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Summary 

The Industrial Ecology Data Commons (IEDC) is a relational database designed as an open 

“platform to exchange industrial ecology datasets” (Pauliuk et al., forthcoming). It is 

positioned as an implementation of the ‘general data model (GDM) for socioeconomic 

metabolism’, which the authors state “can be used to structure all data that can be located in 

the industrial system”. To evaluate the representative capabilities of the GDM and IEDC, a 

source dataset of unit-processes is mapped to their datamodel, and imported into the 

database. The source data selected for this purpose is a version of the ecoinvent database, 

which has been transformed into the minimum consensus knowledge model for LCA data 

(Kuczenski et al. 2016). 

Three primary insights have been found through this research. Firstly, it is possible to 

represent unit-process data within the IEDC. However, there are numerous shortcomings, 

which lead to the evaluation that this representation is not effective. Second, it was found that 

the GDM is probably not described sufficiently clearly and explicitly to allow for the 

development of alternative interoperable implementations, using technologies other than 

those used within the IEDC. Finally, the IEDC acts simultaneously as both a datamodel 

repository, and a database for storing the data which conforms to those models; a design 

pattern which permits the actual data modelling process to be deferred to the data-loading 

phase. Relational databases function best when their datamodel (and hence structure) is 

determined before the loading of data. As such, this report recommends that further work is 

required to satisfy the full design requirements of an effective platform for IE dataset 

exchange. 
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Chapter 1 Research overview 

1.1 Introduction 

This research aims to contribute to the science of industrial ecology through the synthesis of 

knowledge and recommendations on the topic of domain-specific data modelling. It builds 

primarily upon one recent work, a paper titled “A General Data Model for Socioeconomic 

Metabolism and its Implementation in an Industrial Ecology Data Commons Prototype” 

(Pauliuk et al., forthcoming)1. The development of this ‘general data model’ (GDM) was 

motivated by the same perspective as this thesis research: a recognition of the suboptimal 

data modeling and management practises within the field. The ‘industrial ecology data 

commons’ (IEDC) is a practical prototype of the GDM, in the form of a relational database. 

It aims to address a “data integration and exchange problem”, which is caused by the “lack of 

cross-method data formats and platforms”. 

The GDM and IEDC are recent conceptions which have seen limited usage, testing and 

independent assessment. At the time of writing, they have not been used in any practical 

applications or case studies. Once datamodels and databases are adopted, software and users 

become dependent on them. Any modifications may be difficult for the users to accept or 

adjust to after their research practises become interconnected with the data. In the words of 

Tupper (2011): “it is preferable to change a designed structure before a system is built, since 

                                                 

1 An early-version of the paper is quoted throughout this report, with permission of the lead-author. This version 

was accepted to the Journal of Industrial Ecology with major revisions in December 2018. Those revisions are 

ongoing at the time this report is submitted, hence any quotations may not appear in the final published version. 

However, the main discussion items and conclusions of this work focus on the IEDC database, and are unlikely 

to be significantly affected by manuscript edits. 
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design changes generally cost significantly less than application code changes”. As such, the 

timing is ideal for a critical appraisal of the datamodels, as presented in this work. 

This introductory chapter begins by providing background context on two related areas: the 

usage of data, information and systems in industrial ecology; and the movement within the 

field toward open science and data. The identified knowledge gap stems from statements in 

the literature regarding the capabilities of the datamodels. The next subsection describes the 

research specification, including the objective, research questions and scope. The chapter 

concludes with a sturctural overview of the remainder of the thesis. 

1.2 Research background 

Industrial ecology is a science which models sociometabolic systems using a wide variety of 

information and data. This background section begins by describing how these concepts 

interrelate, to help position the work within the wider context. The standard working practises 

of the research community are addressed next, within the context of the broad movement in 

science toward increased openness, and specifically open data within IE. The GDM and 

IEDC which are the focus of this reseach are intended as open datamodels and databases for 

socioeconomic metabolism (SEM) data. Futher theoretical background is provided within the 

first subsection of each later chapter: section 2.1 on data modelling theory; section 3.1 on 

socioeconomic metabolism; and section 4.1 on unit-processes. 

1.2.1 Data, information and systems in industrial ecology 

Two cliched yet pertinent terms are commonly used to characterise the present era: the 

“Anthropocene” and ‘Information Age’. Earth’s environmental systems are undergoing 

accelerating anthropogenic transformation (Steffen et al., 2015) at the very same time as the 

information describing these systems becomes copiously available and distributed (Castells, 

1996). Industrial ecology is at the intersection of these developments. It aims to understand 

the complex societal drivers of this environmental transformation in a quantitative way. To 
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satisfy this aim from a scientific perspective requires vast amounts of structured and reliable 

data and information2. 

Accounting methods have been developed to guide the systematic selection, measurement, 

processing and communication of this data. Some of the most commonly applied methods are 

lifecycle assessment (LCA), material flow analysis (MFA) and environmentally extended 

input-output analysis (EIOA). The case studies developed by following these methodologies 

involve the modelling of a system with a network structure. Structured data is an essential 

component for every applied case study which follows these methodologies.  

An example of the components of these methods is shown in Figure 1.1 (from Müller et al., 

2018). This displays a hierarchical pyramid of the various components of MFA case studies, 

with each level of the pyramid fully dependent on the levels below. Often, case study 

research is performed to contribute to scientifically informed governmental policy relating to 

production, consumption, trade and general economic and industrial policy. The policies are 

often normatively oriented toward addressing anthropogenic environmental problems. As 

visible in the pyramid, this high-level decision making has foundations in multiple lower 

levels. This research focuses on the deeper layers of the pyramid: the systems and data. 

 

                                                 

2 When data and information are contrasted: data are obtained via observations, whilst information is obtained 

via analysis or interpretation. In common usage and for convenience, the terms are often used interchangeably 
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Figure 1.1: the position of data in relation to systems, models, and other elements – the MinFuture pyramid from 

Müller et al. (2018) 

Raw measurements and observations are almost always aggregated in IE research, and these 

aggregations are what researchers refer to as data. This is necessary because of the size 

and/or complexity of the systems being described. Unit-processes are an example of this 

aggregation process, which are the focus of this research and described in Chapter 3. In order 

for this data to become useful information, it must be contextualised as part of a system-level 

analysis, with clearly delineated scope and boundaries. The location of each aggregated data 

point within the system should be specified, with minimal ambiguity (more on this in Chapter 

2). 

1.2.2 Open data  

The data, information and system descriptions which are introduced in the previous sections 

concern issues which are of relevance to many people throughout society. Despite this, they 

are often not widely accessible to everyone. The scientific data released in journals and 

through other sources is often protected by intellectual property licenses. Even when the data 

is released, it may be in formats or datamodels which are difficult to understand, or read and 

process with common software (see Chapter 2). There is a transdisciplinary movement acting 

across science towards improving this situation, using the term open data, which is one 

component of a wider movement toward open science. 

The field of IE has made some progress in this direction (Davis et al., 2010; Bollinger et al., 

2015; Pauliuk et al., 2015; Hertwich et al., 2018; Kuczenski, 2018). A Data Transparency 

Task Force’ (DTTF) was setup by the International Society for Industrial Ecology (ISIE) to 

focus on this issue. They conducted a small survey, which identified strong support for this 

direction (“SI3. Survey results on data openness requirements” in Hertwich et al. [2018]). 

However, in general, the community is yet to comprehensively embrace the change in 

working practises required to evolve the open-data ecosystem which is envisioned in these 

publications. In order to facilitate these changes, Hertwich et al., (2018) states that 

“structured data from a wide spectrum of studies could be integrated into a common database 

so that researchers have the opportunity to query multiple relevant data sets at the same 
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time”. The IEDC is an attempt at creating this common database. It is intended to act as a 

central part of the open-data ecosystem (Zuiderwijk et al., 2014) enabling research data 

sharing within IE. 

To function effectively within this role, the specification and implementation of any 

community database should satisfy a series of design requirements. A community-sourced 

transdisciplinary set of principles could be used as a starting point for these requirements, as 

described here. The “FAIR Guiding Principles for scientific data management and 

stewardship” were developed to “improve the infrastructure supporting the reuse of scholarly 

data” (Wilkinson, 2016). FAIR stands for Findable, Accessible, Interoperable and Reusable. 

The recommendations were summarised and emphasised by the ISIE DTTF in Hertwich et al. 

(2018) as: 

 “(1) findable: indexing or archiving (meta)data with unique identifiers (e.g., digital object 

identifiers [DOIs]) at a searchable resource; 

(2) accessible: (meta)data use an open standard for machine readability and are made 

permanently available. 

(3) Interoperable: (meta)data use standard data vocabularies, in a formal, open, and broadly 

applicable language, and include references to connected data. 

(4) reusable: (meta)data are defined with relevant attributes for” 

What is unclear, is the extent to which alternative infrastructure designs are able to support 

these guidelines for the IE community specifically. Can the GDM and IEDC effectively 

facilitate the IE community to embrace open data? 

1.3 Knowledge gap: representation of unit-process data in the 

GDM and IEDC 

The GDM and IEDC are designed primarily for the representation and storage of data relating 

to SEM. To evaluate their utility for this purpose, it is important to test their capabilities and 
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design. Some specific claims have been made in this regard, listed and elaborated below. The 

statements and elaborations are then summarised as a specific knowledge gap. Quotations are 

from Pauliuk et al. (forthcoming) except where otherwise noted. 

1. “Complex datasets, such as an EcoSpold unit-process descriptions or MRIO tables, 

can be broken down in the basic data types3 of the IEDC” 

This suggests that the ‘basic data types’ of the IEDC are at a lower-level than the source data, 

which they aim to represent.  

2. “Metadata specification varies substantially across fields … future work needs to 

identify how these rich but differently formatted metadata can be brought into a 

general structure.” 

This statement suggests that the metadata which describes the source datasets must also be 

represented by the GDM. This metadata is in addition to the data or datasets from item 1. It 

is unknown what should be defined as metadata for particular sources. 

3. “What we did for now is to demonstrate that the different available data formats fit 

into a common format. The conversion we did…is coarse… we only show that it is 

possible in principle.  What is unresolved yet is to take an entire LCA database…, 

identify the different data sets contained in there, and show how they are translated in 

to the common data model.” (Pauliuk, personal communication, 2018). 

This final quotation helps to clarify the context and motivation of this thesis research. It 

shows the current state of affairs at the beginning of this research effort. LCA databases 

contain primarily unit-process data, which is described at depth in Chapter 3. 

The research gap is summarised as: 

                                                 

3 Data types here refers to an IEDC concept (described in 3.2.3), not the typical meaning of a data type such as 

Integer or Boolean (see section 2.1.1). 
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The extent to which the GDM and IEDC are capable of effectively representing unit-process 

data is unknown. The designers of these systems believe that this is possible, but it has not yet 

been demonstrated in theory or practise. 

1.4 Research specification 

The research specification is divided into three sections. The objective section explains what 

this thesis intends to test and demonstrate, plus the broader significance of this work. The 

research questions which guide the thesis research are then presented. The final subsection 

describes which research is included as within and beyond the scope of this work.  

1.4.1 Objective: contributing to state-of-the-art data modelling and 

management in IE 

The broad purpose of this work is to contribute to the effectiveness of IE research, through 

the synthesis and communication of suitable and accessible knowledge and recommendations 

on the topic of data modelling and management. Improved practises in these areas will lead to 

more efficient research, higher quality science, and a deeper understanding of systems under 

study across the field. This could benefit society via improved scientifically-informed 

decision making, on issues at the intersection of society and the environment. 

More specifically, this research aims to evaluate the GDM and IEDC through an assessment 

of their ability to effectively represent complex unit-process datasets, such as those used in 

background databases for LCA. Identified shortcomings and recommendations may then be 

translated into iterative improvements or redesigns of their datamodels. In the words of 

Tupper (2011): “models allow us to map existing data to the structures and evaluate their 

appropriateness. If the model structure does not support the available data, then knowledge is 

gained without excessive expenditure of money or time, and without impact on applications”. 

The GDM and IEDC are not yet widely used, and have not had significant money or time 

expended on them by actors beyond the original developers. Hence this research is presented 

at an opportune moment. 
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1.4.2 Research questions: can the GDM and/or IEDC effectively represent 

unit-process data? 

Is it possible to effectively represent unit-process data in the ‘general data model for SEM’ 

and/or the IEDC and what are the challenges and limitations? 

This is broken down into the following sub-questions. 

1. Which datamodels are used in the IEDC and GDM for SEM, and what is their 

relationship? 

2. Which datamodel is archetypal for unit-processes, and which data following this 

model can be used to evaluate the IEDC? 

3. How can the selected source datasets be mapped and transformed into the datamodel 

of the IEDC? 

Two words in the main research question require explanation: “effectively” and “represent”. 

Represent implies that the data in the IEDC is able “to serve as the counterpart or image of” 

the original data source (MerriamWebster, 2019b). The term effective implies that the unit-

process representation should be “ready for service or action” and “producing a decided, 

decisive, or desired effect” (MerriamWebster, 2019a). Hence if the GDM/IEDC datamodel 

can “effectively represent” unit-processes, then the data stored in their structure is ready to 

satisfy the needs of its users. The expected use-cases are discussed in Chapter 4. 

1.4.3 Scope: analysis of the GDM and IEDC, using one source dataset 

As will be argued in section 6.2.1, the GDM theoretical descriptions are difficult to assess. 

The IEDC database design and the data it contains are therefore the main targets of 

assessment within the scope of this research. A single unit-process source dataset is selected 

to transform into the datamodel of the IEDC. The selection of this source is justified, and its 

contents are analysed in some depth. The transformation of this source dataset into the 

destination datamodel is a process that is used to generate knowledge about the IEDC. In 

order to understand the value of this knowledge, a theoretical basis from the art and science 

of data modelling is presented in Chapter 2.  
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A number of topics that are important for any community data infrastructure (such as the 

GDM/IEDC) are beyond the scope of this research. The sociotechnical systems context 

within which they exist is not emphasized, which includes avoiding legal and licensing issues 

wherever possible. Other areas beyond scope relate to the database development life cycle: 

data submission workflow process design; version controlling of data or code; and database 

user and permissions management. Finally, practical redesigns of any analysed systems are 

not attempted, although recommendations are offered toward this end. 

1.5 Report structure 

This thesis report is divided into eight chapters, as visually depicted in Figure 1.2. After this 

introductory chapter, Chapter 2 introduces essential basic knowledge required to understand 

the research: data modelling and transformation theory. Chapter 2 concludes with the method 

and requirements which provide context for the subsequent three chapters of analysis. 

Chapter 3 presents a detailed original description of the GDM and IEDC database which are 

the focus of the work. Chapter 4 focuses on the unit-process data which is used as a source 

dataset for testing the IEDC. Chapter 5 then describes the conceptual and detailed mapping of 

the source data from Chapter 4, into the destination database of Chapter 3. It also describes 

how these mappings are implemented in practise. Chapter 6 presents a discussion of the 

results and discoveries of the research, and places them in context. The research questions are 

answered formally in the conclusions of Chapter 7. The final Outlook chapter suggests an 

alternative approach to community data infrastructure, distinct from the one assessed in this 

research. 
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Figure 1.2: structure of this thesis report 
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Chapter 2 Data modelling and transformation 

theory and method 

This chapter introduces the necessary background knowledge for an IE audience to 

understand the method and results of the research. Section 2.1 provides a broad overview of 

data modelling, including its meaning, purpose, and the constructs which are used to build up 

datamodels. Section 2.2 attempts to identify markers of datamodel quality, which are used as 

the basis for an assessment of the GDM and IEDC in Chapter 3. Section 2.3 describes how 

data which conforms to one datamodel can be converted into data which conforms to a 

completely different model. This conversion process has a number of pre-requisite 

requirements, that provide the basis for the gathering and development of knowledge in 

Chapters 3 and 4. 

2.1 Background: data modelling definitions and purpose 

Datamodels may be confused with a number of related concepts, such as data types, data 

structures, data/file formats and databases. Definitions are offered for these concepts, to 

ensure they are clearly delineated from one another and to properly position this work. The 

purpose of datamodels is then explored: what do they do and why is that important? This 

section concludes by describing the basic building blocks of datamodels: their constructs.  

2.1.1 Definitions and delineation 

Definitions for datamodels vary from the abstract to the applied. Tupper (2011, Ch.10) 

describes them as “a symbolic or abstracted representation of something real or imagined”. 

Tsichritzis & Lochovsky (1982, p. 10) argue that datamodels “define the rules according to 

which data are structured”. Oppel (2010) offers two definitions which describe the way 

models are frequently used in modern practise: they “describe how the data in an information 
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system is represented and accessed” (p. 4) and are “abstractions of existing or proposed 

databases” (p. 4). These definitions have no mutually exclusive elements, and are all 

considered valid for this research. One usage of datamodel which is not intended for this 

research, is used to describe a particular way of representing data, such as a: “flat model” 

(two-dimensional array of elements); “relational model” (tables); or “a graph model” 

(documents with references) (Simsion & Witt, 2004, p. 31).  

Data modelling is a process undertaken by individuals or groups to create a data model. The 

fundamental task of this process is the discovery, encoding, and communication of structures, 

rules and tendencies which accurately describe the domain of knowledge which is modelled. 

This process may be improved by the inclusion of relevant stakeholders such as subject-

matter-experts, users of the model being defined, and data modelling professionals. 

Data structures are the “way in which data are stored for efficient search and retrieval”  

(NIST, 2004). Examples include queues, trees, linked lists, and dictionaries. They are made 

up of primitive data types, such as integer, character, or boolean. When a data type is 

specified for a variable or function, the permissible values it may assume are constrained. 

Data structures and types are researched and developed by computer scientists. Generally, 

industrial ecologists and others may simply use them when required, without concern for 

their implementation. 

The term data format is ambiguous. Perhaps the most common meaning, and that which is 

most relevant to this research, is file format. When a datamodel is used in practise, the 

resultant data instances must be saved in some particular file format, for storage in computer 

files. The software which processes these files expects the information content in a pre-

defined structure. A file format specification defines this structure, based upon a set of 

requirements, which depend on the intended use-cases. If the file formats are also intended 

for human-readability (rather than solely computer-readability), the format is usually a type 

of text file, made up of lines of character strings. IE research typically uses a limited range of 

file formats which are custom-designed for specific research areas. Examples include the 

XML-based ecoSpold2 file format which was designed for ecoinvent (Meinshausen et al., 

2016); the ‘.LCA’ files used by the software CMLCA; and the ‘.zmfa’ format of the STAN 

software, for material flow analysis (MFA). 
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Databases are collections of organized data which are organised for search and retrieval 

(Date, 2006). Datamodels can be transformed into database structural code to provide useful 

functionality to users. The datamodel used in a database should be clearly visible in the 

names of the tables, and the relationships defined between them. Within each table, the entity 

attributes are visible in the columns, which are constrained by data types, as described above. 

Databases are stored on disk in computer files described by a data/file format; but users (for 

instance scientists and their software/models) do not typically interact with databases through 

these files. Rather, users and applications use a database management system (DBMS). 

These software implementations of databases enable the performance of standard operations 

on data and metadata, such as create, read, update and delete, and a wide range of other 

functionality. Popular DBMS examples include SQL Server, Oracle, and MySQL. 

Finally, datamodel repositories are defined by Tupper (2011, p. 196) as “a storage bank of 

datamodels”. They are the location where metadata and formal descriptions of an 

organisation’s datamodels are stored, harmonised and maintained. The constructs (section 

2.1.3) of each model are described, such that those shared between multiple models are easily 

identified. Each datamodel found within the model repository can be instantiated as a 

separate database or schema, which would then hold the actual data which fits the specific 

model. Many organisations do not maintain formal datamodel repositories, so additional 

conceptual work is required when they harmonise and integrate data.  

2.1.2 Purpose: communication with high specificity 

Datamodels are used for the accurate and specific representation and communication of 

information. Prior to the modelling of data, a domain of knowledge may be described in 

natural language as part of a narrative, or in another semi-structured form. In the words of 

Tupper (2011), “the modelling process reduces undisciplined nonmathematical narrative to 

algebraic regularity, formal symbols and statements”. People and computers can then 

logically process these symbols and statements in a consistent way with a comparatively low 

degree of ambiguity.  

Data modelling can help to bring conceptual disagreements into the open. Use of a common 

model increases the likelihood of users to reach a common level of understanding of the 
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knowledge which is modelled. Datamodels make explicit the relationships between the basic 

entities which are defined within the ontology of a particular field. If the conceptualisation of 

one group does not match that of another, their datamodels will necessarily differ. Oppel 

(2010, p. 13) states that “datamodels are a vehicle for pointing out common entities and 

attributes across an organization” 4. The process of data modelling effort also requires the 

naming of things, and hence the development of commonly agreed naming standards, 

improving communication through standardisation. 

Datamodels can be described using “words, pictures, or any combination of media” (Tupper, 

2011). However, for clear communication it is hard to argue against Oppel (2010), who states 

that “diagrams are the very best medium”. Particularly when these visual diagrams are 

enforced with supporting information, such as accompanying text to clarify potential 

ambiguities. Each visualisation represents a datamodel and communicates their main 

concepts, enabling an evaluation of the completeness and accuracy of the model in reference 

to the domain it attempts to represent. Popular diagrams are the entity-relationship diagram 

(Chen, 1976) and the table-based diagrams which are based on the relational database model 

(Codd, 1990). Examples of these visual techniques are shown later, in Figure 4.5 and Figure 

3.2 respectively.  

Once a datamodel is in widespread usage, actors can easily share data which fits these 

models. The models form the basis of a shared conceptualisation, which may be stable over a 

period of time. Instances of data following the model can be shared across space and time, 

maintaining a consistency of interpretation. The model itself fades into the background, and 

people are instead able to focus on the meaning of the data that are represented in these 

models. Updates to the models may become necessary. In these cases, it is helpful for users if 

backwards-compatibility is maintained, allowing them to keep using their existing data 

instances within the new model. However sometimes this is not possible. 

