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Abstract
The ever-evolving power grid is becoming smarter
and smarter. Modern houses come with smart me-
ters and energy conscious consumers will buy ad-
ditional smart meters to place in their home to
help monitor their energy consumption. This new
smart technology also opens the door to more accu-
rate power consumption forecasting. In this study
we look at utilizing a partial hierarchy, in which
one of the appliances in a household is modelled
separately from the rest of the house, to help im-
prove household energy consumption forecasting
accuracy. This is done in conjunction with Auto
Regressive Moving Average (ARMA) based mod-
els. Three variants of ARMA based models will
be looked at: Auto Regressive Integrated Mov-
ing Average (ARIMA), Seasonal Auto Regressive
Integrated Moving Average (SARIMA), and Auto
Regressive Integrated Moving Average with Ex-
ogenous variables (ARIMAX). These methods will
then be compared to more baseline approaches such
as a persistence method and a seasonal moving av-
erage. Our analysis has led us to conclude that
the partial hierarchy model offers little to no ben-
efit when applied in the field of household energy
consumption forecasting when built upon ARMA
based models. ARMA based models in general
appeared to be poor performers when it came to
household energy consumption forecasting.

1 Introduction
The modern-day energy grid is ever evolving in order to meet
demands. While the energy grid from fifty years ago was
a relatively simple system, our ever-growing dependency on
electricity has required the grid to grow and evolve. While
the grid has been steadily growing, the way we use the grid
has also changed. Individual people have become large power
consumers outside of work hours and many are installing so-
lar panels to help power the grid. This creates a wave of sup-
ply and demand in the power grid. The peaks introduced by
this wave can be very costly. Spees and Lave [1] estimate
that if only 5% of the electric load in a day can be shifted,
an overall peak load of 15.8% can be saved resulting in a
10.5% decrease in energy price for the end consumer. The
main reason behind this cost saving is that fast response en-
ergy generators are also the most expensive to run. And that
while more efficient generators could be used, they often are
not economically viable for the short load time [2].

While the grid has been steadily growing it is only recently
that smart meters have become ubiquitous in our homes [3].
By analysing a consumers behaviour and modelling their en-
ergy consumption, energy providers can play into the supply
demand wave and attempt to flatten the curve. To this extent
this research will investigate each device their energy con-
sumption and attempt to create a prediction for the energy
consumption of the home itself. This would allow energy
providers to save costs as increasing energy grid efficiency
by only a small amount could lead to giant cost saving [1].

Seasonal Auto Regressive Integrated Moving Average with
Exogenous variables, SARIMAX, models are a type of time
series forecasting model which are already frequently used in
the field of energy consumption prediction [4–6]. Many vari-
ations of this model exist but the baseline is the Auto Regres-
sive Moving Average, ARMA, model. This technique can
help understand and even predict future values of a signal.
The ARMA model can be adapted in many ways but for this
paper three components are of interest. The first component is
integration. An ARMA model requires its input data to be sta-
tionary. If this is not the case the difference between two lags,
consecutive data points, can also be utilized as input, this is
known as ARIMA. Secondly the model can also be extended
to account for periodicity in the data. In this case apart from
its regular AR and MA lags it will also keep track of seasonal
AR and MA values, combining this with ARIMA is known
as SARIMA. Finally, an exogenous component which allows
the model to take into account other trends that might be cor-
related, such as outside temperature, can be added for the final
generalization known as SARIMAX. A more in depth expla-
nation can be found in section 3.

Research Question
For this research project the following question will be an-
swered: ”Can the forecast accuracy for a single household be
improved by using a partial hierarchical structure when using
an ARMA based method?”.

Together with the main question the following sub-
questions will also be pursued:

• How do simple persistence methods compare to ARMA
based methods?

• What devices, when modelled separately in the hierar-
chy, lead to the largest improvement of accuracy?

The rest of the paper is organized as follows. Initially re-
lated work will be discussed in section 2. In section 3 current
ARMA based techniques are discussed. Section 4 discusses
the data that will be utilized as well as how the methods will
be compared. Section 5 goes over the experimental setup and
testing environment. This is then followed by the results in
section 6. Section 7 then goes into the ethical issues of the
problem that this paper is focused on. Afterwards the results
are interpreted and conclusions drawn in section 8. Finally
section 9 summarizes the paper, recommends future avenues
of research, and concludes the paper.

2 Related work
ARMA based models are not new in the field of energy con-
sumption forecasting and have been utilized with success.
Ediger and Akar [7] have used ARIMA to help forecast pri-
mary energy demand in Turkey. Atique et al. [8] Utilized
ARIMA to help predict daily solar generation, while also stat-
ing that: ”the beauty of the ARIMA model lies in its simplic-
ity” [8]. Nepal et al. utilized a combination of K-means clus-
tering together with ARIMA to gain an increase in accuracy
when forecasting the energy consumption of buildings. This
shows that ARMA based models are a relatively simple tech-
nique, making them easy to apply, whilst also being adaptive
as they can benefit from combining with different techniques.



Yet, ARIMA might not be the most optimal technique to
predict aggregated power consumption, Al-Mussaylh et al.
[9] found that MARS and SVR techniques can greatly outper-
form ARIMA. Veit et al. [4] compared ARIMA to methods
such as BATS or NNET on the subject of household elec-
tricity demand forecasting and concluded that: ”state-of-the-
art forecasting methods rarely beat corresponding persistence
forecasts”. While ARIMA can be a great tool for forecasting
a direct signal, there is also a strong seasonal aspect at play
when dealing with energy consumption which could help im-
prove accuracy when taken into account. Some studies at-
tempt to use a seasonal component to ARIMA [10, 11] but
their main focus is on some form of quarterly or monthly con-
sumption.

Javed et al. [12] shows that predicting household energy
consumption is much more difficult than forecasting a larger
grid, with standard deviation of rate of change being two or-
ders of magnitude larger for a single household. Apart from
that, bottom up forecasts are generally more expensive than
top down. Zhen et al. [13] solved this problem by using a re-
contextualized Kalman filter to keep computational costs low.
Alternatively the bottom up model could also be constructed
as a series of random variables for each appliance, indicating
how often and intense the device is used [14]. Such an ap-
proach would take a while to train but once the correct prob-
ability density functions are acquired could provide real time
feedback.

Most research focuses on either simulating all appliances
or just the aggregate of those appliances. But whether either
of these techniques lead to an overall improvement is up for
debate as it can be heavily dependent on the data set used
[4]. This leaves the door open for a model that will remove
some devices from the aggregate and model them separately
in order to improve accuracy.

3 ARMA techniques
3.1 Predicting via ARMA
ARMA models consist of two main components: auto regres-
sion, AR(p), and a moving-average model, MA(q). The AR
component is also known as an autoregressive process of or-
der p [15]. This model is defined as shown in formula 1 [15].

Xt = Σp
i=1φiXt−i + εt (1)

In this model Xt represents the value to be predicted at
time t and it is calculated by summing up the last p preceding
values Xt−i, also known as lags. Each of these lags is mul-
tiplied by a parameter φ that is calculated during the fitting
process of the method. Finally a sample of white noise εt is
drawn from a normal distribution and added to the final sum.
The resulting model can also be viewed as a moving weighted
average model to which an amount of noise is supplied.

The MA component is known as a moving-average process
of order q. The moving-average process is a series of white
noise terms that are added up according to the following def-
inition given in formula 2 [15].

