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Summary

Western civilization is becoming dependent on electrical energy more than ever. This
dependence sets high standards regarding reliability and security of supply. In order to meet
the level of these standards, network operators consider grid planning and maintenance more
frequently part of their core activities.

The present electricity network consists mainly of equipment put into service forty to fifty
years ago. Similar figures appear from experience of network operators for the life expectancy
of this equipment. Therefore, a large part of the electrical power equipment present in the
current electricity network is approaching its life expectancy.

This causes the need for replacement of a large part of the electrical power equipment in the
near future. The large amount of replacements is often referred to as the replacement wave.
This increase in aged power equipment poses a potential threat to the security and reliability
of supply and drives network operators to take adequate action.

During the past decade, new tools have become available that provide insight in the status of
power equipment. These tools allow network operators to perform condition based maintenance,
while taking safety and environmental issues into account.

The DNV GL Health Index (DNV GL HI) is one of these tools. The accuracy of this health
index (HI) should be improved to maintain the value to its customers. In this thesis, the
accuracy of the HI predictions is referred to as the HI prediction quality. This HI prediction
quality shows the difference between the predicted and observed asset health. Furthermore, this
HI prediction quality should meet a required level. Using this required prediction quality level,
validation of the HI can be performed by comparing the HI prediction quality to the required
level.

This thesis introduces systematic methods for HI prediction quality quantification and validation
and shows the application of these methods to practical cases.

Chapter 2 reviews the previous work in the field of health indexing. It starts by describing the
current state of art by comparing four of the present health indexing methodologies, including
the methodology operated by DNV GL, according to five characteristics. For the characteristic
covering the HI foundation supporting methods, limited literature was found on HI prediction
quality quantification and validation. Furthermore, no practical case studies were found used for
HI prediction quality quantification and wvalidation of a complete HI, which indicated the need
for research in this area using practical case studies. To conclude, this chapter has revealed
that for such case studies, a comparison between two datasets is necessary and that life data
analysis can be used for this comparison in such case studies.



Chapter 3 presents the research approach. This chapter starts explaining three datasets,
predictions, observations and dummy data. Next, five methods for HI prediction quality
quantification and walidation are discussed. To conclude, the life data analysis is adopted
for use in the analysis.

Chapter 4 explains the statistical methods and background used in this thesis. This chapter
shows three types of probability functions. These functions are used to describe failure behaviour
of assets using statistical distributions. Life data analysis is explained in this chapter in more
detail. It is shown that for failure distribution fitting and parameter estimation, a parametric
method using maximum likelihood estimation is most suitable to fit a failure distribution to
the life data of the assets discussed in this thesis. To conclude, out of four methods to find the
quality of the distribution’s fit, the method using visual inspection was chosen.

Chapter 5 shows an overview of the collected and selected utility data. Furthermore, this
chapter shows the preparation of this data for prediction quality quantification and validation
of the DNV GL HI for instrument transformers and distribution cables.

Chapter 6 shows the results of the case study on prediction quality quantification and validation
of the DNV GL instrument transformer Health Index. This case study using one HI prediction
quality quantification method does not reject the hypothesis that it is possible to quantify HI
prediction quality using utility data. No firm conclusion can be drawn regarding the finding of
this case study on the DNV GL instrument transformer HI that the predictions were found to
be too pessimistic and therefore wvalid.

Chapter 7 shows the results of the case study on prediction quality quantification and validation
of the DNV GL distribution cable Health Index. This case study using one HI prediction
quality quantification method does also not reject the hypothesis that it is possible to quantify
HI prediction quality using utility data. No firm conclusion can be drawn regarding the finding
of this case study on the DNV GL distribution cable HI that the predictions were found to
be too optimistic and therefore non-valid. Furthermore, this practical case study reveals that
for HI prediction quality quantification of cable circuits, besides a required data quality, the
influence of the definition of a failure and changing reliability by changes in network topology
should be incorporated.

Chapter 8 presents the conclusions and recommendations of this thesis.
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Chapter 1

Introduction

Western civilization is becoming dependent on electrical energy more than ever. This
dependence sets high standards regarding reliability and security of supply. In order to meet the
level of these standards, electrical network operators consider grid planning and maintenance
more frequently part of their core activities.