                                                 

4 Much of the data-modelling literature focuses on the organization or business context, where most 

professionals working in this area are employed. Nonetheless, the ideas and theories are readily transferrable to 

the scientific domain of this research. 
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2.1.3 Constructs: entities, attributes and relationships 

A number of constructs are used for almost all datamodels: entities, relationships and 

attributes, as shown in Figure 2.1. Alternative names may sometimes be used for these 

constructs, depending on the modelling paradigm or language. 

An entity is “a thing or object of 

significance, whether real or 

imagined, about which some 

information needs to be known or 

held” (Tupper, 2011). For naming 

entities, a common convention is to 

use a noun in singular form. It should 

be “as meaningful as possible to 

reflect the information it is 

maintaining”. 

An attribute (or property) “holds a 

particular piece of information about an 

entity” (Silverston & Agnew, 2009, p. 18). 

Thus, entities are usually described or specified by a number of attributes, which may be 

required, or optional. If an attribute is required, this is considered a constraint of the data 

model. 

A relationship “defines how two entities are associated with each other” (Silverston & 

Agnew, 2009, p. 18). It is important to understand the nature of the relationship between 

entities, to help in interpretation of the significance and meaning of the data. There are many 

types of relationship, important types for IE are: hierarchies, aggregations, and recursive 

relationships. Recursive or peer-to-peer relationships are “semantic connections between 

many objects of the same class” (Silverston & Agnew, 2009, p. 134). Each relationship has a 

cardinality, which specifies the required number of entities on each side of the relationship. 

For instance, the biological child-to-parent relationship in most animals has the cardinality 

one-to-two, for any specific child. 

Figure 2.1: data model constructs: entities, 

attributes and relationships 
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When modelling a particular domain, the choice of which construct should be used to 

represent each real-world concept may not be obvious. Legitimate alternative perspectives 

may be held by stakeholders in the modelling process and the  Verelst (2004) refers to the 

alternative available decisions as construct variability. As such, perfect data models do not 

exist. But some are more effective than others for their intended tasks, and are said to be of 

better quality. 

2.2 Characteristics of datamodel quality 

This research aims to provide commentary and recommendations on the use of particular 

datamodels within the IE research community. To do this, it is necessary to identify 

characteristics which relate to the broadly-defined quality of a data model. Oppel (2010, p. 

14-16) provides some suggestions: validity of the representation; ease of understanding; 

appropriate enforcement of business rules; and the level of flexibility and adaptability. Each 

characteristic is explored using the example of modelling a ‘unit-process’, which is a key 

component of this research and described in Chapter 4. 

2.2.1 Representation validity 

It may be clear that a data-model is of low quality, because it cannot be used to describe the 

phenomena being modelled. In the words of Tupper (2011) “the essence of a model lies in its 

efficient representation of the business problem area”.  For instance: unit-processes may have 

many inputs and outputs. Any datamodel which permits only one input or output per unit-

process is clearly invalid, and of no practical use in this domain.  

Tupper further specifies that efficient representation is “achieved by eliminating unnecessary 

detail” (ibid.). If a datamodel includes superfluous detail, this does not necessarily mean it is 

invalid. For instance, if a unit-process requires that the ‘invention date’ of the technology of 

the process is specified, then this would be an extra burden placed on all data gathered, and of 

limited use to most users of the data. The meaning of this attribute may also be unclear, 

leading to inaccurate interpretations. 
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2.2.2 Ease of understanding 

As described previously, much of the value of a datamodel comes from its ability to aid 

communication between users of the model. Therefore, it is important that the model can be 

understood by the intended users. Models that require significant mental effort to understand 

them are unlikely to achieve widespread usage. If they do, there is a greater likelihood that 

users will apply the model in different ways. This creates incompatible conceptualisations, 

data integrity violations, and general uncertainty. Cooperation and collaboration under these 

circumstances would be challenging. 

2.2.3 Promotion of data reusability and integration 

Within any data model, there are particular entities and attributes that could serve many 

purposes. Data reusability is realised when these are identified and isolated. For instance, the 

international ISO 3166 provides a standard for representing all countries and their 

subdivisions as shortened codes. This list of codes is reused in the datamodels in many 

systems in many contexts around the world. This saves time for the developers, as they need 

not recreate the list when they model a country entity. It also increases inter-operability 

between systems, as it is only necessary to transfer the representative country code in order to 

communicate meaning with fairly low ambiguity. 

Data integration also relates to the circumstances when data can and should be used from 

multiple different sources. When developing a data model, an opportunity is available to 

integrate the data into common structures. The process of analysing the original data sets 

provides insight into the structures of each source. Data can be integrated more easily if it 

follows explicit and tightly defined rules specifying which data is permissible in a set. This 

includes the data type, precision, and whether values must come from a pre-defined list. 

2.2.4 Enforcement of domain rules 

From a scientific perspective and in the context of datamodels, domain rules are constraints 

and assertions that are derived from the established body of knowledge. They aid the clear 

and accurate description of objects and concepts which are modelled. For instance, a process 
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may have a thermodynamic efficiency. This efficiency can never be greater than 100%, and 

may be further restricted depending on the type of process under consideration. In this case, 

thermodynamic equations may determine the values which are possible for particular 

attributes of the process entity. Violation of this constraint is theoretically impossible, so any 

study using a datamodel which permits violations is open to the possibility of inaccurate 

results and conclusions.  

Domain rules may be enforced at a number of levels, which each have advantages and 

disadvantages: at the data level, the software level, or human level. The simplest approach 

from the perspective of the software developers and data modellers is also the least reliable: 

this involves trusting the users of the model to only enter data which is valid (and hence not 

in violation of the domain rules). The constraints can also be applied at the software level. 

Here, the datamodel allows invalid values, but the software and algorithms running on the 

data are able to identify these violations at some point in the processing. This implies the 

requirement for extensive validation and testing on the software developers and quality 

assurance experts. Finally, the definition of the datamodel itself may enforce particular 

domain rules, making them harder to circumvent. Common constraints include the 

cardinality of a relationship, the uniqueness of value, the permissible range of a value, and 

whether a value is required or optional. Formulas may also be used, such as using the mass-

balance principle to derive a rule for unit-process datamodels: the sum of mass flowing into a 

process is equal to the sum of mass flowing out. 

The ideal rules to enforce at the level of the datamodel and database are those that are 

unlikely to be changed. If the rules do change, this may compromise the stability of the 

model. Rules that change occasionally can be handled by software. And rules which change 

all the time are not really rules at all. These cases usually represent the type of ambiguity and 

patterns that humans are typically able to deal with more effectively than computers. To 

conclude, the decision of which domain rules to enforce within the datamodel has a 

significant impact at subsequent stages, when others attempt to build software to interact with 

the datamodel, and people begin to use the data and software. These choices cannot be 

avoided when developing a datamodel. 



19 

 

2.2.5 Specialisation vs generalisation 

An important trade-off inherent in the data modelling process is that of specialisation versus 

generalisation. A specialised model implies high suitability for a very specific purpose or 

function. Whereas more generalised models are likely to be somewhat suitable for modelling 

a wider variety of phenomena. An example relating to unit-processes is shown in Figure 2.2. 

 

Figure 2.2: a process-focused example of a super-class and subclasses. 

This research is focused on modelling economic unit-processes, which are a subset of the 

broader category process. This category also includes environmental processes and many 

other types. Both sub-categories could be broken down further, as shown. A datamodel which 

effectively captures salient features at one vertical level is unlikely to be fully suitable for 

representing another. Concepts at the same horizontal level are related but distinct; a 

datamodel which accurately represents one concept will not be appropriate for its neighbours. 

Thus, a generalised datamodel is likely to require adaptation and specification, in order to be 

functionally useful at multiple levels of abstraction. 

2.3 Method: mapping datamodels, from source to destination 

Building upon the background knowledge presented in this chapter, the focus now shifts to 

the method used in this thesis, to answer the research questions and generate new knowledge: 

data mapping. Haq (2016) defines data mapping as “the process of creating a link between 

two distinct datamodels”. The two datamodels are referred to throughout this research as the 

source and the destination (or target). The source is the unit-process data described in 
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Chapter 4. And the destination is the ‘general datamodel of socioeconomic metabolism’. 

However as shown in Chapter 3, the IEDC prototype must be used as a surrogate for the 

GDM. This is because the GDM is not defined with sufficiently specific detail within the 

currently available information to act as a target datamodel for the mappings. 

This section describes two different types of data mapping: the high-level conceptual data 

mapping, and the more precise detailed data mapping. There are pre-requisites required 

before these mappings can begin, which are satisfied through chapters 3 and 4. Once the 

prerequisites are handled and the mappings are complete, they can be practically 

implemented or programmed, as algorithms. In the language of databases, this is called an 

extract-transform-load (ETL) process. ETL “involves dealing with the specificities of 

information at very low levels of granularity including transformation rules at the attribute 

level” (Luján-Mora et al., 2004). As such, it relies upon the detailed mappings more than the 

conceptual mappings. Execution of an ETL procedure results in the actual population of the 

destination database. 

2.3.1 Conceptual and detailed data mappings 

Datamodels can be viewed from various levels of abstraction. As argued by Silverston & 

Agnew (2009, p. 13): “in the data modelling industry, there does not appear to be a common, 

single, universal understanding regarding the purpose and definitions of conceptual models, 

business model, logical datamodels, and physical datamodels”. This research requires a 

mapping across heterogeneous datamodels and formats, from a file-based json-ld source 

using an entity-relationship model (section 4.3.1) to a MySQL relational database target (see 

section 3.3.1). For this reason, the two levels of abstraction which are considered relevant in 

this research are referred to as ‘conceptual’ and ‘detailed’. Conceptual is chosen in preference 

to logical, to emphasise the organisational semantics, without reference to the actual 

technologies in use. Related reasoning applies to the choice of Detailed over physical. The 

detailed mapping is concerned with the actual attributes and columns of data in the source 

and destination models, but without consideration for how they are physically stored on disk. 

The conceptual model of the source database is described using entity-relationship model, 

which consists of entities, and the relationships between them (section 2.1.3). The attributes 
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of these entities are beyond the high-level conceptual model. The relational model of the 

destination is conceptually organised using tables, which are related via keys. In this case, 

columns are equivalent to attributes. Hence the conceptual mapping will consist of a mapping 

from an entity-relationship diagram without attributes, to a table-based diagram without 

columns. 

The detailed data mapping follows from the conceptual mapping, with additional detail 

focused on specific attributes, properties, records, rows and columns. Detailed transformation 

rules are required here to clearly convey how to process the source data into to make it 

suitable for the destination model (Haq, 2016). These can be written in formal mathematical 

or programming languages which can be copied directly into the ETL design, or as pseudo-

code including if-else statements, for later conversion. 

A key result of the detailed mapping is the data mapping document, which complements the 

diagrams of the conceptual mapping (Haq, 2016, ch. 9). This document contains a number of 

components, including: an overview list; a legend to explain colour schemes or other design 

choices; a table of actual data mappings, including many mandatory columns of information; 

the loading order dependencies; and sometimes a reference data list and change log (in the 

typical case of an iterative development process). This document is usually designed and 

completed in spreadsheet software. These detailed mappings are then the focus of the 

implementation for the ETL process (section 2.3.3). The data mapping document created by 

this research is visible in 0. 

2.3.2 Prerequisites to data mapping 

The data mapping effort described above cannot begin until certain pre-requisites are in 

place. The process of satisfying these pre-requisites prepares the data-mapper, forcing them 

to develop a detailed understanding of the source and destination datamodels. This reduces 

the likelihood that they will make conceptual errors, which would lead to significant time 

wastage in implementing an incorrect ETL process. In the worst case, the mistakes would not 

be noticed until the destination data is in widespread usage. The following list of 

prerequisites must be understood and documented (Haq, 2016, ch. 7): 
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1. The source conceptual data model: entities, relationships and descriptions 

2. The source physical data model: the attributes, plus their constraints, data structures 

and data types 

3. The destination conceptual data model: tables, relationships and descriptions 

4. The destination physical data model: the columns, keys, data types and constraints 

5. Knowledge of the unique identification of entities and instances in the source and 

destination 

6. Knowledge of the cardinality of the relationships  

7. All source data, or a representative production-quality subset. The data mapper will 

query this data and base the transformation rules on the results. If the data is not 

complete or representative, the rules will be wrong 

8. A subject matter expert, whom can clarify uncertainties regarding the data 

2.3.3 Implementation of data mappings: extract, transform, load 

The detailed data mapping document can be used to implement actual procedures to load the 

IEDC with data. In the language of databases, this is known as an ETL process: Extract, 

Transform and Load (Figure 2.3). ETL processes are commonly used in the construction of 

data warehouses and database migrations. Their design “is driven by the semantics of the data 

sources and the constraints and requirements of the data warehouse application” (Skoutas & 

Simitsis, 2006). Building and executing an ETL system creates two main artefacts as an 

outcome: source code for the ETL algorithms (which enable loading of data into the IEDC), 

and the actual population of the IEDC data warehouse with unit-process data from the chosen 

source. The three steps of extract, transform and load, are described briefly below, followed 

by some statements regarding the simplified scale of ETL intended for this research. 

 

Figure 2.3: visualisation of an ETL process: source datasets undergo transformation for loading into a 

destination 
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To extract means “reading and understanding the source data and copying the data needed 

into the ETL system for further manipulation” (Kimball & Ross, 2013, p. 19). Once this data 

is available, there are many possible types of transformations possible, such as “cleansing the 

data (correcting misspellings, resolving domain conflicts, dealing with missing elements, or 

parsing into standard formats), combining data from multiple sources, and deduplicating data. 

(ibid, p. 20). The ETL process concludes with the physical loading of data into the destination 

data structures. From here, the data can now be queried alongside other data sources that are 

represented in the same destination datamodel. 

ETL processes can be incredibly intricate and complex. Kimball & Ross (2013, ch. 19) argue 

that an ETL system has 34 sub-systems, from data-profiling, and workflow-monitoring, to 

error-handling and metadata management. As this is scientific research, the practical 

implementation of the ETL is not emphasised in this report. The aim is to answer the research 

question via a proof-of-concept demonstration, to confirm whether the unit-process data can 

be represented in the destination data model. As such, the ETL is kept simple, and includes 

few of these purported sub-systems. 

 

This concludes the section on mapping datamodels from source to destination, and the data 

modelling chapter. The requirements described here are gathered in the subsequent three 

chapters. For this research, the destination database for the mappings is the GDM and/or 

IEDC. These are the focus of the next chapter. 
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Chapter 3 The destination: a general data model 

for socioeconomic metabolism and the industrial 

ecology data commons 

This chapter presents an analysis based on two sources which were briefly introduced in 

Chapter 1: a manuscript, and a database. The manuscript is “A General Data Model for 

Socioeconomic Metabolism and its Implementation in an Industrial Ecology Data Commons 

Prototype”, by Pauliuk, Heeren, Hasan and Mueller (forthcoming, likely 2019). This includes 

a theoretical section describing a general data model (GDM), and a more practical second 

part describing the implementation of the GDM as the industrial ecology data commons 

(IEDC): an open database which is available now for download5.  

To assess the GDM and IEDC, it is important to understand their relationship. Pauliuk and 

colleagues (2019) state in reference to the GDM that: “the data model can be implemented in 

different ways, including spreadsheet-formatted data, relational databases, or array-shaped 

data in programming environments”. The IEDC is then framed as “a relational database built 

on the general data model”. From these two quotes, the following hypothesis is presented 

regarding their relationship: 

The IEDC is a technology-specific implementation of the GDM, and other hypothetical 

implementations of the GDM should be interoperable with the IEDC. 

To satisfy this interoperability requirement, the GDM must be described with enough explicit 

detail to enable data to be exchanged easily between alternative implementations. They 

would need to share a common conceptual data model, but only differ in the details of their 

implementation. The second section of this chapter suggests that the GDM is not yet 

                                                 

5 Full source code for the project is available online (GitHub, 2018a). A prototype instance of the database is 

currently hosted on a public-facing webserver (Industrial Ecology Freiburg, 2018). As of December 2018, there 

is not yet evidence of usage beyond the developers. 
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described with the level of explicit detail required to enable this interoperability of 

implementations. For that reason, the IEDC is used as the only subject of detailed analysis in 

this research, and the exclusive destination for the data-mappings described in Chapter 5. 

This topic is returned to in the discussion section 6.2. 

The ‘GDM for SEM’ uses the notion of socioeconomic metabolism. It is necessary to 

understand what is meant by SEM in order to understand what the GDM and IEDC are 

attempting to model, and hence their design requirements. As shown in Figure 3.1, this is the 

subject of the first section of the chapter. 

 

Figure 3.1: relationships between the topics of Chapter 3 

3.1 Socioeconomic metabolism 

The datamodels evaluated in this research aim to represent data for ‘socioeconomic 

metabolism’ (SEM). An introductory discussion of SEM is presented here. A summary of the 

relationship between IE and SEM is included in Appendix C. Society’s metabolism is broadly 

recognised as the overlap between the social and biophysical spheres of causation, 

emphasizing the flows of energy and materials between society and nature (Fischer-kowalski 

& Weisz, 1999). The word ‘metabolism’ was first used at the societal scale as a biological 
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metaphor. Nowadays, the word is often used in a literal rather than metaphorical sense 

(Wassenaar, 2015). Although others disagree with this usage (Golubiewski, 2012).  

Pauliuk & Hertwich (2015) argue that the ‘biophysical basis of society’ can be explained and 

researched by considering SEM together with a related concept, society’s biophysical 

structures. They offer the definition: “Socioeconomic metabolism constitutes the self-

reproduction and evolution of the biophysical structures of human society. It comprises those 

biophysical transformation processes, distribution processes, and flows, which are controlled 

by humans for their purposes. The biophysical structures of society (‘in use stocks’) and 

socioeconomic metabolism together form the biophysical basis of society.” The biophysical 

structures are the static component of society, the objects which surround us and can be built-

up as stocks (Haberl et al., 2004). These concepts relate only to the physical or tangible 

world, and hence exclude the ephemeral or intangible elements of society such as institutions, 

interpersonal relations, or software. When these intangible elements are also included, this 

may be referred to as the technosphere. 

Motivations for the study of SEM are diverse, including exhaustion of resources, pollution, 

and the inefficiency with which the economy delivers services to satisfy the needs and desires 

of the population (Fischer-Kowalski & Hüttler, 1999). In a special edition of the Journal of 

Industrial Ecology dedicated to SEM, Schandl et al. (2015) argue that “The growing impact 

of socioeconomic metabolism research on the sustainability policy domain can be attributed 

to the strength of its conceptual framework [which] allows for analysis of the linkages 

between traditionally fragmented research domains ... and the feasibility of establishing 

meaningful data”. It is thus a multi-disciplinary field, interested in economy-environment 

intersection, and driven by data. 

3.2 The ‘general data model’ of socioeconomic metabolism 

The GDM of SEM is framed as a solution to the “lack of a generic structure for IE data”. It is 

described solely by one information source: the manuscript which introduces it (Pauliuk et 

al., forthcoming). With regards to the GDM, the manuscript describes the following elements: 
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• the systems context of the data 

• the relationship between system dimensions and data aspects, plus a table with 

examples 

• a definition of the datamodel which aims for formality. This consists of six statements 

(labelled D1 to D6 in the source) including two equations.  

• six pre-defined data categories, and suggested names for some data types which are 

stated to belong in those categories 

• a “proposal for the required and optional aspects of [six] central data types” (one per 

category).  

This section summaries and analyses these components of the GDM theory. It begins with 

some quotations to highlight the concepts and objects which the datamodel is intended to 

describe, as well as the acknowledged limitations of the model. The approach used in the 

GDM for representation of specific facts (or observations / data points) is then described. 

Followed by an overview of the GDM concept data types, which are intended to specify “the 

required and optional aspects” for each type of fact which can be structured within the 

model. The data types are grouped into categories, which are critically assessed in the section 

3.2.3. These critiques flow into a section which highlights how the GDM cannot effectively 

be used as a destination for a conceptual data mapping, due to the lack of clarity in the 

existing descriptions. This chapter continues with an analysis of the IEDC, and these points 

are returned to later in the Discussion.  

3.2.1 What does the GDM describe? 

The supporting information of Pauliuk et al. (forthcoming) contrasts the GDM with the 

EcoSpold data format (see Appendix K). The GDM is stated to be “more comprehensive”, 

representing additional data types, including: “product lifetimes, breakdown of products into 

components and materials, process capacities, population, economic statistics, trade flows, or 

economy-wide and sector-specific material flow accounts”. These and other concepts 

constitute what the authors refer to as “the objects and events in the industrial system, or 

socioeconomic metabolism”. The authors suggest that “quantitative information on processes, 

stocks, flows, etc… has three components”, which are all handled within the proposed data 

model: 

1) “The actual numerical information, including unit and uncertainty 
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2) The information needed to locate the data in the systems context, i.e., the link between 

data and the system dimensions (process, time, region, material, …) 

3) The metadata, including provenance, source document, author and version information, 

and license” 

The second item is particularly emphasised, as it is often insufficiently documented in 

existing IE research and “specific to systems science”. Descriptions and analysis of each of 

these components as implemented in the IEDC are described in sections 3.3.5, 3.2.2 and 3.3.3 

respectively. Two important GDM concepts related to the first and second of these items are 

data types and data categories, which are described in the next sub-section. 

Only one limitation or shortcoming of the GDM or IEDC is noted in the paper (ibid.): “the 

structure presented here cannot efficiently accommodate high-resolution data…that describe 

a continuum, such as high-resolution time series or satellite images”. As no other limitations 

are acknowledged, the paper appears to position the GDM and IEDC as fairly comprehensive 

solutions to the “data integration and exchange problem” which they seek to address. This 

thesis research identifies a number of additional shortcomings and limitations, which are 

highlighted in this chapter and reiterated where relevant in the discussion and conclusion 

chapters. 

3.2.2 Representation of ‘facts’ as tuples 

Each data item within the GDM represents a specific fact which describes part of the system. 

The system-location of this fact is described by a tuple of aspects, with a numerical value for 

quantification of this part of the system. Each element within the tuple is an aspect to be 

defined. The data type (next section) of the fact determines the required or optional aspects. 