Xt = µ+ εt +

q∑
i=1

θiεt−i (2)

In this model Xt represents the value to be predicted at time t
and it is calculated by summing up the last q white noise terms
multiplied by a parameter θ, which is also calculated during
the fitting procedure. To this is then added the expected value
of the signal µ and another white noise term εt. The result
is some signal that moves around the mean value of the input
signal. Both of these models are already useful in helping
model and understanding a signal and can be combined to
create an ARMA(p,q) model. This new ARMA model can
be applied more generally relying on the strengths of both
models in order to reach parsimony. In this combination the
µ term in the MA model, formula 2, gets replaced by the AR
model and the white noise term gets dropped from the MA
model. This results in the following definition [15]:

Xt = εt +

p∑
i=1

φiXt−i +

q∑
i=1

θiεt−i (3)

3.2 Predicting via SARIMAX
A SARIMAX model is the combination of three techniques
added to an ARMA model. The first extension is integra-
tion. The second extension is seasonality. And the third
extension is exogenous data. The integration extension in-
troduces a new hyper parameter d with a domain of natural
numbers. This extension is known as ARIMA. If the original
signal is not stationary, as is required for ARMA to function,
ARIMA is used to difference the data d times before applying
an ARMA model. The procedure of differencing for non zero
orders of d can be described by the recursive formula 4.

Xt(0) = Xt

Xt(d) = Xt(d− 1)−Xt−1(d− 1)
(4)

In which Xt returns the data entry from point t and d re-
sembles the order of differencing. While another techniques
such as fractional integration exists it is not discussed in this
paper.

The second extension is Seasonality, it introduces a new
set of hyper parameters P,D,Q, & m all with a domain of
natural numbers. This extension is known as SARIMA. This
new version also known as Seasonal-ARIMA takes into ac-
count a signal that has a certain periodicity of size m in it.
e.g. when dealing with quarterly data m = 4. The param-
eters of P,D,Q are similar to the parameters p, d, q but in-
stead of dealing with directly preceding lags they deal with
the respective seasonal lags, lags offset by the frequency m.
A Seasonal-ARIMA model can be described as two ARMA
models added together, one dealing with preceding lags and
one dealing with preceding seasonal lags. This is reflected in
formula 5 [15] where the new seasonal component is high-
lighted in blue.

Xt = εt +

p∑
i=1

φiXt−i +

q∑
i=1

θiεt−i

+

P∑
i=1

ΦiXt−im +

Q∑
i=1

Θiεt−im

(5)



Finally the model is extended with exogenous information.
This introduces no new hyper-parameters but instead one or
multiple parameters to the model. This extension is known
as SARIMAX. The new parameter added is a signal the same
size as the input signal carrying additional information, such
as temperature or house occupancy. This allows the model
to respond faster to direct changes. One of the main down-
sides of this extensions is that for future prediction the future
signal of exogenous information will need to be provided be-
fore a prediction can be made. The exogenous variables are
described by formula 6 and are represented by mt. It can be
viewed as a sum of constants ηi multiplied by the exogenous
variable y at time t− i together with some constant c. The fi-
nal SARIMAX formula can the be constructed by adding this
mt to the SARIMA model as shown in formula 7 [16] and
highlighted in olive.

mt = c+

b∑
i=0

ηiyt−i (6)

Xt = εt + c+

p∑
i=1

φiXt−i +

q∑
i=1

θiεt−i

+

P∑
i=1

ΦiXt−im +

Q∑
i=1

Θiεt−im

+

b∑
i=0

ηiYt−i

(7)

A SARIMAX model therefore has seven main hyper-
parameters, p, d, q, P,D,Q & m, out of which m is often
predefined by the periodicity. These parameters will need to
be defined before the model is fitted on the testing data. In
order to determine these parameters the auto arima function-
ality from pmdarima [17] was used. This function takes in
bounds for the parameters and attempts to find the most opti-
mal combination for the given training data via either a grid
search or a step-wise approach.

3.3 Featurizers
Featurizers can be employed to make data more machine
learning friendly. They are often employed in areas where
the RAW data is too complicated to be directly modelled. In
those cases a featurizer is employed to create alternative data
that represents the original raw data in a more structured way.
Such as spectograms in the field of speech recognition or edge
images in the field of computer vision.

These featurizers can also be extended to the field of house-
hold energy consumption prediction. Hyndman, R. [18]1 sug-
gests that instead of utilizing Seasonal-ARIMA when dealing
with large m > 12, as those methods are not designed for
such long periods, one can also use a featurizer beforehand.
This featurizer would extract the seasonal elements from the
original signal and feed them back into an ARIMAX model

1While the source leads to a blog post Rob J Hyndman is well
known in the field of time series forecasting with multiple books
and articles published.

with the featurized data as exogenous data. In this specific in-
stance a Fourier featurizer is used. It disaggregates the orig-
inal signal into a series of signals that can each be described
by a sine and a cosine. These individual signals are then
fed back into an ARIMAX model together with the original
data. This is proposed as an alternative to Seasonal-ARIMA
as it avoids the large memory consumption from Seasonal-
ARIMA. The benefits of this featurized approach are a de-
creased fit time, multiple seasonal frequencies support, and
still utilizing ARMA to deal with short-term dynamics [18].

A Fourier series was originally intended to work on con-
tinuous signals. There also exists the Discrete Fourier Trans-
form, DFT, which can be applied on discrete data points as
follows. First a series of complex constants Xk where k goes
from 0 up to N −1 need to be calculated as shown in formula
8 [19].

Xk =

N−1∑
n=0

xn · e−i2πkn/N (8)

In this case N represents the total number of datapoints,
xn represents the datapoint at position n. k does not need
to go up all the way to N − 1 but doing so will lead to a
higher accuracy. k represents the number of periods per N
datapoints, high values for k mean more fine tuned systems
are introduced, while low values often detect larger patterns.
With the complex constants of Xk calculated we can reverse
this transformation to calculate xn via formula 9 [19].

xn =
1

N

N−1∑
k=0

Xk · ei2πkn/N (9)

As ei2πn is periodic we can use this inversion to also calcu-
late values outside of the range [0, N ] as long as n ∈ Z. How-
ever, the featurizer will construct each of these waves up to
k = m/2 separately and feed them into the ARIMAX model.
This allows the ARIMAX model to decide which components
are useful when taking into account the seasonality.

4 Methodology
4.1 Data usage and validation
The data consists of fifteen minute measurements of each de-
vice in a household over a series of households collected by
Pecan Street [20]. They are an energy monitoring company
aiming to accelerate climate and conservation solutions. In
particular we will be using their fifteen minute interval New
York data set. This data set was chosen as it’s one of lower
granularity and has a higher data integrity, the main reason for
those interests is a lower runtime. This data is first grouped
by household and then converted to hourly data by taking the
mean of every four data points. The data is then split into two
sections, training and testing. The training data will solely be
used to find the hyper parameters for each model and will be
input as one large chunk. The test data will be split up into
chunks via a sliding window containing a number of n > 1
whole days of which the first n− 1 days will be used as input
and the last day the actual signal to compare to the prediction.



A day starts at 00:00 and ends at 23:45 resulting in 24 data
points in a day

The accuracy of the predictions will then be established.
This will be done via series of metrics:

• RMSE, Root Mean Squared Error.
• MAPE, Mean Absolute Percentage Error.
• MAE, Mean Absolute error.
• MRE, Mean Relative error.

For all metrics it holds that a lower score is preferred. These
metrics were chosen as they have shown up most predomi-
nately in other work [4,9,21]. Thus utilizing them here would
lead for easier comparisons with the rest of the field.