The present electricity network consists mainly of equipment put into service forty to fifty
years ago. Similar figures appear from experience of network operators for the life expectancy of
this equipment. Therefore, a large part of the electrical power equipment present in the current
electricity network is approaching its life expectancy.

This causes the need for replacement of a large part of the electrical power equipment in the
near future. The large number of replacements is often referred to as the replacement wave.

A graphical example of the replacement wave is given by the chart in figure 1.1. This chart
presents the number of installations and replacements of power equipment on a yearly basis.
This chart confirms the increasing amount of aged power equipment.

Re |J|HDEI'I"IEM wave
(example: average lile 45 +- 5 years)

| @ Instalation OReplacement |

g

=]
L=]

r
=

Humber of companenis
&

&

204

Figure 1.1: General representation of the replacement wave for electrical power
equipment [1]
This figure introduces the replacement wave by means of a general representation. The
number of yearly installations and replacements are represented by the green and red bars,
respectively.
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This increase in aged power equipment poses a potential threat to the security and reliability
of supply and drives network operators to take adequate action.

Developments in software and computing power during the past decade have led to significant
improvements in probability calculations using computer simulations. This caused new tools
to become available that provide insight in the status of power equipment. These tools
allow network operators to perform condition based maintenance, while taking safety and
environmental issues into account. In the long run, this should lead to an increase in security
and reliability of supply, better management of risks and reduction of costs.

The DNV GL Health Index (DNV GL HI) is one of these tools. The accuracy of this health
index (HI) should be improved to maintain DNV GL’s current position in the market of health
indexing tools. In this thesis, the accuracy of the HI predictions is referred to as the HI
prediction quality. This HI prediction quality shows the difference between the predicted and
observed asset health. Furthermore, this HI prediction quality should meet a required level
of prediction quality. Using this required prediction quality level, validation of the HI can be
performed by comparing the HI prediction quality to the required level.

Section 1.1 gives an introduction to asset management for electrical power equipment. Next,
section 1.2 gives the research description, followed by a general description of assessment
functions in section 1.3. Thereafter, the research problem is presented in section 1.4, followed
by the research objectives in section 1.5 and the research approach in section 1.6. Section 1.7
shows the scientific challenges, section 1.8 defines the scope of the research and finally in section
1.9, an outline of the thesis is given.

1.1 Asset management for electrical power equipment

The term asset management is used in multiple fields of study. This chapter explains asset
management in the context of electrical power equipment.

In general, assets are defined as any items that have a distinct value to the organization.
Electrical power equipment belongs to the physical assets owned by a network operator.

The British Standards Institution (BSI) defines asset management in its Publicly Available
Standard (PAS55) [2] as follows:

”Systematic and coordinated activities and practices through which an organiza-
tion optimally and sustainably manages its assets and asset systems, their associated
performance, risks and expenditures over their life cycles for the purpose of achieving
its organizational strategic plan”

where an organizational strategic plan is defined as [2]:

”Overall long-term plan for the organization that is derived from, and embodies,
its vision, mission, values, business policies, stakeholder requirements, objectives
and the management of its risks”

Figure 1.2 shows the concept of asset management for electrical power equipment. Asset
managers of network operators perform the steps shown in this figure continuously according
to the organizational plan. Table 1.1 explains the actions taken for each step in the figure.



1.2. ASSESSMENT FUNCTIONS

Asset management

1. Acquire data 2. Organize data

Static o Units
. e Databases
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Criticality

3. Interpret data
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Renew
Dispose

Figure 1.2: Asset management for electrical power equipment (step 4 and 5 based on [2])
This figure shows the concept of asset management for electrical power equipment. The
arrows indicate the direction of the process. The actions for each step are explained in

table 1.1.

1.2 Assessment functions

Assessment functions interpret the organized data. Part of this research is to develop a strategy
for validation of these functions. Therefore, a general description of these functions is given in
this section. They are described in more detail in chapter 2.

The organized data may consist of continuous or discrete values. The results of the
assessment functions represent the technical condition of a part of the asset by the time to
required action. Time to required action can either be the remaining lifetime (which is the time
to replacement) or the time to additional maintenance, following from the calculations performed
by the assessment functions. These calculations are based on international standards (IEC),
literature (IEC, IEEE, Cigré) and expert knowledge.

