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BMO SPACES OF σ-FINITE VON NEUMANN ALGEBRAS AND

FOURIER-SCHUR MULTIPLIERS ON SUq(2)

MARTIJN CASPERS AND GERRIT VOS

Abstract. We consider semi-group BMO spaces associated with an arbitrary σ-finite von Neu-
mann algebra (M, ϕ). We prove that the associated row and column BMO spaces always admit
a predual, extending results from the finite case. Consequently, we can prove that the semi-group
BMO spaces considered are Banach spaces and they interpolate with Lp as in the commutative
situation, namely [BMO(M), L◦

p(M)]1/q ≈ L◦
pq(M). We then study a new class of examples. We

introduce the notion of Fourier-Schur multiplier on a compact quantum group and show that such
multipliers naturally exist for SUq(2).

1. Introduction

Spaces of functions with Bounded Means of Oscillation (BMO spaces) play an eminent role
in the theory of harmonic analysis. They serve as so-called ‘end-point spaces’ for many natural
operators in harmonic analysis including singular integral operators and Fourier multipliers, see
[Gra09]. More precisely, many singular integral operators and Fourier multipliers like the Riesz or
Hilbert transform act boundedly as operators Lp → Lp, 1 < p < ∞ and at the boundary extend
to bounded maps L∞ → BMO. We call the latter bound an end-point estimate. Such endpoint
estimates have several applications; one of the most important ones being that after interpolation
they immediately yield Lp-boundedness with sharp constants.

For some singular integrals, like the Riesz and Hilbert transform, BMO spaces even provide
optimal endpoint spaces. We mean this in the following sense (see [FS72], [Ste70]). Consider the
Hardy-space H1. By the celebrated Fefferman-Stein duality we have (H1)∗ ≈ BMO. Then the
Hilbert transform is bounded H1 → L1. Moreover, the graph norm of the Hilbert transform as
an unbounded map L1 → L1 is equivalent to the H1-norm (see [Gra09, Section 6.7.4]). The same
holds for the Riesz transform(s) if one takes all possible coordinates into account.

These and other results show that BMO and Hardy spaces occur naturally in the theory of
singular integrals and their duality is of fundamental importance.

In the current paper we take a non-commutative viewpoint on BMO and Hardy spaces. In
this case the classical approach to BMO using cubes to measure the oscillation is replaced by an
analysis of Markov semi-groups (in the commutative case diffusion semi-groups). In the commu-
tative situation these ideas go back (at least) to [Var85], [SV74]. Much more recently an analysis
of duality and comparison of several such BMO-spaces was carried out in [DY05a], [DY05b].

The introduction of non-commutative semi-group BMO spaces was done by Mei [Mei08] and
further developed by Junge-Mei in [JM12]. Their work is precedented by the theory of martingale
BMO spaces [PX97], [Pop00], [Mus03], [JM07] and [JP14]. Most notably in the appendix of [PX97]
a duality (H1)

∗ = BMO is proven for a suitable notion of a Hardy space. Such martingale BMO
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2 MARTIJN CASPERS AND GERRIT VOS

spaces require the existence of a filtration of the von Neumann algebra. Many of the concrete cases
of martingale BMO spaces concern semi-classical von Neumann algebras (i.e. tensor products with
a commutative von Neumann algebra) or a vector-valued situation where the filtration still comes
from a commutative space. For some applications this structure is insufficient, see e.g. [JMP14],
[Mei17], [Cas19], [CJSZ20] and one requires a true non-commutative version of BMO.

Here we shall take the approach to BMO from [Mei08], [JM12] as a starting point. It assumes
the existence of a Markov semi-group Φ = (Φt)t≥0 on a finite (or semi-finite) von Neumann
algebra (M, τ), see Definition 4.1. [JM12] considers various BMO-norms associated with this and
its subordinated Poisson semigroup. We only consider the norm ‖ · ‖BMOΦ

(or ‖ · ‖BMO(Φ) in the
notation of [JM12]). For x ∈ L2(M) the column BMO-seminorm is then defined as

‖x‖2BMOc
Φ
= sup

t≥0
‖Φt(|x− Φt(x)|

2)‖∞, (1.1)

where the Markov maps Φt extend naturally to L2(M) and L1(M). Then column space BMOc(M,Φ)
is defined as the space of elements from L2(M) (minus some degenerate part) where the norm
(1.1) is finite. Finally, BMO(M,Φ) is the intersection of BMOc(M,Φ) and its adjoint row space.

[JM12] establishes the natural interpolation results between BMO and Lp by making use of
Markov dilations and interpolation results for martingale BMO spaces. In the more general
context of σ-finite von Neumann algebras a parallel study was carried out in [Cas19] which again
obtains such interpolation results through the Haagerup reduction method [HJX10] and the finite
case [JM12]. Both papers do this for several of the various BMO-norms defined in [JM12]. The
main advantage of considering the BMO-norm (1.1) as opposed to the norm ‖ · ‖bmoΦ is that
the Markov dilation is not required to have a.u. continuous path in order to apply complex
interpolation.

There is a very subtle but important point that makes a difference between the current paper
and [Cas19]. In [Cas19] BMO is defined by only considering x in M and then taking an abstract
completion with respect to the norm (1.1) (or one of the other BMO-norms). This ‘smaller BMO
space’ has the benefit that basic properties like the triangle inequality and completeness follow
rather easily. Here we stay closer to the ‘larger BMO space’ of L2-elements with finite BMO-
norm as defined above, and show that these basic properties still hold. We do this by proving a
Fefferman-Stein duality result.

The contribution of this paper is twofold. Firstly, we study abstract BMO spaces of σ-finite
von Neumann algebras. Instead of a direct H1-BMO duality theorem, we will prove such a duality
only for the column and row BMO spaces. This suffices for our purposes. The proof parallels the
tracial proof in [JMP14]. The main difficulty lies in the fact that Lp spaces beyond tracial von
Neumann algebras do not naturally intersect and we must deal with Tomita-Takesaki modular
theory.

It should be mentioned that the H1 Hardy spaces we construct here are abstract in nature
and the question of whether every (column) BMO space has a natural Hardy space as its predual
remains open. We refer to [Mei08] and [JM12, Open problems, p. 741] for details about this
question, where it was resolved under additional assumptions on the semi-group.

Theorem 1.1. There exist Banach spaces hr1(M,Φ) and hc1(M,Φ) such that

BMOc(M,Φ) ∼= hr1(M,Φ)∗, BMOr(M,Φ) ∼= hc1(M,Φ)∗.
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Within the construction of the preduals we need some Lp-module theory - see [Pas73] and
[JS05]. In particular, we need to extend some results to the σ-finite case. We give an introduction
to the theory and prove the necessary results in Section 3.

The existence of these preduals for the column and row space then settles important basic
properties of the BMO space itself, namely the triangle inequality and completeness of the normed
space.

Corollary 1.2. BMO(M,Φ) is a Banach space.

Finally, we show that the interpolation result of [Cas19] still holds for our larger BMO space
and extends [JM12] beyond the tracial case. We refer to Appendix B and [JM12], [Cas19] for the
definition of a standard Markov dilation.

Theorem 1.3. If Φ is ϕ-modular and admits a ϕ-modular standard Markov dilation, then for all
1 ≤ p <∞, 1 < q <∞,

[BMO(M,Φ), L◦
p(M)]1/q ≈pq L

◦
pq(M).

Here ≈pq means that the Banach spaces are isomorphic and the norm of the isomorphism in both
directions can be estimated by an absolute constant times pq.

We note that the modularity assumptions are only needed to carry out the Haagerup reduction
method as in [Cas19]. Many natural Markov semi-groups are modular or can be averaged to a
modular Markov semi-group in case ϕ is almost periodic, see [CS15, Proposition 4.2], [OT15,
Theorem 4.15].

The second contribution we make consists of concrete examples for compact quantum groups.
Theorem 1.3 as well as our construction of the preduals hr1(M,Φ), hc1(M,Φ) open the way for
Lp-boundedness results on a wider range of multipliers. We give an application for multipliers on
the quantum group SUq(2). In Section 5, we define Fourier-Schur multipliers on quantum groups
which is an analogue of Fourier multipliers on group von Neumann algebras.

Definition 1.4. Let G be a compact quantum group and T : Pol(G) → Pol(G) a linear map. We
call T a Fourier-Schur multiplier if the following condition holds. Let u be any finite dimensional
corepresentation on H. Then there exists an orthogonal basis ei such that if ui,j are the matrix
coefficients with respect to this basis, then there exist numbers ci,j := cui,j ∈ C such that

Tui,j = ci,jui,j.

In this case (cui,j)i,j,u is called the symbol of T .

Basically, Fourier-Schur multipliers are Schur multipliers acting on the Fourier domain. We
consider Fourier-Schur multipliers on Gq := SUq(2), q ∈ (−1, 1)\{0} associated with completely
bounded Fourier multipliers on the torus T.

The semigroups we use to define BMO are the Heat semi-group on T and the Markov semigroup
Φ on Gq constructed in Section 5.6. We use the shorthand notation BMO(T), BMO(Gq) for the
associated BMO spaces; see again Section 5.6.

Theorem 1.5. Let m ∈ ℓ∞(Z) with m(0) = 0 be such that the Fourier multiplier Tm : L∞(T) →
BMO(T) is completely bounded. Let T̃m : Pol(Gq) → Pol(Gq) be the Fourier-Schur multiplier with

symbol (m(−i− j))i,j,l with respect to the basis described in (5.4). Then T̃m extends to a bounded
map

T̃ (∞)
m : L∞(Gq) → BMO(Gq).

Moreover ‖T̃
(p)
m : L∞(Gq) → BMO(Gq)‖ ≤ ‖Tm : L∞(T) → BMO(T)‖cb.
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Using the interpolation results of Section 4.3, i.e. Theorem 1.3, also the corresponding Lp → Lp

follow. This is proved in Theorem 5.17.
In the proof we use our column and row H1-BMO duality principle to show that Fourier-Schur

multipliers extend from the weak-∗ dense subalgebra of matrix coefficients of irreducible unitary
corepresentations. The other important ingredient is a transference principle.

In the appendix, we give some comments on the operator space structures on BMO. Also, we
prove that the semigroup we use for the definition of our BMO space has a Markov dilation.

Structure of the paper. In Section 2 we fix preliminary notation and introduce non-commutative
Lp-spaces associated with σ-finite von Neumann algebras. Section 3 is devoted to Lp-module
theory. We generalize some of the existing results from the tracial to the σ-finite case in order
to apply them in the subsequent sections. Section 4 introduces BMO-spaces of σ-finite von Neu-
mann algebras. We prove that the corresponding row and column spaces have preduals and gather
corollaries. In other words, we prove Theorem 1.1 and Corollary 1.2. In Section 4.3 we prove
the interpolation result of Theorem 1.3. The proof is the same as in [Cas19] provided that we
can prove that an inclusion of a von Neumann algebra with expectation yields a 1-complemented
BMO-subspace (this point was already surprisingly subtle in [Cas19]). We give full details of this
fact in Section 4.3. In Section 5 we turn to the examples. We introduce Fourier-Schur multipliers
and show how to construct them on SUq(2). Finally, in the Appendix we gather results on oper-
ator space structures and Markov dilations.

We would like to express much gratitude towards the referees for their careful reading and
numerous useful comments.

2. Preliminaries

2.1. General notation. We use the convention N = Z≥0. Following the convention in the litera-
ture for Lp-modules, inner products are linear in the second component and antilinear in the first.
Dual actions are sometimes linear and sometimes antilinear (namely in the case of Lp-modules);
whenever something is antilinear this will be explicitly mentioned. With an isomorphism (of Ba-
nach spaces), we shall mean a linear bijection that is bounded and whose inverse is also bounded.
We write ∼= when the isomorphism is isometric.

2.2. Operator theory. We use the following notation for tensor products:

• A⊗B for the algebraic tensor product of vector spaces.
• M⊗̄N for the von Neumann algebraic tensor product.
• A ⊗min B for the minimal tensor product of C∗-algebras.
• H ⊗2 K for the Hilbert space tensor product.

For general von Neumann algebra theory we refer to [Mur90] or Takesaki’s books [Tak02],
[Tak03a], [Tak03b]. For the theory of operator spaces, see [ER00] and [Pis03]. The following
standard result shall be used several times in this paper. The proof follows directly from the
definitions.

Proposition 2.1 (See [Con90]). Let X,Y be Banach spaces and T : X → Y a bounded linear
map. Then T ∗ : Y ∗ → X∗ is weak-∗/weak-∗ continuous, i.e. normal.

Using this (and [Sak71, Chapter 1.22]) one proves that tensoring with the identity preserves
normality. More precisely, for von Neumann algebras M,N and a completely bounded normal
operator T : M → M, the map 1N ⊗ T extends to a normal operator on N⊗̄M.
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Convention: All von Neumann algebras are assumed to be σ-finite. We will remind the reader
of this convention a number of times in this paper.

2.3. Compatible couples. We will need some facts about compatible couples and compatible
morphisms. We summarise some of the relevant theory from [BL76].

Definition 2.2. A pair of Banach spaces (A0, A1) are called a compatible couple if both are
continuously embedded in some locally convex vector space A.

We will mostly keep track of the continuous embeddings i0 : A0 → A and i1 : A1 → A. One
can define norms on the ‘intersection space’ i0(A0) ∩ i1(A1) and ‘sum space’ i0(A0) + i1(A1) by

‖a‖∩ := max{‖i−1
0 (a)‖A0 , ‖i

−1
1 (a)‖A1}, a ∈ i0(A0) ∩ i1(A1)

‖a‖+ = inf{‖a0‖A0 + ‖a1‖A1 | i0(a0) + i1(a1) = a}, a ∈ i0(A0) + i1(A1).

These norms turn the intersection and sum spaces into Banach spaces. When no confusion can
occur, we will denote them simply by A0 +A1 and A0 ∩A1.

Let (B0, B1) be another compatible couple given by embeddings j0 : B0 → B and j1 : B1 → B.
A pair of bounded maps T0 : A0 → B0, T1 : A1 → B1 are called compatible morphisms if they
coincide on the (inverse image of the) intersection, i.e.

j0(T0(a0)) = j1(T1(a1)), whenever i0(a0) = i1(a1).

If (T0, T1) are compatible morphisms, then there exists a unique map T : i0(A0) + i1(A1) →
j0(B0) + j1(B1) ‘extending’ T0 and T1, i.e.

T (i0(a)) = j0(T0(a)), T (i1(b)) = j1(T1(b)), a ∈ A0, b ∈ A1. (2.1)

2.4. Lp-spaces of σ-finite von Neumann algebras. Lp-spaces corresponding to arbitrary von
Neumann algebras have been constructed by Haagerup [Haa79] (see also [Ter81]) and Connes-
Hilsum [Con80], [Hil81] (see also Kosaki [Kos84] in the σ-finite case). Here we will use the
Connes-Hilsum definition. Each of the constructions can be recast in terms of the Haagerup
definition; see for instance [Ter81, Section IV] for the isomorphism between Connes-Hilsum and
Haagerup Lp-spaces.