As no household is the same, comparing between them is
difficult. Each household has a different set of appliances and
they are all used in different ways. This makes it impossible
to calculate the effects of a system of which only a part is re-
moved to be modelled separately, a partial hierarchy, and to
then compare it to all houses in the data set. e.g. It could be
that houses that have an electric car are easier to predict in
general, the electric car is a large yet regular consumer. How-
ever, this would mean that when applying the partial hierar-
chy on such a house, even if the technique has no effect, the
average score over this subset of households would be lower
than the average score over all households. Initially it would
seem like an improvement has taken place, the score of the
electric car partial hierarchy is lower than the total grid score,
the score of the models predicting just the total energy con-
sumption. Yet this might not be the case. To remove this bias
each device category will need to weighed against its own to-
tal grid score. Meaning, the electric car partial hierarchy will
be compared only to the total grid scores of houses that have
electric cars themselves.

4.2 Baseline algorithms
In order to compare the predictions to a series of trivial solu-
tions two solutions are presented. The first trivial solution is
known as the persistence method. This takes in the last value
of the input signal and repeats it for as many forecasts as re-
quested, more specifically in this case it will return the last
day of the input sample as the prediction. The second trivial
solution is the moving average. This solution will take in the
input signal and calculate the mean of the seasonal lags and
return that as its output signal.

5 Experimental setup
For each iteration, consisting of a house and one of its appli-
ances, three models were made. First a model was required
to predict the total energy consumption of the household, this
will be called the total model. Secondly a of model for each
device was created, known as the device model. Lastly an-
other model was trained on the partial energy consumption
of a household, a model responsible for predicting the total
power consumption minus the consumption of the device in
the iteration, known as the partial model. The predictions
from the device and partial models would be summed up to
create a partial hierarchy for each device respectively to result
in a singular model, the test model.

All three models would be asked to create predictions
based on the test data. The predictions of the device and par-
tial model would be summed up to one signal. Then the re-
maining two signals would be compared to the ground truth.

5.1 Evaluation
In this experiment five methods were compared:

• The persistence method.

• The moving average.

• ARIMA.

• SARIMA with m = 24.

• ARIMAX utilizing a Fourier featurizer.

From the data set the first month was utilized to perform
hyper parameter tuning. If a model did not require hyper pa-
rameter tuning the month was discarded. The remaining five
months were then fed to the models via a sliding window. The
models were reset after each iteration of the sliding window
to avoid knowledge bleed over. This sliding window incorpo-
rated eight days. The first seven of which would be used as in-
put data for each model to predict the eighth day which acted
as the reference solution. After this the predictions were mea-
sured by taking the previously mentioned metrics. The total
grid scores for each device was also calculated by averaging
out only the total grid scores from households that had the
device present. For a device to be retained into the final result
at least three houses needed to have the device registered.

6 Results
The SARIMA method timed out when running on the larger
data set, more on this can be read in section 8. Therefore only
the results for the ARIMA and the ARIMAX techniques will
be shown when talking about the ARMA methods.

Performing this experiment we obtain the following re-
sults. When considering only the total signal we get the fol-
lowing average scores for each method and their critic.

critic ARIMA Moving Average Persistence ARIMAX

MAE 0.33785 0.30631 0.33915 0.31913
MAPE 228.40 178.00 178.03 197.94
MRE 0.03491 0.00262 0.00199 0.00679

RMSE 0.55112 0.52721 0.66903 0.52979

Table 1: Scores per metric for each method considering only the
total output of a household.

Consolidating the data, the following four tables will show
all devices that saw an improvement in accuracy over all
of the total models. To further explain, if the device is in
one of these tables it means that using the technique un-
der test and creating the device and partial model beats all
of the techniques used on the total signal. The test column
tells us which technique (AX for ARIMAX, AR for ARIMA,
PE for persistence, and MA for moving average) lead to the
overall best result when using a partial Hierarchy. The to-
tal column describes which technique was most effective on



the total signal. The accuracy columns describe the metric
score for the test and total techniques respectively. The rel-
ative column shows how much the accuracy score has im-
proved relative to the score of the total model. Defined as
(|total acc| − |test acc|)/|total acc|.

Out of the 44 devices present in the data set only 22 were
present in three or more households. This means that with
four metrics there are a total of 88 device metric combina-
tions. Suffixes indicating which specific freezer have been
removed for clarity. In this specific case all devices could be
suffixed with 1 to compare with the original data set. The
names of each device were created by Pecan street and the
descriptions come included when downloading one of their
data sets.

device test total test acc total acc relative

livingroom AX AX 111.34 118.21 5.80%
freezer AX AX 86.056 89.588 3.94%
air AX AX 90.280 93.578 3.52%
refrigerator AX AX 104.29 107.55 3.02%
waterheater AX AX 126.54 128.89 1.82%
furnace AX PE 92.486 93.848 1.45%
lights plugs AX AX 91.515 91.896 0.41%

Table 2: All devices with a positive increase when looking at the
MAPE metric. 7 of 22 devices saw an increase.

device test total test acc total acc relative

bedroom AX AR 0.00041 -0.01500 97.2%
wellpump AX AX 0.00014 0.00091 83.7%
circpump AX AX 0.00057 0.00212 72.7%
garage AR AX -0.00215 -0.00481 55.2%
refrigerator AX PE 0.00578 0.00623 7.1%
garage AX AX -0.00457 -0.00481 4.8%
car AX MA 0.01722 -0.01793 3.9%

Table 3: All devices with a positive increase when looking at the
MRE metric. 7 of 22 devices saw an increase.

device test total test acc total acc relative

air AX MA 0.33428 0.33870 1.30%
bedroom AR AR 0.34960 0.35258 0.84%
pump AR AR 0.36082 0.36297 0.59%

Table 4: All devices with a positive increase when looking at the
MAE metric. 3 of 22 devices saw an increase.

device test total test acc total acc relative

drye AX AX 0.56620 0.57476 1.48%
waterheater AX AX 0.64642 0.65479 1.27%
air AX AX 0.54321 0.54813 0.89%
range AX AX 0.58056 0.58286 0.39%
furnace AX MA 0.51153 0.51323 0.33%
clotheswasher AX AX 0.52114 0.52176 0.11%
bedroom AR AR 0.64959 0.65011 0.08%

Table 5: All devices with a positive increase when looking at the
RMSE metric. 7 of 22 devices saw an increase.

This in total amounts to 24 out of those 88 combinations
being won by an ARMA based method that is utilizing the
partial hierarchy. Zooming out, out of all situations in 54 out
of 88 combinations does a baseline method win, both from an
ARMA based partial hierarchy as well as a total grid signal
ARMA based model. 38 of which are won by the moving
average and 16 are won by the persistence method.

When viewing just the effects of the partial hierarchy there
are 178 categories, 88 ARIMA device-critic combinations
and 88 ARIMAX combinations. Out of these 178 categories
100 show an increase in accuracy when the partial hierarchy
model is introduced. An abbreviated version of this table, set
to include only relative scores ≥ 5%, and a table of the full
results can be found in appendix A and B respectively.

7 Responsible Research
The nature of such a project as this is quite intrusive. The
paper’s aim is to properly predict a households power con-
sumption and therefore by extend the behaviour of the people
within the household. An argument could be made that one
would still require smart meters placed throughout their home
in order for this data to become available. However, with en-
ergy dis-aggregation techniques becoming more available and
accurate the risks should not be discarded. These two tech-
niques, consumption prediction and energy dis-aggregation,
could be trained in tandem with each other. Allowing them to
eventually function without any smart meters on the net for a
considerable time.