1.3 Research description

The tool in focus during this research is the DNV GL HI. This tool is used by asset managers
of utilities to gain insight in the health of their electrical power equipment. The tool aims
to provide decision-support for medium to long term asset management planning. Currently,
the tool is based on Microsoft Excel accompanied with the @QRISK plugin for Monte Carlo
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Table 1.1: Explanation of the steps in asset management for electrical power equipment
This table explains the actions for each step in figure 1.2.

Step

Explanation

1. Acquire data

2. Organize data

3. Interpret data

4. Determine actions

5. Perform actions

This step includes the acquirement of all sorts of data per asset.
Static data is data about the asset which does not change over time
(e.g. nameplate data). Condition data is data from sensors in/around
equipment and data from visual inspections. Utilization data contains
information on regarding asset loading and asset loading patterns.
Criticality data contains information per asset on the neighborhood in
which the asset is situated and the importance of the asset in the electrical
network.

In this step, the data is put into a consistent format (i.e.: the units and
database types are uniform and missing values are calculated).

This step uses ageing, condition and statistical models to estimate the
technical condition (health) of the assets using the organized data of step
2. A major part of this step is performed in the DNV GL HI by algorithms
called assessment functions. A general explanation of these algorithms is
given in section 1.2.

During this step, the asset health is translated into actions aligned to the
organizational plan of the network operator. In addition to its HI, DNV
GL offers a separate risk module that provides decision-support for this
step.

The final step performs the necessary actions resulting from step 4.

simulations. Chapter 2 explains the DNV GL HI in more detail.

Figure 1.3 shows the part of asset management covered by the DNV GL HI.

This research focuses on the part of the DNV GL HI responsible for the interpretation of the
organized data. In the DNV GL HI, this part is largely covered by assessment functions.

1.4 Research problem

The algorithms of the DNV GL HI are currently based on both expert knowledge and existing
standards. At this moment, the methods applied to validate its algorithms are limited.
The validation methods currently applied to the assessment functions are:

e Perform a check to ensure the input-output relationship of each assessment function is in
line with its model(s) by using test data.

e Perform an overall check per asset type of the HI by looking at health assessments
according to the client’s data.



1.5. RESEARCH OBJECTIVES

Asset management
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Figure 1.3: Part of asset management covered by the DNV GL HI

These validation methods ensure the accurate functioning of the assessment functions according
to their respective models. However, they do not validate the models behind the assessment
functions themselves. DNV GL aims for a more accurate and improved foundation for its HI.
This leads to the main question addressed in this thesis:

How can the scientific foundation of the DNV GL HI be extended?

This question can be divided into three sub questions:
e In which way can HI prediction quality of the DNV GL HI be quantified?

e In which way can HI prediction quality quantification of the DNV GL HI be used to
validate the DNV GL HI?

e Using additional data, which statements can be made on HI prediction quality and
validation of the DNV GL HI?

1.5 Research objectives

The main objective of this research is to extend the scientific foundation of the DNV GL HI.
This is performed by proposing methods for validation of its algorithms. The applied validation
methods are described in more detail in section 1.6.
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The research objectives are:

e Finding the current state of art in health indices and their HI prediction quality
quantification and validation methods by means of a literature research

e Proposing and selecting methods to perform HI prediction quality quantification of the
DNV GL HI

e Performing walidation of the DNV GL HI using the HI prediction quality quantification
methods

e Collecting and selecting data necessary for use in performing the HI prediction quality
quantification methods and validation method

e Applying the selected HI prediction quality quantification methods and validation method
using collected data to quantify the HI prediction quality and to show walidation of the
DNV GL HI

1.6 Research methodology

The research is divided into two main parts. These parts, a theoretical part and an analysis
part, are described in this section.

The theoretical part explains the basics of asset management and provides an overview of
the current state of art in health indexing and their HI prediction quality quantification and
validation methods present by means of a literature research.

In the analysis part, methods are proposed to perform HI prediction quality quantification
and validation of the DNV GL HI. Furthermore, data is collected and prepared for performing
the methods for HI prediction quality quantification and wvalidation. Finally, the developed
methods for HI prediction quality quantification and validation are applied to the collected data
to demonstrate HI prediction quality quantification and wvalidation of the DNV GL HI.

