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Estimating hyperlocal wind fields with on-board
sensors on quadcopters

Erik van Baasbank1,
Supervisors: Junzi Sun1, Jacco Hoekstra 1, and Emmanuel Sunil2

1Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft, the Netherlands
2National Aerospace Laboratory, Anthony Fokkerweg 2, 1059 CM Amsterdam, the Netherlands

Abstract—Charting hyperlocal wind using a drone is a chal-
lenge of increased attention as it unlocks potential in a variety
of fields. In context of the METeo Sensors In the Sky project,
this study proposes a method to estimate the magnitude and
direction of wind using a quadcopter in hover and cruise without
a dedicated wind sensor. Only on-board sensors are used, with
no knowledge of thrust and rpm. A deterministic method models
drag experienced by the drone classically as a quadratic function
of true airspeed, and estimates wind by deducting the estimated
true airspeed with the GPS ground speed. Additionally, a particle
filter is implemented and compared to the deterministic method.
To validate the proposed methods, a series of verification flights
is conducted in which the drone is flown straight into the wind,
perpendicular to, and away from the wind. The results show that
the proposed method can estimate wind for various ground speeds
and altitudes. The root mean square error ranges between 0.3-2.0
m/s and 5-35 degrees in most scenarios with high true airspeeds.
In most cases, the particle filter shows a slight improvement
over the deterministic method, at the cost of reduced adaptivity
to wind changes (gusts).

Keywords: quadcopters, sensorless, particle filter, state-
estimation, wind estimation

NOMENCLATURE

∅B Body frame (subscript)
∅E Earth frame (subscript)
∅DET Deterministic (subscript)
∅EST Estimation (subscript)
∅PF Particle Filter (subscript)
∅REF Reference measurements (subscript)
ν tilt angle [deg, rad]
ϕ Roll angle, around x-axis [deg, rad]
ψ Yaw angle, around z-axis [deg, rad]
ρ Air density constant on day of flight 1.2406 [kg/m3]
θ Pitch angle, around y-axis [deg, rad]
CD Drag coefficient, quadratic [-]
f Frequency [Hz], friction coefficient [-]
g Gravitational constant of 9.81 [m/s/s]
g.c. GPS ground course, around z-axis [deg, rad]
h Altitude [m]
k Drag coefficient, linear [-]
m mass [kg]
pwm Pulse Width Modulation (1000-2000) [µs]
S Surface area [m2]
T Thrust [N]

T. Transpose of a matrix or vector
v speed [m/s] (not to be confused with tilt ν)
ESC Electronic Speed Controller
IMU Inertial Measurement Unit
METSIS Meteo Sensors in the Sky
MPM Meteo Particle Model
ODE Ordinary Differential Equation
RPM Rotations Per Minute
SMC Sequential Monte Carlo

I. INTRODUCTION

The marketplace for drones is growing rapidly and offers
promising solutions in a wide variety of sectors, ranging
from offshore wind farm inspections to military purposes [1],
[2]. In operation, drones are affected by winds, impacting
battery performance and thereby range significantly [3], [4],
[5]. Therefore, it would be beneficial for a drone operator
to have precise knowledge of wind magnitude and direction
among common drone routes, such that the operator can plan
its trajectory tactically. Current options for checking wind
include websites, although these only go up to a resolution
of roughly 3 km as they get information from ground-based
measuring stations. Research around wind estimation on-board
of drones aims to provide a more detailed (i.e. hyperlocal)
wind map of an area.

For this reason, the METeo Sensors in the Sky (METSIS)
project has been set up at Royal NLR. As a suggestion to fill
this ”gap in U-Space” [6], the wind data is gathered during
routine jobs and gets sent to the operator such that it can
plan its trajectory accordingly to avoid excessive headwinds.
This study aims to explore and implement the best method to
estimate those wind fields accurately without dedicated sensors
such as anemometers or pitot tubes.

A. Previous work

Previous work towards successful wind estimation on-board
of drones is often classified as direct (using a dedicated wind
sensor), indirect (only on-board sensors) or hybrid (combina-
tion).

Considering the direct method, numerous studies [7], [8],
[9], [10], [7] provide a comprehensive overview of different
types of wind sensors on-board of drones. Notably, [11]
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explore the use of pitot tubes on fixed-wing aircraft, but those
are impractical in this context as quadcopters operate at low
speeds [12] [13], are subject to inconsistent flight directions
[14] and do not provide a constant and predictable angle
of attack which the pitot sensor requires. Fusing drone data
with wind sensor data [9] (i.e. the hybrid method) would not
increase the cost-effectiveness and scalability as a sensor is
still required, thus this option is left unattended in this paper.

This paper instead builds upon the knowledge of indirect
methods. [15] put the focus on gust estimation, while others
assume steady-state wind and model the derivative of wind
speed to be zero [16]. This simplifies state estimation at the
cost of slower convergence time and reduced fidelity.

Fig. 1. Foxtech Hover 1 drones used in this research, with wind sensor
mounted on top at a distance from rotor air flows. The proposed methods in
this paper estimate wind without the use of the shown sensors.

A subgroup of indirect wind estimation on drones is the
direct mapping, where a mapping between tilt and the final
estimate of vw is found. This is first established by [14] (who
are considered the first to estimate wind on-board of drones).
Similar methods have been performed by [17], [18] and [12].
Since most methods rely on extensive wind tunnel tests, this
will not be the method of preference.

Another sub-group of the indirect method resolves the drag
term into true airspeed, and from there finds the wind speed
by means of the triangle method. This commonly established
method is at the heart of the proposed methodology in subsec-
tion II-C and entails that the difference in true airspeed and
ground speed must be attributed to the wind speed.

[19] uses a set of momentum theory equations but requires
knowledge of RPM which we do not have for this research.
Similarly, [20] resolves the true airspeed but presents a way to
model the drag force as linearly dependent on speed, instead
of quadratic. This is then followed by [13], who find the drag
force (or in their study, ”drag acceleration”) to be linearly
dependent on speed, rather than quadratic. This approach
is followed by e.g. [13], [21] and later [16], who achieve
successful results for wind speeds up to 7 m/s. It has not been
documented precisely, however, how well wind estimates are
for higher true airspeeds, which is what this paper focuses on.

In terms of filtering, Sylvie Schafer implements a linear
Kalman filter (and addresses it well) in [15] and uses an ex-
isting MATLAB model to set up the model for the quadcopter.
[16] use a filter to address the changing bias in the gyros, and

similarly, [13] use a linear extended state observer (LESO)
to estimate the drag-term acceleration, which essentially adds
an observation-correction term to the equations in state space
form, and tries to minimize this term. [22] implements an
extended Kalman filter as well as an unscented Kalman
filter, but uses a set of equations that requires detailed thrust
parameters which are not available.

B. Novelties

In continuation of wind estimation on-board of drones, this
paper will try to answer the following research question:
”How can on-board states and intelligent filtering on the
Foxtech Hover 1 be used to measure 2D wind speeds with
an accuracy of 0.5 m/s and 5 degrees?” This is researched by
considering the drone as a point mass and putting the focus on
creating reliable performance models (e.g. thrust, drag) from
limited data. In many of the methods in the above-referenced
literature, drone-specific performance models and parameters
are often expected to be known or found using expensive
equipment like wind tunnels. For this research, only frame-
works and methodologies which could extend to all drones
and be available to all operators worldwide are presented. In
summary, this research introduces only performance models
which are constructed according to the following three pillars
of design. The choices presented in this paper should lead to
accurate (1), scalable (2), and cost-effective (3) outcomes for
METSIS.

Additionally, this paper will implement a particle filter to
improve wind estimation, to which to the best of the author’s
knowledge has not been implemented before in this exact
context on an individual drone. The particle filtering has been
used to estimate wind fields in an interpolating application
(Meteo Particle Model) by [23], and for model predictive
control on a quadcopter [24], but never before to estimate
wind on individual quadcopters.

II. METHODOLOGY

The methodology for this research is presented below. This
is split up into four subsections. First, essential prior knowl-
edge is presented. Second, it is shown how the performance
models of the drone (i.e. the sub-models) are created. Third,
the equations behind the deterministic method are displayed.
Fourth and last, the particle filter approach is shown, which in-
cludes the discretization of equations and presents the settings
used to run the filter.

A. Basics

A.1 Reference Frames

The reference frame for this research used is Front-Right-
Down (Body) and North East Down (Earth/Inertial), as dis-
played in Figure 2.

The rotation matrix used throughout is displayed in Equa-
tion 1, which takes inputs from the body frame and converts
them to an inertial earth frame.
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Fig. 2. Earth/Inertial and Body reference frame used.

RE
B(θ, ϕ, ψ) =



cθcψ cψsθsϕ− cϕsψ cψsθcϕ+ sϕsψ
cθsψ cϕcψ + sθsϕsψ −sϕcψ + sθcϕsψ
−sθ cθsϕ cθcϕ




(1)
Where all angles are in- and output as radians. Going from

inertial to body frame is done by taking the transpose of
matrix R: RB

E = [RE
B ]

T..

A.2 Magnitude and direction of the wind

It should be emphasized that the states in this paper can
be described in 3D, meaning the vector vw for example is
represented as in Equation 2.

vw =



vw,x

vw,y

vw,z



E

(2)

The E signifies wind is presented in the earth frame, where
X is Northing and Y is Easting. From here the 2D (or 3D)
magnitude can be computed by following Equation 3.

|vw| = v2w,x + v2w,y (3)

In line, the wind direction is estimated using Equation 4.

w.d.origin = arctan (
Vw,x

Vw,y
)− 180◦ (4)

Where 180 ◦ is subtracted to know the origin angle of the
wind instead of the destination angle of the wind. Note that
Vw,x is in the numerator considering this is defined as North
in the coordinate system.

A.3 Software and Hardware

This paper focuses on the wind estimating capabilities
of quadcopters, and so the Foxtech Hover 1 Quadcopter is
selected as a representative study.

As a flight controller, the Cube Orange flight controller has
been selected. This provides the user with the input variables
used in this thesis, shown in the overview in the observation
vector in subsubsection II-D1. Here, the inertial measurement

units (IMUs) provide unfiltered acceleration in the body frame.
The pulse width modulation (PWM) is a power switching
technique that provides a value between 1000 and 2000, which
determines the voltage fed to the electronic speed controller
(ESC) per rotor. In this thesis, as rotational dynamics are not
the point of focus for this research, it is assumed that all four
rotors create an equal amount of thrust such that the PWM
can be averaged over the four rotors.

A.4 Setting up reference measurements

As a source of reference, an ultrasonic anemometer
(Anemoment Trisonica Mini) is selected. As wind speeds can
vary significantly depending on the altitude, the selected sensor
is fitted onto a hovering drone. This way, the sensor can be
brought to hover at the same altitude as the estimating drone,
as is shown in Figure 3.

Fig. 3. Overview of estimating drone, together with reference drone and
weather station

As a cross reference, a Gill Instrument MetStream is in-
stalled on the roof of the test site at an altitude of roughly
10m. Accounting for the expected wind speed difference due
to altitude (computed by the Helmann law as in [25]), these
measurements serve as a ballpark estimate to prove that the
hovering drone with anemometer can be used as a reference.
The results of both wind measurements are displayed in
Table I.

Weather
Station

Drone with
Reference Sensor

Altitude [m] 10 30
Avg wind speed [m/s] 4.1 6.5

TABLE I
SHOWING THE MEASURED DIFFERENCE IN TWO REFERENCE SENSORS.

NOTE THAT THE ESTIMATES ARE IN THE SAME BALL-PARK AFTER A
HEIGHT CORRECTION (∆vw = 2.4m/s DIFFERENCE EXPLAINED BY

HELLMAN’S LAW (ASSUMING α=0.30).

B. Performance Models

For the Foxtech Hover 1 parameters such as thrust coef-
ficients and drag coefficients are not specified, limiting the
methodology approaches which can be performed. Therefore,
this paper suggests methods for setting up performance models
which should result in sufficient accuracy to estimate wind
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fields but should also be accessible and affordable for any
drone operator across the world intending to participate in U-
Space, to be in line with the design principles presented in
Section I.

An overview of the performance models required for the
selected methodology is presented in Figure 4.

B.1 Drag coefficient

Of the lower blocks in Figure 4, first the determination of the
drag coefficient is discussed. For that, a quadratic relationship
with airspeed is modeled as in [26], shown in Equation 5.

Cd =
2DE

ρv2S
(quadratic) (5)

As hinted at in earlier literature, for lower true airspeeds a
drag model with a linear relationship with speed works better,
and therefore Equation 6 has been used on the same set of
data. The results coming from this second, linear approach
are not the point of focus for this thesis and are presented in
the subsection IV-A.

k =
DE

v
(linear) (6)

In Equation 5, DE is the drag experienced under a con-
trolled environment (which in Figure 4 is written as T - ma).
ares is the (low-passed) resultant acceleration measured from
the on-board IMUs, and S is the surface area determined later
in this section. To fill in Equation 5, an approach similar
to that in [13] has been taken, where 25 straight-line flights
have been flown. This is performed indoors, since then the
absence of wind should make that vgnd = vtas. To find a
representative CD for all yaw angles, yaw has been varied
(ψ = [0, 15, 30, 45, 60, 75, 90]). Since the test was performed
in the absence of GPS, the speed and pitch could not be
commanded. Instead, for each of the indicated yaw angles,
the drone operator was asked to perform a few slow cruise
lines and a few fast lines of cruise. In post-processing, speed
was found by the camera, and pitch and roll were read out
from the Cube Orange. This showed speeds between 5 and
18 m/s, and pitch angles between 1 and 15 ◦. From there, the
computed CD’s are grouped (i.e. rounded off) into ”buckets”
of speed and then averaged to find the drag coefficients as
summarised in Table II.

Drag found by Used for
Coefficient param est Lowest RMSE
(quadratic) CD,x, CD,y 0.14 0.55
(linear) kx, ky 0.17 0.55

TABLE II
DRAG COEFFICIENTS ESTIMATED FOR THE FOXTECH HOVER 1

In the absence of a LIDAR or indoor motion tracking sys-
tem, an alternative speed-capturing method is presented where
estimates of the instantaneous ground speed are made by a
slow-motion camera. By counting the frames, and knowing
the location of the drone at two points across the screen, the
speed can be estimated by following v = s

t = s
∆f

FPS

.
The test shows that 0.10-0.30 is the range the drag coeffi-

cient remains within roughly, which seems reasonable in range

comparing it to peers (e.g. [13] with 0.15-0.25). From these
estimations, adjustments to the CD which result in lower RM-
SEs have been proposed, as is discussed in subsection III-B.

B.2 Thrust

Nearly all methodology for setting up performance models
requires knowledge of thrust, which the Foxtech hover 1
does not provide. Therefore, this paper presents an alternative
method to obtain thrust estimates. A mapping from PWM to
thrust is made, by using a Series 1580 Test Stand. This results
in a transfer function which is described in Equation 7.

Trotor = 0.0226 [PWMavg]− 27.01 (7)

for 1350 ≤ PWMavg ≤ 1800

In this formula, the PWM signal is averaged, since rotational
dynamics are excluded in this methodology.

PWMavg =
1

4

4∑

n=1

(PWM)n (8)

Note that the result is a linear relation, which means it is
only valid for PWM values between 1350 and 1800. This
is justified as the rotor speeds of a drone remain relatively
constant throughout operation [16]. Analyzing the log files
for the Foxtech Hover 1 specifically, the PWM seems to
remain within said range, even when performing aggressive
jump maneuvers (from 1 to 8.5m).

Notably, the tests show that increasing and decreasing PWM
continuously has an effect on the offset of the curve. Without
the influence of wind, this offset is found to be small (roughly
0.5%) and under the influence of a 4 m/s wind flow, this offset
is found to be up to 2 N (roughly 10%), which is significant in
this model. To mitigate these effects, for this reason, research
is restricted to measuring wind in (quasi) steady conditions,
meaning one should not make measurements of wind when
PWM is increased or decreased. It is found that the thrust
values from tests with discrete PWM increments provide an
average of the tests where PWM is in- and decremented
continuously.

B.3 Resultant forces

The resultant forces are found by reading out the Cube
Orange’s on-board IMUs and converting them to the earth
frame via the rotation matrix. In the deterministic method, a
low-pass filter is used on this data. In the particle filter, this
is not done to allow the filter to process the original noise.

B.4 Frontal area

The frontal area is modeled by making frontal photos and
counting the pixels of the drone next to a reference (preferably
spherical) object of known size. The photos have been taken
from a distance far enough to minimize the distorting lens eye
effect and thereby mimic the incoming free flow. Repeating



5

Fig. 4. A tree showing the performance models which need to be identified (thrust, drag, frontal area, resultant force

Fig. 5. Indoor drag coefficient test, drone passing the speed trap with video
recorded at 480 fps.

this procedure for a variety of pitch and yaw angles, an
interpolation function of the pitch against (yaw averaged)
frontal area is found, as seen in Figure 9. Note that the area
of the propellers is included in this surface area estimation.