The example given in Pauliuk et al. (forthcoming) is: 

( )
( )

_  1,   2,   3,    

_ , , ,2016,     2540000 

data item aspect aspect aspect value

trade flow cars Japan USA number of units units

 =

=
 

The permitted values for each aspect are pre-determined. For instance, an aspect for country 

is selected from a list of all countries. These permitted values are the classifications for 

aspects. As described in Pauliuk et al. (2016), those classifications should ideally adhere to 
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the H-MECE properties: hierarchical, mutually-exclusive and collectively exhaustive. 

Following these rules, each tuple should be unique within a datagroup (see section 3.3.2). 

3.2.3 Data types and categories 

Two related concepts are described in the GDM manuscript for grouping and classifying the 

data which it stores: types and categories. Data types have a many-to-one relationship to data 

categories: each type must be a member of only one category, and each category can include 

any number of data types. This subsection critically assesses both of these concepts, 

beginning with data types.  

The authors state that “all phenomena or properties described in the system are modelled as 

one of the defined data types”. The paper states that “each data type has a specific datamodel 

that prescribes which aspects are required and optional”. Clearly this is a different usage of 

the term data type compared to that which was introduced earlier. The unorthodox 

relationship between data types and models implied by this statement is critiqued in sections 

6.2.1 and 6.2. Some examples are given for the datamodels of the data types, in a form the 

authors refer to as a “defining string”. In the following example [brackets] denote aspects, (*) 

implies optional, and the connecting-words between the brackets are intended to specify the 

relationships between the aspects. 

“Material composition of products (category 3): The material composition is an intensive 

object property describing the proportion of a material in a good/substance: [Material 

content] of [material] in [good/substance] of [age-cohort (*)] in [production region (*)] is 

[value/uncertainty] for [layer]. The layer can be mass but also volume.” 

The use of natural-language predicates such as ‘in’, ‘of’ and ‘is’ without further specification 

introduces significant ambiguity into these defining strings. This ambiguity means it is 

difficult to write formal constraints and specifications for each data type, based only on the 

available examples. An alternative approach to these defining strings would be to use more 

explicit specification standards, such as UML class diagrams or entity-relationship models.  

With regards to data categories, the paper (ibid.) attempts to group the data types into a 

higher level of organisation by focusing on the properties that each type describes.  Properties 

of physical objects in sciences including SEM can be divided in two useful ways, into 
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(intrinsic or extrinsic) and (intensive or extensive) (Pauliuk et al., 2016). In the GDM, the 

intrinsic properties of objects should be “recorded along with the dimensional classification 

items” (ibid.). The remaining extrinsic properties are divided into six data categories. As 

shown in Table 3.1, they are first divided into the “two broad categories of description”: 

objects and processes6, which are also divided into intensive and extensive, creating a 2x2 

matrix.  

  Objects Processes 

Extensive 

Extensive object properties… 
Extensive process properties 

(5) 

Flows (1)   

Stocks (2)   

Intensive 
Intensive object properties 

(3) 
Intensive process properties 

(4) 

  General ratios (6) 

Table 3.1: overview of the six pre-determined GDM 'data categories'. Simplified version of Table 2 in Pauliuk et 

al. (forthcoming) 

Next, the extensive object properties are “divided further into stocks and flows”, creating the 

fifth data category division7. The sixth and final data category is general ratios. These are 

described only briefly, as a derived category with examples: “data of categories 1-5 can be 

used to define ratios, like GDP per capita or per capita building stock”. Examples for the 

Intensive process properties given in the source manuscript are also ratios, e.g. “Process 

operating costs per output”. An explanation for the distinction between these process ratios, 

                                                 

6
 Contrast this with the #ontology paper, where the two broad categories were objects and events, with events divided into 

processes and flows. It is unclear why processes are now identified as a top-level category, but flows are not. 

7
 This appears to claim that the fundamental modelling concepts of stocks and flows are now considered as “extensive object 

properties”. This implies that the stock or flow (aggregation of objects) that an object belongs to, is a property of that object.  

This does not match typical usage of the term property, and seems illogical.  
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and the general ratio category is not provided. Based on the available information, it is 

unclear why these specific categories should be used, rather than another hypothetical 

approach.  

3.2.4 Conceptual data mapping to the GDM is not viable in this research 

To summarise, the definition of the GDM depends upon the types that constitute it. Examples 

are given for these types, but they are described in natural language rather than common 

standard datamodel description methods. The constructs used in the data types (e.g. material, 

region, age-cohort, yield, lifetime) are not formally defined. This means that people using the 

GDM require consistent implicit knowledge in order to use these constructs in the same way. 

And the cardinality of the relationships between these constructs is not specified.  The types 

can be grouped into categories, but the rationale behind this additional layer of grouping is 

unclear. 

For these reasons, it does not make sense to map the unit-process data source the GDM itself, 

as there is a barrier to understanding which cannot be surpassed using the limited descriptive 

information available.  In order to perform the desired conceptual data mappings for this 

research it is necessary to instead reference the technology-specific implementation in the 

IEDC; an issue which is discussed further in section 6.2.1. The IEDC tangibly exists as a 

relational database, and therefore is explicitly described in data definition language (DDL). 

This will be the focus of the analysis and mappings for the remainder of the research.  

3.3 The industrial ecology data commons 

The goal of this section is to provide a basis for the conceptual and detailed mappings, by 

clearly detailing the structure, design decisions, and actual data contents of the IEDC via 

original research and analysis. The Characteristics of datamodel quality (section 2.2) provide 

context and guidance for this analysis. 

The IEDC is an implementation of the GDM within the paradigm of relational data modelling 

(Codd, 1990). The relational model is implemented using MySQL, an open-source database 
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management system (DBMS) which is available in free and proprietary versions. The IEDC 

uses the free version. The authors state that they “chose a relational database model… as it is 

well established, easy to set up, and therefore suitable for a prototype”. More traditional 

arguments for selecting a relational model include: referential integrity; performance 

(storage, CRUD operations); and confidence in the validity of a data model, enabling a high-

likelihood for the pre-defined schema to remain stable. An alternative to using relational 

databases is explored in the Outlook (Chapter 8). 

The design of the IEDC database can described in data definition language (DDL) which was 

implemented as part of the MySQL DBMS specification. Using this DDL code, instances of 

the database can be installed on ay MySQL installation. The first (and only currently known 

existing) internet-accessible version of the IEDC is hosted by the IndEcol group at Freiburg 

university. The process of remotely connecting to this Freiburg IEDC instance has been 

documented for public usage as part of this this research. Instructions for this are included in 

Appendix D. Instructions for creating an IEDC instance fully populated with the Freiburg 

datagroups and datasets are also included in Appendix E. By using this Freiburg database 

connection or instructions for creating a local clone, the analysis described in this chapter can 

be easily reproduced, confirmed or refuted. 

3.3.1 Database structure 

A relational database contains multiple tables which usually each store data about one 

specific entity. The relationships between tables determine the structure of the database. 

Relationships are defined by referencing the primary key of one table using a foreign key of 

another. Each relationship has a cardinality between the two tables, such as one-to-many, 

many-to-many, or one-to-zero-or-one. 

The individual tables of the IEDC are described in the supporting information of Pauliuk et 

al. (forthcoming). As such, only descriptions that are necessary for the goals of this research 

are included here. A SQL select statement which can be executed to obtain formal 

descriptions of all relevant columns within the tables is included as Appendix F. The 

relationships between tables are not clearly described in the original work, and are hence 

emphasised here.  
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The schema of the IEDC is shown in Figure 3.2, which was created using MySQL 

Workbench model diagramming software. The cardinality of each inter-table relationship is 

indicated visually. The ‘crow’s feet’ connections indicate that a table is the “many” side of a 

relationship, whereas the ‘equals sign’ connections indicate the “one” end. Table-pairs with 

multiple relationships defined between them are described in 3.3.4, and not shown in this 

diagram. 

 

Figure 3.2: the full IEDC database schema 

 

From this view of the schema, some observations can be made, which are relevant for the 

later mappings: 

1. Datasets includes foreign keys to 10 other tables, and is referenced itself only by the 

data table 

2. The units and stats_array tables are only related to the data table, implying that 

numerical or quantitative values are stored there 

3. There is a group of highly-interconnected tables: licenses, projects, datagroups, users 

and source_type 

4. Datasets each include a type and a category, and types are also related to categories 

5. The only self-referencing table is classification items 

6. The tables are named in a mixture of both singular and plural form 
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3.3.2 Primary storage hierarchy: project, datagroup, dataset, data 

As shown in Figure 3.3, the hierarchical levels of projects, datagroups and datasets are used 

collectively to group observations of numerical facts or observations, which are stored in the 

data table. A collection of data records together constitutes a dataset. Each dataset has a data 

type which theoretically imposes the requirements on which aspects are compulsory and 

optional for each data record within that dataset (described in section 3.2.3). The datasets are 

grouped into datagroups, which can themselves be grouped into the final and highest level of 

grouping: project. 

 

Figure 3.3: the hierarchical data groupings of the IEDC, with one-to-many relationships from left to right 

3.3.3 Auxiliary metadata tables 

The remaining tables briefly described here are: licences, provenance, source_types, and 

users. Complementary definitions can be found in the supporting information of Pauliuk et al. 

(forthcoming). Licences allows for tracking the licences under which each data source is 

made available. The provenance lookup table provides a list of possible methods via which 

the data group was constructed, for instance via scenarios8, surveys, industry data, or expert 

judgement9. Source_type describes whether a dataset is from a publicly available or 

proprietary source10. Users is for management of the people and applications that load data 

into the IEDC and review the data as part of a workflow. These tables are of limited interest 

                                                 

8 Note that ‘scenario’ is also listed as a ‘system dimension’, facilitating possible data integrity conflicts 
9 The complicated and sequential nature of provenance metadata is not well supported by this. E.g. see QUDT 

PROV data schema used for satisfying similar requirements https://www.w3.org/TR/prov-primer/ 
10 Appears to have some overlap with the functionality provided by the aforementioned licences table, though 

they are not related via foreign keys in the model 
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to the mapping-focus of the research, and are not a core part of the data model. Omitting 

these from Figure 3.2 results in the simplified diagram shown below in Figure 3.4. 

  

Figure 3.4: simplified IEDC database schema, following the removal of auxiliary tables 

3.3.4 System location specification 

The system location information for each quantitative value is specified using a combination 

of tables for aspects and classifications. As seen in Figure 3.4, the aspects and 

classification_definition tables each have a many-to-one relationship defined to dimensions. 

It is not clear precisely how that data is intended to be stored within these, based on their 

table or column names, documentation, or the data pre-stored in these tables. For instance, 

Appendix G shows how the records in aspects and dimensions are related and highlights 

some unclear issues. The SQL query to generate the results is also included.  

The actual storage of records in the data and datasets tables do not relate directly to the 

dimensions table. This means this problem can be sidestepped for the remaining analysis. 

However, the aspects and classification tables are important for the upcoming mapping 

requirement, and are described in greater detail. 
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Typically, any pair of tables in a relational database have a single relationship defined 

between them. In contrast, the IEDC has three pairs of tables, which each have 1211 

relationships defined between the 2 tables in each pair. These are shown in Table 3.2, and a 

query to duplicate this result is available in Appendix G. The table data has 12 columns that 

reference classification_items. Datasets has 12 columns each referencing aspects and 

classification_definition. The 36 source columns have similar naming conventions with 

numbering from 1 to 12, and the column id (the primary key) of the referenced table is 

always used. 

Table Columns with Foreign 

Keys 

Referenced Table Referenced 

Column 

Key 

Count 

data aspect[1….12] classification_items id 12 

datasets aspect_[1…12] aspects id 12 

datasets aspect_[1...12]_classification classification_definition id 12 

Table 3.2: IEDC table-pairs with many relationships defined between them 

The relationships described here are a centrally important component of the datamodeland are 

connected to one another. A ‘tuple of aspects’ specifies the system location of each data item 

(section 3.2.2). The 12 aspect[1…12] columns of the data table make up this tuple. The 

classification_items table they reference contains all of the possible values which an aspect 

may take. The classification_definition12 used by each of the 12 aspects is stored in the 

dataset columns aspect_[1…12)_classification. This is a critical point to understand, which is 

not apparent from the implemented relational structure of the IEDC as in Figure 3.2. The 24 

columns of the datasets table which reference aspects and classification_definition, are 

intended to specify the relationships (and hence meaning) of the records in the Data table.  

Based on this insight, a new image of the core database schema which attempts to explain 

this design intention is shown in Figure 3.5. The central blue arrow indicates how records 

                                                 

11 12 is an arbitrary number, intended as the maximum number of aspects any data item is likely to be described 

by in practise. 
12 Classification_definition is the IEDC table for storing description of what are usually referred to as 

classification systems. The members of each classification system are stored in classification_items 
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stored in dataset describe the meaning of records in data which have foreign-keys defined to 

the classification_item table. The blue arrow in the bottom right indicates how 

classification_definition records define the meaning of records in classification_items. These 

are non-intuitive design pattern which increases the difficulty of querying the database and 

ensuring referential data integrity. An explanation for the cause of these unusual design 

patterns is proposed in section 6.2. 

 

Figure 3.5: core IEDC tables, columns and relationships. IDs and other columns omitted for clarity. Blue arrows 

are intended relationships that are not actually implemented in the IEDC design. n and m are arbitrary integers 

(see footnote 11). 

3.3.5 Storage of quantitative values 

This subsection briefly describes the locations in the IEDC for storage of numerical values. 

Two queries have been written to identify all possible columns where numerical information 

can be stored, included as Appendix H. The results of this query are included in Table 3.3, 

which shows there are only five columns within the IEDC datamodel for this purpose. 

Appendix H includes a description of these locations, as this is necessary information to 

inform the mappings of Chapter 5. The most important location is for the storage of facts (as 

in section 3.2.2, this is “a tuple of aspects, associated with a value”). This value is stored with 

double precision in the data table, using column: value. 

Table Column Type 
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data value double 

data stats_array_2 double 

data stats_array_3 double 

data stats_array_4 double 

units factor double 

Table 3.3: all columns for storage of numerical data within the IEDC 

3.3.6 Data categories and types revisited 

The evaluation of data categories and types in section 3.2.2 is continued here, and now 

extended with the increased specificity of the IEDC. As seen in Figure 3.4, the datasets table 

has many-to-one relationships defined to both the categories table and the types table. Each 

dataset record can therefore specify separately one data type and one data category, which 

applies to all of the data items contained within the dataset. But it is unclear what is gained 

by specifying a data category at all. As described in 3.2.2, the data type determines the 

required/optional aspects, without any reference to the category. 

Further, a new option for data integrity conflicts occurs through the implementation. The 

specification of a category is possible in both the datasets and types tables. Hence if the two 

categories listed differ, there is no way to determine which should take precedence. This 

conflict occurs not only theoretically, but also in practise for 3 of the 122 datasets defined in 

the default data contained in the IEDC. The results demonstrating this and the query to 

generated those results are included in Appendix I. 

To summarise, there are three distinct issues with the attempted data categorisation in the 

IEDC: 

1. The 6 pre-determined categories of data (Table 3.1) in the GDM are not well-

supported by existing literature, or justified with sufficient clarity and depth 

2. The categories serve no apparent practical function in the IEDC. They increase the 

complexity of the data model, making it more difficult to understand 

3. The IEDC implementation permits contradictory information to be stored regarding 

which category a dataset belongs to; in the pre-loaded data, this conflict occurs. 
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One final comment concerns the potential confusion introduced by usage of the term data 

type, which usually refers to a simpler concept. It is commonly used in programming, 

databases, and other areas of computer science to describe strings, integers and floats etc. 

These data types are defined by the operations that can be performed on them, and the values 

they can take. The concepts named data types in the IEDC include: “material composition”, 

“process capacity” and “unit-process inventory”. These require datamodels to define them, 

not data types. This line of reasoning is continued in the discussion section 6.2, which argues 

that many of the unusual design patterns encountered in this analysis can be explained with 

the observation that the IEDC attempts to simultaneously act as both a database and a 

datamodel repository. 
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Chapter 4 The source: unit-process datasets 

The previous chapter provided a detailed analysis of the destination database, whereas this 

chapter describes, selects and analyses the source. The goal is to select and assess an 

archetypal example of unit-process data which can be effectively used to test the capabilities 

of the IEDC. Figure 4.1 summarises the many processing steps which the source data 

undergoes, prior to its usage in this research. The sections where these steps are described are 

highlighted in bold.  

The first section of this chapter is focused on theoretically 

deriving data requirements for any datamodel which 

attempts to represent unit-process data. Lifecycle 

assessment (LCA) is described next, as a prominent 

method of IE which uses unit-processes to construct 

models. Research on a minimum consensus knowledge 

model for LCA data is then introduced. This knowledge 

model is used to build consistent semantic catalogs of the 

main LCA background databases (subsection 4.2.1). The 

catalog representation of ecoinvent (subsection 4.2.2) is 

selected for this research, specifically the undefined system 

model (subsection 4.2.3). This ecoinvent semantic catalog 

is assessed in the final part of this chapter, to function as 

the source dataset in the mappings of Chapter 5.  

 

 

 

Figure 4.1: the processing steps for unit-process data selected for usage in this research 
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4.1 Theoretical background and data requirements 

This section provides the theoretical basis for unit-processes which is necessary to understand 

the upcoming analysis and data mapping. An additional objective for this section is to elicit 

high-level requirements for unit-process datamodels. Seven categories of relevant data are 

identified in this section, and summarised at the end. The theory presented here applies to all 

nominal sociometabolic lifecycle stages, including: extraction, production, consumption, 

waste treatment, recycling and any other technosphere processes. 

A unit-process is defined as the “smallest portion of a product system for which data are 

collected” (ISO 14040, 2006). They can sometimes be used to represent environmental 

processes, but for IE-style modelling, unit-process almost always refers to the economic 

processes of the technosphere. Hence these terms are used interchangeably. The physical 

economy or socioeconomic metabolism that IE researchers aim to understand cannot be 

directly observed at large scales (except to some extent using satellite imagery). Therefore, 

scientific research in this domain involves the construction of representative models. Unit-

processes are the basic building blocks for this modelling effort, which is described further in 

section 4.2. 

Unit-processes take commodities as inputs and generate commodities as outputs, as shown in 

Figure 4.2. Here, commodity means any object that can flow between processes, such as 

products, resources, services, energy, labour, wastes, or emissions (Heijungs, 1997, p. xvi). 

Purely physical representations of processes omit the intangible aspects, such as services and 

labour. However, this may reduce the usefulness of the unit-process description for particular 

modelling approaches which rely on this information. Unit-processes are under human 

control; people can choose to turn them on or off (ibid.). When they are turned on, the 

commodities are perceived as flows, as they are moving (or flowing) into and out of the 

processes. Commodities can be classified as either economic or environmental. Those that the 

unit-process modeller classifies as environmental commodities are said to have crossed the 

environment-technosphere boundary, by either entering or leaving human control. Economic 

commodities flow from/to other economic unit-processes; they remain in the technosphere 

and do not cross the aforementioned boundary.  
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Figure 4.2: a unit-process with economic and environmental commodities flowing in and out 

 

The unit-process conceptualisation makes no attempt to describe what happens inside a 

specific process. Rather, its borders are defined, and quantification of the physical 

commodities that cross those boundaries constitutes a sufficient and complete description. 

Nonetheless, additional properties of processes must also be recorded as metadata, to 

communicate the system context of unit-processes. This data is more varied, verbose, and 

hence open to misinterpretation, compared to the numerical data which somewhat 

unambiguously quantify the values. This system context data is required due to the intention 

to use the unit-processes in economic modelling. If the information about the original context 

of the process is not available, then it is not possible to validate the correct usage of the data 

in the new modelling context. 

Unit-processes can be constructed from primary observations and measurements. The 

commodity flows in and out are observed, quantified, recorded and shared. Mass and energy 

balance principles apply. Assuming there is no build-up of stock, the flows must balance, 

including all chemical elements. Hence unobserved flows can also be calculated via 

stoichiometric principles (Hougen et al., 1954). Observations of economic unit-processes can 

be repeated and verified. For a subset of small unit-processes that are well-understood, the 

observed values are expected to conform to predictions from theoretical chemical equations. 

This foundation in positivist natural science affords researchers a high degree of confidence 

in some basic unit-process data.  
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However, most available unit-process datasets are not simple raw observations of this type, 

and cannot be theoretically predicted through chemical equations. Unit-process data almost 

always requires extensive processing. This is intended to make the data more representative 

and useful for its intended purposes. In the words of Heijungs (1997), unit-process datasets 

are “the result of certain manipulations to find, to correct, to complement, or to adjust data 

according to certain aims”. To construct a representative unit-process data set, a process is 

observed for a period of time. Averages are usually then calculated based on this time series. 

The observations may span across a class of related processes or technologies, with the 

weighted average then intended as representative of the process class. The semi-structured 

notes describing this data gathering and processing are often included as metadata, alongside 

the numerical values of the flows. The aggregation of related datasets naturally leads to 

statistical uncertainty. There are many types of uncertainty which can be associated with unit-

process data (Imbeault-Tétreault et al., 2013; Henriksson et al., 2014). A detailed discussion 

of uncertainty is beyond scope, except to highlight the necessity to represent this information, 

within a unit-process data model. 

To summarise this section, the theoretically derived elements of data that are of relevance to 

any unit-process datamodel are: 

1. Process data, which unambiguously identifies the process for humans and/or 

machines 

2. Commodity/Flow data, which unambiguously identifies the flows of commodities 

3. Relationship or network data, which enables the association of processes and flows 

4. Numerical data, which quantifies the above flows 

5. Uncertainty data, which statistically quantifies the uncertainty associated with the 

numerical data, often by specifying a distribution and parameter values 

6. System context or location specification data, such as the spatial and temporal scope 

of the process 

7. Data collection metadata, which describes the selection and processing of the reported 

observations, including system boundaries choices and other modelling decisions 
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4.2 Unit-processes in LCA 

Unit-process data is used in variety of modelling approaches. Their most common application 

is in the lifecycle assessment (LCA) method for assessing the environmental impact of 

product systems (Guinée et al., 2002). All seven of the data elements listed in the previous 

section are required for high-quality LCA studies. The lifecycle inventory (LCI) analysis 

phase of an LCA involves constructing the supply chain of a product system from cradle to 

grave. This is usually visualised as a flowchart, which is an important aspect of the 

communication of each study (Anex & Lifset, 2014). Each box within the flowchart is a unit-

process. These processes can be very small or large, depending on the resolution of the LCA 

case-study. Numerical data is then used to quantify or estimate the magnitude of the 

identified flows between processes within the system. 

