
Blockchain-Based Verifiable
and Privacy-Preserving Machine
Learning Inference

MSc thesis in Computer Science

Mariana Samardžić
2023

MSc thesis in Computer Science

Blockchain-Based Verifiable and
Privacy-Preserving Machine Learning

Inference

Mariana Samardžić

July 2023

A thesis submitted to the Delft University of Technology in
partial fulfillment of the requirements for the degree of Master

of Science in Computer Science

Mariana Samardžić: Blockchain-Based Verifiable and Privacy-Preserving Machine Learning Infer-
ence (2023)
cb This work is licensed under a Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out in the:

Cybersecurity research group
Delft University of Technology

Supervisors: Dr. Roland Kromes
Dr. Kaitai Liang
Prof.dr. George Smaragdakis

http://creativecommons.org/licenses/by/4.0/

Abstract

The Machine Learning (ML) technology has taken the world by storm since it equipped the
machines with previously unimaginable decision-making capabilities. However, building
powerful ML models is not an easy task, but the demand for their utilization in different
industries and areas of expertise is high. This was recognized by entities that have managed
to create ML models and they started offering ML prediction services to clients in exchange
for financial compensation. In this work, we explore how a ML predication service platform
can be built in which we focus on two things: (1) privacy-preservation which entails keeping
the client’s datasets and service provider’s ML models private and (2) inference verifiability
ensuring that the ML prediction service providers do not commit fraud. The result are two
platforms: ML Prediction Service Platform (MLPSP) which does not protect the secrecy of
the client’s datasets but offers model privacy and verifiability of the predictions and Input-
Privacy ML Prediction Service Platform (IP-MLPSP) which protects the secrecy of the client’s
dataset and model privacy but the verifiability is probabilistic.

v

Acknowledgements

I would like to express my deepest gratitude and appreciation to all those who have con-
tributed to the successful completion of this master’s thesis directly or indirectly.

First and foremost, I am immensely grateful to my daily supervisor, Dr. Roland Kromes,
who has devoted countless hours in guiding me in my first research work. I want to thank
him for always being there when I needed help, for giving me valuable feedback and con-
structive criticism.

I extend my sincere thanks to my other supervisors, Dr. Kaitai Liang and Prof.dr. George
Smaragdakis for their insightful comments, constructive criticism, and valuable sugges-
tions.

I want to say thank you to the many great friends I have made during my studies: Dan
Andreescu, Ion Babalau, Marin Duroyon, Andrei Geadau, Dan Plamadeala, Ioana Savu,
Konrad Ponichtera, Natalia Struharova, Wessel Thomas and Bram Verboom. Your friendship
has made my two years at the Delft University of Technology a truly fun and enjoyable
experience.

Finally, I express my heartfelt appreciation to my fiancé Uros Dzinovic and my family for
their unconditional love, unwavering support, and patience throughout my academic jour-
ney. Their belief in me and constant encouragement have been my pillars of strength.

Thank you all

Mariana

July 2023

vii

Contents

1. Introduction 1
1.1. Machine Learning . 1
1.2. ML Prediction Service . 1
1.3. ML Prediction Service Platform . 3
1.4. Key Contributions . 4
1.5. Organization of the Report . 4

2. Related work 5
2.1. MVP . 5
2.2. Mutually Private Verifiable Machine Learning As-a-service: A Distributed Ap-

proach . 6
2.3. VPMLP . 6

3. Supported ML Models 7
3.1. Operations . 7
3.2. Linear ML Models . 8
3.3. SVM . 9

3.3.1. SVM with Linear Kernel . 10
3.3.2. SVM with Polynomial Kernel . 11

4. Polynomial Commitment Scheme 13
4.1. Prerequisites . 13

4.1.1. Commitment Scheme . 13
4.1.2. Pedersen Commitment Scheme . 14
4.1.3. Zero-Knowledge Proof Systems . 15
4.1.4. Bilinear Groups . 16
4.1.5. Function Extensions . 16

4.2. Polynomial Encoding . 18
4.3. PolyCom . 21

4.3.1. Linear Homomorphism . 21
4.3.2. Extractability . 21
4.3.3. ZKeq . 22
4.3.4. ZKprod . 24
4.3.5. Polynomial Commitment . 24
4.3.6. Overview of PolyCom . 25

4.4. Converting a Vector into a Polynomial . 27

5. Proving correct ML inference computation 31
5.1. LegoSNARK . 31
5.2. Overview of CP-SNARKs . 32
5.3. Fundamental CP-SNARKs . 34

5.3.1. CP-Poly . 34

ix

Contents

5.3.2. CP-Sumcheck . 37
5.4. CP-SNARKs for ML Operations . 39

5.4.1. CP-MM . 39
5.4.2. CP-EHad . 41
5.4.3. CP-ColumnSum . 42
5.4.4. CP-Expo . 43
5.4.5. CP-ScalarAdd . 45

5.5. CP-SNARKs for ML Inference . 46
5.5.1. CP-Linear . 46
5.5.2. CP-SVMLinear . 47
5.5.3. CP-SVMPoly . 47

5.6. Complexity Analysis . 47
5.7. Implementation and Experimental Evaluation 49

6. ML Prediction Service Platforms 53
6.1. Prerequisites . 53

6.1.1. Blockchain . 53
6.1.2. Homomorphic Encryption . 53

6.2. MLPSP . 54
6.2.1. Security Discussion . 58

6.3. IP-MLPSP . 60
6.3.1. Motivation . 60
6.3.2. Homomorphic Encryption of the Dataset 60
6.3.3. Main Idea . 62
6.3.4. Design . 63
6.3.5. Security Discussion . 69

7. Discussion 71
7.1. Comparison of IP-MLPSP with Related Work: Advantages 71

7.1.1. Trust Assumptions . 71
7.1.2. Model Extraction Attack . 72
7.1.3. Batch Verification . 72

7.2. Comparison of IP-MLPSP with Related Work: Disadvantages 72
7.3. Future Work . 73

8. Conclusion 75

A. Pedersen Commitment Scheme 77

B. ZKeq 79

C. ZKprod 81

D. CP-MM 83

E. CP-EHad 85

F. CP-Expo 87

G. CP-ColumnSum 91

x

Contents

H. CP-ScalarAdd 93

I. CP-Linear 95

J. CP-SVMLinear 97

K. CP-SVMPoly 99

xi

List of Figures

4.1. Example execution of the polynomial evaluation algorithm 20
4.2. ZKeq . 23
4.3. ZKeq’ . 23
4.4. ZKprod . 24
4.5. PolyCom . 26
4.6. The MLE algorithm . 29

5.1. Prover algorithm for CP-Poly . 34
5.2. Verifier algorithm for CP-Poly . 35
5.3. Example Execution of the Polynomial Decomposition Algorithm 36
5.4. Prover algorithm for CP-Sumcheck . 38
5.5. Verifier algorithm for CP-Sumcheck . 39

6.1. MLPSP Data Types . 55
6.2. MLPSP Methods . 55
6.3. MLPSP Platform Setup . 56
6.4. MLPSP Model Registration . 56
6.5. MLPSP Request Registration . 57
6.6. MLPSP Proof Registration . 57
6.7. MLPSP Verification . 58
6.8. IP-MLPSP Data Types . 64
6.9. IP-MLPSP Request Registration . 65
6.10. IP-MLPSP Output Registration . 66
6.11. IP-MLPSP Index Registration . 67
6.12. IP-MLPSP Proof Registration . 68
6.13. IP-MLPSP Verification . 69

D.1. CP-MM.Prove . 83
D.2. CP-MM.Verify . 84

E.1. CP-EHad.Prove . 85
E.2. CP-EHad.Verify . 86

F.1. CP-Expo.Prove . 88
F.2. CP-Expo.Verify . 89

G.1. CP-ColumnSum.Prove . 91
G.2. CP-ColumnSum.Verify . 92

H.1. CP-ScalarAdd.Prove . 93
H.2. CP-ScalarAdd.Verify . 93

I.1. CP-Linear.Prove . 95

xiii

List of Figures

I.2. CP-Linear.Verify . 96

J.1. CP-SVMLinear.Prove . 97
J.2. CP-SVMLinear.Verify . 98

K.1. CP-SVMPoly.Prove . 100
K.2. CP-SVMPoly.Verify . 101

xiv

List of Tables

3.1. Linear ML model inference operations . 9
3.2. SVM linear kernel inference operations . 10
3.3. SVM polynomial kernel inference operations . 11

5.1. Overview of CP-SNARKs . 33
5.2. Complexity: CP-Poly, CP-Sumcheck, ZKeq, ZKprod, l is the number of variables

in the polynomial . 48
5.3. Complexity: (1)CP-MM, (2)CP-EHad, (3)CP-Expo, (4)CP-ColumnSum, (5)CP-

ScalarAdd . 48
5.4. CP-Linear Runtime analysis . 50
5.5. CP-SVMLinear Runtime analysis . 51
5.6. CP-SVMPoly Runtime analysis . 52

6.1. MLPSP Security Requirements . 59
6.2. IP-MLPSP Security Requirements . 70

xv

List of Algorithms

1. Polynomial Evaluation Algorithm . 19
2. MLE Algorithm . 28

3. Polynomial Decomposition Algorithm . 36

xvii

Acronyms

API Application Programming Interface . 2
CP-SNARK Commit-and-Prove Zero-Knowledge Succinct Non-Interactive Argument of

Knowledge . 31
CP Commit-and-Prove . 31
HCPS Human Cyber-Physical System . 6
IoT Internet of Things . 6
IP-MLPSP Input-Privacy ML Prediction Service Platform v
MLPSP ML Prediction Service Platform . v
MLE Multilinear Extension . 17
ML Machine Learning . v
RBF Radial Basis Function . 5
SVM Support Vector Machines . 1
TTP Trusted Third Party . 5
ZK-NARK Zero-Knowledge Non-Interactive Argument of Knowledge 15
ZK-SNARK Zero-Knowledge Succinct Non-Interactive Argument of Knowledge 5

xix

1. Introduction

1.1. Machine Learning

ML [1] is essentially a new way of programming which has taken the world by storm. In-
stead of supplying the machine with detailed step-by-step instructions on how to achieve a
certain goal, the machine is supplied with a set of desirable input-output pairs of the pro-
gram and the machine creates the program itself. That is why we call this process machine
learning. Due to the fact that in many different use cases it is easier to train a system by
giving it examples of desired input-output behaviours than to program the system manu-
ally, machine learning has found its place in many different areas of industry and science.
In healthcare, for example, machine learning is used to detect and diagnose diseases from
medical images as shown in [2]. In finance, machine learning models are used for evaluat-
ing creditworthiness and predicting default risk [3]. Machine learning algorithms have also
found their place in retail and e-commerce where they are used for personalized product
recommendations based on user behavior and preferences [4].

In a nutshell, a machine is given a set of desirable input-output pairs called the training set.
The machine is running a ML algorithm that creates a ML model from the training set. This
phase is called ML training. Once the model is created or ”trained”, it can then be supplied
with new inputs to obtain new outputs, which are often called predictions. This phase is
called ML inference. If calculating predictions is a linear function then the ML model is called
linear, otherwise it is called non-linear. Many different ML algorithms have been developed
such as Support Vector Machines (SVM) [5], convolutional neural networks [6] , decision
trees [7], random forest [8] and many more. In this work, we will focus on general linear ML
models and SVM models and we will provide more details on them later on.

In general, to develop a powerful machine learning model, a company should have access
to a set of resources. First, the company has to have a large representative training set.
Secondly, the company needs skilled ML professionals who have to perform different tasks
such as: preprocessing the training set, choosing which ML algorithm to use based on the
training set and the goal and tuning the hyper-parameters of the algorithm. Lastly, the
company has to have access to sufficient computational resources. Not all companies are in
the position to acquire all of these resources and develop their own models. However, they
would still like to use the ML technology to improve their business and stay competitive in
the market. The solution for them could be to use ML prediction services.

1.2. ML Prediction Service

Some companies, institutions or other organizations that were able to create powerful ML
models might want to offer prediction services on their models to generate profit. In other
words, they will compute predictions using their own models on someone else’s dataset

1

1. Introduction

in exchange for financial compensation. For example, Google offers such services on the
Google Cloud AI Platform [9], Amazon on Amazon Web Services Marketplace [10] and
Microsoft on the Microsoft Azure Marketplace [11].

There are two types of users in a ML prediction service: a service provider and a client.
The service provider owns a trained machine learning model and the client owns a dataset.
The client sends the dataset to the service provider and the service provider evaluates the
dataset on its model and returns the predictions to the client in exchange for money. We can
identify three main security requirements in such system:

1. Model privacy: To create a highly accurate machine learning model, a large training
set first needs to be assembled and the data in the training set needs to be prepro-
cessed. Then, machine learning experts have to choose the most suitable machine
learning algorithm and tune the hyper-parameters of the algorithm. Powerful models,
like neural networks, require vast computational resources in order to be trained and
the training can be time-consuming. Furthermore, once the model is trained and ready
for making predictions, the company has to create an Application Programming Inter-
face (API) and provide support for concurrent requests from clients. All these factors
indicate that a company has to invest many resources in developing a ML model. The
trained machine learning model has great commercial value and some greedy clients
and/or competitors may try to steal it to perform the predictions for free or to make a
profit themselves. If the model privacy is not guaranteed, model owners will not offer
prediction services.

2. Input privacy: To evaluate the dataset on a model, the client has to send the dataset
to the service provider. However, the dataset can contain sensitive data like medical
records or personal information of the client company’s users that the client cannot
reveal to the service provider. Even if the client trust the service provider, the client
cannot share its users’ data with other third parties without the knowledge or agree-
ment of its users. Therefore, input privacy is a requirement for clients that want to
perform predictions on sensitive data, in order to use ML prediction services.

3. Outcome Verifiability: The returned predictions might be faulty for three reasons.
Firstly, the faults could be non-intentional like software/hardware bugs or external
attacks. Secondly, the service provider has the incentive to return a random prediction
back if that way the provider will not have to spend its resources computing and the
client will not be able to tell the difference between a random and a computed predic-
tion. Thirdly, the client might be a competitor of the service provider and the provider
might want to sabotage the client’s business by returning some false predictions. If
the client is using these faulty predictions in some integrity-sensitive applications like
risk assessment, investment suggestions or disease diagnosis, then the damage that
these faulty predictions could cause is substantial. Hence, having outcome verifiability is
a basic requirement for many clients that are using ML prediction services in integrity-sensitive
applications. Even if the applications are not integrity-sensitive, every client can only benefit
from having a proof of correct prediction computation. By having this proof, the clients can be
sure that they got what they payed for.

The main challenges of building a ML prediction service that satisfies these security require-
ments have been identified in [12] which is the first work that dealt with this topic. Firstly,
outcome verifiability and model privacy seem to be contradicting tasks. In standard ver-
ifiable computation schemes [13], the client that verifies if the outsourced computation is
correct, has access to the outsourced function. In a ML prediction service, the outsourced

2

1.3. ML Prediction Service Platform

function is the ML model. Since we want to have model privacy, the verifier cannot have
access to it. Secondly, the input privacy makes the outcome verifiability an even harder
task. To assure input privacy, the data can be encrypted using a homomorphic encryption
scheme [14] and then the computation can be performed on an encrypted dataset. However,
most verifiable computation schemes assume that the input data is in plaintext and it is not
straightforward for these schemes to work with encrypted data. Lastly, the third challenge
is to verify the integrity of the massive underlying operations on the client’s dataset.

1.3. ML Prediction Service Platform

The goal of this research is to create a ML Prediction Service Platform which allows ser-
vice providers to register their models for which they offer prediction services. Clients can
browse the registered models and choose the models whose prediction services they want
to purchase. The platform takes care that the returned predictions are correct and that the
payments are fair. We have identified the security requirements that we want to achieve:

1. Model Privacy: The service provider’s machine learning model should stay secret.

2. Input Privacy: The client’s dataset should stay secret.

a) Output Privacy: Only the client can see the returned predictions.

3. Outcome Verifiability: The service provider has to generate a proof of correct ML
inference computation.

a) Model Registration: Outcome verifiability assures that the service provider can-
not generate a proof of correct ML inference if it has not actually done the com-
putation. However the service provider could evaluate the client’s data on some
other model instead of the model that the client has chosen. It can be that the
client is the service provider’s competitor and the service provider wants to sabo-
tage the client’s business by returning a prediction from a less accurate model. A
ML Prediction Service Platform should assure that this scenario cannot happen.

b) Dataset Registration: A malicious service provider could evaluate some other
dataset instead of the client’s dataset and still generate a proof of executing an
ML inference. A ML Prediction Service Platform should assure that the proof can
only be generated for the correct dataset.

c) Matching Output: A malicious service provider could calculate the correct pre-
dictions and generate a proof of correct computation but still return some other,
fake predictions. Perhaps, the client is a competitor and the service provider
wants to sabotage it. A ML Prediction Service Platform should assure that the
returned predictions are the same predictions that have been used in the proof
generation.

4. Batch verification: Usually the client’s dataset will consist of more than one data
instance. It is important that the scheme supports proof generation for the entire
dataset instead of generating one proof for every instance in the dataset.

5. Fair payments: The client should only pay for the predictions that are correct and the
client should only get the correct predictions after the payment.

3

1. Introduction

6. Trustless system: An easy way to implement this platform would be to have a trusted
third party or a trusted execution environment do the inference. However, in that
case, we would have to ask from the users to place their trust in those entities. That
would mean that users are actually risking the leakage of their models, leakage of
their datasets and the generation of false proofs if those entities turn out to be non-
trustworthy. Not many users are ready to take those risks. A better approach would
be to have a platform where such risk is non-existent or at least a platform where the
severity of the damage caused by a malicious trusted entity is decreased.

1.4. Key Contributions

The key contributions of this work are the following:

1. We have created three protocols: one for general linear ML models, one for linear-
kernel SVM models and one for polynomial-kernel SVM models that allow a service
provider to generate a publicly verifiable proof that the ML inference has been correctly
computed on a plaintext dataset without leaking the secret ML model parameters. We
have built these protocols using the LegoSNARK[15] framework. We also provide an
implementation and evaluation.

2. We have built these protocols by combining protocols which can be used for prov-
ing the correct computation of some basic operations. In the LegoSNARK framework
these protocols are called gadgets. We have used some gadgets provided in the LegoS-
NARK framework and we ourselves have created four new gadgets that we describe
in Section 5.4. These gadgets are reusable and can be used in proving the correct
computations of other programs.

3. We have created two ML prediction service platforms where the outcome verifiability is
assured by using the protocols we have created. The first one, simply called MLPSP, sat-
isfies all requirements except of the input privacy and the second one, called IP-MLPSP,
also satisfies the input privacy requirement, but at the expense of the outcome verifia-
bility being probabilistic. We also show that our IP-MLPSP has the least amount of trust
assumptions compared to related work.

1.5. Organization of the Report

The report is organized as follows: In Chapter 2 we give an overview of related work. In
Chapter 3 we outline all operations that are part of ML inference computation for linear
models, linear-kernel SVM models and polynomial-kernel SVM models. In Chapter 4 we
explain how we implemented the polynomial commitment scheme from [15], which is a
building block of our verifiable computation protocols. Next, in Chapter 5 we present how
we have built the scheme for proving the correct computation of ML inference. In Chapter 6
we describe our two ML prediction service platforms. Finally, in Chapter 7 we provide a
discussion about our results including a comparison with state-of-the-art related work and
the planned future work and in Chapter 8 we give our conclusion.

4

2. Related work

The related work can be split into three categories. The first category focuses on privacy-
preserving ML-as-a-service, or in other words, on protecting the model and the input privacy.
One of the most notable works is Cryptonets. CryptoNets [16] allows a service provider to
evaluate an encrypted dataset with a neural network and return high throughput, accurate,
and encrypted predictions back. The second category focuses on the verifiability of out-
sourced ML tasks. One of the most notable works in this category is SafetyNets [17] whose
system model consists of a client that outsources the ML inference computation to a cloud
provider. The cloud provider computes the predictions on behalf of the client and provides
a client with a short mathematical proof of the correctness of computation. However, it
does not protect the input privacy. Another notable work is vcNN [18] which is an effi-
cient verifiable convolutional neural network framework. This work also does not focus on
protecting the privacy of the data. VeriML [19] can be used when a client wants to out-
source ML tasks to an untrusted server. By implementing fair payments, they ensure that the
claimed resource consumption by the service provider corresponds to the actual workload.
To enhance efficiency, they utilize Zero-Knowledge Succinct Non-Interactive Argument of
Knowledge (ZK-SNARK) (more information will be given in Section 5.1) on randomly-selected
iterations during the machine learning training phase. The probabilistic assurance is tunable
like in our work. The last category would be works that, just like our work, try two combine
these two concepts: privacy-preservation and verifiability. However, there are not many
works in this category. We have identified three main works and we will give an overview
of them in the following sections and we are going to compare them to our work in the
Discussion chapter.

2.1. MVP

The scheme MVP proposed in [12] is the first scheme to achieve outcome verifiability, model
privacy and input privacy simultaneously in ML prediction services while not relying on any
trusted hardware. Their system model is very similar to ours: there is a service provider, a
client and a Trusted Third Party (TTP). The client wants to get a verifiable prediction from
the service provider’s model while keeping its dataset and the model secret. MVP supports
SVM with linear, polynomial and Radial Basis Function (RBF) kernel. In a nutshell, they have
created two verifiable and privacy-preserving schemes: one for the dot product computation
and one for the euclidean square distance computation. If the SVM model has a polynomial
kernel K(xj, zi) = (xT

j zi + c)d,where x is a support vector, z a data instance and c, d kernel
parameters, the service provider uses the dot product scheme to compute the dot product for
every data instance-support vector pair {V(i)

j = xT
j zi|j ∈ SV}. This result gets decrypted by

a TTP and sent back to the client, who completes the kernel function on its own (V(i)
j + c)d.