1.7 Scientific challenges

In [3], the results of a study on optimizing the maintenance planning by looking at the condition
indexing process are presented. In this study, a large part of asset management for electrical
power equipment is covered.

As recommended by [3], more research should be done regarding the relationship between
occurring failures and condition indicators. This is performed in this thesis by proposing
methods for HI prediction quality quantification and validation. This section shows the scientific
challenges in this thesis by presenting relevant questions.

Questions concerning the validation of the DNV GL HI are:

e Which requirements are present regarding the data necessary for use in performing the
methods for HI prediction quality quantification and validation?

e Some assets have undergone maintenance which is either recorded or not recorded. How
can historical maintenance data (or lack thereof) be included to improve the outcome of
the validation result?
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1.8 Scope of research

This research focuses on developing a strategy for HI prediction quality quantification and
validation of the DNV GL HI. As it is required to finish the project within nine months, the
scope of the research is limited.

The scope of research is summarized by the following points:

e Asindicated in figure 1.4, this research focuses on HI prediction quality quantification and
validation of the DNV GL HI. The research is limited to the DNV GL HIs that cover the

following asset types:

— HV Instrument Transformers

— 10kV distribution cables
e Excluded from the research:

— All other asset types
— All other types of functions present in the DNV GL HI

— The development of new assessment functions

Asset management

1. Acquire data 2. Organize data

Static o Units
o e Databases
Condition
-
— Utilization
Criticality

3. Interpret data

o Statistical models
o (Accelerated) aging models
e Condition models
e Health estimation

5. Perform actions 4. Determine actions

Acquire ¢ Asset Management policy
- o Asset Management strategy
Utilize ¢ Asset Management objectives
— e Asset Management plans
Maintain
Renew
Dispose

Figure 1.4: Part of asset management in focus during this MSc. research



CHAPTER 1. INTRODUCTION

1.9 Thesis outline

This thesis report consists of eight chapters.

Chapter 2 reviews the previous work in the field of health indexing. It starts by describing
the current state of art by comparing present health indexing methodologies including the
methodology operated by DNV GL. Then, it continues showing the present methods used to
validate (parts of) health indices.

Chapter 3 presents the adopted methodology during the research. This chapter is started
by describing the methodology adopted to validate (parts of) the health index.

Chapter 4 explains the statistical methods and background used in this thesis.

Chapter 5 gives an explanation of the data and software used for HI prediction quality
quantification and validation of the DNV GL HI.

Chapter 6 shows the results of a case study which uses additional data for applying the HI
prediction quality quantification and wvalidation methods to data from a population of high
voltage instrument transformers.

Chapter 7 shows the results of a case study which uses additional data for applying the HI
prediction quality quantification and wvalidation methods to data from a population of 10kV

distribution cables.

Chapter 8 presents the conclusions and recommendations of this thesis.



Chapter 2

Literature research

The focus in this thesis will be on prediction quality quantification and validation of the technical
aspects of a health index (HI). This technical focus is taken into account during the analysis
of the existing HIs. HIs can be grouped according to their characteristics. These groups are
referred to as health index schools of thought. For ease of reading, this text indicates them by
HI SoTs.

This literature research will show an overview of presently known and used HI SoTs. Using
this overview, the strengths and weaknesses of the DNV GL HI relative to these other HI
SoTs are determined. Furthermore, it aims to find existing methods in HI prediction quality
quantification and validation.

To achieve this, we start by describing different HI SoTs found in literature. Section 2.1
describes these SoTs by characteristics of their Hls and section 2.2 compares the HI SoTs by
their characteristics. The sources used in this chapter are the libraries of IEEE, Cigré and
repositories of various universities (e.g. Delft University of Technology).

Figure 2.1 shows the relation between the expressions and characteristics described in this
chapter. The HI SoTs are at the top of the hierarchy. Underneath the HI SoTs, one or multiple
HIs are found. Each HI is described according to five HI characteristics.

Health Index
School of Thought

m——

HI SOT 2

Health index Health index Asset data
characteristics requirements types
HI output Assessment

Health index foundation

1

1

1

1

. . I
representations functions 1
1

1

supporting methods :

Figure 2.1: Hierarchical overview of the terminology used in this chapter
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2.1 Existing HI SoTs

In literature, a wide variety of expressions is found for terminology within HI SoTs. For the
ease of reading and prevention of misinterpretation, this chapter aims for uniformity in the
terminology used for the concepts within HI SoTs. Table 2.1 explains these expressions as used
in this chapter.