And while these models could be run locally by the house-
hold in most cases they will be run by a third party meaning
personal data will be transferred and analyzed. This project
therefore lies in a grey area, as energy is just another product
we consume it can be viewed from the same ethical stand-
point as shopping cart analysis of large supermarket chains.
It is not inherently negative for the user. These processes at-
tempt to tailor an experience that best suits the user, often
with deals that appeal beneficial to them. The question that
remains is ”are those deals really beneficial to them and so-
ciety as a whole?”. And more specifically when dealing with
energy consumption. If this model allows for more personal
services to what extend do those personal services lead to an
overall higher consumption that you originally did not need?

In conclusion, while this technique is interesting and im-
portant privacy watchdogs should be aware of the risks and
inform both consumers and authorities that this data can also
be used to model people’s personalities. And although these



techniques do pose a risk to a users privacy. If these models
are ran locally within a users network there is no risk of per-
sonal information leaking out to third parties while still being
able to provide both ecological and economical benefits.

8 Discussion
8.1 result summary
In the results we can see that the moving average method
scores best with the MAE, MAPE, and RMSE critics. The
MRE critic is won by the persistence method. In 24 out of 88
categories did using a partial hierarchy improve the overall
accuracy. Most of those increases only occur when an ARMA
based method was already the most effective as this relation
accounts for 18 out of 24 improvements. In 54 out of the 88
categories did a baseline method beat out the ARMA based
models, both total and partially hierarchic. In the remaining
10 scenarios an ARMA based method was most effective yet
transforming it into a partial hierarchy-based method deemed
ineffective. When reviewing only the effects of the introduc-
tion of the partial hierarchy we can see that 100 out of 178
categories see an increase in accuracy.

It should be noted that SARIMA is not part of the test
suite. During preliminary testing it came to light that running
SARIMA with large seasonal periods proved highly ineffec-
tive. While the original goal was to include it in the paper.
When running the method early estimates for m = 24 showed
computation times lasting longer than a week. Combining
that with the underlying library, numpy, being able to run out
of memory anywhere within that week attempting to utilize
SARIMA became futile. An argument could be made that the
data could have been made 2-hourly as m = 12 could have
still shown results. I have chosen to not go down this path as
other techniques do manage to attain hourly accuracy, such
as MARS and SVR. Utilizing a lower granularity than hourly
would not be beneficial as at the writing of this paper modern
energy pricing infrastructure, such as EPEX SPOT [22], is at
worst hourly based.

8.2 interpretation
From table 1 we can see that the baseline methods themselves
already have a high accuracy compared to the ARMA based
methods. With their MAPE scores being considerably lower
the baseline methods take a strong lead. And while the per-
sistence method falls off when looking at the RMSE score the
baseline methods are still of a comparable level to the ARMA
based models when looking at the MAE and MRE scores. We
can also see that for all methods their MAE score is almost a
factor 10-100 larger than their respective MRE score. Indicat-
ing that while these models might not be great at predicting
the power consumption for a specific time of day their overall
energy consumption of the entire day is accurate.

For the partial hierarchy setup, the results are not overly
positive. In 24 out of the 88 categories to compete in do the
partial hierarchy ARMA based methods win. If we were to
assume a standard error margin of α > 0.05, the relative
score being larger than 5%, only 7 of those wins could be
designated as confident wins. Most of which are in the same
metric, RMSE. Additionally, the introduction of the partial

hierarchy, when ignoring the baseline methods, shows that
in 100 out of 178 categories the model leads to a higher ac-
curacy. However, when viewing that through the same error
margin only 28 out of 178 categories show a confident posi-
tive answer.

8.3 implication
The total results therefore deem ARMA based methods un-
fit as their baseline counterparts are cheaper to compute and
perform at a similar level. Only when looking at a partial hi-
erarchy can some claims of effectiveness be made, if a house
has a smart meter in the bedroom the overall accuracy can be
increased by taking the bedroom signal and modelling it sep-
arately. However, these claims of effectiveness can only be
made when looking at one metric. Looking at all four metrics
not a single partial hierarchy shows a confident improvement,
α > 0.05, in more than one of the metrics. Considering that
only in 7 of 88 cases a confident improvement over non par-
tially hierarchic methods was achieved. When disregarding
the baseline methods, the ARMA based models do see an in-
crease when a partial hierarchy is introduced. However as
only 28 of those can be marked as confident improvements it
is by far a blanket type of solution that could be applied to
any ARMA based model.

8.4 limitations
While a limited amount of success was discovered with the
partial hierarchy structure. It is beyond the scope of this pa-
per to compare the partial hierarchy method when combined
with different methods. ARMA based methods clearly have a
limited benefit from the structure, yet different methods could
react in a more positive manner. We should therefore not dis-
card the partial hierarchy structure as a whole. The general-
izability of the results is also limited by the choice of metric.
We used an error margin of α > 0.05 to justify whether a
better score was confidently better. However not all metrics
behave the same or can be compared this way. One could
choose to use the Mean Squared Error, MSE, instead of the
RMSE. While these metrics encode the same information, di-
rectly comparing two MSE scores to each other will return
a different relative score than when comparing two RMSE
scores.

9 Conclusions and Future Work
In summary, this paper investigated predicting household en-
ergy consumption and attempted to answer the following
main question: ”Can the forecast accuracy for a single house-
hold be improved by using a partial hierarchical structure
when using an ARMA based method?” To which the answer
was no. With only 28 out of 178 categories leading to a con-
fident positive result this technique should only be applied
when you can prove its effectiveness beforehand, it is not suit-
able as a blanket type of solution. On top of that the SARIMA
based method was incapable of being utilized due to long run
times. For the other two ARMA based methods certain cases
were found in which it would make sense to apply the tech-
nique but with the results spread far and with no resound-
ing positive results no positive conclusions could be drawn.



As no appliance could be transformed into a partial hierarchy
with a confident improvement, the sub question ”What de-
vices, when modelled separately in the hierarchy, lead to the
largest improvement of accuracy?” can for now be answered
with: none. As baseline techniques such as the seasonal mov-
ing average outperformed the ARMA based methods in most
scenarios the answer to the final sub question ”How do simple
persistence methods compare to ARMA based methods?”.
Can be answered as: simple persistence methods can perform
on an equal if not more accurate level than ARMA based
methods when it comes to household energy consumption
prediction. In the scenarios where an ARMA based method
did have the upper hand it only gained a slight increase in ac-
curacy when using the partial hierarchy model, and in most
cases this advantage could still fall within a margin of error.

With this paper concluding future avenues of research are
to be recommended. The first curiosity is to try another tech-
nique that is not directly ARMA based. As ARMA based
methods were already not the biggest performers it would
make sense to try another technique such as support vec-
tor regression. The second recommendation is to mix and
match techniques. Using the same technique to model both
the separate device as well as the remainder of the house is
a naive concept. Certain devices benefit from different mod-
els. Those devices which are regular consumers, like a fridge,
might benefit from an ARMA method while a model for the
TV will be better off with a moving average. My final and
most important recommendation is to not limit yourself to
one data set. We only considered the New York Pecan Street
data set, but it would be interesting to see if other data sets
perform better. ARMA based methods are after all still used
in the field of energy prediction so it would be useful to see
if these results are a fluke of the data set or are more encom-
passing of the actual world.