The result is displayed in Equation 9.

S = 0.0089 · ν + 0.039 (9)

where the tilt (in degrees) is computed by Equation 10.

ν = arctan

√
tan (θ)

2
+ tan (ϕ)

2 (10)

The above models can be used to estimate the drone’s
performance characteristics at any time during flight, allowing

Fig. 6. Thrust set-up shown, using a Series 1580 Test Stand

us to follow the methodology presented in subsection II-C and
subsection II-D.

C. State estimation – deterministic method

With the performance models as described in subsec-
tion II-B, this subsection describes the system of equations
used to estimate the wind. Focus is put on the deterministic
method, meaning it follows a set of kinematic equations
with no stochastic methods involved. This makes this method
computationally efficient, and easiest to implement.

This kinematic approach will implement linear dynamics,
considering e.g. [27] does not show significant improvement
(table 9) when comparing the in- and exclusion of rotational
dynamics.



6

Fig. 7. Thrust mapping from using a Series 1580 Test Stand, with discrete
(blue) and continuous (grey) increments of PWM. PWM generally remains
around the PWM indicated with the dotted vertical line, where the linear fit
forms a good approximation of the two tests.

Fig. 8. Frontal area example from photos, taken at 0, 15, 30 and 45◦ pitch.

Working back from the end goal, the wind is found via the
triangle method, which is shown in Equation 11.

vw = vgnd − vtas (11)

Where vgnd is observed directly from GPS data on the Cube
Orange flight controller. vtas however should be estimated and
can be found by resolving Equation 12 or Equation 57. In
this paper, the focus on the quadratic relation will be held. In
Section IV a subsection will be dedicated to a comparison to
the results found with the linear relation.

vtas =

√
2 ·DE

ρSCd
(quadratic) (12)

Where vtas is the true airspeed. On the right-hand side
of the equation, ρ is computed from weather data on the
testing location at Marknesse. The surface area S and the drag
coefficient CD (modeled as a constant) are found from the
performance models discussed in subsection II-B.

Consider Figure 10. The magnitude of DE is found by a
summation of forces in the earth frame, shown in Equation 13.

Fig. 9. Frontal area from photos, summarised and interpolated.

Fig. 10. Simplified Free Body Diagram of drone in cruise into the wind.

FE = GE + TE +DE (13)

This is valid if we keep all signs of the performance
models in the coordinate system from Figure 2. Rewriting this
summation gives:

DE = FE −GE − TE (14)

Remember that subscripts B and E refer to body and earth,
respectively. Rewriting some of the variables to the body
frame is more practical, considering measurements on-board
the drone are performed in this frame. Therefore:

DE = RI
B · FB −GE −RI

B · TB (15)

Such that from here FB and TB and GE are the missing
variables. From here,

FB = m · aB = m · [ax, ay, az]TB . (16)

Where aB is read out from the on-board IMUs. As described
in subsection II-B, the IMUs acceleration values are averaged
and low-pass filtered (only in the deterministic script. In the
particle filter, the data is not filtered). Thrust is found by
Equation 17.

TB = [0, 0,−4 · Trotor]T.
B (17)

Where Trotor is found by Equation 7, determined during
the performance modeling in subsection II-B.
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GE = [0, 0,m · 9.81]T. (18)

Note that in the coordinate frames presented in Figure 2,
gravity has a positive sign and TE a negative sign, considering
positive is defined as downwards.

Be aware that the equations for thrust and surface are com-
puted by performance models as established in subsection II-B.

D. State estimation – Particle Filter

The deterministic method excels in simplicity and compu-
tational speed, however, has limitations for a number of rea-
sons. First, the estimation of the drag coefficient is uncertain
as elaborated on in subsection IV-A. Second, the PWM to
thrust mapping is an oversimplified one, as it does not take
into account factors such as wind and the drop in voltage
throughout flight. Lastly, it is difficult to know the exact biases
and noise levels of the on-board sensors, such as those of
the IMUs. All of the above uncertainties are not adapted to
in the deterministic model, and for that reason, this paper
implements a particle filter. This provides state estimates, but
also eliminates noise and quantifies the uncertainty for each
state.

This paper addresses a regularized Sequential Importance
Resampling (SIR) particle filter as proposed by [28] with
re-sampling steps as suggested by [29]. Particle filters are
non-parametric, recursive Bayes filters, where non-parametric
means the data is not required to fit a normal distribution (but
can be of any unknown distribution). This makes the filter
a suitable candidate, considering wind is highly stochastic,
especially under the influence of obstacles (i.e. buildings,
trees) which are to be found at the low altitudes drones operate
in. The particle filter works by generating a large set of
possible states in which the system can be, and denotes each of
those states as a particle. The probability of these states being
the true state is referred to as the weight, where a higher weight
means a higher chance of being used and reconsidered for the
next round of computations (re-sampled). Generally, particle
filters are found to work best on low-dimensional problems,
meaning the number of observations should be higher than the
number of dimensions. In this case, therefore at all times, the
data should have more than 10 observations (since we have
10 independent input states). The steps taken to convert this
methodology into a particle filter are shown below.

D.1 States and observable states

First, there is determined what states are required for the
computations in this research. These are displayed in vector
X.

X =




xt yt vx,w,t vy,w,t vx,tas,t
vy,tas,t vx,gnd,t vy,gnd,t ax,t ay,t
pwmt θt ϕt ψt CD,t




Note that in this representation, CD,t is added as a state,
meaning it will be estimated recursively (as opposed to it being
an assumed constant in the deterministic method). As initial

guesses, values from subsection II-B are used. The observed
states are represented in Vector Y.

Y =

[
xt yt vx,gnd,t vy,gnd,t ax,t ay,t

pwmt θt ϕt ψt

]

This formulation implies that with the information available,
vgnd,t, vtas,t and CD,t are un-observable and thus should be
deduced from our system of equations.

D.2 State equations

To make use of the particle filter, the equations from
subsection II-C need to be written as ordinary differential
equations (ODEs). To compute all states for each time step
∆t, these ODEs are discretized, resulting in the following set
of equations. First, the state equations are shown.

Position:

xt = xt−1 + vx,gnd,t−1 ·∆t (19)
yt = yt−1 + vy,gnd,t−1 ·∆t (20)

Ground speed:

vx,gnd,t = vx,gnd,t−1 + ax,t−1 ·∆t (21)
vy,gnd,t = vy,gnd,t−1 + ay,t−1 ·∆t (22)

In the above equations, the acceleration is found by the
kinematic relation as expressed below in Equation 23 and
Equation 24.

ax,t =
(Tx,t +Dx,t +Gx,t)

m
(23)

ax,t =
(Tx,t +Dx,t +Gx,t)

m
(24)

Where gravity components x- and y are zero as the com-
putations are performed in the inertial frame of reference.
In accordance with the thrust performance model, the thrust
equation is discretized to Equation 25 and Equation 26.

Tx,t = Rz2x · 4 · (0.0226 · PWMavg − 27.01) (25)

Ty,t = Rz2y · 4 · (0.0226 · PWMavg − 27.01) (26)

The drag term in the earth frame is stated as in Equation 27.

Dx,t =
1

2
ρv2x,tas,t · St · Cd,t (27)

Dy,t =
1

2
ρv2y,tas,t · St · Cd,t (28)

Note that the results presented in Section III follow these
quadratic relations to speed. An alternative, a linear drag model
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is considered for a few cases and compared. This is further
explored in Section IV.

Continuing on the above formulas, the true airspeed is found
by following the triangle method:

vx,tas,t = vx,gnd,t + vx,wind,t (29)

vy,tas,t = vy,gnd,t + vy,wind,t (30)

Also note that the surface area (including the pole) as from
subsection II-B is discretized as shown in Equation 9.

St = [0.0089 · νt + 0.039] (31)

Which includes the area of the propellers. In this equation,
pitch and roll are combined to tilt (i.e. inclination) which can
be approximated as by Equation 32.

νt = arctan(

√
tan θt

2 + tanϕt
2) (32)

D.3 Observation equations
The states from the Y-vector are deduced from the on-

board sensors (i.e. the Pixhawk Cube Orange). These are
observed and therefore go from timestep t to timestep t. First,
Equation 33 converts latitude and longitude to x (Northing)
and y (Easting) coordinates, as this is required to ensure the
position update equations work properly.

xt, yt = longlat2xy(latt, longt) (33)
x̂t = xt + ζ (34)
ŷt = yt + ζ (35)

Similarly, ground speed is deducted as shown below.

v̂x,gnd,t = vgnd,t · cos (g.c.) (36)
v̂y,gnd,t = vgnd,t · sin (g.c.) (37)

Then, the accelerations are converted from the body to the
earth frame, by multiplying with the rotation matrix shown in
Equation 1.

âx,t = [Rx2x · ax,t] + [Ry2x · ay,t] + [Rz2x · az,t] + ζ (38)
ây,t = [Rx2y · ax,t] + [Ry2y · ay,t] + [Rz2y · az,t] + ζ (39)

The states ˆpwmt, θ̂t, ϕ̂t, ψ̂t are directly observed from
the on-board flight controller, as shown by Equation 40 to
Equation 43.

ˆpwmt = pwmt + ζ (40)

θ̂t = θt + ζ (41)

ϕ̂t = ϕt + ζ (42)

ψ̂t = ψt + ζ (43)

D.4 Evolution equations

The particle filter makes use of evolution equations, which
show how the states evolve over time. To control this rate of
change, parameter alpha is introduced. This parameter helps
determine a logical set of possible states for the system (i.e. the
particles). These particles are in turn used to compute the other
states and are compared to the measurements, in an attempt
to estimate the true state. For the non-observable states, this
results in the following set of equations.

vx,gnd,t = α · vx,gnd,t−1 + ζ (44)
vy,gnd,t = α · vy,gnd,t−1 + ζ (45)
vx,wind,t = α · vx,wind,t−1 + ζ (46)
vy,wind,t = α · vy,wind,t−1 + ζ (47)

And for the directly observable states:

pwmt = α · pwmt−1 + ζ (48)
ax,t = α · ax,t−1 + ζ (49)
ay,t = α · ay,t−1 + ζ (50)
az,t = α · az,t−1 + ζ (51)
θt = α · θt−1 + ζ (52)
ϕt = α · ϕt−1 + ζ (53)
ψt = α · ψt−1 + ζ (54)

Where α is the model parameter and ζ is a number drawn
from a normal distribution around zero, in which σ is the
square root of the variance, computed by the observation
variables and applying a least squares regression:

α =

∑n
t=1 x̃t−1 · x̃t−1∑n

t=1 x̃
2
t−1

(55)

σ2 = V ar(xt − α · x̃t−1) (56)

Similar to [23]. These equations are applied on a full
flight set of 300 seconds and are only valid for the observed
variables.

Bearing in mind the trade-off between computational speed
and accuracy, the number of particles is set to 50000. Also,
note that the ∆t = 0.1. In overview, the parameters are listed
in Table III:

D.5 Noise levels

For the noise covariance matrix, it is assumed the noises
of the states are independent so only diagonal entries are
present. When the states converge too quickly, noises are
enlarged, and when the states do not converge, noise levels
are brought down. In the end, the results in this paper are
attained following the noise levels as stated in Figure 11.
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Settings for the SIR particle filter
(with ∆t = 0.1, N = 50000)

α σ
x, y 1.000, 0.985 1.000, 1.000

vxw’, vyw’ 1.0, 1.0 0.080, 0080
vxtas’, vytas’ 1.000, 1.000 0.059, 0.059
vxgnd, vygnd 0.998, 0.999 0.020, 0.020

ax, ay 0.999, 0.997 0.317, 0.317
pwm 1.0 250

theta, phi, psi 0.998, 0.980, 1.0 0.020, 0.009, 0.001
CD’ / k’ 1.000 0.041

TABLE III
SETTINGS FOR THE PARTICLE FILTER (WITH ’ INDICATING

NON-OBSERVABLE STATES)

σ =

[
0.8 0.8 1 1 1.50 1.70
1.75 1.85 0.35 0.30 0.35

]

Fig. 11. Vector displaying the diagonal entries of the noise covariance matrix.

III. EXPERIMENT DESIGN & RESULTS

This section is structured into five parts. First, the exper-
iment design is shown in detail, including its independent
variables for which the methodology presented is tested. From
that, the drag coefficient is tuned to a constant for which the
results are most in line with the reference. Third, the results
from the deterministic state estimation are presented. Then, the
results of the particle filtering script will be addressed. Fifth
and last, the deterministic method and the particle filter will
be compared by the hand of two examples, one being in hover
and one being in cruise.

Throughout the section, there will be reflected upon the
World Meteorological Organization (WMO) requirements for
wind measurement. These state that an accuracy for wind
speed measurements better than 0.5 m/s (for vw<5m/s), and
better than 10% (for vw>5m/s) is considered sufficient for
practical wind measurements [30]. Throughout, the RMSE is
used as a suggestive indicator of accuracy.

A. Experiment Design

The model is validated by comparing it with real-world
data from flight experiments. The only data available for this
specific type of quadcopter is from last year’s outside flight
experiment, where there were very low wind speeds (0-3 m/s).

Fig. 12. Two example lines at 30m, into the wind and perpendicular to the
wind.

This year, a new flight experiment is performed at the
NLR drone center in Marknesse, with patterns as shown in
Figure 12. The direction of the cross shape is pointed toward
the wind direction origin, which allows the drone to experience
the highest true airspeed (towards) as well as the lowest true
airspeed (away) for a given ground speed. This means that into
the wind, the tilt angle is on average 12◦, which corresponds to
a high thrust in the xy pane and thus a high true airspeed. On
the contrary, away from the wind, the tilt angle is on average
2◦ for the same ground speed. In that case, there is very little
thrust on the xy pane and therefore, in steady-state conditions,
the true airspeed is smaller.

Over the course of three hours of testing, there was a
moderate breeze varying between 8 m/s and 1 m/s, while the
direction gradually shifted from 190◦ to 250◦. The skies were
clear, with temperatures around 11◦C and humidity of 79%.

Independent Variables on experiment day
ground speed [m/s] [0, 5, 7, 9]

altitude [m] [30, 60, 90]
direction w.r.t wind [-] [into, perp., away from]

TABLE IV
INDEPENDENT VARIABLES ON TESTING DAY, WITH WIND SPEEDS

BETWEEN 2-8 M/S FROM 190-250◦ .

Note that in subsection III-C and subsection III-D, for fair
comparison the RMSEs in the tables have been computed by
considering the same time length for each line (10 seconds of
cruise), where each RMSE in the tables corresponds to one
line of flight.

B. Drag coefficient adjustments

Before stating the results of the experiment flight, an explo-
ration of the correctness of the CD is performed. With the CD

as found in the performance modeling section (CD = 0.14),
a large offset in magnitude is found. It is likely that some
(aerodynamic) effects are not modeled, and so a sensitivity
analysis has been performed to see the effect of varying the
CD on the magnitude of the estimation. The outcome is shown
in Figure 13.

Considering the CD only scales the vectors (and does
not distort the shape), the wind direction estimation remains
unaffected. This is displayed in Figure 14.

For the 30m case, the difference between the lowest and the
highest CD results in an offset of 5.62 m/s and 0.77 deg. To
check whether the effect of CD is consistent, the same analysis
is performed at an altitude of 60m. For the same set of CDs,
this shows a difference of 5.52 m/s and 0.82 deg, meaning the
influence on magnitude and direction is similar for different
altitudes.

From analyzing these results, it is found that when a CD =
0.55 was set instead, this always results in an RMSE under
1 when taking a 10-second window of cruise (RMSE 0.90
analyzed between T=20 and T=30). Therefore, from this point
on, the CD will be fixed to 0.55. Potential reasons for this
mismatch are discussed in Section IV. With a similar analysis,
for hover conditions, a CD of 1.70 was found to give the
lowest overall RMSE, and thus this value will be used from
this point on.
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Fig. 13. Sensitivity analysis for CD during the 5 m/s flight at 30m altitude:
the magnitude of wind estimation decreases upon increasing the CD , and the
shape remains unaffected. The lowest RMSE in steady state (T=15 to T=55,
where pitch remains constant) is found for CD = 0.55.

Fig. 14. Sensitivity analysis for CD during the 5 m/s flight at 30m altitude:
the wind direction estimation remains unaffected by a change in CD .

C. Results: deterministic script

Third in this section, the results of the deterministic method
are presented. This is done by the help of RMSE tables in
which one independent variable is changed, to see its effect.

For each of these tables, eight rows of information are
shown. First, the average wind speed as measured by the drone
(Wind speed est avg by drone), and the average wind speed
as measured by the reference sensor (Wind speed ref avg)
are displayed. Second, the WMO requirements are recapped
for those specific wind conditions. Third, the attained mean
absolute percentage error (MAPE) for magnitude, the root
mean square error (RMSE) for magnitude, and the RMSE
for direction estimation are shown. This way, there can be
observed for each of the flights whether WMO requirements
are met.

