to achieve robustness,
the Robust Maximum Likelihood (RML) restoration (section 2.2) uses a local mode estimation
to reduce the outliers’ influence in the back projection. The RML+BF method is also followed
by a bilateral filtering step for noise removal.

Our robust SR methods differ from most other methods in the literature in the separate
treatment of normally distributed noise and outliers. We do not use a data regularization term
for outlier removal because heavy regularization might be required, which in turn produces
an overly smoothed result. Instead, the outliers are suppressed by penalizing their influences
during the RNC fusion or the RML restoration. In addition, while the Zomet and the Farsiu
methods require iterative regularization for noise suppression, we only need one single pass
of bilateral filtering after restoration. This postprocessing strategy is more flexible because the
filter parameters or even the denoising algorithms can be changed without rerunning the lengthy
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restoration process. Optimal selection of the regularization parameter during the iterative
restoration is also difficult. Too much regularization in the first several iterations biases the
solution to a smooth result. Too little regularization in the last several iterations produces a
noisy output image. With a single pass of bilateral filtering, the parameters only need to be
initialized once (e.g., 05 = 3, o = 30,). The only concern to take into account is that the
iterative ML restoration should be stopped before noise is amplified beyond the contrast level
of interested details.

3.2.1. The apparatus sequence The results of the four SR algorithms on the apparatus sequence
are presented in figure 9. The Zomet and Farsiu results are produced using the software from
UCSC3. A Gaussian PSF with opst = 1.5 HR pixel is used for all methods. Other parameters
of the Zomet and Farsiu methods including the regularization parameter A and the step size
are manually fine-tuned to produce a visually best result in terms of noise reduction and details
preservation. To keep the small blob on the left side of the apparatus visible, outliers are not
removed completely from the Zomet and the Farsiu results. The parameters of our SR methods,
on the other hand, are automatically determined from the noise level in the image. The tonal
scales of RNC fusion, RML restoration, and BF denoising, for example, are chosen approximately
three-times the standard deviation of noise before the operations. Due to a separate treatment
of outliers and Gaussian noise, both of our SR results remain artifact-free while true details are
well preserved.

The performance measures are presented in a radar chart format for each SR result in figure 9.
Each radar axis corresponds to one of the five performance measures: standard deviation of noise,
edge sharpness, edge jaggedness, blob size and an inverse of blob height (the selected edge and
blob are shown earlier in figure 5b). Note that the blob height is inverted in the last performance
measure so that a smaller value corresponds to a better quality in all axes. Although the origins
of all axes start from the common center, each axis has a different unit and scale. The axes
are scaled by their average measures over the four given images. These average measures are
shown as a dotted equilateral pentagon in all charts. A set of five performance measures per
image forms a pentagon which is shown in thick lines. Although it is desirable to have a thick
pentagon for which all measures are the smallest, such a clear winner is not present in figure 9.
A more realistic way to evaluate different SR algorithms is to compare their relative pentagon
areas. Because parameter tuning can only reduce a certain measures at the cost of increasing
others (e.g., noise versus blob size), the area of the pentagon does not vary significantly for a
specific algorithm. As a result, an algorithm with the smallest pentagon area generally yields
the best performance.

Based on the SR images and the performance radar charts in figure 9, the strengths and
weaknesses of each SR method are revealed. The Zomet+BTV regularization method, for
example, produces a low-noise output but it fails to preserve small details. Outlier pixels are
still present because the pixel-wise median operator is only robust when there are more than
three LR samples per HR pixels (the ratio is only 1.5 in this case). The Farsiu method is not
robust to this kind of extreme outliers either. Those outlier spots in figure 9c¢ spread out even
more compared to those in the Zomet result due to the Ly data norm within the Farsiu Lo4+BTV
deconvolution. The BTV regularization is, however, good at producing smooth edges. Both the
Zomet and the Farsiu methods score a below-average edge jaggedness measure.

While the regularized methods have difficulties in balancing between outlier removal and
detail preservation, our methods based on sample certainty produce outlier-free outputs with
a high level of detail preservation. Both the RNC4+ML+BF and the RML+BF methods
reconstruct small blobs very well. However, the standard deviations of noise are below average.