This research has shown that while there might still be
promise in using a partial hierarchy technique ARMA based
methods do not have the capability of sufficiently modelling
a household’s energy consumption. Both when modelling the
total energy consumption of a house as well as when utilizing
a partial hierarchy. Further research will be required to see
if the partial hierarchy technique can deliver with different
algorithms.
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critic device method partial_hierarchy

mre bedroom1 ARIMAX 0.0004184252829904985

mre wellpump1 ARIMAX 0.00014828766148642663

mre pump1 ARIMA 0.0026498853234476873

mre circpump1 ARIMAX 0.000579650713600588

mre garage1 ARIMA -0.002151999652631072

mre kitchenapp2 ARIMA 0.01721866330686272

mre livingroom1 ARIMA 0.012437188609127162

mre livingroom1 ARIMAX 0.008427139971752063

mre wellpump1 ARIMA 0.04275254462702738

mre air1 ARIMAX 0.010570688954377799

mre kitchenapp1 ARIMAX 0.0043595459208773495

mre waterheater1 ARIMA 0.06171354090142985

mre freezer1 ARIMAX 0.010883182196332731

mre refrigerator1 ARIMAX 0.0057860983735503755

mape lights_plugs1 ARIMA 97.55032831458911

mre clotheswasher1 ARIMA 0.036654631158401695

mre refrigerator1 ARIMA 0.03702766411304275

mape garage1 ARIMA 398.75773047725846

mre kitchenapp2 ARIMAX 0.0034548263088910775

mre freezer1 ARIMA 0.026421075334460916

mape waterheater1 ARIMA 154.8842096709387

mape range1 ARIMA 363.62845577425395

mae livingroom1 ARIMAX 0.20197782359546798

mre range1 ARIMA 0.03832865205330468

mape refrigerator1 ARIMA 121.91148104623333

mre dishwasher1 ARIMA 0.059682429997113894

mape livingroom1 ARIMAX 111.34785958628838

mape wellpump1 ARIMA 190.83801483373742

A Section Heading



total relative_difference

-0.0029085184917567817 0.8561380014683131

0.0009109483730079638 0.8372161739564025

0.014374540629758514 0.815654260424724

0.002127056262250327 0.7274868916784812

0.005689609527698554 0.621766723682081

0.03283880332518092 0.4756610605947572

0.021859546702324904 0.43104087296538557

0.01445405123032287 0.4169703816966601

0.061886186317635934 0.30917467740544824

0.01470824331859268 0.28130853390116284

0.006029976075404692 0.27702102523105526

0.0824773890161841 0.2517520057609955

0.013526542959834438 0.19542027636705642

0.007016565467583937 0.17536601058142148

114.81340233222673 0.15035765570020118

0.04293929251549572 0.1463615488034892

0.04214756653814158 0.12147563538373098

451.9537206410985 0.11770229502344022

0.0038412488708845943 0.10059815830275226

0.02866984380832439 0.07843671869640728

168.01275483630303 0.07814016964459418

394.0941177717394 0.07730554865863601

0.2162245447044905 0.06588854715126455

0.04100068012502475 0.06517033531083312

130.20131808780926 0.06366937879987636

0.0636316981392452 0.06206447820218667

118.21341135787175 0.05807760467041287

202.07434728345132 0.05560494244206369



critic device method partial_hierarchy total

mae air1 ARIMA 0.36182262264632437 0.3586532619561779

mae air1 ARIMAX 0.3342810839929785 0.3470072583903209

mae air1 MA 0.3387053869047619 0.3387053869047619

mae air1 REPEAT 0.3599795833333333 0.35997958333333335

mape air1 ARIMA 108.01773012866465 102.93125121426286

mape air1 ARIMAX 90.28041800390413 93.578531956966

mape air1 MA 98.1507324321877 98.1507324321877

mape air1 REPEAT 95.39633261035283 95.39633261035281

mre air1 ARIMA 0.04931914508422125 0.034088431103016126

mre air1 ARIMAX 0.010570688954377799 0.01470824331859268

mre air1 MA 0.0048868303571428535 0.0048868303571428535

mre air1 REPEAT 0.003350208333333332 0.003350208333333332

rmse air1 ARIMA 0.5683692185050506 0.5557228878611745

rmse air1 ARIMAX 0.543214563762088 0.5481319806018589

rmse air1 MA 0.5508789465007374 0.5508789465007373

rmse air1 REPEAT 0.6760852963806827 0.6760852963806826

mae bathroom1 ARIMA 0.3325685261125808 0.3318242808070354

mae bathroom1 ARIMAX 0.3086245155518625 0.3078533976760848

mae bathroom1 MA 0.2853070684523809 0.28530706845238096

mae bathroom1 REPEAT 0.3383893229166667 0.3383893229166667

mape bathroom1 ARIMA 110.98877076243787 111.06663679880651

mape bathroom1 ARIMAX 96.99645271639545 96.66045778311103

mape bathroom1 MA 91.70199234985625 91.70199234985625

mape bathroom1 REPEAT 102.18913648798132 102.18913648798132

mre bathroom1 ARIMA 0.055248606414464746 0.05428730569568094

mre bathroom1 ARIMAX -0.00020018392335980273 5.039785553791849e-05

mre bathroom1 MA 0.012753385416666665 0.012753385416666667

mre bathroom1 REPEAT 0.0046171875 0.0046171875

rmse bathroom1 ARIMA 0.4899888263535792 0.4896527233289288

rmse bathroom1 ARIMAX 0.4757752568825443 0.4753029113176407

rmse bathroom1 MA 0.4538510125619363 0.4538510125619363

rmse bathroom1 REPEAT 0.6005506621684447 0.6005506621684447

mae bedroom1 ARIMA 0.3496078488164946 0.3525879151577519

mae bedroom1 ARIMAX 0.37403123389085524 0.37560711105196176

mae bedroom1 MA 0.37470189732142856 0.37470189732142856

mae bedroom1 REPEAT 0.3767631510416666 0.3767631510416666

mape bedroom1 ARIMA 148.9005991840325 150.17032712162649

mape bedroom1 ARIMAX 157.7361349141087 156.9995483687846

mape bedroom1 MA 170.88978719595877 170.88978719595877

mape bedroom1 REPEAT 147.9960428326 147.9960428326

mre bedroom1 ARIMA -0.01841751886054193 -0.015002651993540356

mre bedroom1 ARIMAX 0.0004184252829904985 -0.0029085184917567817

mre bedroom1 MA 0.016096800595238093 0.016096800595238093

mre bedroom1 REPEAT -0.0007194010416666672 -0.0007194010416666672

rmse bedroom1 ARIMA 0.6495947252163886 0.6501181253446063

rmse bedroom1 ARIMAX 0.6681814789017522 0.6708362396487104

rmse bedroom1 MA 0.6696823977636535 0.6696823977636535

rmse bedroom1 REPEAT 0.8023140010210165 0.8023140010210165

mae car1 ARIMA 0.6082276538194651 0.5410847234990287

B Full results table



mae car1 ARIMAX 0.5219757896035402 0.5047207278424996

mae car1 MA 0.4822139508928571 0.4822139508928571

mae car1 REPEAT 0.5365334635416665 0.5365334635416666

mape car1 ARIMA 283.26866635745586 248.67947932105207

mape car1 ARIMAX 232.47924649261438 212.95814748873715