C.1 Varying altitudes

To analyze the effect of altitude on the estimation, a
hover test has been performed at varying altitudes, where the
reference drone is used both for estimating and for its reference
sensor data. The results of this are displayed in Table V. The
table shows that there is no clear sign of an in- or decreases
in RMSE depending on altitude.

Deterministic Method
Altitude [m] 30 60 90
wind speed avg by drone [m/s] 6.14 5.12 5.38
wind speed avg by ref [m/s] 5.37 4.97 6.43
MAPE req. by WMO [%] 10 10 10
RMSE req. by WMO [m/s] 0.54 0.50 0.64
RMSE req. by WMO (direction) [◦] 5 5 5
MAPE to reference signal [%] 12.9 3.3 19.8
RMSE to reference signal [m/s] 0.87 0.35 1.10
RMSE to reference signal (direction) [◦] 13.6 4.7 13.8

TABLE V
DETERMINISTIC METHOD: RMSE UPON VARYING ALTITUDE (AT HOVER

CONDITION)

C.2 Varying directions

To analyze the effect of varying direction, the same line of
5 m/s cruise has been performed in various directions. Flight
lines are performed into the wind, perpendicular to the wind,
and away from the wind. The results of this are displayed in
Table VI.

Deterministic method
Direction w.r.t wind [-] into perp away
wind speed avg by drone [m/s] 6.3 3.61 6.11
wind speed avg by ref [m/s] 5.99 3.84 5.68
MAPE req. by WMO [%] 10 10 10
RMSE req. by WMO [m/s] 0.60 0.50 0.57
RMSE req. by WMO (direction) [◦] 5 5 5
MAPE to reference signal [%] 9.4 35.7 86.1
RMSE to reference signal [m/s] 0.74 1.36 3.01
RMSE to ref signal (direction) [◦] 13.9 34.5 80.7

TABLE VI
DETERMINISTIC METHOD: RMSE UPON VARYING DIRECTION W.R.T WIND

(AT ALTITUDE 30M, GROUND SPEED 5 M/S)

There is a slight increase in error for flying perpendicular
to the wind as opposed to into the wind. Flying away from the
wind however shows a drastic increase in RMSE (3.01 m/s,
80.7◦ for a 5 m/s flight and 3.7 m/s and 131 ◦ for a 9 m/s)
flight, making this unpractical. This can be attributed to the
fact that the true airspeed is very small in this case (e.g. a 6 m/s
of wind and 5 m/s ground speed leaves 1 m/s true airspeed),
for which the quadratic model is not suited, showing one of its
limitations. A suggestion is to use the linear drag relationship
for low airspeeds, as is further explored in subsection IV-A.

C.3 Varying ground speeds

Lastly, the effect of varying speeds has been analyzed. Here,
there is flown with 5, 7 and 9 m/s , all into the wind for a fair
comparison. The results are stated in Table VII.

Although the 9 m/s case does not show improvement over
the 7 m/s case, the RMSE is in a lower order than for the
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Deterministic method
Ground speed [m/s] 5 7 9
wind speed avg by drone [m/s] 6.11 6.06 6.41
wind speed avg by ref [m/s] 5.68 5.86 5.93
MAPE req. by WMO [%] 10 10 10
RMSE req. by WMO [m/s] 0.57 0.59 0.59
RMSE req. by WMO (direction) [◦] 5 5 5
MAPE to reference signal [%] 86.1 5.7 7.5
RMSE to reference signal [m/s] 3.01 0.38 0.51
RMSE to reference signal (direction) [◦] 31.4 8.6 8.1

TABLE VII
DETERMINISTIC METHOD: RMSE UPON VARYING GROUND SPEED (AT

ALTITUDE 30M, INTO THE WIND)

5 m/s case. This hints at a decreasing RMSE for increased
ground speeds in the same direction into the wind, confirming
the hypothesis that the quadratic relationship is best suited for
higher true airspeeds. This is shown in Figure 15. Also, note
that the RMSE for direction estimation for 7 m/s and 9 m/s
is much lower than that of 5 m/s.

Fig. 15. Overview of the RMSEs for flights performed in cruise at 30m
altitude. By flying at higher true airspeeds, a lower RMSE is observed.

Linking the results from the deterministic tests to practical
use, into the wind at 7 m/s as well as at 9 m/s are scenarios for
which the WMO requirements are met. For the other scenarios,
the RMSE is slightly above this value, or far off in case of
flying away from the wind.

D. Results: particle filter

Fourth, the particle filter results are displayed under the
same flight conditions, i.e. on the same dataset. Similarly, the
effects of varying the altitudes and directions with respect to
the wind and ground speed are presented.

D.1 Varying altitudes

Similar to the preceding subsection, the same hover test
has been performed at varying altitudes. The results of this
are displayed in Table VIII. The results show a slight increase
in RMSE for increased altitude, although it can be considered
insignificant when compared to the effect of changing direction
or ground speed. Note that the RMSEs are close to but not
low enough to meet the desired accuracy according to [30].

Particle Filter
Altitude [m] 30 60 90
wind speed avg by drone [m/s] 6.27 5.89 5.46
wind speed avg by ref [m/s] 5.37 4.97 6.43
MAPE req. by WMO [%] 10 10 10
RMSE req. by WMO [m/s] 0.54 0.50 0.64
RMSE req. by WMO (direction) [◦] 5 5 5
MAPE to reference signal [%] 9.1 15.6 17.6
RMSE to reference signal [m/s] 0.72 0.94 0.98
RMSE to ref. signal (direction) [◦] 13.4 6.9 17.2

TABLE VIII
PARTICLE FILTERING METHOD: SHOWING THE EFFECT OF INCREASING

ALTITUDE ON RMSE

Notably, the particle filter has very similar RMSEs to
the deterministic method, not improving or degrading the
performance significantly as opposed to subsection III-C. The
particle filter however shows more stable behavior (lower
responsivity) when looking at one of the examples in e.g.
Figure 16.

D.2 Varying directions

To analyze the effect of varying directions, the same data
set of 5 m/s flights in cruise has been performed in various
directions, similar to how it is varied in subsection III-C. This
is done into the wind, perpendicular to the wind, and away
from the wind. The results of this are displayed in Table IX.

Particle Filter
Direction w.r.t wind [-] into perp away
wind speed avg by drone [m/s] 5.88 3.41 3.69
wind speed avg by ref [m/s] 5.99 3.84 5.68
MAPE req. by WMO [%] 10 10 10
RMSE req. by WMO [m/s] 0.60 0.50 0.57
RMSE req. by WMO (direction) [◦] 5 5 5
MAPE to reference signal [%] 8.9 17.8 54.6
RMSE to reference signal [m/s] 0.54 0.55 2.01
RMSE to reference signal (direction) [◦] 13.5 11.7 27.6

TABLE IX
PARTICLE FILTERING METHOD: RMSE UPON VARYING DIRECTION (AT

ALTITUDE 30M, vg = 5 M/S)

In line with expectations, it is found that the particle filter
produced the lowest RMSE into the wind, as it then encounters
the highest true airspeed. When tested perpendicular to the
wind, there is a slight increase in RMSE. Finally, analyzed
away from the wind, there is a significant increase in error.

D.3 Varying ground speed

Lastly, the effect of varying ground speeds has been an-
alyzed. Here, there is flown with 5, 7, and 9 m/s, into the
wind each time for a fair comparison. The results are stated
in Table X. Although tested for only three ground speeds,
there appears to be a clear trend of decreasing RMSE for an
increased ground speed.

Linking this to practical use, into the wind at 9 m/s seems to
be the only scenario in which the WMO requirements are met
[30]. For the other scenarios, the RMSE is slightly above this
value, and far off in case of flying away from the wind. Also,
it should be emphasized that the filter requires close initial
guesses for the non-observable states in order to converge.
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Particle Filter
Ground speed [m/s] 5 7 9
wind speed avg by drone [m/s] 3.69 6.91 5.63
wind speed avg by ref [m/s] 5.68 5.86 5.93
MAPE req. by WMO [%] 10 10 10
RMSE req. by WMO [m/s] 0.57 0.59 0.59
RMSE req. by WMO (direction) [◦] 5 5 5
MAPE to reference signal [%] 54.6 14.8 6.9
RMSE to reference signal [m/s] 2.01 1.17 0.44
RMSE to reference signal (direction) [◦] 31.4 18.0 9.8

TABLE X
PARTICLE FILTERING METHOD: RMSE UPON VARYING GROUND SPEED

(AT ALTITUDE 30M, INTO THE WIND)

E. Comparison: deterministic and particle filter

In this subsection, both the deterministic method and the
particle filter are shown alongside, by means of an example
in hover and an example in cruise condition.

E.1 Comparison: hover scenario

The first scenario to be analyzed is hovering at 30m al-
titude. RMSEs found for both are presented in Table V and
Table VIII. This example is shown in Figure 16 and Figure 17.

Fig. 16. 10 seconds of hover at 30m altitude, estimating wind magnitude
using the deterministic method (DET) and the particle filter (PF).

Fig. 17. 10 seconds of hover at 30m altitude, estimating wind direction using
the deterministic method (DET) and the particle filter (PF).

When comparing the deterministic method to the particle
filter signal, the particle filter has a slightly lower RMSE in

magnitude and a slightly higher RMSE in terms of direction.
This can be confirmed by comparing Table V and Table VIII.
It must be noted that the computation time required for the
particle filter is much higher than for the deterministic method
(in the order of 10x). From this, there can be said that the slight
benefit does not outweigh the added computational strain.
Also, under the current settings, the filter does not track the
signal very well as it is unresponsive to changes in magnitude.

E.2 Comparison: cruise scenario

A line of flight of cruise is analyzed accordingly. The
outcome for the deterministic method and the particle filter
is shown in Figure 18. Similar RMSE’s are found for the
deterministic method and the particle filter, as can be seen
by comparing Table VII and Table X. Similar to hover, the
particle filter does not improve performance significantly.

Fig. 18. Example of 10 seconds of wind magnitude estimation while in cruise
(vgnd 5 m/s at 30m), using the deterministic method and the particle filter.

Fig. 19. Example of 10 seconds of wind direction origin estimation while in
cruise (vgnd 5 m/s at 30m), using the deterministic method and the particle
filter.

Interestingly, the particle filter’s magnitude seems to be
in line with the magnitude of the reference data although
the direction estimation is not. This means that although the
magnitude is correct, the x- and y-magnitude components are
not computed in proportion. When verifying this hypothesis,
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it shows that the X component gets overestimated and the Y
component gets underestimated slightly.

E.3 Towards practical use

Comparing the deterministic method and the particle filter-
ing method in terms of practical use, one method does not
provide strong accuracy benefits over the other. The particle
filter offers the advantage of addressing the uncertainty by
providing upper- and lower limits for wind, which could be
a useful figure for operators. On the downside, the filter is
currently not optimized for computational speed, and so it can
not be used effectively in real-time. Instead, it can only be
deployed on short periods of the strict cruise for practical use.

IV. DISCUSSION & RECOMMENDATIONS

Following the experiment and its result, a critical view on
the results from Section III is presented. This is followed up
by a set of recommendations for future work.

A. Discussion

In this subsection, the significance and some interesting
findings related to the results section are discussed.

A.1 Drift flight analysis

In one of the experiment flights, the quadcopter is set to
altitude hold and is let to drift (or coast) away with the wind for
110 seconds, reasoning that the quadcopter’s terminal ground
velocity should approximately become equal to the wind
velocity it is carried with. From about 30 seconds onwards,
it converges to an estimation of the wind magnitude. In a 10-
second window, an RMSE of 1.82 m/s and 51.1 degrees is
found. In practical use, if space and time allow for it, this
method could be used to get preliminary estimates and use
those as an initial estimate for the estimation scripts.

Fig. 20. Full line of drift, estimating wind magnitude as the ground speed.

The fact that the drifting quadcopter underestimates the
wind is attributed to the quadcopter’s weight and complex
shape, not allowing it to reach full speed. The fact that the
wind direction detection is off is unexpected, considering this
is estimated by observing the ground course over the course

Fig. 21. Full line of drift, estimating wind direction from the ground course.

of a 200m line of drift, which is a range the GPS should be
able to track very well. As there is still a discrepancy with the
reference sensor’s indicated wind direction, this might hint at
a compass calibration offset.

A.2 Particle filtering

The results of the particle filter show potential for improving
state estimation in this context. In most cases, there is proper
convergence for the observable states and less convergent
behavior for the un-observable states (See hover at 30m
example in Figure 25 in the appendix). This run is analyzed
with noise levels which are estimated from prior flight data
and are then adjusted slightly. For the un-observable states,
including wind, noise levels required tweaking as well. Higher
process noise for wind means better response to gusts at the
cost of higher uncertainty and worse convergence. Here it must
be noted that a non-converging wind state is congruent with
expectations considering the wind keeps changing slightly over
time.

In contrast to papers like [14], [21] and [13], this paper
attempts to find the thrust performance model from the PWM-
thrust mapping. One interesting result from the particle filter-
ing is that the script only works if the noise levels on the PWM
state are set high, meaning the wind is not estimated properly
when PWM converges. As thrust is the only state coupled to
the PWM, this hints at the fact that the PWM- thrust model
could be oversimplified, i.e. that the true thrust value is not in
line with the computed thrust value.

A.3 Quadratic vs. linear drag models

The flight lines which generally have resulted in low RMSEs
are flights with higher true airspeeds (larger than 10 m/s, by
combining wind speed and ground speed) and a drag modeled
as quadratic with speed. The expected limitations of this model
are that accuracy will drop for lower true airspeeds, which is
where most literature today focuses on (e.g. [13], [20]). These
authors make use of a linear relation with speed, as is shown
in Equation 57.

vtas =
DE

k
(linear) (57)
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Which in the particle filter (as an ODE, discretized) be-
comes:

Dx,t = k · vx,tas,t (58)

Dy,t = k · vy,tas,t (59)

This drag model is implemented and tested for the two
most extreme scenarios in terms of true airspeed (into the
wind at the highest ground speed and away from the wind at
the lowest ground speed). The results are shown in Figure 22
and Figure 23 and are in line with previous research, which
suggests that the linear model as in Equation 57 is better
applicable for lower vtas.

Fig. 22. Flight away from the wind, resulting in a low vtas. Notice that the
linear drag model (green) outperforms the quadratic drag model (orange).

Fig. 23. Flight into the wind, resulting in a high vtas (≈ 13 m/s). Notice
that the linear model (green) underperforms as opposed to the quadratic drag
model (orange).

From these graphs, it can be confirmed that for high true
airspeeds, generally, the quadratic model is more suited, and
for low true airspeeds the linear model is better suited.

A.4 A discussion on CD

The preliminary CD analysis performed in Section III shows
a mismatch between the estimated CD (0.14) and the CD

which gave the overall lowest RMSE (0.55). This mismatch
could be attributed to a number of factors. First, the indoor
drag coefficient set-up consisted of lines of flight which might
not have been enough to establish a quasi-steady flight, consid-
ering the IMUs still showed accelerations in the earth frame.
Additionally, the indoor speed estimation is instantaneous and
it is difficult to match the recorded speed with the exact time
at which the quadcopter passed the camera (since there is no
GPS data available indoors), so this brings uncertainty. The
mismatch might also be attributed to other assumptions or
effects which are not modeled for and should be included in
the constant CD (making it more logical to name it differently,
similar to how [16] describes in its approach). Factors could
include a different air density than expected, the roughness of
the drone, or the permeability of the rotor area [31].

A.5 Outcome to the METSIS project

In this research, a number of methods are considered for use
in the context of the METSIS project [32]. For each of these,
there is assessed whether the solution is accurate enough, but
also whether the required performance models are constructed
adhering to the three design principles presented in Section I.

The use of the deterministic method results in RMSEs as
low as 0.38 m/s and 5 degrees and is at this stage considered
the most promising. It works in cruise, is computationally
light, and is easiest to implement. It does require a test flight
to adjust the CD to the proper value. In the near future, it is
recommended that there is found under which true airspeed
it is better to have a linear relationship with speed, and make
the drag model adopt to that.

The particle filter results in RMSEs as low as 0.44 m/s
and 28 degrees in parts of strict cruise. With current noise
levels, it converges but takes away some of the tracking
abilities. Also, it performs much worse when the quadcopter’s
states are changing, i.e. sudden jumps in acceleration and
deceleration are generally not dealt with successfully. This
method at this stage requires more refinement and noise tuning
before practical use. As currently it is not running in real-
time, computational optimization is required to make this a
more suitable candidate for the final use in on-board wind
estimation for METSIS.

The drift method addressed in this section can be an
interesting way to find the wind direction but underestimates
the wind magnitude. Also, it requires the most time as well as
physical space to deploy, making this method less suitable for
METSIS, as it should be able to estimate wind during regular
operations.