If the model has the RBF kernel K(xj, z) = exp(−γ||xj − zi||2), the the provider uses the

5

2. Related work

euclidean square distance scheme to compute {V(i)
j = ||xj − zi||2|j ∈ SV} for every data

instance-support vector pair. The result gets decrypted by the TTP and sent to the client who
completes the kernel function exp(−γV(i)

j). The verifiability proof relies on the Polynomial
Decomposition lemma which is also at the core of the LegoSNARK framework, which we
use for verifiability.

2.2. Mutually Private Verifiable Machine Learning
As-a-service: A Distributed Approach

In ”Mutually Private Verifiable Machine Learning As-a-service: A Distributed Approach”
[20], the authors also use the LegoSNARK framework and they present a protocol only for
linear kernel SVMs. The architecture of their system is different than ours. The entities in
their system are:

1. ML service provider (honest-but-curious): Owns a ML model but outsources the in-
ference computation to three different cloud providers by partitioning the model ver-
tically into three parts which allows every cloud provider to compute a specific sub-
computation of the ML inference computation. The ML service provider wants to be
sure that the cloud providers do the computations correctly and that the client does
not steal the model.

2. Cloud providers P1, P2 and P3 (malicious): Every cloud provider consists of multiple
servers. The cloud providers already know the model, but they would also like to steal
the client’s input data. They would also like to return some faulty predictions back.

3. Client: To avoid sending its dataset in plaintext to P1 in order to perform the first
sub-computation, the client encodes its dataset in a way that every server in P1 gets
a different variation of the dataset on which they can perform their sub-computation.
The servers in P2 aggregate the outputs from P1 and are able to extract the true output
of the first sub-computation for further processing. The client trusts that the ML service
provider will make sure that the cloud providers do the correct computations.

2.3. VPMLP

The authors of [21] have created VPMLP, a Verifiable Privacy-Preserving Machine Learning
Prediction Scheme for Edge-Enhanced Human Cyber-Physical System (HCPS). In their sys-
tem, the cloud server (CS) has a trained linear ML model. To support many request from
User Terminals (UT),which collect data from Internet of Things (IoT) devices and decrease
the response latency, the CS outsources the inference computation to Edge Servers (ES) by
creating a different masked model for every ES. The UT sends a prediction request that
contains an encrypted dataset to the closest available ES and the ES together with the CS
calculates the prediction. The UT can ask the CS for a proof of correct computation. How-
ever, the UT assumes that the CS and ES are honest and compute the prediction correctly.
The purpose of the proof is to make sure that no external adversary has tempered with the
data shared between the UT and the prediction service.

6

3. Supported ML Models

Our ML prediction service platforms are suitable for working with linear ML models and
SVM models that have either a linear or a polynomial kernel. The ML inference computation
can be divided into several sub-computations. We will prove the correct computation of
ML inference by proving the correct computation of the different sub-computations and
linking them together. In Section 3.1 we have defined 5 sub-computations that are part of ML
inference computation for the aforementioned models. In Section 3.2 we give an overview
of linear ML model inference and in Section 3.3 we give an overview of SVM inference.

3.1. Operations

Definition 3.1.1 (Matrix Multiplication). Matrix Multiplication mm(A, B) = C is a function
that takes as input an m× n matrix A and an n× k matrix B and outputs an m× k matrix C
such that ∀i ∈ {0, ..., m− 1}, j ∈ {0, ..., k− 1} : Ci,j = ∑n−1

l=0 Ai,l · Bl,j.

Example 1.

Given A =

[
2 4
5 6

]
and B =

[
3
3

]
then mm(A, B) =

[
18
33

]

Definition 3.1.2 (Extended Hadamard Product). Extended Hadamard Product ehad(A, B) =
C is a function that takes as input a m× n matrix A and a vector B of size m and outputs an
m× n matrix C such that ∀i ∈ {0, ..., m− 1}, j ∈ {0, ..., n− 1} : Ci,j = Ai,j · Bi.

Example 2.

Given A =

[
3 2
3 4

]
and B =

[
2
5

]
then ehad(A, B) =

[
6 4

15 20

]

Definition 3.1.3 (Matrix Exponentiation). Matrix exponentiation expo(A, d) = B is a func-
tion that takes as input a m × n matrix A and a positive integer d and outputs am m × n
matrix B such that ∀i ∈ {0, ..., m− 1}, j ∈ {0, ..., n− 1} : Bi,j = Ad

i,j.

7

3. Supported ML Models

Example 3.

Given A =

[
3 2
3 4

]
and d = 2 then expo(A, d) =

[
9 4
9 16

]

Definition 3.1.4 (Column Summation). Column Summation cs(A) = B is a function that
takes as input an m× n matrix A and outputs a vector B of size n such that ∀j ∈ {0, ..., n− 1} :
Bj = ∑m−1

i=0 Ai,j.

Example 4.

Given A =

[
2 4
5 6

]
then cs(A) =

[
7 10

]

Definition 3.1.5 (Scalar Addition). Scalar addition sa(A, C) = B is a function that takes as
input an m × n matrix A and a scalar value C and outputs an m × n matrix B such that
∀i ∈ {0, ..., m− 1} ∧ ∀j ∈ {0, ..., n− 1} : Bi,j = Ai,j + C.

Example 5.

Given A =
[
3 4 2 6

]
and C = 3 then sa(A, C) =

[
6 7 5 9

]

3.2. Linear ML Models

Linear machine learning models are a class of ML models that assume a linear relationship
between the input features and the target variable. If there are n input features, then the
result of the training phase is a model that consists of a weight vector w of size n and a bias
value b. The target variable t of a new data instance z is calculated as t = wTz+ b. The output
of the decision function can be interpreted differently depending on the specific linear model
being used. For example, in linear regression [22], the decision function represents the
predicted continuous value. In logistic regression [22], the decision function is typically
passed through a sigmoid function to obtain the predicted probability of belonging to a
particular class. We will give a formal definition of the linear ML model inference function
that makes predictions on a dataset Z.

Definition 3.2.1 (Linear ML inference). fLinear(model, Z) = o is a function that takes as
input a tuple model = (w, b) where w is a vector of size n and b is a scalar value and an n× k
matrix Z, where each column i represents a data instance zi, and outputs a vector o of size k
where ∀i ∈ {0, .., k− 1} : oi = wTzi + b

8

3.3. SVM

operation ∀j ∈ {0, ..., n− 1}, i ∈ {0, ..., k− 1}

1. ehad(Z, w) = H Hj,i = Zj,i · wj

2. cs(H) = s si =
n−1
∑

j=0
Hj,i = wTzi

3. sa(s, b) = o oi = si + b = wTzi + b

Table 3.1.: Linear ML model inference operations

This computation can be divided into 3 sub-computations as can be seen in Table 3.1. First
we perform the extended hadamard product between the matrix Z and vector w and obtain
the matrix H. Then, we perform a column summation of the matrix H and obtain the vector
s. Finally we perform scalar addition between the vector s and scalar b and obtain the output
vector o.

3.3. SVM

Support vector machines are supervised machine learning models which can be used to
create a two class classifier. Given a training dataset, and for every training point an output
label 1 or -1 which defines to which of the two classes the point belongs to, the SVM algorithm
finds the hyperplane that separates the training data by a maximum margin. More precisely,
the algorithm finds the vector α that contains the Lagrangian multiplier value for every
training point. The training points whose Lagrangian multiplier values are α ̸= 0 lie closest
to the margin and are called support vectors.

Given that there are m support vectors, for every j ∈ {0, ..., m− 1} , we will mark with xj
the support vector j,with tj ∈ {−1, 1} the label of the support vector xj and with αj the
Lagrangian multiplier for support vector xj. A new data instance z can be classified by
performing the following computation:

fSVM(z) = sign(
m

∑
j=0

αjtj(xT
j z) + b)

If the training dataset is not linearly separable, the dataset and the support vectors can
be mapped using a non-linear map Φ into higher dimensions in which the training set is
linearly separable.

fSVM(z) = sign(
m

∑
j=1

αjtj⟨Φ(xj), Φ(z)⟩+ b)

However, by the use of kernels, no computations have to actually be performed in that high-
dimensional space, rather, all computations are performed in the input space. A kernel
function K has the property that K(xj, z) = ⟨Φ(xj), Φ(z)⟩ for a certain map Φ. There are
various kernel functions that can be used. For example:

• Linear kernel K(xj, zi) = xT
j zi

9

3. Supported ML Models

• Polynomial kernel K(xj, zi) = (xT
j zi + c)d

• RBF kernel K(xj, zi) = exp(−γ||xj − zi||2)

Thus, the decision function can then be rewritten as:

fSVM(z) = sign(
m

∑
j=1

αjtjK(xj, z) + b)

3.3.1. SVM with Linear Kernel

An SVM model with a linear kernel is represented as a tuple model = (X, Y, B). X is an m× n
matrix where m is the number of support vectors and n is the number of features. Every row
j of X represents the support vector xj .The vector Y of length m is defined such that every
element Yj = tj · αj. The value B corresponds to the bias value. The dataset that should
be evaluated is represented by an n × k matrix Z, where each column i represents a data
instance zi. The prediction of data instance zi is equal to f (zi) = sign(∑m−1

j=0 tjαj(xT
j zi) + b).

In our work, we assume that the service provider computes f (zi) = ∑m−1
j=0 tjαj(xT

j zi) + b and
sends that value to the client, who then does the sign operation on its own. Next, we will
give a formal definition of the linear-kernel SVM inference.

Definition 3.3.1 (Linear-Kernel SVM inference). fSVMLinear(model, Z) = O is a function that
takes as input a tuple model = (X, Y, B), where X is an m× n matrix and xj is the j-th row
of X, Y is a vector of length m and Yj is the j-th element of Y and B is a scalar value and
an n× k matrix Z where zi is the i-th column of Z and outputs a vector O of size k where
∀i ∈ {0, .., k− 1} : Oi = ∑m−1

j=0 Yj · (xT
j zi) + B

This function can be divided into 4 distinct sub-computations as can be seen in Table 3.2.

operation ∀j ∈ {0, ..., m− 1}, i ∈ {0, ..., k− 1}

1. mm(X, Z) = M Mj,i = xT
j zi

2. eHad(M, Y) = H Hj,i = Yj Mj,i = tjαj(xT
j zi)

3. cs(H) = S Si = ∑m−1
j=0 Hj,i = ∑m−1

j=0 tjαj(xT
j zi)

4. sa(S, B) = O Oi = Si + B = ∑m−1
j=0 tjαj(xT

j zi) + B

Table 3.2.: SVM linear kernel inference operations

10

3.3. SVM

3.3.2. SVM with Polynomial Kernel

An SVM model with a polynomial kernel is represented as a tuple model = (X, Y, B, C, d). X
is a m× n matrix where m is the number of support vectors and n is the number of features.
Every row j of X represents the support vector xj .The vector Y of length m is defined such
that every element Yj = tj · αj. The value B corresponds to the bias value. C is a scalar value
which is a parameter of the kernel and d is a positive integer. The dataset that should be
evaluated is represented by a n× k matrix Z, where each column i represents a data instance
zi. The prediction of data instance zi is equal to f (zi) = sign(∑m−1

j=0 tjαj(xT
j zi + c)d + b). Just

like in the linear-kernel version, the service provider does all the operations except of the
sign operation. We will give a formal definition of the polynomial-kernel SVM inference.

Definition 3.3.2 (Polynomial-Kernel SVM inference). fSVMPoly(model, Z) = O is a function
that takes as input a tuple model = (d, X, C, Y, B), where X is a m× n matrix X and xj is the
j-th row of X, Y is a vector of length m and Yj is the j-th element of Y, B and C are scalar
values and d is a positive integer and an n × k matrix Z and outputs a vector O of size k
where ∀i ∈ {0, .., k− 1} : Oi = ∑m−1

j=0 tjαj(xT
j zi + C)d + B

This function can be divided into 6 sub-computations as can be seen in Table 3.3.

operation ∀j ∈ {0, ..., m− 1}, i ∈ {0, ..., k− 1}

1. mm(X, Z) = M Mj,i = xT
j zi

2. sa(M, C) = Γ Γj,i = Mj,i + C = xT
j zi + C

3. expo(Γ, d) = E Ej,i = Γd
j,i = (xT

j zi + C)d

4. eHad(E, Y) = H Hj,i = YjEj,i = tjαj(xT
j zi + C)d

5. cs(H) = S Si =
m−1
∑

j=0
Hj,i =

m−1
∑

j=0
tjαj(xT

j zi + C)d

6. sa(S, B) = O Oi = Si + B =
m−1
∑

j=0
tjαj(xT

j zi + C)d + B

Table 3.3.: SVM polynomial kernel inference operations

11

4. Polynomial Commitment Scheme

Let us say that a service provider owns an m × n matrix A and a client owns an n × k
matrix B. The client sends B to the service provider and the service provider evaluates
mm(A, B) → C and returns C to the client together with a proof of correct computation π.
A ML prediction service platform is supposed to verify that the proof π is valid and that
it is linked to the values A, B and C. However, the platform does not have access to these
values because of the input and model privacy requirements. The question is how can we
still verify that π is connected to A, B and C even though these three values cannot be seen.
The solution is to use a commitment scheme.

Our proofs of correct computations are based on the proofs from the LegoSNARK frame-
work [15] that are defined for operations over vectors committed using a polynomial com-
mitment scheme from [23]. Authors of LegoSNARK have named this polynomial commit-
ment scheme PolyCom. In this section we will explain what commitments are, how PolyCom
is specified and how we have implemented it.

4.1. Prerequisites

4.1.1. Commitment Scheme

A commitment scheme is a cryptographic protocol that allows a user to commit to a value
that will be revealed later. No one will be able to see the committed value until the user
reveals it and the user will not be able to reveal another value other than the value that
was committed. We will present the definition of a commitment scheme from [15]. A
commitment scheme is a tuple of algorithms Com=(Setup,Commit,VerCommit) that are defined
as follows:

1. Setup(1λ) → ck: Given a security parameter λ, outputs a commitment key ck that
includes the descriptions of the input space D, commitment space C and the opening
space O.

2. Commit(ck, u) → (c, o): Takes the commitment key and a value u ∈ D that should be
committed and outputs a commitment c ∈ C and an opening o ∈ O.

3. VerCommit(ck, c, u, o)→ b ∈ {0, 1}: Once the committer wants to reveal the committed
value, the committer reveals the input u along with the opening o. The verifier can
verify that that u is the value committed in c using the opening o by running the
algorithm VerCommit.

The commitment scheme Com has to satisfy the notions of:

1. Correctness: For every λ ∈ N and every u ∈ D it should hold that if ck ← Setup(1λ)
and (c, o)← Commit(ck, u) then Pr(VerCommit(ck, c, u, o) = 1) = 1.

13

4. Polynomial Commitment Scheme

2. Binding: For every polynomial-time adversary A it should hold that if ck← Setup(1λ)
and (c, u, o, u′, o′)← A(ck) then Pr(VerCommit(ck, c, u, o) = 1∧VerCommit(ck, c, u′, o′) =
1 ∧ u ̸= u′) = negl. In other words, an adversary can commit to one value u and later
reveal another value u′ only with negligible probability.

3. Hiding For ck← Setup(1λ) and every two values u, u′ ∈ D, we require that Com(ck, u)
and Com(ck, u′) are statistically indistinguishable. In other words, even a computation-
ally unbounded adversary cannot see which value is committed in a commitment c.

4.1.2. Pedersen Commitment Scheme

The Pedersen commitment scheme is a popular commitment scheme introduced in [24]. The
algorithms (Setup, Commit, VerCommit) are defined as:

1. Setup(1λ)→ ck

a) Generate a group G whose order is a λ-bit prime q. The discrete log problem
should be hard in G.

A way to generate G is to generate a large prime p such that p− 1 is divisible
by q. Then Z∗p has order p− 1 and since the order of every subgroup divides the
order of the group, there is a subgroup G of order q.

b) Generate two random generators g and h of G such that no one knows dloggh.

A way to generate g is to perform the following operations:
i. r ←R Z.

ii. f ← H(r) ∈ F∗p for some cryptographic hash function H.

iii. g← f (p−1)/q (mod p).
iv. If g = 1 then return to (i), else output (r, g)

Repeat the same process for h. Given r every user can check if a generator was
generated randomly.

c) Output ck = (q, G, g, h)

2. Commit(ck, u)→ (c, o)

Generate a random opening o ∈R Zq and then calculate the commitment c as guho.

3. VerCommit(ck, c, u, o)→ b ∈ {0, 1}

Return 1 if c = guho else return 0.

The Pedersen commitment scheme satisfies the correctness, binding and hiding properties
as can be seen in Appendix A.

14

4.1. Prerequisites

4.1.3. Zero-Knowledge Proof Systems

The following definitions are adapted from [25] and [15] and the reader is referred to these
works for more information.

Definition 4.1.1 (Relation). {Rλ}λ∈N is a family of relations R on pairs (x, w). The value
x is called the public statement and w is called the witness. If R holds on (x, w), we write
R(x, w) = 1 else we write R(x, w) = 0. Deciding if a relation holds takes polynomial time.

Informally, a relation can be seen as a set of valid statement-witness pairs.

Definition 4.1.2 (Σ protocol). A Σ protocol for {Rλ}λ∈N is a tuple of algorithms (P ,V)
that allows a prover to convince a verifier that he knows a pair (x, w) such that a relation
R(x, w) holds without revealing the witness w. It is a 3-move interactive protocol that works
as follows:

1. P(x, w)→ a: The prover computes an initial message and sends it to the verifier

2. S→ c: The verifier picks a challenge c from a large set S

3. P(c)→ z: The prover computes the response z using the challenge c.

4. V(x, (a, c, z))→ b ∈ {0, 1} The verifier checks the transcript (a, c, z) and returns 1 if the
transcript is valid and 0 otherwise.

Definition 4.1.3 (Public coin Σ protocol). A Public coin Σ protocol is a Σ protocol where
the verifier picks the challenge uniformly at random and independently from the initial
message. A public-coin Σ protocol satisfies the notions of:

1. Completeness: For every pair (x,w) that satisfies the relation R, the verifier will accept
the proof.

2. Special Soundness: Given two accepting transcripts for the same pair (x, w) with
distinct challenges and same initial message it is possible to extract the witness.

3. Special Honest Verifier Zero-Knowledge: There should be a simulator that given a
challenge, can simulate an accepting transcript without knowing a witness. This might
sound counter-intuitive however, the simulator is less restricted then an adversary
since it can create messages in different order, more specifically, it can first create the
response z and then the initial message a.

Definition 4.1.4 (Zero-knowledge non-interactive argument of knowledge). A Zero-Knowledge
Non-Interactive Argument of Knowledge (ZK-NARK) for {Rλ}λ∈N is a tuple of algorithms
Π = (KeyGen, Prove, VerProo f) that allows a prover to convince a verifier that he knows a
pair (x, w) such that a relation R(x, w) holds without revealing the witness w. The protocol
works as follows:

1. KeyGen(R)→ crs = (ek, vk): Takes a relation as input and outputs a common reference
string crs which consists of an evaluation key ek and a verification key vk.

2. Prove(ek, x, w)→ π: The prover generates the proof π

3. VerProo f (vk, x, π) → b ∈ {0, 1}. The verifier checks the proof and returns 1 if the
proof is correct, else returns 0

15

4. Polynomial Commitment Scheme

A ZK-NARK has the following properties:

1. Completeness: For every pair (x,w) that satisfies the relation R, the verifier will accept
the proof

2. Soundness: If the prover does not know the witness, then the verifier will accept the
proof with negligible probability.

3. Zero Knowledge: There should be a simulator that can simulate an accepting tran-
script without knowing a witness. We have to give some additional powers to the
simulator, because we do not want to let anyone create fake proofs without having
access to a witness. We allow the simulator to create crs himself and some additional
information τ called the trapdoor.

Fiat-Shamir Heuristics can be used to convert a public-coin Σ protocol into a ZK-NARK.
The verifier no longer generates the challenge, instead the prover uses a cryptographic hash
function H to generate a hash of the protocol transcript up to that point and uses this hash
as a challenge. During verification, the verifier will perform the same procedure to obtain
the challenge. This assures that the prover only obtains the challenge after creating the
initial message. If we assume that the cryptographic hash function H is truly random, in
which case we call H a ’random oracle’, then the ZK-NARK is sound and the the special
honest verifier zero-knowledge property of the original Σ protocol transforms into full zero-
knowledge [25].

4.1.4. Bilinear Groups

A Bilinear Group generator BG(1λ) takes a security parameter as input and outputs bp =
(q, G, GT , e, g) where:

• G and GT are two cyclic groups of order q

• g is a generator of G

• e is a bilinear map e : G×G→ GT . It holds that

– For all u, v ∈ G and a, b ∈ Z, e(ua, vb) = e(u, v)ab and

– e(g, g) is a generator of GT .

• G is a bilinear group if there exists a group GT and a bilinear map as above.

4.1.5. Function Extensions

Definition 4.1.5 (Function Extension). A polynomial h: Fl → F is an extension of the
function V : {0, 1}l → F if ∀b ∈ {0, 1}l : h(b) = V(b).

Informally, a polynomial that has the same input-output pairs as a funtion and some addi-
tional input-output pairs is an extension of that function.