Essential in the Connes-Hilsum construction is Connes’ spatial derivative - see [Con80], [Ter81].
Let M ⊆ B(H) be a von Neumann algebra. Let ψ be any fixed normal, semifinite faithful weight
on the commutant M′. For a normal, semifinite weight φ on M, the spatial derivative is an
(unbounded) positive (self-adjoint) operator denoted by

Dφ := dφ/dψ.

Remark 2.3. The choice of ψ will up to isomorphism not affect any of the constructions below.
In particular it will yield isometrically isomorphic non-commutative Lp-spaces. We will assume
henceforth that a choice for ψ has been made implicitly and suppress it in the notation.

Remark 2.4. In this paper we only deal with σ-finite von Neumann algebras M: von Neumann
algebras with a normal faithful state. In this case we may assume that M′ is σ-finite as well, for
example by considering the standard form of M [Tak03a]. This way we may assume that ψ is
a faithful normal state and we shall not require the general theory of weights on von Neumann
algebras.
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The spatial derivative of a faithful normal state φ onM implements the modular automorphism
group:

σφt (x) = Dit
φxD

−it
φ , x ∈ M, t ∈ R. (2.2)

We define the Tomita algebra

Tφ = {x ∈ M | t 7→ σφt (x) extends analytically to C}.

By [Tak03a, Lemma VIII.2.3] Tφ is a σ-weakly dense ∗-subalgebra of M. Hence it is also σ-
strong-* dense.

For 1 ≤ p <∞ the space Lp(M) is defined as the space of all closed densely defined operators
x on H such that u ∈ M for the u from the polar decomposition x = u|x|, and |x|p = Dφ for
some φ ∈ M+

∗ . We define a trace on L1(M) as follows: let x ∈ L1(M)+ and φ ∈ M+
∗ be such

that x = Dφ. Then

Tr(x) := φ(1).

The trace is then extended to L1(M) through the decomposition of an arbitrary operator into a

linear combination of four positive operators. The norm on Lp(M) is given by ‖x‖p = Tr(|x|p)1/p.
Further set L∞(M) := M.

Let a, b ∈ Lp(M), c ∈ Lq(M) with 1 ≤ p, q ≤ ∞. Then a + b and ac are densely defined
and preclosed. Their respective closures are called the strong sum and strong product and will
simply be denoted by a+ b and ac. With these conventions a+ b ∈ Lp(M) (turning Lp(M) into a

Banach space) and ac ∈ Lr(M) for 1
r := 1

p +
1
q with r ≥ 1. Moreover, we have the Hölder/Kosaki

inequality:

‖ac‖r ≤ ‖a‖p‖c‖q.

In case r = 1 we have the trace property Tr(ac) = Tr(ca) [Ter81, Proposition IV.13].

Remark 2.5. Lp(M) may also be defined in the same way for 0 < p < 1. It is not a normed

space though. All we shall need in the current paper is that for 1
2 ≤ p < 1 this space contains

the product of two elements in L2p(M) and the square root of a positive element in Lp(M) is in
L2p(M).

For x ∈ Lp(M) we have x∗ ∈ Lp(M) with ‖x‖p = ‖x∗‖p [Ter81, Prop IV.8]. In particular,

‖x∗x‖
1/2
p/2 = ‖x‖p = ‖x∗‖p = ‖xx∗‖

1/2
p/2. (2.3)

There exists a duality pairing between Lp(M) and Lq(M) given by

〈x, y〉 = Tr(xy), x ∈ Lq(M), y ∈ Lp(M),

for 1 ≤ p <∞ and 1
p +

1
q = 1. This induces an isometric isomorphism Lp(M)∗ ∼= Lq(M).

2.5. Compatible couples of Lp-spaces. For finite von Neumann algebras, we have inclusions

Lq(M) ⊆ Lp(M) for 1
2 ≤ p ≤ q ≤ ∞. In the σ-finite case, the Lp-spaces are not included in

each other as sets of operators on Hilbert spaces. However, they can be turned into a scale of
compatible couples as follows.
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LetM be a σ-finite von Neumann algebra. Fix a normal faithful state ϕ onM. Fix −1 ≤ z ≤ 1.
For x ∈ M, 12 ≤ p ≤ ∞ we have

D
( 1
2
− z

2
) 1
p

ϕ xD
( 1
2
+ z

2
) 1
p

ϕ ∈ Lp(M).

For 1
2 ≤ p ≤ q ≤ ∞ there are contractive embeddings

κ(z)q,p : Lq(M) → Lp(M) : D
( 1
2
− z

2
) 1
q

ϕ xD
( 1
2
+ z

2
) 1
q

ϕ 7→ D
( 1
2
− z

2
) 1
p

ϕ xD
( 1
2
+ z

2
) 1
p

ϕ , x ∈ M.

It is well-known that the images of these embeddings are dense for 1 ≤ p ≤ q; this follows for
instance from [Kos84, Theorem 9.1, Lemma 10.5] (this actually proves the result for the Haagerup
construction, but as mentioned this can be recast in terms of the Connes-Hilsum construction).

Using the embeddings κ
(z)
p,1 we may view Lp(M) as a (dense) subspace of L1(M) and hence this

turns all Lp(M), 1 ≤ p ≤ ∞ simultaneously into a (z-dependent) scale of compatible couples. For
x, y ∈ Lq(M) and 1 ≤ p ≤ q ≤ ∞ we have

κ(z)q,p(x)
∗ = κ(−z)

q,p (x∗), κ(−1)
q,p (x)κ(1)q,p(y) = κ

(0)
q/2,p/2(xy). (2.4)

The embedding κ
(z)
∞,1 is ‘state-preserving’ when we consider the trace on L1(M):

Tr(κ
(z)
∞,1(x)) = Tr(xDϕ) = ϕ(x), x ∈ M. (2.5)

Indeed, for x ∈ M+ this follows from [Ter81, Theorem III.14] and then use linearity for general
x. The following proposition is a special case of [HJX10, Theorem 5.1, Proposition 5.5].

Proposition 2.6. Let T : M → M be a unital completely positive (ucp) ϕ-preserving map such

that T ◦ σϕt = σϕt ◦ T, t ∈ R. Then T extends to a positive contraction T (p) : Lp(M) → Lp(M) for
1 ≤ p <∞ satisfying

T (p)(κ(z)∞,p(x)) = κ(z)∞,p(T (x)), x ∈ M,

which is independent of the choice of −1 ≤ z ≤ 1. Additionally, T (1) is trace-preserving.

Proof. We prove only the last statement. Consider first x = x′Dϕ ∈ L1(M) for x′ ∈ M. With
(2.5) we have

Tr(T (1)(x)) = Tr(T (x′)Dϕ) = ϕ(T (x′)) = ϕ(x′) = Tr(x).

For general x ∈ L1(M) the statement follows by approximation. �

We recall that on the unit ball of M the strong topology coincides with the ‖ ‖2-topology
generated by the GNS inner product 〈x, y〉 = ϕ(x∗y), x, y ∈ M. The following continuity property
then follows from [JS05, Lemma 2.3].

Proposition 2.7. Let aλ ∈ M be a bounded net converging to 0 in the strong topology. Then for
any 1 ≤ p <∞ and x ∈ Lp(M):

‖aλx‖p → 0.
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3. Lp-module theory and duality results

In this section we recall some Lp-module theory as introduced in [JS05]. This theory builds
upon the theory of Hilbert C∗-modules, see e.g. [Pas73], [Lan95]. It is also [Pas73] that introduces
the ‘GNS module’ corresponding to a completely positive map. In the second part of this section,
we extend some duality results to the σ-finite case; specifically, the duality relations of the Lp-
module corresponding to the GNS modules. In Section 4, we will use these results to construct a
predual for BMO in the σ-finite case.

In the entire section M is a σ-finite von Neumann algebra with faithful normal state ϕ.

3.1. General theory of Lp-modules.

Definition 3.1. Let 1 ≤ p ≤ ∞. A sesquilinear form 〈·, ·〉 : X × X → Lp/2(M) on a right
M-module X is called an Lp/2-valued inner product if it satisfies for x, y ∈ X and a ∈ M:

(i) 〈x, x〉 ≥ 0,
(ii) 〈x, x〉 = 0 ⇐⇒ x = 0,
(iii) 〈x, y〉 = 〈y, x〉∗,
(iv) 〈x, ya〉 = 〈x, y〉a.

A Lp/2-valued inner product defines a norm on X given by

‖x‖ := ‖〈x, x〉‖
1/2
p/2.

For p < ∞, X is called an Lp M-module if it has a Lp/2-valued inner product and is complete
with respect to the above norm. For p = ∞, we require that X has a L∞-valued inner product
and is complete in the topology generated by the seminorms

x 7→ ω(〈x, x〉)1/2, ω ∈ M+
∗ .

We call this the STOP topology (after [JM12]).

Lemma 3.2. [JS05, Proposition 3.2] For x, y ∈ X there exists some T ∈ M with ‖T‖ ≤ 1 such

that 〈x, y〉 = 〈x, x〉
1
2T 〈y, y〉

1
2 . This implies the ‘Lp-module Cauchy Schwarz inequality’:

‖〈x, y〉‖p/2 ≤ ‖x‖‖y‖.

Remark 3.3. The norms defined here are a priori only quasinorms. However, Theorem 3.6 will
show that they are in fact norms.

An important class of Lp M-modules are the so-called principal Lp-modules. Recall the column
space Lp(M; ℓC2 (I)) defined for 1 ≤ p < ∞ as the norm closure of finite sequences x = (xα)α∈I ,
xα ∈ Lp(M), with respect to the norm

‖x‖Lp(M;ℓC2 ) := ‖(
∑

α∈I

|xα|
2)1/2‖p.

These spaces are isometrically isomorphic to Lp(M⊗̄B(ℓ2(I)))e1,1, the column subspace of Lp(M⊗̄B(ℓ2(I))),
via

(xα) 7→







x1 0 . . .
x2 0 . . .
...

...






.
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For p = ∞, we take the space of all sequences in L∞(M) such that its image under the above
map is in L∞(M⊗̄B(ℓ2(I))). See [PX97] for more details about the above construction.

Now let 1 ≤ p ≤ ∞ be fixed, I be some index set and (qα)α∈I ∈ M be a set of projections.
Consider the closed subspace

Xp = {(xα)α∈I : xα ∈ qαLp(M),
∑

α∈I

x∗αxα ∈ Lp/2(M)} ⊆ Lp(M; ℓC2 (I)).

We define an Lp/2-valued inner product on Xp by

〈x, y〉 =
∑

α∈I

(xα)
∗yα.

We refer to [JS05] for the fact that this is indeed a well-defined Lp/2-valued inner product. This
makes Xp into an Lp M-module. We call Xp a principal Lp-module and denote it by

⊕

I qαLp(M).

Note that we have the isometric isomorphism

⊕

I

qαLp(M) ∼= QLp(M⊗̄B(ℓ2(I)))e1,1, Q =







q1 0 . . .
0 q2 . . .
...

...
. . .






. (3.1)

This equation combined with the following general lemma (which has nothing to do with Lp-
modules) will show that the family of principal Lp-modules

⊕

I qaLp(M), 1 ≤ p ≤ ∞, satisfies
the expected duality relations (although the identifications become antilinear).

Lemma 3.4. Let N be a σ-finite von Neumann algebra and let P,Q ∈ N projections. Then for
1 ≤ p <∞, 1

p + 1
p′ = 1 we have the following antilinear isometric isomorphism:

(QLp(N )P )∗ ∼= QLp′(N )P.

Proof. Let 1 ≤ p < ∞. Define Sp := QLp(N )P ⊆ Lp(N ). It follows (see for instance [Con90,

Theorem III.10.1]) that S∗
p
∼= Lp′(N )/S⊥

p , where S
⊥
p = {b ∈ Lp′(N ) : Tr(Spb) = 0}. Hence it

suffices to prove Lp′(N )/S⊥
p

∼= QLp′(N )P .

Let a ∈ Lp(N ), b ∈ Lp′(N ). Then Tr((QaP )b) = Tr(a(PbQ)), hence for b ∈ Lp′(N ):

b ∈ S⊥
p ⇐⇒ PbQ = 0 ⇐⇒ Qb∗P = 0.

Therefore if we define the surjective map

Ψ : Lp′(N ) → QLp′(N )P, b 7→ Qb∗P,

then kerΨ = S⊥
p and hence the induced map Φ : Lp′(N )/S⊥

p → QLp′(N )P is an isomorphism. Ψ
is contractive, hence Φ is also contractive. Conversely, for b ∈ Lp′(N ), we have

P (b− PbQ)Q = PbQ− PbQ = 0,

hence b− PbQ ∈ S⊥
p , or in other words PbQ ∈ b+ S⊥

p . Thus

‖Qb∗P‖ = ‖PbQ‖ ≥ ‖b+ S⊥
p ‖.

This implies that Φ−1 is also contractive, so Φ is an isometric isomorphism. �
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Corollary 3.5. Let (qα)α∈I be some family of projections. Then for 1 ≤ p < ∞, 1
p + 1

p′ = 1, we

have an antilinear isometric identification

(
⊕

I

qαLp(M))∗ ∼=
⊕

I

qαLp′(M).

The main theorem concerning Lp-modules states that every Lp-module is in fact isometrically
isomorphic to a principal Lp-module.

Theorem 3.6 (Theorem 3.6 of [JS05]). Let X be a right Lp M-module. Then there exists some
index set I and projections (qα)α∈I ∈ M such that

X ∼=
⊕

α∈I

qαLp(M).

The following lemma allows us to transfer the duality results for principal Lp-modules to general
families of Lp-modules satisfying certain requirements. The lemma is essentially copied from
[JP14, Corollary 1.13] with some adjustments to go from the finite to the σ-finite case. It is in
fact slightly more general to circumvent difficulties with finding an embedding X∞ →֒ Xp.

Lemma 3.7. Let (Xp)1≤p≤∞ be a family of Lp M-modules. Assume that there exist maps Iq,p :
Xq → Xp (q <∞) and I∞,p : A→ Xp for some submodule A ⊆ X∞, that satisfy for 1 ≤ p < r <
q ≤ ∞:

i) Iq,p(xa) = Iq,p(x)σ
ϕ

i( 1
p
− 1

q
)
(a) for x ∈ Xq (or x ∈ A if q = ∞), a ∈ Tϕ,

ii) Ir,p ◦ Iq,r = Iq,p,

iii) κ
(0)
q/2,p/2(〈x, y〉Xq ) = 〈Iq,p(x), Iq,p(y)〉Xp for x, y ∈ Xq (or x, y ∈ A if q = ∞),

iv) I∞,p(A) is dense in Xp.

Then there exists a family of projections (qα)α∈I ∈ M such that Xp
∼=
⊕

α∈I qαLp(M), 1 ≤ p ≤
∞.