The use of sensors, as well as alternative methods (machine
learning [3] or optical flow [33]) are discarded early on in this
research, as discussed in the introduction.

An overview of the considered methods and their proposi-
tion to the METSIS project is presented in Table XI in the
appendix.

A.6 Reviewing the reference sensor used

In this research, the reference sensor was assumed as a
reference. One should be critical of the reference it is being
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measured to, however, considering the following was found
during the experiments.

• The wind sensor used (Trisonica Mini) measures imper-
fectly. Wind tunnel tests show that for a wind tunnel set-
up with 6 m/s wind and a fixed clamp, the sensor still has
an interquartile range (IQR) of approximately 0.25 [32].

• The sensor found wind direction did not match the
direction detected by the drifting quadcopter. The fact
that the estimating quadcopter was closer to the reference
measurements than to the drifting quadcopter could sug-
gest that both the reference quadcopter and the estimating
quadcopter have an offset in the true north.

• When converting the anemometer data, the pitch, roll, and
yaw angle in the reference analysis are assumed constant
(while in fact, this is fluctuating slightly σ = 1.14◦).

• Although the sensor is on a 50cm pole, there still might
be an influence of the rotors, which especially becomes
pronounced under an angle, as then the rotor flow has
a component in the x- and y- pane, where it interferes
with the actual wind.

B. Recommendations

More work is suggested on the topics included in the
following (non-exhaustive) list.

• More extensive testing under different particle filter set-
tings is encouraged. Also, optimizing the algorithm for
speed would help in making this application more practi-
cal. Currently, due to timing inefficiency, the particle filter
should only be used on short snippets of flight data. To
find the correct moment to engage the filter, simple logic
could be applied to ensure the quadcopter is in quasi-
steady flight.

• When determining the drag coefficient from indoor data,
an indoor capturing system could help better capture
the speed of the quadcopter, leading to a more accurate
estimate of the CD.

• In terms of the linear and quadratic modeling of drag, it
is encouraged to perform a more extensive study on what
drag model is best suited for which range of airspeeds.
This could result in a threshold speed at which to switch
drag model, or perhaps in a cross-over region of speed,
where a (weighed) combination of a quadratic and linear
term could be used.

• In terms of performance models, as a next step from
here it is suggested to repeat the presented methodology
presented in this paper on a variety of quadcopter types
to see how well the methodology transfers to a different
quadcopter.

• Of the performance models, the PWM-thrust model is
an important one to improve. Concretely, one could
lower the intercept of the chosen interpolation function
by an amount depending on the wind-inflow. In order
to make this quantitative, it is suggested to perform
thrust tests again at a variety of wind speeds, above the
speeds currently tested for (0 and 4 m/s). This could
increase model fidelity and also extend the working of the

proposed methods to flight parts such as take-off, landing,
and turns.

• Considering future experiment designs, more variation in
experiments is encouraged. Particularly, the focus should
be on designing experiments in which the quadcopter
encounters a range of true airspeeds, as that seems
to have the largest influence on the RMSE. As this
implementation suggests success at higher true airspeeds,
it is suggested to perform experiments on days with
stronger winds. Once the methodology in this paper has
been verified more extensively, it is encouraged to test
out the combination of the network part [32] with this
methodology for sensorless wind estimation.

V. CONCLUSION

The aim of this study was to investigate how wind magni-
tude and direction can be estimated with a quadcopter using
only on-board sensors. The quadcopter to be used had limited
data available and so performance models and parameters were
found using in-house tests. From there, two methods for wind
estimation were proposed. First, a deterministic method was
constructed from a kinematic approach and models drag as
quadratic with speed. Second, a particle filter was implemented
to improve the estimates and address uncertainty. The two
methods scripts were validated by performing an experiment
flight, both in hover and cruise. From analyzing the flight
lines, the CD which gave the best results is adjusted to from
the one expected to work by testing (0.55 instead of 0.14).
However, once this adjustment is done, this is kept constant
during all flights to produce the results they do in this paper.
The outcome of this research can be concluded in a set of
main findings as described below.

• The deterministic method is able to estimate wind with an
RMSE of between 0.3 and 3.7 m/s in terms of magnitude,
and 4-35 degrees in terms of direction. It works for hover,
as well as for different cruise speeds (5 m/s, 7 m/s, 9 m/s,
and different altitudes (30 m, 60 m, 90 m). The WMO
suggests an accuracy of 0.5 m/s and 5 degrees, which is
met in some of the test cases (e.g. hover and cruise with
true airspeeds above 10 m/s) but not met in other cases
(e.g. low true airspeeds). Thus, more work is required
to ensure the estimations work under a wider variety of
conditions UAVs in U-Space are expected to operate in.

• The particle filter lowers the RMSE in most test cases
slightly but insignificantly. With the current noise level
estimates, there is slow convergence (order of 10-20
seconds) and low awareness of changes in wind speed.
It is quite resilient to initial guess offsets for states
which have observations, but prone to initial estimates
for the states that have no observations, so concretely it
is important to have reasonable initial values of vw,x and
vw,y .

In terms of opportunities, the outcomes support the previous
work performed with a positive outlook for the METSIS
project and show the potential for it to be a promising solution
for the U-space weather information service.
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APPENDIX A: PLOTS AND FIGURES

State Estimation - Example analysis on Particle Filter

This appendix shows the output of running the particle filter on an example case of hover at 30m altitude. To start with,
Figure 24 shows all states as observed by the on-board sensors.

Fig. 24. Example of hover at 30m. Shows all the states observed during hover, before any processing.

Accordingly, Figure 25 shows all of the states estimated after a run.

Recommendations to METSIS
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Fig. 25. Example of hover at 30m. Shows the particle with the average value (black), the particle with the highest outcome (red), and the particle with the
lowest possible outcome (green) for each state. The states do not converge fully, but that is not expected considering the wind is varying slightly constantly.

Fig. 26. Example of hover at 30m. A closer look at the estimated wind magnitude in the x- and y directions shows that the estimates for wind do not fully
converge, and that wind in x- the direction tends to converge less with the current setting.
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Method RMSE Advantage Disadvantage Suitability
to METSIS

Sensor (Anemometer) 0.3-3.0 Straight forward Added weight, cost,
works only in hover -

Drifting 1.82 m/s, 36◦ Excellent dir. estimation
Slow convergence,
impractical near obstacles
slow adaptivity

-

Deterministic
(Quadratic, Linear) 0.3-3.7 m/s, 5-36◦ Works in cruise,

Easy to implement
Requires different CD

in hover and cruise ++

Particle Filtering 0.3-3.7 m/s, 5-36◦
Self estimates CD

for different
flight conditions

Requires good initial
guesses, inattentive
to gusts, slower

+

TABLE XI
OVERVIEW OF EXPLORED METHODS, FINAL RECOMMENDATIONS TOWARDS METSIS PROJECT. *DATA NOT GENERATED, FROM LITERATURE [7], [8],

[9], [10]
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Other scripts used

A set of utility scripts have been written, which are not integrated with the main methodology’s script but help in parameter
estimation for the performance models. In the following list, the links redirect the reader to the GitHub repositories.

• Indoor Speed Estimation: https://github.com/erikbaas/speed trap
This script is used to estimate speed indoors.

• Frontal Area determination https://github.com/erikbaas/frontal area detector
This script is used to determine the frontal area of the drone by automatically detecting the outline of the drone, using
opencv.

• Wind field generator (Low Altitude Dryden gusts) https://github.com/erikbaas/windfield generator
This script is used as a gust simulator, which helps create realistic inputs for the Meteo Particle Model.

• Excel MOI Tool https://github.com/erikbaas/compute moment of inertia
During performance model tests, the moment of inertia had been computed by an approach similar to [34]. The equations
used are found in the preliminary report. This excel sheet helps the operator use those equations to find the moment of
inertia by assuming the quadcopter consists of a set of simplified shapes.

• Excel Drag coefficient https://github.com/erikbaas/waypoint automator
This script is used to compute the drag coefficient indoors.

• Thrust Curve Determination https://github.com/erikbaas/thrust curve from pwm
The thrust curves have been derived from csv handed data.

• Waypoint Automator https://github.com/erikbaas/waypoint automator
This script was used to speed up the waypoint creation. Since on testing day, the script was subject to the direction of
the wind, it was useful to have 360 versions of flight lines ready (one for each degree of wind direction). This script asks
for the change per file and then creates copies of waypoint files, alters them, and saves them.
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V EXECUTIVE SUMMARY

This preliminary report is written in fulfilment of the MSc thesis as part of completion to the MSc
Aerospace Engineering, track Control & Operations (Spec. Control & Simulation). It outlines the pre-
liminary results, as well as the planning for the following months up to the green light.

The thesis is meant as a contribution to METeo Sensors In the Sky (METSIS), which is a proof of
concept which tries to show the use and feasibility of having drones in network performing wind
measurements. The research question is stated as follows.

"How can onboard states and intelligent filtering be used on the Foxtech Hover 1 to measure 2D
wind speeds with an accuracy of 0.5 m/s and 5 deg?"

The research objective of this thesis is to find out whether wind speed and direction by means of the
indirect method can provide the same or more accurate results as by the previously implemented
direct method on the Foxtech Hover 1 quadcopter. The sub goals essentially boil down to making the
methodology as accurate, scalable and cost effective as possible, bearing in mind the outcome of this
thesis should become a standard for a multitude of drone types and sizes.

Three methods, namely one using sensors (direct method), using no dedicated wind sensors (indi-
rect method) and a hybrid form are addressed, and from there it follows that the indirect method
will be the focus of this thesis. By means of linear kinematic analysis, the drag term is found from
which the true airspeed is estimated. This true airspeed is then deducted from the GPS speed vector
in order to find an estimate of the wind speed and direction (this is called the triangle method). The
method should reach an accuracy of 0.5 m/s and 5 deg, and thereby be an improvement to the cur-
rent anemometers used, in terms of accuracy, cost and scalability.

In summary, nearly all papers with kinematic approaches agree to this method, however the way to
model drag forces (and from there resolve to true airspeed) vary. While some papers consider drag
force quadratic with speed (classical), others find that for lower speeds a linear relation with speed
yields better results. For this thesis, currently the focus is on the classical method, as that has not
been explored fully and might be an improvement for higher speeds of operation. Since all is done is
post processing, in later stages the designed model could be extended or replaced.

One of the motivations for this (applied) research is the societal impact this could have on the many
sectors, including healthcare, surveillance and also consumer deliveries. The outcome contributes
to finding a standard for all drones in the future, such that wind can be measured at any time, on any
drone, during any (routine) job performed within U-Space.

vi
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INTRODUCTION

The drone epidemic is inevitably evident. In Europe alone, the market associated with unmanned
aircraft is expected to rise up to EUR 35B by 2035 [4]. The marketplace for drones is growing rapidly
and is a promising solution for many problems in a wide variety of sectors ranging from off shore
drone inspections to military to leisure purposes [5].

On the road to reaching the full potential of these markets there are obstacles ahead, too. For one,
drones are lightweight and thereby affected by winds, which impacts battery performance and safety
[6]. Therefore, it would be beneficial for a drone operator to have good knowledge of wind among
common drone routes, such that the operator can plan its trajectory tactically.

For this exact reason, the METeo Sensors in the Sky (METSIS) project has been set up at NLR and TU
Delft. The project aims to detect and offer a way to prevent the impact of wind for drones, providing
a service to U-Space [4]. It works according to a three step principle [1]. First, the drones measure
wind as accurately as possible during their routine jobs (which is the focus of this thesis). Second, the
data gets sent to the Meteo Particle Model (MPM), where the wind fields over an urban- or industrial
area gets computed and mapped, as introduced in [7]. Thirdly, this data gets sent to the operator, as
such it can plan its trajectory accordingly, i.e. avoid excessive headwinds, thereby increase range and
decrease safety hazards.

The network functionality of METSIS has been tested in a small swarm of 4 drones by [1]. The network
functioned as desired, although the wind measurements on the drones do not yet meet the required
accuracy recommended by the WMO [8]. For that reason, this thesis has been set up. It aims to ex-
plore and implement the best method to estimate wind fields accurately without dedicated sensors
such as anemometers or pitot tubes.

Since many of discussed operations are expected to be performed with quadcopters [9], this thesis
will restrict itself to quadcopters. More specifically, this thesis uses the Foxtech Hover 1 Quadcopter
to demonstrate the wind estimating capabilities. The advantages of this drone are its high maxi-
mum speed of 20 m/s, and sampling rates which should be sufficient for our observation purposes.
Also, the drone should provide more reliable data than aggressive and smaller drones, which usually
have lower-cost sensors. The downsides to the use of this drone are that it does not measure wind
estimates automatically, that it does not provide information on thrust or rpm, and that little to no
parameters are listed online. Therefore, a testing day, including an indoor flight tests has been per-
formed at Marknesse to get an estimate on these parameters. These results are listed in chapter 4.

This research will design according to three design principles, namely accuracy, cost-effectiveness
and scalability. That is the reason that no wind tunnel tests have been performed, as the METSIS is
geared towards finding scalable methods of parameter estimation, which operators or manufacturers
should be able to do without expensive wind tunnel tests. The accuracy does not need to be perfect
but it does need to be accurate enough to outweigh the benefits of placing heavy and bulky sensors,
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such as anemometers.

The remainder of this report sets out as follows. First, in chapter 2, the research question and re-
search objectives of the thesis are discussed, and broken down into tangible and workable problems.
Second, in chapter 3 an extensive literature study has been performed, where the direct, hybrid and
indirect method are discussed in depth. In chapter 4, all preliminary results are presented, ranging
from the approach of state estimation to a detailed description of the parameter estimation. In chap-
ter 5, as a follow up to this preliminary report there is explained what flight test could be performed
in early November to validate the found algorithm. In chapter 6, a project management perspective
is taken on the project, including work packages and tools to keep track of the performed work. Code
and larger charts are placed- or referenced to in the appendices.
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RESEARCH METHODOLOGIES

This chapter consists of discussion on two main parts: the research question and the research ob-
jective, both split up into sub-questions and sub-objectives for more tangible and focused work ap-
proach.

2.1. RESEARCH QUESTION(S)
For this research, the main research question is formulated in a is stated as follows.

"How can onboard states and intelligent filtering on the Foxtech Hover 1 be used to measure 2D
wind speeds with an accuracy of 0.5 m/s and 5 deg?"

To ensure this question is of significant contribution to the development of science, and of impact to
the METSIS project, this question is written in a SMART manner. It is specific in the sense that the
required accuracy is clearly stated. It is Measurable, as in early November a flight test can be per-
formed to validate the found results. Earlier papers tackle this issue in different manners and attain
accuracy’s within this range, so it is considered Attainable too. It is Relevant in in that it would solve
a puzzle piece in the METSIS project and on bigger scale be of value to U-space. Lastly, it is Timely as
the scope of this thesis is clearly defined.

To give holistic answer to the above question, sub-questions have been set up.

Sub-questions

1. Can we prove that the indirect method is most feasible as opposed to the direct- and hybrid
method?

2. Will linear kinematics provide us with wind estimates within this required accuracy? If not, will
the inclusion of rotational dynamics do that?

3. Can we implement a filter (particle, kalman etc.) to reduce the error in wind estimates?
4. How can we ensure that the proposed solution is scalable to a multitude of drones?
5. How can we ensure that the proposed solution is cost-effective?
6. How can we ensure that the proposed solution is verified and validated properly?
7. What are the limitations to the selected approach? How well does the algorithm work in hov-

ering, static and dynamic situations (e.g. accelerating and decelerating)? How do we test this
successfully?

8. What alternative methods are there and are they worth exploring? E.g. can we use a ML algo-
rithm to improve accuracy measurements in hovering conditions?

2.2. RESEARCH OBJECTIVE
The sub-questions in section 2.1 provide guidance in conducting this experiments in this thesis, but
to answer these questions, they are divided up into research objectives in this section.

3
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GOALS

The objectives more broadly state what the expected outcomes of this thesis are. The main research
objective of this thesis is:

“To achieve an accuracy of 0.5 m/s and 5 deg by implementing linear kinematic
analysis for the Foxtech Hover 1”.

Where linear refers to the motion of the drone, as opposed to linear vs. non-linear equations.

SUB-GOALS

To connect the research objective to the literature review and experiment design, the research objec-
tive can be divided up into sub-goals which will form the basis of the tasks outlined in the planning
in Appendix A. These are explained and summarised in this subsection.

State estimation and filtering
The first set of sub-goals essentially find out whether the indirect method can be implemented on
the Foxtech Hover one drone. In practical terms, this means implementing the kinematic equations
required and with that find out if the desired accuracy can be attained. If not, the plan is to implement
a filter investigate whether augmenting the data filter, i.e. adding sensor information to this algorithm
can make the results more accurate.