Definition 4.1.6 (Multilinear Extension (MLE)). Let V : {0, 1}l → F be a function. Then
there exists a unique l-variate polynomial Ṽ : Fl → F called the multilinear extension of V,
with the properties that:

16

4.1. Prerequisites

1. Ṽ has degree at most 1 in each variable and

2. Ṽ(x) = V(x) for all x ∈ {0, 1}l .

Informally, an Multilinear Extension (MLE) is an extension of a function where every variable
has degree at most 1. Every function has an unique MLE.

Example 6. Given a function V : {0, 1}2 → F defined as

V(0, 0) = 2
V(0, 1) = 3
V(1, 0) = 4
V(1, 1) = 0

its MLE is

Ṽ(x2, x1) = 2 + x1 + 2x2 − 5x1x2

We can see that:

Ṽ(0, 0) = V(0, 0) = 2

Ṽ(0, 1) = V(0, 1) = 3

Ṽ(1, 0) = V(1, 0) = 4

Ṽ(1, 1) = V(1, 1) = 0

Definition 4.1.7 (Equality predicate). A µ-variate equality predicate is a function eq : {0, 1}µ×
{0, 1}µ → {0, 1} where eq(a, b) = 1 if a = b, otherwise eq(a, b) = 0.

If we are given the values a and b, then we can compute ẽq(a, b) in O(µ) time as ∏
µ
i=1(1−

ai − bi + 2aibi), where ai and bi are the i-th value of a and b respectively.

An important lemma that we will be using in constructing proofs for correct ML operations
is the following:

Lemma 1 ([[26] Lemma 3.2.1).] For any polynomial h : Fl → F extending V : {0, 1}l → F,
it holds:

Ṽ(X) = ∑
b∈{0,1}l

ẽq(X, b) · h(b)

17

4. Polynomial Commitment Scheme

Example 7. Given the function V : {0, 1}1 → F defined as:

V(0) = 2
V(1) = 3

, an extension of V

h(x1) = 2 + x2
1

h(0) = V(0) = 2
h(1) = V(1) = 3

and the MLE of a 1-variate equality predicate

ẽq(x2, x1) = 1− x1 − x2 + 2x1x2

it can be seen that:

Ṽ(X) = ∑
b∈{0,1}l

ẽq(X, b) · h(b)

2 + X = ẽq(X, 0)× h(0) + ẽq(X, 1)× h(1)
2 + X = (1− X) · 2 + X · 3
2 + X = 2 + X

4.2. Polynomial Encoding

In order to implement PolyCom, we have to represent polynomials with common program-
ming data structures like vectors. We encoded an l-variate polynomial as a 2l vector. Let’s
denote with i ∈ {0, ..., 2l − 1} the index of an element in the vector. The index i can be
written as an l-bit binary number. The bits represent the variables of the polynomial in the
way that the least significant bit represents the first variable, the second least significant bit
represents the second variable and so forth. The vector element at index i is the coefficient
that belongs to the polynomial term that contains the variables that are equal to 1 in the
binary representation of i.

Example 8. The polynomial p(x1, x2) = 2 + x1 + 2x2 − 5x1x2 is encoded as [2, 1, 2,−5]
since

index binary index variables coefficient

0 00 / 2
1 01 x1 1
2 10 x2 2
3 11 x2x1 −5

18

4.2. Polynomial Encoding

This encoding scheme allows us to easily perform operations with polynomials. We have
created the Polynomial Evaluation Algorithm for evaluating a polynomial encoded in the
vector V with an input represented in the vector T of length l where the first element in
T is the value of the highest-index variable. The intuition behind the algorithm is that the
highest-index variable is contained in the terms whose coefficients are stored in the last half
of the vector, therefore we can multiply those elements with the value of tl . If we split the
vector into two parts then for each part the same holds for the variable tl−1. We can repeat
this procedure until we cannot split the vector any more.

Algorithm 1 Polynomial Evaluation Algorithm

procedure Eval(V, T)
n = ⌈log2 len(V)⌉ ▷ Number of variables of the polynomial
if len(T) ̸= n then ▷ We need a value for every variable

return error
end if
M = EvalMonomials(V, T)
return sum of elements of vector M

end procedure

procedure EvalMonomials(V, T)
if len(V) = 1 then

return V
end if
t = T[0] ▷ Variable with the highest index
remove T[0] from T
n = ⌈log2 len(V)⌉ ▷ Number of variables of the polynomial
m = 2n ▷ Maximum number of terms of the polynomial
V[m/2 :] = V[m/2 :] · t ▷ Multiply the last half of the vector with t
L = V[0 : m/2]
R = V[m/2 :]
outL = Eval(L,T)
outR = Eval(R,T)
return concat(outL, outR)

end procedure

Example 9. In Figure 4.1 we can see an example execution of the polynomial evaluation
algorithm for the polynomial p(x1, x2) = 2 + x1 + 2x2 − 5x1x2 on T = (t2 = 3, t1 = 2).
At the end we have to sum the values 2 + 2 + 6− 30 = −20.

19

4. Polynomial Commitment Scheme

Figure 4.1.: Example execution of the polynomial evaluation algorithm

20

4.3. PolyCom

4.3. PolyCom

PolyCom is a commitment scheme Com (see Section 4.1.1), that has the additional properties
of:

1. Linear Homomorphism: It is required that there exist an algorithm
Eval(ck, c1, ..., cn, x1, ..., xn)→ cl that on an input of n valid commitments where
Commit(ck, ui) → (ci, oi) and n coefficients x1, ...xn ∈ Zq outputs a new commitment
cl such that VerCommit(ck, cl , ∑n

1 xiui, ol) → 1, where ol is calculated as a function of
the openings (o1, ..., on) and coefficients (x1, ..., xn).

2. Extractability: The commitment scheme should be extractable which means that it
should not be possible to output a valid commitment without knowing a correspond-
ing pre-image.

3. There should be a Zero-knowledge argument for commitment-pre-image equality
ZKeq(u, o1, o2, c1, c2) → b ∈ {0, 1} for proving that two commitments produced with
Com have the same pre-image u.

4. There should be a Zero-knowledge argument for product of pre-images
ZKprod(u1, u2, , o1, o2, o3, c1, c2, c3) → b ∈ {0, 1} for proving that the pre-image of c3 is
the product of pre-images of c1 and c2.

5. It should be possible to commit polynomials.

In the following subsections we will show how we can implement PolyCom by adapting the
Pedersen commitment scheme (see Section 4.1.2).

4.3.1. Linear Homomorphism

The algorithm Eval(ck, c1, ..., cn, x1, ..., xn)→ cl can be implemented by calculating cl as:

cl =
n

∑
1

cxi
i = (gui hoi)xi = g∑n

i=1 uixi h∑n
i=1 oixi

Futhermore we will create another algorithm EvalOpening(ck, o1, ..., on, x1, ..., xn)→ ol with
which the opening for cl can be computed as:

ol =
n

∑
1

oixi

We can see that VerCommit(ck, cl , ∑n
1 xiui, ol)→ 1.

4.3.2. Extractability

The Pedersen commitment scheme is not extractable since an adversary can create a valid
Pedersen commitment without knowing the pre-image of the commitment by simply gener-
ating a random element c ∈R G and sending c as a commitment.

We will modify the Pedersen Commitment Scheme in the following way:

21

4. Polynomial Commitment Scheme

1. In the setup algorithm, we will run a bilinear group generator BG(1λ) → bp =
(q, G, GT , e, g) and add bp to the commitment parameters ck. Moreover, a secret value
β ∈R Zq will be generated and the values gβ and hβ will be added to ck. It is important
that β stays secret.

2. In the commitment algorithm, in addition to generating the value c(1) = guho, the value
c(2) = gβuhβo = (guho)β will be generated and the output will be (c = (c(1), c(2)), o).

3. A new algorithm Check(ck, c) → b ∈ {0, 1} will be introduced with which anyone
could check if the committer knows the pre-image of the commitment. The algorithm
returns 1 if e(c(1), gβ) = e(c(2), g) else returns 0. It should be noted, that if an adversary
created a commitment by randomly choosing c(1) ∈R G, it is not possible to generate
c(2) = c(1)β since the value β cannot be extracted from the commitment key because
the discrete log problem is hard in G.

4.3.3. ZKeq

In Figure 4.2 we presented a non-interactive zero-knowledge argument for Pedersen com-
mitment pre-image equality. The protocol is based on the sigma protocol presented in [25].
We have used the Fiat-Shamir heuristic to convert the interactive sigma protocol into a
ZK-NARK.

The original Σ protocol satisfies the notions of completeness, special soundness and special
honest verifier zero knowledge as can be seen in Appendix B. If H is a ’random oracle’, ZKeq
is sound and the the special honest verifier zero-knowledge property of the original sigma
protocol transforms into full zero-knowledge [25].

We have created a variation of ZKeq called ZKeq’. ZKeq’ is a protocol which can be used to
prove that two commitments with different bases g1 and g2 have the same pre-image. The
only difference is that we are using these bases instead of g. The protocol can be seen in
Figure 4.3. This protocol is useful because g2 = gd

1 , for some d ∈ Zq, which means that if the
pre-image of c1 is gu

1 , then the pre-image of c2 is gu
2 = gdu

1 . Moreover, if we set g2 = c1, then
c2 = cu

1 = gu2
. We can use this protocol to show that the pre-image of c2 is a square of the

pre-image of c1.

22

4.3. PolyCom

x = (c1 = guho1 , c2 = guho2)

Prover Verifier
w = (o1, o2, u)

o3, o4, o5 ∈R Zq
a = go3 ho4

b = go3 ho5

c = H(c1, c2, a, b)
z1 = c · u + o3
z2 = c · o1 + o4
z3 = c · o2 + o5

(a,b,z1,z2,z3)−−−−−−−→

c = H(c1, c2, a, b)
Accept if and only if:
a, b ∈ G

z1, z2, z3 ∈ Zq
a · cc

1 =? gz1 hz2

b · cc
2 =? gz1 hz3

Figure 4.2.: ZKeq

x = (g1, g2, c1 = g1
uho1 , c2 = g2

uho2)

Prover Verifier
w = (o1, o2, u)

o3, o4, o5 ∈R Zq
a = g1

o3 ho4

b = g2
o3 ho5

c = H(c1, c2, a, b)
z1 = c · u + o3
z2 = c · o1 + o4
z3 = c · o2 + o5

(a,b,z1,z2,z3)−−−−−−−→

c = H(c1, c2, a, b)
Accept if and only if:
a, b ∈ G

z1, z2, z3 ∈ Zq
a · cc

1 =? g1
z1 hz2

b · cc
2 =? g2

z1 hz3

Figure 4.3.: ZKeq’

23

4. Polynomial Commitment Scheme

4.3.4. ZKprod

In Figure 4.4 we presented a non-interactive zero-knowledge argument for product of Ped-
ersen commitment-pre-images. The protocol is based on the sigma protocol presented in
[25]. We have used the Fiat-Shamir heuristic to convert the interactive sigma protocol into a
ZK-NARK.

x = (c1 = gu1 ho1 , c2 = gu2 ho2 , c3 = gu1u2 hu3)

Prover Verifier
w = (u1, u2, o1, o2, o3)

d, e, o4, o5, o6 ∈R Zq
cd = gdho4

ce = geho5

c′d = cd
2ho6 = gdu2 hdo2+o6

c = H(c1, c2, c3, cd, ce, c′d)
f1 = u1 · c + d
f2 = u2 · c + e
z1 = o1 · c + o4
z2 = o2 · c + o5
z3 = c · o3 − c · u1 · o2 + o6

(cd ,ce ,c′d , f1, f2,z1,z2,z3)−−−−−−−−−−−−→

c = H(c1, c2, c3, cd, ce, c′d)
Accept if and only if:
cd, ce, cd ∈ G

f1, f2, z1, z2, z3 ∈ Zq
g f1 hz1 = cc

1 · cd
g f2 hz2 = cc

2 · ce

c f1
2 hz3 = cc

3 · c′d

Figure 4.4.: ZKprod

The Σ protocol satisfies the notions of completeness, special soundness and special honest
verifier zero knowledge as can be seen in Appendix C. If H is a ’random oracle’, ZKprod
is sound and the the special honest verifier zero-knowledge property of the original sigma
protocol transforms into full zero-knowledge [25].

4.3.5. Polynomial Commitment

Now we will show how a user can commit to a polynomial. The main idea is that a TTP
will chose values for the variables of the polynomial, the user evaluates the polynomial with
those values without learning what those values are and what the result of the evaluation is
and commits that evaluation.

24

4.3. PolyCom

There will be an additional input, a positive integer l, in the Setup algorithm, which will be
used to generate the proving key P. To generate P, the TTP first generates l secret values
xj ∈R Zq for all j ∈ {1, .., l} and a secret value α ∈R Zq. Mark with W the power set (the set
of all subsets) of {xj}j∈{1,...,l}. W has 2l elements. Every subset can be uniquely identified
with the index i ∈ {0, .., 2l − 1}in the same way as described in Section 4.2. Denote with
wi ∈W the element of W identified by i. For every i ∈ {0, .., 2l − 1} compute:

P(1)
i = g∏x∈wi

x

P(2)
i = gα ∏x∈wi

x

Add the proving key P = {P(1)
i , P(2)

i }i∈{1,..,l} and hα to the commitment key ck.

To commit a polynomial, generate an opening o ∈R Zq and exponentiate every proving key
Pi with the according coefficient vi of the polynomial.

c(1) = (
2l−1

∏
i=0

P(1)vi
i)ho

c(2) = (
2l−1

∏
i=0

P(2)vi
i)hαo = c(1)α

To verify a polynomial commitment, the user reveals the polynomial and the opening o, and
the verifier can see if they have been used to create the commitment c.

Example 10. Now we will show how to commit a polynomial p(x2, x1) = 2+ x1 + 2x2−
5x1x2 if the secret values are x1 = 2 and x2 = 3.

c(1) = (P(1)
0)2 · (P(1)

1)1 · (P(1)
2)2 · (P(1)

3)−5 · ho

= (g)2 · (g2)1 · (g3)2 · (g6)−5 · ho

= g2+2+6−30ho

= g−20ho

c(2) = (P(2)
0)2 · (P(2)

1)1 · (P(2)
2)2 · (P(2)

3)−5 · ho

= (gα)2(gα2)1(gα3)2(gα6)−5hαo

= gα2+α2+α6−α30hαo

= (g−20ho)α

It can be seen that we committed p(3, 2) = −20.

4.3.6. Overview of PolyCom

PolyCom is a tuple of algorithms (Setup,Commit,VerCommit,Eval,EvalOpening,Check). The
definition of these algorithms can be seen in Figure 4.5. For security proofs of PolyCom we
refer the reader to [15] and [23].

25

4. Polynomial Commitment Scheme

Setup(1λ, l) Commit(ck, u, type)

1. BG(1λ)→ bp = (q, G, GT , e, g) o ∈R Zq

2. Generate h such that no one knows dloggh If type = v:

3. Chose α, β, x1, ..., xl ∈R Zq • c(1) = guho

4. Compute P = {P(1)
0 , ..., P(1)

2l−1
, P(2)

0 , ..., P(2)
2l−1
} • c(2) = gαuhαo

• P(1)
i = g∏x∈wi

x Else if type = p:

• P(2)
i = gα ∏x∈wi

x • c(1) = (∏2l−1
i=0 P(1)vi

i)ho

output: ck = (bp, h, P, hα, gβ, hβ) • c(2) = (
2l−1
∏
i=0

P(2)vi
i)hαo

output: (c = (c(1), c(2)), o)

Eval(ck, c1, ..., cn, x1, ..., xn) VerCommit(ck, c, u, o, type)

c(1)l = ∑n
1 c(1)xi

i If type = v:

c(2)l = ∑n
1 c(2)xi

i output 1 if:

output: (cl = (c(1)l , c(2)l)) c(1) = guho

else output 0

If type = p:

output 1 if:

c(1) = (∏2l−1
i=0 P(1)vi

i)ho

else output 0

EvalOpening(ck, o1, ..., on, x1, ..., xn) Check(ck, c, type)

ol =
n
∑
1

oixi If type = v:

output: (ol) output 1 if:

e(c(1), gβ) = e(c(2), g)

else output 0

If type = p:

output 1 if:

e(c(1), gα) = e(c(2), g)

else output 0

Figure 4.5.: PolyCom

26

4.4. Converting a Vector into a Polynomial

4.4. Converting a Vector into a Polynomial

When performing ML inference, the computation is done using vectors and matrices, how-
ever PolyCom only allows for commitment of polynomials. In this section we will explain
how we can transform vectors and matrices into polynomials to be able to commit them.

Viewing a vector as a function

If a vector has size n, then we can set l = ⌈log2 n⌉. We can think about a vector as a function
that on an input of an l-bitstring {0, 1}l returns the element on the position {0, 1}l if we
interpret the input as a binary number. If the element does not exist then the function
returns 0.

Example 11. Given a vector x =

2
3
4

, of size n = 3 the value of l can be computed as

l = ⌈log2 3⌉ = 2 and we can view the vector as a function V : {0, 1}2 → F that is defined
as :

V(00) = 2
V(01) = 3
V(10) = 4
V(11) = 0

Viewing a matrix as a function

If a matrix has size n× m, then we can set ln = ⌈log2 n⌉ and lm = ⌈log2 m⌉. We can think
about a matrix as a function that on an input of an (ln + lm)-bitstring {0, 1}(ln+lm) returns
the element in the row ln and the column lm if we interpret ln and lm as binary numbers. If
the element does not exist then the function returns 0.

Example 12. Given a matrix x =

[
2 5 4
3 6 7

]
, of size 2× 3 the value of ln can be computed

as ln = ⌈log2 2⌉ = 1, the value of lm can be computed as lm = ⌈log2 3⌉ = 2 and we can
view the matrix as a function V : {0, 1}3 → F that is defined as :

V(000) = 2 V(100) = 3
V(001) = 5 V(101) = 6
V(010) = 4 V(110) = 7
V(011) = 0 V(111) = 0

27

4. Polynomial Commitment Scheme

Converting a function into a polynomial

We view vectors and matrices as functions V : {0, 1}µ → F. We know that every such
function has a unique MLE polynomial. Therefore, to commit a vector or matrix, we first
calculate its MLE and then commit the MLE.

We have created the MLE Algorithm that given a function encoded in V outputs an MLE.

Algorithm 2 MLE Algorithm

procedure MLE(V)
if len(V) = 1 then

return V
end if
n = ⌈log2 len(V)⌉ ▷ Number of variables of the polynomial
m = 2n ▷ Maximum number of terms of the polynomial
L = V[0 : m/2]
R = V[m/2 :]
outL = MLE(L)
outR = MLE(R)
outR = outR− outL
return concat(outL, outR)

end procedure

Example 13. An example execution of the MLE algorithm for generating the MLE of the
function V defined in the example 11 is shown in the Figure 4.6

28

4.4. Converting a Vector into a Polynomial

Figure 4.6.: The MLE algorithm

29

5. Proving correct ML inference
computation

In this chapter we will show how a service provider can generate a proof of correct ML in-
ference. To create these proofs we have used the LegoSNARK framework. In Section 5.1 we
give an overview of LegoSNARK, in Section 5.2 we show a table which contains all verifi-
able computation schemes that we have used. In Section 5.3 we present the two fundamental
schemes from LegoSNARK that are at the core of all other schemes we have used. In Sec-
tion 5.4 we present the verifiable computation schemes for operations defined in Section 3.1.
In Section 5.5 we show our ML inference verifiable computation schemes. In Section 5.6 we
discuss the complexity of our schemes and in Section 5.7 we discuss our implementation
and experimental evaluation.

5.1. LegoSNARK

Definition 5.1.1 (ZK-SNARK). A ZK-SNARK is a ZK-NARK(see Definition 4.1.4) that has an
additional property that the running time of VerProof is poly(λ)(λ + |x|+ log |w|) and the
proof size is poly(λ)(λ + log |w|). This property is called succinctness.

Informally, ZK-SNARKs are special ZK-NARKs that have short and efficiently verifiable proofs.
ZK-SNARKs support general computations in the class NP, however, according to Campan-
elli et al in [15], this generality comes at the expense of performance. They further note
that to achieve generality, ZK-SNARKs assume one single unifying representation of the pro-
gram. However, a program tends to consists of different sub computations that are of dif-
ferent nature. Therefore, general ZK-SNARKs miss the opportunity to optimize these dif-
ferent sub computations. The framework that they have built in [15], called LegoSNARK
allows its users to build a ZK-SNARK for a general computation by linking smaller, special-
ized ZK-SNARKs called gadgets. Gadgets are basic building blocks that can be composed
and reused. To make this approach possible, LegoSNARK is based on the Commit-and-
Prove (CP) methodology.

Definition 5.1.2 (CP-SNARK). A Commit-and-Prove Zero-Knowledge Succinct Non-Interactive
Argument of Knowledge (CP-SNARK) is a ZK-SNARK that allows users to prove statements
about committed values. Then the witness domain can be split in two subdomains Dw =
Du ×Dω that is w = (u, ω) where u is the committed portion of the witness and ω is the
non-committed portion. Note that not every commitment-based relation has the uncommit-
ted witness portion. A CP-SNARK is a ZK-SNARK that can prove a knowledge of (x, u, ω) such
that R(x, u, ω) = 1 and u opens a commitment cu. Moreover, the committed witness domain
can be split in l subdomains called commitment slots, we write Du = D1 × ...× Dl . Then
a prover proves knowledge of (x, u1, ..., ul , ω) such that R(x, u1, ..., ul , ω) = 1 and u1, ..., ul

31

5. Proving correct ML inference computation

opens the commitments c1, ..., cl respectively. More formally, given a family of relations
{Rλ}λ∈N and a commitment scheme Com whose input space D is such that Di ⊂ D for
every i ∈ {1, ..., l}, a CP-SNARK is a ZK-SNARK for a family of relations {RCom

λ }λ∈N such that:

• Every R ∈ RCom is a pair (ck, R) where ck← Setup(1λ) and R ∈ Rλ

• R is over pairs (X, W) where

– X := (x, (cj)j∈[l]) ∈ Dx × C l . That is X consists of a public statement and l
commitments.