Proof. We give details only for those parts that differ from [JP14, Corollary 1.13]. One shows
that the maps Iq,p are automatically contractive embeddings. By applying Theorem 3.6 (which
holds for σ-finite von Neumann algebras) to the p = ∞ case we acquire projections (qα) such
that X∞

∼=
⊕

α∈I qαL∞(M), say through an isometric isomorphism of L∞-modules ϕ∞. For
1 ≤ p <∞, the embeddings I∞,p allow us to ‘transfer’ this map to Xp:

ϕp : I∞,p(A) →
⊕

α∈I

qαLp(M), ϕp(I∞,p(x)) =
⊕

α∈I

κ(1)∞,p(ϕ∞(x)α) =
⊕

α∈I

ϕ∞(x)αD
1/p
ϕ .

We show that ϕp preserves inner products; for x, y ∈ A:

〈ϕp(I∞,p(x)), ϕp(I∞,p(y))〉⊕ qαLp
=
∑

α

D1/p
ϕ (ϕ∞(x)α)

∗ϕ∞(x)αD
1/p
ϕ

= κ
(0)
∞,p/2(〈ϕ∞(x), ϕ∞(y)〉⊕ qαL∞

= κ
(0)
∞,p/2(〈x, y〉X∞) = 〈I∞,p(x), I∞,p(y)〉Xp .

Since I∞,p(A) is dense in Xp, ϕp extends to an isometric homomorphism on Xp. It turns out to be
an isomorphism since we can use a similar argument to construct an inverse. Next we show that
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ϕp preserves the module structure (this was not an issue in the finite case); for x ∈ A, a ∈ Tϕ:

ϕp(I∞,p(x)a) = ϕp(I∞,p(xσ
ϕ

− i
p

(a))) =
⊕

α∈I

ϕ∞(xσϕ
− i

p

(a))αD
1/p
ϕ

=
⊕

α∈I

ϕ∞(x)ασ
ϕ

− i
p

(a)D1/p
ϕ =

⊕

α∈I

ϕ∞(x)αD
1/p
ϕ a = ϕp(I∞,p(x))a.

(3.2)

Now let a ∈ M be arbitrary. By Kaplansky and strong density of Tϕ in M, we may choose a
bounded net (aλ)λ in Tϕ converging to a in the strong topology. Then by Proposition 2.7 we have

‖I∞,p(x)(a− aλ)‖Xp = ‖(a− aλ)
∗〈I∞,p(x), I∞,p(x)〉Xp(a− aλ)‖

1/2
p/2 → 0

and similarly ‖ϕp(I∞,p(x))(a− aλ)‖⊕ qaLp
→ 0. Since ϕp is continuous it follows that (3.2) holds

for any a ∈ M.
�

3.2. The GNS-module. We now describe the GNS-module as introduced by [Pas73], but in
the context of von Neumann algebras. Let Φ : M → M be a completely positive map of von
Neumann algebras. We define the L∞-valued inner product:

〈
∑

i

ai ⊗ bi,
∑

j

a′j ⊗ b′j〉∞ =
∑

i,j

b∗iΦ(a
∗
i a

′
j)b

′
j

and set N0 to be the quotient of M⊗M by the set {z ∈ M⊗M : 〈z, z〉 = 0}.

For 1 ≤ p < ∞, we define the Lp/2-valued inner product by simply taking the inclusion of M
into Lp/2(M) (see Remark 2.5 for the case 1 ≤ p < 2):

〈z, z′〉p/2 = κ
(0)
∞,p/2

(

〈z, z′〉∞
)

, z, z′ ∈ M⊗M. (3.3)

This Lp/2-valued inner product gives rise to a norm ‖z‖p,Φ := ‖〈z, z〉p/2‖
1/2
p/2 on N0. We define

Lp(M⊗Φ M) to be the Banach space completion of N0 with respect to this norm.

Next we define a module structure on Lp(M⊗Φ M). For z ∈ M⊗M and a ∈ Tϕ, it is given
by

z · a := z(1M ⊗ σ− i
p
(a)). (3.4)

Note that this module structure satisfies property (iv) of Definition 3.1. By Kaplansky and strong
density of Tϕ in M, we can approach a ∈ M by a bounded net (aλ)λ ∈ M converging to a in the
strong topology. Setting bλ,µ = aλ − aµ and using Proposition 2.7, we have

‖z · bλ,µ‖p,Φ = ‖〈z · bλ,µ, z · bλ,µ〉p/2‖
1/2
p/2 = ‖b∗λ,µ〈z, z〉p/2bλ,µ‖

1/2
p/2 → 0.

Hence we can extend (3.4) for elements a ∈ M, where the right hand side takes values in
Lp(M⊗Φ M). This right action is then strong/‖ ‖p,Φ-continuous on the unit ball of M.

By the Lp-module Cauchy Schwarz inequality, the Lp/2-valued inner product and the module
structure extend to the space Lp(M⊗Φ M). With this, Lp(M⊗Φ M) turns into a well-defined
Lp M-module.

For p = ∞, we define L∞(M⊗Φ M) to be the completion with respect to the STOP topology,

i.e. the one generated by the seminorms z 7→ ω(〈z, z〉∞)1/2, ω ∈ M∗. 〈·, ·〉∞ is continuous in both



12 MARTIJN CASPERS AND GERRIT VOS

variables on M⊗M with respect to the STOP topology (and the weak-∗ topology in the range);

one can see this by writing 〈z, z′〉∞ = 〈z, z〉
1/2
∞ T 〈z′, z′〉

1/2
∞ as in Lemma 3.2 and, for ω ∈ M∗, using

the classical Cauchy Schwarz inequality on the bilinear form (z, z′) 7→ ω(〈z, z′〉∞). Hence 〈·, ·〉∞
extends to an M-valued inner product on L∞(M⊗Φ M). The module structure is simply given
by z · a := z(1⊗ a).

Proposition 3.8. There exists a family of projections (qα)α∈I ∈ M such that Lp(M ⊗Φ M) ∼=
⊕

I qαLp(M), 1 ≤ p ≤ ∞.

Proof. To use Lemma 3.7, we must construct maps Iq,p as in the assumptions of that lemma. The
maps will be extensions of the identity map ι : M⊗M → M⊗M. For q = ∞, the space A from
the lemma will be M⊗M and I∞,p is simply the identity ι : A→ Lp(M⊗ΦM). For p ≤ q <∞,
the extensions exist because of the following estimate for z ∈ M⊗M:

‖z‖q,Φ = ‖〈z, z〉q/2‖
1/2
q/2 = ‖κ

(0)
∞,q/2(〈z, z〉∞)‖

1/2
q/2 ≥ ‖κ

(0)
q/2,p/2(κ

(0)
∞,q/2(〈z, z〉∞))‖

1/2
p/2

= ‖κ
(0)
∞,p/2(〈z, z〉∞)‖

1/2
p/2 = ‖z‖p,Φ.

It follows that ι extends to a contractive map Iq,p : Lq(M⊗ΦM) → Lp(M⊗ΦM). The properties
i)-iv) all follow from the previous constructions. Now we can apply Lemma 3.7 to deduce the
result. �

Remark 3.9. We can deduce in hindsight the existence of the expected embedding

L∞(M⊗Φ M) →֒ Lp(M⊗Φ M)

through the identification with principal Lp-modules where the embedding is clear. We will need
this observation later. In this case there is a common dense subset so there is no need to keep track
of embeddings here; instead, we may ‘redefine’ the GNS-modules for 1 < p ≤ ∞ to be closures
within L1(M ⊗Φt M) instead of abstract completions, so that Lq(M⊗Φt M) ⊆ Lp(M ⊗Φt M)
for 1 ≤ p ≤ q ≤ ∞. Then through the identification with principal modules, we see that (3.3)
also holds for z, z′ ∈ L∞(M⊗Φt M); this was not entirely trivial.

Our next goal is to define duality results on the GNS-modules. To define a dual relation,
we need to show that the bracket can be extended to a map taking arguments from different
spaces. This follows easily through the identification with principal modules where this extension
is evident. In the GNS-picture, the bracket is given by

〈x, y〉p,q = D1/p
ϕ 〈x, y〉∞D

1/q
ϕ = κ

(zp,q)
∞,r (〈x, y〉∞) (3.5)

for x, y ∈ M⊗M and 1
p + 1

q = 1
r with 1 ≤ p, q, r ≤ ∞ but p and q not both ∞.

The (antilinear) duality pairing is then defined as follows:

(x, y) = Tr(〈x, y〉p,q), x ∈ Lp(M⊗Φ M), y ∈ Lq(M⊗Φ M),
1

p
+

1

q
= 1. (3.6)

This duality identifies Lp(M ⊗Φ M) as a subspace of Lq(M ⊗Φ M)∗. Using the identification
with principal modules, we can show that this inclusion is an (isometric) isomorphism.

Corollary 3.10. For 1 ≤ p <∞, 1
p +

1
q = 1, we have an antilinear isomorphism

(Lp(M⊗Φ M))∗ ∼= Lq(M⊗Φ M).

Proof. This follows from Proposition 3.8 and Corollary 3.5. �
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Remark 3.11. The definition of 〈·, ·〉p,p coincides with that of 〈·, ·〉p/2. Both notations make
sense; the first refers to the inputs, the second to the output (and it corresponds to the term
Lp/2-valued inner product). We will mostly be using the latter notation.

Remark 3.12. Due to the tracial property, the embedding we choose to define the duality bracket
does not matter. In particular, if x ∈ L1(M ⊗Φ M) ∩ L2(M ⊗Φ M) and y ∈ L∞(M ⊗Φ M) ∩
L2(M⊗Φ M) then

Tr(〈x, y〉1) = Tr(〈x, y〉1,∞)

In the next lemma we check that the inner product behaves as expected when we use, informally
speaking, elements from Lp(M) in the first tensor leg as inputs. For this last lemma, we presume

that Φ satisfies the conditions of Proposition 2.6 so that Φ(p/2) exists.

Lemma 3.13. Let 1 ≤ p < ∞, and let Φ be a unital completely positive (ucp) ϕ-preserving map
such that Φ ◦ σϕt = σϕt ◦ Φ for all t ∈ R. The map

Ψp : κ
(1)
∞,p(M) → Lp(M⊗Φ M), κ(1)∞,p(x) 7→ x⊗ 1

extends to a contractive mapping Ψp : Lp(M) → Lp(M⊗Φ M). For x, y ∈ Lp(M), z =
∑

j aj ⊗
bj ∈ M⊗M, it satisfies

〈Ψp(x),Ψp(y)〉p/2 = Φ(p/2)(x∗y), 2 ≤ p <∞,

〈Ψp(x), z〉p/2 =
∑

j

Φ(p)(x∗aj)bjD
1/p
ϕ , 1 ≤ p <∞.

Proof. We first note the following identity for x, y ∈ M:

〈x⊗ 1, y ⊗ 1〉p/2 = κ
(0)
∞,p/2(Φ(x

∗y)) = Φ(p/2)(κ
(0)
∞,p/2(x

∗y))
(2.4)
= Φ(p/2)(κ(1)∞,p(x)

∗κ(1)∞,p(y)) (3.7)

Hence, by the generalised Hölder inequality

‖x⊗ 1‖p,Φ = ‖Φ(p/2)(κ(1)∞,p(x)
∗κ(1)∞,p(x))‖

1/2
p/2 ≤ ‖κ(1)∞,p(x)

∗κ(1)∞,p(x)‖
1/2
p/2

≤ ‖κ(1)∞,p(x)
∗‖1/2p ‖κ(1)∞,p(x)‖

1/2
p = ‖κ(1)∞,p(x)‖p.

This shows that Ψp is contractive on κ
(1)
∞,p(M) and hence extends to a contractive mapping on

Lp(M).

Now let x, y ∈ Lp(M) and take (xn), (yn) ∈ M such that κ
(1)
∞,p(xn) →p x and κ

(1)
∞,p(yn) →p y.

From Minkowski’s inequality and the generalised Hölder inequality it follows that

κ(1)∞,p(xn)
∗κ(1)∞,p(yn) →p/2 x

∗y.

Hence by (3.7) and continuity of Φ(p/2):

〈Ψp(x),Ψp(y)〉p/2 = lim
n→∞

〈xn ⊗ 1, yn ⊗ 1〉p/2 = lim
n→∞

Φ(p/2)(κ(1)∞,p(xn)
∗κ(1)∞,p(yn)) = Φ(p/2)(x∗y).

The final equality is proved with a very similar method and is left to the reader. �

4. BMO spaces and BMO-H1 duality

In this section we construct BMO spaces of σ-finite von Neumann algebras and prove that they
have a predual. We also prove the interpolation result of Theorem 1.3. M is again a σ-finite von
Neumann algebra with faithful normal state ϕ.
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4.1. Introduction to Markov semigroups and BMO spaces.

Definition 4.1. A semigroup (Φt)t≥0 of linear maps M → M is called a (GNS-symmetric)
Markov semigroup if it satisfies the following conditions:

i) Φt is normal ucp, t ≥ 0,
ii) ϕ(Φt(x)y) = ϕ(xΦt(y)), x, y ∈ M, t ≥ 0 (GNS-symmetry)
iii) The mapping t 7→ Φt(x) is strongly continuous, x ∈ M.

The Markov semigroup is called ϕ-modular if Φt ◦ σ
ϕ
s = σϕs ◦Φt for all s ∈ R, t ≥ 0.

Note that by condition ii), ϕ(Φt(x)) = ϕ(x); in particular, the Φt are faithful. If Φ := (Φt)t≥0

is a ϕ-modular Markov semigroup, then by Proposition 2.6 there are extensions Φ
(p)
t : Lp(M) →

Lp(M), where Φ
(1)
t is trace-preserving. Note that condition ii) implies, after appropriate approx-

imations, that Φ
(2)
t is self-adjoint.

For the rest of this section we assume Φ = (Φt)t≥0 to be a ϕ-modular Markov semigroup. We
define closed subspaces of M and Lp(M) as follows

M◦ ={x ∈ M | Φt(x) → 0 σ-weakly as t→ ∞},

L◦
p(M) ={x ∈ Lp(M) | ‖Φ

(p)
t (x)‖p → 0, t → ∞}.

Then [Cas19, Lemma 2.3] assures that the inclusions κ
(z)
q,p restrict to contractive inclusions L◦

q(M) →
L◦
p(M) for q ≥ p.

We record here two short lemmas for later use. We will need the generator A2 of the semigroup

(Φ
(2)
t )t≥0, i.e. the positive self-adjoint unbounded operator such that e−tA2 = Φ

(2)
t ; the existence

is guaranteed by a very special case of the Hille-Yosida theorem and we refer to the papers [Cip97]
and [GL95] for a more elaborate analysis of generators of Markovian semi-groups.

Lemma 4.2. For each x ∈ M, the net {Φt(x)}t≥0 converges σ-strongly as t→ ∞.