Table 2.1: Main HI expressions
This table contains the main HI expressions used in this chapter.

Expression Explanation

Asset data Any type of data available about an asset

Asset health Technical condition of an asset

Assessment function Any mathematical expression or formula within a HI that

translates asset data into technical asset health

Asset management decision Software containing a HI, to aid asset managers in taking
support software asset management decisions
Condition parameters Any type of measured asset data that is linked to asset health

Failure mode effects analysis A step-by-step approach for identifying all possible causes of
(FMEA) asset failure.

Health index (HI) The method used to translate asset data into asset health

Health index Group of one or multiple HIs with a similar approach, usually
school of thought (HI SoT) operated by institutions or companies

HI score Score resulting from a health index that indicates asset health

For each HI SoT, a description following from the literature research is given in the order
indicated by table 2.2. Following this table, each section starts with characteristic #1, describing
the requirements of a HI. Then, each section describes the HIs found by characteristics #2
through #4. To conclude, each section describes the methods found to support the foundation
of their HIs by characteristic #5.

HIs are subject to continuous improvements. Therefore, there are several versions of most
of the HIs. In most cases, the recent versions of these health indices lack published scientific
literature and publicly available documentation of their institutions. Therefore, this chapter
will not compare the most recent HI versions.

This chapter does not cover all HI SoTs. Table 2.3 gives an overview of the HI SoTs
discovered during the literature research, including the number of publications associated with
each HI SoT. As shown in this table, the majority of the literature found describes HI SoTs
regarding electrical power equipment. The literature on integrated vehicle health management
showed that for assets different from electrical power equipment, similar characteristics are
considered.

10
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Table 2.2: Overview of the HI characteristics described for each HI SoT

# Characteristic Description

1 HI requirements Main requirements a HI needs to comply with.

2 Asset data types Description of the asset data used by the HI SoT.

3 HI output representations Representations for a single asset or a group of assets by the

HI SoT using at least health index score(s).

4  Assessment functions The mathematical expressions and formulas used to
translate condition data into a health representation.

5  HI foundation supporting Methods of HI SoT's to support the foundation of their Hls.
methods

Table 2.3: Publications on HI SoTs discovered during this research

# HI SoT Type of assets in literature =~ Number of associated publications
DNV GL Energy Electrical power equipment 15

2 EA Technology Electrical power equipment 11

3 Kinectrics Electrical power equipment 11

4 TU Delft Electrical power equipment 31
Meridium Electrical power equipment 6

6 IBM Electrical power equipment 6

7 EDF Electrical power equipment 6

Integrated vehicle

~ 1 .
health management Cars, aeroplanes 3

As can be seen in table 2.3, significant differences exist in the number of publications found
for each HI SoT. Moreover, the level of detail in describing the health indexing methods was
found to vary significantly among the HI SoTs. The HI SoTs #b5 through #8 lack a description
of more than half of the characteristics discussed in this section. This chapter aims to make a
comparison between the HI SoTs. In order to achieve a fair and thorough comparison, the HI
SoTs #5 through #8 were disregarded.

The literature on these HI SoTs develops over time. To gain insight in developments of and
dependencies between the researched HI SoTs over time, figure 2.2 shows an overview of the
literature described in this chapter. In this figure, each arrow represents a reference between
publications. For example: [4] refers to [5], [6] and [7].

This figure shows that in most cases, publications refer to its corresponding HI SoT. The
arrows between the HI SoTs reveal interesting relationships. For example, two of the references
in the Kinectrics HI SoT point to literature in the EA Technology HI SoT. These arrows indicate
a relation between their HIs, which their description in literature indicates for this example.