1. Find out what information on board is necessary to find wind estimates within the required
range within the chosen approach

2. Find out up to what extent the kinematic approach get us above the requirements?
3. Find out if the inclusion of rotational dynamics improves the results
4. Find out if a particle filter can be used to improve the results and eliminate noise and bias?
5. Find out whether a low-cost sensor is viable and would improve the results of the implemented

algorithm (i.e. explore the feasibility of the Hybrid method).

Parameter estimation
The third sub-goal is to find out what parameters and models need to be estimated, and ensure ac-
cessibility to any drone operator.

1. Estimate drag coefficient by flying indoor lines, without the availability of GPS
2. Estimate the frontal area by taking photos with a reference object
3. Estimate the thrust continuously, as a function to either PWM or RPM
4. Estimate the moments of inertia Ixx, Iyy, Izz and Ixy, in case we include rotational dynamics.
5. Ensure that the chosen parameter estimation method is scalable enough for a variety of opera-

tors and drone types.

Verification and Validation
One of the sub-goals is to find out how to save valuable testing time An example of such is setting up
wind field simulations to mimick realistic weather scenarios. The simulation tool which will be set up,
containing a constant wind and a gust component, will be a quantifiable outcome of this sub-goal.

1. Recreate realistic wind in x, y and z direction by creating a 3D wind tunnel simulation. This can
be used as input to generate wind for the MPM, but also to make a simulation of the drone’s
dynamics and expose it to these fields.
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2. Verify that the axis system conventions and rotational matrix are implemented properly by con-
necting the drone without battery and conducting a calibration flight.

3. Implement the wind estimates in real-time rather than post processing. This can be done by
either down streaming the data at a sufficient rate and analysing “packages” of states data using
an (existing) publish and subscribe method, or by implementing a filter which is able to run in
real time, as filters assume all historical data is stored in the previous (n-1) and current (n) step.

4. Use the flight experiment to validate whether the algorithm estimates the wind magnitude
properly.

5. Use the flight experiment to validate whether the algorithm estimates the wind direction prop-
erly.

2.3. DESIGN PRINCIPLES
In summary, when contemplating solutions to the problems at hand, during all steps in this research
there should be considered whether they are in line with the three principles displayed in Figure 2.1.

Design principles for this thesis

1. Accurate
2. Cost effective
3. Scalable and accessible

Figure 2.1: Schematic displaying the three design principles which serve as technical requirements throughout the design
of the proposed solution.

As an example, the use of wind tunnels will provide accurate estimates, but is not cost effective nor
accessible to a wide variety of operators, making it score low on cost and scalability. These three
pillars will often be referred to throughout the remainder of this report.
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LITERATURE REVIEW

This chapter provides an overview which covers the relevant parts of the research field of this thesis.
Starting top level (what is U-Space and how can it benefit from METSIS?) and working a way down
(what kind of filtering techniques are commonly used?), this chapter will provide the reader with a
comprehensive view on what has been established both historically, what recent developments are,
and what research gaps can be filled.

3.1. WIND AS A CHALLENGE FOR DRONES
As hinted at in the introduction, The drone marketplace is growing rapidly and is a promising so-
lution for many problems in a variety of sectors. One of those is last mile package delivery, where
it is estimated that up to 95% cost can be saved when switching from conventional trucks to quad-
copters [10]. Another fields of application of interest is scientific research and meteorology, where
many sources comment on the potential to contribute to valuable data in the ABL [11].

Table 9 from Pérez Castán et al. [4] acknowledges wind as a potential hazard and considers strong
winds a "gap in the U-Space services". Palazzetti [12] experimentally shows the power consumption
can more than triple when facing headwind of 15 m/s, both with and without payload. Abeywickrama
et al. [13] shows that even for a wind speed of 1 m/s flying 15 km/h head or tailwind can make a
noticeable difference in required power (W). In turn, this means reduced battery and thus affects the
time of flight. This calls for a method to avoid headwinds at all cost.

3.2. METSIS PROJECT
Briefly summarised, the METSIS project aims to help drone operators and autonomous drones to
plan their trajectories such that they are least exposed to wind. This essentially happens in a three-
step plan, which is displayed in figure Figure 3.1.

Figure 3.1: METSIS working principle from [1], where drones measure instantaneous wind (left) to send to a centralised
Meteo Particle Model (mid), which can then be broadcast to operators (right).

6
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This service will be a U2 or U3 implementation into U-SPACE, and is of best use to drones operating
in high density areas, as they can benefit from more frequent wind updates and thereby more ac-
curate interpolation. This in turn results in better trajectory planning. Example applications would
include packages deliveries within cities, or frequent inspections.

In terms of altitudes of operation, [14] displays interest in wind mapping in all of the Atmospheric
Boundary Layer (up to roughly 1 km), due to meteorological purposes. Since most drones in future
day-to-day operations are expected to operate at very low level (VLL) [15], one can restrict the wind
mapping to a ceiling height of roughly 120-150m [15]), [9], [4]. Also, to be of use one does not have to
measure at different latitudes. Instead, this can be solved in MPM, e.g. by introducing Atmospheric
stability α is used to extrapolate between heights. 1/7 is normal for neutral atmospheric stability
(similar to [16].)

[15] discusses the possibility of dynamic creation of geofences. Extending on this application, ad-
visory (i.e. cautionary) zones could be created to protect drones from headwinds, such that drone
operators need less effort interpreting wind data. No Fly zones could even be implemented to keep
create traffic lanes in which there is always a tailwind, as such to increase efficiency of traffic whilst
minimising chance of collision. METSIS could hereby help the ATM in the decision making process
when creating, updating and deleting these Geo Fences. Dynamic geofencing is however a U3 feature
and thus not top priority.

For more information on U-Space and the data flow going into the Meteo Particle Model, consider
[1], [17].

3.3. RESEARCH GAP
This section addresses the research gap. Concisely summarised that boils down to the following list.

• There currently is no research paper which addresses the issue of wind measurements in the
context of a project similar to that of METSIS. This is however hinted at in future reference work,
by e.g. Cano [18] and Marino et al. [19].

• Very few of the methods in literature are described as such that the methodology is universal to
a variety of drones, but rather applicable to the specific type of drone. In many existing papers,
a lot of parameters are expected to be known, or found using expensive equipment. For METSIS
research, only frameworks and methodologies which extend to all drones and be available to
all operators world wide are presented. This is bearing in mind the expectation that a whole
variety of drones will be allowed to enter the airspace, rather than one type.

• Current options for checking wind include websites such as:
https://www.uavforecast.com/ and
https://www.windfinder.com,
although these only go up to a resolution of roughly 5-3 km, using just fixed wind measuring
poles. This thesis and METSIS in general should provide a more detailed (i.e. hyperlocal) wind
map of an area.

• All code presented in this thesis will be entirely open source and written in Python (as opposed
to commercial software presented in papers, such as MATLAB, AUSPEX, CIFER, etc.).

• This thesis will try to implement a particle filter to improve wind estimation of a single drone,
which to the best of the author’s knowledge has not been implemented before in this exact
context.
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3.4. DIRECT, HYBRID AND INDIRECT METHOD
This section classifies the wind estimation methods as direct, indirect and hybrid and explores which
one is most suited for the METSIS project.

Note that during the exploration of methods in this chapter, the implementation of choice is not
commented on, as that is presented in chapter 4.

DIRECT MEASURING METHOD

In literature, the direct method refers to methods where there is a sensor used directly to measure the
wind.

In terms of sensor selection, Thielicke et al. [20] notes that K-vane sensors are outdated, that hot wire
anemometers are very accurate but tend to be fragile and expensive. The paper explores the use of
miniature anemometers but attains low accuracy using these as opposed to normal sized anemome-
ters. Lastly, anemometers like the one used for METSIS up to now are found heavy and large.

As another alternative to classic anemometers, Bruschi et al. [21] explores the use of solid state anemome-
ters (MEMS), but concludes that the influence of rotors towards the speeds measurements is too sig-
nificant to be of use.

Figure 3.2: Fixed wing aircraft have the advantage of placing pitot tubes in free-stream velocity air.

Sensor placement
In addition to sensor selection, [20] provided an in depth study on where to optimally place them, and
suggests that 2.5 times rotor diameter should be kept as a minimum distance from the rotors towards
the wind sensors. The results from [1] however suggest that even this is not sufficient to reach the
desired accuracy as stated in section 2.2, even when bearing in mind placement tips from the specs
sheet of the Trisonica Anemometer [22].

Also, according to [16], it is recommended to keep the drone under 10 degrees pitch and roll, to avoid
fast roll and pitch rates, and to lower speeds to improve wind measurement accuracy (< 2 m/s).

Considering the problem of sensor measurements while the drone is in rotated state, both [20] and
[23] suggest placing the sensors (miniature sensors and LIDAR sensors, respectively) on a gimbal. For
METSIS, this is not in line with the third cost and scalability aspects as in section 2.3, however, and
thus these are discarded.

Fixed wing vs quadcopters
Note that fixed wing aircraft have a strong advantage in having a constant inflow of wind at a reason-
ably ranged and anticipated angle of attack, making it suitable for sensors such as pitot tubes [24].
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Moreover, the sensors can be placed in tactical positions where the propellers have little influence on
the airflow towards the pitot tube [11]. For that reason, as implemented in Kroonenburg et al, delivers
what is considered state of the art wind estimation on UAVs [25].

For quadcopters, however, pitot tubes are generally considered impractical, as quadcopters operate
at low speeds (< 12 m/s) [11] [26], and are subject to inconsistent flight directions [25]. Alternatively,
hardware such as gimbals would be needed to compensate the drone’s inclination angle and turn the
pitot tube nearly in flight direction [25].

This thesis will from here on restrict research to implementing wind measurements on rotor-crafts
and more specifically quadcopters, as METSIS assumes these to be the most suitable candidates for
typical applications in U-Space.

Figure 3.3: Image of the Foxtech Hover 1, used for testing days

An overview of all considered sensors is found in Table 7.1 in Appendix A.

HYBRID MEASURING METHOD

In [27] describes what will be refered to as the Hybrid method, where the sensor information is fused
with the state estimates. This would however not increase our cost effectiveness and scalability, thus
this option is considered a last resort in case the indirect method under-performs.

An alternative in terms of sensors is using Pitot tubes, like [24] have done. This provides some addi-
tional complexities to this application, however, such as the earlier mentioned reduced accuracy of
using Pitot tubes when flying at lower speeds. Also, the Pitot tube is only accurate up to a small range
of angle of attack, after which the wind flow gets distorted, rendering the sensors useless.

Driessen et al. [28] use an Extended Kalman Filter to include optical flow as well as sonar data, in
addition to the onboard sensors (making this approach Hybrid), in estimating velocity, position and
attitude. The adding of these sensors would increase the complexity of the system.

INDIRECT MEASURING METHOD

The indirect methods refer to those that do not use a dedicated wind sensor, but rather induct them
solely from states of the vehicle. Donnell [11] claims the indirect method (without sensors) is better
than direct method (with sensors), although it lacks the ability to detect sudden changes in wind di-
rection.

Other literature seems to make the same distinction. Where some papers focus on gust estimation
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[29], others focus more on steady state wind and even model the derivative of wind speed to be zero.
An example is [30], where v̇w = 0, which by following the triangle principle means v̇t as = v̇g ps , which
can help in simplifying state estimation at the cost of slower convergence time, as found in [30].

To guide the reader through the remainder of this section, an overview of commonly used techniques
is shown in Figure 3.4.

Figure 3.4: Subclassification of current agreed upon (top) and varying (down) indirect methods in literature, regarding
finding (initial) estimates of wind speed

Following a top-down approach, these strategies will be illustrated in the remainder of this section.

Triangle Method
A major trend in literature is within the indirect method is the triangle method, where the ground
speed vector is deducted from the true airspeed vector. This way, what is left is the wind speed vector
which caused this discrepancy in the first place.

Figure 3.5: Triangle method at the heart of indirect methods

Generally literature agrees upon this triangle method, although there exists a variety of ways to find
estimates, of which a large split is in direct mappings against kinematic resolving.

Direct mappings
Interestingly, Neumann and Bartholmai [25] (who are considered pioneers in wind estimation on
board of drones), use the classical formula approach to find an estimate for Cd , but from there uses
an experimental mapping in a Gottingen-type windtunnel to find a mapping between tilt and the
final estimate of vt as . Other papers which use this direct method are [31], [19] and [11]. Since most
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methods rely on extensive windtunnel tests, this will not be the method of preference.

Figure 3.6: Drone with custom spherical body, to simplify drag force estimation

Interestingly, Hattenberger et al. [30] uses the tilt method but attempts to make the computations
slightly easier by imposing restrictions on the drone. Namely, this drone is roughly symmetrical (see
Figure 3.6), making it that the drag force is very similar under different tilt angles. Although interest-
ing for meteorology, for this thesis, however, the drone type for experiment day is set, and it would be
out of scope to make changes to the mechanical layout of the drone in use. Also, it would go against
the principle of scalability to "demand" future drone operators to fly with a spherical body, since
this thesis’ solution should be applicable to a variety of drones, working on a variety of applications.
Lastly, although the drag force is more similar in multiple directions, it is expected higher overall as it
introduces additional mass as well as frontal area, making the drone inefficient for every-day use.

Resolving the Drag term
Wang et al. finds the drag force (or in fact, "drag acceleration") to be linearly dependent on speed, as
first presented by Luukkonen [32]. This relation is shown in Equation 3.1

D = m ·adr ag = kv (3.1)

This approach is then followed by e.g. Hattenberger et al. [30], and earlier by Sikkel et al. [33], who
explain that this relationship is due to the rotor drag, which prevents the drone from "accelerating
indefinitely".

Sikkel finds this constant k empirically, where Hattenberger further further disects this constant k
into k = mg · cα where cα is found by drawing a regression line in Equation 3.2

tanα= cα · v (3.2)

Tested for different speeds v in front of a WindShape speed generator.

This assumption is only said to work for relatively low speeds [26], as that is where hover drag from
momentum theory seems to dominate [34]. It has not been documented precisely, however, above
what speeds the quadratic relationship with speed tends to take over.

Momentum Theory
An example of a paper using blade momentum theory is[35]. It follows a set of 10 equations, of which
the most essential one is the resolving of the drag term:

Dhor i z,i nduced ,B =−TCd (vx + vy ) (3.3)

In which T is thrust, Cd is drag coefficient and v is airspeed, all in the body frame.
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Figure 3.7: Commonly used equations of motion describing drone dynamics. Image from [2]

T = 8ρApr ops vver t ,i nduced ,z,BUabs (3.4)

The parameters needed involve knowledge of power and rotational speeds, which can all be deter-
mined from bench tests. For this thesis, currently this system of equations remains unsolvable con-
sidering the Power to RPM mapping is not available from the testing day.

Note that all of these equations are performed in the body frame until the true airspeed is found, after
which it is converted to inertial frame.

DIRECTION OF THE WIND

Can be modeled according to Equation 3.5 as suggested by Palomaki et al [31], which only works
when yaw angle can be set to zero customly. If not the case for the Foxtech Hover 1, slightly more
complex formulations such as in [36] or [37] can be considered.

λ= arctan

(−sinφcosθ

cosφsinθ

)
+180deg (3.5)

3.5. FILTERING METHODS
For a better look on noise filtering, different authors consider different filters, of which some are pre-
sented below.

Nearly all papers find resultant acceleration by reading out the imu’s on board. Due to its inherently
noisy output, most IMU and gyroscope data are led through a low-pass filter before being used. Also,
in many of the discussed papers, the resulting wind estimates are subjected to a Moving Average Filter
(MAF), with time values between 1 and 20 seconds.

KALMAN FILTER

Sylvie Schafer implements a linear Kalman filter (and adresses it well) in [29], but uses an existing
MATLAB model to set up the model for the quadcopter. Since this thesis is expected to be modeled
in python, this would require a set of equations of motion to serve as a model to compare to the ob-
servations. For one, Xiang et al. [38] and Luo et al. [26] show the use of linear kinematic equations,
while [39] and [40] are examples of papers which include rotational dynamics as well. As an example
of these commonly used set of equations of motion is displayed in Figure 3.7 from [2].
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Baoubi [40] provides equations of motion similar to that of Figure 3.7 but relies heavily on RPM as
well as on other undocumented parameters such as drag friction coefficients and solid friction con-
stants, which are not to our disposal.

Hattenberger et al. [30] acknowledge the (changing) bias terms of the gyros and so they identify their
covariance matrices, which are then used as starting point in the Kalman filter implementation.
Ko et al. [41] implements an extended kalman filter, as well as an unscented kalman filter, but uses
detailed thrust parameters and angular rates which are not available.

Luo et al. [26] uses a linear extended state observer (LESO) to estimate the drag-term acceleration,
which essentially adds a observation-correction term to the equations in state space form, and tries
to minimise that, making its working similar to the Kalman filter. For this thesis, the author will
focus on implementing a similar type of observer, called the Particle filter, which will be the focus of
attention starting in September. This optimal filter is applicable to non linear systems and should not
only estimate the wind speeds and direction, but also quantify the uncertainties in the measurements
[42].