Proof. Let x ∈ M and write xD
1/2
ϕ = ξ1 + ξ2 for ξ1 ∈ ker(A2), ξ2 ∈ ker(A2)

⊥. Then

Φt(x)D
1/2
ϕ = Φ

(2)
t (xD1/2

ϕ ) = e−tA2(ξ1 + ξ2) = ξ1 + e−tA2ξ2.

It follows by elementary spectral theory for unbounded operators that e−tA2ξ2 → 0 as t → ∞.

Therefore Φt(x)D
1/2
ϕ converges in the L2-topology, i.e. Φt(x) is Cauchy within M in the ‖ · ‖2-

topology generated by the GNS inner product 〈x, y〉 = ϕ(x∗y), x, y ∈ M. Since the Φt are
contractive, the net Φt(x) is bounded in M. So as the ‖ · ‖2-topology and the strong (and σ-
strong) topology coincide on the unit ball, the net Φt(x) converges to an element in M in the
strong (and σ-strong) topology. �

Lemma 4.3. Assume that x ∈ L◦
1(M) is such that Tr(xz) = 0 for all z ∈ M◦. Then x = 0.

Proof. Let y ∈ M and set the σ-strong (hence σ-weak) limit P (y) = limt→∞Φt(y), which exists
by Lemma 4.2. Then y − P (y) ∈ M◦, hence we have

Tr(xy) = Tr(x(y − P (y))) + Tr(xP (y)) = Tr(xP (y)).

Now using condition ii) of Definition 4.1 and appropriate approximation, we can show that

Tr(wΦt(z)) = Tr(Φ
(1)
t (w)z) for w ∈ L1(M), z ∈ M. Hence

Tr(xP (y)) = lim
t→∞

Tr(xΦt(y)) = lim
t→∞

Tr(Φ
(1)
t (x)y) = 0

since x ∈ L◦
1(M). As y ∈ M was arbitrary, we must have x = 0. �
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For x ∈ M we define the column and row BMO-norm:

‖x‖BMOc
Φ
= sup

t≥0
‖Φt(|x− Φt(x)|

2)‖1/2∞ ; ‖x‖BMOr
Φ
= ‖x∗‖BMOc

Φ
.

The BMO-norm is defined as ‖x‖BMOΦ
= max{‖x‖BMOc

Φ
, ‖x‖BMOr

Φ
}. This defines a seminorm by

[JM12, Proposition 2.1].

Since Φ is faithful, we see that for x ∈ M, ‖x‖BMOΦ
= 0 implies that x = Φt(x) for all t > 0.

This means that the above seminorms are actually norms on M◦.

Next, we turn our attention to defining an analogous BMO-norm on the space L2(M) such as
in [JM12]. This turns out to be more involved in the σ-finite case.

The embedding κ
(0)
∞,1 allows us to define ‖ · ‖∞ on L1(M) (it takes values ∞ outside of

κ
(0)
∞,1(M)). We will also denote this by ‖ · ‖∞. Then we can define analogous column and row

BMO-(semi)norms on L2(M) by

‖x‖BMOc
Φ
= sup

t≥0
‖Φ

(1)
t (|x− Φ

(2)
t (x)|2)‖1/2∞ ; ‖x‖BMOr

Φ
= ‖x∗‖BMOc

Φ
(4.1)

We will only show later (at the end of this chapter) that these seminorms satisfy the triangle
inequality. As with the corresponding norms on M, these seminorms are norms on L◦

2(M). Now
we define the column BMO space as

BMOc(M,Φ) = {x ∈ L◦
2(M) | ‖x‖BMOc

Φ
<∞}

and we define the row BMO space as the adjoint of the column BMO space with norm as in (4.1).
We emphasize that we have thus constructed a column (resp. row) BMO-norm both on M◦ and
L◦
2(M) which by mild abuse of notation are denoted in the same way. They are identified by the

right embedding for the column norm and the left embedding for the row norm:

‖κ
(1)
∞,2(x)‖BMOc

Φ
=‖xD1/2

ϕ ‖BMOc
Φ
= ‖x‖BMOc

Φ
,

‖κ
(−1)
∞,2 (x)‖BMOr

Φ
=‖D1/2

ϕ x‖BMOr
Φ
= ‖x‖BMOr

Φ
,

(4.2)

where x ∈ M◦. These equalities are straightforward to check. Since clearly ‖x‖BMOc
Φ
≤ 4‖x‖2∞

for x ∈ M◦, it follows that κ
(1)
∞,2 embeds M◦ into BMOc(M,Φ), and similarly κ

(−1)
∞,2 embeds M◦

into BMOr(M,Φ).

The first thought for a definition of the BMO-norm would be max{‖x‖BMOc
Φ
, ‖x‖BMOr

Φ
}, sim-

ilarly to the definition on M. However, this is not a suitable definition for the following reason.
The equalities (4.2) show how the right and left embeddings of M in L2(M) preserve the col-
umn and row norms respectively. However, there is no embedding of M into L2(M) that would
preserve the maximum of these norms.

Instead, we embed BMOc(M,Φ) and BMOr(M,Φ) in L◦
1(M) through the embeddings κ

(−1)
2,1

and κ
(1)
2,1 respectively. This turns (BMOc(M,Φ), BMOr(M,Φ)) into a compatible couple. The

following diagram commutes:
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L◦
2(M)

BMOc(M,Φ)

M◦ L◦
1(M)

BMOr(M,Φ)

L◦
2(M)

κ
(−1)
2,1

⊆

κ
(1)
∞,2

κ
(0)
∞,1

κ
(−1)
∞,2 ⊆ κ

(1)
2,1

We define
BMO(M,Φ) = κ

(−1)
2,1 (BMOc(M,Φ)) ∩ κ

(1)
2,1(BMOr(M,Φ))

to be the intersection space, and for x ∈ BMO(M,Φ) we denote by

xc ∈ BMOc(M,Φ), xr ∈ BMOr(M,Φ)

the elements such that κ
(−1)
2,1 (xc) = x = κ

(1)
2,1(xr). The norm on BMO(M,Φ) is defined as

‖x‖BMOΦ
= max{‖xc‖BMOc

Φ
, ‖xr‖BMOr

Φ
}.

When no confusion can occur, we omit the reference to the semigroup in the notation of the
various BMO-norms and just write, for instance, ‖ · ‖BMO.

We check that κ
(0)
∞,1 is indeed an embedding of M◦ into BMO(M) that preserves ‖ · ‖BMO:

‖κ
(0)
∞,1(z)‖BMO =max{‖κ

(1)
∞,2(z)‖BMOc , ‖κ

(−1)
∞,2 (z)‖BMOr}

=max{‖z‖BMOc , ‖z‖BMOr} = ‖z‖BMO.

The next estimate shows that L◦
1(M) contains the closure of κ

(0)
∞,1(M

◦) with respect to ‖ · ‖BMO,
as expected.

Lemma 4.4. For x ∈ L◦
2(M), we have ‖x‖2 ≤ ‖x‖BMOc and ‖x‖2 ≤ ‖x‖BMOr . Hence for

x ∈ BMO(M,Φ), we have

‖x‖BMO ≥ max{‖xc‖2, ‖xr‖2} ≥ ‖x‖1.

Proof. Let x ∈ L◦
2(M). If ‖x‖BMOc = ∞ then the inequality trivially holds. Now assume that

‖x‖BMOc <∞. Then for all t ≥ 0 there exists a yt ∈ M such that Φ
(1)
t |x− Φ

(2)
t (x)|2 = κ

(0)
∞,1(yt).

Let ε > 0. Then we can find t > 0 such that ‖Φ
(2)
t (x)‖2 < ε. Then since Φ

(1)
t is trace-preserving:

‖x‖2 ≤ ‖x− Φ
(2)
t (x)‖2 + ε = Tr(|x− Φ

(2)
t (x)|2)1/2 + ε = Tr(Φ

(1)
t |x−Φt(x)|

2)1/2 + ε

= Tr(κ
(0)
∞,1(yt))

1/2 + ε = ϕ(yt)
1/2 + ε ≤ ‖yt‖

1/2
∞ + ε ≤ ‖x‖BMOc + ε.

Since ‖x‖2 = ‖x∗‖2, we also get ‖x‖2 ≤ ‖x‖BMOr . The final statement follows from the definition

of ‖ · ‖BMO and contractivity of κ
(z)
2,1. This finishes the proof. �

It is not a priori clear whether BMO(M,Φ) is complete. However, this will follow as a corollary
from the result of the next subsection, which provides an ‘artificial’ predual to BMO(M,Φ).
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4.2. A predual of BMO. We dedicate this section to proving the following theorem:

Theorem 4.5. There exist Banach spaces hr1(M,Φ) and hc1(M,Φ) such that

BMOc(M,Φ) ∼= hr1(M,Φ)∗, BMOr(M,Φ) ∼= hc1(M,Φ)∗.

In this part we will suppress the reference to M and Φ in the notation of BMOc,BMOr and
their preduals hr1, h

c
1.

In the finite case a predual for BMO was found in [JM12, Section 5.2.3], see also [JMP14,
Appendix A]. Our proof mostly follows the lines of [JMP14], although we will not attempt to
define a sum space h1. Also, our predual of BMOc will instead be hr1 and vice versa, which makes
the identification in Theorem 4.5 linear instead of antilinear.

Proof of Theorem 4.5. Since BMOr lies within L◦
2(M), we have at our disposal an inner product

that can provide us with a duality bracket. We take the Hahn-Banach norm relation as the
definition of the norm of hc1:

‖y‖hc
1
= sup

‖x‖BMOr≤1
|Tr(xy)|, y ∈ L◦

2(M).

which would be a well-defined norm even if ‖ · ‖BMOr wouldn’t satisfy the triangle inequality. To

see that ‖y‖hc
1
> 0 for y 6= 0, note that we can find x ∈ M◦ such that |Tr(κ

(−1)
∞,2 (x)y)| > 0 (for

example take x such that κ
(−1)
∞,2 (x) is close to y∗).

Now by Lemma 4.4:

‖y‖hc
1
≤ sup

‖x‖2≤1
|Tr(xy)| = ‖y‖2.

Hence we define hc1 to be the completion of L◦
2(M) with respect to ‖·‖hc

1
, and we obtain a contrac-

tive inclusion L◦
2(M) ⊆ hc1. We define hr1 analogously by taking the sup over x with ‖x‖BMOc ≤ 1.

We will only show that BMOr ∼= (hc1)
∗ (the other case follows similarly). It is not hard to show

that BMOr ⊆ (hc1)
∗ contractively. Conversely, let ψ ∈ (hc1)

∗. Then ψ|L◦
2(M) ∈ L◦

2(M)∗ by Lemma

4.4. Hence by the Riesz representation theorem there exists an x0 ∈ L◦
2(M) such that

ψ(z) = Tr(x∗0z)

for all z ∈ L◦
2(M). What remains to be shown is that x∗0 ∈ BMOr, with ‖x∗0‖BMOr ≤ ‖ψ‖(hc

1)
∗ (the

other inequality follows from the definition of hc1). This is equivalent to requiring that x0 ∈ BMOc

with ‖x0‖BMOc ≤ ‖ψ‖(hc
1)

∗

Fix t > 0. We will now use the Lp-modules Lp(M⊗Φt M) corresponding to the ucp map Φt.
Let Ψp be the embedding of Lemma 3.13. Then we can define the map

ut : L
◦
2(M) → L2(M⊗Φt M), ut(y) = Ψ2(y − Φ

(2)
t (y)).

Now it suffices to show that

ut(x0) ∈ L∞(M⊗Φt M) and ‖ut(x0)‖∞,Φt ≤ ‖ψ‖(hc
1)

∗
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since then

‖x0‖BMOc = sup
t≥0

‖Φ
(1)
t (|x0 − Φ

(2)
t (x0)|

2)‖1/2∞
Lem. 3.13

= sup
t≥0

‖〈ut(x0), ut(x0)〉1‖
1/2
∞

Rem. 3.9
= sup

t≥0
‖κ

(0)
∞,1(〈ut(x0), ut(x0)〉∞)‖1/2∞ = sup

t≥0
‖〈ut(x0), ut(x0)〉∞‖1/2∞

= sup
t≥0

‖ut(x0)‖∞,Φt ≤ ‖ψ‖(hc
1)

∗ .

where we have used respectively the first identity of Lemma 3.13, the last part of Remark 3.9 and
the definition of ‖ · ‖∞ in L1(M).

Define ϕut(x0) to be the dual action of ut(x0) on L2(M⊗Φt M) restricted to M⊗M, i.e.

ϕut(x0)(z) := Tr(〈ut(x0), z〉1)

The goal is to prove that ut(x0) also defines a dual action on L1(M⊗Φt M). The proof is rather
technical, so we contain it in a separate lemma.

Lemma 4.6. Let z ∈ M⊗M. Then

|ϕut(x0)(z)| ≤ ‖ψ‖(hc
1)

∗‖z‖1,Φt

In particular, ϕut(x0) extends to an element of L1(M⊗Φ M)∗ with ‖ϕut(x0)‖ ≤ ‖ψ‖(hc
1)

∗

Proof. Let z =
∑

j aj ⊗ bj . Using the second identity of Lemma 3.13 and the fact that Φ
(2)
t is

self-adjoint we have

Tr(〈ut(x0), z〉1) =
∑

j

Tr(Φ
(2)
t ((x0 − Φ

(2)
t (x0))

∗aj)bjD
1/2
ϕ )

=
∑

j

Tr(Φ
(2)
t (x∗0aj)bjD

1/2
ϕ )− Tr(Φ

(2)
t (Φ

(2)
t (x∗0)aj)bjD

1/2
ϕ )

=
∑

j

Tr(x∗0ajΦ
(2)
t (bjD

1/2
ϕ ))− Tr(Φ

(2)
t (x∗0)ajΦ

(2)
t (bjD

1/2
ϕ ))

=
∑

j

Tr(x∗0ajΦ
(2)
t (bjD

1/2
ϕ ))− Tr(x∗0Φ

(2)
t (ajΦ

(2)
t (bjD

1/2
ϕ )))

=
∑

j

Tr(x∗0[ajΦ
(2)
t (bjD

1/2
ϕ )−Φ

(2)
t (ajΦ

(2)
t (bjD

1/2
ϕ ))])

= Tr(x∗0u
∗
t (z)).

Thus u∗t (z) :=
∑

j ajΦ
(2)
t (bjD

1/2
ϕ )− Φ

(2)
t (ajΦ

(2)
t (bjD

1/2
ϕ )) ∈ L2(M).

We are done if we can prove that ‖u∗t (z)‖hc
1
≤ ‖z‖1,Φt . However, we do not even have u∗t (z) ∈

L◦
2(M) in general, so this will not be possible. To circumvent this, let π be the projection

L2(M) → L◦
2(M). Then π is self-adjoint and π(x0) = x0, hence

Tr(x∗0u
∗
t (z)) = Tr(x∗0π(u

∗
t (z))).
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We claim that ‖π(u∗t (z))‖hc
1
≤ ‖z‖1,Φt . Indeed, by (3.5) and Remark 3.12:

‖π(u∗t (z))‖hc
1
= sup

‖y‖BMOr≤1
|Tr(yπ(u∗t (z)))| = sup

‖y‖BMOc≤1
|Tr(y∗π(u∗t (z)))|

= sup
‖y‖BMOc≤1

|Tr(〈ut(y), z〉1)| = sup
‖y‖BMOc≤1

|Tr(〈ut(y), z〉∞,1)|

≤ sup
‖y‖BMOc≤1

‖z‖1,Φt‖ut(y)‖∞,Φt = ‖z‖1,Φt .