LCAs also have further data requirements in addition to the unit-processes which are used to 

construct the system models. These relate to later stages of the methodology: impact 

assessment and interpretative steps such as the weighting of impact categories (Guinée et al., 

2002). The impact assessment phase aims “at understanding and evaluating the magnitude 

and significance of the potential environmental impacts of a product system” (ISO 14040, 

2006). The prior LCI phase has already created a full inventory of flows into and out of the 

biosphere, for the product system being modelled. In order to evaluate the potential 

environmental impacts of these flows, the quantified potential impacts of each flow must also 

be characterised.  

Standard LCA working practises involve the explicit modelling of foreground product 

systems, supported by generic data from background databases (also known as LCI 

databases). The ecoinvent database was selected as the source dataset for the mappings of 

Chapter 5, and is described in subsection 4.2.2. Like some other background databases, 

ecoinvent is available in a variety of system models, which create unit-process data for 

different LCA modelling purposes; these are described in subsection 4.2.3. Data from the 

background databases is released using standard data interchange formats (section 2.1). These 

are described in Appendix K, which focuses on the new json-ld (linked data) format used in 

the semantic catalogs. The final subsection describes research aimed at building a knowledge 
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model to represent all of the LCA background databases. This knowledge model is 

implemented using semantic web linked-data technologies to build the semantic catalogs of 

LCA data which are the focus of section 4.3. 

4.2.1 Background processes and databases 

Due to the widespread adoption of the LCA approach (Guinee et al., 2011), unit-process data 

are some of the most commonly available datasets on socioeconomic metabolism, available 

for many supply chains at high resolution. This data is created and gathered together by 

various organisations into large background databases (Kuczenski, 2015). The processes and 

other data available in each of them varies, although there is also overlap.  

The term database here does not refer to a proper relational database or similar, as the 

providers almost never provide data in this way, even if they use databases internally. The 

data is released to the community in files, which use common formats (see Appendix K for 

more information). An online source which collates LCA datasets claims to host over 88,000 

unit-processes (nexus.openlca.org, 2019). The site provides access to some of these for free 

and provide links to the proprietary databases or resell them directly in other cases. These 

data formats are sufficiently consistent to be used in a wide array of LCA software 

implementations. Despite well-known interoperability issues and limitations (Herrmann & 

Moltesen, 2015), these software systems are also widely used outside of academia (Seto et 

al., 2017), contributing to improved understanding of sustainability-related issues throughout 

the economy. The goal of this research is to test the ability of the IEDC to effectively 

represent archetypal unit-process data. These LCA databases are familiar to the vast majority 

of the IE scientific community. The data they contain has demonstrable utility and 

functionality and their network structure is broadly recognised and understood. Hence, they 

are generally appropriate to function as the source dataset for this research. Whilst it may be 

possible to import all background databases into the IEDC, this research focuses on a single 

one for only one for expediency: ecoinvent. 
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4.2.2 The ecoinvent database 

The ecoinvent database has evolved from projects beginning over 20 years ago. It is now run 

as an independent not-for-profit foundation, with the goal to “ensure the further development 

of a consistent, transparent and trustworthy database for the LCA community” 

(ecoinvent.com, 2019b). Many of the unit-processes included in ecoinvent are provided by 

third-parties, via their data submission process (ecoinvent.com, 2019c). This enables users to 

submit their own datasets into a quality control and release procedure, and hence for the 

database to grow quickly. Metadata and contextual data are provided to describe the unit-

processes in ecoinvent. These include tags, technology levels, groupings, aliases, 

classifications, notes, spatiotemporal scopes and other descriptive information.  

The most recent major update was published in 2013 as Version 3, with additional updates 

every year leading to V3.5 in 2018 (ecoinvent.com, 2019a). There were three relevant 

methodological developments in version 3: the separation of raw unit-process data from 

system modelling choices, expansion of ‘market’ processes, and increased support for 

regionalised assessments (Wernet et al., 2016). Market processes are considered beyond 

scope for this research, and the emphasis is also not on regionalisation. Whereas, the 

separation of system modelling choices from raw data, is the focus of the next sub-section.  

4.2.3 System models 

Earlier versions of ecoinvent (and other databases) consisted of unit-process data with 

subjective modelling choices, pre-built into the data. These were caused by the necessity to 

link and allocate processes, according to a distinct set of rules, known as system models 

(Wernet et al., 2016). This made some of the data theoretically unsuitable for particular LCA 

epistemologies such as consequential LCA (Weidema et al., 1999). Ecoinvent v3 takes a 

theoretically improved approach, by separating out these modelling choices from the 

unlinked and unallocated unit-process data on which they operate. A result of this is that 

ecoinvent now offers a variety of different data sources to select between, for transformation 

into the IEDC. For this research, the decision was taken to use the undefined ecoinvent 

system. The context and reasoning for this decision is presented briefly here. 
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Figure 4.3 displays an adaptation of Figure 1 from Wernet et al. (2016). The original 

describes the undefined system as the “primary raw unlinked data”. Note that ‘raw’ is a 

relative term here, as even this data has already undergone significant processing (see section 

4.1). Starting from this common point, system models can be applied to create a variety of 

epistemologically consistent linked datasets. The latest version of ecoinvent includes 3 

system models (ecoinvent.com, 2019d). These are the ‘cut-off’, ‘APOS’ (allocation at the 

point of substitution), and ‘Consequential’ systems. The coded rules for some of these models 

are partially available through an open-source project called Ocelot, which includes ecoinvent 

as a partner (docs.ocelot.space, 2017).  

 

Figure 4.3: the construction of consistently allocated unit process databases via application of system models 

onto ‘undefined’ (unlinked and unallocated) unit-process data. Adapted from Figure 1 in Wernet et al. (2016) 

The undefined system was selected as the source data for loading into the IEDC because the 

data it contains is more fundamental than the others options. All other system models require 

subjective expert opinions, judgements, and decisions to be taken when they are being built. 

This makes them more useful for LCA modelling. However, the data in the IEDC is not 

likely to actually be used by practitioners conducting LCA case studies, but rather by 

researchers seeking accurate descriptions of processes of socioeconomic metabolism. 

Therefore, the undefined system makes most sense for the requirements of this research. 
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4.2.4 The minimum consensus knowledge model for LCA 

As highlighted in the section 4.2.1, the heterogeneity of LCA background databases can make 

it challenging to identify their common structure. An attempt to solve this challenge is made 

by Kuczenski et al. (2016). Their paper describes the results of a workshop where “leading 

international domain experts” of LCA met with ontology engineers, “to develop a set of 

simple models called ontology design patterns (ODPs) for LCA information”. They named 

their ODP “a minimal consensus model for LCA”. Where minimal consensus means that they 

only included in their ontology, the elements which were present in all of the background 

databases they analysed. Their ontology reused pre-existing ontologies wherever possible, 

which is considered good practise on the semantic web (Antoniou & Van Harmelen, 2008). 

The main resources referenced and reused in this model are two commonly used high-level 

schemas, and two pre-existing LCA-specific ontologies: 

• Schema.org (a top level semantic-web reference, available at 

https://schema.org/docs/schemas.html) 

• QUDT (short for quantities, units, dimensions and data types. Available at 

http://www.qudt.org/ and highlighted again in the Outlook) 

• “Specifying Spatiotemporal Scopes in Life Cycle Assessment” (Yan et al., 2015), 

available directly at http://descartes-core.org/ontologies/lca/1.0/stscope.owl 

• The aforementioned OpenLCA linked-data schema (Ciroth & Srocka, 2015)  

The knowledge model is displayed in Figure 4.4. See Kuczenski et al. (2016) for a full 

description, or section 4.3 for a code-based exploration of the implementation of this model. 

http://www.qudt.org/
http://descartes-core.org/ontologies/lca/1.0/stscope.owl
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Figure 4.4: Caption in Kuczenski et al., (2016) Fig 1. states: "The consensus knowledge model showing three 

entity types and their defining properties. An exchange reports a relationship between activity and flow 

instances, and a characterization reports a relationship between flow and flow quantity instances.” 

This consensus model is used to represent a subset of the data contained in a number of 

prominent LCA background databases. These representations are described as Semantic 

Catalogs of LCA data, (hereafter, catalogs). These catalogs can be downloaded from the 

internet (GitHub, 2019b) in the .json-ld file format (Appendix K). Source code which can be 

used to generate the catalogs is also available (GitHub, 2019a), however this is beyond the 

scope of this research. In order for the catalogs to be released freely without licensing 

restraints, only freely available public data could be included. Ecoinvent is proprietary. 

However, a subset of the data is also released in ‘activity overview’ spreadsheets files, which 

are free and publicly available. The developers of the semantic catalogs chose these 

spreadsheets as their data source for ecoinvent, to avoid licensing concerns. The semantic 

catalogs were selected as a good example of LCA or unit-process data for the following four 

reasons: 
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1. Representativeness. If the authors claim of being a “minimal consensus model for 

LCA” is accurate; then the data is an archetypal example of unit-process data, and 

ideal for the purposes of this research.  

2. Availability. The catalogs are easily discoverable online, and were downloaded with a 

single line of code (a ‘git clone’ to the URL of the repository) 

3. Licensing. The authors of the catalogs completed the time-consuming work of 

collecting and sharing only the publicly available data from the LCA background 

databases. No proprietary or paid-for data was used, meaning that the dataset is 

appropriate for free scientific analysis and distribution without licensing concerns. 

4. Usability. The data in the files is human and machine readable with relatively simple 

code. This means the transformations required are likely to require comparatively 

limited processing to satisfy the goals for the research. 

4.3 The semantic catalogs of LCA data 

This section presents an overview of the semantic catalogs based on the published article 

which describes them (Kuczenski et al., 2016), and code-based analysis of their contents. The 

original knowledge model (Figure 4.4) is then converted into a simplified entity-relationship 

diagram (Figure 4.5), to communicate the catalog structure as used in practise. The ecoinvent 

3.2 undefined catalog is then explored in detail, as a pre-requisite requirement for the 

mappings of the next chapter. 

4.3.1 Overview of the catalog contents and structure 

The aforementioned semantic catalog representations are available for four main background 

databases (US LCI; GaBi 2016, with 22 extension databases; ELCD v3.2 and ecoinvent 

v3.2). Some of these catalogs are available in multiple system models and versions. With 

regards to the actual data included in the catalogs from each source, the authors state: “for 

data sources that are free, including USLCI and ELCD, the catalogs include the semantic, 

structural, and quantitative data (i.e. processes include lists of exchanges, and those 

exchanges include values). For data sources that are not free, including the GaBi professional 
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database and extensions, and the ecoinvent database, the catalogs include only the semantic 

information and partial structural information (a listing of reference exchanges or 

characterizations). They exclude non-reference exchanges and characterizations, and exclude 

all exchange values and characterization factors”. However, non-reference exchanges 

actually appear be included for ecoinvent, as explored in section 4.3.2.  

In Figure 4.4 above, both the base classes, and the instances of those classes are displayed. 

Definitions for these terms are available in the glossary in Appendix B. The actual data 

included in the catalog files is all instance data. These entity instances have a context which 

describes how they should be interpreted13 and their semantic relationships and links to other 

objects on the semantic web (see Chapter 8) The most important instance data for the 

purposes of this research are shown in the entity-relationship diagram (Theodoulidis et al., 

1992) of Figure 4.5, which is described below and followed by an example. 

 

 

Figure 4.5: The 3 entity instances in a semantic catalog of LCA data (in squares), with their relationships 

(diamonds) and cardinalities (bracketed). Attributes not shown. 

 

A process contains 1 to m exchanges, which can be inputs or outputs. Each exchange points 

to one flow. Each flow contains 1 to n characterizations. Each characterization points to one 

flow quantity. Exchanges can be identified by the unique combination of three items: the 

process they are contained within; the flow they point to using it’s GUID; and their direction. 

Characterizations can be identified by the unique combination of: The flow they are 

contained within; and the flow quantity they point to using it’s GUID. Both exchanges and 

characterizations can be labelled as the reference for their process or flow respectively. This 

                                                 

13 The @context description for the catalogs is visible at  

https://bkuczenski.github.io/lca-tools-datafiles/context.jsonld 

https://bkuczenski.github.io/lca-tools-datafiles/context.jsonld
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means that other exchanges and characterizations respectively are normalised to this 

reference value.  

An example of this data structure in practise is shown in Figure 4.6 and described here with 

example values in bold. This electricity mix process has an exchange input of 9.6e-11 of the 

flow Potassium Chloride. This flow has the reference characterization of 1.0 of the flow 

quantity Mass, which has the unit kg.  

 

 

Figure 4.6: example of a related process, flow, and flow quantity. Entity names shown in boxes, with their 

GUIDs above. Relationship values and example attributes shown in diamonds. 

 

4.3.2 Exploring the ‘ecoinvent 3.2, undefined’ semantic catalog  

This section describes the selected source catalog dataset in detail. It is based on the actual 

data contents, and intended to provides the necessary pre-requisite knowledge for the 

mappings of Chapter 5. Appendix L includes the source-code used for this analysis. This was 

adapted from notebook-based examples provided by the researchers and developers that 

created the catalogs (GitHub, 2019c).  

In this section, the capitalization of letters within the key names matches that which ids found 

in the data source. Key refers to the ‘key : value pairs’ of the JSON data format and the 

Python dictionary data structure (PythonDocs, 2019), rather than to the primary and foreign 

keys of relational databases. Table 4.1 provides an overview of the top-level keys in each 

catalog, which are described in the following subsections. These practical descriptions 

complement the theory and examples of Figure 4.4 and Figure 4.6.  



53 

 

 

Table 4.1: top-level keys or attributes of the primary semantic catalog entities and their relationships. Attributes 

of particular entities listed vertically; recurring attribute names emphasised horizontally 

4.3.2.1 Common data attributes 

The only key which is common to all entities is entityType, which has as a simple text-string 

value stating its entity type, such as “process” or “exchange”. The primary entity types: 

process, flow and quantity, have 5 other keys in common. Name is used to help a human 

interpreter understand what the process does using natural languages. Whereas entityId is 

used for unambiguous identification by people or machines, via a GUID value (globally 

unique identifier). To demonstrate the non-uniqueness of names in this catalog: of the 13307 

processes, there are only 6046 distinct process names. externalId is intended to hold data 

which can uniquely identify an entity within the source database, which may use a different 

entity identification convention to the semantic catalogs. In the case of the EI3.2, the 

externalId holds duplicate data to entityId, because ecoinvent also uses 32-character 

alphanumeric GUIDs, which means processes can easily be found (for example) by a Google 

search. The origin key:value pair holds the filename where the data was extracted from 

during the creation of the catalogs. It is hence metadata which describes part of the data 

provenance. Finally, comment is used to store extra descriptive text or category-based data, 

the details of which vary between each entity. 

The two keys which are common to all entities and relationships are isReference and value. 

isReference is a Boolean value which indicates whether the exchange or characterization 
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relationship being described, is the reference. For an exchange, this is usually used for the 

functional flow of the process, the flow for which the process is intended to produce. For a 

characterization, it is the reference characterization to which other values are normalised. 

This is usually mass, such that other characterizations (e.g. global warming potential or 

volume) are recorded relative to the mass of the flow. The key-value pair named value is the 

only place within the catalogs where numerical data is expected to be stored. As described in 

section 4.3.1, this is not included for the proprietary ecoinvent data.  

4.3.2.2 Distinct data keys per type 

The process instances have four distinct data keys: Classifications, exchanges, SpatialScope 

and TemporalScope. The classifications are used to categorise the processes depending on 

their function. The top 5 most common classifications in the catalog are shown in Table 4.2 

as examples. The exchanges entry holds a list containing every exchange which flows into 

and out of the process. The source code in Appendix L extracts these exchanges from the 

processes and creates separate data objects, such that they can be treated separately as part of 

this analysis. SpatialScope and TemporalScope reuse the ontological work of Yan et al. 

(2015), to describe the spatiotemporal scope for which the process is considered 

representative. 

Process Classification Exchange Count 

 Electric power generation, transmission and distribution 3015 

 Manufacture of basic chemicals 1099 

 Treatment and disposal of non-hazardous waste 980 

 Electric power generation, photovoltaic 395 

 Steam and air conditioning supply 343 

Table 4.2: most common process classifications found in the ecoinvent semantic catalog  

Exchange instances have two distinct data keys: direction and flow. Direction can be “Input” 

or “Output”. This specifies the orientation of the exchange, relative to the process. The flow 

key has a GUID as a value. This GUID points to a specific flow, such that the type of 

commodity flowing into or out of the process can be identified.  



55 

 

The Flow instances have three distinct data keys: CasNumber, characterizations and 

Compartment. CAS refers to the Chemical Abstracts Service. This is a widely used standard, 

which “uniquely identifies chemical substances on the basis of composition and structure” 

(Dittmar et al., 1976). The characterizations entry is a list, containing all of the 

characterizations which can be used to characterize the flow, via pointers to flow quantities. 

Compartment refers to the medium that contains flow. There are 25 distinct compartment 

categories listed for all flows in the ecoinvent catalog. Table 4.3 shows the most common. 

Characterizations have only one distinct data key: quantity. This simply points to the GUID 

of the Flow Quantity data which describes the flow that the characterization is a member of. 

Compartment Flow Count 

Intermediate flow 2754 

air 1723 

water 1423 

unspecified 677 

soil 500 

Table 4.3: most common flow compartment categories found in the ecoinvent semantic catalog  

Flow Quantities are the final entity type, and have five distinct data keys: indicator, category, 

method, referenceUnit and UnitConversion. The method refers to the impact assessment 

method family used, such as “CML 2001”. For readers unfamiliar with lifecycle impact 

assessment theory, refer to Guinée et al. (2002). For this catalog, there are 465 distinct 

indicators sourced from 39 different methods, grouped into 100 categories, using 58 

referenceUnits for their measurement. Examples of common referenceUnits are shown in 

Table 4.4. 
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This concludes the exploration of the ecoinvent 3.2, undefined system model, semantic 

catalog. The next chapter uses the knowledge gathered in this chapter to map this source 

dataset onto the IEDC database. 

Reference Unit Quantity Count 

points 193 

kg 115 

kg 1,4-DCB-Eq 68 

kg CO2-Eq 36 

UBP 34 

Table 4.4: most common flow quantity reference units found in the ecoinvent semantic catalog 
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Chapter 5 Source to destination: mapping the 

datamodels 

The previous two chapters collectively satisfy the pre-requisites to the data mapping which 

are listed in section 2.3.2. As such, the source and destination are now understood and 

documented, from a conceptual and detailed perspective This chapter will attempt to answer 

research sub-question 3, by demonstration. The assumption driving the mapping effort is that:  

It is possible to comprehensively map all entities, relationships and attributes from the 

selected ecoinvent 3.2 undefined semantic catalog source dataset, into the relational 

datamodel of the IEDC database. 

Figure 5.1 displays an overview of the requirements for the mapping, which are addressed 

through this chapter. It is based on Figure 4.5 and Figure 3.2. It is important to note that the 

mapping described in the subsequent sections is one of many possible mappings between this 

source and destination. Many decisions taken in this process have an element of subjectivity, 

and alternative researchers may prefer different approaches. 

The chapter is divided into the following sections. First, the high-level conceptual data 

mapping is presented, giving a general outline and explaining the reasoning behind the most 

significant choices which were forced or made. Next, the complementary detailed mapping is 

described, with reference to the data mapping document included as Appendix A. The 

implementation of these mappings into an ETL process is then described in the next section. 

The result of this chapter is that the data can be represented into the IEDC, the assumption 

stated above is correct. This thesis research also aims to determine whether the representation 

is effective. This topic is addressed in section 6.1 of the Discussion. 
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Figure 5.1: the mapping and ETL challenge, from semantic catalog source data to the IEDC destination tables  

5.1 Conceptual data mapping 

Figure 3.4 showed a simplified view of the IEDC schema, after removal of the auxiliary 

tables as explained in the accompanying text. The mappings of source data to these auxiliary 

tables are shown with comments in 0. To further simplify the mapping requirement on the 

destination side, some additional ‘quick-win’ mappings are described here:  

1. Each semantic catalog is one datagroup. As only one semantic catalog was selected as 

the source data, only one entry is required into the datagroup table.  

2. The type of each dataset is ‘unit process’. 
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3. Layers described by the source data are ‘Mass’ and ‘Value per Mass’ 

4. Of the 6 pre-determined data categories, none of the options are fully appropriate (see 

section 3.3.6 and comment in the Mapping Document). Category “Flow” is selected 

as the closest match. 

5. The dimensions pre-loaded into the IEDC are sufficient for the requirements of this 

data source, and each aspect and classification definition entry links to a different 

dimension (5.2.2) 

Removing these easily-mapped concepts from the destination data model, leaves the 

relational model shown in Figure 5.2. The target for the challenging part of the mapping now 

consists of just 6 tables and 7 relationships (including a self-join); it is therefore more 

tractable that the full original schema.   

 

Figure 5.2: core IEDC schema, after removal of tables with simple mapping requirements 

As described in section 3.3.5, a key anchor point in the IEDC, which directs the mapping of 

any data source, is the data table. Crucially, this is the only place that can store continuous 

numerical information (in the value column). In contrast, the source datamodel stores 

numerical information in two different places: the value fields of both the exchange and 

characterization relationship entities (e.g. see Figure 4.6). This leads to the question: which 

value should be stored in the data table? 
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If the exchange value is inserted into the data table, this would mean characterizations and 

quantities must be mapped somehow to the classification tables. If the characterization 

values are stored in the data table, then the exchange and flow data including their relative 

magnitudes would need to be stored in those tables. Neither of these solutions is satisfactory. 

An alternative approach is instead chosen for the conceptual mapping: transforming the 

source data by flattening it.  