In general, however, these links should be derived with caution. The goal of references

11
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pointing to previous literature might differ from further development of existing HIs. For
example, a goal can be to criticize an existing method. In this case, not necessarily a dependency
exists with the HI the reference points to. Sections 2.1.1 to 2.1.4 provide an overview of existing

2000 2005 2010
1997 19981999 200120022003 2004 2006 2007 2008 2009 2011 201220132014
|
DNV GL Energy (5D
EA Technology B %@)/ %6
! 28))
] i? [4]
[7]
Kinectrics (ER) G3 | GO (ED)
G3)
40))
TU Delft CDer— i1 45 . —®D
46
b e |
5
\
51 52
(j)\ 53 54 5@§§
56 57 — G
; e —
60
61 62 /%
( 651)4; 64 ] 63)
66
66
\ \ \ \
1997 19981999 200120022003 2004 2006 2007 2008 2009 2011 201220132014
2000 2005 2010

Figure 2.2: Overview of the literature in regarding HI SoT's
The references from the Kinectrics HI SoT to the EA Technology SoT
indicate a relation between their HlIs.

HI SoTs by a comparison of the HI characteristics discussed above.
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2.1.1 DNV GL Energy HI SoT

In the beginning of this century, the Dutch energy market was liberalized [23]. This increased
the competition between utilities. Furthermore, an upcoming replacement wave was expected
due to an ageing asset base [8] (see chapter 1).

These two drivers forced Dutch utilities to take a closer look at the costs of their asset
management activities. These activities shifted from optimizing for network performance
avoiding risks towards taking controlled risks [12].

This shift in activities was accelerated by the trend of gradually shifting from corrective and
time-based maintenance to condition-based maintenance (CBM) [19]. This shift led to the
introduction of diagnostics in the asset management decision process. This, in turn, created the
need for software tools to implement these rapid changes in maintenance processes.

DNV GL Energy has created several software tools for this purpose, two of which are
MainMan [8] and the DNV GL HI [11].

13
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Characteristic 1: HI requirements

For this characteristic, we describe the requirements found in literature for the DNV GL Energy
HI SoT. The requirements are divided into categories. Below, the requirements regarding the
characteristics of table 2.2 are presented.

Asset data types
e A HI should be able to cope with uncertainty in the input [11].

e HIs should incorporate the results of suitable diagnostic- and condition assessment tools
to enable condition based maintenance (CBM) [19].

HI output representations

e HIs should provide a reliable forecast of future behaviour [10].

Assessment functions

e Assessment functions should be subjected to techniques that reduce the uncertainty of
their predictions, two of which are [13]:
— Coupling the assessment functions to externally measureable quantities.
— Performing a sensitivity analysis on the assessment functions. The result of this

analysis shows which (extra) input data most efficiently improves overall accuracy.

e From HIs for power transformers, it can be concluded that an uncertainty analysis should
be performed when modelling ageing processes [21].

e Implementing CBM in a HI requires:
— Good knowledge of failure and deterioration mechanisms including their criticalities.
This is also known as Failure Modes Effects and Criticality Analysis (FMECA) [19, 9].
— Presence of suitable indicators for the status of failure and degradation [19, 9].
— Incorporation of reliable assessment tools to translate measurements into technical

component health [19, 9].

e During incorporation of failure data analysis in an assessment function, the distinction
should be made between equipment-parts and failure causes [9].

Besides the requirements regarding the characteristics, this HI SoT also describes requirements
of additional characteristics. These requirements are listed in section A.1.1.

Characteristic 2: Asset data types

This characteristic shows the asset categories and number of asset data types found in literature
for the DNV GL Energy HI SoT. The number of asset data types are presented in table 2.4. The
table is divided into main categories by the first column. The second column shows shows the
number of asset data types. The final column presents the reference to literature that indicated
this asset data type. An extended version of this table is presented in section A.1.2.

14
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Table 2.4: Number of asset data types as found in literature for the
DNV GL Energy HI SoT

Category Number of asset data types Reference
Transformer 18 [18, 20, 9, 19]
Switchgear 19 9, 19, 8, 67]
Power cables 7 [19, 16]
Generators 10 [19]

This table shows that, when compared to the other HI SoTs, the literature of the DNV GL
Energy HI SoT describes a considerable number of asset data types.
Table 2.5 shows the result of classifying detection methods of asset data present within the DNV
GL HI SoT for five different subjects. The first two columns in this table show the subject and
for each subject, two classifications. The final column shows the number of detection methods
belonging to each of the classifications.

Firstly, the assumptions taken for deriving the values of this table are explained.

For costs, a qualitative estimation of the costs of acquiring the asset data for all assets of
a utility was performed. To enable this estimation, it was assumed that when the asset data
should be acquired, it should be acquired for all assets of the utility.