It follows that indeed

|ϕut(x0)(z)| = |Tr(x∗0u
∗
t (z))| ≤ sup

‖h‖hc
1
≤1

|Tr(x∗0h)|‖z‖1,Φt = ‖ψ‖(hc
1)

∗‖z‖1,Φt

�

Now through our duality result of Proposition 3.10, ut(x0) ∈ L∞(M⊗Φ M) and

‖x0‖BMOc = sup
t≥0

‖ut(x0)‖∞,Φt = sup
t≥0

sup
‖z‖1,Φt≤1

|Tr(〈ut(x0), z〉∞,1)| ≤ ‖ψ‖(hc
1)

∗ .

This shows that indeed BMOr ∼= (hc1)
∗. �

Note that this also proves that ‖ · ‖BMOc , ‖ · ‖BMOr satisfy the triangle inequality and that
BMOc and BMOr are Banach spaces. Hence (BMOc,BMOr) is a well-defined compatible couple
and the intersection space BMO is also a well-defined Banach space:

Corollary 4.7. BMO(M,Φ), BMOc(M,Φ) and BMOr(M,Φ) are Banach spaces.

Remark 4.8. In the absence of a predual for BMO, we will define a “weak-∗ topology” in a
different way, namely as the locally convex topology inherited from the topologies σ(BMOc, hr1)
and σ(BMOr, hc1). By slight abuse of notation, we will call this the weak-∗ topology. More
precisely, recall that for x ∈ BMO, we denoted by xc ∈ BMOc and xr ∈ BMOr those elements

for which x = κ
(−1)
2,1 (xc) = κ

(1)
2,1(xr). Then we say that a net xλ ∈ BMO converges to x ∈ BMO

in the weak-∗ topology if xλc → xc in the weak-∗ topology of BMOc and xλr → xr in the weak-∗
topology of BMOr.

4.3. Interpolation for BMO space. In this section we show that [Cas19, Theorem 4.5] holds
again for the current definiton of BMO. Similar to how [Cas19, Theorem 4.5] is proved, the
proof is a mutatis mutandis copy of the methods in [Cas19, Section 3] provided that conditional
expectations extend to a contraction on BMO. In other words, we must show that [Cas19, Lemma
4.3] still holds in the current setup. This is done in Proposition 4.13 below. We start with some
auxiliary lemmas that could be of independent interest.

Let us state some preliminary facts. By [Ter81, Theorem II.36], a standard form for M is
(M, L2(M), J, L+

2 (M)), where J is the conjugation operator. Hence we will consider M as a
von Neumann subalgebra of B(L2(M)) by left multiplication. With an inclusion of von Neumann
algebras M1 ⊆ M we mean a unital inclusion, meaning that the unit of M1 equals the unit of
M. It is a well known fact that M1 admits a ϕ-preserving conditional expectation if and only
if σϕt (M1) = M1 for all t ∈ R, see [Tak03a, Theorem IX.4.2]. If E is a ϕ-preserving conditional

expectation, then we can use Proposition 2.6 to extend it to a contraction E(p) : Lp(M) → Lp(M),
which can be checked to land in Lp(M1).



20 MARTIJN CASPERS AND GERRIT VOS

Lemma 4.9. Let M1 ⊆ M be a von Neumann subalgebra that admits a ϕ-preserving conditional
expectation E. Then for x ∈ L1(M) and y ∈ M we have

Tr(xE(y)) = Tr(E(1)(x)y).

Proof. If x = Dϕx
′ with x′ ∈ M we have since E(1) is Tr-preserving,

Tr(xE(y)) = Tr(E(1)(xE(y))) = Tr(DϕE(x
′E(y))) = Tr(DϕE(x

′)E(y))

=Tr(DϕE(E(x
′)y)) = Tr(E(1)(DϕE(x

′)y)) = Tr(E(1)(x)y).

For general x ∈ L1(M) the statement follows by approximation. �

The following lemma is a variation of the Kadison-Schwarz inequality.

Lemma 4.10. Let M1 ⊆ M be a von Neumann subalgebra that admits a ϕ-preserving conditional
expectation E. Then for x ∈ L2(M) we have the following inequality in L1(M),

E(2)(x)E(2)(x)∗ ≤ E(1)(xx∗).

Proof. Naturally L2(M1) ⊆ L2(M) is a closed subspace and we have that E(2) : L2(M) →
L2(M1) is the orthogonal projection onto this subspace, see [Tak03a, Proof of Theorem IX.4.2].

L2(M1) is an invariant subspace for M1. Therefore M1 commutes with both E(2) and 1− E(2).
Hence, for y ∈ M1 and x ∈ L2(M) we have

〈E(2)(x), yE(2)(x)〉 + 〈(1− E(2))(x), y(1 − E(2))(x)〉 = 〈x, yx〉.

And so for y ∈ M+ we have

Tr(E(y)E(2)(x)E(2)(x)∗) = 〈E(2)(x), E(y)E(2)(x)〉 ≤ 〈x, E(y)x〉 = Tr(E(y)xx∗). (4.3)

We further have by Lemma 4.9,

Tr(E(y)xx∗) = Tr(yE(1)(xx∗)),

and since E(1) is a projection onto L1(M1)

Tr(E(y)E(2)(x)E(2)(x)∗) = Tr(yE(1)(E(2)(x)E(2)(x)∗)) = Tr(yE(2)(x)E(2)(x)∗).

Therefore (4.3) shows that we have the following Kadison-Schwarz type inquality,

E(2)(x)E(2)(x)∗ ≤ E(1)(xx∗).

�

Lemma 4.11. Let ω ∈ M+
∗ . The following are equivalent:

(1) We have ω ≤ ϕ.

(2) There exists x ∈ M with 0 ≤ x ≤ 1 such that D
1
2
ϕxD

1
2
ϕ = Dω.

Proof. For (1) ⇒ (2), consider the map

T : L2(M) → L2(M) : D
1
2
ϕx 7→ D

1
2
ωx, x ∈ M.

From the fact that ω ≤ ϕ it follows that T is a well-defined contraction. Moreover, we claim that
T ∈ M. Indeed, the commutant of M acting on L2(M) is given by JMJ where J : ξ 7→ ξ∗ is
the modular conjugation. Then it follows that for x, y ∈ M we have

TJyJD
1
2
ϕx = TD

1
2
ϕxy

∗ = D
1
2
ωxy

∗ = JyJT (D
1
2
ϕx).

Now set x = T ∗T ∈ M so that 0 ≤ x ≤ 1. We have TD
1
2
ϕ = D

1
2
ω so that (D

1
2
ϕT ∗)(TD

1
2
ϕ ) = Dω.
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The implication (2) ⇒ (1) follows as for y ∈ M we have

ω(yy∗) = Tr(Dωyy
∗) = Tr(y∗D

1
2
ϕxD

1
2
ϕy) = 〈D

1
2
ϕy, xD

1
2
ϕy〉

≤〈D
1
2
ϕy,D

1
2
ϕy〉 = Tr(y∗Dϕy) = ϕ(yy∗).

�

Lemma 4.12. Let a, b ∈ L1(M)+ and suppose that a ≤ b and b = D
1
2
ϕxbD

1
2
ϕ with xb ∈ M+. Then

there exists xa ∈ M+ such that a = D
1
2
ϕxaD

1
2
ϕ . Moreover xa ≤ xb.

Proof. Let ϕa and ϕb be in M+
∗ such that Dϕa = a and Dϕb

= b. The assumptions and Lemma
4.11 imply that ϕb ≤ ‖xb‖ϕ. We find that ϕa ≤ ϕb ≤ ‖xb‖ϕ. Therefore Lemma 4.11 implies that

there exists xa ∈ M with 0 ≤ xa ≤ ‖xb‖ such that a = D
1
2
ϕxaD

1
2
ϕ . We have moreover xa ≤ xb

since a ≤ b implies that for y ∈ M,

〈D
1
2
ϕy, xaD

1
2
ϕy〉 = Tr(y∗D

1
2
ϕxaD

1
2
ϕy) = Tr(D

1
2
ϕxaD

1
2
ϕyy

∗) = Tr(ayy∗)

≤Tr(byy∗) = Tr(D
1
2
ϕxbD

1
2
ϕyy

∗) = 〈D
1
2
ϕy, xbD

1
2
ϕy〉.

�

Proposition 4.13. Let M1 ⊆ M be a von Neumann subalgebra that admits a ϕ-preserving
conditional expectation E. Let Φ = (Φt)t≥0 be a Markov semi-group on M that preserves M1.
Then we have isometric 1-complemented inclusions

BMO(M1,Φ) ⊆ BMO(M,Φ).

Proof. That the isometric inclusion exists is clear from the definitions. We have to prove that
the inclusion is 1-complemented. For t ≥ 0 and x ∈ BMOc

Φ(M) ⊆ L◦
2(M) we have the following

(in)equalities in L1(M) by Lemma 4.10,

|E(2)(x)− Φ
(2)
t (E(2)(x))|2 = E(2)(x− Φ

(2)
t (x))∗E(2)(x− Φ

(2)
t (x))

≤ E(1)((x− Φ
(2)
t (x))∗(x− Φ

(2)
t (x)))).

As Φ
(1)
t preserves positivity and commutes with E(1),

Φ
(1)
t (|E(2)(x)− Φ

(2)
t (E(2)(x))|2) ≤ E(1)(Φ

(1)
t ((x− Φ

(2)
t (x))∗(x− Φ

(2)
t (x)))). (4.4)

By assumption we may write

Φ
(1)
t ((x− Φ

(2)
t (x))∗(x−Φ

(2)
t (x)) = κ

(0)
∞,1(x

′
t),

for some x′t ∈ M. So the right hand side of (4.4) equals κ
(0)
∞,1(E(x

′
t)). By Lemma 4.12 it follows

that there exists x′′t ∈ M with 0 ≤ x′′t ≤ E(x′t) such that

Φ
(1)
t (|E(2)(x)− Φ

(2)
t (E(2)(x))|2) = κ

(0)
∞,1(x

′′
t ).

Taking norms we have

‖E(2)(x)‖BMOc = sup
t≥0

‖x′′t ‖∞ ≤ sup
t≥0

‖E(x′t)‖∞ ≤ sup
t≥0

‖x′t‖∞ = ‖x‖BMOc .

The row BMO-estimate and the BMO-estimate follow similarly. �



22 MARTIJN CASPERS AND GERRIT VOS

We may now conclude the following theorem. The proof (based on the Haagerup reduction
method) follows exactly as in [Cas19, Sections 3 and 4] where [Cas19, Lemma 4.3] needs to be
replaced by Proposition 4.13. Note that in the statement of [Cas19, Theorem 4.5] the standard
Markov dilation must be modular as well (this is a misprint in the text of [Cas19]).

Theorem 4.14. Let Φ be a ϕ-modular Markov semigroup on a σ-finite von Neumann algebra
(M, ϕ) admitting a modular standard Markov dilation. Then for all 1 ≤ p <∞, 1 < q <∞,

[BMO(M,Φ), L◦
p(M)]1/q ≈pq L

◦
pq(M).

Here ≈pq means that the Banach spaces are isomorphic and the norm of the isomorphism in both
directions can be estimated by an absolute constant times pq.

5. Lp-boundedness of BMO-valued Fourier-Schur multipliers on SUq(2)

In this section we prove that Fourier-Schur multipliers on SUq(2) of a certain form extend to
the non-commutative Lp spaces corresponding to SUq(2). We first introduce compact quantum
groups, SUq(2) and give the definition of Fourier-Schur multipliers. Then we prove the endpoint
estimates we need for complex interpolation.

5.1. BMO spaces of the torus. Define trigonometric functions

ζk : T → T : z 7→ zk, k ∈ Z.

Set the ∗-algebra Pol(T) := Span{ζk : k ∈ Z}. For m ∈ ℓ∞(Z) let Tm : L2(T) → L2(T) be
the Fourier multiplier defined by Tm(ζk) = m(k)ζk, k ∈ Z. For t ≥ 0 let ht ∈ ℓ∞(Z) be given

by ht(k) = e−tk2 . Then the maps Tht are well-known to define a Markov semigroup on the von
Neumann algebra L∞(T) (as they are restrictions of the Heat semi-group on L∞(R)). We use the
shorthand notation

BMO(T) := BMO(L∞(T), (Tht)t≥0).

Let m ∈ ℓ∞(Z) be such that m(0) = 0. Then as t→ ∞,

‖Tht(Tmζk)‖∞ = e−tk2 |m(k)|‖ζk‖∞ → 0.

So Tm maps Pol(T) to L◦
∞(T).

5.2. Compact quantum groups. For the theory of compact quantum groups we refer to
[Wor98] or the notes [MVD98] which follows the same lines.

Definition 5.1. A compact quantum group G = (C(G),∆) consists of a unital C∗-algebra C(G)
and a unital ∗-homomorphism ∆ : C(G) → C(G) ⊗min C(G) called the comultiplication such
that (∆ ⊗ ι) ◦ ∆ = (ι ⊗ ∆) ◦ ∆ (coassociativity) and such that both ∆(C(G))(C(G) ⊗ 1) and
∆(C(G))(1⊗ C(G)) are dense in C(G)⊗min C(G). Here ι : C(G) → C(G) is the identity map.

A finite dimensional (unitary) corepresentation is a unitary u ∈ C(G) ⊗ Mn(C) such that
(∆ ⊗ id)(u) = u13u23 where u23 = 1 ⊗ u and u13 is the flip applied to the first two tensor legs
of u23. All corepresentations are assumed to be unitary. The elements (id ⊗ ω)(u) ∈ C(G) with
ω ∈Mn(C)

∗ are called matrix coefficients. The span of all matrix coefficients is a ∗-algebra called
Pol(G). ∆ maps Pol(G) to Pol(G)⊗ Pol(G).

Here we shall mainly be concerned with the quantum group SUq(2) and we shall introduce
further structure such as Haar states and von Neumann algebras for this case only.
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5.3. Introduction SUq(2). Let Gq := SUq(2) with q ∈ (−1, 1)\{0}. It was introduced by
Woronowicz in [Wor87b]. Its C∗-algebra is the one generated by the operators α, γ on the Hilbert
space H = ℓ2(N)⊗2 ℓ2(Z) given by

α(ei ⊗ fj) =
√

1− q2iei−1 ⊗ fj,

γ(ei ⊗ fj) =q
iei ⊗ fj+1.

where ei ⊗ fj, i ∈ N, j ∈ Z are the basis vectors of H. The operators α, γ satisfy the following
relations:

γ∗γ = γγ∗, αγ = qγα, αγ∗ = qγ∗α,
α∗α+ γ∗γ = I, αα∗ + q2γ∗γ = I.