Flattening data de-normalizes it and creates additional redundancy by duplicating values 

across multiple rows. During flattening, the two numerical values are multiplied by each 

other to form a single value. If they had units, they would also be combined into a compound 

unit. However, neither the exchange nor characterization have a unit-of-measure directly 

specified. Rather, the reference unit is specified in the associated flow quantity. After 

flattening, this unit applies to the newly flattened row.  

Based on this approach, an overview of the conceptual mapping is shown in Figure 5.3. The 

process concept of the source (along with some data from other objects as part of the 

flattening process) is mapped onto the dataset concept of the destination. Flow quantities of 

the source are broadly mapped onto units in the destination. The exchange and 

characterization relationships are combined and mapped onto the data table of the 

destination. If a process has m exchanges, and a flow has n characterizations, then m*n rows 

are entered into the data table for that process. 
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Figure 5.3: overview of the source to destination conceptual mapping 

All the flows of the source dataset are modelled as a classification scheme in the 

classification_definition table. Each of the flows present in the source dataset become an 

entry in the classification_items table, including their attributes. The specific flows that are 

referenced by each of the flattened entries in the data table are referenced via the aspects 

table (see section 3.3.4). Three additional attributes from the source entities which do not fit 

into the Data table must also be specified using a combination of aspects and classifications: 

exchange["Direction"], exchange["isReference"] and characterization["isReference"]. 

5.2 Detailed data mapping 

This section describes the contents of the Detailed Data Mapping document, duplicated in 

Appendix A. The description of its structure is included as Appendix O. This describes the 

different sheets, columns, mapping identification scheme, legends and formatting. This can 

be used to as guidance for a clear understanding of the meaning of the document. Whereas 

the section on the contents describes the important decisions taken in the actual data 

mapping. 

5.2.1 Auxiliary mappings 

The mapping document describes mappings which are labelled from 0 to 22. Mappings 0 to 

10 are classified as auxiliary. These do not include reference to the source data, but rather are 
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hard-coded values that have been written based on the knowledge gathered and generated in 

earlier chapters. Of these, the IEDC already has appropriate data pre-loaded for 8 of the 

mappings, with just 3 auxiliary mappings requiring new data to be entered in the destination 

and hence insert statements (see section 5.3).  

The entries have either been previously explained, or are simple and self-explanatory, based 

on the guidance above. Some further potential IEDC data integrity conflicts are highlighted in 

the comments column. For instance, data_categories, data_types, and data_layers are all 

specified for both the projects and datagroups levels of the data storage hierarchy (see 

section 3.3.2). The comments also include some recommendations on alternative approaches 

to modelling, some of which are highlighted in the Outlook. 

5.2.2 Classification and aspect mappings 

Of the 12 core mappings, 9 of these made up of 3 groups of 3 entries into the aspects, 

classification_definition, and classification_items tables. Each of these groups will be 

referenced in the data and dataset entries, as described in section 5.2.3. As summarised in 

Table 5.1: a single record for each of the three groups is inserted into classification_definition 

and the aspects tables. These entries are similar because the aspects entry is used to link each 

dataset unit-process entry to a classification_definition (section 5.2.3). Classification_items 

receives multiple inserts per group, as it contains all the items which belong to each of the 

three classifications which are defined in these mappings.  
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Mapping IDs classification_definition classification_items aspects 

12-14 Ecoinvent_Commodity_Flows All distinct flows in the source data Commodity_Flow 

15-16 Boolean 2 records: True & False Boolean 

17-19 Direction 2 records: Input & Output Direction 

Table 5.1: classification and aspect mappings summary 

The most interesting mapping group here is Ecoinvent_Commodity_Flows. Every flow entity 

from the source dataset becomes an entry in this classification system. As such, the attributes 

columns of the classification_items are used to store the source data. The first 4 optional 

attribute columns are used to store the source data fields: entityID, Name, CasNumber and 

compartment. As such, the classification system of the IEDC is quite capable of accepting all 

of the necessary source data, despite some shortcomings (see Discussion section 6.1.2).  

5.2.3 Other core mappings: units, datasets and data 

The remaining 3 core mappings are into the units, datasets and data tables. These are the 

most important mappings, and constitute the vast majority of the total quantity of data that is 

inserted into the IEDC during the ETL process. 

As shown in Figure 5.3, the Flow Quantity concept of the semantic catalogs maps 

approximately onto the units table of the IEDC. The Flow Quantity attribute referenceUnit 

contains data which can be used in either/both the unit_code and unit_name columns of the 

destination table. Every distinct entity in the source dataset becomes a single record in the 

IEDC table. 

The datasets table receives a single entry for every process in the source dataset. The 

datagroup, category, type, layer, provenance, source_types, user and license of every entry in 

the table is the same, with the specific values visible in the mapping document and justified 

where necessary. The Name attribute of the source becomes dataset_name in the destination 

table. The other Process attributes: ISIC Number, Classifications, SpatialScope, 
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TemporalScope and TechnologyLevel are mapped respectively to the dataset columns: 

process_scope, product_scope, regional_scope, temporal_scope and description. Four 

aspects and aspect_classifications are specified for every dataset entry. These are explained 

in section 5.2.2, and are used to specify which classification schemes each of the entries into 

the data table (see below) relates to. There are four groups entries here rather than the three 

explained in section 5.2.2, because the Boolean classification can be used twice, to specify 

both the isReferenceExchange and isReferenceCharacterization values. 

The final mapping is to the IEDC data table. Each process entry into datasets will have many 

entries into this data table associated with it. The flattening transformation which creates 

these records is described in the conceptual mapping section above. This table receives 

attributes from four out of the five possible source entities: Exchange, Flow, Characterization 

and the unit from Flow Quantity. Aspects 1 to 4 in this table match with the entries of 

datasets, as described above and in the mapping document. This table permits the 

specification of two units: for both numerator and denominator, but only the numerator entity 

is required for this source dataset (with the denominator set to 1, as to have no effect). The 

source dataset has two comment entries which must be stored in this table, from the Flow and 

Flow Quantity entities. As such, these comments are appended to one another for mapping to 

the comment column, which has a suitably large data type to handle this.  

5.3 Extract-transform-load implementation 

It is possible to load data into the IEDC using a formatted template spreadsheet, and 

associated software-based parser and importer. However, preliminary exploration ruled out 

this option. Using the template would not provide sufficient flexibility for the complexity of 

the mapping under attempt. It would also require additional interfacing with the template and 

importer, which have not been tested beyond the IEDC development team. They state that 

“the documentation of the process of converting available data from the different sources, 

accounting routines, or model calculations into the IEDC template is the under the 

responsibility of the data provider, and no guidelines or standards exist”. For these reasons, a 

custom ETL process was designed for this implementation. 
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In general, ETL implementations can be said to exist of five stages (Haq, 2016). A source 

data source is first extracted into a landing area. This data is loaded into memory or prepared 

in some other way into a space which can be referred to as the staging area. In this area, 

transformations are applied, until the data has been processed into a load-ready state. Finally, 

this data is inserted into the target database, completing the ETL implementation. An 

overview of these steps is shown in Figure 5.4 

 

Figure 5.4: Flow chart for data extraction, transformation and loading process. General concepts on the left are 

based on Haq (2016). Application of concepts to this research method are shown on the right 

 

For this research, the original source for the data is the LCA-Data-Tools GitHub repository 

(GitHub, 2019b). The repository is copied to a landing area on the local machine using a 

clone command of the Git version control system (GitHub, 2019c). From here they can be 

unzipped from the .gz format to the .json format and placed in an appropriate working 

directory. The json files are loaded into the memory of a Python kernel, which could be 



66 

 

considered a staging area. The code to handle this is available in Appendix L. The coded 

functions transform the catalog data into new objects which simplify further processing. Then 

later functions iterate over these objects, to generate strings of properly-formatted SQL code. 

These strings are saved as load-ready (.sql) files. The IEDC target database is loaded with 

the semantic catalog data by executing the scripts. 

When loading data into the destination database, there are conditions which constrain the 

order that the tables must be loaded. These constraints are determined by the foreign key 

relationships between tables. When a foreign key relationship is defined on a column, the 

table which that key references must first be populated. Else the insert statements will raise 

errors and the data loading will fail. In general, the loading order dependency for a relational 

database can be derived by checking which tables have foreign keys defined to others. Tables 

with no foreign keys defined should be loaded first, as other tables will rely on the data they 

contain. 

For the IEDC, the loading order dependency is included as the second column of 0. This 

result is applicable to any source dataset intended for loading, and is not related to the source 

unit-process data used for in research. Six separate levels (or steps) must be used during data 

loading, to guarantee the dependency constraints are not violated. The data loading within 

each level can be carried out in any order, including in parallel. The nine tables which have 

no FKs defined are defined as loading level 0. The tables which have FKs defined are ordered 

from levels 1 to 5. Three tables (aspects, classification_definition, and types) only have FKs 

defined to tables at level 0, so they can be loaded once level 0 is complete, and are labelled as 

level 1. This pattern continues until discovering the last table which can be loaded. This is the 

data table. An example of the data table’s dependency chain is shown below, where -> 

means ‘depends on the data in'.  

Data -> datasets -> datagroups -> projects -> classification_items -> 

classification_definition -> dimensions 
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Chapter 6 Discussion 

6.1 Summary and evaluation of the IEDC unit-process 

representation  

The mappings described and implemented in the previous chapter demonstrate that it is 

possible to fill the IEDC with the unit-process data. This partially answers the question of the 

research, but is an insufficient conclusion on its own. The research question also aimed to 

answer whether the representation is effective. This section evaluates the effectiveness of the 

destination datamodel and database representation, broadly following the Characteristics of 

datamodel quality described in section 2.2. These were: representation validity; ease of 

understanding; promotion of data reusability and integration; and enforcement of domain 

rules. 

6.1.1 Mapping successes 

The most significant success of the research is to demonstrate that all of the data in the 

selected source dataset can be mapped to a specific location in the IEDC. This includes each 

of the five source entities, and all of the attributes they contain. The representation of the 

concepts semantic catalog(s) and process were comparatively clean. Each catalog becomes a 

single datagroup, and all of the semantic catalogs together can be grouped as one project (see 

3.3.2). Processes are represented somewhat cleanly (see below) as datasets. The datasets 

table had many columns with flexible data types, which permits a satisfactory representation 

of all the necessary source data attributes with minimal processing. 

It may be possible to recreate the original source data from the destination database via a 

series of reverse queries and operations. This is likely possible, as all entities and attributes 

from the source dataset are mapped onto at least one location in the destination database. 

Hence the ETL process can be completed without loss of information. Proving this would not 

be trivial, and is beyond scope. 
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6.1.2 Challenges and shortcomings 

Despite these successes, there were many challenges encountered in the mappings and 

transformations. The destination representation of unit-process data does not broadly adhere 

to the characteristics of data model quality (section 2.2), and has a number of shortcomings. 

The issues described here are: the sacrifice of important relations in the source data model; 

the storage inefficiency; the absence of domain-rule and data-integrity enforcement; and the 

difficulty of retrieving the newly imported data.  

The flattening of the source data (section 5.1) enabled the representation of many source 

entities: exchange, flow, characterization and flow quantity. However, there are significant 

downsides to this approach. The minimal consensus knowledge model for LCA data (section 

4.2.4) made a convincing argument that these entities should be considered as separate and 

interrelated. The efficient modelling of these concepts which is the hallmark of the source 

datamodel is lost when represented in the IEDC data model. The destination tables that 

contain the data do not effectively describe their row-based contents, in a way that can be 

easily understood. 

Storage inefficiencies in the IEDC occur in three areas: table, row, and column data type 

inefficiencies. Table inefficiencies relate to the high count of columns in many of the tables. 

Many of these are not used after the ETL of this research, and are rarely used in any of the 

pre-loaded data. Row-level inefficiencies relate to the necessity of the flattening process 

described above. This necessarily denormalizes the source data, creating many times more 

rows in the data table than were present in the source data (section 5.1). Column data-type 

inefficiencies relate to the data type and precision of each of the columns. Generally, good 

practise for efficient data storage requires that the modellers use the smallest possible data 

type that can reliably contain the expected values. The IEDC uses many column data types 

with higher precision than the range of values they contain. For an operational system which 

has performance requirements, these inefficiencies will become problematic. However, the 

IEDC is a prototype, so it could be reasonably argued that these inefficiencies are not a 

problem for its intended purpose. 
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The next issue is the absence of domain-rule and data integrity enforcement which has been 

mentioned a number of times previously (see sections 3.3.3, 3.3.4, 3.3.6, 5.2.1). When a user 

queries the database, they desire a clear and unambiguous response. The IEDC permits 

inconsistencies to be stored in a variety of places. A database that permits contradictory 

information to be stored, must also provide a method for resolving them. For instance: “when 

the license of a project and datagroup differ, the datagroup license takes precedence”. 

Without this, the user cannot know how to interpret the results of their query, and will lose 

trust in the data source.  

The final shortcoming relates to the difficulty of querying the data stored in the IEDC due to 

its attempt to follow a general datamodel. Relational database tables typically represent a 

single concept, and are named as a singular noun (section 2.1.3). The IEDC permits 

combinations of models to be included within the same tables (section 6.2). A single column 

may hold many different concepts and attributes, while their meanings are defined in a 

different column in a different table (section 3.3.4). This is likely to increase the difficulty of 

writing, validating, parameterizing and debugging queries. Inaccurate queries may lead to 

modelling and analysis mistakes. 

It may be argued that these identified challenges and shortcomings are an artefact of the 

specific implementation in this research, rather than inherent issues with the IEDC. This is 

likely the case for the first item identified: the ‘sacrifice of important relations in the source 

data model’. Via alternative mappings, it could be possible to retain some of the important 

relationships between the entities in the source. The ‘storage inefficiency’ issues are certainly 

present in the IEDC model and not an artefact of the mapping. This is also true of the 

‘domain-rule / data-integrity’ problems, as clear from the fact that these issues were 

highlighted and demonstrated earlier in the research (Chapter 3), prior to any mapping 

attempt. The difficulty of querying data also likely cannot be avoided via any mapping 

approach. This is because a different aspect structure is used for every data type, and records 

adhering to all these different structures are stored alongside one another in the same data 

table. 
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6.2 Other high-level considerations regarding the GDM and 

IEDC 

A broad objective of this research is to synthesise and communicate accessible knowledge 

and recommendations on the topic of data modelling and management. This discussion 

section consists of three related subsections. First, the question is posed as to whether the 

GDM qualifies as a datamodel as defined in the literature. Next, the relationship between the 

GDM and IEDC are explored, to determine if the IEDC is a technology-specific 

implementation of the GDM, or something else. Finally, it is argued that both the GDM & 

IEDC attempt to contain datamodels and data in parallel. And that this design pattern enables 

the deferral of actual data modelling to a later time. 

6.2.1 Is the GDM actually a datamodel? 

Three definitions from section 2.1.1 are re-introduced here in order to guide the assessment of 

whether the ‘general data model’ qualifies as a datamodel. Tsichritzis & Lochovsky (1982, p. 

10) say datamodels must “define the rules according to which data are structured”. In the 

GDM, the ‘data types’ concept is used to define the “required and optional aspects”. Example 

proposals for ‘data types’ are given, but these are not pre-determined as part of the GDM. 

Pauliuk et al. (forthcoming) calls for “scholars from different modelling communities to enter 

a dialogue and reach consensus about the aspect structure and the semantics of the different 

data types”. It is hence clear that the data-structuring rules are not defined as part of the 

GDM, but rather within it. Tupper (2011, Ch.10) defines a datamodel as “a symbolic or 

abstracted representation of something real or imagined”. This definition is very broad and 

may include the GDM within its scope. However, it is unclear which “something” is 

represented, without referring again to the data types. Oppel (2010, p. 4) defines datamodels 

as “abstractions of existing or proposed databases”. As discussed in the next subsection, the 

GDM may or may not be included under this definition. Based on these three assessments, it 

is remains unclear whether the GDM qualifies as a datamodel. 
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6.2.2 The relationship between the GDM and IEDC 

Chapter 3 began by stating the hypothesis that “the IEDC is a technology-specific 

implementation of the GDM, and other hypothetical implementations of the GDM should be 

interoperable with the IEDC”. Section 3.2 highlighted a number of ambiguities in the limited 

information available describing GDM and the previous section was unable to conclusively 

answer the question as to whether the GDM should qualify as a datamodel. Taken together, 

these issues suggest that the GDM require some additional work or redesign, before it is 

ready for widespread uptake by the community. 

In contrast, the datamodel of the IEDC is clear, explicit, and not reliant on the natural 

language description in the manuscript. It tangibly exists as an open and accessible database. 

As such, it is formally described in DDL (data definition language) code. which explicitly 

describes this design. This code can be accessed through the instructions in Appendix E, and 

will create an identical database schema whenever it is run inside the MySQL DBMS. In 

order to reach this level of specificity, many important design choices were inevitably made, 

which cannot have been based only on the available written GDM theory. 

This necessity for decision making means that other hypothetical GDM implementations (for 

instance using NoSQL, graph databases, or spreadsheet-based models) would also require a 

large number of conceptual and modelling decisions to be taken as part of their design. As 

such, not only will their physical datamodels differ to the IEDC, but also their conceptual 

datamodels. The result of this is that interoperability across implementations of the GDM be 

unlikely. Data stored in one implementation (e.g. the IEDC) would not be easily transferrable 

to others; they would not be interoperable. Therefore, the hypothesis is rejected.  

One way that this interoperability problem could be avoided is by reformulating the 

relationship such that the IEDC is the authoritative description of the General Data Model for 

SEM. In this scenario, design choices required when creating other implementations of the 

GDM would reference the IEDC schema to inform the necessary decisions. However, in that 

case, it would no longer be true that the IEDC is an implementation of the GDM. Rather, a 

complete description of the GDM now requires reference to the IEDC implementation. This 

is summarised in Figure 6.1. 
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Figure 6.1: the expected and discovered relationship between the GDM and IEDC 

 

6.2.3 Parallel descriptions of datamodels and data 

This section concludes by highlighting a high-level critique from the perspective of 

information architecture. There appears to be a conflation of two distinct concepts in both the 

GDM and IEDC: datamodel repositories and datamodels. As introduced in section 2.1.1, 

datamodel repositories contain datamodels, and those datamodels can be instantiated as a 

single database (or schema) each. These schemas may be very large, they can reference one 

another and be queried together. The constructs of the datamodels are nouns, which should be 

visible in the table names. 

To apply this idea to the organisation of the IE community: a model repository would host 

descriptions of datamodels used by systems such as ecoinvent (Wernet et al., 2016), Exiobase 

(Tukker, et al., 2018) the ProSUM project database (Straalen et al., 2015), amongst many 

other examples. An explicit attempt to build this model repository is a valuable contribution 

to the community (more on this in Chapter 8). Note however that this hypothetical model 

repository would not contain the actual datasets which conform to these models. The 
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recommended place for building this repository is on the web, using open standards, as 

described in Chapter 8. 

As previously highlighted, data types are used in the IEDC to describe what are usually 

called datamodels. Each datamodel is entered as one row in an IEDC table. Examples pre-

loaded include “flow”, “population”, “material composition” and “unit process inventory”. 

All of the actual data items which are instances of these data types/models are also entered 

into the IEDC, in the table Data. Although the models and the data exist at a different level in 

any conceptual hierarchy, they are stored at the same level within the IEDC, within tables. 

This argument is summarised in Figure 6.2. 

 

Figure 6.2: the conventional separation of datamodel repositories (for storing datamodels) and databases (for 

storing data), contrasted with the approach of the IEDC 
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To summarise: the IEDC and GDM are attempting to perform two functions in parallel which 

are usually kept separate within the information architecture of an organisation: 

• a datamodel repository (where multiple interrelated datamodels are formally 

described), and 

• a database for storing actual data (which usually follows only one datamodel, but in 

this case is an attempt to be ‘general’, and represent many distinct models 

simultaneously) 

The choice to define datamodels within the database itself, enables the deferral of the actual 

data modelling to a later time. Specifically, when datasets are inserted. This is acknowledged 

within Pauliuk et al. (forthcoming), which states that [the datamodel] “allows scholars from 

different modeling communities to enter a dialogue and reach consensus about the aspect 

structure and the semantics of the different data types that are used across methods”. This 

deferral of modelling is permitted in other data storage paradigms such as NoSQL, or graph 

databases. In these, the addition of data continuously defines the structure, so it does not need 

to be known in advance, and query languages (such as SPARQL or GraphQL) are designed 

with this expectation. This type of approach is also highlighted in the Outlook of Chapter 8. 

But relational SQL databases are typically ‘structure-first’, rather than ‘data-first’. The 

structure of the tables and relationships are pre-defined before they are loaded with data 

(Chmieliauskas et al., 2012). SQL stands for Structured Query Language: writing SQL 

queries usually requires advanced knowledge of the expected data structures. This is solved 

in the IEDC with the flexible aspects and classification concepts. Generic queries return all 

aspects for the data records in each dataset. In this case, it is not possible to apply data 

integrity constraints within the database design. Important data fields will always accept 

arbitrary strings, rather than (for instance) a pre-determined list of valid values. It becomes 

the responsibility of a user submitting data to ensure no human-errors are made. Considering 

the complexity of transformations that may be necessary to insert data into the database; this 

is a risky condition, which may lead to future data-quality problems. 
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6.3 Results in context 

This research aims to independently assess the capabilities of the GDM and IEDC. Other 

literature available on this topic is limited to one scientific paper (currently in-review), plus 

the associated GitHub repository where development is ongoing. The results of this research 

provide original insight into the designs of these systems, and are the first to test the ability of 

the systems to represent unit-process data. The discussion offers a high-level critique of both 

the GDM and IEDC from multiple perspectives.  

It is important to note that the IEDC is a prototype system. Its intended use is for 

demonstrating and testing the approach, and to function as a community data repository only 

if there is support and uptake. The design is completely transparent, due to the open and 

accessible working practises of the developers. This openness has enabled a level of detailed 

analysis which would not have been possible with a closed or proprietary system. Hence 

iterative and reflective learning can occur quickly for: the actors testing the system (e.g. this 

research); those that developed it; and other observers of the ongoing developments. This 

recognition supports the general approach of open science which is a key part of the context 

of the GDM and IEDC (section 1.2.2). 
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Chapter 7 Conclusions 

This concluding chapter follows from the results and discussion. It begins with short answers 

to the research questions. Next, the scientific contribution of the research is summarised. The 

chapter ends with a summary of how this research contributes to the field of Industrial 

Ecology, and society more generally.  