A note regarding this assumption is necessary. Among the HI SoTs, different strategies exist
in acquiring asset data. For example, in the DNV GL HI SoT, it is generally not required
to acquire all asset data types for all assets of a utility. Furthermore, as most utilities use
condition based maintenance, this data is readily available which significantly reduces the costs
as the data should only be transferred into the format of the DNV GL HI. This comparison was
performed using only the author’s knowledge on the qualitative costs of (detection) methods.

For determining whether application of the (detection) methods requires the asset to be taken
out of service, only the author’s knowledge was used.

The maturity of the (detection) methods, the ability of (detection) methods to detect ageing
and the accuracy of (detection) methods were determined qualitatively using the author’s
knowledge.

15
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Table 2.5: Classification of the detection methods of the DNV GL Energy HI
SoT for five subjects
The classification of detection methods was done qualitatively using the author’s
knowledge. This table summarizes the table in section A.1.3. This table contains a
classification for the individual detection methods.

Number of detection

Subject Subject classification methods for subject
classification
Closts Low (often already available) 5
High 52
N 36
Out of service required ©
Yes 21
Mat 35
Maturity e
Development phase 22
L t i 15
Ageing detection Oong TOTH aseIns
Short term ageing 42
Good 49
Accuracy
Bad 8

From table 2.5, the following conclusions can be drawn for the DNV GL HI SoT:

e The majority of the asset data mentioned in the DNV GL HI SoT is expensive to acquire
for utilities for all assets if this data is not yet available for any of the assets.

e For acquiring most asset data, it is not required to take the equipment out of service.

Most asset data types originate from mature (detection) methods.

Most asset data types only cover short term ageing.

Most (detection) methods achieve a good accuracy for the majority of the asset data.

Characteristic 3: HI output representations

This characteristic covers the HI output representations of the DNV GL Energy HI. This HI
consists of predefined HI output representations and can include a limited number of additional
representations on request by the cooperating utility [11].

This causes some different HI output representations to exist. Therefore, we start showing a
common representation for a single asset and conclude with representations for multiple assets.

16
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For a single asset, a colour scheme based on required action (additional maintenance/replacement)
is used. The resulting colour depends on the component remaining lifetime (RL) or time to
additional maintenance. These time frames are compared to two points in time:

1. The moment after the reference period.
2. The critical time.

The reference period is a period defined by the utility, typically 10 to 15 years. The critical
time is defined by the time required for regular replacements, typically 3 to 5 years.

These time frames are used to define the HI scores, as indicated in figure 2.1.4 by the colours
green, orange, red and purple [11]. These index scores indicate the required action, as explained
in table 2.6.

Additional maintenance within reference period OK within

reference
Failure within reference period period

Failure within critical
time

L J

0yrs critical time reference period
Time-lo-replacement Regulatory
(no emergency) framework

Figure 2.3: HI classification scheme [11]
This classification scheme defines the HI scores that indicate the
required action. The required action is explained in table 2.6.

Table 2.6: Explanation of the colours assigned to a single asset
(based on [11])
This table indicates and explains the required action for each colour of
figure 2.3.

Colour Required action Explanation

Operation can be continued without any additional
effort next to the standard scheduled maintenance
within the reference period.

No action required
(good condition)

Operation can be continued provided that additional
Additional maintenance maintenance or revision is carried out in addition
required to the standard scheduled maintenance within the
reference period.

The end of life, or a significant failure probability,
Replacement within is expected within the reference period, additional
reference period maintenance is not sufficient to extend the life beyond
the reference period.

The condition of the equipment is critical and requires

I i 1
mmediate replacement immediate action.
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The input parameters come with a given degree of uncertainty. When input parameters are
missing, default values with higher degree of uncertainty are used. The DNV GL HI accounts
for this uncertainty in the output by performing a sensitivity analysis using Monte Carlo
simulations. The results from these simulations are used in defining the degree of uncertainty.
This is graphically presented by the colour’s intensity, as given in figure 2.4. Intensity increases
with reliability of the result indicated in table 2.6 [11].

intensity

>
colour

Figure 2.4: Colour codes and intensity [11]
This figure shows the four colours together with four intensities,
indicating four levels of uncertainty.