The comultiplication is given by

∆(α) = α⊗ α− qγ∗ ⊗ γ, ∆(γ) = γ ⊗ α+ α∗ ⊗ γ.

We define L∞(Gq) = 〈α, γ〉′′ ⊆ B(H). The corresponding noncommutative Lp-spaces are
written as Lp(Gq). We also define Pol(Gq) ⊆ L∞(Gq) to be the ∗-algebra generated by α, γ. This

is equivalent to the definition given in Section 5.2. It is the linear span of elements αkγl(γ∗)m,

k ∈ Z, l,m ∈ N, where we set αk = (α∗)|k| in case k < 0. Obviously, Pol(Gq) is weakly (or weak-∗)
dense in L∞(Gq).

The Haar state on L∞(Gq) is given by the following formula:

ϕ(x) = (1− q2)
∑

k∈N

q2k〈ek ⊗ f0, x(ek ⊗ f0)〉. (5.1)

See [Wor87a, Appendix A1] for the complete calculation. Note that ϕ(αkγl(γ∗)m) is non-zero if
and only if k = 0, l = m. It is also faithful, as follows for instance from (5.1).

The modular automorphism group is given by

σϕt (α
kγl(γ∗)m) = q−itkαkγl(γ∗)m. (5.2)

This can be derived from [Tak03a, Theorem VIII.3.3], where the ut from the theorem is equal to
(γ∗γ)it and the ψ is a trace.

Remark 5.2. The above definition of L∞(Gq) is not the standard way to define the von Neumann
algebra; usually this would be the double commutant within the GNS-representation correspond-
ing to the Haar state φ. However, these von Neumann algebras are isomorphic, although they are
not unitarily isomorphic.

5.4. Fourier-Schur Multipliers on SUq(2).

Definition 5.3. Let G be a compact quantum group and T : Pol(G) → Pol(G) a linear map. We
call T a Fourier-Schur multiplier if the following condition holds. Let u be any finite dimensional
corepresentation on H. Then there exists an orthogonal basis ei such that if ui,j are the matrix
coefficients with respect to this basis, then there exist numbers ci,j := cui,j ∈ C such that

Tui,j = ci,jui,j.

In this case (cui,j)i,j,u is called the symbol of T .
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Remark 5.4. If G comes from a classical abelian group G, i.e. if all irreducible corepresentations
are one-dimensional, then the above definition coincides with the definition of a classical Fourier
multiplier. In general, we see that T = FSF−1, where S is a Schur multiplier. Hence the name
‘Fourier-Schur multiplier’.

We will construct Fourier-Schur multipliers from Fourier multipliers on the torus T ⊆ C. We
assume henceforth thatm ∈ ℓ∞(Z) withm(0) = 0 such that Tm : L∞(T) → BMO(T) is completely
bounded. In the remainder of this section, we will consider the map

T̃m : Pol(Gq) → Pol(Gq), αkγl(γ∗)m 7→ m(k)αkγl(γ∗)m (5.3)

We will see after the next subsection that T̃m is indeed a Fourier-Schur multiplier. We remark
that the symbol m is used both as an element of ℓ∞(Z) and a power of γ∗; the context will always
make clear which is meant.

We introduce at this point the Markov semigroup that we will use to define the BMO space:

Φt(α
kγl(γ∗)m) = e−tk2αkγl(γ∗)m, k ∈ Z, l,m ∈ N, t ≥ 0.

We will only prove in Section 5.6 that the maps Φt extend to form a Markov semigroup on L∞(Gq).
However, for the sake of exposition it will be convenient to already define the corresponding spaces
L◦
p(Gq) as in Section 4.1.

The final goal is to prove that this map extends boundedly to Lp(Gq) → L◦
p(Gq) for all p ≥ 2. We

do this through complex interpolation (Riesz-Torin). This requires 3 steps: (1) a lower endpoint
estimate; (2) an upper endpoint estimate involving BMO spaces and (3) the construction of a
Markov dilation in order to apply Theorem 4.14.

We treat the Markov dilation in Appendix B. The remainder of this section is devoted to the
endpoint estimates.

Similarly to the torus, we have

Lemma 5.5. Let 1 ≤ p ≤ ∞. Then κ
(1)
∞,p ◦ T̃m maps Pol(Gq) to L

◦
p(Gq).

Proof. Let x = αkγl(γ∗)m. For k = 0, we have T̃m(x) = 0 ∈ L◦
p(Gq). Now assume |k| > 0. Then

for any 1 ≤ p ≤ ∞, we have as t→ ∞,

‖Φ
(p)
t (κ(1)∞,p(T̃mx))‖p = ‖κ(1)∞,p(Φt(T̃m(x)))‖p = |m(k)e−tk2 |‖κ(1)∞,p(x)‖p → 0.

Since Pol(Gq) is the span of elements αkγl(γ∗)m, the result follows by linearity. (Note that for
p = ∞, the σ-weak convergence follows from norm convergence.) �

5.5. L2-estimate. In this subsection we prove that (5.3) extends to a bounded map L2(Gq) →
L2(Gq). At the same time we prove (essentially) that it defines a Fourier-Schur multiplier. The
main ingredient will be the Peter-Weyl decomposition of Gq (see [KS97, Theorem 4.17]) we shall
summarize now.

A complete set of mutually inequivalent irreducible corepresentations of Gq can be constructed
as follows. They are labeled by half integers l ∈ 1

2N. Consider the vector space of linear combi-
nations of the homogeneous polynomials in α, γ of degree 2l. For some specific constants Cl,k,q,
we define basis vectors as follows:

g
(l)
k = Cl,k,qα

l−kγl+k, k = −l,−l + 1, . . . , l. (5.4)
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The precise value of the constant Cl,k,q can be found in [KS97, Chapter 4.2.3]; it is of little

importance to us. Next, we define the matrix u(l) ∈ Pol(Gq)⊗M2l+1(C) by

∆(g
(l)
k ) =

l
∑

i=−l

u
(l)
k,i ⊗ g

(l)
i .

The Peter-Weyl theorem now takes the following form from which we derive the main result of
this subsection in Proposition 5.7.

Lemma 5.6 (Proposition 4.16 and Theorem 4.17 of [KS97]). The matrix coefficients of u(l) ∈
M2l+1(L∞(Gq)) are a linear basis for Pol(Gq) satisfying the orthogonality relations

ϕ((u
(l)
i,j)

∗u(k)r,s ) = C
(l)
i δl,kδi,rδj,s.

for some constants C
(l)
i ∈ C.

Proposition 5.7. The u
(l)
i,j form an orthogonal basis of eigenvectors for the map T̃m defined in

(5.3) with eigenvalues m(−i− j).

Proof. To prove this, we will calculate an explicit expression for the matrix elements u
(l)
i,j . With

our notation αα−1 = αα∗ = 1− q2γ∗γ. Hence,

αk(α∗)k = αk−1(1− q2γ∗γ)(α∗)k−1 = (1− q2kγ∗γ)αk−1(α∗)k−1

= · · · = (1 − q2kγ∗γ)(1− q2k−2γ∗γ) . . . (1 − q2γ∗γ) =: (q2γ∗γ; q2)k.

The notation (a; b)k is known as the Pochhammer symbol. We define
[

k
i

]

q
to be the q-binomial

coefficients from [KS97, Section 2.1.2]. They satisfy the formula

(v + w)k =
k
∑

i=0

[

k
i

]

q−1 viwk−i.

for v,w satisfying vw = qwv. Below we will use this formula on both tensor legs simultaneously,
which means that the subscript of the q-binomial coefficient becomes q−2. Thus:

∆(g
(l)
i ) = Cl,i,q∆(αl−iγl+i) = Cl,i,q∆(α)l−i∆(γ)l+i

= Cl,i,q(α⊗ α− qγ∗ ⊗ γ)l−i(γ ⊗ α+ α∗ ⊗ γ)l+i

= Cl,i,q

(

l−i
∑

a=0

(−q)l−i−a [ l−i
a ]q−2 αa(γ∗)l−i−a ⊗ αaγl−i−a

)

×

(

l+i
∑

s=0

[ l+i
s ]q−2 γs(α∗)l+i−s ⊗ αsγl+i−s

)

= Cl,i,q

l−i
∑

a=0

l+i
∑

s=0

C ′
a,sα

a+s−l−i(γ∗)l−i−aγsPa,s(γ
∗, γ)⊗ αa+sγ2l−a−s

where C ′
a,s := C ′

l,i,q,a,s = (−q)l−i−aq(l+i−s)(s+l−i−a)−s(l−i−a) [ l−i
a ]q−2 [ l+i

s ]q−2 and Pa,s(γ
∗, γ) :=

Pl,i,q,a,s(γ
∗, γ) is some polynomial in the variables γ∗, γ depending on the minimum value of

{a, l + i− s}. If the minimum value is l+ i− s then Pa,s(γ
∗, γ) = (q2γ∗γ; q2)min(a,l+i−s); if it is a
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then the Pochhammer symbol appears instead to the left of αa+s−l−i, so after interchanging we
obtain extra powers of q in the terms of the polynomial.

Next, we substitute s by j where j = l−a−s and set P ′
a,j(γ

∗, γ) := (γ∗)l−i−aγl−j−aPa,l−j−a(γ
∗, γ),

C ′′
a,j := C ′

a,l−j−a with slight abuse of notation. This gives:

∆(g
(l)
i ) = Cl,i,q

l−i
∑

a=0

l−a
∑

j=−a−i

C ′′
a,jα

−(i+j)P ′
a,j(γ

∗, γ)⊗ αl−jγl+j

= Cl,i,q

l
∑

j=−l

min{l−i,l−j}
∑

a=max{0,−i−j}

C ′′
a,jα

−(i+j)P ′
a,j(γ

∗, γ) ⊗C−1
l,j,qg

(l)
j .

Hence we find
u
(l)
i,j = α−(i+j) · Cl,i,qC

−1
l,j,q

∑

a

C ′′
a,i,j,l,qP

′
a,i,j,l,q(γ

∗, γ). (5.5)

Now since the only power of α that occurs in (5.5) is α−(i+j), the u
(l)
i,j are eigenvectors for the

maps T̃m. �

Corollary 5.8. The map (5.3) is a Fourier-Schur multiplier for Gq with symbol (m(−i − j))i,j,l
where l ∈ 1

2N indexes the corepresentation and 1 ≤ i, j ≤ 2l + 1.

Corollary 5.9. For every m ∈ ℓ∞(Z) there is a map T̃
(2)
m : L2(Gq) → L2(Gq) extending (5.3) by

T̃ (2)
m ◦ κ

(1)
∞,2 = κ

(1)
∞,2 ◦ T̃m

which is bounded with norm at most ‖m‖∞. If m(0) = 0 then T̃
(2)
m : L2(Gq) → L◦

2(Gq).

Proof. Define the ϕ-GNS inner product on Pol(Gq) by 〈x, y〉 = ϕ(x∗y) and denote the associated

GNS space by Hϕ. By Lemma 5.6 and Proposition 5.7 we see that T̃m : Pol(Gq) → Pol(Gq) is
bounded with respect to this inner product with bound at most ‖m‖∞. Hence it extends to a

map T̃ϕ
m : Hϕ → Hϕ. By [Ter82, Section 2.2] we have that

Pol(Gq) → L2(Gq) : x 7→ xD1/2
ϕ

is an isometry with respect to this inner product on the left and hence extends to a unitary map

U : Hϕ → L2(Gq). Then the map T̃
(2)
m := UT̃ϕ

mU∗ : L2(Gq) → L2(Gq) satisfies the conditions.
The final statement is Lemma 5.5.

�

5.6. Transference principle and construction of BMO(Gq). In this subsection we construct
the BMO spaces corresponding to Gq = SUq(2), q ∈ (−1, 1)\{0} that we need for the upper end-
point estimate. The main tool behind both the construction of the BMO spaces and the proof of
the actual upper endpoint estimate is the transference principle of Lemma 5.11. The idea is to
obtain properties of Fourier-Schur multipliers on L∞(Gq) from properties of Fourier multipliers
on L∞(T).

Recall that ζi : T → T was defined by z 7→ zi and let ei,j be the matrix units in B(ℓ2(N)). We
define the unitary

U =

∞
∑

i=0

ei,i ⊗ 1B(ℓ2(Z)) ⊗ ζi ∈ B(H)⊗̄L∞(T),
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and the injective normal ∗-homomorphism

π : B(H) → B(H)⊗̄L∞(T) : x 7→ U∗(x⊗ 1)U.

Lemma 5.10. We have for k ∈ Z, l,m ∈ N that

π(αkγl(γ∗)m) = αkγl(γ∗)m ⊗ ζk. (5.6)

Proof. For ξ ∈ L2(T), i ∈ N, j ∈ Z,

π(αkγl(γ∗)m)(ei ⊗ fj ⊗ ξ)

=U∗(αkγl(γ∗)m ⊗ id)(ei ⊗ fj ⊗ ζiξ)

=U∗
√

(1− q2i)(1− q2i−2) . . . (1− q2i−2k+2)qi(l+m)ei−k ⊗ fj+l−m ⊗ ζiξ

=
√

(1− q2i)(1 − q2i−2) . . . (1− q2i−2k+2)qi(l+m)ei−k ⊗ fj+l−m ⊗ ζkξ

=(αkγl(γ∗)m ⊗ ζk)(ei ⊗ fj ⊗ ξ).

�

This implies that π maps Pol(Gq) into Pol(Gq) ⊗ L∞(T). Hence by density, it maps L∞(Gq)
into L∞(Gq)⊗̄L∞(T). We denote ιM for the identity operator M → M on a von Neumann
algebra M, reserving 1M for the unit of M. The following identity is now immediate. We refer
to this identity as the ‘transference principle’.

Lemma 5.11. Let m̃ ∈ ℓ∞(Z). For k ∈ Z, l,m ∈ N we have

(ιL∞(Gq) ⊗ Tm̃)π(αkγl(γ∗)m) = m̃(k)π(αkγl(γ∗)m).

Set again the Heat multipliers ht(k) = e−tk2 , k ∈ Z, t ≥ 0. Let us define a semigroup on
L∞(Gq)⊗̄L∞(T) by S = (St)t≥0 with St := ιL∞(Gq) ⊗ Tht . Recall that (Tht)t≥0 is a Markov
semigroup (see Section 5.1). By approximation with elements from the algebraic tensor product
and the text following Proposition 2.1, one can prove that S is also a Markov semigroup. From
this and the transference principle, we can now prove that the semigroup (Φt)t≥0 we defined in
Section 5.4 is actually a well-defined Markov semigroup.

Proposition 5.12. The family of maps given by the assignment

Φt(α
kγl(γ∗)m) = e−tk2αkγl(γ∗)m, k ∈ Z, l,m ∈ N, t ≥ 0,

extends to a Markov semigroup of Fourier-Schur multipliers Φ := (Φt)t≥0 on L∞(Gq) satisfying

π ◦Φt = St ◦ π.