– W := ((uj)j∈[l], (oj)j∈[l], ω) ∈ D1 × ...×Dl ×Ol ×Dω That is W consists of inputs
and openings of the l commitments and of an uncommitted witness ω.

• R holds if ∧j∈[l]VerCommit(ck, cj, uj, oj) ∧ R(x, (uj)j∈[l], ω)

Definition 5.1.3 (Conjunctions of CP-SNARKs). Let {R(0)
λ }λ∈N and {R(1)

λ }λ∈N be two

families of relations such that for every λ ∈ N the domain of the relation R0 ∈ {R
(0)
λ }λ∈N

can be split into D(0)
u = D0 × D2 and the domain of the relation R1 ∈ {R

(1)
λ }λ∈N can be

split into D(1)
u = D1 × D2 That is the two relations share a commitment slot u2 called the

shared slot. {R∧λ}λ∈N is defined as a family of relations where for every λ ∈ N, R∧λ =

{R∧R0,R1
: R0 ∈ R

(0)
λ , R1 ∈ R

(1)
λ } and the relation R∧R0,R1

(x0, x1, u0, u1, u2, (w0, w1)) = 1 if
R0(x0, u0, u2, w0) = 1 ∧ R1(x1, u1, u2, w1) = 1. Let Com be a commitment scheme and let
CPb for b ∈ {0, 1} be a CP-SNARK for Com and {R(b)

λ }λ∈N. We can build a CP-SNARK CP∧

for Com and {R∧λ}λ∈N, since it is enough to use CPb to prove and verify the two statements
(xb, ub, u2, wb)b∈{0,1} using the same commitment to u2. This approach can be applied several
times to build a CP-SNARK for composition of several relations. For the proof and and full
description we refer the reader to the original paper [15].

5.2. Overview of CP-SNARKs

We have built CP-SNARKs for proving the correct inference of a linear ML model, a linear-
kernel SVM model and a polynomial-kernel SVM model by composing CP-SNARKs for matrix
multiplication, extended hadamard product, matrix exponentiation, column summation and
scalar addition. These CP-SNARKs are built by composing two fundamental CP-SNARK for
polynomial evaluation and sumcheck. An overview of all of these CP-SNARKs can be seen in
Table 5.1. The CP-SNARKs marked with red color have been constructed by us and the others
are part of the LegoSNARK framework [15]. In Section 5.3 we will present the fundamental
CP-SNARKs, in Section 5.4 we will present the CP-SNARKs for the ML operations and finally,
in Section 5.5 we will present the CP-SNARKs for ML inference.

32

5.2. Overview of CP-SNARKs

CP-SNARK R X W

Fundamental CP-SNARKs

CP-Poly Rpoly(t, f , y) = 1 ⇐⇒ f (t) = 1 (t, c f , cy) (f , y, o f , oy)

CP-
Sumcheck

Rsc(f , y) = 1 ⇐⇒
∑b1∈{0,1} ... ∑bl∈{0,1} f (b1, ..., bl) = y (c f , cy) (f , y, o f , oy)

CP-SNARKs for ML operations

CP-MM Rmm(A, B, C) = 1 ⇐⇒
mm(A, B) = C (cA, cB, cC)

(A, B, C, oA, oB,
oC)

CP-EHad Rehad(A, B, C) = 1 ⇐⇒
ehad(A, B) = C (cA, cB, cC)

(A, B, C, oA, oB,
oC)

CP-Expo Rexpo(d, A, B) = 1 ⇐⇒
expo(A, d) = B (d, cA, cB) (A, B, oA, oB)

CP-
ColumnSum Rcs(A, B) = 1 ⇐⇒ cs(A) = B (cA, cB) (A, B, oA, oB)

CP-
ScalarAdd Rsa(A, B, C) = 1 ⇐⇒ sa(A, C) = B (cA, cB, cC)

(A, B, C, oA, oB,
oC)

CP-SNARKs for ML inference

CP-Linear Rlinear(W, B, Z, O) = 1 ⇐⇒
flinear(W, B, Z) = O cW , cB, cZ, cO

(W, B, Z, O, oW ,
oB, oZ, oO)

CP-
SVMLinear

RSVMLinear(X, Y, B, Z, O) = 1 ⇐⇒
fSVMLinear(X, Y, B, Z) = O

(cX , cY, cB, cZ,
cO)

(X, Y, B, Z, O,
oX ,oY, oB, oZ,

oO)

CP-
SVMPoly

RSVMPoly(d, X, Y, B, C, Z, O) =
1 ⇐⇒ fSVMPoly(d, X, Y, B, C, Z) =

O

(d,cC, cX , cY, cB,
cZ, cO)

(C, X, Y, B, Z,
O, oC, oX ,oY, oB,

oZ, oO)

Table 5.1.: Overview of CP-SNARKs

33

5. Proving correct ML inference computation

5.3. Fundamental CP-SNARKs

5.3.1. CP-Poly

CP-Poly is a fundamental CP-SNARK presented in the LegoSNARK framework and is a build-
ing block of many other CP-SNARKs. Suppose that a prover has an l-variate polynomial
f (x1, ..., xl) and evaluates that polynomial on some public input (t1, ..., tl) and obtains the
value y = f (t1, ..., tl). He then commits the polynomial PolyCom.Commit(ck, f , p)→ (c f , o f)
and the evaluation
PolyCom.Commit(ck, y, v) → (cy, oy) using the previously described commitment scheme
PolyCom. CP-Poly allows a prover to convince a verifier, given only the polynomial com-
mitment c f , the evaluation commitment cy and the public input (t1, ..., tl) that the pre-image
of cy is the evaluation of the polynomial which is a pre-image of c f on the public input
(t1, ..., tl). The protocol relies on the polynomial decomposition theorem.

Lemma 2 (Polynomial Decomposition). Let f : Fl → F be a polynomial. For all t ∈ Fl there
exist efficiently computable polynomials q1, ..., ql such that: f (x)− f (t) = ∑l

i=1(xi − ti)qi(x)
where ti is the i-th element of t.

The prover computes and commits the polynomials qi using the proving key P from the
commitment scheme and sends the commitments to the verifier as proof. The proving algo-
rithm can be seen in Figure 5.1 and the verification algorithm in Figure 5.2.

Public statement: (t, c f , cy)
Prover
Witness: (f , y, o f , oy)

1. Compute qi(x), ∀i ∈ {1, ..., l} such that:

• f (x)− f (t) = ∑l
i=1(xi − ti)qi(x)

2. PolyCom.Commit(ck, qi, p) = (cqi , oqi), ∀i ∈ {1, ..., l}

3. Compute cqo = (q(0)0 , q(1)0)

• compute q(1)0 = g
o f −oy

∏l
i=1(P(1)

2i−1 g−ti)
oqi

= go f−oy−∑l
i=1(xi−ti)oqi

• compute q(2)0 = (gα)
o f −oy

∏l
i=1(P(2)

2i−1 g−αti)
oqi

= gα(o f−oy−∑l
i=1(xi−ti)oqi)

output: π = (cq0 , ..., cql)

Figure 5.1.: Prover algorithm for CP-Poly

34

5.3. Fundamental CP-SNARKs

Public statement: (t, c f , cy)
Verifier
Input: π = (q0, cq1 , ..., cql)

1. Compute A = e(g,
c f
cy
)

• Note that A = e(g, g) f (x)−y+x(o f−oy)

2. Compute B = ∏
i=1

e(P(1)
2i−1 g−ti , cqi)

• Note that B = e(g, g)∑l
i=1(xi−ti)qi(x)+x(∑l

i=1(xi−ti)oqi)

3. Compute C = e(q0, h)

• Note that C = e(g, g)x(o f−oy)−x(∑l
i=1(xi−ti)oqi)

Output 1 if and only if:

• A = B · C
• PolyCom.Check(ck, c f , p) = 1

• PolyCom.Check(ck, cy, v) = 1

• ∀i ∈ {0, ..., l}, PolyCom.Check(ck, cqi , p) = 1

, otherwise output 0.

Figure 5.2.: Verifier algorithm for CP-Poly

Implementation

We have created the Polynomial Decomposition Algorithm to decompose the polynomial.
The main idea is that we first divide the l-variate polynomial with (xl − tl). The quotient
of the division is the polynomial ql and then we divide the l − 1-variate remainder with
(xl−1 − tl−1) to obtain ql−1. We continue until we obtain the polynomial q1.

Example 14. An example execution of the Decomposition algorithm for generating the
polynomials qi of the function f (x1, x2) = 2 + x1 + 2x2 − 5x1x2 for the public input
(t1 = 2, t2 = 3) is shown in Figure 5.3. It can be seen that the verification will hold.

f (x1, x2)− f (t1, t2) =
l

∑
i=1

(xi − ti)qi(x)

22 + x1 + 2x2 − 5x1x2 = −14(x1 − 2) + (x2 − 3)(2− 5x1)

22 + x1 + 2x2 − 5x1x2 = −14x1 + 28 + 2x2 − 5x1x2 − 6 + 15x1

22 + x1 + 2x2 − 5x1x2 = 22 + x1 + 2x2 − 5x1x2

35

5. Proving correct ML inference computation

Algorithm 3 Polynomial Decomposition Algorithm

procedure DecomposePoly(V, T, y)
out = [] ▷ The polynomials qi
V[0] = V[0]− y ▷ subtract the evaluation from the polynomial
while len(V) > 1 do

t = T[0] ▷ Variable with the highest index
remove T[0] from T
(Q, R) = Divide(V,t)
V = R
append Q to out

end while
return out

end procedure

procedure Divide(V, t)
n = ⌈log2 len(V)⌉ ▷ Number of variables of the polynomial
m = 2n ▷ Maximum number of terms of the polynomial
L = V[0 : m/2] ▷ Terms that do not contain the last variable
R = V[m/2 :] ▷ Terms that contain the last variable
Q = R ▷ Quotient
R = L + R · t ▷ Remainder
return (Q, R)

end procedure

Figure 5.3.: Example Execution of the Polynomial Decomposition Algorithm

36

5.3. Fundamental CP-SNARKs

5.3.2. CP-Sumcheck

CP-Sumcheck is another fundamental CP-SNARK presented in the LegoSNARK framework
and is a building block of many other CP-SNARKs. We will first define what a sumcheck is:

Definition 5.3.1 (Sumcheck). Given an l-variate polynomial f (x1, ..., xl), the value
y = ∑b1∈{0,1} ... ∑bl∈{0,1} f (b1, ..., bl) is called the sumcheck.

Suppose that a prover has a l-variate polynomial f (x1, ..., xl) and obtains the sumcheck value
y. Note that if the polynomial f (x1, ..., xl) is an MLE of a vector, then y is the sum of elements
of the vector. He then commits the polynomial PolyCom.Commit(ck, f , p) → (c f , o f) and
the sumcheck PolyCom.Commit(ck, y, v)→ (cy, oy) using the previously described commit-
ment scheme PolyCom. CP-Sumcheck allows a prover to convince a verifier, given only the
polynomial commitment c f and the sumcheck commitment cy that the pre-image of cy is the
sumcheck of the polynomial which is a pre-image of c f . The prover algorithm can be seen
in Figure 5.4 and the verifier algorithm can be seen in Figure 5.5.

When using CP-Sumcheck, there can be a need to prove some additional properties of the
function f (x1, ..., xl). Therefore we have created CP-Sumcheck’. The proving algorithm
is the same as in CP-Sumcheck, the only difference is that in CP-Sumcheck’, there is no
computation of πpoly and the proof consists only of πsc. Additionally, the prover has to
memorize the values of (cl , ol , r) to use them in the proving of additional properties of
f (x1, .., xl). The verification algorithm is the same as in CP-Sumcheck, we only do not
perform the last step since we do not have πpoly. The verifier also has to memorise (cl , r) to
use in further verifications. The public statement of CP-Sumcheck’ consists only of cy.

37

5. Proving correct ML inference computation

Public statement: (c f , cy)
Prover
Witness: (f , y, o f , oy)

Set:
c0 = cy
o0 = oy
r = {}

For every round i ∈ {1, .., l}:
1. gi(x) = ∑bi+1,...,bl∈{0,1} f (r1, ..., rl−1, x, bi+1, ..., bl)

• Note that gi(0) + gi(1) = input of ci−1

• Define m as the number of coefficients of gi(x)

• ∀j ∈ {0, ..., m− 1} define aj as the j-th coefficient of gi(x)

2. ∀j ∈ {0, ..., m− 1}, (caj , oaj)← Com(ck, aj)

• Note that gi(0) + gi(1) = input of ca0 ∏m−1
j=0 caj

• Define Ki = {caj}j∈{0,...,m−1}

3. ZKeq.Prove(u, o1, o2, c1, c2)→ πi where:

•c1 = ci−1

•o1 = oi−1

•c2 = ca0 ∏m−1
j=0 caj

•o2 = ∑m−1
j=0 oaj

•u = gi(0) + gi(1)

4. ri = H(Ki)

• Append ri to r

5. ci = Eval(ck, ca0 , ..., cam , 1, ri, ..., rm
i)

• Note that gi(ri) = input of ci

6. oi =
m−1
∑
0

oaj r
j
i

πpoly = CP-Poly.Prove(x = (r, c f , cl), w = (f , o f , f (r), ol))

• f (r) = input of cl

πsc = (K1, ..., Kl , π1, ..., πl)

output π = (πpoly, πsc)

Figure 5.4.: Prover algorithm for CP-Sumcheck

38

5.4. CP-SNARKs for ML Operations

Public statement: (c f , cy)
Verifier
input π = (πpoly, πsc)

Set:
c0 = cy
r = {}

For every round i ∈ {1, .., l}:
1. ZKeq.Verify(ci−1, ca0 ∏m−1

j=0 caj , πi)

•caj ∈ Ki

2. ri = H(Ki)

• Append ri to r

3. ci = Eval(ck, ca0 , ..., cam , 1, ri, ..., rm
i)

CP-Poly.Verify(πpoly, x = (r, c f , cl))

output 1 if all verifications succeed, else 0

Figure 5.5.: Verifier algorithm for CP-Sumcheck

5.4. CP-SNARKs for ML Operations

5.4.1. CP-MM

Given three commitments cA, cB and cC, CP-MM is a CP-SNARK that a prover can use to
prove that he knows how to open the given commitments and that the pre-image of cC is a
matrix multiplication of the pre-images of cA and cB.

More formally, a CP-MM is a CP-SNARK for relation R = (ck, Rmm) on pairs (X, W), where
X = (cA, cB, cC), W = (A, B, C, oA, oB, oC) and Rmm(A, B, C) = 1 ⇐⇒ mm(A, B) = C. The
protocol is presented in [15] and we will provide its explanation. The definition of matrix
multiplication is given in Definition 3.1.1.

The intuition behind the proof is the following observation: if Ã is an MLE of an m× n matrix
A, B̃ an MLE of a n× k matrix B, C̃ an MLE of mm(A, B) and µ = ⌈log2 n⌉ then the following
holds ∀R ∈ F⌈log2 m⌉ ∧ ∀C ∈ F⌈log2 k⌉:

C̃(R, C) = ∑
b∈{0,1}µ

Ã(R, b)× B̃(b, C)

We will show this observation in an example.

39

5. Proving correct ML inference computation

Example 15. Given

A
[

2 4
5 6

]
, B

[
3
3

]
and mm(A, B) = C

[
18
33

]
and their corresponding MLEs:

Ã(x2, x1) = 2 + 2x1 + 3x2 − x1x2

B̃(x2, x1) = 3− 3x1

C̃(x2, x1) = 18− 18x1 + 15x2 − 15x1x2

We can see that the following equation holds:

C̃(x2, x1) = ∑
b∈{0,1}µ

Ã(x2, b)× B̃(b, x1)

C̃(x2, x1) = Ã(x2, 0)× B̃(0, x1) + Ã(x2, 1)× B̃(1, x1)

C̃(x2, x1) = (2 + 3x2)× (3− 3x1) + (4 + 2x2)× (3− 3x1)

C̃(x2, x1) = 18− 18x1 + 15x2 − 15x1x2

To prove the correct matrix multiplication we can generate a public input by using a random
oracle H(cA, cB, cC) → I, J. We can evaluate the MLE of C on that input C̃(I, J) → c and
partially evaluate the MLEs of A and B: Ã(I, X)→ Ã′(X) and B̃(X, J)→ B′(X). Then we get
the following equation:

C̃(I, J) = ∑
b∈{0,1}µ

Ã(I, b)× B̃(b, J)

c = ∑
b∈{0,1}µ

Ã′(b)× B̃′(b)

We can see that c is a sumcheck (see Definition 5.3.1) of the function f (x) = Ã′(x)× B̃′(x).
We can use CP-Sumcheck’ since we want to prove that c is the sumcheck of f (x) and the
additional property of f (x) that it is a multiplication of Ã′(x) and B̃′(x).

For the CP-Sumcheck’ protocol we need a commitment of the sumcheck c. We first need to
create the commitment of that value cc and use CP-Poly to prove that the value committed
in cc is an evaluation of the polynomial committed in cC on the public input (I, J).

In the CP-Sumcheck protocol the commitment cl , from the round l, has the same pre-image
as f (r) where r is the random input generated in the protocol. In CP-MM, f (r) = Ã′(r)×
B̃′(r), therefore the pre-image of cl is equal to Ã′(r)× B̃′(r).

We can evaluate Ã′(r) = Ã(I, r) → a and B̃′(r) = B̃(r, J) → b, create commitments ca
and cb which are commitments of a and b respectively, and use CP-Poly to prove that the
pre-images of ca, cb are evaluations of polynomials which are pre-images of cA, cB on public
inputs (I, r) and (r, J) respectively.

Finally, we can use ZKprod to prove that the pre-image of cl is a product of pre-images of ca
and cb. The complete proving and verification algorithm can be seen in Appendix D.

40

5.4. CP-SNARKs for ML Operations

5.4.2. CP-EHad

Given three commitments cA, cB, cC, CP-EHad is a CP-SNARK that a prover can use to prove
that he knows how to open the given commitments and that the pre-image of cC is the
extended Hadamard product of the pre-images of cA and cB.

More formally, a CP-EHad is CP-SNARK for relation R = (ck, Rehad) on pairs (X, W), where
X = (cA, cB, cC), W = (A, B, C, rA, rB, rC) and Rehad(A, B, C) = 1 ⇐⇒ ehad(A, B) = C.
We created this protocol by modifying CPhad from [15], which is a CP-SNARK for Hadamard
Products. The definition of the extended hadamard product is given in Definition 3.1.2.

The intuition behind the proof is that if Ã is an MLE of an m× n matrix A, B̃ an MLE of a
vector B of length m, C = ehad(A, B), µ = ⌈log2 m⌉, ν = ⌈log2 n⌉, R ∈ Fµ and C ∈ Fν then
the function f (R, C) = Ã(R, C)× B̃(R) is an extension of C.

Example 16. Given:

A =

[
3 2
3 4

]
, B =

[
2 5

]
, C =

[
6 4

15 20

]
We can notice that:

Ã(x2, x1) = 3− x1 + 2x1x2

B̃(x2) = 2 + 3x2

f (x2, x1) = Ã(x2, x1)× B̃(x2)

f (0, 0) = 3× 2 = 6
f (0, 1) = 2× 2 = 4
f (1, 0) = 3× 5 = 15
f (1, 1) = 4× 5 = 20

Then according to Lemma 1, the following holds:

C̃(R, C) = ∑
br∈{0,1}µ

∑
bc∈{0,1}ν

eq(R, C, br, bc)× f (br, bc)

= ∑
br∈{0,1}µ

∑
bc∈{0,1}ν

eq(R, C, br, bc)× Ã(br, bc)× B̃(br)

To prove the correct extended hadamard product computation we can generate a public
input by using a random oracle H(cA, cB, cC) → I, J. We can evaluate the MLE of C on
that input C̃(I, J) → c and we can partially evaluate the µ + ν- variate equality predicate

41

5. Proving correct ML inference computation

eq(I, J, Xr, Xc)→ ẽq′(Xr, Xc). Then we get the following equation:

C̃(I, J) = ∑
br∈{0,1}µ

∑
bc∈{0,1}ν

eq(I, J, br, bc)× Ã(br, bc)× B̃(br)

c = ∑
br∈{0,1}µ

∑
bc∈{0,1}ν

ẽq′(br, bc)× Ã(br, bc)× B̃(br)

We can see that c is a sumcheck (see Definition 5.3.1) of the function f (xr, xc) = ẽq′(xr, xc)×
Ã(xr, xc) × B̃(xr). We can use CP-Sumcheck’ since we want to prove that c is the sum-
check of f (xr, xc) and the additional property of f (xr, xc) that it is a multiplication of
ẽq′(xr, xc), Ã(xr, xc) and B̃(xr).

For the CP-Sumcheck’ protocol we need a commitment of the sumcheck c. We first need to
create the commitment of that value cc and use CP-Poly to prove that the value committed
in cc is an evaluation of the polynomial committed in cC on the public input (I, J).

In the CP-Sumcheck protocol the commitment cl , from the round l, has the same pre-
image as f (rr, rc) where (rr, rc) is the random input generated in the protocol. In CP-
Ehad, f (rr, rc) = ẽq′(rr, rc) × Ã(rr, rc) × B̃(rr), therefore the pre-image of cl is equal to
ẽq′(rr, rc)× Ã(rr, rc)× B̃(rr).