POST FILTERING IN METSIS
After the wind has been measured and processed on board of the drone, its data will be sent to the
Meteo Particle Model (MPM). In here, adjustments can still be made to improve the accuracy of the
final wind map, such as interpolation, rejection criteria, and another filter which contains a model
for how wind evolves throughout the city (rather than for true airspeed per drone, as hinted at in the
remainder of this thesis), and uses that to improve its measurements.

3.6. PARAMETER ESTIMATION METHODS
Methods vary from boldly assuming values up to measuring them in controlled environments. This
section gives an overview of each the methods found in literature, and addresses in why and how
these parameters are used.

DETERMINING MOMENT OF INERTIA

This thesis will try to limit itself to linear dynamics, considering [39] does not show significant im-
provement (table 9) when comparing the in- and exclusion of rotational dynamics. In order to best
prepare for the possible inclusion of rotational dynamics, as presented in Figure 3.7 for example, it is
of interest to determine moment of inertia. Two methods are addressed briefly.

I = mg D2T 2

16π2h
(3.6)

Teimourian and Firouzbakht [43] and Koken [3] do this by suspending a bi-filar pendulum and mea-
suring the time of oscillation, and then filling in Equation 3.6.

Mendes et al. [44] does this by modeling the parts as boxes, cylinders and slender rods, and also takes
the opportunity to compare the two method described above. The paper states an accuracy within
1% for the geometric method making this an appropriate option for the Foxtech Hover 1, of which
the results are displayed in chapter 4.

DETERMINING DRAG COEFFICIENT

In determining drag coefficient, there are basically two streams in literature, similar to that in Fig-
ure 3.4.
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Figure 3.8: Pendulum set up describing parameters in Figure 3.8. Image from [3]

• Drag coefficient Cd , as defined in Fundamentals of Aerodynamics by Anderson [45]
• Drag coefficient k, loosely defined constant, which takes into account other variables as well.

Which are explained more in detail below.

Drag coefficient Cd

Starting from the "classical" drag equation,

D = 1

2
ρv2SCd (3.7)

Rewriting this for Cd becomes:

Cd = 2D

ρv2S
= 2T

ρv2S
(3.8)

An example of a paper which uses this classical approach is Felismina et al. [46] and Neumann et al,
[25]. In the above case, there is assumed T = D, meaning the drone is in perfect cruise condition. As
the drone operator has not been able to achieve perfect cruise conditions within the limited indoor
space (flight path of roughly 15 m), the resultant acceleration term should be included, and so the
equation accounted for acceleration becomes:

Cd = 2(T −mar es)

ρv2S(ν)
(3.9)

Where T is T in the moving direction, which is in this case the inertial x direction. Similarly, a is in the
moving direction (x) and v as well.

Drag coefficient k instead of Cd

This is the group which loosely defines an empirical constant as the drag coefficient, thereby lumping
surface area and dynamic pressure into one constant.

Within this group, there is a split in papers which consider Cd as quadratic with speed as in Equa-
tion 3.10, and linear as in Equation 3.11, with slight variations.

D = kv2 (3.10) D = kv (3.11)
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From these equations, experiments are performed, and then k is found via a regression. Interestingly,
what Simma et al. [35] does, as well as Sikkel et al. [33], is tweak the drag coefficient after a number
of test flights, and seeing for which value the estimates correspond best with the reference values for
wind of those flights.

DETERMINING THRUST

A few options are found throughout literature. A first approach is to assumed the drone is steady and
does not make any vertical motion (i.e. drag in z is zero), such that gravity cancels out the thrust ex-
actly. Neumann and Bartholmai [25] uses this approach and states T (= D) = mg tanν, meaning drag
(and thrust) on the horizontal plane is based solely on the mass of the drone and the tilt angle ν.

[38] uses a similar approach but extends this method to a varying not assume constant altitude. In-
stead, the paper allows for acceleration in z byy incoorporating IMU data, as in Equation 3.12.

T = (az + g )m

cosθcosφ
(3.12)

Sikkel et al. [33] uses a similar approach, where the IMUs output in the z direction is measured in the
body frame (and multiplying this by the drones mass), arguing T = m ·az,B .

In [26], the author uses momentum theory and the conservation of energy to find a relation between
thrust and rotational speeds of the rotors, as in Equation 3.13.

T = k
4∑

n=1
RP M 2

n (3.13)

Where k is the thrust coefficient which should be determined experimentally in a force bench, or as-
sumed. Since there is no knowledge of RPM data (it would require an external sensor, which means
added complexity), this makes this method impractical. The authors do propose a method in which
the current voltage is compared to the baseline voltage by means of U 2/U 2

basel i ne (i.e. the voltage re-
quired for hovering), and that provides an estimate of the acceleration due to thrust without knowl-
edge of the thrust coefficient, so this can in fact be considered in the future.

DETERMINING FRONTAL AREA

A building block of performing the kinematic approach is to know the frontal area at all times, as it
affects the drag force. Different approaches are taken in literature.

[26] makes one photo and from there assumes a constant frontal area. [18] instead makes photos at
three different angles, and from there creates an interpolation function.

Marino et al. [19] assumed the drone as if a flat disk and computes the surface of this flat disk using a
width · height formula, taking into account its tilt into the moving direction.

Intelligibly, Hattenberger et al. [30] use a special drone, designed in a spherical case, such that the
frontal area (and, as the authors argue, thereby the drag force) does not change too much.

In literature ([47], [18]) the propeller area (Apr op ) is included too, and so this is included as well in the
computations for the Foxtech Hover 1. There is also note of a semi-permeability constant P as in fact
the area of the spinning disks is not a solid, however the paper gives no sense of what this constant is
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or what its range should be. Thus, for this thesis this is assumed constant as 1.

Note that for the sources in this section which deviate from the classical Cd determination as in Equa-
tion 3.8, these do not need knowledge of the frontal area anymore as this term is "bundled" into the
constant k.

3.7. ALTERNATIVE METHODS
Some of the methods which do not fit the above sections, whether for state or parameter estimation,
are presented here.

OPTICAL FLOW

At one point there is considered the use of optical flow. Optical flow is, however, mainly of use in-
doors, when GPS fails to act as a source of position or stabilisation [48]. In this thesis, however, MET-
SIS focuses on outside operations and will thus assume always to have GPS signals in reach. Also, the
drone used for testing in this thesis is off the shelve and stable, such that no further improvement of
accuracy in pitch or roll is necessary, thus using optical flow as an addition source of pitch and roll
is superfluous. In effect, this would only demand for added complexity, as an external system would
need be integrated into the data current flow.

Ho et al. [49] uses a good camera and flash lights to determine position and velocity, but only esti-
mates vertical velocity, which is not the intent of this research.

MACHINE LEARNING

In terms of wind now-casting, Phan [50] uses XGBoost and thereby outperform BPNN and LR in suc-
cessfully forecasting wind speed in 5 minute time sequences. Looking more at quadcopters wind
estimation, Allison et al. [6], trained a Long Short-Term Memory (LSTM) neural nets (NN), such that
roll and pitch angles can be inputted and expected wind speeds can be outputted. Herewith the
authors claims to outperform the Triangle method. The paper uses a Dryden gust model as well as
Large Eddy Simulations to realistically model outside wind fields. The authors claim that the model
generalises well with this generated data, although all tests are performed in simulation, thus further
testing is necessary which might not fit into the time scope of this thesis.

Applying machine learning as a main approach knows some challenges in terms of data. Whereas
stationary towers are active 24/7 (and thus have a lot training- and validation data), this project so far
only has flight data from two consecutive days of very similar wind conditions (< 5m/s). The limited
training data introduces risk of overfitting to the type of drone as well as the type of weather condi-
tions, which is not in line with the design principles of section 2.3. Therefore, the more deterministic
models are preferred as these can be scaled to a wider variety of drones.

3.8. OVERVIEW OF PAPERS IN A TABLE
Note that the papers (with indirect methods) which are referenced to the most are summarised and
displayed in Table 7. This can be found in Appendix A.



4

PRELIMINARY RESULTS

This chapter will present the results attained thus far for the MSc thesis. Note that up to now, work
focused especially on parameter estimation, as in section 4.2. For more details on the state estima-
tion, a plan is layed out in section 4.1.

Considering many of the exploration is done in chapter 3, this chapter will be written more concisely.
Where possible, the author tries to showcase the results first, and give reasoning after. Where in-depth
argumentation seems required, there will be referred back to the appropriate section in chapter 3.

4.1. KINEMATIC ANALYSIS
Out of all the methods considered in chapter 3, this section briefly addresses the most suitable one.
After consideration, the kinematic force-balance approach is the most straight forward one to reach
the desired accuracy. The main principle is shown in Figure 4.1. This section will dive in to depth on
the details to demonstrate how this method should give us the desired wind estimation.

Figure 4.1: Schematic overview of how the selected kinematic approach on finding wind speed

COORDINATE SYSTEMS AND CONVERSION

Essentially this thesis is concerned with the body frame, and the earth frame. This is displayed in
Figure 4.2.

The Rotation Matrix used to convert from body to inertial frame is as in Equation 4.14. By transposing
the matrix (RB

I = R I ,T.
B ), one can convert from earth to body frame if required.

17
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Figure 4.2: Schematic showing the body frame and the earth frame used in this thesis.

R I
B (θ,φ,ψ) =




cosθcosψ cosψsinθ sinφ−cosφsinψ cosψsinθcosφ+ sinφsinψ
cosθ sinψ cosφcosψ+ sinθ sinφsinψ −sinφcosψ+ sinθcosφsinψ
−sinθ cosθ sinφ cosθcosφ


 (4.1)

This matrix is validated by inputting mock-up vectors for thrust and seeing what the expected results
should be, and comparing that to the output of the matrix. This way, problems in the model with sign
conventions and mix-ups in formulas are detected and resolved.

Also note in this report, rather than θ,φ,ψ, often ν will be referred to as a combination of the three,
defined as the tilt angle as in Equation 4.2.

ν= arccos
ux y · (eφ×uθ)∣∣ux y

∣∣ ·
∣∣eφ×eθ

∣∣ (4.2)

In which:

eφ =



0
cosφ
sinφ


 (4.3)

eθ =



cosθ
0

−sinθ


 (4.4)

ux y =



0
0
1


 (4.5)

WORKING PRINCIPLE

Remember that subscript B and E refer to Body and Earth, respectively. Starting from a summation
of forces in the earth frame:

FE =GE +TE +DE (4.6)

Rewriting some of the variables to body frame is more practical, considering measurements onboard
the drone are performed in this frame. Therefore:
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R ·FB = R ·GB +R ·TB +DE (4.7)

Where DE is kept in the Earth frame. From here,

FB = m ·aB = m · [ax , ay , az ]T
B . (4.8)

Where aB is read out from the onboard IMUs. As described in section 4.2, the IMUs acceleration
values are averaged and low-pass filtered. Then:

TB = [0,0,−T ]T.
B (4.9)

Where T is an obtained model from section 4.2. Note the negative sign in the body frame, considering
z is defined positive downwards while thrust is directed upwards in the body frame.

GE = R ·GB = R · [0,0,9.80665]T.
E (4.10)

And:

DE = 1

2
ρv2

E SCd (4.11)

Where vE is the true airspeed which is what should be found. Therefore:

v =
√

2(T −F −G)

ρSCd
(4.12)

Or, in case as suggested in more recent literature, rotor drag does dominate in our flight speed regime,
instead of Equation 4.11 we will use Equation 4.13.

v = ar es

k
(4.13)

Where k is the earlier defined constant. Both equations will be considered and compared, after which
one will be selected. The outcome may not be as black and white though; from literature, it is ex-
pected that Equation 4.12 works better at high speed flights, and that Equation 4.13 works better at
low speed flights.

It should be emphasized that the above equations are performed in 3D, meaning the output v looks
like:

v =



vx

vy

vz


 (4.14)

From there, the magnitude of true airspeed can be computed.

|vt as | = v2
t as,x + v2

t as,y (4.15)

From which the triangle method is used, as in Equation 4.16 (and displayed earlier in Figure 3.5).

vwi nd = vg ps − vt as (4.16)

To find the direction, Equation 3.5 from chapter 3 is used. A plan to eliminate noise and quantify the
uncertainty is to implement a particle filter.



4.2. PARAMETER ESTIMATION 20

4.2. PARAMETER ESTIMATION
Part of the challenge is making the methodology presented in this thesis work on a new type of drone,
for which its technical details are often unlisted. For the Foxtech Hover 1, parameters such as mo-
ments of inertia, thrust coefficients and drag coefficients are not specified, while they are required
for the planned state estimation. Therefore, this section of the preliminary thesis is dedicated to find-
ing estimates of those parameters which are needed for wind estimation.

To give a holistic picture of which parameters need to be estimated, recall Figure 4.1. This summarises
the overall approach of the thesis, with data streaming from the bottom to the top to find wind speed.
Here, yellow boxed letters A, B, C and D represent parameter tests and how they fit into the main
algorithm.

Figure 4.3: Schematic overview of how the parameters will help in estimating wind speeds and how they are modeled.
Yellow boxed letters mark the parameters/models which are required for this test

This section will dive into depth into the preliminary outcome of these results for test A, B, C, D and
E.

A. DRAG COEFFICIENT DETERMINATION

To determine the drag coefficient, recall section 3.6. From this follows the following equation:

Cd = 2(T −mar es)

ρv2S
(4.17)

Where T is thrust, determined later in this section, ar es is the (low-passed) resultant acceleration
measured from the onboard IMUs, and S is the surface area determined later in this section. Note
that the Foxtech possesses 3 IMU’s, of which the first is the primary IMU and uses a vibration damper.
The average of the three IMUs is used for further processing. Also note that the gravity component is
ignored, as we only are interested in Cd , x and Cd , y (2D components).
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Note that the computations in this section have been performed in the inertial axis frame, meaning
components such as thrust and acceleration have been converted from body to inertial frame using
Equation 4.14 as transformation matrix.

Drag Coefficient
Quadratic with speed Cd ,x , Cd ,y 0.14
Linear with speed kx , ky 0.17

Table 4.1: Drag coefficients currently used for the Foxtech Hover 1

From the equation, several indoor flights have been performed, since then vg r ound = vai r speed . A
total of 25 lines have been flown in several yaw, pitch and speeds. Later, this information is grouped
(i.e. rounded off) into "buckets" of speed. The procedures is summarised in the following bullets and
the results are summarised in Table 4.1.

During flights

1. Set the drone at a starting position and set a yaw angle
2. Fly a number of lines.

• The more indoor flight room there is, the better the results will be as the drone will be
more in trim condition. There will be less noise influence of acceleration measurements.

• The more identical lines are flown, the more certain the result for a specific configuration
will be.

• The more variation in speeds flown, the clearer the trend will be.

3. Capture the speed by means of camera footage (or an indoor tracking system if available).
4. Increase yaw angle by fixed amount and repeat from step 1.
5. Stop when you have reached 90 degrees yaw

This procedure makes use of the assumption that the drone is symmetrical in x - and y, such that a
yaw of 10 degrees gives similar results to that of a yaw of -10 degrees. Therefore, only 0-90 degrees
yaw have been considered in this test.

Post processing

1. Group the flown lines into buckets of 1-2 m/s, 3-4 m/s, 5-6 m/s, 7-8 m/s, etc. up to 19-21 m/s
(max speed).

2. Average out the yaw of the resultant lines which fall into the buckets
3. Plot the speed against drag coefficient, as shown in Figure 4.5.

The figures confirm that 0.10-0.30 is the range the drag coefficient remains within roughly, consid-
ering operating speeds (5 m/s-20 m/s). Note that Cd,z is not computed, but that there is data to
compute this should this be necessary later on.

We have not been performing slow flights (1-5 m/s), so should be careful extrapolating the polyno-
mial quadratic trend backwards. Namely, from the literature study in chapter 3 it shows that at lower
speeds the Cd tends to behave more linearly to v as opposed to quadratic, and so it would be better
to make purposely slow flights in this speed region and find a linear fit.

Although the fit is suggested to be quadratic, the uncertainty in the measurements cause the trend
to not be extremely pronounced; n.b. a linear fit would have been believable as well. Therefore it is
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Figure 4.4: Overview of found Cd’s, all shown per bucket of 1
m/s speed.

Figure 4.5: Overview of found Cd’s, averaged per bucket of 2
m/s speed.

safest to assume a constant drag coefficient for all speeds, which is in this case the average of the 25
flown lines.

B. DETERMINING THRUST

Thrust is one of the main forces in the force balance approach when considering both the x and y
axes. The Foxtech hover 1 does not provide information on thrust and so the test bench approach has
been taken to map this. Using a Series 1580 Test Stand, a PWM to Thrust (N) transfer function has
been found, which is describes in Equation 4.18.