3 MDSP resolution enhancement software: http://www.ee.ucsc.edu/~milanfar
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(a) Zomet+BTV (A = 0.002, 3 = 5) (b) SNR = 42.5 dB, blob height = 67
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100 / blob
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() RNC (0o = 1, 0y = 50) + ML (f) SNR = 40.7 dB, blob height = 119
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(g) RML (0¢+=55) + BF (0,=3, 0:=30) (h) SNR = 41.5 dB, blob height = 117

Figure 9. Eight-times SR from 98 shifted LR images. All images are nonlinearly stretched [26].

The average performance measures (dotted) are [2.66 3.31 1.27 0.12 2.26]. Lower values indicate
better performance.
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Considering that the SNR is large in all images (SNR ~ 40), this is not a real problem. The
RML+BF method seems to produce the best result with four out of five measures being better
than average. Visually speaking, its result is also better than the RNC+ML+BF result because
the latter shows some slight ringing artifacts near the top and the bottom of the apparatus.

3.2.2. The bar chart sequence To show that the presented performance measures are not tied
to a single example, the same evaluation process is applied to a different image sequence. The
infrared sequence in figure 10a contains 98 LR images captured by a manually-induced jitter-
moving camera. Apart from random noise and aliasing, the LR images are also corrupted by
outliers, which are caused by permanently dead and blinking sensor elements. Using the robust
RML+BF method, a clean SR result is reconstructed in figure 10b. Four-times upsampling is
used in this experiment because a higher zoom does not produce more details.

—e— motion trajectory
P ——

0.5

] ' s o v, os i

(a) 1 of 98 LR image (128x128) (b) 4x SR by RML+BF (c) Motion trajectory
Figure 10. Four-times SR of a shifted sequence by the robust ML restoration followed by
bilateral filtering. The images are linearly stretched between [18200 19100].

A zoomed-in version of the resolution chart can be seen in figure 11. Due to low resolution
and aliasing, the parallel bars in figure 11a are not separable. They are, however, clearly visible
in figure 11b after a Hardie SR reconstruction. Although the Hardie SR result reveals more
details than the LR image, it also shows spotty artifacts due to its non-robust nature. The
directed artifact is the trace of a single outlier pixel along the sequence’s motion trajectory
(figure 10c). Similar to the previous experiment, a step edge at the bottom of the plate and a
small blob at the top-right of the plate are used for performance measurements. The mask in
figure 11c shows non-textured regions that are used for noise estimation in all subsequent SR
results.

The results and analysis of four SR algorithms: Zomet, Farsiu, RNC+ML+BF, and
RML+BF, applied to the resolution chart sequence are presented in figure 12. Similar to the
previous example, the parameters for the Zomet and the Farsiu methods are manually selected
so that all parallel bars are clearly distinguishable. The parameters for the RNC+ML+BF
and the RML+BF methods, on the other hand, are chosen automatically as described in [18]
and section 2.1, respectively. As can be seen from the left column of figure 12, outlier spots
are present in all four SR images. Each spot is formed by the same outlier pixel under the
subpixel motion of the sequence (|vg|, |vy| are less than one LR pixel). These outliers are not
completely removed by the median operation in the Zomet method. The Farsiu method, which
performs a deconvolution on the non-robust Shift & Add (SA) fusion image, is the most noisy
of the four results because these large outlier spots are not treated as outliers by the Lo+BTV
deconvolution algorithm. Our last two results show the best noise reduction of the four methods
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(a) Pixel replication (b) Hardie (opsr=1, A=4x107°) (c) noise mask — o, = 30.2

Figure 11. Four-times SR using a non-robust method together with the edge, blob, and noise
mask used for later quality assessment. (a) and (b) are linearly stretched between [18200 19100],
(c) is stretched between [-128 128].

thanks to the sample certainty approach. Apart from a lower noise level, our SR methods also
reconstruct sharper edges and finer blobs. The RNC+ML+BF method produces the least noise
and the lowest edge jaggedness. The RML+BF method scores better than average on all five
performance measures. These quantitative results are strongly supported by visual inspection
of the accompanying images.

3.2.3. The eye chart sequence The last sequence to be evaluated in this subsection is shown in
figure 13. Aliasing is visible in the lower part of the LR image in figure 13a as some vertical lines
are not as clear as others. Four-times SR by a robust method produces a HR image without
outliers in figure 13b. Because this sequence moves with a larger shifts than that of the bar
chart sequence, outliers spread out more evenly in the HR grid and they are therefore removed
more thoroughly (see figure 15 for the results of four robust SR methods).