mape car1 MA 192.18008721299285 192.18008721299285

mape car1 REPEAT 191.66041797119368 191.66041797119368

mre car1 ARIMA 0.13042072897411278 0.0450941460990404

mre car1 ARIMAX 0.017229732032309562 -0.006305299190086629

mre car1 MA -0.017936495535714296 -0.017936495535714296

mre car1 REPEAT 0.0017795572916666667 0.0017795572916666667

rmse car1 ARIMA 1.0515609502634726 0.985801385464232

rmse car1 ARIMAX 0.9347047908571122 0.9147422837288857

rmse car1 MA 0.9289501139172088 0.9289501139172087

rmse car1 REPEAT 1.1873026176814452 1.187302617681445

mae circpump1 ARIMA 0.4014690076252299 0.402315105609521

mae circpump1 ARIMAX 0.3402559760160997 0.3397249301113525

mae circpump1 MA 0.35229774925595236 0.35229774925595236

mae circpump1 REPEAT 0.3970696614583333 0.39706966145833333

mape circpump1 ARIMA 308.46984229235323 311.9973461918213

mape circpump1 ARIMAX 205.0173635150004 207.00157591572497

mape circpump1 MA 199.58815326363157 199.58815326363154

mape circpump1 REPEAT 198.854206282218 198.854206282218

mre circpump1 ARIMA 0.07808321832505326 0.08002496688055925

mre circpump1 ARIMAX 0.000579650713600588 0.002127056262250327

mre circpump1 MA 0.0033714471726190515 0.0033714471726190515

mre circpump1 REPEAT 0.004432421874999999 0.004432421875

rmse circpump1 ARIMA 0.6017596677220172 0.6007729740149355

rmse circpump1 ARIMAX 0.5227856526115835 0.5209616940011557

rmse circpump1 MA 0.5432105126577964 0.5432105126577964

rmse circpump1 REPEAT 0.6858109074595051 0.6858109074595051

mae clotheswasher1 ARIMA 0.3517555325988776 0.3544331816966265

mae clotheswasher1 ARIMAX 0.33164670346966485 0.3314517510025242

mae clotheswasher1 MA 0.32736922433035726 0.32736922433035714

mae clotheswasher1 REPEAT 0.36543430989583325 0.36543430989583325

mape clotheswasher1 ARIMA 290.2806649728631 286.76043988873704

mape clotheswasher1 ARIMAX 239.66826370703166 239.61081616063456

mape clotheswasher1 MA 219.3658362207157 219.3658362207156

mape clotheswasher1 REPEAT 221.17928573221576 221.17928573221582

mre clotheswasher1 ARIMA 0.036654631158401695 0.04293929251549572

mre clotheswasher1 ARIMAX 0.011867917774247071 0.008204727825858793

mre clotheswasher1 MA 0.004370200892857141 0.004370200892857143

mre clotheswasher1 REPEAT 0.00333671875 0.0033367187499999994

rmse clotheswasher1 ARIMA 0.5456896092182865 0.5437451432307164

rmse clotheswasher1 ARIMAX 0.5211425257285265 0.5217629799221675

rmse clotheswasher1 MA 0.5255604474102769 0.5255604474102769

rmse clotheswasher1 REPEAT 0.6660149892833822 0.6660149892833822

mae dishwasher1 ARIMA 0.3547481344199261 0.3559077022474509

mae dishwasher1 ARIMAX 0.32057154316172237 0.31945301463074244

mae dishwasher1 MA 0.303394673859127 0.303394673859127



mae dishwasher1 REPEAT 0.3438483940972222 0.3438483940972221

mape dishwasher1 ARIMA 167.66268197864113 171.38163260295224

mape dishwasher1 ARIMAX 126.41073729091596 127.0576175593186

mape dishwasher1 MA 121.25081368813214 121.25081368813214

mape dishwasher1 REPEAT 120.549825777903 120.54982577790297

mre dishwasher1 ARIMA 0.059682429997113894 0.0636316981392452

mre dishwasher1 ARIMAX 0.015533987160368808 0.012752554772087562

mre dishwasher1 MA 0.004858413938492062 0.004858413938492063

mre dishwasher1 REPEAT 0.0030992621527777767 0.003099262152777777

rmse dishwasher1 ARIMA 0.5396456130238464 0.5379555076344633

rmse dishwasher1 ARIMAX 0.4984082165786335 0.49904764442942473

rmse dishwasher1 MA 0.49003304044799406 0.49003304044799406

rmse dishwasher1 REPEAT 0.6328759188024691 0.6328759188024691

mae drye1 ARIMA 0.3844607608606396 0.38450542673469423

mae drye1 ARIMAX 0.3528488717635363 0.36150865449949887

mae drye1 MA 0.3508530155812326 0.3508530155812325

mae drye1 REPEAT 0.39147294730392146 0.3914729473039215

mape drye1 ARIMA 307.2873026347975 298.0987105149925

mape drye1 ARIMAX 245.4163665429204 251.4481244795929

mape drye1 MA 225.27491339662132 225.27491339662126

mape drye1 REPEAT 227.44932188805748 227.4493218880575

mre drye1 ARIMA 0.046778154809770975 0.0430794361502544

mre drye1 ARIMAX 0.014957338118510296 0.007076047234030299

mre drye1 MA 0.00016781775210083775 0.00016781775210083775

mre drye1 REPEAT 0.0025955575980392163 0.002595557598039216

rmse drye1 ARIMA 0.6068617860479818 0.5964629270965806

rmse drye1 ARIMAX 0.5662035340398318 0.5747623882391083

rmse drye1 MA 0.575172640755863 0.575172640755863

rmse drye1 REPEAT 0.7301611043102705 0.7301611043102706

mae freezer1 ARIMA 0.2816691871419735 0.28472239578240977

mae freezer1 ARIMAX 0.2739537931831323 0.2819768132976373

mae freezer1 MA 0.26221202168367347 0.2622120216836734

mae freezer1 REPEAT 0.2858020833333333 0.2858020833333333

mape freezer1 ARIMA 94.55213717279328 97.86663713084597

mape freezer1 ARIMAX 86.05679625624967 89.58880675122607

mape freezer1 MA 93.01331153234743 93.01331153234742

mape freezer1 REPEAT 91.6497451561352 91.64974515613518

mre freezer1 ARIMA 0.026421075334460916 0.02866984380832439

mre freezer1 ARIMAX 0.010883182196332731 0.013526542959834438

mre freezer1 MA 0.01608115433673469 0.01608115433673469

mre freezer1 REPEAT 0.004654464285714285 0.004654464285714285

rmse freezer1 ARIMA 0.45433221811308305 0.4649739341709479

rmse freezer1 ARIMAX 0.45873946286349215 0.46277934530836545

rmse freezer1 MA 0.45270195469066693 0.45270195469066704

rmse freezer1 REPEAT 0.56765539543692 0.56765539543692

mae furnace1 ARIMA 0.34633952214645514 0.34477232133418406

mae furnace1 ARIMAX 0.31959044616000043 0.3230665264598013

mae furnace1 MA 0.31259836985930733 0.31259836985930733

mae furnace1 REPEAT 0.34327684659090907 0.34327684659090907

mape furnace1 ARIMA 110.04411848567189 108.98960539628406



mape furnace1 ARIMAX 92.48636164377359 94.59029589617916

mape furnace1 MA 94.74386109814205 94.74386109814203

mape furnace1 REPEAT 93.8487478015334 93.84874780153338

mre furnace1 ARIMA 0.054337218028832686 0.05024962295228545

mre furnace1 ARIMAX 0.019606679995119093 0.015724692399210673

mre furnace1 MA 0.002974519751082252 0.002974519751082252

mre furnace1 REPEAT 0.0032861268939393933 0.0032861268939393938