7.1 Answers to research questions 

1. Which datamodels are used in the IEDC and GDM for SEM, and what is their 

relationship? 

The datamodel of the IEDC is explicitly described in its tables, columns, and their 

relationships. This information is complemented by the pre-loaded data contents, which 

provides essential insight into the intended usage of the model. In contrast, the text-based 

description is of the GDM is limited. It is unclear whether this description is sufficient for the 

GDM to actually classify as a datamodel. Hypothetical alternative implementations of the 

GDM are unlikely to be interoperable with the IEDC implementation. Therefore, the actual 

relationship between the GDM and IEDC is unclear.  

 

2. Which datamodel is archetypal for unit-processes, and which data following this 

model can be used to evaluate the IEDC? 

Unit-process data consists of the following seven items: data describing the processes; data 

describing the commodities or flows; relationship or network data for the association of 

processes and flows; quantified numerical data and the associated uncertainty data; system 

context and location specification data; and other metadata describing the data collection and 

processing. The minimum consensus knowledge model ontology contains all of these 
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elements and may be considered archetypal for unit-process data. The semantic catalogs of 

LCA data follow this model, and were used in this research to evaluate the IEDC. 

 

3. How can the selected source datasets be mapped and transformed into the datamodel 

of the IEDC? 

Data sources can be mapped and transformed into the IEDC datamodel via the following 

stages. First, map the high-level concepts of the source entities and relationships onto the 

approximately equivalent concepts in the destination. This step necessarily introduces some 

subjectivity. Next, map the attributes of the source in detail onto the columns of the IEDC 

tables. Finally, implement these mappings as an algorithm which extracts the source dataset, 

transforms it, and loads the data into the IEDC database. 

 

Main question: Is it possible to effectively represent unit-process data in the ‘general data 

model for SEM’ and/or the IEDC and what are the challenges and limitations? 

It is possible to represent unit process data within the IEDC, but not within the GDM. The 

IEDC database has been designed for flexibility, and many different sources can be stored 

within its structures, including unit-process data. In contrast, the GDM is described only in 

natural language, and requires more explicit elucidation using standardised data modelling 

and communication techniques, such as entity-relationship diagrams.  

There are a number of limitations to the IEDC representation of the unit process data. Many 

of the important relationships which are present in the source model are lost; the data is not 

stored efficiently; data integrity is not enforced via explicitly defined rules; and the data 

stored in the tables would be difficult to query due to the flexible meanings and purposes of 

the tables, columns, and foreign key relationships. These challenges collectively lead to the 

conclusion that the unit-process representation within the IEDC prototype is not effective, 

using the meaning established in section 1.4.2. 
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7.2 Unexpected findings 

Two main findings, unrelated to the research questions, were discovered through the process 

of the research. As presented in section 6.2.2, it was found that the GDM is probably not 

described sufficiently clearly and explicitly to allow for the development of alternative 

interoperable implementations using technologies other than relational databases. Based on 

this finding, this research concludes that the GDM requires further formalisation and 

development in order to function effectively as a commonly shared conceptualisation of SEM 

for the IE community. 

Secondly, section 6.2.3 argues that the IEDC acts simultaneously as both a datamodel 

repository and a SQL database for storing the data which conforms to those models. This 

permits the actual data modelling process to be deferred to the data-loading phase. Because of 

this, practically no automatic data validation is possible, and the data quality is dependent 

only on the humans entering the data. For this reason, some architectural redesign is 

recommended, before the IEDC is ready to function effectively as a datamodel repository 

and/or community database. 

7.3 Scientific contribution  

Prior to this research, the GDM for SEM and IEDC had received no direct independent 

evaluation. The ongoing peer-review process at the Journal of Industrial Ecology will 

determine whether the submitted manuscript is suitable for publication. In contrast, this work 

has tested specifically the capability of the systems to effectively represent unit-process data, 

which is a fundamental category of data within IE. Their capabilities in this regard have been 

demonstrated in practise. High-level novel critiques have been presented and assessed, based 

on ideas from information architecture and data modelling & transformation theory.  
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7.4 Field and societal contribution 

This research has contributed a number of results and insights to the field of IE. Industrial 

ecologists are often data modellers by necessity, they frequently develop data sources in new 

structures and formats as part of their wider modelling efforts. Chapter 2 is a concise 

overview of basic data modelling and transformation theory, which could help with the 

development of high-quality models. This is a novel contribution to the field.  

To the developers of the IEDC and others working on community data infrastructure for the 

support of open science, this work has contributed many suggestions for design 

improvements which could be applied to the next iteration of related work. The early timing 

of this contribution is critical: it is much more difficult to change datamodels once they are 

integrated into a wider sociotechnical system. Source code and documentation have also been 

made available, enabling others to validate or refute many of the claims of this report. This 

code may also be adapted for their own purposes and projects. The upcoming Outlook section 

also contributes a suggestion and argumentation for the future work on data/information 

architecture within the field. 

These contributions may translate into contributions to society via the following steps. The 

results and recommendations of this work could lead to improvements in the next generation 

of IE data modelling and infrastructure. This would enhance data management and 

availability, enabling high-quality analysis and case studies to be conducted in less time. 

These studies lead to scientific knowledge about interrelated economic and environmental 

systems, enabling well-informed decision making. Society benefits via the improved 

outcomes of these decisions. 
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Chapter 8 Outlook: a ‘community data commons’ 

infrastructure native to the web 

The Industrial Ecology Data Commons is a contribution toward the open data area of the 

broader movement toward open science. Within this area, the IEDC and GDM aim to address 

the “data integration and exchange problem”. The IEDC developers state that “a general data 

format for the industrial system does not exist” and there is a “lack of cross-method data 

formats and platforms for exchanging IE data” (Pauliuk et al., forthcoming).  

This final chapter follows on from the discussion and conclusions to presents an alternative 

approach which could be used to satisfy the data infrastructure requirements of the IE 

community. An alternative perspective is presented: appropriate formats and platforms do 

exist, but they are not yet used extensively by the IE community. The semantic catalogs of 

LCA data (section 4.3) are one example of this alternative approach in practise. The platform 

is often described broadly as the semantic web, and the formats are the collaboratively 

developed standard linked data formats which are associated it. The datamodels for this 

platform are stored as schemas and ontologies. 

The semantic web technology stack or paradigm can be framed as analogous to a relational 

database 14. Figure 8.1 provides an overview of the concepts and technologies which are 

generally included under the term semantic web. This section will not describe these 

technologies15. Rather, it highlights the existing research in IE and related fields that are 

using this alternative approach, alongside argumentation for why this is desirable in light of 

the open-data ambitions of the field. 

                                                 

14 Berners-Lee (1998) states that “the mapping is very direct – a record is an RDF node; the field (column) 

name is RDF propertyType; and the record field (table cell) is a value.”  
15 See Antoniou & Van Harmelen (2008) for a technology-focused primer 
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Figure 8.1: isometric diagram of the semantic web technology stack, emphasising concepts, specifications, and 

linked data. From Nowack (2009, creative commons license). json-ld is more recent, and hence missing from 

the formats. 

This outlook section consists of three subsections. Various publications across industrial 

ecology and socioeconomic metabolism research have previously identified this 

infrastructure platform, including demonstrations and proofs-of-concept which begin to 

demonstrate the potential. These are summarised in the first subsection. The focus then 

sharpens onto the LCA community, which is increasingly embracing the semantic web and 

related technologies. Appendix N additionally offers an assessment which contrasts this 

proposed alternative with the IEDC approach, in terms of the “FAIR Guiding Principles for 

scientific data management and stewardship” from section 1.2.2. The Outlook concludes with 

a short summary. 
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8.1 IE Literature calling for a semantic web approach 

The earliest publications arguing in favour of this direction for IE were by Kraines et al. 

(2005). They highlighted ways that new internet technologies could be effectively used to 

share and integrate the knowledge and models of researchers. Davis et al. (2010) then 

described their vision for “Industrial Ecology 2.0”, with updated information and 

argumentation. They described the potential of linked open data on the web, and why this 

was particularly important for Industrial Ecology research, due to its interdisciplinary nature. 

Complementary work also described the semantic web toolset and example projects, such as 

the Enipedia collaborative Wiki which is focused on energy and industry (Davis et al., 2012; 

Davis, 2012). Within the urban metabolism research line, Ravalde & Keirstead (2017) argued 

for the development of an information ecosystem to enable holistic sociometabolic 

assessments, using the semantic web to “link together structured and unstructured 

information in a vast network, through which researchers can navigate, finding innovative 

and as yet unknown applications for the data”. Toward this goal, they developed and released 

a free and open process-oriented database. Whilst this subset of examples from across 

Industrial Ecology are somewhat dispersed, a more sustained institutional approach appears 

to be ongoing in Lifecycle Assessment. 

8.2 LCA on the semantic web 

The semantic web data architecture for LCA was argued for in detail by Ingwersen et al. 

(2015). This paper also uses the term “data commons” to describe their vision. This vision is 

focused on improving interoperability and automation for LCA case studies, and the 

associated data management. Various ontologies and schemas were also published around 

this time (Ciroth & Srocka, 2015; Janowicz et al., 2015; Kuczenski et al., 2016; Yan et al., 

2015). Case studies using these ontologies have followed, demonstrating the approaches in 

applications to the environmental performance of buildings (Schwartz et al., 2016) and 

chemical manufacturing (Cashman et al., 2016). The Bonsai project is also using the 

Resource Description Format (RDF) and other semantic web standards as the building blocks 
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of their planned “Big Open Network for Sustainability Assessment Information” (Bonsai.uno, 

2019). 

An LCA ‘capability roadmap’ has also recently been published by a working group as part of 

the UNEP-SETAC Life Cycle Initiative (Kuczenski et al., 2018). They describe the technical 

advances required to improve LCA transparency and replicability, focusing on the three areas 

of model contents, structure, and collaboration. Their proposed approach for LCA product 

system models involves a shift of focus “from text and tables in a report to the model as a 

digital object itself”. These digital objects would be referenced via web-based uniform 

resource identifiers (URIs), and interoperable with other semantic web-based linked data. The 

lead author of this paper is actively working on a Python-based open-source toolset to enable 

the capabilities detailed in this vision (GitHub, 2019a). 

8.3 Outlook summary 

The IE and SEM communities are rightly enthusiastic for the potential of open science. Open 

data is a fundamental component of this approach which is best supported by appropriate 

decisions regarding the technical infrastructure, platforms and data formats. This Outlook has 

highlighted a related collection of potential solutions to this, grouped under the label semantic 

web. This infrastructural approach will ensure that the essential data resources of the IE 

community are managed in-line with best-practises.  

If others agree with this vision: in order to benefit from a network effect, it is essential that 

researchers begin to engage with this approach. We can begin by using the data already 

hosted on these platforms, and citing their work where appropriate. New datasets should 

reuse existing schemas and ontologies wherever possible. When pre-existing work is 

insufficient, those existing datamodels should be amended and extended, alongside 

transparent annotations and reasoning for why the existing options were not already 

sufficient. An updated Industrial Ecology Data Commons which embraces this approach 

would involve mapping existing data sources to common web-based standards, formats and 

models. This would fully satisfy the FAIR requirements, and provide great value to the 

research community.. 
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Appendix A Data-mapping document  

A.1 Auxiliary Mappings 

 

Mappi

ng ID

Order 

Level

Target table 

name

Target column 

name

Data Type Key Nullable Use existing 

IEDC 

records?

Value Comment

0 0 categories id int(11) PRI NO YES 1

0 categories name varchar(255) UNI NO YES Flow

0 categories description varchar(255) NO YES Objects flowing between processes

1 0 dimensions id int(11) PRI NO YES 6, 7

0 dimensions name varchar(255) UNI NO YES Commodity, process

0 dimensions description varchar(255) YES YES [product, good, commodity] / [process or activity]

2 0 layers id int(11) PRI NO YES 1

0 layers name varchar(255) UNI NO YES Mass

0 layers description varchar(255) NO YES

3 0 licences id int(11) PRI NO YES 4

0 licences name varchar(255) UNI NO YES CC BY 4.0

0 licences description varchar(255) NO YES

4 0 provenance id int(11) PRI NO YES 8

0 provenance name varchar(255) UNI NO YES Result of academic LCA work

0 provenance description varchar(255) NO YES data derived from life cycle assessment

5 0 source_type id int(11) PRI NO YES 5

0 source_type name varchar(255) UNI NO YES Publicly available report or research article

0 source_type description varchar(255) NO YES

6 0 stats_array id int(11) PRI NO YES 14

0 stats_array name varchar(255) NO YES undefined

0 stats_array description varchar(255) NO YES moved from 0 as 0 is not allowed in mySQL db.
0 stats_array loc varchar(255) YES YES static value

7 0 users id int(11) PRI NO NO 8

0 users username varchar(255) UNI NO NO [YourUsername]

0 users name varchar(255) NO NO [YourName]

0 users institution varchar(255) YES NO [YourInstitution]

0 users start_date datetime NO NO 2018-10-29

0 users end_date datetime YES NO 2050-06-09

8 1 types id int(11) PRI NO YES 18

1 types name varchar(255) UNI NO YES Process inventory

1 types description varchar(255) NO YES flows entering and leaving process, for LCI datasets

1 types reference_data_categoryint(11) MUL NO YES 1

1 types symbol varchar(5) UNI NO YES PI

9 2 projects id int(11) PRI NO NO 3 3 = new project entry

2 projects project_name varchar(255) UNI NO NO LCA Semantic_Catalog representations

2 projects data_categories varchar(255) YES NO Various

2 projects data_types varchar(255) YES NO Various

2 projects data_layers varchar(255) YES NO Various

2 projects process_scope varchar(255) YES NO Various

2 projects process_resolutionvarchar(255) YES NO Various

2 projects product_scope varchar(255) YES NO Various

2 projects product_resolutionvarchar(255) YES NO Various

2 projects material_scope varchar(255) YES NO Various

2 projects material_resolutionvarchar(255) YES NO Various

2 projects regional_scope varchar(255) YES NO Various

2 projects regional_resolutionvarchar(255) YES NO Various

2 projects temporal_scope varchar(255) YES NO Various

2 projects temporal_resolutionvarchar(255) YES NO Various

2 projects description text YES NO The project which provided this data is described in Kuczenski et al. 2016. This was then modified and imported as part of Tom Millross's MSc. Thesis at Leiden University.

2 projects keywords varchar(255) NO NO LCA, Semantic catalogs, knowledge model, ETL

2 projects type_of_source int(11) MUL YES NO 5

2 projects project_license int(11) MUL YES NO 4

2 projects project_link text YES NO GitHub

2 projects submission_date datetime NO NO NOW()

2 projects submitting_user int(11) MUL NO NO 8

These 3 VARCHAR columns without FK constraints allow any values, and 

are not constrainted to the [categories, types and layers] tables which 

they refer to. To allow multiple entries (as implied by the pluralised 

column names), this should be modelled with a junction-table for many-

to-many relationships between projects and these tables.

None of the 6 categories are a particularly accurate description for the 

necessary 'unit process' data-type (see section on categories in the report 

for more detail). However in the existing IEDC records for Type='Process 

Existing dimension values in IEDC are sufficient to describe the source 

dataset. Different dimensions will be referenced by specific Aspects and 

Classification Definitions: see those entries for detail.

The catalog (unit process) datasets describe a number of layers 

depending on the unit used for each characterization. Any non-reference 

characterization entry which has a mass-based reference flow, must be a 

mass-ratio of some sort. However the IEDC data model forces requires 

that a dataset describes only 1 layer, due to a foreign key constraint on 

this column. Hence we choose the simplest: mass.

Semantic Catalog publication states: "This is an open access article under 

the CC BY license". 

The provenance table entries are not mutually exclusive, and many could 

feasibly apply to our dataset. A new entry could be used to be more 

specific. But ideally data provenance would be modelled in a more 

The semantic catalog data unfortunately does not include uncertainty 

information with the numerical values. Although the source LCA datasets 

on which it is based often will include this.
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A.2 Core Mappings 

 

 

10 3 datagroups id int(11) PRI NO NO 11 11 = new data group entry

3 datagroups datagroup_name varchar(255) UNI NO NO EI32_Und_SemanticCatalog

Different for each LCA semantic catalog which may be imported (future 

work)

3 datagroups datagroup_version varchar(30) YES NO 0.1

3 datagroups project_id int(11) MUL YES NO 3

3 datagroups data_categories varchar(255) YES NO Various

3 datagroups data_types varchar(255) YES NO Various

3 datagroups data_layers varchar(255) YES NO Various

3 datagroups process_scope varchar(255) YES NO Various

3 datagroups process_resolutionvarchar(255) YES NO Various

3 datagroups product_scope varchar(255) YES NO Various

3 datagroups product_resolutionvarchar(255) YES NO Various

3 datagroups material_scope varchar(255) YES NO Various

3 datagroups material_resolutionvarchar(255) YES NO Various

3 datagroups regional_scope varchar(255) YES NO Various

3 datagroups regional_resolutionvarchar(255) YES NO Various

3 datagroups temporal_scope varchar(255) YES NO Various

3 datagroups temporal_resolutionvarchar(255) YES NO Various

3 datagroups description text YES NO EcoInvent 3.2 undefined as represented in the Semantic Catalogs 

3 datagroups keywords varchar(255) NO NO EcoInvent

3 datagroups type_of_source int(11) MUL YES NO 5 As above - potential for data integrity conflicts with Projects table.

3 datagroups project_license int(11) MUL YES NO 4

3 datagroups submission_date datetime NO NO now()

3 datagroups submitting_user int(11) MUL NO NO 8

Duplication of information contained in project table described above. It 

is unclear which entries for [categories, types and layers] should take 

precedence in the event that data conflicts arise between the various 

tables that can store this information.

Mappin

g

ID

Order 

Level

Target table name Target column name Data Type Key Nulla

ble

Entity name Value / attribute name Transformation 

category

Transformation rule / Comment

11 0 units id int(11) PRI NO

0 units unitcode varchar(30)UNI NO Flow Quantity referenceUnit Transformation

0 units unit_name varchar(100)UNI NO Flow Quantity Name Transformation

A unit_name is not available in the source data 

but this is a required field. There are three 

options: simply duplicate the unit_code as 

listed here; manually enter the names of the 

units; or write a look-up function to 

automatically enter the unit name. The latter 2 

options require additional data/knowledge, 

possibly from the original source datasets on 

which the catalogs are based.

0 units alt_unit_name varchar(100) YES

0 units factor double YES

12 1 aspects id int(11) PRI NO

1 aspects aspect varchar(255)UNI NO "Commodity_Flow" Hardcoded

1 aspects description varchar(255) NO "The commidity which flows in and/or out of unit process datasets"Hardcoded

1 aspects dimension int(11) MUL NO 5 Hardcoded 5=material

1 aspects index_letter varchar(1) UNI NO "0" (zero) Hardcoded

1 aspects index_letter_crib varchar(255) NO "c0mm0dity fl0w2 Hardcoded

13 1 classification_definition id int(11) PRI NO

1 classification_definition classification_name varchar(255)UNI NO "EcoInvent_Commodity_Flows"Hardcoded

1 classification_definition dimension int(11) MUL NO 6 Hardcoded 6=commodity

1 classification_definition description text YES "All distinct flows defined in the Ecoinvent LCA semantic catalog are listed under under this classification"

1 classification_definition mutually_exclusive tinyint(1) NO 0 Hardcoded

1 classification_definition collectively_exhaustive tinyint(1) NO 0 Hardcoded

1 classification_definition general tinyint(1) NO 0 Hardcoded

1 classification_definition created_from_dataset tinyint(1) NO 1 Hardcoded

1 classification_definition meaning_attribute1 varchar(255) NO "EntityId" Hardcoded Note these match with mapping 14 below

1 classification_definition meaning_attribute2 varchar(255) YES "Flow Name" Hardcoded

1 classification_definition meaning_attribute3 varchar(255) YES "CAS Number" Hardcoded

1 classification_definition meaning_attribute4 varchar(255) YES "Compartment" Hardcoded

14 2 classification_items id int(11) PRI NO

2 classification_items classification_id int(11) MUL NO classification_definition"EcoInvent_Commodity_Flows"Lookup

2 classification_items parent_id int(11) MUL YES NULL Hardcoded No hierarchies defined on this classification

2 classification_items attribute1_oto varchar(255) NO Flow EntityId Direct

2 classification_items attribute2_oto text YES Flow Name Direct

2 classification_items attribute3_oto varchar(255) YES Flow CasNumber Direct

2 classification_items attribute4_oto varchar(255) YES Flow Compartment Direct

This is the first of 3 separate entries for 

Aspects, Classification_definitions, and the 

items of these classifications.

The aspects are referenced by all exchanges 

entered into the Data table.

Select all distinct units in the source dataset 

and insert into destination table. If value 

already exists, do not perform the insert.