T = 4∗Tr otor (4.18)

Where:

Tr otor = 0.0226

[
1

4

4∑
n=1

(PW M)n

]
−27.01

Where PW Mn is the incoming signal of PWM per rotor, which is summed and then divided by the
number of rotors n, as the transfer function is valid for a single rotor.

The results above have been deducted from discrete/static tests, where PWM has been increased in
steps of 50, ranging between 1000 and 2000. An example of such a test is seen in Figure 4.6.

Figure 4.6: Static test overview, without (0 m/s) and with
(4m/s) influence of a fan, so emulate wind inflow.

Figure 4.7: Static test overview zoomed in
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What can be noted from zooming in in Figure 4.7 is that there is a max discrepancy of roughly 2N
for the test with- and without wind influence. This is something to be aware of during state estima-
tion. In code, one could lower the intercept of the chosen interpolation function, depending on the
amount of wind-inflow. In order to make this curve’s intercept a dynamic value (or even a constant,
adjusted value), it is mandate to perform thrust tests again at a variety of air speeds ranging, above
the speeds currently tested for (0 and 4 m/s) to be able to act to it appropriately.

Modeling the top end
Notably, the equation in this subsection is chosen as a linear fit, while the curve in Figure 4.6 shows
nonlinear behaviour. This is because generally the rotor speeds of a drone remain relatively constant
throughout operation [30]. Analyzing the log files for the Foxtech Hover 1 specifically, we note that the
PWM always ranges around 1650, and always remains within 1500 and 1800, even when performing
aggressive jump maneuvers (from 1 to 8.5m). This means modeling of maximum thrust dynamics is
not required, as this only occurs in the area of 1850-2000 PWM. In case outdoor tests in September
proof that in windy conditions PWM exceeds 1850 at some point, the plan is to fit the data points with
a polynomial of order 3 or 4.

Influence of external windflow (Sweep tests)
In addition to the static test a sweep test has been performed to get an understanding of the dynamic
effects of increasing and decreasing the PWM. These can help understand the influence of abrupt
changes in the drone’s pwm input on the thrust model (incrementing and decrementing PWM). Con-
cisely, the results show a discrepancy between throttling up (lower line) and throttling down (upper
line), which will be referred to as the split effect. When PWM is decreased continuously, there already
is a larger inflow of air than required, and thus this gets added as excess thrust, resulting in a higher
thrust for the same PWM.

Figure 4.8: Sweep test at 0 m/s and 0 degrees fan influence.
Going up in throttle requires more PWM to get the same level
of thrust. So, if the PWM before the current PWM was lower,

it will produce less thrust.
Figure 4.9: Sweep test at 4 m/s and 0 degrees fan influence

From these sweep test in Figure 4.10 it shows that for 4 m/s, 45 degrees inflow, the split effect is most
pronounced. The discrepancy can be up to 2 N (roughly 10%) for just 4m/s and therefore should not
be ignored in case of dynamic throttling. For this reason, we will restrict the research to measuring
wind in (quasi) steady conditions, meaning we do not make measurements of wind when PWM is
increased or decreased, as such to impose additional error from these dynamic effects. As seen in
Figure 4.11, the static tests are a good representation of the sweep tests, as they are roughly the aver-
age of the two trends.
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Figure 4.10: Sweep test at 4 m/s and 15 degrees fan influence

Figure 4.11: Sweep test compared to static test under similar conditions. 0 m/s at 0 deg fan influence.

A suggestion for future work could be to perform sweep tests under a wider variety of inflow speeds,
similar to how it is done in [39]. Granted that the sweep tests show a very clear trend under a large
variety of wind speeds, we could extend the methodology of wind estimation to the flight parts such
as take of, landing, and aggressive turns as we are then able to model these dynamics more precisely.

Influence of voltage drop
The mapping of PWM to thrust is not a direct one, considering thrust is influenced by RPM of the pro-
pellors, battery voltage drop, temperature, and load [51]. Correction models can be set up to account
for the influence of voltage drop, but interestingly, according to [51]) the PWM-thrust curve gives a
better fit than the volt-thrust curve, arguing in favor of pwm-thrust relationship. Note that all bench
tests in this section are performed at 25.4 volts, which is assumed representative for the whole flight
profile.

C. DETERMINING RESULTANT FORCES

The resultant forces are found by the following steps.

1. Read out the three onboard IMUs, AccX, AccY and Accz in the body frame
2. Average the three IMUs
3. Use a low pass filter on the found result
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4. Convert the IMU accelerations to the earth frame using the rotation matrix, shown in Equa-
tion 4.14.

The result is the acceleration to x, y and z in the earth frame.

D. DETERMINING SPEED INDOORS

To fill in the v component in Equation 3.9, the ground speed is required, however the indoor envi-
ronments as such do not allow for GPS to capture this. Therefore, to estimate this speed, a custom
camera speed trap has been set up. It is an opencv script which detects moving objects and registers
how many frames it takes for the drone to pass a known distance. This is then inserted into Equa-
tion 4.19.

v = s

t
= s

∆ f
F PS

(4.19)

Where ∆ f is the amount of frame counted in between passing the first- and the second green verti-
cal line. In between, the distance s is known. During flight tests, the operator focused on staying at
a fixed distance from the camera (over the black line on the ground) as such to minimise errors in
distortion.

Figure 4.12: Schematic showing the drone passing the speed
trap, schematically and conceptually (top view).

Figure 4.13: Drone passing the speed trap, video recorded at
480 fps.



4.2. PARAMETER ESTIMATION 26

The videos used are recorded by a smartphone in slow-motion such that there is 480 fps to divide by,
rather than 30 fps, leading to a higher accuracy.

For the slowest flight, a speed of 4 m/s has been recorded, whereas for the most aggressive flight, a
speed of almost 19 m/s is found, which is in line with the maximum speed of 20 m/s specified for the
drone.

The data is matched by looking at the point at which the pitch angle changes aggressively, since that
means the drone had to break, in order to not hit the wall at the end of the indoor hall. The half a
second before that steep decrease in pitch is usually constant in pitch and PWM, and that represents
the part which is flown in Figure 4.13.

E. DETERMINING FRONTAL AREA

The frontal area is modeled as two parts, as displayed in Equation 4.20. How both of these terms are
estimated continuously is discussed in this section.

A = Abar e (ν)+ Apr op (ν) (4.20)

To determine the bare area (Abar e ), a Python script is created which detects the object with color
differentiation and counts the amount of pixels of a still photo of the drone. When placed next to a
reference object of know size, by means of simple a cross tab it can estimate the frontal area. Repeat-
ing this procedure for a variety of pitch and yaw angles results in the values as displayed in Table 4.1.
From the data, an interpolation function of pitch against (yaw averaged) frontal area is found, as seen
in Figure 4.16. This results in the Abar e term as shown in Equation 4.21.

A theoretical approach to include propeller area Apr op has been taken, where the propeller area is
assumed as a disk. The influence of pitch is accounted for by using basic trigonometry, explaining
the sine term in Equation 4.22.

Abar e (ν) = 0.043e0.0164ν (4.21) Apr op (ν) = 4πR2P sin(ν) (4.22)

Where ν is the tilt angle, which is in this case assumed assumed to be similar to pitch.

From chapter 3, it is assumed a solid disk and this constant is set to 1.0.

Currently, the average of all yaw angles is taken, and the interpolation function shown in Figure 4.16
is used in the main algorithm. There, the tilt angle is assumed as if it is the pitch angle (because the
yaw and thereby the tilt is averaged in this approach). Alternative implementations are discussed in
section 3.6.

To mimick the incoming free flow, the photo has been taken from a distance (roughly 2m) to min-
imise the lens eye effect,. Later the photos have been cropped for easier processing.

Currently, the results for different yaw angles (and thereby different tilt angles) are averaged. Alter-
native implementations could however be to convert Table 4.4 into a pandas 2D interpolation table,
which inputs both yaw and pitch and outputs the interpolated bare frontal area. We see no trend in
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Estimated frontal area - computation
Pitch Angle (deg)

15
Tennisball Foxtech

Yaw
angle

0
Px 22456 399345
Area 0.003473 0.06177

Figure 4.14: Crosstab displaying how the reference object is
used to compute the area of the Foxtech (number in bold). Figure 4.15: Example of frontal area image of yaw = 0 deg and

pitch = 15 deg, with reference object of known size, both with
a (fairly) neutral background to allow for color detection.

Figure 4.16: Bare frontal area at different yaw angles,
scattered and interpolated.

Estimated frontal areas - overview
Pitch Angle (deg)

0 15 30 45

Yaw Angle
(deg)

0 0.0415 0.0618 0.0702 0.0835
22.5 0.0408 0.0550 0.0783 0.1005
45 0.0471 0.0499 0.0588 0.0890

Figure 4.17: Overview of all found results

changing the yaw angle, however, (i.e. the area roughly stays the same), for it is more logical to con-
sider pitch (or tilt) as the only varying function.

DETERMINING MOMENT OF INERTIA

For the current approach, we are following a linear kinematic approach, i.e. rotational dynamics are
not included. Nevertheless, rotational dynamics are very common in drone modeling ([2], [39]), the
drone will require knowledge of the moments of inertia, and so in preparation for that (and consid-
ering the low effort to determine it) this subsection describes how moments of inertia are found.

To determine the moments of inertia (MOI), from section 3.6 a geometric approach has been taken.
First, the MOIs of each individual component have been computed. Second, their parallel axis term
has been added. Lastly, the MOIs are rotated 45 degrees around the z-axis, since that is representative
of the true "front", i.e. flying direction of the drone.

Results: MOI of Foxtech Hover 1
Without pole Ixx 0.03962 Iyy 0.03962 Izz 0.06885 Ixy 0.0003374
With pole Ixx 0.1964 Iyy 0.1964 Izz 0.06892 Ixy 0.0003374

Table 4.2: Moment of inertia following from the geometric method

The four rotors (red), as well as the pole on top of the drone (green), have been modeled as cylinders.
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Figure 4.18: The Foxtech hover 1 simplified into blocks and cylinders. Then rotated around its z-axis to compute final MOI.

The equations to calculate their MOI around their respective axes are shown in Equation 4.23 and
Equation 4.24.

Ic yl ,centr al .axi s =
1

2
Mc yl r 2

c yl (4.23) Ic yl ,centr al .di am = 1

4
Mc yl r 2

c yl+
1

12
Mc yl l 2

c yl (4.24)

The central plate (blue), the battery (blue) and the legs (purple) have been modeled as boxes. This
can be summarised in Equation 4.25.

Ibox = 1

12
Mbox (a2

box +b2
box ) (4.25)

Where a and b are the dimensions as if looking from the principal axis. Then, the parallel axis theorem
has been applied to each of the individual components, as displayed in Equation 4.26.

I =
n∑

k=1
(I +Md 2)k (4.26)

Where n is the amount of parts modeled. Then, Ixy has been computed (Equation 4.27), after which
a 45 degrees rotation over the z-axis has been performed as in Equation 4.28.

Ix y = Ik + Ax y (4.27)

Ix y,r ot ated = Ix − Iy

2
sin2ψ+ Ix y cos(2ψ) (4.28)

And for Ix and Iy these rotations follow:

Ix,r ot ated = Ix cos2ψ+ Iy sin2ψ− Ix y sin2ψ
(4.29)

Iy,r ot ated = Ix sin2ψ+ Iy cos2ψ+ Ix y sin2ψ
(4.30)
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Where ψ is the amount to rotate around z.

This methodology has been converted into an Excel sheet found in Appendix B, where the user is
asked to insert mass, dimensions and offsets of centres of gravity. From there, it will compute the
moments of inertia as shown in Table 4.2.

Comparing the results in Table 4.2 to that of the Parrot Bebop (which has an Ix of roughly 0.0010)
the results seem realistic, considering the Bebop is approximately 1

2 smaller in size (quadratic) and a
factor of 7 times lower in mass, while the MOI is roughly 40 times less. Also, comparing it to Mendes
et al. [44], it is in line with expectations that the Izz is roughly double the value of Ixx and Iyy.

Gonzalez-Rocha et al. [39] use a HobbyKing Quantum Nova quadrotor of comparable size and finds
I’s of 0.033, 0.037 and 0.064 for Ixx, Iyy and Izz respectively.

Computation Equation used for determining MOI

Cylinder Ic yl ,centr al axi s = 1
2 Mc yl r 2

c yl

Ic yl ,centr al di ameter = 1
4 Mc yl r 2

c yl + 1
12 Mc yl l 2

c yl

Box Ibox = 1
12 Mbox (a2

box +b2
box )

Parallel axis theorem I =∑n
k=1(I +Md 2)k

Rotated inertias Ixx = Ix cos2ψ+ Iy sin2ψ− Ix y sin2ψ

Iy y = Ix sin2ψ+ Iy cos2ψ+ Ix y sin2ψ

Izz = Izz (same as before)

Ix y = Ix−Iy

2 sin2ψ+ Ix y cos2ψ

Table 4.3: Overview of all MOI equations applied to Figure 4.18, where ψ is the rotation around z, in this case 45 deg.

4.3. TESTING FRAMEWORKS
This section briefly addresses the tools that can be used to verify and validate the methods proposed
in this preliminary report.

ANALYTICAL MODEL

To verify that the model is implemented well into Python, some exemplary inputs are taken and writ-
ten down on paper. These will be analyzed with a handheld calculator, where-after the outputs will
be compared to that of the Python model to detect any coding errors. This will serve as verification
source.

The input data should be data from representative parts of flight, i.e. parts where the flight is relatively
steady and does not increase- or decrease throttle. Flight data from past year servers well for this
purpose, since it has straight lines. Data from next year will provide for even better verification (see
chapter 5), as it will contain flights directly into- and away from the wind.
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WIND FIELD GENERATOR

For validation purposes, the first point of testing could be a virtual wind tunnel, which has been de-
signed in Python. It uses the Dryden model (adapted for low altitudes) to create realistic gusts for a
given speed, and superimposes that onto a constant wind from a selected speed and heading to form
a representation of real wind. [37] has served as a starting point for this program.

Initially this is meant to test the wind detection algorithm, but in order to do that one would need
a high fidelity plant model (with a fidelity higher than the wind detection model). Since this is un-
known for the Foxtech Hover 1 (and out of scope to focus on), this is left as a future recommendation.
The wind field generator can, however, also be used as reference "measured" values from the drone
to go into the MPM software, to test that further, as is shown in Figure 4.19.

Figure 4.19: Wind field generator, showing how it can emulate the drones in a network when ran in concurrency with
slightly different values.

Figure 4.20: Continuous wind field generator output, with
wind fields shown per axis.

Figure 4.21: Continuous wind field generator output, with
wind fields shown in a 3D display.

Similarly, this model can be a meaningful contribution to TU Delft’s BlueSky [52], since currently
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the wind implementation is a discrete model rather than continuous. The model will be written in
Python and is fully object oriented, such that later, potentially it can be merged into BlueSky.

MISSION PLANNER

Mission planner helps in verification in the sense that you can connect data and that the following
can be tested.

• Test the data linkage of the radio before making actual flights
• Verify that the signs in the coordinate system are as expected (by tilting the drone to a side and

seeing whether the outputted angle is positive or negative)
• Practice the online data retrieval, either via the "web-scraping method" as in [17] or via Mission

Planner.
• Practise the synchronization of state-estimated wind speed and sensor-recorded wind speeds

Note that one can not get log or bin files from the drone, since this only activated when the drone is
armed, and that only happens when the batteries are in place. This is not allowed until testing day.

FLIGHT DATA FROM PAST YEARS

The most valuable asset in terms of V&V is flight data from past year. Namely, from here the flight
data is logged on an sd card, together with the wind data from wind sensor of the drone in hover.
Using this Trisonica wind sensor’s data as validation source, we can see if the estimated wind speeds
of the other three drones are in line.

Figure 4.22: Flight data from past year, flown in a triangle at three altitudes.

In addition to pas year’s data, new data will be generated as discussed in chapter 5.
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EXPERIMENT AND FLIGHT TEST DESIGN

5.1. FLIGHT PLAN
As a follow up to section 4.3, a new flight test will be performed in early November 2022. This way,
new data is generated which will serve for validation purposes. Some differences from this test to the
year before and the reasoning for it are described in the following list.

Novelty and rationale for new flight plan
• This flight plan will fly in a box rather than a triangle. This is done to make verification eas-

ier. For one, flying straight into the wind means you have one less axis to worry about (as your
y-wind component will roughly be zero), making it easier to validate the conversion of body
to inertial frame. Secondly, the box will mean that the drone flies straight into the wind and
straight away from the wind, and from that we can better verify whether the drone works in
these two most "extreme" conditions (which is interesting considering the pitch will be differ-
ent while the true airspeed is the same). Lastly, the square could serve as a validation source for
the drag coefficient, considering [11] estimated drag by flying in boxes, arguing that the bias of
the wind is “averaged out” since you flying opposing directions considering wind.