We can evaluate Ã(rr, rc) → a and B̃(rr, rc) → b, create commitments ca and cb which are
commitments of a and b respectively, and use CP-Poly to prove that the pre-images of ca, cb
are evaluations of polynomials which are pre-images of cA, cB on the public input (rr, rc).
Furthermore we will evaluate ẽq′(rr, rc) = ẽq(I, J, rr, rc)→ e.

Finally, we can use ZKprod to prove that the pre-image of cl is a product of pre-images of
ca, cb and the value e. The complete proving and verification algorithm can be seen in
Appendix E.

5.4.3. CP-ColumnSum

Given two commitments cA, cB, CP-ColumnSum is a CP-SNARK that a prover can use to prove
that he knows how to open the given commitments and that the pre-image of cB is a column
summation of the matrix A which is a pre-image of cA.

More formally, a CP-ColumSum is CP-SNARK for relation R = (ck, Rcs) on pairs (X, W),
where X = (cA, cB), W = (A, B, oA, oB) and Rcs(A, B) = 1 ⇐⇒ cs(A) = B. The definition
of column summation is given in Definition 3.1.4

The intuition behind this proof is similar as in CP-MM. If Ã(R, C) is the MLE of a m × n
matrix A, B̃(C) is the MLE of cs(A) and µ = ⌈log2 m⌉, it can be seen that ∀C ∈ F⌈log2 n⌉:

B̃(C) = ∑
b∈{0,1}µ

Ã(b, C)

42

5.4. CP-SNARKs for ML Operations

Example 17. Given

A
[

2 4
5 6

]
and B

[
7 10

]
and their corresponding MLEs:

Ã(x2, x1) = 2 + 2x1 + 3x2 − x1x2

B̃(x1) = 7 + 3x1

We can see that the following equation holds:

B̃(x1) = ∑
b∈{0,1}µ

Ã(b, x1)

B̃(x1) = (2 + 2x1) + (5 + 1x1)

B̃(x1) = 7 + 3x1

To prove the correct column summation we can generate a public input by using a random
oracle H(cA, cB) → J. We can evaluate the MLE of B on that input B̃(J) → b and partially
evaluate the MLE of A Ã(X, J)→ Ã′(X) Then we get the following equation:

B̃(C) = ∑
b∈{0,1}µ

Ã(b, C)

b = ∑
b∈{0,1}µ

Ã′(b)

We can see that b is a sumcheck (see Definition 5.3.1) of the function f (x) = Ã′(x). We can
use the CP-Sumcheck protocol to prove this.

For the CP-Sumcheck protocol we need a commitment of the sumcheck b. We first need to
create the commitment of that value cb and use CP-Poly to prove that the value committed
in cb is an evaluation of the polynomial committed in cB on the public input J. The full
proving and verification algorithm can be seen Appendix H.

5.4.4. CP-Expo

Given two commitments cA, cB and an integer value d, CP-Expo is a CP-SNARK that a prover
can use to prove that he knows how to open the given commitments and that the pre-image
of cB is the matrix exponentiation of the matrix committed in cA and the exponent d.

More formally, a CP-Expo is CP-SNARK for relation R = (ck, Rexpo) on pairs (X, W), where
X = (d, cA, cB), W = (A, B, oA, oB) and Rexpo(A, B, d) = 1 ⇐⇒ expo(A, d) = B. The defini-
tion of matrix exponentiation is given in Definition 3.1.3

43

5. Proving correct ML inference computation

The basic idea behind the proof is similar to CP-EHad. If Ã is an MLE of a m× n matrix A, d
a positive integer, B = expo(A, d), µ = ⌈log2 m⌉, ν = ⌈log2 n⌉, R ∈ Fµ and C ∈ Fν then the
function f (R, C) = Ã(R, C)d is an extension of B.

Example 18. Given:

B =

[
9 4
9 16

]
, A =

[
3 2
3 4

]
, d = 2

We can notice that:

Ã(x2, x1) = 3− x1 + 2x1x2

f (x2, x1) = Ã(x2, x1)
2

f (0, 0) = 32 = 9

f (0, 1) = 22 = 4

f (1, 0) = 32 = 9

f (1, 1) = 42 = 16

Then according to Lemma 1, the following holds:

B̃(R, C) = ∑
br∈{0,1}µ

∑
bc∈{0,1}ν

ẽq(R, C, br, bc)× f (br, bc)

B̃(R, C) = ∑
br∈{0,1}µ

∑
bc∈{0,1}ν

ẽq(R, C, br, bc)× (Ã(br, bc))
d

To prove the correct matrix exponentation computation we can generate a public input by
using a random oracle H(cA, cB, cC) → I, J. We can evaluate the MLE of B on that input
B̃(I, J)→ b and we can partially evaluate the µ+ ν- variate equality predicate eq(I, J, Xr, Xc)→
ẽq′(Xr, Xc). Then we get the following equation:

B̃(I, J) = ∑
br∈{0,1}µ

∑
bc∈{0,1}ν

eq(I, J, br, bc)× Ã(br, bc)
d

b = ∑
br∈{0,1}µ

∑
bc∈{0,1}ν

ẽq′(br, bc)× Ã(br, bc)
d

We can see that b is a sumcheck (see Definition 5.3.1) of the function f (xr, xc) = ẽq′(xr, xc)×
Ã(xr, xc)d. We can use CP-Sumcheck’ since we want to prove that b is the sumcheck of
f (xr, xc) and the additional property of f (xr, xc) that it is a multiplication of ẽq′(xr, xc) and
the polynomial Ã(xr, xc) raised to the power of d.

For the CP-Sumcheck’ protocol we need a commitment of the sumcheck b. We first need to
create the commitment of that value cb and use CP-Poly to prove that the value committed
in cb is an evaluation of the polynomial committed in cB on the public input (I, J).

44

5.4. CP-SNARKs for ML Operations

In the CP-Sumcheck protocol the commitment cl , from the round l, has the same pre-
image as f (rr, rc) where (rr, rc) is the random input generated in the protocol. In CP-
Expo, f (rr, rc) = ẽq′(rr, rc)× Ã(rr, rc)d, therefore the pre-image of cl is equal to ẽq′(rr, rc)×
Ã(rr, rc)d.

We can evaluate Ã(rr, rc) → a create the commitment ca which is a commitment of a and
use CP-Poly to prove that the pre-image of ca is an evaluation of the polynomial which is a
pre-images of cA, on the public input (rr, rc).

We will also create commitments of (a2, ..., ad). For every i ∈ {2, .., d}, we can use ZKeq’ to
prove that ca and cai contain the same pre-image a when the base of ca is g and the base of
cai is ca(i−1) . This will allow us the following: Since we have proven that ca contains a, we
can prove that the pre-image of ca2 is also a if the base is ca2−1 = ca = ga which makes the
real pre-image of ca2 = (ga)a = ga2

. Then we prove that the pre-image of ca3 is also equal to
a if the base is ca2 . We have already proven that the pre-image of ca2 = ga2

which makes the
real pre-image of ca3 = (ga2

)a = ga3
.

Furthermore we will evaluate ẽq′(rr, rc) = ẽq(I, J, rr, rc)→ e.

Finally, we can use ZKeq to prove that the pre-image of cl is equal to the pre-image of cad

multiplied by the value e. The complete proving and verification algorithm can be seen in
Appendix F.

5.4.5. CP-ScalarAdd

Given three commitments cA, cB, cC, CP-ScalarAdd is a CP-SNARK that a prover can use to
prove that he knows how to open the given commitments and that every element of matrix
B, which is the pre-image of cB, is equal to the sum of the same element of matrix A, which
is the pre-image of cA, and the scalar C, which is the pre-image of comC.

More formally, a CP-ScalarAdd is CP-SNARK for relation R = (ck, Rsa) on pairs (X, W), where
X = (cA, cB, cc), W = (A, B, C, oA, oB, oC) and Rsa(A, B, C) = 1 ⇐⇒ sa(A, C) = B. The defi-
nition of scalar addition is given in Definition 3.1.5

The basic idea of the proof is that if Ã is an MLE of an m× n matrix A, C a scalar value and
B̃ an MLE of sc(A, C), then the following holds ∀X ∈ F⌈log2 m⌉+⌈log2 m⌉:

B̃(X) = Ã(X) + C

Example 19. Given

A =
[
3 4 2 6

]
, B =

[
6 7 5 9

]
and C = 3,

it can be seen that:

B̃(X) = Ã(X) + C
6 + x1 − x2 + 3x1x2 = 3 + x1 − x2 + 3x1x2 + 3

45

5. Proving correct ML inference computation

The proof is based on the following observation:

cB
cA

= gB(X)−A(X)hoB−oA = gChoB−oA

The prover can use ZKeq to prove that the commitment cB
cA

contains the same pre-image C as
cC, if the opening of cB

cA
is oB − oA. The full proving and verification algorithms can be seen

in Appendix H.

CP-ScalarAdd has a limitation that we will address in future work. The proof only works if
A is a matrix where the number of rows and columns are a power of 2.

Example 20. Given

A =
[
3 4 2

]
, B =

[
6 7 5

]
and C = 3,

it can be seen that:

Ã(x1, x2) = 3 + x1 − x2 − 3x1x2

B̃(x1, x2) = 6 + x1 − x2 − 6x1x2

Ã(x1, x2) + C ̸= B̃(x1, x2)

This is because the matrices actually look like:

A =
[
3 4 2 0

]
, B =

[
6 7 5 0

]
As it can be seen, the fourth element of B is not equal to the fourth element of A + C

5.5. CP-SNARKs for ML Inference

5.5.1. CP-Linear

Using the property of CP-SNARK composition (see 5.1.3) we have created CP-Linear. Given 4
commitments cW , cB, cZ and cO, CP-Linear is a CP-SNARK that a prover can use to prove that
he knows how to open the given commitments and that the pre-image of cO is a vector that
contains all predictions of the dataset committed in cZ evaluated with a linear model with
parameters W and B committed in cW and cB respectively.

More formally, CP-Linear is a CP-SNARK for relation R = (ck, Rlinear) on pairs (X, W), where
X = (cW , cB, cZ, cO), W = (W, B, Z, O, oW , oB, oZ, oO) and RLinear(W, B, Z, O) = 1 ⇐⇒
flinear(model = (W, B), Z) = O. The function flinear is formally defined in Definition 3.2.1.

The proving and verification algorithms can be seen in Appendix I.

46

5.6. Complexity Analysis

5.5.2. CP-SVMLinear

Using the property of CP-SNARK composition (see 5.1.3) we have created CP-SVMLinear.
Given 5 commitments cX , cY, cB, cZ and cO, CP-SVMLinear is a CP-SNARK that a prover can
use to prove that he knows how to open the given commitments and that the pre-image of
cO is a vector that contains all predictions of the dataset committed in cZ evaluated with a
linear-kernel SVM model with parameters X, Y and B committed in cX , cY, cB respectively.

More formally, CP-SVMLinear is a CP-SNARK for relation R = (ck, RsvmLinear) on pairs (X, W),
where X = (cX , cY, cB, cZ, cO), W = (X, Y, B, Z, O, oX , oY, oB, oZ, oO) and
RsvmLinear(X, Y, B, Z, O) = 1 ⇐⇒ fSVMLinear(model = (X, Y, B), Z) = O. The function
fSVMLinear is formally defined in Definition 3.3.1.

The proving and verification algorithms can be seen in Appendix J.

5.5.3. CP-SVMPoly

Using the property of CP-SNARK composition (see 5.1.3) we have created CP-SVMPoly. Given
6 commitments cX , cC, cY, cB, cZ, cO and a positive integer value d, CP-SVMPoly is a
CP-SNARK that a prover can use to prove that he knows how to open the given commitments
and that the pre-image of cO is a vector that contains all predictions of the dataset committed
in cZ evaluated with a polynomial-kernel SVM model with parameters X, C, Y, B committed
in cX , cC, cY, cB respectively and the kernel degree d.

More formally, a CP-SVMPoly is a CP-SNARK for relation R = (ck, RsvmPoly) on pairs (X, W),
where X = (d, cX , CC, cY, cB, cZ, cO), W = (X, C, Y, B, Z, O, oX , oY, oB, oZ, oO) and
RsvmPoly(d, X, C, Y, B, Z, O) = 1 ⇐⇒ fSVMPoly(model = (d, X, C, Y, B), Z) = O. The function
fSVMPoly is formally defined in Definition 3.3.2.

The proving and verification algorithms can be seen in Appendix K.

5.6. Complexity Analysis

The time and space complexity of our protocols are dependent on the complexities of the
building blocks: CP-Poly, CP-Sumcheck, ZKeq and ZKprod. These complexities are shown in
Table 5.2. The protocols ZKeq and ZKprod have constant space and time complexity.

The complexity of CP-Poly is dependent on the number of variables of the polynomial
whose correct evaluation we are proving. We denote this quantity with l. The proving time
is exponential in l and the verification is linear in l. To prove the correct computation we
decompose the polynomial into l polynomials. Each of these polynomials gets committed
and we also have to generate one additional commitment to make the verification possible.
A commitment consists of two elements of the group G, therefore the CP-Poly proof consists
of 2 · (l + 1) elements of G.

The complexity of CP-Sumcheck is dependent on the number of variables of the polyno-
mial whose correct sumcheck we are proving. We denote this quantity with l. It is also
dependent on the highest variable degree of that polynomial. We denote this quantity with
m. The proving time is exponential in l and the verification is linear in l. The sumcheck
protocol proceeds in l rounds. In every round we generate a univariate round polynomial

47

5. Proving correct ML inference computation

Proving time Verification time Proof Size Space

CP-Poly O(2l) O(l) 2 · (l + 1) G O(l)

CP-Sumcheck O(2l) O(l) l ZKEQ + l · (m + 1) G O(lm)

ZKeq O(1) O(1) 2 G and 3 Zq O(1)

ZKprod O(1) O(1) 3 G and 5 Zq O(1)

Table 5.2.: Complexity: CP-Poly, CP-Sumcheck, ZKeq, ZKprod, l is the number of variables in
the polynomial

CP-Poly l CP-Sumcheck l m ZKeq ZKprod Com

(1)

C̃ : Fr+c → F r+c

Ã′(b)× B̃′(b) b 2 1 3Ã : Fr+b → F r+b

B̃ : Fb+c → F b+c

(2)

C̃ : Fr+c → F r+c ẽq′(r, c)×
r+c 3 1 3Ã : Fr+c → F r+c Ã(r, c)×

B̃ : Fr → F r B̃(r)

(3)
B̃ : Fr+c → F r+c ẽq′(r, c)×

r+c d+1 d d+1
Ã : Fr+c → F r+c Ã(r, c)d

(4)
B̃ : Fc → F c

Ã′(r) r 1 1 2
Ã : Fr+c → F r+c

(5) 1

Table 5.3.: Complexity: (1)CP-MM, (2)CP-EHad, (3)CP-Expo, (4)CP-ColumnSum, (5)CP-
ScalarAdd

and we commit every coefficient of that polynomial. The number of coefficients depends
on the degree of the round polynomial m and is equal to m + 1. Note that the coefficient
commitments only consist of one element of G. Additionally, in every round we generate
one ZKeq proof. That makes the CP-Sumcheck proof consist of l ZKeq proofs and l · (m + 1)
elements of G.

To determine the complexity of CP-MM, CP-EHad, CP-Expo, CP-ColumnSum and CP-
ScalarAdd, we have created the Table 5.3. For each of these proofs, it can be seen what
are the building blocks and what are the complexity parameters of those building blocks.
For CP-Poly we show the polynomial that gets evaluated and the number of variables l of
that polynomial. For CP-Sumcheck we show the polynomial, the number of variables l and
the highest variable degree m. We show how many ZKeq and ZKprod proofs are contained in
each CP-SNARK and how many additional commitments are part of the proof.

48

5.7. Implementation and Experimental Evaluation

5.7. Implementation and Experimental Evaluation

We have implemented all of the aforementioned protocols in the Go programming language.
The source code is publicly available on https://github.com/marianasamardzic/MLPSP.

Next we will present the results of the experimental evaluation of our implementation of CP-
SVMPoly, CP-SVMLinear and CP-Linear. The experiments are run on a 2,7 GHz Quad-Core
Intel Core i7 processor with 16GB of RAM memory.

The runtime of CP-Linear.Prove and CP-Linear.Verify depends on the number of features of
the linear ML model and on the size of the client’s dataset. We have ran two experiments. In
the first we fixed the number of features to 22 and varied the dataset size. In the second one
we fixed the dataset size to 22 and varied the number of features. The results can be seen in
Table 5.4.

The runtime of CP-SVMLinear.Prove and CP-SVMLinear.Verify depends on the number of
features of the SVM model, the number of support vectors and on the size of the client’s
dataset. We have ran three experiments. In the first we fixed the number of features and
support vectors to 22 and varied the dataset size. In the second one we fixed the dataset
size and the number of support vectors to 22 and varied the number of features. In the third
experiment we fixed the number of features and the dataset size to 22 and varied the number
of support vectors. The results can be seen in Table 5.5.

The runtime of CP-SVMPoly.Prove and CP-SVMPoly.Verify depends on the number of fea-
tures of the SVM model, the number of support vectors, the degree of the kernel and on the
size of the client’s dataset. We have ran four experiments. In the first we fixed the number
of features and support vectors to 22 and the degree to 2 and varied the dataset size. In the
second one we fixed the dataset size and the number of support vectors to 22 and the degree
to 2 and varied the number of features. In the third experiment we fixed the number of
features and the dataset size to 22, the degree to 2 and varied the number of support vectors.
In the fourth experiment we fixed the number of features, support vectors and the dataset
size to 22 and varied the kernel degree. The results can be seen in Table 5.6.

An interesting observation is that the number of features has a quite smaller influence on
the runtime then the number of support vectors or the dataset size in SVM models. Another
observation is that the degree of the polynomial kernel also does not influence the runtime
very much.

In our implementation we provide code for benchmarking so all interested users can test the
runtime with their desired configurations.

49

https://github.com/marianasamardzic/MLPSP

5. Proving correct ML inference computation

number of data instances proving runtime (s) verification runtime (s)
21 0.068486743 0.22165685
22 0.09140313 0.250679938
23 0.148570304 0.282334357
24 0.25366345 0.314890437
25 0.442880971 0.341474642
26 0.860304684 0.378023662
27 1.781879743 0.405651067
28 3.96959471 0.438057254
29 9.77601659 0.454717729
210 27.087514313 0.477222708

number of features proving runtime (s) verification runtime (s)
21 0.054702478 0.240234194
22 0.098670574 0.251311838
23 0.151078259 0.26153616
24 0.261934845 0.275170184
25 0.457610367 0.285683859
26 0.889116608 0.295073782
27 1.857223815 0.306302478
28 4.234431977 0.321828342
29 10.672226001 0.32767693
210 31.052624167 0.337051496

Table 5.4.: CP-Linear Runtime analysis

50

5.7. Implementation and Experimental Evaluation

number of data instances proving runtime (s) verification runtime (s)
21 0.128853601 0.22165685
22 0.182592318 0.250679938
23 0.266597005 0.282334357
24 0.452716289 0.314890437
25 0.807331104 0.341474642
26 1.553573792 0.378023662
27 3.103460944 0.405651067
28 6.592880845 0.438057254
29 15.004700498 0.454717729
210 37.827697086 0.477222708

number of features proving runtime (s) verification runtime (s)
21 0.158764115 0.240234194
22 0.177687881 0.251311838
23 0.211877876 0.26153616
24 0.266923349 0.275170184
25 0.38760932 0.285683859
26 0.592957529 0.295073782
27 1.021796911 0.306302478
28 1.942966487 0.321828342
29 3.980013094 0.32767693
210 8.597983797 0.337051496

number of support vectors proving runtime (s) verification runtime (s)
21 0.115141937 0.214385787
22 0.166888711 0.242103184
23 0.263351118 0.274611575
24 0.448066782 0.302725977
25 0.791859524 0.340152848
26 1.509397471 0.369433461
27 3.029344191 0.395631042
28 6.541912918 0.425473345
29 15.271164463 0.456970409
210 40.479785438 0.495786622

Table 5.5.: CP-SVMLinear Runtime analysis

51

5. Proving correct ML inference computation

number of data instances proving runtime (s) verification runtime (s)
21 0.180641079 0.2868852
22 0.270887896 0.329650168
23 0.425649604 0.372847961
24 0.714760426 0.414024308
25 1.276818524 0.455996926
26 2.480512374 0.497677561
27 4.924208207 0.539451493
28 10.55959713 0.582156291
29 24.67293386 0.622069595
210 64.751735881 0.633355032

number of features proving runtime (s) verification runtime (s)
21 0.253541382 0.318867734
22 0.274903163 0.330071496
23 0.30331878 0.34193528
24 0.363543703 0.352419487
25 0.464600598 0.363660277
26 0.693669642 0.37446447
27 1.117033945 0.384365613
28 2.043482119 0.400424928
29 4.036891361 0.408353101
210 8.690006365 0.417617568

number of support vectors proving runtime (s) verification runtime (s)
21 0.175146175 0.270865071
22 0.266549149 0.316345114
23 0.412172509 0.358874139
24 0.685573339 0.403700077
25 1.233781813 0.44383008
26 2.351765819 0.492827398
27 4.762056232 0.523400062
28 10.388264175 0.569435159
29 24.546662798 0.61389956
210 65.893386607 0.64414548

degree proving runtime (s) verification runtime (s)
2 0.252276876 0.317186382
3 0.255662178 0.316767943
4 0.275670177 0.318416232
5 0.27714237 0.32323411
6 0.276638925 0.32589876
7 0.291484782 0.323438989
8 0.29988677 0.325664135
9 0.30289234 0.329766084

10 0.310534408 0.332323192

Table 5.6.: CP-SVMPoly Runtime analysis

52

6. ML Prediction Service Platforms

In this section we will present our two ML prediction service platforms: MLPSP and IP-MLPSP.
The first one satisfies all requirements discussed in the introduction except of input privacy
and the second one satisfies both the model and input privacy, but the outcome verifiability
is probabilistic. Both platforms are based on the blockchain technology and IP-MLPSP uses
homomorphic encryption to satisfy input privacy. First, we will give an overview of these
two technologies.