The flattened source data entered into the Data 

table have  'Aspect1' reference this definition 

These items relate to the classification system 

defined in mapping 13
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15 1 aspects id int(11) PRI NO

1 aspects aspect varchar(255)UNI NO "Boolean" Hardcoded

1 aspects description varchar(255) NO "Any aspect which can only be true or false"Hardcoded

1 aspects dimension int(11) MUL NO 13 Hardcoded 13=custom

1 aspects index_letter varchar(1) UNI NO "A" Hardcoded

1 aspects index_letter_crib varchar(255) NO "booleAn" Hardcoded

16 1 classification_definition id int(11) PRI NO

1 classification_definition classification_name varchar(255)UNI NO "Boolean" Hardcoded

1 classification_definition dimension int(11) MUL NO 13 Hardcoded 13=custom

1 classification_definition description text YES Boolean: true or false

1 classification_definition mutually_exclusive tinyint(1) NO 1 Hardcoded

1 classification_definition collectively_exhaustive tinyint(1) NO 1 Hardcoded

1 classification_definition general tinyint(1) NO 1 Hardcoded

1 classification_definition created_from_dataset tinyint(1) NO 0 Hardcoded

1 classification_definition meaning_attribute1 varchar(255) NO "Boolean value" Hardcoded

17 2 classification_items id int(11) PRI NO

2 classification_items classification_id int(11) MUL NO classification_definition"Boolean" Lookup

2 classification_items attribute1_oto varchar(255) NO TRUE Hardcoded

2 classification_items id int(11) PRI NO

2 classification_items classification_id int(11) MUL NO "Boolean" Lookup

2 classification_items attribute1_oto varchar(255) NO FALSE Hardcoded

18 1 aspects id int(11) PRI NO

1 aspects aspect varchar(255)UNI NO "Direction" Hardcoded

1 aspects description varchar(255) NO "The direction with which a flow relates to a process. Options are 'Input' and 'Output'"Hardcoded

1 aspects dimension int(11) MUL NO 5 Hardcoded

1 aspects index_letter varchar(1) UNI NO "D" Hardcoded

1 aspects index_letter_crib varchar(255) NO "Direction" Hardcoded

19 1 classification_definition id int(11) PRI NO

1 classification_definition classification_name varchar(255)UNI NO "Direction" Hardcoded

1 classification_definition dimension int(11) MUL NO 13 Hardcoded

1 classification_definition description text YES "The direction with which a flow relates to a process. Options are 'Input' and 'Output'"

1 classification_definition mutually_exclusive tinyint(1) NO 1 Hardcoded

1 classification_definition collectively_exhaustive tinyint(1) NO 1 Hardcoded

1 classification_definition general tinyint(1) NO 1 Hardcoded

1 classification_definition created_from_dataset tinyint(1) NO 1 Hardcoded

1 classification_definition meaning_attribute1 varchar(255) NO "Direction value" Hardcoded

20 2 classification_items id int(11) PRI NO

2 classification_items classification_id int(11) MUL NO classification_definition"Direction" Lookup

2 classification_items attribute1_oto varchar(255) NO "Input" Hardcoded

2 classification_items id int(11) PRI NO

2 classification_items classification_id int(11) MUL NO classification_definition"Direction" Lookup

2 classification_items attribute1_oto varchar(255) NO "Output" Hardcoded

21 4 datasets id int(11) PRI NO

4 datasets dataset_name varchar(255)MUL NO Process Name Direct

4 datasets dataset_version varchar(30) YES 0.1 Hardcoded

Option to increment version number as 

multiple imports are attempted, if required

4 datasets datagroup_id int(11) MUL YES datagroups "EI32_Und_SemanticCatalog"Lookup

Change this if importing different semantic 

catalog datasets

4 datasets data_category int(11) MUL NO categories 1 Lookup See comment in categories entry

4 datasets data_type int(11) MUL NO types Process inventory Lookup

4 datasets data_layer int(11) MUL NO layers Mass Lookup See comment in layers entry

4 datasets process_scope varchar(255) YES Process ISIC Number Direct

These varchar fields for scope and resolution 

data have limited documentation and a flexible 

string datatype. This provides limited guidance 

on the data they should contain and it's format. 

4 datasets process_resolution varchar(255) YES

4 datasets product_scope varchar(255) YES Process Classifications Direct

Not the ideal place for process classifications 

from the catalogs. But they must go 

somewhere.

4 datasets product_resolution varchar(255) YES

4 datasets material_scope varchar(255) YES

4 datasets material_resolution varchar(255) YES

4 datasets regional_scope varchar(255) YES Process SpatialScope Direct

4 datasets regional_resolution varchar(255) YES

4 datasets temporal_scope varchar(255) YES Process TemporalScope Direct

4 datasets temporal_resolution varchar(255) YES

4 datasets description text YES Process "Technology Level:", TechnologyLevelDirect

4 datasets keywords varchar(255) NO Process externalId Direct Use to store ID String

4 datasets data_provenance int(11) MUL NO provenance 8 Lookup 8=Result of academic lca work

4 datasets dataset_size int(11) NO

4 datasets comment text YES Process Comment Direct

4 datasets aspect_1 int(11) MUL NO aspects "Commodity_Flow" Lookup

4 datasets aspect_1_classification int(11) MUL NO classification_definition"EcoInvent_Commodity_Flows"Lookup

4 datasets aspect_2 int(11) MUL YES aspects "Direction" Lookup

4 datasets aspect_2_classification int(11) MUL YES classification_definition"Direction" Lookup

4 datasets aspect_3 int(11) MUL YES aspects "isReferenceExchange"Lookup

4 datasets aspect_3_classification int(11) MUL YES classification_definition"Boolean value" Lookup

4 datasets aspect_4 int(11) MUL YES aspects "isReferenceCharacterization"Lookup

4 datasets aspect_4_classification int(11) MUL YES classification_definition"Boolean value" Lookup

4 datasets semantic_string_exampletext NO

4 datasets semantic_string_generaltext NO

4 datasets type_of_source int(11) MUL NO source_types

"Publicly available dataset, static web page"

Lookup

Source type is defined at three levels: 

Datagroup, dataset and project. These values 

may clash and no rules are defined for 

establishing precedence in such a case.

No semantic strings created in this mapping 

due to critique of this approach in Chapter 3

The flattened source data entered into the Data 

table have their 'Aspect3' and 'Aspect4' 

specified as this classification, which specifies if 

the exchanges and characterizations are the 

reference values

The flattened source data entered into the Data 

table have their 'Aspect2' specified as this 

classification, which specifies whether the 

exchange is an input or output of the process 

dataset.

Although in Datasets, these aspect ID entries 

and classifications are actually for the entries in 

the data  table.
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Appendix B Semantic catalog glossary of terms 

Many of these definitions are taken from the original paper (Kuczenski et al. 2016) 

describing the catalogs and minimally edited for clarity. 

B.1 Classes 

from a knowledge modelling perspective, the notions of “flow”, “activity”, and “flow 

quantity” are classes – or abstract concepts. The data structure used for instances or entities 

are derived from the class on which they are based 

1. Activity 

21 

(continu

ed) 4 datasets project_license int(11) MUL NO licences "unknown/not specified"Lookup

Although the semantic catalogs have a CC4.0 

licence, it may be the case that the source 

datasets on which those catalogs were based 

(e.g. the publicly available EcoInvent data) has 

a different licence which should take 

precedence

4 datasets main_author varchar(255) NO "Brandon Kuczenski"Hardcoded

Using the main author of the semantic catalogs 

for this field

4 datasets visible tinyint(1) NO 1 Hardcoded Yes

4 datasets submission_date datetime NO Now() Hardcoded Current time function in SQL

4 datasets submitting_user int(11) MUL NO users [YourUsername] Lookup

22 5 data id int(11) PRI NO

5 data dataset_id int(11) MUL NO dataset Lookup

Select the process dataset ID, for which this 

data entry is an exchange

5 data aspect1 int(11) MUL NO Flow Name Lookup

Lookup the ID of the classification_item with 

the name equal to the flow name of the source.

5 data aspect2 int(11) MUL YES Exchange Direction Lookup

Lookup the ID of the classification_item with 

the direction equal to the direction of the 

source exchange (in or out)

5 data aspect3 int(11) MUL YES Exchange isReference Lookup

Lookup the ID of the classification_item for the 

Boolean value matching the True/False of the 

source

5 data aspect4 int(11) MUL YES CharacterizationisReference Lookup as above

5 data value double YES Transformation exchange value * characterization value

5 data unit_nominator int(11) MUL NO units Lookup

Select the ID of the unit entered in the 

referenceUnit field of the Flow Quantity in the 

source dataset

5 data unit_denominator int(11) MUL YES 1 Hardcoded

ID 1 = "Unity" - means that the numerator is 

divided by 1 and undergoes no transformation

5 data stats_array_1 int(11) MUL YES 14 Hardcoded See comment in stats_array entry

5 data comment text YES Transformation

Include both Comment strings from the source 

data. Format: "Flow Comment: ", [Flow > 

Comment], "\nFlow Quantity Comment: ", 

[Flow Quantity > Comment]
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a thing that happens to Flows, to transform inputs into outputs. This base class is instantiated 

as a process. Activities can be classified by their reference exchange. 

2. Flow 

a class of “thing in the world” that exists because of some instance of an Activity. Observable 

phenomena that are the accounting elements of industrial ecology. (A commodity in Heijungs 

1997) A Flow has a direction with respect to an Activity: it is an output of one Activity and 

an input to another. Flows can be classified by their reference quantity (often “mass”) 

3. (Flow) quantity 

a distinct quantitative characteristic that can be ascribed to a Flow. The fore-term flow is 

often omitted, leading to simply: Quantities. Quantities be classified by their reference unit of 

measure (often “kg”). 

 

B.2 Instances 

a particular flow, activity, or quantity is called an entity or an instance of a class. An LCA 

practitioner or data set developer creates a model by making observations of specific 

instances. Exchanges and characterizations describe relationships among instances, not 

classes 

4. Process (instance) 

a particular instance of an activity that occurred at a particular place and time, and whose 

characteristics were observed and recorded. Only a process has an “inventory”; and only a 

process can have quantified exchange values. Based upon the ISO 14040 & ISO 9000 

definition. This is the only instance whose name differs significantly from the class on which 

it is based. 

5. Flow instance 



95 

 

See Flow, but for Process instances, rather than their Activity base class 

6. (flow) Quantity instance 

See Flow quantities, but for Flow instances rather than their Flow base class 

B.3 Relationships between instances16 

In the semantic catalogs data model, there are no base classes defined for these entities which 

describe the relationships between the process, flow and quantity instances listed above. 

7. Exchange 

an established directional relationship between a process and a flow instance. One of the 

exchanges is labelled as the reference exchange. 

8. Characterization 

an established relationship between a flow and a flow quantity. Flows typically have many 

characterizations. For instance, the flow of “gasoline” has mass, volume, economic value, 

toxicity potential, energy content, and others. A characterization has an implicit or explicit 

spatiotemporal scope, which corresponds to the activity that generates or consumes the flow 

B.4 Attributes 

9. Spatiotemporal Scope 

                                                 

16 Writing at https://github.com/bkuczenski/lca-tools, the author of the catalogs states: "These should probably 

be entities, too, because of serialization + linked data more than anything. I mean, they are entities in the LD 

schema. But they don't have stand-alone identities (in LD terms they are 'blank nodes'); their origins are defined 

implicitly by the entities they belong to and so they don't have external references; and they contain numerical 

data, as opposed to other entities that strictly contain qualitative data. So I think there is a sound conceptual 

reason for them to be their own object types rather than subclasses of LcEntity."  

  

https://github.com/bkuczenski/lca-tools
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the contexts in which inventory information or impact estimates are valid. 

SpatiotemporalScope is associated with the classes Place and Time through the relations 

occursAtPlace and occursAtTime 

10. Space  

some, typically named, extent in geographic space, e.g., a country or region (spatial 

dimension).  

11. Time  

The time, usually a congruent series of calendar years (temporal dimension). Time should be 

an interval because an LCA activity generally represents the performance of a typical facility 

or a set of facilities over a time period, rather than at a specific moment 

12. Exchange value  

the magnitude of one flow exchanged through a process, in comparison to a unit amount of a 

reference exchange 

13. Exchange Direction 

Direction which specifies the relationship between a process and flow instance: Input or 

Output  

14. Compartment  

medium that contains a flow. E.g. Air, water, soil. Compartment is not described in detail in 

the paper. 

15. Characterization factor/value  

One of the characterization entries may be marked as the reference quantity for the flow it 

characterises (“isReference” = True). The characterization factor or value quantifies the 

magnitude of one flow quantity in comparison to a unit amount of the reference quantity 

(hence the reference flow has factor=1). These characterizations include any life cycle impact 

characterization factors which are defined for the flow 
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16. Unit of measure 

An extensive magnitude of a quantity which can be used to define or describe a flow. Usually 

adopted by social convention, E.g. kg (for mass), m3 (volume), or CO2eq (global warming 

potential) 

Appendix C Relationship between IE and SEM 

This thesis frequently references Industrial Ecology and Socioeconomic Metabolism. It is 

worthwhile to discuss briefly the relationship between these two related domains. Firstly, 

both of the terms are biological metaphors (Ehrenfeld, 2003). The ecology of IE and the 

metabolism of SEM are direct references to concepts from biology which have been studied 

extensively. The general motivation behind the use of these metaphors is that nature has 

evolved the ability to renew and sustain itself as an autopoietic system (Varela et al., 1974), 

and humans can learn from this in order to redesign the biophysical basis of society, such that 

it can also be sustained. This could broadly be referred to as biomimicry (Benyus, 1997). The 

ecological metaphor evokes notions like populations, community, resilience, evolution, food 

webs and trophic cycles. Whereas the metabolic metaphor encourages thinking in terms of 

food, energy, chemical reactions, pathways and regulation. Concepts such as dynamic 

equilibrium and autopoiesis are central to both domains, and all of these concepts can provide 

at least some theoretical starting points and inspiration for the analysis of industry and 

society. These metaphors are limited however, and they should not be mistaken for analogies, 

which may lead to logical mistakes and the derivation of invalid conclusions (Ehrenfeld, 

2003).  

Further conceptual challenges stems from the fact that neither IE or SEM are limited by the 

metaphors on which their names were derived. Clarity on their relationship can be attained by 
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considering the actual research practises of the communities that adopt these names. Research 

in Industrial Ecology often consists of case studies that are conducted through the application 

of one or many algorithmic tools and/or methodologies, such as Lifecyle Assessment (LCA), 

Environmental Input-Output Analysis (EIOA), Material/Substance Flow Analysis 

(MFA/SFA). These tools may be referred to as the tools of IE, and their object of study is 

SEM (Pauliuk & Hertwich, 2015). The official regulations of the IE MSc. program at Leiden 

& Delft states that “graduates will… have a thorough knowledge of the field of Industrial 

Ecology and its object society’s metabolism” (Leiden University & TU Delft, 2018). Thus, 

for this work, the relationship between IE and SEM is defined as: industrial ecology studies 

socioeconomic metabolism.  

Appendix D Instructions for connecting to the 

Freiburg IEDC in MySQL 

This appendix describes how a new user uses the MySQL Workbench GUI software to 

connect to the Freiburg instance of the IEDC database. Users require a login and password to 

connect via this route.  

1. Download MySQL installer https://dev.mysql.com/downloads/installer/ 

2. Install MySQL Server (for hosting local instance of database)  

3. Install MySQL Workbench (as GUI) 

4. Create saved database connection for Freiburg instance  

 Hostname: www.industrialecology.uni-freiburg.de 

 Port: 3306 

 Username: iedc_guest*** [If you require a new login, Mahadi or Stefan at Freiburg 

IndEcol group may be able to assist] 

https://dev.mysql.com/downloads/installer/
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 Password: *****" 

5. Check Freiburg connection works and that you're able to query data etc.  (If not, 

troubleshoot) 

Appendix E Cloning the IEDC to create your own 

instance 

These instructions follow on from the above, and assume you have a working connection to 

the Freiburg instance. Note that MySQL uses the terms database & schema interchangeably, 

unlike many other vendors. 

6. Ensure MySQL80 local database service is running. You may need to do this each 

time you want to use the db. In Windows: 

a. run services.msc 

b. scroll down to MySQL80 (80 is version number, yours may be different) 

c. Right click > Start 

7. Create new saved database connection for local instance   

 Hostname: localhost 

 Port: 3306 

 Username: YourRootOrAdminUser 

 Password: ***** 

 

Migrate (clone schema and data) Freiburg database to local instance 

Option 1: MySQL Migration Wizard (Workbench Menu > Database > Migration wizard) 



100 

 

• For me, most tables copied without incident. 

• However, for an unknown reason, the Units and Aspects tables gave errors on the 

automatic data transfer when I did this (Tom) 

o I exported data from those tables to CSV and imported to local instance 

• After this, I had a complete instance of the IEDC on to my local machine, ready for 

safe testing and experimentation etc. 

 

Option 2: Mysqldump (data export) to file on local disk, then import data 

• The second time I required an update of the source database, I used an alternative 

approach which did not run into the above errors. First export all data as a logical 

SQL dump file. Then import that data into your installed local instance. 

2.1 Data Export/dump using MySQLWorkbench wizard 

1. Connect to Freiburg db instance in workbench 

2. Workbench menu > Server >  Data Export 

3. Select all (table) objects in IEDC schema (there are no Views, Functions, SPs, Events or 

Triggers at time of writing) 

4. Select "Dump structure and data" 

5. Export to self-contained file (choose a location on your pc) 

6. Tick "...single transaction" and "Include create schema" 

7. To start: Select other tab: "Export progress". The start button is in the bottom right of the 

interface. 

The wizard generated this script, which could be run again through the command line after 

editing for your environment.  

mysqldump.exe --defaults-file="c:\users\***\appdata\local\temp\tmpapaxcr.cnf"  --

user=iedc_guest_*** --host=www.industrialecology.uni-freiburg.de --protocol=tcp --

port=3306 --default-character-set=utf8 --single-transaction=TRUE --skip-triggers "iedc" 
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2.2 Create local db with full data import 

• Note that this import took surprisingly long at maximum disk and CPU. The dump 

file was only 80MB, yet the import took 26 mins! It eventually completed without 

errors however. 

 

8. Connect to local db server instance through GUI 

9. Workbench menu > Server >  Data Import 

10. Select “Import from self-contained file”  

11. Enter file location from the export of 2.1 above 

12. To start: Select other tab: "Export progress". The start button is in the bottom right of the 

interface. 

command line script:  

mysqldump.exe --defaults-file="c:\users\***\appdata\local\temp\tmpapaxcr.cnf"  --

user=iedc_guest_*** --host=www.industrialecology.uni-freiburg.de --protocol=tcp --

port=3306 --default-character-set=utf8 --single-transaction=TRUE --skip-triggers "iedc" 

If successful, you now have a complete and up-to-date copy of the IEDC running on your 

local machine. 

The general syntax of the script required for extracting the schema of a MySQL database is 

simply  

mysqldump -d -u <username> -p<password> -h <hostname> <dbname> 

 

Option 3 (without a Freiburg IEDC login account): contact or check the GitHub repo of 

the author of this thesis, to gain access to a MySQL Dump file as described above. 
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Appendix F Query: column definitions 

SELECT table_name, column_name, column_type, column_key, is_nullable 

FROM INFORMATION_SCHEMA.COLUMNS 

WHERE  table_schema = 'iedc' 

AND NOT column_name like 'reserve%'; 

Appendix G Query: table-pairs with multiple 

foreign-key relationships 

SELECT TABLE_NAME,group_concat(COLUMN_NAME) as "FK_Columns", 

REFERENCED_TABLE_NAME,REFERENCED_COLUMN_NAME, count(constraint_name) 

FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE 

WHERE REFERENCED_TABLE_SCHEMA = 'iedc'  

GROUP BY TABLE_NAME, REFERENCED_TABLE_NAME 

HAVING count(constraint_name) > 2 

ORDER BY count(constraint_name) ASC; 
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Appendix H Query: columns for storing numerical 

values 

/*select all column data types within the IEDC*/ 

SELECT distinct column_type  

FROM INFORMATION_SCHEMA.COLUMNS 

WHERE table_schema = 'iedc'; 

 

/*select all columns which store numerical data, based on the total list of numerical types in 

the above… A manual check of column names where column_type = "INT" confirms that 

these are storing keys, not quantitative data*/ 

SELECT table_name, column_name, column_type 

FROM INFORMATION_SCHEMA.COLUMNS 

WHERE table_schema = 'iedc'  

AND column_type in ('double', 'float') #,'int'; 

 

This query returns the five numerical columns shown in Table 3.3  in the main text. Three of 

these five results are for storage of statistical uncertainty data. Robust and precise modelling 

efforts have the requirement that numerical data should be associated with parameter 

uncertainty wherever possible (Lloyd & Ries, 2007). Uncertainty representation is handled in 

the IEDC through description of the types of statistical distributions (such as uniform, 

lognormal and Bernoulli) in the stats_array table. This table is based upon the Python 

package of the same name which was originally developed for the Brightway2 LCA software 

(Mutel, 2017). A foreign-key relationship from the Data table column stats_array1 defines 

which of these distribution types apply. The data columns stats_array[2,3 or 4] are used as 

parameters to quantify the uncertainty under each of the distributions. The names, meanings 

or definitions of these parameters are different, depending on the distribution selected for 

each data item. 
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The possible units-of-measure for each quantified data item are stored in the table units. 

Names, codes and descriptions for the many types of units which are used to consistently 

measure dimensions in IE (and other sciences) are included in this table. Units which 

describe the same physical dimension can be converted between one another. For instance, 

kilograms and pounds are both measures of mass. A numerical conversion factor can be 

stored in this table for this purpose, alongside the reference unit which this factor scales to. 

The data records can specify two units: the numerator and denominator. This allows for the 

construction of further compound units beyond those which are stored in the Units table. 

However, in most cases, the denominator_unit is “1” – such that the numerator_unit is 

simply used. 

Appendix I Query: dataset-category and dataset-

type-category conflict 

SELECT Dataset_name, t.name as '"Types" Name' ,c1.name as 'Dataset "Category"', 

c2.name as 'Type "Category"' 

FROM iedc.datasets d 

INNER JOIN types t ON d.data_Type = t.id 

INNER JOIN categories c1 ON d.data_category = c1.id 

INNER JOIN categories c2 ON t.reference_data_category = c2.id 

WHERE d.data_category != t.reference_data_category ; 
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Query result: 

 Dataset_name 
 "Types" 
Name 

 Dataset 
"Category" 

 Type 
"Category" 

2_IUS_Global_Materials_2050 
Scenario_Wiedenhofer_2019  Flow  Stock  Flow 

1_F_Global_Materials_2050 
Scenario_Wiedenhofer_2019  Flow  Stock  Flow 

1_F_Global_End_of_life_waste 
_Wiedenhofer_2019  Flow  Stock  Flow 

 

Note that the dataset category is different to the flow category in each of these cases. 

Therefore, there is no way to determine which category is correct for these datasets. 

Appendix J Aspects and dimensions data in the 

IEDC 

The table below shows all the aspects and dimensions stored in the pro-populated IEDC data. 