Noise, aliasing and intensity outliers are clearly visible in a zoomed-in version of the LR
image in figure 14a. After a four-times SR by the Hardie methods, the openings of the circles
are resolvable. Figure 14b also shows the step edge and the small blob used in subsequent
performance analysis. Figure 14c shows a noise mask, which is composed of only flat areas for
noise estimation.

The performance of different SR, algorithms applied to the eye chart sequence is presented in
figure 15. The Farsiu method performs worst in terms of noise and detail contrast. Although a
better SNR is possible by more regularization, this solution only further smears away the smallest
circles. Due to a sufficient number of LR samples (six LR samples per HR pixel) and a good
separability of the outlier samples after registration, the Zomet method performs reasonably
well on this sequence. All its performance measures are around the average. However, due to
the data smoothing term, both the Zomet and the Farsiu results are not as sharp as ours in the
last two figures. Visually speaking, the RML+BF result is the sharpest, although this advantage
is slightly hampered by an above average edge jaggedness. This last sequence eventually shows
that given many LR samples per HR pixel and a negligible amount of outliers, the difference in
performance of the four presented methods are subtle. Non-blind evaluation methods, such as
the triangle orientation discrimination method [2], may be necessary to resolve these differences.

16



4th AIP International Conference and the 1st Congress of the IPIA IOP Publishing
Journal of Physics: Conference Series 124 (2008) 012037 doi:10.1088/1742-6596/124/1/012037

Blob size
Edge ‘
sharpness

100 / blob
jaggedness height

(b) SNR = 32.4 dB, blob height = 323

Blob size

100 / blob
jaggedness height
(c) Farsiu (A =0.01, 8 = 10) (d) SNR = 30.9 dB, blob height = 350
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() RNC (0,=0.5, v=50) + ML () SNR = 38.7 dB, blob height = 310
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(g) RML (o¢ = 55, 20 iters) + BF (h) SNR = 36.6 dB, blob height = 390
(o0s = 3, o = 60)

Figure 12. Four-times SR from 98 shifted LR images using different algorithms. The average
performance measures are [3.23 1.48 0.29 0.21 0.98] (the dotted pentagon). Lower values
indicate a higher performance.

17



4th AIP International Conference and the 1st Congress of the IPIA IOP Publishing
Journal of Physics: Conference Series 124 (2008) 012037 doi:10.1088/1742-6596/124/1/012037
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(b) 4x SR by RML+BF (c) Motion trajectory

Figure 13. Four-times SR of a shifted sequence by the robust ML restoration followed by
bilateral filtering. The images are linearly stretched between [18000 19000].

& r B s

(a) Pixel replication (b) Hardie (opsf=1,A=3.7x107°) (c) noise mask — o, =29.1

Figure 14. Four-times SR using the Hardie method together with the edge (dashed rectangle),
blob (pointed to by an arrow), and noise mask used for quality assessment.

4. Conclusion

We have presented a new super-resolution restoration algorithm that is robust against outliers.
Our robust algorithm differs from the standard ML algorithm by a tonal-based sample certainty
component. Noise reduction is implemented as a postprocessing step instead of a regularization
term in the cost function of the iterative restoration. Due to a simpler cost function, our SR
algorithm has a lower computational complexity than the regularized methods. Noise is also
reduced more effectively without compromising the signal quality. Evaluations of four robust SR
algorithms on three different datasets have confirmed the superior performance of our algorithm
over other methods in the literature.

Another contribution of this paper is a scheme for objective comparison of different SR
outputs. Provided that edges and blobs are present, the evaluation scheme first computes five
quality factors: standard deviation of the noise, edge sharpness, edge jaggedness, blob size, and
blob contrast. It then scales and plots these measurements on a radar chart, producing a polygon
representation of the measures for each image. Because a smaller value means a better quality,
the polygon with a smaller area generally corresponds to a better SR output. Different from
other evaluation schemes in the literature, our scheme is objective and it produces a consistent
result over a number of tested datasets.
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Figure 15. Four-times SR from 98 shifted LR images using different algorithms. The average
performance measures are [2.98 1.58 0.75 0.09 1.07] (the dotted pentagon). Lower values
indicate a higher performance.
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