• This flight plan will, include a few tests under 7m/s and a few tests above 10m/s. The reason
is that papers hint that drag acts linear to speed at low speeds and quadratic at high speeds.
To confirm this (and see whether we can adopt to this), it is wise to at least have some data of
higher velocity speeds. Examples could be 5 and 15 m/s.

• This flight plan will, in addition to a hovering flight, contain a moment of loitering/casting
where the drone is hovering but not held to its x and y position. This will cause it to "drift" off,
and that should tell us something about the wind speed, according to [34]. Past year’s flight
plan did not have such a drift.

• This year will fly one drone with an anemometer pole, and the other without. This will tell
whether the algorithm works as expected for different configurations and mass, which is ex-
pected.

• This flight the wind most likely will be stronger, considering the test takes place in early Oc-
tober when weather tends to get more turbulent around the flight location (Marknesse, in the
Netherlands). This will result in additional validation data, as opposed to that of previous year,
which had low wind speeds (< 5 m/s).

• This year, the focus will not be on the connectivity between the drones, so one drone for mea-
suring and one drone for reference will be sufficient. Therefore, also only one operator is re-
quired.

Consider that in Figure 5.1 each of the yellow lines define a roughly 100 m distance, which should
give the drone 20 seconds enough to get to cruise at a speed of 5 m/s.

Note that in addition to the yellow lines, the red marker represents a second drone which is used for
reference measurement. As this drone remains in hover, it is expected that it will remain relatively
stable, providing a good basis for the wind sensor to function on, thus yielding a reliable reference.

32
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Figure 5.1: Exemplary flight plan at Marknesse location. Subject to change as the square is supposed to be exactly
perpendicular to the wind direction.

5.2. DATA FLOW AND HANDLING
Currently, the data is logged onto an SD card and from there, wind is determined in post processing.
This is shown in the “post flight” part of Figure 5.2. Looking more closely, the log files originating from
the SD card are decrypted from bin/log to a MATLAB structure using an open source tool (ArduPilog).
From there, a self-made MATLAB script converts the data variables we need to a csv file. This is where
Python script is able to read it and process the data into wind estimates.

Figure 5.2: Data flow for post processing and for online processing.

For a more insight on how data flows from the drone of the groundstation, consider the technical
report of METSIS [17].

5.2.1. DATA RATES AND SAMPLING TECHNIQUES

Note that during the MATLAB conversion to csv, some data is up-sampled (using Matlab’s interp1D())
and some is down-sampled (using MATLAB’s downsample()), as these states are recorded in different
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frequencies. The IMU records at 17 Hz, while the angles from pitch and PWM are recorded in 8.5
Hz. The lowest frequency of recording is that of the GPS, with 4.25 Hz. For now, this is up sampled
to 8.5 Hz by means of linear interpolation, but plans are to experiment with down sampling the true
airspeed once found to this lowest frequency (4 Hz).
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PROJECT MANAGEMENT & WORK PACKAGES

6.1. WORK PACKAGES
In essence, the work packages are split up in the following work packages.

Work packages

• Project management work package (2 h/w)
• Kinematic approach work package (10 h/w)
• Filtering work package (16 h/w)
• V&V Work package (20 h/w)

6.2. MILESTONES AND MEETINGS
An overview of upcoming milestones and meetings is displayed in Table 6.1.

Date Milestone

March 17th Kick off
April 15th Comparing three best methods
June 9th, 10th Parameter tests in Marknesse
Aug 25th Hand in Preliminary Report
Sep 2nd Present Preliminary Presentation
Nov 1st Flight test in Marknesse
Nov 18th Green light and hand in draft paper
Dec 15th Hand in final version of paper
Dec/Jan Defense

Table 6.1: Important dates and milestones for the thesis, summarized in a table

6.3. LOGBOOK
To keep track of progress, a logbook has been set up and maintained over the past months. An exam-
ple of a month is shown in Figure 7.2.

For a more detailed description of the work in the past few months, consider the full logbook, which
is handed in together with this preliminary report.

Also, note that a lot of progress is discussed in the Weekly and Official meetings, of which the slides
will also be made available upon request.

6.4. FOCUS PER WEEK FOR THE COMING WEEKS
To better visualise the points of attention globally, consider Figure 7.1 in the Appendix.
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CONCLUSION

This preliminary report outlines the literature research, preliminary results and plan of approach for
the coming months on working towards completion of the MSc thesis. As a contribution to METeo
Sensors In the Sky (METSIS), the thesis tries to improve wind estimates without using dedicated sen-
sors, answering the following research question.

"How can onboard states and intelligent filtering be used on the Foxtech Hover 1 to measure 2D
wind speeds with an accuracy of 0.5 m/s and 5 deg?"

The sub goals are stated in chapter 2 and essentially come down to making the methodologies pre-
sented in this thesis as accurate, scalable and cost effective as possible.

To make the methods more accurate, one could increase complexity of the model (e.g. by including
rotational dynamics) in case desired accuracy is not reached, similar to how [39] has an increasing-
complexity approach. In case results are noisy (which is expected), a particle filter will be introduced
for better observations. Comparing recent papers, the state of the art accuracy is between 0.3-1.5 m/s
RMSE, making this a challenging but feasible target. To make the methods scalable, the parameter
tests are performed as such that any type of drone (operator) could execute them. For example, no
windtunnel tests are performed as it is expected flight data under controlled environment can pro-
vide good enough estimates of parameters. To make this approach cost effective, the use of sensors
will be avoided, saving weight and cost.

Later, chapter 3 shows that in literature, many papers agree upon kinematic approach towards find-
ing the drag term, but vary on how to resolve this term to find true airspeed. While some papers
consider drag force quadratic with speed (classical), others find that for lower speeds a linear relation
with speed yields better results, and others use momentum theory. This thesis will focus on imple-
menting linear kinematic analysis to find the drag term, and resolving it into true airspeed by using
the classical drag formula approach. This should yield an estimate for true airspeed, which is then
deducted from the GPS speed vector in order to find an estimate of the wind speed and direction
(i.e. the triangle method). Papers suggest different kinds of filters and observers, but have not imple-
mented a particle filter for this purpose.

Later in chapter 4, section 4.1 explains the main method planned and section 4.2 shows the parame-
ter estimation results. In brief, drag coefficients are estimated from indoor flight, moment of inertia
is calculated analytically, and frontal area and speed are estimated by using camera imagery.

Lastly, chapter 5 shows the flight plan which can serve as verification for this thesis.

The estimation script is in progress but is expected to work in hover as well as cruise conditions, but
not work where aggressive manoeuvres are performed. Namely, when pwm is increased or decreased,
a large discrepancy in the thrust model is found, as presented in section 4.2. A suggestion to thrust
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curves under more wind conditions is made to be able to extend the model to other parts of flight.

One of the motivations for this research is the societal impact this could have on the many sectors,
including healthcare, surveillance and also consumer deliveries. The outcome might contribute to
finding a standard for all drones in the future, such that wind can be measured at any time, on any
drone, during any (routine) job performed within U-Space. In turn, this could contribute to a more
efficient drone ecosystem.



APPENDIX A: TABLES AND FIGURES

WEEKLY PLANNING

Figure 7.1: Weekly planning up to defense
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LOGBOOK EXAMPLE

Figure 7.2: Example of logbook in Excel of the month June, showing points of focus per day
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OVERVIEW OF SENSORS CONSIDERED

Sensor type Advantage Disadvantage Explored in e.g.
Suitability for
quadcopters

1
Ultrasonic
anemometer

High range
Ineffective at
large angles of
attack

METSIS Medium

2
Miniature
anemometer

Lightweight
Lower accuracy,
requires gimbal
.

Thielicke, Low

3
Solid state
anemometer
(MEMS)

Modern
Very prone to noise
Relatively new

Bruschi Low

4
Hot
wire
anemometers

Accurate, small,
lightweight

Directional,
very fragile

Wolf et al Low

5
(differential)
pressure sensors

Factor of 10 cheaper
than anemometer

Directional, not for
low speeds, requires
free stream velocity

Marino Low

6 K-Vane sensor
Mechanical parts,
added complexity,
fragile, low accuracy

Low

7
Camera
(optical flow)

Low cost, versatility
Difficult to implement,
expensive,
added complexity

Claybrough,
Ho et al

Medium

8 LIDAR Very accurate
Extremely heavy,
very expensive,
low spatial resolution

Marino,
Donnell

Low

9
No dedicated
sensor

No added cost,
No added weight

Difficult to implement,
not reliable in all
flight conditions

High

Table 7.1: Overview of sensors available for use on quadcopters, with their strongest ad- and disadvantage. Note that all of
the papers present results between roughly 0.1 and 1.5 m/s RMSE [m/s]
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APPENDIX B: CODE

In the following list, the links redirect the reader to the Github repositories.

• https://github.com/erikbaas/thesis_wind_estimation_drones
• https://github.com/erikbaas/speed_trap
• https://github.com/erikbaas/frontal_area_detector
• https://github.com/erikbaas/windfield_generator
• https://github.com/erikbaas/compute_moment_of_inertia
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[23] N. Vasiljević, M. Harris, A. Tegtmeier Pedersen, G. Rolighed Thorsen, M. Pitter, J. Harris, K. Ba-
jpai, and M. Courtney, Wind sensing with drone-mounted wind lidars: proof of concept, Atmo-
spheric Measurement Techniques 13, 521 (2020), publisher: Copernicus GmbH.

[24] A. Rautenberg, M. Graf, N. Wildmann, A. Platis, and J. Bange, Reviewing Wind Measurement
Approaches for Fixed-Wing Unmanned Aircraft, Atmosphere 9 (2018), 10.3390/atmos9110422.

[25] P. P. Neumann and M. Bartholmai, Real-time wind estimation on a micro unmanned aerial vehi-
cle using its inertial measurement unit, Sensors and Actuators A: Physical 235, 300 (2015).

[26] B. Luo, M. Zeng, and Q.-H. Meng, A Wind Estimation Method with an Unmanned Rotorcraft
for Environmental Monitoring Tasks, Sensors 18, 4504 (2018), number: 12 Publisher: Multidisci-
plinary Digital Publishing Institute.

[27] C. A. Wolf, R. P. Hardis, S. D. Woodrum, R. S. Galan, H. S. Wichelt, M. C. Metzger, N. Bezzo, G. C.
Lewin, and S. F. de Wekker, Wind data collection techniques on a multi-rotor platform, in 2017
Systems and Information Engineering Design Symposium (SIEDS) (2017) pp. 32–37.

[28] S. P. H. Driessen, N. H. J. Janssen, L. Wang, J. L. Palmer, and H. Nijmeijer, Experimentally
Validated Extended Kalman Filter for UAV State Estimation Using Low-Cost Sensors, IFAC-
PapersOnLine 18th IFAC Symposium on System Identification SYSID 2018, 51, 43 (2018).

[29] S. Schafer, J. F. Horn, and J. Cooper, Flight test measurement of ship airwake disturbances using
small-scale rotorcraft, Annual Forum Proceedings - AHS International 4, 2681 (2015).

[30] G. Hattenberger, M. Bronz, and J.-P. Condomines, Estimating wind using a quadrotor, Interna-
tional Journal of Micro Air Vehicles 14, 17568293211070824 (2022), publisher: SAGE Publications
Ltd STM.



BIBLIOGRAPHY 45

[31] R. T. Palomaki, N. T. Rose, M. v. d. Bossche, T. J. Sherman, and S. F. J. D. Wekker, Wind Esti-
mation in the Lower Atmosphere Using Multirotor Aircraft, Journal of Atmospheric and Oceanic
Technology 34, 1183 (2017), publisher: American Meteorological Society Section: Journal of At-
mospheric and Oceanic Technology.

[32] T. Luukkonen, Modelling and control of quadcopter, , 26.

[33] L. Sikkel, G. Croon, C. De Wagter, and Q. Chu, A novel online model-based wind estimation
approach for quadrotor micro air vehicles using low cost MEMS IMUs, (2016) pp. 2141–2146.

[34] ArduPilot, Wind Estimation in multicopters with Dr Paul Riseborough, (2021).

[35] M. Simma, H. Mjøen, and T. Boström, Measuring Wind Speed Using the Internal Stabilization
System of a Quadrotor Drone, Drones 4, 23 (2020).

[36] P. P. Neumann, S. Asadi, A. J. Lilienthal, M. Bartholmai, and J. H. Schiller, Autonomous Gas-
Sensitive Microdrone: Wind Vector Estimation and Gas Distribution Mapping, IEEE Robotics Au-
tomation Magazine 19, 50 (2012), conference Name: IEEE Robotics Automation Magazine.

[37] P. Abichandani, D. Lobo, G. Ford, D. Bucci, and M. Kam, Wind Measurement and Simulation
Techniques in Multi-Rotor Small Unmanned Aerial Vehicles, IEEE Access 8, 54910 (2020), confer-
ence Name: IEEE Access.

[38] X. Xiang, Z. Wang, Z. Mo, G. Chen, K. Pham, and E. Blasch, Paper: Wind field estimation through
autonomous quadcopter avionics, in 2016 IEEE/AIAA 35th Digital Avionics Systems Conference
(DASC) (2016) pp. 1–6, iSSN: 2155-7209.

[39] J. González-Rocha, C. A. Woolsey, C. Sultan, and S. F. J. De Wekker, Sensing Wind from Quadro-
tor Motion, Journal of Guidance, Control, and Dynamics 42, 836 (2019), publisher: American
Institute of Aeronautics and Astronautics _eprint: https://doi.org/10.2514/1.G003542.

[40] H. Bouadi and M. Tadjine, Nonlinear observer design and sliding mode control of four rotor heli-
copter, Int Journal of Eng. and Applied Science 3 (2007).

[41] N. Y. Ko, I. Choi, G. Song, and W. Youn, Three-Dimensional Dynamic-Model-Aided Navigation of
Multirotor Unmanned Aerial Vehicles, IEEE Access PP, 1 (2019).

[42] J. Sun, H. A. Blom, J. Ellerbroek, and J. M. Hoekstra, Particle filter for aircraft mass estimation and
uncertainty modeling, Transportation Research Part C: Emerging Technologies 105, 145 (2019).

[43] A. Teimourian and D. Firouzbakht, A PRACTICAL METHOD FOR DETERMINATION OF THE MO-
MENTS OF INERTIA OF UNMANNED AERIAL VEHICLES, (2013).

[44] A. Mendes, E. van Kampen, B. Remes, and Q. P. Chu, Determining moments of inertia of small
UAVs: A comparative analysis of an experimental method versus theoretical approaches, in AIAA
Guidance, Navigation, and Control Conference (American Institute of Aeronautics and Astro-
nautics, Minneapolis, Minnesota, 2012).

[45] J. D. Anderson, Fundamentals of aerodynamics (McGraw-Hill, 2011).

[46] R. Felismina, M. Silva, A. Mateus, and C. Malça, Study on the aerodynamic behavior of a UAV
with an applied seeder for agricultural practices, (Rome, Italy, 2017) p. 020049.

[47] Understanding the physics of drones - Building drones around Beagle Bone Blue, (2021).



BIBLIOGRAPHY 46

[48] M. Claybrough and F. Defaÿ, Stabilization of an unmanned aerial vehicle using real-time embed-
ded motion estimation, (2012) pp. 2189–2194.

[49] H. W. Ho, G. C. de Croon, and Q. Chu, Distance and velocity estimation using optical flow from
a monocular camera, International Journal of Micro Air Vehicles 9, 198 (2017), publisher: SAGE
Publications Ltd STM.

[50] Q. T. Phan, Applied Sciences | Free Full-Text | A Hybrid Wind Power Forecasting Model with XG-
Boost, Data Preprocessing Considering Different NWPs | HTML, .

[51] Crazyfly, PWM to Thrust | Bitcraze, .

[52] BlueSky - The Open Air Traffic Simulator, (2022), original-date: 2015-04-01T17:13:37Z.


	I List of Symbols and Abbreviations
	I Scientific Paper
	Abstract
	Nomenclature
	Introduction
	Methodology
	Experiment Design & Results
	Discussion & Recommendations
	Conclusion
	Acknowledgements
	References

	II Preliminary Report
	Introduction
	Research Methodologies
	Research Questions
	Research Objectives
	Design Principles
	Literature Review
	Wind as a challenge for drones
	METSIS Project
	Research gap
	Direct, hybrid and indirect method
	Filtering methods
	Parameter estimation methods
	Alternative methods
	Overview of papers in table
	Preliminary Results
	Kinematic analysis
	Parameter estimation
	Testing frameworks
	Experiment & Flight Test Design
	Flight plan
	Data flow and handling
	Project Management & Work Packages
	Work packages
	Milestones & Meetings
	Logbook
	Focus per week

	Conclusion
	Appendix A
	Appendix B

	Bibliography






