6.1. Prerequisites

6.1.1. Blockchain

Blockchain is a distributed ledger where the transactions are stored in a chain of blocks. The
committed transactions cannot be changed or deleted, and users can only view the trans-
actions and create new ones. Key properties of blockchain are decentralization, persistency,
anonymity and auditability and the core technologies that blockchain relies on are crypto-
graphic hash functions, digital signatures and distributed consensus mechanism [27].

Blockchain technology can be used to implement smart contracts. A smart contract is a
computer program that implements a contract and that will automatically be executed when
conditions defined in the contract are met. Additionally, the smart contract cannot be modi-
fied once the smart contract has been installed on the blockchain [27].

6.1.2. Homomorphic Encryption

Homomorphic encryption is an encryption scheme that allows for certain computable func-
tions to be executed on ciphertexts. For example, given an Enc(m1) and Enc(m2), a user
can obtain Enc(m1 + m2) without knowing the values of m1 and m2. Homomorphic encryp-
tion schemes can be classified in three groups depending on the number of operations that
can be performed on ciphertexts. Partially Homomorphic Encryption allows one operation
unlimited number of times. Somewhat homomorphic encryption allows some type of oper-
ations only a limited number of times. Fully Homomorphic Encryption allows an unlimited
number of operations for an unlimited number of times [14].

53

6. ML Prediction Service Platforms

6.2. MLPSP

In this section we will present the design for MLPSP that fulfills all of the security require-
ments discussed in Chapter 1 except of the input privacy. Users that have developed their
own machine learning models (which can be linear models, SVM models with linear kernels
or SVM models with polynomial kernels) can offer prediction services on that models us-
ing MLPSP. We call these users service providers. Users that want to use these prediction
services can browse the available models, choose the ones that they would like to use and
send their datasets to the model owners and get the predictions back in exchange for a fi-
nancial compensation. We call these users clients. Both clients and service providers might
act maliciously. The service provider might want to return random or false predictions back
and the client might want to steal the ML models. There is one additional user called the
platform owner. The platform owner’s only task is to initialize the system and we assume
that the platform owner is honest but curious, in other words, the platform owner might
want to steal the secret ML models but will perform all operations required by the protocol
honestly.

The platform consists of a blockchain where four data types can be stored. Since we are
using blockchain all stored data is immutable: it cannot be deleted or changed. We also
assume that for all uploaded data, it can be seen which user uploaded it. An overview of
these data types can be seen in Figure 6.1. The first data type is a commitment key. It can
only be uploaded by the platform owner during the platform initialization and there can
only be one such key. The second data type is a model. Models are uploaded by service
providers and every model has an unique model ID. A single service provider can upload
multiple models. The third data type is a request. Requests are uploaded by clients and
every request has an unique request ID. A single client can upload multiple requests. The
final data type is the proof. Every proof contains an unique request ID, meaning that every
request can only have one proof. The proofs with a certain request ID can only be uploaded
by the service provider who has registered the model that has the same model ID as the
model ID specified in the request with the proof’s request ID.

One of the requirements for MLPSP is that we have fair payments. If a service provider
outputs a valid proof, the client should pay the fee. Because of this requirement the client
cannot do the verification. The client has the incentive to tell that the proof is not correct,
even though it is, in order to not pay and get the predictions. Therefore, we need a third
party that both the service provider and the verifier trust to do the verification. An ideal
solution is a smart contract because its execution and business logic cannot be modified
after being deployed on the blockchain. When the service provider uploads the proof of
correct computation on the blockchain, the verification smart contract gets invoked. The
smart contract verifies the proof using the data stored on the blockchain and if the proof is
correct, the smart contract transfers the money from the client to the service provider.

To show the design of MLPSP, we will create a generic protocol CP-ML which takes as input
the model type (linear, SVMLinear, SVMPoly) and based on the type will perform CP-Linear,
CP-SVMLinear or CP-SVMPoly. With {param} we will denote the set of all parameters of
a model, with {cparam} the set of all commitments of those parameters and with {oparam}
the set of all openings of those commitments. We have also created a generic function
fML(type, {param}, z) that based on the type performs either flinear, fSVMLinear or fSVMPoly.
Moreover, in Figure 6.2, we have showed all methods that users can use when interacting
with the platform. We assume that all service providers and clients have downloaded the
commitment key when they joined the platform using the GetCK() method.

54

6.2. MLPSP

Commitment key ck
Model:
• model ID
• model type
• model parameters commitments {cparam}
• prediction fee

Request:
• request ID
• model ID
• dataset commitment cZ

Proof:
• request ID
• proof π
• output commitment cO
• output O
• output opening oO

Figure 6.1.: MLPSP Data Types

1. GetCK() / SetCK(ck)

• returns(puts) the commitment key from(on) the blockchain

2. GetModel(model ID) / SetModel(Model)

• returns(puts) a model from(on) the blockchain

3. GetRequest(request ID) / SetRequest(Request)

• returns(puts) a request from(on) the blockchain

4. GetProof(request ID) / SetProof(Proof)

• returns(puts) a proof from(on) the blockchain

5. Verify(request ID)

• Invokes the verification smart contract

Figure 6.2.: MLPSP Methods

There are six distinct actions that can be performed on the platform:

1. Platform Setup

2. Model Registration

3. Request Registration

4. Proof Registration

5. Verification

6. Output Retrieval

In the following subsections we will give more information on each of these actions.

55

6. ML Prediction Service Platforms

Platform Setup

The platform owner initializes MLPSP. The owner chooses the security parameter λ and the
value l and creates the commitment key. The value l determines the maximum number of
variables that a polynomial can have, which restricts the size of the ML models and client’s
datasets. The platform owner deletes the secret values used to generate the commitment key
and then stores the commitment key on the blockchain. If the platform owner deletes the
secret values, then we can be sure that the proofs cannot be forged. Otherwise the platform
owner can collude with the service provider and generate fake proofs. The platform setup
is performed only once and can be seen in Figure 6.3.

Input: (λ, l)

1. PolyCom.Setup (λ, l)→ ck
2. blockchain.SetCK(ck)
3. Delete secret values

Figure 6.3.: MLPSP Platform Setup

Model Registration

A service provider may own multiple machine learning models. To be able to offer predic-
tion services with these models, they have to be registered on the blockchain. The service
provider keeps a list of registered models, denoted by the variable models. Every ML model
gets registered only once, and can be used for multiple requests. The process of model
registration can be seen in Figure 6.4.

Input: (model ID, model type, {param}, fee, models)

1. For every model parameter param:

■ If param is a vector/matrix:
• transform into polynomial
• PolyCom.Commit(ck, param, p)→ (cparam, oparam)

■ Else:
• PolyCom.Commit(ck, param, v)→ (cparam, oparam)

■ models.Set({ model ID, {cparam}, {param}, {oparam})
3. Set Model = (model ID, model type, {cparam}, fee)

4. blockchain.SetModel(Model)

Figure 6.4.: MLPSP Model Registration

56

6.2. MLPSP

Request Registration

To create an ML prediction request, the client has to choose one of the registered ML models.
The client has to have a suitable dataset, denoted by Z, that can be evaluated with the chosen
ML model and enough money in the blockchain system. The process of creating a request
can be seen in Figure 6.5.

Input: (request ID, model ID, Z)

1. Transform Z into a polynomial
2. PolyCom.Commit(ck, Z, p)→ (cZ, oZ)
3. Set Request = (request ID, model ID, cZ)
4. Deposit fee
5. blockchain.SetRequest(Request)
6. Send request: (request ID, Z, oZ) to the service provider

Figure 6.5.: MLPSP Request Registration

Proof Registration

When the service provider gets a request from a client, the service provider has to check if
the request is correctly registered on the blockchain. This involves checking if the requested
model is owned by the service provider, if the client deposited enough money and if the
received dataset is the one which is committed on the blockchain. Since PolyCom is binding,
the client cannot commit one dataset and send another one to the service provider. If all
checks are successful, then the service provider calculates the predictions and creates a
proof of correct computation. The proof and the predictions get stored on the blockchain.
The complete process can be seen in Figure 6.6.

Input: (request: (request ID, Z, oZ), models)

1. Check request
• blockchain.GetRequest(ID)→ (ID, model ID, cZ)
• models.get(model ID)→ { model ID, {cparam}, {param}, {oparam}}
• Check if client has deposited enough money
• PolyCom.VerCommit(ck, cz, z, oz)→ 1

2. Compute
• fML(type, {param}, Z) = O

3. Prove
• PolyCom.Commit(ck, O)→ (cO, oO)
• CP-ML.Prove(type, ck, {cparam}, cZ, cO, {param}, {oparam}, Z, oZ, O, oO)→ π
• blockchain.SetProof(request ID, π, cO, O, oO)
• blockchain.Verify(request ID)

Figure 6.6.: MLPSP Proof Registration

57

6. ML Prediction Service Platforms

Verification

The verification is run by the smart contract. The smart contract is invoked by the service
provider and the only input is the request ID. All the other data can be fetched from the
blockchain by the smart contract using this request ID. The verification process is shown in
Figure 6.7 and involves checking two things: the first one is checking if the proof is correct
and the second one is checking if the returned predictions are committed in the the output
commitment cO used in the proof. Additionally, we assume there is a certain timeout. This
timeout starts when the client uploads a request and if the smart contract does not get
invoked in time, the request gets cancelled and the deposited money is returned back to the
client.

Input: (request ID)

1. Fetch stored data
• blockchain.GetRequest(request ID)→ (request ID, model ID, cZ)
• blockchain.GetModel(model ID)→ (model ID, type ,{cparam}, fee)
• blockchain.GetProof(request ID)→ (request ID, π, c0, O, oO)

2. Verify
• CP-ML.Verify(type, {cparam}, cZ, cO, π)→ b1
• PolyCom.VerCommit(ck, c0, O, oO)→ b2

3. If b1 ∧ b2 transfer deposited money to service provider else return money
to client

Figure 6.7.: MLPSP Verification

Output Retrieval

Once the verification process is complete, the client can simply download the output O from
the proof with the request’s ID. The client can be sure that the output is correct.

6.2.1. Security Discussion

In Table 6.1 we have discussed how MLPSP satisfies the defined security requirements.

58

6.2. MLPSP

1. Model
Privacy

The model never leaves the service provider. Everyone can
see the model commitment but since PolyCom is perfectly

hiding no one can see what is committed, not even the
platform owner. However, there is a possibility of a model

extraction attack (more information in Chapter 7) if a single
client performs many requests or if many clients collaborate.

However, this attack is out of scope of this work.

2. Input
Privacy

There is no input privacy since the client’s dataset is seen by
the service provider.

2. a) Output
Privacy

There is no output privacy since the client’s output is stored
on the blockchain.

3. Outcome
Verifiability

If CP-ML satisfies the soundness property, then MLPSP
satisfies outcome verifiability. To remind the reader, the

soundness property assures that a correct proof cannot be
generated if the user does not know the witness.

3. a) Model Reg-
istration

The service provider has to register its model ahead of time.
Since PolyCom is binding, it is not possible to find another

model that will have the same commitment.

3. b)
Dataset

Registra-
tion

The client creates a commitment of the dataset. The service
provider cannot find another dataset with the same

commitment since PolyCom is binding. The client cannot
cheat since the client can also not find another dataset with

the same commitment.

3. c) Matching
Output

The output commitment cO is used in the proof verification.
If the proof is correct, then the pre-image of cO is a vector O
that contains the correct predictions. The service provider
reveals the pre-image O and the opening oO and the smart

contract can check if these two values have been used in
generating co. Because of the binding property of PolyCom,

the server cannot generate another vector O′ and another
opening o′O that will match cO. Therefore, if this verification
succeeds, we can be sure that the returned output is correct.

4. Batch
Verification

It can be seen that there is one proof of correct predictions
for the entire client’s dataset.

5. Fair
Payments

The smart contract ensures that the server gets payed if and
only if all outcome verifiability requirements are satisfied.

6. Trustless
system

We only rely on a TTP, the platform owner, to setup the
platform. The platform owner does not have access to the
model. If the platform owner does not delete the hidden

values, then the platform owner can collude with the
service provider and generate fake proofs. However, we

assume that the platform owner is honest and deletes the
secret values.

Table 6.1.: MLPSP Security Requirements

59

6. ML Prediction Service Platforms

6.3. IP-MLPSP

6.3.1. Motivation

We have seen that MLPSP satisfies all security requirements except of input privacy. However,
for some clients having input privacy is non-negotiable. If we did not care about outcome
verifiability, a solution would be to use homomorphic encryption. The client would simply
encrypt its dataset and send the encrypted dataset to the service provider, which can then
evaluate the encrypted dataset without learning the plaintext value of the dataset and the
output. However, we would also like to have outcome verifiability.

Our first idea for creating IP-MLPSP was modifying our CP-SNARKs to work with homomor-
phic encryption. For example, a server has a secret vector A and the client has a secret
matrix B which gets encrypted (we will denote the encryption by Enc(B)) and sent to the
server which then calculates the encryption of the extended hadamard product Enc(H). To
create a CP-EHad proof, the service provider first needs to commit the ciphertext Enc(H)
without knowing the underlying value H. The main difficulty of this approach was modify-
ing PolyCom in such a way that it would be possible to commit ciphertexts. Working with
encryptions instead of commitments is not a good idea since the client can see the interme-
diate computation values by decrypting them with the private key. In this example, if the
client knows the values of B and H, then the client can extract A and we lose the model
privacy. We also did not want the TTP to be the secret key owner since we want our system
to be as trustless as possible. The core of the problem is that the ciphertexts are elements of
the group G and not the field Zq and the underlying Pedersen commitment scheme is made
for committing elements from Zq. We tried using the ElGamal commitment scheme [28] that
is made for committing elements of the group G. However, we have reached a paradox.
For the ElGamal commitment scheme to work properly, the decisional Diffie-Hellman prob-
lem should be hard. However, to be able to commit polynomials we have to multiply two
elements in G: the encrypted polynomial coefficient and the proving key Pi from the com-
mitment key ck. If we are able to do these multiplications then we could solve the decisional
Diffie-Hellman problem, which would make the ElGamal commitment scheme not hiding.
For this reason, we have abandoned this approach.

6.3.2. Homomorphic Encryption of the Dataset

In our second approach we require an additively homomorphic encryption scheme which
encrypts a message m ∈ Zq using a randomness r ∈R Zq. We write Enc(m, r) to denote the
encryption of m using the randomness r. The additively homomorphic encryption scheme
should have the following properties:

1. Multiplication with a plaintext a ∈ Zq

MultPlain(Enc(m, r), a) = Enc(m, r)a = Enc(a ·m, a · r)

2. Addition with a plaintext a ∈ Zq

AddPlain(Enc(m, r), a) = Enc(m, r) · Enc(a, a) = Enc(m + a, r + a)

60

6.3. IP-MLPSP

3. Addition with a ciphertext

Enc(m1, r1) · Enc(m2, r2) = Enc(m1 + m2, r1 + r2)

Such a homomorphic encryption scheme can be implemented using the exponential ElGa-
mal encryption scheme for example.

Now we will show an interesting observation that we made while evaluating a dataset
which is encrypted with the aforementioned homomorphic encryption scheme using the
SVM model with a linear kernel. We can represent an SVM model with a linear kernel as a
tuple model = (X, Y, B). X is a m× n matrix where m is the number of support vectors and
n is the number of features. Every row j of X represents the support vector xj. The vector Y
of length m is defined such that every element Yj = tj · αj. The value B corresponds to the
bias value. The dataset that should be evaluated is represented by a n× k matrix Z, where
each column i represents a data instance zi. The prediction of data instance zi is equal to
f (zi) = sign(∑m−1

j=0 tjαj(xT
j zi) + b). We have already shown that we can evaluate a dataset by

computing 4 operations (see Section 3.3.1).

To encrypt the dataset Z, a user has to generate a matrix R of the same size as Z where
every element is picked uniformly at random from Zq. We will write Enc(Z, R) to denote
the encrypted matrix and Enc(Z, R)[j,i] to denote the element at row j and column i. Every
element Enc(Z, R)[j,i] of the encrypted dataset is equal to Enc(Zj,i, Rj,i).

We have observed that for every operation f in fSVMLinear we can create a homomorphic
version f ′ which has the following property:

f ′(Enc(m, r), a) = Enc(f (a, m), f (a, r))

1. Homomorphic Matrix Multiplication

mm′(Enc(Z, R), X)[j,i] =
n−1

∏
l=0

MultPlain(Enc(Z, R)[l,i], X[j,l])

= Enc(
n−1

∑
l=0

X[j,l] · Z[l,i],
n−1

∑
l=0

X[j,l] · R[l,i])

= Enc(mm(X, Z), mm(X, R))[j,i]

2. Homomorphic Extended Hadamard Product

ehad′(Enc(M, R), Y)[j,i] = MultPlain(Enc(M, R)[j,i], Yj)

= Enc(M[j,i] ·Yj, R[j,i] ·Yj)

= Enc(ehad(M, Y), ehad(R, Y))[j,i]

3. Homomorphic Column Summation

61

6. ML Prediction Service Platforms

columnSum′(Enc(H, R))[i] =
n−1

∏
j=0

Enc(H, R)[j,i]

= Enc(
n−1

∑
j=0

H[j,i],
n−1

∑
j=0

R[j,i])

= Enc(columnSum(H), columnSum(R))[i]

4. Homomorphic Scalar Addition

scalarAdd′(Enc(S, R), B)[i] =AddPlain((Enc(S, R)[i], B)

=Enc(Si + B, Ri + B)
=Enc(scalarAdd(S, B), scalarAdd(R, B))[i]

By combining these homomorphic functions, we can create homomorphic versions of infer-
ence functions.

f ′SVMLinear(Enc(Z, R), X, Y, B) =
Enc(fSVMLinear(X, Y, B, Z), fSVMLinear(X, Y, B, R))

f ′Linear(Enc(Z, R), W, B) =
Enc(fLinear(W, B, Z), fLinear(W, B, R))

For SVM with polynomial kernel we need a fully homomorphic scheme that can support d
multiplications where d is the degree of the polynomial kernel. Finding such a scheme will
be left for future work. We will only focus on linear and SVM with linear kernel models.

6.3.3. Main Idea

We assume that clients encrypt their datasets with such encryption scheme and that the en-
cryption plaintext and randomness domains are subdomains of PolyCom’s input domain.

The main idea of out solution is that a client has a dataset Zreal that should remain private.
The client creates a fake dataset Z. Since the data is fake, this dataset can be revealed to the
service provider. The dataset Zω is created by combining Zreal and Z. The data instances in
Zω get permutated and the indices of the fake data instances in Zω are memorised in the set
I.

The client generates a secret-public key pair and encrypts Zω using the private key in the
way that was described in the previous subsection and sends Enc(Zω, Rω) to the service
provider. The service provider executes f ′SVMLinear(Enc(Zω, Rω), X, Y, B) which is equal to
Enc(fSVMLinear(X, Y, B, Zω), fSVMLinear(X, Y, B, Rω)). The client then uses MLPSP and sends

62

6.3. IP-MLPSP

Z and R to the service provider who runs the MLPSP protocol twice: once for Z and once for
R and returns the values fSVMLinear(X, Y, B, Z) and fSVMLinear(X, Y, B, R) back. The smart
contract verifies if those two values were correctly computed and if:

f ′SVMLinear(Enc(Zω, Rω), X, Y, B)[I] = Enc(fSVMLinear(X, Y, B, Z), fSVMLinear(X, Y, B, R))

If this does not hold then the service provider cheated. If this holds then there is a Z
Zω

prob-
ability that the service provider did not cheat. This probability is tunable and determined by
the client. In the following subsection we will describe in detail how the IP-MLPSP protocol
works

6.3.4. Design

The protocol differs from MLPSP in two ways. First, when the client joins the platform, a
private-public key pair has to be generated and published on the blockchain. Secondly, in
MLPSP the server and client have one round of communication: the client registers the re-
quest and the server registers the proof. In IP-MLPSP the client and service provider have two
rounds of communication. In the first round the client registers the request and then the
service provider evaluates the encrypted dataset and registers the output from this round.
In the second round, the client reveals the index set I and then the service provider evaluates
the fake dataset and creates a proof of correct computation and registers the proof which
contains the verified output from round two. In Figure 6.8 we have shown the datatypes that
are stored on the blockchain. When compared to MLPSP, we have the following differences:
(1) Every client stores its public key, (2) the request contains an additional field for the en-
cryption randomness commitment, (3) there is a new data type called Index which contains
a unique request ID and the set of all dummy data indices, (4) the proof now contains two
proofs of correct computation, one for the dummy dataset Z and one for the encryption
randomness of the dummy dataset R and the homomorphically evaluated predictions of the
entire dataset.