It is intended to demonstrate that it is somewhat unclear how aspects and dimensions are 

related. Sometimes the Aspect name is the same as the Dimension name, but often not. The 

colour highlights show common dimensions for different aspects, and an anomalous row: a 

single dimension that has no aspects associated with it. The dimension is “layer”, which is 

also a table name and hence a concept modelled elsewhere in the IEDC. 

The table was generated by outer-joining the aspect and dimension tables. As in the query: 

SELECT  `a`.`aspect` AS `asp_name`,        `a`.`description` AS `asp_desc`,        `d`.`name` 

AS `dim_name`,        `d`.`description` AS `dim_desc`     

FROM        (`dimensions` `d`        LEFT JOIN `aspects` `a` ON ((`d`.`id` = `a`.`dimension`))) 
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ORDER BY `d`.`name`; 

 

Aspect name Aspect description 
Dimension 
name 

Dimension description 

commodity 
Goods and products 
considered 

commodity product, good, commodity 

EoL_good 
End-of-life products, 
buildings, and infrastructure 

commodity product, good, commodity 

product_type Types of products commodity product, good, commodity 

element chemical elements element chemical elements 

energy_carrier Energy carrier energy energy type or carrier 

extension 
Costs, emissions factors, 
social impacts 

extensions 
units other than mass or 
energy 

NULL NULL layer layer of quantification 

engineering_material 
Engineering materials 
considered, subset of generic 
materials M 

material 
resource, material, 
engineering material 

waste_scrap 
waste and scrap types 
considered 

material 
resource, material, 
engineering material 

input_material Input of material to process material 
resource, material, 
engineering material 

output_material 
Output of material to 
process 

material 
resource, material, 
engineering material 

process 
Process where stock is 
located 

process process or activity 

region Region of process or stock region country, region, or place 

origin_region Region of origin (flow) region country, region, or place 

destination_region region of destination (flow) region country, region, or place 

scenario 
Scenerios considered (e.g., 
SSP) 

scenario scenario, alternative, version 

service 
Service categories: shelter, 
transport, etc. 

services service flows 

time Model time time physical time 

age-cohort age-cohorts time physical time 

unity 
trivial classification, 1 entry 
only 

unity one, 1 
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Appendix K Storage and interchange formats for 

LCA: why json-LD? 

This section focuses rather on the storage and transmission of the data, in files which come in 

a variety of formats, as described in section 2.1.1. In a publication aimed at providing 

guidance to background database developers, Frischknecht (2006) states that the ideal LCA 

database “should communicate in a common data (exchange) format, offer centralised 

naming lists, be based on unit-processes”. Ciroth & Srocka (2015) agree, arguing that “For 

LCA, data exchange is important, and therefore agreement on LCA data exchange formats is 

important”. However the reality does not match this ideal state, as described in Kuczenski et 

al. (2016), LCA datasets “are presented with highly heterogeneous formats, interfaces, and 

distribution mechanisms. The lack of agreement among data providers for descriptions of 

processes and flows creates substantial barriers for information sharing and reuse of 

practitioners’ models”.  

Numerous file format standards (in either the XML or JSON languages) have entered 

widespread usage for unit-process data. For instance: 

XML-Based: 

• EcoSpold2 (Meinshausen et al., 2016), as developed initially for the ecoinvent database 

(Wernet et al., 2016) 

• ILCD (Wolf et al., 2011) 

JSON-Based: 

• The native data structures used in the LCA software Brightway2 (Mutel, 2017) 

• json-ld (Ciroth & Srocka, 2015) 

This final item on the list is used in this research. A brief description of the background and 

functionality of the format is therefore provided here. The json-ld LCA data format is 

intended to improve interoperability in LCA. It is developed by Ciroth & Srocka (2015), who 

also use this format now for their OpenLCA software (Ciroth, 2007) and the associated 
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online LCA dataset searching tool (nexus.openlca.org, 2019). Under the realisation that due 

to modern collaborative working practises “LCA data formats… are always data exchange 

formats”, they adopted modern semantic-web resource description technologies to minimise 

the friction in data exchange. They argue that "semantic technologies and ontologies are 

promising methods to support interoperability in LCA. They foster semantic interoperability 

without the need to enforce a single domain schema". The schema for their format is 

available at http://greendelta.github.io/olca-schema/. 

Json-ld is short for JavaScript Object Notation–Linked Data.  It is a World Wide Web 

Consortium (W3C) open standard, which extends conventional JSON to serialize linked data 

for web-based environments (W3C, 2019a). Linked data or semantic-web relationships 

consist of logical “triples” with the structure: subject-predicate-object. For an explanation of 

how these triples can be derived from the JSON format (made up of embedded key-value 

pairs), the supporting information of Kuczenski et al., (2016) provides an explanation. The 

context of the data includes a reference to the URI of an ontology which describes the data, 

and also pointers/references to other objects or resources on the semantic web. The current 

version of the format is stable at 1.0, with a working group currently working on an update, to 

add new features and improve usability (W3C, 2019b). 

Appendix L  Python code for evaluation of ecoinvent 

3.2 undefined semantic catalog  

Improved versions of this code may be available in the GitHub repository of the author. 

# -*- coding: utf-8 -*- 

# Created on Mon Oct  8 21:55:16 2018 

# @author: Tom 

http://greendelta.github.io/olca-schema/
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# See https://github.com/bkuczenski/lca-tools-datafiles/tree/gh-pages/doc for other code examples, some lines of 

which (e.g. for file-reading were used in this script) 

# @title: Evaluation of the Ecoinvent 3.2 Undefined Semantic Catalog  

 

import json 

from collections import defaultdict, OrderedDict, Counter 

from itertools import islice 

import pandas as pd 

 

# This code uses the unzipped version of the catalog in the json subfolder 

fn_ei32_und_unzipped = '../catalogs/json/ecoinvent_3.2_undefined_xlsx.json' 

# fn_ei32_und = '.../catalogs/ecoinvent_3.2_undefined_xlsx.json.gz' 

with open(fn_ei32_und_unzipped) as fp: 

    catalog = json.load(fp) 

 

def get_entity_helper_objects(_list): 

    """ expects a list of dicts which represents top level entities: 

    processes, flows, or quantities 

    returns 2 dictionaries: lists_of_values and distinct_value_counts 

    both have keys: the original key names of the top level of received dicts 

    distinct_value_counts returns counts of all values found inside the dicts, 

    up to 2 levels deep (based on manual exploration of data types) 

    """ 

    lists_of_values = defaultdict(list) 

    # a defaultdict of defaultdicts 

    distinct_value_counts = defaultdict(lambda: defaultdict(int)) 

     

    for _dict in _list: 

        if isinstance(_dict, dict): #  should be True for all values received 

            for tag,v1 in _dict.items(): 

                if tag not in ['exchanges', 'characterizations']: 

                    lists_of_values[tag].append(v1)                     

                    if isinstance(v1, dict): 

                        for k, v2 in v1.items(): 

                            distinct_value_counts[tag][(k,v2)] += 1 # to improve                     

                    elif isinstance(v1, list): 

                        for item in v1: 

                            if isinstance(item, dict): 

                                # this is the deepest level in the objects 

                                for k3, v3 in item.items(): 

                                    distinct_value_counts[tag][(k3,v3)] += 1 

                            else:  

                                distinct_value_counts[tag][item] += 1       

                    else:  # strings and ints at top level handled here 

                        distinct_value_counts[tag][v1] += 1 

        else: 

            return("unexpected value received, not a list:", _list) 

    return lists_of_values, distinct_value_counts 

 

# create pointers/aliases for the 3 primary entity types, for easy reference 

processes = catalog["processes"] 

flows = catalog["flows"] 

quantities = catalog["quantities"] 

 

# for all entities (processes, flows and quantities), create helper objects... 

# structures that to enable simple exploration and summary of their contents 

https://github.com/bkuczenski/lca-tools-datafiles/tree/gh-pages/doc
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p_lists_of_values, p_distinct_value_counts = get_entity_helper_objects(processes) 

f_lists_of_values, f_distinct_value_counts = get_entity_helper_objects(flows) 

q_lists_of_values, q_distinct_value_counts = get_entity_helper_objects(quantities) 

 

# Exchanges and Characterisations define the relationships between entities 

# Exchanges are stored within the processes which they are inputs/outputs for 

# Characterizations are stored within the flows which they characterize 

exchanges = [] 

characterizations = []  

for p in processes: 

    for e in p['exchanges']: 

        # assumption is that if isReference is not present, then it is not the reference exch 

        exchanges.append((e.get('direction'), e.get('flow'), e.get('isReference', False), e.get('value'), p['entityId'])) 

 

for f in flows: 

    for c in f['characterizations']: 

        characterizations.append((c.get('direction', None), c.get('quantity', None), c.get('isReference', False), 

c.get('value', None), f['entityId'])) 

 

 

### Explorations of the data in the catalog 

 

# Which process names occur frequently in the catalog? 

process_name_counts = Counter(p['Name'] for p in processes) 

# [ print(value,"of Name:", key) for key, value in process_name_counts.most_common(5) ] 

 

# reference exchanges 

exch_references = Counter(e[2] for e in exchanges) 

# print("\n Exchange directions:", exch_references) 

# False: 15938, True: 14158... both reference and non-reference exchanges included here 

 

# reference characterizations 

char_references = Counter(c[2] for c in characterizations) 

# print("\n Flow reference characterizations:", char_references) 

# True: 6767... only reference characterizations in this database 

 

# What is the distribution of flow-quantities referenced by characterizations 

characterization_quantities = Counter(c[1] for c in characterizations) 

 

# Edit to get names of these Q_IDs 

# [ print(value,"of QuantityId:", key) for key, value in characterization_quantities.most_common(5) ] 

 

 

# how many exchanges are inputs and outputs? 

exch_directions = Counter(e[0] for e in exchanges) 

print("\nExchange directions:", exch_directions) 

 

# all 30096 exchanges are Outputs and none are inputs: not as expected 

 # Could be due to sign convention of values in EcoInvent and bad import? 

# ... e.g. outputs are positive/negative and vice-versa? 

# But no numerical data included in this dataset, so can't easily confirm this idea 

 

# EcoInvent has only one classification listed per process. 

print("\n" + "{} distinct classifications across {} 

processes\n".format(len(p_distinct_value_counts['Classifications']), len(processes))) 
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## which are most common? Order the dictionary and show top 5 

ordered_classifications = OrderedDict(sorted(p_distinct_value_counts['Classifications'].items(),  

                            key=lambda t: t[1], reverse=True)) 

 

def take(n, iterable): 

    "Return first n items of the iterable as a list" 

    return list(islice(iterable, n)) 

[print(value,"of", key) for key, value in take(5,ordered_classifications.items()) ] 

 

# which ISIC codes are commonly found in the catalog 

# https://siccode.com/en/pages/isic - ISIC Codes! 

ordered_isics = OrderedDict(sorted(p_distinct_value_counts['IsicNumber'].items(),  

                            key=lambda t: t[1], reverse=True)) 

 

[print(value,"of IsicNumber:", key) for key, value in take(5,ordered_isics.items()) ] 

# We can look up these numbers. For instance the most common:  

# https://pseps.com/isic/3510-electric-power-generation-transmission-and-distribution 

 

 

import random 

def GetFlattenedProcessData(process_ID): 

    # returns three objects: 1 dictionary and 2 lists of dictionaries 

    flat_data = [] 

    flow_data = [] 

    #print("\nRandomly selected ProcessID:",process_ID) 

    for p in processes: 

        # should match just one process 

        if p['entityId'] == process_ID: 

            process_data = p 

            #(p['entityId'],p['Name'],p['TemporalScope'], p['SpatialScope'] 

            #, p['TechnologyLevel'], p['Classifications'], p['Comment'], p['exchanges']) 

            # 1 to n exchanges 

            for e in p['exchanges']: 

                # get exchange value or use random 

                e_value = round(e.get('value', random.random()), 3) 

                #always points to 1 flow 

                flow = e['flow'] 

                for f in flows: 

                    if f['entityId'] == flow: 

                        flow_data.append(f) 

                        # 1 to m characterizations 

                        for c in f['characterizations']: 

                            # get char value or use random 

                            if c['isReference']: 

                                #reference characterizations are always 1 

                                c_value = 1 

                            else: # randomize 

                                # todo: ensure the same value is used each time the same characterization is used 

                                c_value = round(c.get('value', random.random()), 3)                             

                            #always points to 1 quantity 

                            quantity = c['quantity']                             

                            for q in quantities: 

                                if q['entityId'] == quantity: 

                                    #fill up the object with data 

                                    flat = {} 

                                    flat["e_direction"] = e['direction'] 
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                                    flat["e_isref"] = e.get('isReference', False) 

                                    flat["e_value"] = e_value 

 

                                    flat["f_id"] = flow 

                                    flat["f_name"] = f['Name'] 

                                    flat["f_comp"] = f['Compartment'] 

                                    flat["f_cas"] = f['CasNumber'] 

                                    flat["f_syn"] = f['Synonyms'] 

 

                                    flat["c_isRef"] = c['isReference'] 

                                    flat["c_value"] = c_value 

 

                                    flat["q_id"] = quantity 

                                    flat["q_name"] = q['Name'] 

                                    flat["q_unit"] = q['referenceUnit'] 

 

                                    flat["value_combined"] = round(flat["e_value"] * flat["c_value"], 4) 

                                    # save row and begin again 

                                    flat_data.append(flat) 

                                     

    return process_data, flat_data, flow_data 

 

column_order = ["e_value","e_isref","e_direction","f_id","f_name" 

                ,"f_comp","f_cas","f_syn","c_isRef","c_value","q_id","q_unit" 

                ,"value_combined"] 

 

# choose whether to use a pre-determined ID (matching the report), or a random one 

process_ID = 'cd6b43df-8a42-42c4-84d7-0b38b5e14e06' 

#process_ID = random.choice(p_lists_of_values['entityId']) 

 

# process data is mapped to the *datasets* table 

# flat data is mapped to the *data* table 

# flow data is mapped to the *classification_items* table 

process_data, flat_data, flow_data = GetFlattenedProcessData(process_ID) 

flat_data_table = pd.DataFrame(flat_data, columns=column_order) 

Appendix M Overview of semantic catalog 

background databases 

After cloning the semantic catalog repository to a local machine, the catalogs download 

directory shows that there are 13 zipped catalog files. Their filenames clearly indicate that 
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some of the catalogs include impact assessment data rather than unit-process data (section 

4.2). Omitting these 3 files leaves 10 unit-process catalogs. The remaining 10 files are each 

given helpful short-hand names, indicating their database type and system model (where 

relevant). Of the 10 files, there are 4 fully original databases. The others are different versions 

of the same databases. This includes 5 ecoinvent versions, 2 of GaBi, 2 of USLCI, and only 1 

version of ELCD. To simplify further analysis, the ‘undefined’ system model versions are 

used where a selection is required. These have less processing applied, and are more 

fundamental than the datasets created after application of system models (section 4.2.3). This 

leaves four remaining catalogs, one for each source database type.  

Json-ld catalog files can be treated as the dictionary data structure in Python. In the dictionary 

of one semantic catalog, the top-level keys are: @context, catalogNames, dataSourceType, 

flows, processes and quantities are included in all 10 catalogs. The main data of interest for 

this research is included in the final 3 keys of that list: flows, processes and quantities. Each 

of these keys has a Python list as the associated value. 

Processing the contents of these lists can provide many insights into the data quality of the 

remaining four catalogs. The table below shows a summary of the quantity of the main 

entities and relationships, as described in previous sections. It can be seen that ‘GaBi-Pro’ 

includes no characterization data due to its proprietary nature. This means this catalog is 

unsuitable as a source. The distribution of data types between the remaining catalogs shows 

some interesting patterns, which may be of interest to further research but are beyond scope 

here.  

  EI (und) ELCD GaBi-Pro USLCI 

process          13,307                503             3,319                701  

exchange          30,096        211,652             3,309           29,719  

flow            6,767             2,343                762             4,176  

characterization            6,767             2,342                   -               5,497  

quantity               718                  94                  10                  20  

 

The remaining source code performs a number of checks to ensure the remaining catalogs 

each adhere to the theoretical description of the data as presented in section 4.2.4. Each 

exchange must create a unique one-to-one relationship between a process and flow, for each 
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possible direction (the same exchange flow may be both an input and output of a process). 

And each characterization must create a unique one-to-one relationship between a flow and 

quantity.  

Appendix N Contrasting infrastructure alternatives 

in terms of the FAIR principles 

This section provides comment on the extent to which the FAIR principles of scientific data 

stewardship (Wilkinson, 2016) are satisfied by the IEDC and the proposed semantic web 

approach. To what extent do the alternative infrastructure designs enable the open data to be 

findable, accessible, interoperable and reusable? The quotations are from the IE-focused 

publication by Hertwich et al. (2018). 

1. “findable: indexing or archiving (meta)data with unique identifiers (e.g., digital object 

identifiers [DOIs]) at a searchable resource;” 

The data stored in the IEDC do not have unique identifiers or DOIs, whereas all top-level 

entities on the semantic web require this. The IEDC data can be queried directly from any 

instance of the database, using custom-designed SQL queries. Whereas data stored on the 

semantic web can be queried using SPARQL queries, or by using generic data crawlers (e.g. 

Harth et al., 2006) . IEDC data is not automatically indexed by search engines but can be 

accessed through a custom-built web-interface (Freiburg, 2019). Whereas semantic data on 

the web is indexed automatically by a variety of systems. 

2. “accessible: (meta)data use an open standard for machine readability and are made 

permanently available.” 
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The metadata describing data in the IEDC is stored as records within the IEDC itself. 

Annotations for submitted data are not automatically accessible outside of the IEDC database 

server environment. Semantic web metadata is stored in schemas and also alongside data in 

documents. Open standards are not used in the IEDC, whereas the main standards institute of 

the web are the same people that are strongly advocating for the approach (W3C and Tim 

Berners-Lee). Permanent availability of the IEDC is dependent upon the continued hosting of 

database servers, which are currently the responsibility of specific research institutes 

(presently only Freiburg for the prototype). Projects such as the Wayback Machine of the 

Internet Archive are thus far ensuring that the web is permanently stored and accessible 

(Archive.org, 2019). 

3. “interoperable: (meta)data use standard data vocabularies, in a formal, open, and 

broadly applicable language, and include references to connected data.” 

Pre-existing vocabularies or ontologies are not used in the IEDC. On the semantic web, this is 

strongly encouraged and “there is a trend towards the adoption of well-known vocabularies 

by more datasets” (Schmachtenberg et al., 2014). There is presently no mechanism for 

following connections to external data sources from within the IEDC. Whereas this is a 

fundamental aspect of the design specification for the semantic web technology stack. 

4. “reusable: (meta)data are defined with relevant attributes for reuse such as a clearly 

defined license statement.” 

The IEDC provides some bespoke design choices to enable tracking of data licensing and 

provenance metadata. No extra layer of licensing is applied when a user loads data into the 

IEDC and so there are no additional legal barriers raised when data is loaded into the system. 

This is also generally true on the semantic web. Here, extensive effort has also been applied 

into developing standards for tracking provenance, such as the PROV family of documents 

which enables the “inter-operable interchange of provenance information in heterogeneous 

environments” (W3C-Prov, 2019). 

To summarise, the four FAIR principles are not broadly satisfied by the current design of the 

IEDC prototype. Whereas they are generally inherently satisfied by using the semantic web 

technology stack. Transforming the main datasets used in socioeconomic metabolism into 
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web-based open data standards would help to create rich potential for productive cross-

disciplinary collaborative research efforts. 

Appendix O Mapping document structure and 

guidance 

The mappings are separated into two parts, labelled the auxiliary and core data mappings. 

Core refers to the part of the IEDC schema shown in Figure 5.2, and auxiliary is everything 

else that was systematically excluded beforehand. The auxiliary mappings are comparatively 

simple, requiring less information to describe them with low ambiguity. The core mappings 

are often more complex and include transformation rules to describe them, plus additional 

references to the source data model. The contents of both the auxiliary and core mapping 

tables are explained here, via reference to the column headers. 

• MappingID is a number used for referencing specific mappings in the subsequent 

section. Each MappingID describes one or more rows being inserted into a single 

IEDC destination table.  

• Order Level refers to the necessary load order for the IEDC tables 

• Target table and column names are self-explanatory. 

• Data Type refers to the basic data type and precision of the IEDC column. 

• Key includes an entry when the column is indexed. Explanations for entries available 

at  https://dev.mysql.com/doc/refman/5.7/en/show-columns.html  

• Nullable is “Yes” if the IEDC  column is set to permit NULL values 

• Entity Name depends upon the transformation category entry. When the Category = 

"lookup" for a row, a lower-case IEDC table name is entered. Else, it refers to the 
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Semantic Catalog entities, and Capital Starting Letters are used. Hardcoded values do 

not require specification of a source entity. 

• Value is the column named used in the auxiliary data mappings. Integer values are 

keys of foreign tables. Text entries are entered as strings. If Nullable = True, empty 

cells mean NULL, else they imply an empty string (""). 

• Value / attribute name when the core mapping is hardcoded, this is simply the value 

inserted into the destination. When a lookup, this specifies the ID or name of the value 

to be looked up in a related table. When the mapping is direct, the attribute name of 

the source is entered. For transformations, see the Comment column. 

• Use existing IEDC records? Refers to the pre-populated data of the IEDC. Where 

possible, this data is used, rather than adding all new values from the source dataset. 

This minimises data redundancy, storage space, and is generally standard practise for 

filling databases. SQL insert statements must only be written for the entries which 

state "NO" for this column. 

• Transformation category categorizes columns based on how they are handled in the 

mapping. Possible values are: Direct, Transformation, Hardcoded, Lookup. 

• Transformation rule includes an entry when the category= “Transformation”. In this 

case, they are natural-language or pseudo-code descriptions of the transformation 

required.  

• Comment is used to explain potentially unclear elements of any other column. They 

also highlight specific problems encountered in each mapping, which contribute to the 

final answer to the research question. A comment in the 'ID' row of a particular 

mapping always refers to the whole mapping, rather than just that row. 

 