Moreover, the semi-group is modular.

Proof. By Lemma 5.11 we have the commutative diagram:

L∞(Gq)⊗̄L∞(T) L∞(Gq)⊗̄L∞(T)

Pol(Gq) L∞(Gq)

St

π

Φt

π
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π is a normal injective ∗-homomorphism so that we may view L∞(Gq) as a (unital) von Neumann
subalgebra of L∞(Gq)⊗̄L∞(T). We find that Φt, being the restriction of St to Pol(Gq), is also
a normal ucp map. This means that Φt extends to a normal ucp map on L∞(Gq). By the
same argument, we deduce strong continuity of t 7→ Φt(x). This shows properties (i) and (iii) of
Definition 4.1.

To show property (ii), we recall (see (5.1)) that the Haar functional ϕ on Gq is non-zero

on basis elements αkγl(γ∗)m only if k = 0, l = m. If x = αkγl(γ∗)m, y = αk′γl
′
(γ∗)m

′
, then

xy = Cαk+k′γl+l′(γ∗)m+m′
for some constant C. This shows that ϕ(xΦt(y)) = ϕ(Φt(x)y) on basis

elements x, y, and hence everywhere.
Finally, by the formula for the modular automorphism group (5.2), we find that Φt is ϕ-

modular. �

We define corresponding BMO spaces for this semigroup. We use the shorthand notation
BMO(Gq) for BMO(L∞(Gq),Φ), and similarly for the column and row spaces. We can also define
a BMO-norm ‖ · ‖BMOS

on (L∞(Gq)⊗̄L∞(T))◦. We will do some of the estimates within the
normed spaces (L◦

∞(Gq), ‖ · ‖BMOΦ
) and ((L∞(Gq)⊗̄L∞(T))◦, ‖ · ‖BMOS

) to avoid some technical-
ities.

Lemma 5.13. The map π is isometric as a map between normed spaces

π : (L◦
∞(Gq), ‖ · ‖BMOΦ

) → ((L∞(Gq)⊗̄L∞(T))◦, ‖ · ‖BMOS
).

Proof. This follows from the commutative diagram of Proposition 5.12 and the fact that π is
an injective, hence isometric, ∗-homomorphism L∞(Gq) → L∞(Gq)⊗̄L∞(T). Indeed, for x ∈
L∞(Gq)

◦, we have that

‖St(π(x))‖∞ = ‖(π ◦Φt)(x)‖∞ → 0,

which implies in particular σ-weak convergence. Hence π(x) ∈ (L∞(Gq)⊗̄L∞(T))◦. Also,

‖π(x)‖2BMOc
S
= sup

t≥0
‖St(|π(x) − St(π(x))|

2)‖ = sup
t≥0

‖St(|π(x) − π(Φt(x))|
2)‖

= sup
t≥0

‖St(π(|x− Φt(x)|
2))‖ = sup

t≥0
‖π(Φt(|x− Φt(x)|

2))‖

= sup
t≥0

‖Φt(|x− Φt(x)|
2)‖ = ‖x‖2BMOc

Φ
.

Replacing x by x∗ yields isometry for the row BMO-norm from which it follows that π is isometric
on BMO as well. �

5.7. L∞-BMO estimate. We proceed to prove an upper end point estimate for T̃m. Recall that
we defined a “weak-∗ topology” on BMO(Gq) in Remark 4.8.

Theorem 5.14. Let m ∈ ℓ∞(Z) with m(0) = 0 be such that Tm : L∞(T) → BMO(T) is completely
bounded. Then there exists a bounded weak-∗/weak-∗ continuous map

T̃ (∞)
m : L∞(Gq) → BMO(Gq),

satisfying T̃
(∞)
m (x) = κ

(0)
∞,1(T̃m(x)) for x ∈ Pol(Gq). Moreover,

‖T̃ (∞)
m : L∞(Gq) → BMO(Gq)‖ ≤ ‖Tm : L∞(T) → BMO(T)‖cb. (5.7)
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The proof consists of the following two lemmas. We first prove a BMO-norm estimate of T̃m
for the polynomial algebra, using again the transference principle from Lemma 5.11.

Lemma 5.15. Let m ∈ ℓ∞(Z) with m(0) = 0 be such that Tm : L∞(T) → BMO(T) is completely
bounded. Then for x ∈ Pol(Gq):

‖T̃m(x)‖BMOΦ
≤ ‖Tm : L∞(T) → BMO(T)‖cb‖x‖∞. (5.8)

Proof. By Lemma 5.5, T̃m maps Pol(Gq) to L◦
∞(Gq). Note that π sends Pol(Gq) to L∞(Gq) ⊗

Pol(T) and ιL∞(Gq) ⊗ Tm sends L∞(Gq)⊗Pol(T) to L∞(Gq)⊗ L◦
∞(T) ⊆ (L∞(Gq)⊗̄L∞(T))◦ (see

also Appendix A). Now Lemma 5.11 gives us a commutative diagram like in Proposition 5.12.

L∞(Gq)⊗ Pol(T) (L∞(Gq)⊗̄L∞(T))◦

Pol(Gq) L◦
∞(Gq)

ιL∞(Gq)⊗Tm

π

T̃m

π

Note that in particular the restriction Tm : Pol(T) → (L◦
∞(T), ‖ · ‖BMO) is completely bounded.

Now Lemma 5.13 and Proposition A.1 allows us to find a BMO-estimate on T̃m for x ∈ Pol(Gq):

‖T̃m(x)‖BMOΦ
= ‖π ◦ T̃m(x)‖BMOS

= ‖(ιL∞(Gq) ⊗ Tm) ◦ π(x)‖BMOS

≤ ‖Tm‖cb‖π(x)‖ = ‖Tm‖cb‖x‖∞.

where ‖Tm‖cb = ‖Tm : L∞(T) → BMO(T)‖cb. �

Recall that κ
(0)
∞,1 isometrically embeds the normed space (L◦

∞(Gq), ‖ · ‖BMOΦ
) into BMO(Gq).

Now define T̃
(∞)
m = κ

(0)
∞,1◦T̃m, which we may consider as a bounded map from Pol(Gq) to BMO(Gq)

by Lemma 5.15. It remains to prove that this map extends to L∞(Gq). The proof is essentially
that of [JMP14, Lemma 1.6] together with a number of technicalities that we overcome here.

Lemma 5.16. T̃
(∞)
m has a weak-∗/weak-∗ continuous extension to L∞(Gq) → BMO(Gq).

Proof. Let hc1(Gq) := hc1(L∞(Gq),Φ) and hr1(Gq) := hr1(L∞(Gq),Φ) be the preduals constructed
in Section 4.2. We will construct maps Sc : hc1(Gq) → L1(Gq) and Sr : hr1(Gq) → L1(Gq) such

that their adjoints are equal and extend T̃
(∞)
m .

Construction of maps Sc and Sr. We construct the map Sc : h
c
1(Gq) → L1(Gq) by proving that

the map κ
(1)
2,1 ◦ (T̃

(2)
m )∗ is bounded as a map L◦

2(Gq) → L1(Gq) with respect to ‖ · ‖hc
1(Gq) on the

left. For y ∈ L◦
2(Gq) and z ∈ Pol(Gq) we find

〈z, (T̃ (2)
m )∗(y)D1/2

ϕ 〉 = 〈D1/2
ϕ z, (T̃ (2)

m )∗(y)〉 = 〈D1/2
ϕ T̃m(z), y〉. (5.9)

By the Kaplansky density theorem and [Tak02, Theorem II.2.6] the unit ball of Pol(Gq) is weak-∗
dense in the unit ball of L∞(Gq). Hence for y ∈ L◦

2(Gq) we find:

‖κ
(1)
2,1((T̃

(2)
m )∗y)‖L1(Gq) = sup

z∈Pol(Gq)≤1

|〈z, (T̃ (2)
m )∗(y)D1/2

ϕ 〉|

= sup
z∈Pol(Gq)≤1

|〈D1/2
ϕ T̃m(z), y〉| ≤ ‖Tm‖cb‖y‖hc

1(Gq).
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In the last step we used that ‖κ
(−1)
∞,2 (T̃m(z))‖BMOr = ‖T̃m(z)‖BMOr ≤ ‖Tm‖cb‖z‖∞. We conclude

that κ
(1)
2,1 ◦ (T̃

(2)
m )∗ extends to a bounded map

Sc : h
c
1(Gq) → L1(Gq).

In a similar manner we can prove that the map κ
(−1)
2,1 ◦ (T̃

(2)
m )∗ extends to a bounded map

Sr : h
r
1(Gq) → L1(Gq).

By taking limits in (5.9), we can prove the following equalities for z ∈ Pol(Gq), ya ∈ hc1(Gq) and
yb ∈ hr1(Gq):

〈z, Sc(ya)〉 = 〈D1/2
ϕ T̃m(z), ya〉, 〈z, Sr(yb)〉 = 〈T̃m(z)D1/2

ϕ , yb〉 (5.10)

Analysis of the adjoint maps. Now consider the adjoint maps S∗
r : L∞(Gq) → BMOc(Gq) and S

∗
c :

L∞(Gq) → BMOr(Gq). They are weak-∗/weak-∗ continuous by Proposition 2.1. By composition,
we get maps

Tc := κ
(−1)
2,1 ◦ S∗

r : L∞(Gq) → L◦
1(Gq), Tr := κ

(1)
2,1 ◦ S

∗
c : L∞(Gq) → L◦

1(Gq).

Let z ∈ Pol(Gq) and y ∈ hc1(Gq). Then (5.10) yields

〈S∗
c (z), y〉 = 〈z, Sc(y)〉 = 〈D1/2

ϕ T̃m(z), y〉

so S∗
c extends κ

(−1)
∞,2 ◦ T̃m. Hence, Tr is a weak-∗/weak-∗ continuous extension of κ

(0)
∞,1◦ T̃m = T̃

(∞)
m .

In a similar way, we find that Tc is a weak-∗/weak-∗ continuous extension of T̃
(∞)
m . In particular,

Tc and Tr coincide on Pol(Gq). It remains to prove that Tc = Tr; this implies that the image of
this map is contained in BMO(Gq), and hence it is the weak-∗/weak-∗ continuous extension of

T̃
(∞)
m that we were looking for.

Proof of the equality Tr = Tc. Let x ∈ L∞(Gq) and take a net xλ ∈ Pol(Gq) such that xλ → x in
the weak-∗ topology. By the weak-∗/weak-∗ continuity of S∗

r , we have S∗
r (xλ) → S∗

r (x) =: yc ∈
BMOc(Gq) in the weak-∗ topology. Similarly, S∗

c (xλ) → S∗
c (x) =: yr ∈ BMOr(Gq) in the weak-∗

topology. We need to prove that D
1/2
ϕ yc = yrD

1/2
ϕ in L◦

1(Gq).

First let z ∈ L◦
∞(Gq). In that case, we have

〈S∗
r (xλ), zD

1/2
ϕ 〉BMOc,hr

1
= 〈Tc(xλ), z〉1,∞ = 〈Tr(xλ), z〉1,∞ = 〈S∗

c (xλ),D
1/2
ϕ z〉BMOr ,hc

1
.

Hence,

〈D1/2
ϕ yc, z〉1,∞ = 〈yc, zD

1/2
ϕ 〉BMOc,hr

1
= lim

λ
〈S∗

r (xλ), zD
1/2
ϕ 〉BMOc,hr

1

= lim
λ
〈S∗

c (xλ),D
1/2
ϕ z〉BMOr,hc

1
= 〈yr,D

1/2
ϕ z〉BMOr,hc

1
= 〈yrD

1/2
ϕ , z〉1,∞.

Now let z ∈ L∞(Gq). Let E be the projection of L∞(Gq) onto L
◦
∞(Gq). Then as in Proposition

2.6, we get a projection E
(1) : L1(Gq) → L◦

1(Gq) which is the adjoint of E. Hence,

〈D1/2
ϕ yc, z〉 = 〈E(1)(D1/2

ϕ yc), z〉 = 〈D1/2
ϕ yc,E(z)〉 = 〈yrD

1/2
ϕ ,E(z)〉 = 〈yrD

1/2
ϕ , z〉.

We conclude that D
1/2
ϕ yc = yrD

1/2
ϕ ; this finishes the proof. �

Proof of Theorem 5.14. The existence of T̃
(∞)
m follows from Lemma 5.15 and 5.16. The inequality

in (5.7) follows from (5.8) and the Kaplansky density theorem. �



BMO SPACES OF σ-FINITE VON NEUMANN ALGEBRAS AND FOURIER-SCHUR MULTIPLIERS 31

5.8. Consequences for Lp-Fourier Schur multipliers.

Theorem 5.17. Let m ∈ ℓ∞(Z) with m(0) = 0 be such that the Fourier multiplier Tm : L∞(T) →
BMO(T) is completely bounded. Let T̃m : Pol(Gq) → Pol(Gq) be the Fourier-Schur multiplier
with symbol (m(−i− j))i,j,l with respect to the basis described in (5.4), where l ∈ 1

2N indexes the

corepresentation and 1 ≤ i, j ≤ 2l + 1. Then for 1 ≤ p <∞, T̃m extends to a bounded map

T̃ (p)
m : Lp(Gq) → L◦

p(Gq),

where by ‘extension’ we mean that T̃
(p)
m (κ

(1)
∞,p(x)) = κ

(1)
∞,p(T̃m(x))

Proof. Proposition 5.9 and Theorem 5.14 show that T̃
(∞)
m and T̃

(2)
m together are compatible mor-

phisms. Therefore, by Riesz-Torin (see e.g. Theorem 2.5 from [Cas13] and the rest of that
paragraph), we get bounded maps on the interpolation spaces. Since Φ admits a Markov dilation
(see Proposition B.4), Theorem 4.14 tells us that

[BMO(Gq), L
◦
2(Gq)]2/p ≈ L◦

p(Gq).

Also we have by [Kos84] that

[L∞(Gq), L2(Gq)]2/p ≈ Lp(Gq).

This proves that for 2 ≤ p < ∞ we can construct bounded maps T̃
(p)
m : Lp(Gq) → L◦

p(Gq) that

extend T̃m - or more precisely, they satisfy T̃
(p)
m (κ

(1)
∞,p(x)) = κ

(1)
∞,p(T̃m(x)) for all x ∈ Pol(Gq).

Now consider 1 ≤ p < 2 and let p′ be such that 1
p +

1
p′ = 1. Then the adjoint map T̃ ∗

m is simply

the Fourier multiplier with symbol m̄, and hence by the above argument T̃ ∗
m extends to a map on

Lp′(Gq). Hence the map T̃
(p)
m : Lp(Gq) → Lp(Gq) given by the double adjoint is the extension we

were looking for. �

Remark 5.18. The condition thatm(0) = 0 is not very important: if we ‘add a constant sequence
to m’, i.e. we switch to the map Tm+λ1 = Tm+λιL∞(T), then this map still ‘extends’ (in the sense
of the theorem) to a bounded map Lp(Gq) → Lp(Gq).