63

6. ML Prediction Service Platforms

Commitment key ck
Client’s encryption public keys
Model:
• model ID
• model type
• model parameters commitments {cparam}
• prediction fee

Request:
• request ID
• model ID
• dataset commitment cZ
• encryption randomness commitment cR

Output:
• request ID
• hash of the output

Index:
• request ID
• set of all dummy data indices I

Proof:
• request ID
• for dataset Z
• proof π
• output commitment cO
• output O
• output opening oO

• for randomness R
• proof π
• output commitment cO
• output O
• output opening oO

• output

Figure 6.8.: IP-MLPSP Data Types

There are nine actions that can be performed on the platform:

1. Platform Setup

2. Model Registration

3. Client Registration

4. Request Registration

5. Output Registration

6. Index Registration

7. Proof Registration

8. Verification

64

6.3. IP-MLPSP

9. Output Retrieval

The platform setup and model registration are the same as in MLPSP and for the other actions
we will provide a more detailed explanation.

Client Registration

To join the platform, the client has to generate a public-private key pair and register the
public key on the blockchain.

Request Registration

The client wants to evaluate its sensitive dataset Zreal . First, the client decides what the
outcome verifiability probability should be and based on that generates the dummy dataset
Z. The two datasets get merged into a dataset that we will denote with Zω and the indices
of the dummy data points in Zω are kept in the set denoted with I. To encrypt Zω, the client
generates the encryption randomness matrix Rω of the same size as Zω. We will denote
with R the randomnesses used for encrypting the dummy data points Rω[I].

The client commits Z and R and creates a request which gets stored on the blockchain. Then
the client sends Enc(Zω, Rω) to the service provider. The request registration process can be
seen in Figure 6.9.

Input: (request ID, model ID, Zω = Z + Zreal , I)

1. Generate encryption randomness Rω = R + Rreal

2. For X = {Z, R}
• Transform X into a polynomial
• PolyCom.Commit(ck, X, p)→ (cX , oX)

3. Set Request = (request ID, model ID, cZ, cR)
4. blockchain.SetRequest(Request)
5. Deposit fee
6. Send request: (request ID, Enc(Zω, Rω)) to the service provider

Figure 6.9.: IP-MLPSP Request Registration

Output Registration

The service provider receives the encrypted dataset, checks if the request is correct which
involves checking if the client deposited enough money and if the service provider owns the
specified model, evaluates the encrypted dataset to obtain encrypted predictions and puts
the hash of the encrypted predictions on the blockchain.

The service provider does not know which and how many data instances from that dataset
are going to be checked later in the protocol. If the service provider gets caught cheating

65

6. ML Prediction Service Platforms

there will be no payment. Some other penalties may be introduced for a cheating service
provider. For example, the service provider might get removed from the system or be
required to pay a fine.

The service provider is required to put the hash of the encrypted predictions on the blockchain
to continue the protocol. This ensures that the service provider does the computation before
finding out which data instances will be checked for correctness. At the end of the proto-
col, the service provider reveals the encrypted predictions and the smart contract will check
if the hash is matching. In other worlds, the smart contract checks if the service provider
performed the computation before learning which instances are fake.

We avoid putting the encrypted predictions on the blockchain at this moment to protect
the honest service provider. If encrypted predictions were put on the blockchain, the client
could decrypt them and obtain the correct predictions without paying. The operations to be
performed can be seen in Figure 6.10.

Input (request: (request ID, Enc(Zω, Rω)), models)

1. Check request
• blockchain.GetRequest(request ID)→ (request ID, model ID, cZ, cR)
• models.get(model ID)→ { model ID, {cparam}, {param}, {oparam}}
• Check if client has deposited enough money

2. Compute
• f ′ML(type, Enc(Zω, Rω), {param}) = O(ω)

3. Register
• blockchain.SetOutput(request ID, H(O(ω)))

Figure 6.10.: IP-MLPSP Output Registration

Index Registration

After the service provider registers the output, the client has to reveal the dummy index set
I. If the client does not upload the index in a pre-defined time interval since the service
provider registered the output, the money will be transferred to the service provider. This
is to assure that the client does not spam the server with many fake request in which case
the service provider will do a lot of work without getting paid for it. The index registration
process in shown in Figure 6.11. We have identified a limitation in the index registration
action. The client could register the index on the blockchain and not send the request to
the service provider which will make the service provider unable to generate the proof of
correct computation and get paid. This problem will be left for future work.

66

6.3. IP-MLPSP

Input: (request ID, model ID, Z = Z f ake + Zreal , I)

1. blockchain.SetIndex(request ID, I)
2. Send request: (request ID, Z oZ, R, oR) to server

Figure 6.11.: IP-MLPSP Index Registration

Proof Registration

The service provider checks if the values Z and R correspond to the encrypted data instances
at positions specified in I. Then, the service provider runs the MLPSP proof registration
process twice, once with Z as input and once with R as input. Additionally, the service
provider also puts the encrypted predictions calculated in the first round on the blockchain.
The entire process can be seen in Figure 6.12.

Note that the encryption scheme is not binding for the secret key owner, in other words,
the client could generate the pair (Z′, R′) such that Enc(Z′, R′) = Enc(Z, R) and commit
Z′ and R′. However if Enc(Z′, R′) = Enc(Z, R), then Enc(O(Z), O(R)) = Enc(O(Z′), O(R′)).
Therefore, even if the client sends different values, but the ciphertexts are the same, the
service provider will still be able to generate correct proofs.

67

6. ML Prediction Service Platforms

Input (request: (request ID, Z, oZ, R, oR), models)

1. Check request

• blockchain.GetRequest(ID)→ (ID, model ID, cZ, cR)

• blockchain.GetIndex(ID)→ (ID, I)

• models.get(model ID)→ { model ID, {cparam}, {param}, {oparam}

2. Verify that client sent correct data

• Enc(Z, R) = Enc(Zω, Rω)[I]

• PolyCom.VerCommit(ck, cZ, Z, oZ)→ 1

• PolyCom.VerCommit(ck, cR, R, oR)→ 1

3. For X = {Z, R}

• fML(type, {param}, X) = O(X)

• PolyCom.Commit(ck, O(X))→ (c(X)
O , o(X)

O)

• CPML.Prove(ck, X, W)→ π(X)

• X = (model:{cparam}, dataset: cX , output: c(X)
O)

• W = (model:{{param}, {oparam}}, dataset:{X, oX}, output:{O(X), o(X)
O })

4. blockchain.SetProof(request ID, πZ, πR, O(ω))

• πZ = (π(Z), c(Z)
O , O(Z), o(Z)

O)

• πR = (π(R), c(R)
O , O(R), o(R)

O)

5. blockchain.Verify(request ID)

Figure 6.12.: IP-MLPSP Proof Registration

Verification

The verification smart contract gets invoked by the service provider. The only input is the
request ID and all other data is fetched from the blockchain using that request ID. The smart
contract verifies the MLPSP proof for Z and R and runs two more checks. First, the smart
contract makes sure that the returned encrypted predictions have been generated in the first
round, before the dummy index set was revealed. Secondly, the smart contract assures that
the verified output for the dummy data is the same as the unverified output. To do this the
smart contract checks if:

O(ω)
[I] = Enc(O(Z), O(R)))

f ′ML(Enc(Z, R), {param}) = Enc(fML(Z, {param}), fML(R, {param})

68

6.3. IP-MLPSP

This equation should hold because of the homomorphic encryption property discussed be-
fore. If all checks have passed, the the smart contract transfers the client’s deposited money
to the service provider. Otherwise, the deposited money is returned back to the client. The
verification process can be seen in Figure 6.13

Input: (request ID)

1. Fetch stored data

• blockchain.GetRequest(request ID)→ (ID, model ID, cZ, cR)

• blockchain.GetOutput(request ID)→ (request ID, H(O(ω)))

• blockchain.GetModel(model ID)→ (model ID, model type ,{cparam})
• blockchain.GetIndex(model ID)→ (request ID, I)

• blockchain.GetProof(request ID)→ (request ID, πZ, πR, O(ω))

• πZ = (π(Z), c(Z)
O , O(Z), o(Z)

O)

• πR = (π(R), c(R)
O , O(R), o(R)

O)

2. For X = {Z, R}

• CPML.Verify({cparam}, cX , c(X)
O , π(X))→ 1

• PolyCom.VerCommit(ck, c(X)
O , O(X), o(X)

O)→ 1

3. Verify that the returned output is the same one produced in the first round
• H(O(ω)) = H(O(ω))

4. Verify that the returned dummy predictions are the same in both rounds
• O(ω)

[I] = Enc(O(Z), O(R)))

5. If all verification succeeds send deposited money to service
provider else return money to client

Figure 6.13.: IP-MLPSP Verification

Output Retrieval

Once the verification is complete, the client can download the encrypted predictions and use
the secret key to decrypt them.

6.3.5. Security Discussion

The security discussion is shown in Table 6.2.

69

6. ML Prediction Service Platforms

1. Model
Privacy Same as in MLPSP

2. Input
Privacy

The client achieves input privacy since the dataset Zreal is
never revealed in plaintext. No one can decrypt the data

since the secret key does not leave the client

2. a) Output
Privacy

The client achieves output privacy since the predictions of
Zreal are never revealed in plaintext. No one can decrypt the

predictions since the secret key does not leave the client

3. Outcome
Verifiability

The outcome verifiability is probabilistic, and that holds for
all sub-requirements as well.

4. Batch
Verification

It can be seen that there is one proof of correct predictions
for the entire client’s dataset.

5. Fair
Payments The fair payments are probabilistic.

6. Trustless
system

Same as in MLPSP since the role of the platform owner is the
same.

Table 6.2.: IP-MLPSP Security Requirements

70

7. Discussion

7.1. Comparison of IP-MLPSP with Related Work:
Advantages

7.1.1. Trust Assumptions

One of our goals when building IP-MLPSP was to have a trustless system, a system where
the users do not have to trust each other. That is the main reason why our scheme is
probabilistic. The only trust assumption that we require in our system is that the platform
owner deletes the secret values generated during the commitment key generation. If the
platform owner fails to do so, the proofs can be forged, which negatively impacts the clients.
MVP [12] has the same problem and they offer the following solution which can also be
applied to IP-MLPSP: the commitment key can be generated collectively by the clients since
they have no real incentive to leak the secret values. It should be noted that even if the
platform owner leaks the key, the input and model privacy stay protected.

In MVP , the input privacy relies on the honesty of the TTP. The TTP owns the secret key
which can decrypt the client’s data and the TTP decrypts the client’s predictions. In IP-MLPSP,
client’s secret dataset and predictions are not revealed to anyone.

The system model of [20] is a bit different then ours and we can analyze the trust assump-
tions from two viewpoints. A honest service provider has two goals: to protect its model
from the client and to be sure that the cloud providers computed the inference correctly.
Regarding the model privacy, the service provider sends the model to the untrusted cloud
providers and assumes that they will not leak this model to the client or, more generally,
to the world. Regarding the verifiability, the service provider does not have to rely on the
honesty of the cloud providers. The client, on the other hand, wants to protect its dataset
from the service provider and be sure that the service provider computed the predictions
correctly. However, the dataset is only encoded, not encrypted, and if more than a certain
number of servers from the first cloud provider collude they can retrieve the client’s dataset
and send it to the service provider. The output privacy is not protected at all, it can be seen
by the third cloud provider. Regarding the verifiability, the service provider generates the
commitment key and can forge proofs. Thus the client has to trust the service provider to
be honest.

In VPMLP [21], the client assumes that the edge and cloud server will honestly compute the
proof, that is, they will not cheat since the purpose of the proof of correct computation is to
be sure that there were no external temperings with the data.

71

7. Discussion

7.1.2. Model Extraction Attack

Every ML prediction service is susceptible to a model extraction attacks. A client that makes
a certain number of request with different inputs will finally be able to recover the model.
The simpler the model, less requests are needed. This issue was addressed in VPMLP [21]
where they suggest that this problem can be solved by limiting the number of request that a
client can make to one service provider.

We argue that polynomial-kernel MVP is more susceptible to the attack then polynomial
kernel IP-MLPSP. In MVP, the service provider computes the dot product of every support
vector xj and of every data instance zi and this intermediate computation value is seen by
the client. If the number of data instances is equal to or greater then the number of support
vectors the model can be extracted just like how we have shown in the following example:

Example 21. If the support vector matrix is X =
[
2 4

]
and the client knows the values

of its dataset
[

4 2
5 3

]
and the dot products

[
28 16

]
then the client can extract the support

vector matrix by solving the system of linear equations:

4 · x1 + 5 · x2 = 28
2 · x1 + 3 · x2 = 16

In IP-MLPSP, the client only sees the final prediction, which makes it much harder to extract
the model.

7.1.3. Batch Verification

When it comes to batch verification, we argue that IP-MLPSP is better than the scheme from
[20]. In their work there is one CP-MM proof for every server in the first cloud provider
and one CP-Had proof for very data instance in the client’s dataset. Additionally, they do
not prove the correct computation of the column summation and scalar addition operation
which we do.

7.2. Comparison of IP-MLPSP with Related Work:
Disadvantages

The main disadvantage of IP-MLPSP compared to MVP, the scheme from [20] and VPMLP is
that the verifiability is tunably probabilistic, whereas in the other schemes the verifiability
is definite. Another disadvantage that follows from the first disadvantage is that we have
to add dummy data to the client’s dataset, thus the workload that the service provider has
is higher then if we managed to add homomorphic encryption directly to MLPSP. The third
potential disadvantage is that IP-MLPSP works for polynomial-kernel SVM models only under
the assumption that there exists a leveled homomorphic scheme with property defined in
Section 6.3.2. We have not yet found such a scheme, it will be left for future work.

72

7.3. Future Work

7.3. Future Work

We have identified three main functionalities that we would like to add or improve. (1) The
CP-ScalarAdd scheme should be extended to also support matrices where the number of
rows and columns is not a power of two. (2) In IP-MLPSP we need a mechanism which can
automatically detect if the client has sent the request to the service provider after registering
the index set. (3) An adequate leveled homomorphic scheme should be found that we can
use in IP-MLPSP for polynomial-kernel SVM.

After addressing these functionalities, there are some steps that we could undertake to im-
prove our work. (1) We could evaluate CP-Linear, CP-SVMLinear and CP-Poly with real
ML models and datasets instead of generating random values and compare the efficiency
to the related work. (2) We could implement MLPSP and IP-MLPSP with a blockchain and
homomorphic encryption scheme and measure the runtime and storage. (3) We could in-
vestigate which other ML models could be used in our platforms. (4) We could implement
the distributed commitment key generation by the clients and remove the TTP completely.

73

8. Conclusion

In this research work, the goal was to create a ML prediction service platform where users
that have managed to train powerful ML models could offer prediction services, meaning
that that they will make predictions on client’s datasets with their ML models in exchange
for financial compensation. Our initial goal was to create a platform which simultaneously
ensures (1) model privacy, meaning that the ML models stay secret, (2) input privacy which
entails that the client’s datasets and predictions stay secret, (3) outcome verifiability that
ensures that the returned predictions are correctly computed, (4) batch verification, meaning
that there is one proof for the entire dataset, (5) fair payments and (6) trustlessnes which we
defined as our platform requiring less trust assumptions than related work.

To make our platform trustless and implement fair payments we have used the blockchain
technology. For achieving input privacy we have used homomorphic encryption. For achiev-
ing model privacy, outcome verifiability and batch verification we have decided to use the
LegoSNARK[15] framework. However, after many attempts to integrate homomorphic en-
cryption with LegoSNARK, we claim that it is not possible to use a homomorphic encryp-
tion scheme together with LegoSNARK because of incompatibility of the polynomial com-
mitment scheme and the homomorphic encryption scheme. Therefore, we have created
two platforms: MLPSP which achieves all security requirements except of input privacy and
IP-MLPSP which achieves input and model privacy but at the expense of outcome verifiabil-
ity being tunably probabilistic. To create these two platforms we have created four schemes
for proving basic operations on committed matrices, vectors and scalars. By combining
these schemes we have created three more schemes: (1) CP-Linear which can be used to
prove correct linear ML inference without revealing the model, (2) CP-SVMLinear which can
be used to prove correct linear-kernel SVM inference without revealing the model and (3)
CP-SVMPoly which can be used to prove correct polynomial-kerrnel SVM inference with-
out revealing the model. These 7 schemes can be reused in other verifiable computation
works.

75

A. Pedersen Commitment Scheme

1. Correctness: It is obviously correct.

2. Binding: If a malicious user found two pairs (u, o) and (u′, o′) such that Commit(u, o) =
Commit(u′, o′) then the discrete log problem dloggh will be solved which is assumed
to be hard in G, in the following way:

Commit(u, o) = Commit(u′, o′)

guho = gu′ho′

gu(gx)o = gu′(gx)o′

gu+xo = gu′+xo′

u + xo = u′ + xo′

xo− xo′ = u′ − u

x(o− o′) = u′ − u

x =
u′ − u
o− o′

Therefore, if the discrete log problem in G was not hard the binding property would
not hold.

3. Hiding: Given a commitment c, there is a value o ∈ Zq for every possible message
u ∈ Zq such that c = guho. Even if the discrete log problem in G was not hard the
hiding property would still hold.

77

B. ZKeq

The Σ protocol satisfies the notions of:

1. Completeness: If c1 and c2 contain the same pre-image and the prover knows the
witness w = (o1, o2, u) and executes the protocol correctly, then a honest verifier will
accept the proof with probability 1.

a · cc
1 =? gz1 hz2

go3 ho4 gcuhco1 = gcugo3 hco1 ho4

go3+cuho4+co1 = gcu+o3 hco1+o4

b · cc
2 =? gz1 hz3

go3 ho5 gcuhco2 = gcugo3 hco2 ho5

go3+cuho5+co2 = gcu+o3 hco2+o5

2. Special Soundness: Given two accepting transcripts with distinct challenges and same
initial messages (a, b, c, z1, z2, z3) and (a, b, c′, z′1, z′2, z′3), the witness w = (o1, o2, u) can
be extracted.

o1 =
(z′2 − z2)

c− c′
=

o1(c′ − c)
c′ − c

o2 =
(z′3 − z3)

c′ − c
=

o2(c′ − c)
c′ − c

u =
(z′1 − z1)

c′ − c
=

c′ ∗ u + o3 − c ∗ u− o3

c′ − c
=

u(c′ − c)
c′ − c

3. Special Honest Verifier Zero-Knowledge: Given a challenge from a public-coin honest
verifier, a simulator can create an accepting transcript (a, b, c, z1, z2, z3) without know-
ing the witness w = (o1, o2, u)

S(c) :=
z1, z2, z3 ∈R G

a = gz1 hz2 c−c
1

b = gz1 hz3 c−c
2

79

C. ZKprod

The Σ protocol satisfies the notions of:

1. Completeness: If c3 contains the same pre-image which is a product of pre-images of
c1 and c2 and the prover knows the witness w = (u1, u2, o1, o2, o3) and executes the
protocol correctly, then a honest verifier will accept the proof with probability 1.

g f1 hz1 = cc
1 · cd

gu1c+dho1c+o4 = gu1cho1cgdho4

gu1c+dho1c+o4 = gu1c+dho1c+o4

g f2 hz2 = cc
2 · ce

gu2cgeho2c+o5 = gcu2 hco2 ge + ho5

gu2c+eho2c+o5 = gcu2+eho2c+o5

c f1
2 hz3 = cc

3 · c′d
gu2(u1c+d)ho2(u1c+d)hco3−cu1o2+o6 = gcu1u2 hco3 gdu2 hdr2+r6

gcu1o2+u2dho2d+co3+o6 = gcu1u2+du2 hco3+do2+o6

2. Special Soundness: Given two accepting transcripts with distinct challenges and same
initial messages (cd, ce, c′d, c, f1, f2, z1, z2, z3) and (cd, ce, c′d, c′, f ′1, f ′2, z′1, z′2, z′3), the wit-
ness w = (u1, u2, o1, o2, o3) can be extracted.

u1 =
f1 − f ′1
c− c′

=
u1c + d− u1c′ − d

c− c′
=

u1(c− c′)
c− c′

u2 =
f2 − f ′2
c− c′

=
u2c + e− u2c′ − e

c− c′
=

u2(c− c′)
c− c′

o1 =
(z′1 − z1)

c− c′
=

o1c′ + o4 − o1c− o4

c′ − c
=

o1(c′ − c)
c′ − c

o2 =
(z′2 − z2)

c− c′
=

o2c′ + o5 − o2c− o5

c′ − c
=

o2(c′ − c)
c′ − c

o3 =
z′3 − z3

c− c′
+ u1o2

=
c(o3 − c1o2) + o6 − c′(o3 − u1o2)− o6

c− c′
+ u1o2

=
(o3 − u1o2)(c′ − c)

c′ − c
+ u1o2

= o3 − u1o2 + u1o2

81

C. ZKprod

3. Special Honest Verifier Zero-Knowledge: Given a challenge from a public-coin hon-
est verifier, a simulator can create an accepting transcript (cd, ce, c′d, c, f1, f2, z1, z2, z3)
without knowing the witness w = (u1, u2, o1, o2, o3)

S(c) :=
f1, f2 ∈R Zq

z1, z2, z3 ∈R G

cd = g f1 hz1 c−c
1

ce = g f2 hz2 c−c
2

c′d = c f1
2 hz3 c−c

3

82

D. CP-MM

Public statement: (cA, cB, cC)
Prover
Witness: (A, B, C, oA, oB, oC)

1. Generate public input

• H(cA, cB, cC)→ I, J

2. Evaluate and prove C on (I, J)

• C̃(I, J)→ c

• PolyCom.Commit(ck, c, v)→ (cc, oc)

• CP-Poly.Prove(x = ((I, J), cC, cc), w = (C, c, oC, oc))→ πpolyc

3. Run the sumcheck protocol

• f (X) = Ã(I, X) · B̃(X, J)