rmse furnace1 ARIMA 0.5390261703863295 0.5366189447672114

rmse furnace1 ARIMAX 0.511531030753133 0.5157020843306724

rmse furnace1 MA 0.513231262084142 0.513231262084142

rmse furnace1 REPEAT 0.6465907194010536 0.6465907194010536

mae garage1 ARIMA 0.3753963980530926 0.381257389661163

mae garage1 ARIMAX 0.37816580505351877 0.3771554820625824

mae garage1 MA 0.34195276360544213 0.3419527636054421

mae garage1 REPEAT 0.37512053571428566 0.37512053571428566

mape garage1 ARIMA 398.75773047725846 451.9537206410985

mape garage1 ARIMAX 419.3750104498814 418.5769384859944

mape garage1 MA 351.0634451927263 351.06344519272625

mape garage1 REPEAT 354.0826664621154 354.0826664621155

mre garage1 ARIMA -0.002151999652631072 0.005689609527698554

mre garage1 ARIMAX -0.004575717906019754 -0.00481045003984089

mre garage1 MA -0.0040498299319727945 -0.0040498299319727945

mre garage1 REPEAT -0.002999255952380952 -0.0029992559523809516

rmse garage1 ARIMA 0.6964348747311359 0.6989658176606028

rmse garage1 ARIMAX 0.6863974294137513 0.6852293910694278

rmse garage1 MA 0.670167786659602 0.6701677866596022

rmse garage1 REPEAT 0.8546648354558266 0.8546648354558266

mae heater1 ARIMA 0.3047157357323949 0.2907116207530493

mae heater1 ARIMAX 0.2924778967937507 0.28796977995903233

mae heater1 MA 0.27569081439393944 0.2756908143939394

mae heater1 REPEAT 0.3045621685606061 0.304562168560606

mape heater1 ARIMA 141.15501870369644 134.63044666130847

mape heater1 ARIMAX 128.39079294010537 125.15445587935501

mape heater1 MA 119.44606868136339 119.44606868136339

mape heater1 REPEAT 118.50587398545971 118.50587398545973

mre heater1 ARIMA 0.04572508274771194 0.019211365269974603

mre heater1 ARIMAX 0.011737602683440096 0.0013185902409134258

mre heater1 MA 0.007224215367965365 0.0072242153679653665

mre heater1 REPEAT 0.0028430397727272727 0.0028430397727272727

rmse heater1 ARIMA 0.48384484093564667 0.46277335021979327

rmse heater1 ARIMAX 0.47298651028583516 0.4667326814545096

rmse heater1 MA 0.45919375858693195 0.45919375858693195

rmse heater1 REPEAT 0.5807839885496677 0.5807839885496677

mae kitchenapp1 ARIMA 0.3409312620040456 0.3399335256923772

mae kitchenapp1 ARIMAX 0.32489081828824573 0.3254367485600059

mae kitchenapp1 MA 0.3011442915013227 0.3011442915013227

mae kitchenapp1 REPEAT 0.32919618055555544 0.3291961805555555

mape kitchenapp1 ARIMA 144.99742480560997 143.42324598788093

mape kitchenapp1 ARIMAX 123.5762659105599 124.76273578355966

mape kitchenapp1 MA 112.59818743604144 112.59818743604147



mape kitchenapp1 REPEAT 111.09366169184271 111.09366169184273

mre kitchenapp1 ARIMA 0.03352129258815286 0.031489311931983094

mre kitchenapp1 ARIMAX 0.0043595459208773495 0.006029976075404692

mre kitchenapp1 MA -0.002466662533068785 -0.0024666625330687854

mre kitchenapp1 REPEAT -0.00016660879629629616 -0.00016660879629629607

rmse kitchenapp1 ARIMA 0.5679862133227952 0.5670722651137793

rmse kitchenapp1 ARIMAX 0.5536375549394871 0.5539518902313352

rmse kitchenapp1 MA 0.5409183503691621 0.540918350369162

rmse kitchenapp1 REPEAT 0.685654155528551 0.6856541555285511

mae kitchenapp2 ARIMA 0.31322367398425804 0.32387709164337586

mae kitchenapp2 ARIMAX 0.31002867470299816 0.3103420476874686

mae kitchenapp2 MA 0.289600923859127 0.28960092385912695

mae kitchenapp2 REPEAT 0.31803858506944443 0.31803858506944443

mape kitchenapp2 ARIMA 135.95636683738587 141.58107213245853

mape kitchenapp2 ARIMAX 118.88496081264448 118.62398821725269

mape kitchenapp2 MA 110.73022737818877 110.73022737818879

mape kitchenapp2 REPEAT 106.36688867495377 106.36688867495377

mre kitchenapp2 ARIMA 0.01721866330686272 0.03283880332518092

mre kitchenapp2 ARIMAX 0.0034548263088910775 0.0038412488708845943

mre kitchenapp2 MA 0.003390730406746031 0.0033907304067460307

mre kitchenapp2 REPEAT 0.0013311197916666669 0.0013311197916666666

rmse kitchenapp2 ARIMA 0.5406896179015198 0.5465788282997319

rmse kitchenapp2 ARIMAX 0.5382379303954626 0.5383734362844251

rmse kitchenapp2 MA 0.5254446822839935 0.5254446822839935

rmse kitchenapp2 REPEAT 0.6616049361634991 0.6616049361634991

mae lights_plugs1 ARIMA 0.3052821870790066 0.3048795821887883

mae lights_plugs1 ARIMAX 0.26839180301652965 0.26986273688294543

mae lights_plugs1 MA 0.24423087797619045 0.24423087797619045

mae lights_plugs1 REPEAT 0.2706220833333333 0.2706220833333334

mape lights_plugs1 ARIMA 97.55032831458911 114.81340233222673

mape lights_plugs1 ARIMAX 91.51542961911727 91.89611903149137

mape lights_plugs1 MA 98.52671198572085 98.52671198572084

mape lights_plugs1 REPEAT 92.17282140829185 92.17282140829185

mre lights_plugs1 ARIMA 0.07087946046885579 0.07046819925174899

mre lights_plugs1 ARIMAX 0.018276057906323 0.0179007978449341

mre lights_plugs1 MA 0.03219334821428571 0.03219334821428571

mre lights_plugs1 REPEAT 0.007452499999999999 0.007452499999999999

rmse lights_plugs1 ARIMA 0.47622316480198534 0.47639271036284525

rmse lights_plugs1 ARIMAX 0.4447941985742965 0.4476671494542311

rmse lights_plugs1 MA 0.4236735259305465 0.4236735259305465

rmse lights_plugs1 REPEAT 0.5504960809735469 0.550496080973547

mae livingroom1 ARIMA 0.2142628034604186 0.21403613260688872

mae livingroom1 ARIMAX 0.20197782359546798 0.2162245447044905

mae livingroom1 MA 0.20149868551587302 0.20149868551587302

mae livingroom1 REPEAT 0.22467682291666666 0.22467682291666666

mape livingroom1 ARIMA 122.17318567128272 127.0178730030442

mape livingroom1 ARIMAX 111.34785958628838 118.21341135787175

mape livingroom1 MA 119.629142167763 119.629142167763

mape livingroom1 REPEAT 119.11899811017607 119.1189981101761

mre livingroom1 ARIMA 0.012437188609127162 0.021859546702324904



mre livingroom1 ARIMAX 0.008427139971752063 0.01445405123032287

mre livingroom1 MA 0.0240578125 0.0240578125

mre livingroom1 REPEAT 0.0073709201388888895 0.007370920138888889

rmse livingroom1 ARIMA 0.34444547789112256 0.33663090053613587

rmse livingroom1 ARIMAX 0.3339479161417353 0.34409270467922726

rmse livingroom1 MA 0.3310665034593679 0.3310665034593679

rmse livingroom1 REPEAT 0.4231897790455739 0.4231897790455739