Remark 5.19. In [JMP14, Lemma 3.3] classes of completely bounded multipliers L∞(T) →
BMO(T) have been constructed. Further, in [JMP14, Lemma 1.3] the connection between classical
BMO-spaces and non-commutative semi-group BMO spaces is established giving further examples.
This shows that indeed the class of symbols m to which Theorem 5.17 applies is non-empty and
contains a reasonable class of examples.

Appendix A. Completely bounded maps with respect to the BMO-norm

Throughout this section, let M ⊆ B(K) be a σ-finite von Neumann algebra with n.f. state ϕ
and Markov semigroup Φ = (Φt)t≥0. Fix some n ≥ 2. Then the maps ιMn ⊗ Φt define a Markov
semigroup on Mn(M). Hence we can define the matrix BMO-norms ‖ · ‖BMOn on Mn(M)◦ with
respect to the semigroup Sn := (ιMn ⊗ Φt)t≥0. Through a straightforward calculation, one also
checks that Mn(M)◦ = Mn(M

◦). Hence the above norms define matrix norms on M◦. It is not
hard to prove that these norms turnM◦ into an operator space, which we denote by (M◦, ‖·‖BMO).
We leave the details to the reader.

Let N ⊆ B(H) be a σ-finite von Neumann algebra. Then N⊗̄M is again a σ-finite von Neu-
mann algebra. Similarly as in the matrix case, S := (ιN ⊗ Φt)t≥0 is a semigroup on N⊗̄M. In
line with the main text, we denote ‖ · ‖BMOS

for the corresponding BMO-norm on (N⊗̄M)◦.
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Using the fact that N∗ ⊗M∗ is dense in (N⊗̄M)∗ (see [Sak71, Chapter 1.22]) one can show
that N ⊗M◦ ⊆ (N⊗̄M)◦ .

Proposition A.1. Let A ⊆ M be a linear subspace and T : A → (M◦, ‖ · ‖BMO) be completely
bounded. For x ∈ N ⊗A,

‖(ιN ⊗ T )(x)‖BMOS
≤ ‖T‖cb‖x‖B(H⊗2K).

Proof. Take x ∈ N ⊗ A and write x =
∑

n xn ⊗ x′n. Let z = (ιN ⊗ T )(x) ∈ N ⊗ M◦. Setting
wn = T (x′n) we have z =

∑

n xn ⊗ wn. For a finite dimensional subspace F ⊆ H let PF be the

projection onto F . Denote xFn = PFxnPF the truncation of xn to F . Denote zF =
∑

n x
F
n ⊗ wn

and xF =
∑

n x
F
n ⊗ x′n.

Now we prove the column estimate. Let ξ ∈ H ⊗ K (algebraic tensor product) and write
ξ =

∑

k ξk ⊗ ηk. Define F ⊆ H to be

F = Span{ξk, xmξk, x
∗
nxmξk | n,m, k}.

Then we note that F is finite dimensional and (xFn )
∗xFmξk = x∗nxmξk, Let t ≥ 0 be arbitrary.

Writing out the expression in the column BMO-norm gives

(ιN ⊗ Φt)(|z − (ιN ⊗ Φt)(z)|
2) =

∑

n,m

x∗nxm ⊗ Φt((wn − Φt(wn))
∗(wm − Φt(wm))).

Hence, denoting SF := (ιB(F ) ⊗ Φt)t≥0,

‖(ιN ⊗ Φt)(|z − (ιN ⊗ Φt)(z)|
2)ξ‖H⊗2K

= ‖(ιB(F) ⊗ Φt)(|z
F − (ιB(F) ⊗ Φt)(z

F )|2)ξ‖F⊗K

≤ ‖(ιB(F) ⊗ Φt)(|z
F − (ιB(F) ⊗ Φt)(z

F )|2)‖B(F⊗K)‖ξ‖

≤ ‖zF ‖2BMOc
SF

‖ξ‖ = ‖(ιB(F ) ⊗ T )(xF )‖2BMOc
SF

‖ξ‖ ≤ ‖T‖2cb‖x‖
2
B(H⊗2K)‖ξ‖.

In the last step, we used that T is also completely bounded when considering ‖ · ‖BMOc on the
right. Taking the supremum over all ξ ∈ H⊗K with ‖ξ‖ = 1 and t ≥ 0, we conclude

‖(ιN ⊗ T )(x)‖BMOc
S
≤ ‖T‖cb‖x‖B(H⊗2K)

The row BMO estimate follows similarly, from which the BMO estimate follows. �

Remark A.2. In the case where M is a finite von Neumann algebra, we can extend the operator
space structure to BMO(M,Φ). In the σ-finite case however, it seems to be more difficult than
expected to prove that Mn(BMO(M,Φ)) ⊆ BMO(Mn(M), ιMn ⊗Φ).

Appendix B. A Markov dilation of the Markov semigroup Φ

Definition B.1. We say that a Markov semigroup Φ on a σ-finite von Neumann algebra M with
faithful normal state ϕ admits a standard Markov dilation if there exist:

(i) a σ-finite von Neumann algebra N with normal faithful state ϕN ,
(ii) an increasing filtration (Ns)s≥0 with ϕN -preserving conditional expectations Es : N → Ns,
(iii) a ∗-homomorphisms πs : M → Ns such that ϕN ◦ πs = ϕN and

Es(πt(x)) = πs(Φt−s(x)), s < t, x ∈ M.
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A Markov dilation is called ϕ-modular if it additionally satisfies

πs ◦ σ
ϕ
t = σϕN

t ◦ πs, s ≥ 0, t ∈ R.

One can analogously define the notion of a reversed Markov dilation; we refer to [CJSZ20,
Definition 5.1] for the precise statement.

In this subsection, we construct a Markov dilation for the semigroup Φ = (Φt)t≥0 on L∞(Gq)
given by

Φt(α
kγl(γ∗)m) = e−tk2αkγl(γ∗)m, k ∈ Z, l,m ∈ N,

as used in Section 5.

To construct the Markov dilation, we use the fact that L∞(Gq) can be written as the tensor
product of two relatively simple von Neumann algebras. This is a well-known fact; we give a
sketch of the proof for the convenience of the reader. We let L(Z) be the group von Neumann
algebra of Z generated by the left regular representation λ.

Proposition B.2. L∞(Gq) = B(ℓ2(N))⊗̄L(Z).

Proof. Let Tm, Tm̃ be the multiplication maps on ℓ2(N) with symbols m(k) = qk, m̃(k) =
√

1− q2k. Then we can write

γ = Tm ⊗ λ1,Z, α = (λ∗1,NTm̃)⊗ 1

where we denote λ1,Z and λ1,N for the right shift on ℓ2(Z) and ℓ2(N) respectively. From these
expressions it is immediately clear that L∞(Gq) ⊆ B(ℓ2(N))⊗̄L(Z). For the other inclusion, note
that the partial isometries in the polar decompositions of α, γ are 1⊗λ1,Z and λ∗1,N⊗1 respectively.

These elements generate 1⊗L(Z) and B(ℓ2(N))⊗1 respectively as von Neumann algebras. Hence
the other inclusion follows from the definition of the von Neumann algebraic tensor product. �

Through this expression for L∞(Gq) we will show that Φt can be written as a Schur multiplier.
We will need the fact that Schur multipliers are normal.

Proposition B.3. Set H = ℓ2(I) for some index set I and let T : B(H) → B(H) be a Schur
multiplier with symbol t = (ti,j)i,j, i.e. T (ei,j) = ti,jei,j. Then T is normal.

Proof. Denote L1(H) to be the trace class operators and denote tT to be the transpose of t. We
claim that T ∗|L1(H) is nothing but the Schur multiplier with symbol tT . Indeed, if x ∈ B(H),
y ∈ L1(H) and i ∈ I is fixed, then

〈ei, T (x)yei〉 =
∑

k∈I

ti,kxi,kyk,i =
∑

k∈I

xi,kt
T
k,iyk,i = 〈ei, x(t

T
i,jyi,j)i,jei〉.

Hence
Tr(T (x)y) =

∑

i∈I

〈ei, T (x)yei〉 =
∑

i∈I

〈xei, (t
T
i,jyi,j)i,jei〉 = Tr(x(tTi,jyi,j)i,j).

This shows the claim.
Let y ∈ L1(H). By the above T ∗(y) is an operator on H so that we can define its trace-class

norm. Then by Hahn-Banach

‖T ∗y‖L1(H) = sup
x∈B(H):‖x‖≤1

|〈x, T ∗y〉| = sup
x∈B(H):‖x‖≤1

|〈Tx, y〉| ≤ ‖T‖‖y‖L1(H).

So T ∗ restricts to an operator L1(H) → L1(H). Therefore, since B(H) = L1(H)∗, we see that by
Proposition 2.1 T = (T ∗|L1(H))

∗ is normal. �
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Proposition B.4. The semi-group Φ admits a (standard and reversed) ϕ-modular Markov dila-
tion.

Proof. We prove first that Φt can be written as a Schur multiplier on the left tensor leg of L∞(Gq).

Let x = αkγl(γ∗)m. x acts on basis vectors by

ei ⊗ fr
x
7→ cei−k ⊗ fr+l−m, c := cq,k,l,m,i,r =

√

(1− q2i)(1− q2i−2) . . . (1− q2i−2k+2)qi(l+m).

In other words, the matrix elements of x are given by

〈xei ⊗ fr, ej ⊗ fs〉 = c δj,i−kδs,r+l−m.

Hence if we define Ψt : B(ℓ2(N)) → B(ℓ2(N)) as the Schur multiplier given by Ψt(ei,j) =

e−t|i−j|2ei,j, then we have

Φt(x) = e−tk2x = (Ψt ⊗ idL(Z))(x)

Hence Φt and Ψt ⊗ idL(Z) coincide on Pol(Gq). Since both are normal (Proposition 5.12 for Φt

and Proposition B.3 for Ψt) they must coincide on L∞(Gq).
The proof from now on is essentially that of [Ric08] or [CJSZ20, Proposition 4.2] with the main

difference that the unitary u below only sums over the indices of ℓ2(N). Let ε > 0 be arbitrary.
We define a sesquilinear form on the real finite linear span H0 = SpanR{ei, i ∈ N} ⊆ H by setting

〈ξ, η〉 =
∑

i,j∈N

e−ε(j−i)2ξiηj , ξ, η ∈ H0

We define HR to be the completion of H0 with respect to 〈·, ·〉 after quotienting out the degenerate
part. Let Γ = Γ(HR) be the associated exterior algebra (see [CJSZ20, Section 2.8]) with vacuum
vector Ω and canonical vacuum state τΩ. The dilation von Neumann algebra (B, ϕB) will be given
by

B = L∞(Gq)⊗̄Γ⊗̄∞, ϕB = ϕ⊗ τ⊗∞
Ω

where the infinite tensor product is taken with respect to τΩ. Next we describe the dilation
homomorphisms πs. We consider the unitary

u =
∑

i∈N

ei,i ⊗ 1L(Z) ⊗ s(ei)⊗ 1⊗∞
Γ ∈ L∞(Gq)⊗̄Γ⊗̄∞

which is defined as a strong limit of sums. Let S : v 7→ 1⊗ v be the tensor shift on Γ⊗̄∞, and let
β : B → B be defined by β(z) = u∗(ιL∞(Gq) ⊗ S)(z)u. The ∗-homomorphisms πs : L∞(Gq) → B
are given by

π0 : x 7→ x⊗ 1⊗ 1 . . . , πk : x 7→ (βk ◦ π0)(x), k ≥ 1.

One shows by induction that for x ∈ L∞(Gq)

πk(x) =
∑

i,j∈N

ei,ixej,j ⊗ (s(ei)s(ej))
⊗k ⊗ 1⊗∞

Γ .

By (5.1) it follows that πk is state-preserving, and by [Tak03b, Proposition XIV.1.11], it is ϕ-
modular.

Finally, the filtration is given by

Bm = L∞(Gq)⊗̄Γ⊗m ⊗ 1⊗∞
Γ ⊆ B.
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One checks that the associated conditional expectations satisfy

Em(ei,ixej,j ⊗ (s(ei)s(ej))
⊗k ⊗ id⊗∞

Γ )

=τΩ(s(ei)s(ej))
k−mei,ixej,j ⊗ (s(ei)s(ej))

⊗m ⊗ 1⊗∞
Γ .

From this and the identity

τΩ(s(ei)s(ej)) = 〈s(ej)Ω, s(ei)Ω〉 = e−ε(j−i)2

one deduces that indeed

(Em ◦ πk)(x) = πm(Φε(k−m)(x)).

So the semigroup (Φεn)n∈N admits a Markov dilation for any ε > 0. By [CJSZ20, Theorem 3.2],
(Φt)t≥0 admits a standard Markov dilation. This theorem is stated only for finite von Neumann
algebras, but it also holds in the σ-finite case with the same proof mutatis mutandis. A reversed
Markov dilation can be obtained by essentially the same argument and a σ-finite analogue of
[CJSZ20, Theorem 5.3].

�
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[KS97] Anatoli Klimyk and Konrad Schmüdgen. Quantum groups and their representations. Springer, 1997.
[Lan95] E. Christopher Lance. Hilbert C*-Modules: A Toolkit for Operator Algebraists. London Mathematical So-

ciety Lecture Note Series. Cambridge University Press, 1995.
[Mei08] Tao Mei. Tent spaces associated with semigroups of operators. J. Funct. Anal., 255(12):3356–3406, 2008.
[Mei17] Tao Mei. Paley’s theory for lacunary fourier series on discrete groups: a semigroup-interpretation.

arXiv:1703.02208v3, 2017.
[Mur90] G. Murphy. C*-algebras and operator theory. Academic Press, Boston, 1990.
[Mus03] Magdalena Musat. Interpolation between non-commutative BMO and non-commutative Lp-spaces. J.

Funct. Anal., 202(1):195–225, 2003.
[MVD98] Ann Maes and Alfons Van Daele. Notes on compact quantum groups. Nieuw Arch. Wisk. (4), 16(1-2):73–

112, 1998.
[OT15] Rui Okayasu and Reiji Tomatsu. Haagerup approximation property for arbitrary von Neumann algebras.

Publ. Res. Inst. Math. Sci., 51(3):567–603, 2015.
[Pas73] William L. Paschke. Inner product modules over B∗-algebras. Trans. Amer. Math. Soc., 182:443–468, 1973.
[Pis03] Gilles Pisier. Introduction to operator space theory, volume 294 of London Mathematical Society Lecture

Note Series. Cambridge University Press, Cambridge, 2003.
[Pop00] Nicolae Popa. Non-commutative BMO space. Arch. Math. (Basel), 74(2):111–114, 2000.
[PX97] Gilles Pisier and Quanhua Xu. Non-commutative martingale inequalities. Comm. Math. Phys., 189(3):667–

698, 1997.
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