CP-Sumcheck’.Prove(x = (cc), w = (c, oc, f))→ (R, cl , ol , πsc)

4. Evaluate and prove A on (I, R)

• Ã(I, R)→ a

• PolyCom.Commit(ck, a, v)→ (ca, oa)

• CP-Poly.Prove(x = ((I, R), cA, ca), w = (A, a, oA, oa))→ πpolya

5. Evaluate and prove B on (R, J)

• B̃(R, J)→ b

• PolyCom.Commit(ck, b, v)→ (cb, ob)

• CP-Poly.Prove(x = ((R, J), cB, cb), w = (B, b, oB, ob))→ πpolyb

7. Create a product proof

• ZKprod.Prove(a, b, oa, ob, ol , ca, cb, cl)→ πprod

output: π = (cc, πpolyc , πsc, ca, πpolya , cb, πpolyb
, πprod)

Figure D.1.: CP-MM.Prove

83

D. CP-MM

Public statement: (cA, cB, cC)
Verifier
Input: π = (cc, πpolyc , πsc, ca, πpolya , cb, πpolyb

, πprod)

1. Generate public input

• H(cA, cB, cC)→ I, J

2. Output 1 if:

• CP-Poly.Verify(πpolyc , (I, J), cC, cc)→ 1

• CP-Sumcheck’.Verify(πsc, cc)→ (1, R, cl)

• CP-Poly.Verify(πpolya , (I, R), cA, ca)→ 1

• CP-Poly.Verify(πpolyb
, (R, J), cB, cb)→ 1

• ZKprod.Verify(ca, cb, cl , πprod)→ 1

, else output 0

Figure D.2.: CP-MM.Verify

84

E. CP-EHad

Public statement: (cA, cB, cC)
Prover
Witness: (A, B, C, oA, oB, oC)

1. Generate public input

• H(cA, cB, cC)→ I, J

2. Evaluate and prove C on (I, J)

• C̃(I, J)→ c

• PolyCom.Commit(ck, c, v)→ (cc, oc)

• CP-Poly.Prove(x = ((I, J), cC, cc), w = (C, c, oC, oc))→ πpolyc

3. Run the sumcheck protocol

• f (Xr, Xc) = ẽq(I, J, Xr, Xc)× Ã(Xr, Xc)× B̃(Xr)

• CP-Sumcheck’.Prove(x = (cc), w = (c, oc, f))→ ((Rr, Rc), cl , ol , πsc)

4. Evaluate and prove A on (Rr, Rc)

• Ã(Rr, Rc)→ a

• PolyCom.Commit(ck, a, v)→ (ca, oa)

• CP-Poly.Prove(x = ((Rr, Rc), cA, ca), w = (A, a, oA, oa))→ πpolya

5. Evaluate and prove B on (Rr)

• B̃(Rr)→ b

• PolyCom.Commit(ck, b, v)→ (cb, ob)

• CP-Poly.Prove(x = (Rr, cB, cb), w = (B, b, oB, ob))→ πpolyb

6. Create a product proof

• ẽq(I, J, Rr, Rc)→ e

• ZKprod.Prove(a, b · e, oa, ob · e, ol , ca, ce
b, cl)→ πprod

output: π = (cc, πpolyc , πsc, ca, πpolya , cb, πpolyb
, πprod)

Figure E.1.: CP-EHad.Prove

85

E. CP-EHad

Public statement: (cA, cB, cC)
Verifier
Input: π = (cc, πpolyc , πsc, ca, πpolya , cb, πpolyb

, πprod)

1. Generate public input

• H(cA, cB, cC)→ I, J

3. Output 1 if:

• CP-Poly.Verify(πpolyc , (I, J), cC, cc)→ 1

• CP-Sumcheck’.Verify(πsc, cc)→ (1, (Rr, Rc), cl)

• Compute ẽq(I, J, Rr, Rc)→ e

• CP-Poly.Verify(πpolya , (Rr, Rc), cA, ca)→ 1

• CP-Poly.Verify(πpolyb
, Rr, cB, cb)→ 1

• ZKprod.Verify(ca, ce
b, cl , πprod)→ 1

, else output 0

Figure E.2.: CP-EHad.Verify

86

87

F. CP-Expo

F. CP-Expo

Public statement: (d, cA, cB)
Prover
Witness: (A, B, oA, oB)

1. Generate public input

• H(cA, cB)→ I, J

2. Evaluate and prove B on (I, J)

• B̃(I, J)→ b

• PolyCom.Commit(ck, b, v)→ (cb, ob)

• CP-Poly.Prove(x = ((I, J), cB, cb), w = (B, b, oB, ob))→ πpolyb

3. Run the sumcheck protocol

• f (Xr, Xc) = ẽq(I, J, Xr, Xc)× (Ã(Xr, Xc))d

• CP-Sumcheck’.Prove(x = (cb), w = (b, ob, f))→ ((Rr, Rc), cl , ol , πsc)

4. Evaluate and prove A on (Rr, Rc)

• Ã(Rr, Rc)→ a

• PolyCom.Commit(ck, a, v)→ (ca, oa)

• CP-Poly.Prove(x = ((Rr, Rc), cA, ca), w = (A, a, oA, oa))→ πpolya

5. ∀i ∈ {2, ..., d}
• PolyCom.Commit(ck, ai, v)→ (cai , oai)

Note that: cai = (cai−1)ahoai−ao
a(i−1)

• ZK′eq.Prove(g1, g2, u, o1, o2, c1, c2)→ πai

• g1 = g and g2 = cai−1

• u = a
• o1 = oa and o2 = oai − aoa(i−1)

• c1 = ca and c2 = cai

6.Create a product proof

• ẽq(I, J, Rr, Rc)→ e

• ZKeq.Prove(e · ad, e · oad , ol , (cad)e, cl)→ πeq

output: π = (cb, πpolyb
, πsc, ca, πpolya , ca2 , ..., cad , πa2 , ..., πad , πeq)

Figure F.1.: CP-Expo.Prove

88

Public statement: (d, cA, cB)
Verifier
Input: π = (cb, πpolyb

, πsc, ca, πpolya , ca2 , ..., cad , πa2 , ..., πad , πeq)

1. Generate public input

• H(d, cA, cB)→ I, J

2. Output 1 if:

• CP-Poly.Verify(πpolyb
, (I, J), cB, cb)→ 1

• CP-Sumcheck’.Verify(πsc, cb)→ (1, (Rr, Rc), cl)

• Compute ẽq(I, J, Rr, Rc)→ e

• CP-Poly.Verify(πpolya , (Rr, Rc), cA, ca)→ 1

• ∀i ∈ {2, .., d}
• ZK′eq.Verify(g1, g2, c1, c2, πai)→ 1

• g1 = g and g2 = cai−1

• c1 = ca and c2 = cai

• ZKeq.Verify((cad)e, cl , πeq)→ 1

, else output 0

Figure F.2.: CP-Expo.Verify

89

G. CP-ColumnSum

Public statement: (cA, cB)
Prover
Witness: (A, B, oA, oB)

1. Generate public input

• H(cA, cB)→ J

2. Evaluate and prove B on J

• B̃(J)→ b

• PolyCom.Commit(ck, b, v)→ (cb, ob)

• CP-Poly.Prove(x = (J, cB, cb), w = (B, b, oB, ob))→ πpolyb

3. Run the sumcheck protocol

• f (X) = Ã(X, J)

• CP-Sumcheck’.Prove(x = (cb), w = (b, ob, f))→ (R, cl , ol , πsc)

4. Evaluate and prove A on (R, J)

• Ã(R, J)→ a

• PolyCom.Commit(ck, a, v)→ (ca, oa)

• CP-Poly.Prove(x = ((R, J), cA, ca), w = (A, a, oA, oa))→ πpolya

6.Create an equality proof

• ZKeq.Prove(a, oa, ol , ca, cl)→ πeq

output: π = (ca, πpolya , πsc, cb, πpolyb
, πeq)

Figure G.1.: CP-ColumnSum.Prove

91

G. CP-ColumnSum

Public statement: (cA, cB)
Verifier
Input: π = (ca, πpolya , , πsc, cb, πpolyb

, πeq)

1. Generate public input

• H(cA, cB)→ J

2. Output 1 if:

• CP-Poly.Verify(πpolyb
, J, cB, cb)→ 1

• CP-Sumcheck’.Verify(πsc, cb)→ (1, R, cl)

• CP-Poly.Verify(πpolya , (R, J), cA, ca)→ 1

• ZKeq.Verify(ca, cl , πeq)→ 1

, else output 0

Figure G.2.: CP-ColumnSum.Verify

92

H. CP-ScalarAdd

Public statement: (cA, cC, cB)
Prover
Witness: (A, C, B, oA, oC, oB)

ZKeq.Prove(C, oC, oB − oA, cC, cB
cA
)→ π

output: π

Figure H.1.: CP-ScalarAdd.Prove

Public statement: (cA, cC, cB)
Verifier
Input: π

Output 1 if:

ZKeq.Verify(cC, cB
cA

, π)→ 1

, else output 0

Figure H.2.: CP-ScalarAdd.Verify

93

I. CP-Linear

Public statement: (cX , cY, cB, cZ, cO)
Prover
Witness: (X, Y, B, Z, O, oX , oY, oB, oZ, oO)

1. Calculate the prediction

• Compute eHad(Z, W) = H

• Compute columnSum(H) = S

• Note that: scalarAdd(S, B) = O

2. Commit computation values

• PolyCom.Commit(ck, H, p)→ (cH , oH)

• PolyCom.Commit(ck, S, p)→ (cS, oS)

3. CP-EHad.Prove(x, w)→ πehad

• x = (cZ, cW , cH)

• w = (Z, W, H, oZ, oW , oH)

4. CP-ColumnSum.Prove(x, w)→ πcolumnSum

• x = (cH , cS)

• w = (H, S, oH , oS)

5. CP-ScalarAdd.Prove(x, w)→ πscalarAdd

• x = (cS, cB, cO)

• w = (S, B, O, oS, oB, oO)

output: π = (cH , cS, πeHad, πcolumnSum, πscalarAdd)

Figure I.1.: CP-Linear.Prove

95

I. CP-Linear

Public statement: (cW , cB, cZ, c0)
Verifier
Input: π = (cH , cS, πeHad, πcolumnSum, πscalarAdd)

Output 1 if:

• CP-EHad.Verify(πeHad, cZ, cW , cH)→ 1

• CP-ColumnSum.Verify(πcolumnSum, cH , cS)→ 1

• CP-ScalarAdd.Verify(πscalarAdd, cS, cB, cO)→ 1

, else output 0

Figure I.2.: CP-Linear.Verify

96

J. CP-SVMLinear

Public statement: (cX , cY, cB, cZ, cO)
Prover
Witness: (X, Y, B, Z, O, oX , oY, oB, oZ, oO)

1. Calculate the prediction

• Compute mm(X, Z) = M

• Compute eHad(M, Y) = H

• Compute columnSum(H) = S

• Note that: scalarAdd(S, B) = O

2. Commit computation values

• PolyCom.Commit(ck, M, p)→ (cM, oM)

• PolyCom.Commit(ck, H, p)→ (cH , oH)

• PolyCom.Commit(ck, S, p)→ (cS, oS)

3. CP-MM.Prove(x, w)→ πmm

• x = (cX , cZ, cM)

• w = (X, Z, M, oX , oZ, oM)

4. CP-EHad.Prove(x, w)→ πehad

• x = (cM, cY, cH)

• w = (M, Y, H, oM, oY, oH)

5. CP-ColumnSum.Prove(x, w)→ πcolumnSum

• x = (cH , cS)

• w = (H, S, oH , oS)

5. CP-ScalarAdd.Prove(x, w)→ πscalarAdd

• x = (cS, cB, cO)

• w = (S, B, O, oS, oB, oO)

output: π = (cM, cH , cS, πmm, πeHad, πcolumnSum, πscalarAdd)

Figure J.1.: CP-SVMLinear.Prove

97

J. CP-SVMLinear

Public statement: (cX , cY, cB, cZ, c0)
Verifier
Input: π = (cM, cH , cS, πmm, πeHad, πcolumnSum, πscalarAdd)

Output 1 if:

• CP-MM.Verify(πmm, cX , cZ, cM)→ 1

• CP-EHad.Verify(πeHad, cM, cY, cH)→ 1

• CP-ColumnSum.Verify(πcolumnSum, cH , cS)→ 1

• CP-ScalarAdd.Verify(πscalarAdd, cS, cB, cO)→ 1

, else output 0

Figure J.2.: CP-SVMLinear.Verify

98

99

K. CP-SVMPoly

K. CP-SVMPoly

Public statement: (d, cX , cC, cY, cB, cZ, cO)
Prover
Witness: (X, C, Y, B, Z, O, oX , oC, oY, oB, oC, oZ, oO)

1. Calculate the prediction

• Compute mm(X, Z) = M

• Compute scalarAdd(M, C) = Γ

• Compute expo(Γ, d) = E

• Compute eHad(E, Y) = H

• Compute columnSum(H) = S

• Note that: scalarAdd(S, B) = O

2. Commit computation values

• PolyCom.Commit(ck, M, p)→ (cM, oM)

• PolyCom.Commit(ck, Γ, p)→ (cΓ, oΓ)

• PolyCom.Commit(ck, E, p)→ (cE, oE)

• PolyCom.Commit(ck, H, p)→ (cH , oH)

• PolyCom.Commit(ck, S, p)→ (cS, oS)

3. CP-MM.Prove(x, w)→ πmm

• x = (cX , cZ, cM)

• w = (X, Z, M, oX , oZ, oM)

4. CP-ScalarAdd.Prove(x, w)→ πscalarAdd1

• x = (cM, cC, cγ)

• w = (M, C, Γ, oM, oC, oΓ)

5. CP-Expo.Prove(x, w)→ πexpo

• x = (d, cΓ, cE)

• w = (Γ, E, oΓ, oE)

6. CP-EHad.Prove(x, w)→ πehad

• x = (cE, cY, cH)

• w = (E, Y, H, oE, oY, oH)

7. CP-ColumnSum.Prove(x, w)→ πcolumnSum

• x = (cH , cS)

• w = (H, S, oH , oS)

8. CP-ScalarAdd.Prove(x, w)→ πscalarAdd2

• x = (cS, cB, cO)

• w = (S, B, O, oS, oB, oO)

output: π = (cM, cΓ, cE, cH , cS, πmm, πscalarAdd1, πexpo, πeHad, πcolumnSum, πscalarAdd2)

Figure K.1.: CP-SVMPoly.Prove

100

Public statement: (d, cX , cC, cY, cB, cZ, cO)
Verifier
Input: π = (cM, cΓ, cE, cH , cS, πmm, πscalarAdd1, πexpo, πeHad, πcolumnSum, πscalarAdd2)

Output 1 if:

• CP-MM.Verify(πmm, cX , cZ, cM)→ 1

• CP-ScalarAdd.Verify(πscalarAdd1, cM, cC, cΓ)→ 1

• CP-Expo.Verify(πexpo, d, cΓ, cE)→ 1

• CP-EHad.Verify(πeHad, cE, cY, cH)→ 1

• CP-ColumnSum.Verify(πcolumnSum, cH , cS)→ 1

• CP-ScalarAdd.Verify(πscalarAdd2, cS, cB, cO)→ 1

, else output 0

Figure K.2.: CP-SVMPoly.Verify

101

Bibliography

[1] Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspectives, and
prospects. Science, 349(6245):255–260, 2015.

[2] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M
Blau, and Sebastian Thrun. Dermatologist-level classification of skin cancer with deep
neural networks. nature, 542(7639):115–118, 2017.

[3] Lyn Thomas, Jonathan Crook, and David Edelman. Credit scoring and its applications.
SIAM, 2017.

[4] Francesco Ricci, Lior Rokach, and Bracha Shapira. Recommender systems: introduction
and challenges. Recommender systems handbook, pages 1–34, 2015.

[5] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20:273–297, 1995.

[6] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[7] J. Ross Quinlan. Induction of decision trees. Machine learning, 1:81–106, 1986.

[8] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

[9] https://cloud.google.com/ai-platform.

[10] https://aws.amazon.com/marketplace.

[11] https://azuremarketplace.microsoft.com/en-us/marketplace/.

[12] Chaoyue Niu, Fan Wu, Shaojie Tang, Shuai Ma, and Guihai Chen. Toward verifiable
and privacy preserving machine learning prediction. IEEE Transactions on Dependable
and Secure Computing, 19(3):1703–1721, 2020.

[13] Xixun Yu, Zheng Yan, and Athanasios V Vasilakos. A survey of verifiable computation.
Mobile Networks and Applications, 22:438–453, 2017.

[14] Abbas Acar, Hidayet Aksu, A Selcuk Uluagac, and Mauro Conti. A survey on homo-
morphic encryption schemes: Theory and implementation. ACM Computing Surveys
(Csur), 51(4):1–35, 2018.

[15] Matteo Campanelli, Dario Fiore, and Anaı̈s Querol. Legosnark: Modular design and
composition of succinct zero-knowledge proofs. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 2075–2092, 2019.

[16] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and
John Wernsing. Cryptonets: Applying neural networks to encrypted data with high
throughput and accuracy. In International conference on machine learning, pages 201–210.
PMLR, 2016.

103

https://cloud.google.com/ai-platform
https://aws.amazon.com/marketplace
https://azuremarketplace.microsoft.com/en-us/marketplace/

Bibliography

[17] Zahra Ghodsi, Tianyu Gu, and Siddharth Garg. Safetynets: Verifiable execution of
deep neural networks on an untrusted cloud. Advances in Neural Information Processing
Systems, 30, 2017.

[18] Seunghwa Lee, Hankyung Ko, Jihye Kim, and Hyunok Oh. vcnn: Verifiable convolu-
tional neural network based on zk-snarks. Cryptology ePrint Archive, 2020.

[19] Lingchen Zhao, Qian Wang, Cong Wang, Qi Li, Chao Shen, and Bo Feng. Veriml:
Enabling integrity assurances and fair payments for machine learning as a service.
IEEE Transactions on Parallel and Distributed Systems, 32(10):2524–2540, 2021.

[20] Shadan Ghaffaripour and Ali Miri. Mutually private verifiable machine learning as-
a-service: A distributed approach. In 2021 IEEE World AI IoT Congress (AIIoT), pages
0232–0239. IEEE, 2021.

[21] Xiong Li, Jiabei He, Pandi Vijayakumar, Xiaosong Zhang, and Victor Chang. A verifiable
privacy-preserving machine learning prediction scheme for edge-enhanced hcpss. IEEE
Transactions on Industrial Informatics, 18(8):5494–5503, 2021.

[22] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning,
volume 4. Springer, 2006.

[23] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalam-
pos Papamanthou. A zero-knowledge version of vsql. Cryptology ePrint Archive, 2017.

[24] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Advances in Cryptology—CRYPTO’91: Proceedings, pages 129–140.
Springer, 2001.

[25] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, and Jens Groth. Efficient zero-
knowledge proof systems. Foundations of Security Analysis and Design VIII: FOSAD
2014/2015/2016 Tutorial Lectures 15, pages 1–31, 2016.

[26] Guy N Rothblum. Delegating computation reliably: paradigms and constructions. PhD
thesis, Massachusetts Institute of Technology, 2009.

[27] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping Chen, and Huaimin Wang.
Blockchain challenges and opportunities: A survey. International journal of web and grid
services, 14(4):352–375, 2018.

[28] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE transactions on information theory, 31(4):469–472, 1985.

104

Colophon

This document was typeset using LATEX, using the KOMA-Script class scrbook. The main
font is Palatino.

	Introduction
	Machine Learning
	ML Prediction Service
	ML Prediction Service Platform
	Key Contributions
	Organization of the Report

	Related work
	MVP
	Mutually Private Verifiable Machine Learning As-a-service: A Distributed Approach
	VPMLP

	Supported ML Models
	Operations
	Linear ML Models
	SVM
	SVM with Linear Kernel
	SVM with Polynomial Kernel

	Polynomial Commitment Scheme
	Prerequisites
	Commitment Scheme
	Pedersen Commitment Scheme
	Zero-Knowledge Proof Systems
	Bilinear Groups
	Function Extensions

	Polynomial Encoding
	PolyCom
	Linear Homomorphism
	Extractability
	ZKeq
	ZKprod
	Polynomial Commitment
	Overview of PolyCom

	Converting a Vector into a Polynomial

	Proving correct ML inference computation
	LegoSNARK
	Overview of CP-SNARKs
	Fundamental CP-SNARKs
	CP-Poly
	CP-Sumcheck

	CP-SNARKs for ML Operations
	CP-MM
	CP-EHad
	CP-ColumnSum
	CP-Expo
	CP-ScalarAdd

	CP-SNARKs for ML Inference
	CP-Linear
	CP-SVMLinear
	CP-SVMPoly

	Complexity Analysis
	Implementation and Experimental Evaluation

	ML Prediction Service Platforms
	Prerequisites
	Blockchain
	Homomorphic Encryption

	MLPSP
	Security Discussion

	IP-MLPSP
	Motivation
	Homomorphic Encryption of the Dataset
	Main Idea
	Design
	Security Discussion

	Discussion
	Comparison of IP-MLPSP with Related Work: Advantages
	Trust Assumptions
	Model Extraction Attack
	Batch Verification

	Comparison of IP-MLPSP with Related Work: Disadvantages
	Future Work

	Conclusion
	Pedersen Commitment Scheme
	ZKeq
	ZKprod
	CP-MM
	CP-EHad
	CP-Expo
	CP-ColumnSum
	CP-ScalarAdd
	CP-Linear
	CP-SVMLinear
	CP-SVMPoly