mae oven1 ARIMA 0.2283673589404581 0.22309134120102944

mae oven1 ARIMAX 0.22450891492304934 0.22381597456519783

mae oven1 MA 0.23701201636904765 0.2370120163690476

mae oven1 REPEAT 0.25154166666666666 0.2515416666666667

mape oven1 ARIMA 465.289519565009 430.7962887413043

mape oven1 ARIMAX 393.4216675898583 394.4331243039478

mape oven1 MA 344.3674724910664 344.3674724910664

mape oven1 REPEAT 343.87766293771546 343.87766293771546

mre oven1 ARIMA 0.005393065222729719 -0.0015474788025299623

mre oven1 ARIMAX 0.0170213083341667 0.006672677900841268

mre oven1 MA 0.015058965773809526 0.015058965773809524

mre oven1 REPEAT 0.0032953125 0.0032953125

rmse oven1 ARIMA 0.37229324947551934 0.3680622637350468

rmse oven1 ARIMAX 0.370738895576254 0.3712980723134023

rmse oven1 MA 0.38637156585194615 0.3863715658519462

rmse oven1 REPEAT 0.47091915014726365 0.47091915014726365

mae pump1 ARIMA 0.36082202187462686 0.36297962861288735

mae pump1 ARIMAX 0.3750350886045563 0.37426224169075195

mae pump1 MA 0.3868447172619047 0.3868447172619048

mae pump1 REPEAT 0.41574697916666664 0.4157469791666667

mape pump1 ARIMA 98.5052618564778 103.46026063612298

mape pump1 ARIMAX 99.56537096376647 102.2608234256021

mape pump1 MA 103.03942000941325 103.03942000941325

mape pump1 REPEAT 96.22989345554258 96.22989345554257

mre pump1 ARIMA 0.0026498853234476873 0.014374540629758514

mre pump1 ARIMAX 0.004271849070539746 0.003847941266912666

mre pump1 MA 0.00161188988095238 0.0016118898809523794

mre pump1 REPEAT 0.0022686458333333317 0.0022686458333333317

rmse pump1 ARIMA 0.5493359434218708 0.5492405336334051

rmse pump1 ARIMAX 0.5627791058399486 0.5670147390775744

rmse pump1 MA 0.5787143003276786 0.5787143003276786

rmse pump1 REPEAT 0.6873350869607358 0.6873350869607358

mae range1 ARIMA 0.38984659648595127 0.39121977903763205

mae range1 ARIMAX 0.35760535854652603 0.36125269886670675

mae range1 MA 0.35587122023809525 0.35587122023809525

mae range1 REPEAT 0.3931813541666666 0.3931813541666666

mape range1 ARIMA 363.62845577425395 394.0941177717394

mape range1 ARIMAX 336.5808280299896 337.13551635671126

mape range1 MA 302.3485409436749 302.3485409436748

mape range1 REPEAT 309.15285150580996 309.1528515058099

mre range1 ARIMA 0.03832865205330468 0.04100068012502475

mre range1 ARIMAX 0.005811120599128345 0.005792433016188748

mre range1 MA -0.004884077380952383 -0.004884077380952383



mre range1 REPEAT 0.0024210416666666677 0.0024210416666666677

rmse range1 ARIMA 0.6196977259087006 0.6181177552451161

rmse range1 ARIMAX 0.5805667299367998 0.5828691020815515

rmse range1 MA 0.595837799118087 0.5958377991180871

rmse range1 REPEAT 0.753764357674571 0.753764357674571

mae refrigerator1 ARIMA 0.3191902910188607 0.3215178443652495

mae refrigerator1 ARIMAX 0.29716415872262963 0.29674393101316987

mae refrigerator1 MA 0.3097538256448412 0.3097538256448413

mae refrigerator1 REPEAT 0.33856050347222216 0.3385605034722221

mape refrigerator1 ARIMA 121.91148104623333 130.20131808780926

mape refrigerator1 ARIMAX 104.29937731058925 107.55184268601751

mape refrigerator1 MA 118.23236919999363 118.23236919999361

mape refrigerator1 REPEAT 114.17788706486617 114.17788706486617

mre refrigerator1 ARIMA 0.03702766411304275 0.04214756653814158

mre refrigerator1 ARIMAX 0.0057860983735503755 0.007016565467583937

mre refrigerator1 MA 0.016701271081349205 0.016701271081349205

mre refrigerator1 REPEAT 0.00623298611111111 0.006232986111111109

rmse refrigerator1 ARIMA 0.48580630069626024 0.48822012669234827

rmse refrigerator1 ARIMAX 0.46283917714146794 0.4625588142739044

rmse refrigerator1 MA 0.47641601604172257 0.47641601604172257

rmse refrigerator1 REPEAT 0.5927263154151455 0.5927263154151455

mae waterheater1 ARIMA 0.44222866749547746 0.45780940276176035

mae waterheater1 ARIMAX 0.4053357675042844 0.41188607580872383

mae waterheater1 MA 0.40186868303571427 0.4018686830357142

mae waterheater1 REPEAT 0.45186953124999996 0.45186953124999996

mape waterheater1 ARIMA 154.8842096709387 168.01275483630303

mape waterheater1 ARIMAX 126.54529794144551 128.897144958684

mape waterheater1 MA 131.1049492957628 131.1049492957628

mape waterheater1 REPEAT 130.874193448217 130.87419344821703

mre waterheater1 ARIMA 0.06171354090142985 0.0824773890161841

mre waterheater1 ARIMAX 0.011013290700782007 0.006208153458328934

mre waterheater1 MA 0.011321063988095232 0.011321063988095232

mre waterheater1 REPEAT 0.00917234375 0.009172343749999999

rmse waterheater1 ARIMA 0.6869006795990535 0.7025550445219174

rmse waterheater1 ARIMAX 0.6464242365310905 0.654798330779141

rmse waterheater1 MA 0.6596921755580331 0.6596921755580333

rmse waterheater1 REPEAT 0.8386959674354946 0.8386959674354946

mae wellpump1 ARIMA 0.4085667383033036 0.4196040466199461

mae wellpump1 ARIMAX 0.3890831705811355 0.3899877909119762

mae wellpump1 MA 0.37362493386243384 0.37362493386243384

mae wellpump1 REPEAT 0.417652025462963 0.41765202546296293

mape wellpump1 ARIMA 190.83801483373742 202.07434728345132

mape wellpump1 ARIMAX 162.42836442414352 163.7461537236053

mape wellpump1 MA 156.33038104299033 156.33038104299033

mape wellpump1 REPEAT 159.78029902644047 159.78029902644045

mre wellpump1 ARIMA 0.04275254462702738 0.061886186317635934

mre wellpump1 ARIMAX 0.00014828766148642663 0.0009109483730079638

mre wellpump1 MA 0.002359937169312164 0.0023599371693121644

mre wellpump1 REPEAT 0.005408738425925925 0.0054087384259259245

rmse wellpump1 ARIMA 0.6378882032497423 0.6508648663555735



rmse wellpump1 ARIMAX 0.6194043374941536 0.620240217161558

rmse wellpump1 MA 0.6192768799535874 0.6192768799535875

rmse wellpump1 REPEAT 0.7822807976656136 0.7822807976656135


	Introduction
	Related work
	ARMA techniques
	Predicting via ARMA
	Predicting via SARIMAX
	Featurizers

	Methodology
	Data usage and validation
	Baseline algorithms

	Experimental setup
	Evaluation

	Results
	Responsible Research
	Discussion
	result summary
	interpretation
	implication
	limitations

	Conclusions and Future Work
	Section Heading
	Full results table