A limited number of other results for multiple assets is possible on request by utilities.
This includes HI output representations per asset type, region, voltage level or point-to-point
connection. This is illustrated in figure 2.5.

Presentation cross sections

[+
(=l =
g
alt
g3
.
Eat Per cross
section:
component l + distribution
group « worst case
+ alerts
& TE

Figure 2.5: HI output representations for multiple assets based on
various cross sections [11]

Figure 2.6 shows the HI scores for multiple assets based on the predicted required action
(colour) and uncertainty (intensity). The highest bar in red colour and the highest intensity
indicates that a large number of assets in this population require replacement within the
reference period. Furthermore, the intensity of this bar indicates the high certainty of this
result.
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sjosse JO JqWINN

Figure 2.6: A 3D HI output representation for multiple assets
including uncertainty of the results (based on [11])

The 3D chart in this figure uses predicted required action (colour) and
uncertainty (intensity) to classify the assets. The highest bar indicates
that a large number of assets in this population requires replacement

within the reference period.

Furthermore, figure 2.7 shows a graphical representation of predicted replacement waves
considering load growth, as presented in the HI of [11]. The installed number of transformers per
year is indicated by the solid bars. For annual load growths of 1.5, 2 and 2.5%, a replacement
wave is predicted. The solid line, indicating a predicted replacement wave for an annual load
growth of 2.5%, shows a higher peak value for replacements than the dotted line, that indicates
a load growth of 1.5%. Furthermore, for the solid line, the windows between the first and final
replacements is smaller than for the dotted line.

Therefore, an increase in load not only causes the replacement wave to start earlier, it also
decreases the time window during which the assets have to be replaced. This causes a higher
peak in the replacement rate.

Characteristic 4: Assessment functions

This characteristic covers the part in literature on assessment functions which translate asset
data into asset health. It starts with discussing the ideas behind the translations and concludes

by indicating in which shapes or forms the assessment functions appear and indicates their
internal relationships.

Three types of assessment functions are present in the DNV GL HI, as shown in figure 2.8
[11]:

e Statistical remaining life function
e Degradation remaining life function
e Condition remaining life function

The asset data on the left-hand side of figure 2.8 is translated into different remaining lifetimes
(RLs) using these assessment functions. Thereafter, these RLs are weighed to find the HI score.
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Figure 2.7: Predicted replacement waves example with annual load
growths of 1.5%, 2% and 2.5% [10]
For an increase in load, the replacement wave starts earlier and shows
a higher peak in the replacement rate.

l Health index assessment for a single component

Statistical RL,
data Statistical
Utilisation Degradation functio RL, heaith
data Utilisation index
Condition RL, >
data Condition g
Value, number E
Classification (G, F, P) colour
Observation 1 ..
Expert opinion Colour

Figure 2.8: HI concept using three types of assessment functions [11]
The part on the left-hand side of this figure indicates the asset data
types. Towards the right-hand side, the assessment functions, the

remaining lifetimes they predict, their weighing and the HI score are
shown.

The statistical function calculates a failure distribution. It arrives at this distribution by curve
fitting on failure data or expert knowledge. If failure data is insufficient, FMEA analyses are
used to estimate the distribution [11]. This failure distribution is combined with the present
age of single component to calculate the components new distribution; this is shown in figure

20



2.1. EXISTING HI SOTS

2.9 and 2.10. The expected RL is calculated for each asset using [11]:

X

RL=1"Fw

—t (2.1)

In equation 2.1, ¢ represents the current age of the asset. The value of z is calculated using [11]:

o0

=Y f(n)*n (2.2)

Failure distribution
Population (40 yrs, 20%)

0,06 |
—new |
0,05 +— L
= average remaining life|
0.04

probability

- AR
/ \
7 N

0 10 20 30 40 50 60
Age [years]

0,00

Figure 2.9: Example of a failure distribution (red) for an asset group
(average lifetime: 40 years) with the average expected age of failure
(the dotted blue line) [11]

Degradation remaining life functions predict the RL based on the utilization of the asset. These
functions compare utilisation data to the design parameters of the asset. Examples of utilisation
data mentioned in [11] are loading history for power transformers and number of operations for
switchgear.

Condition remaining life functions determine the asset condition by using condition data.
The asset condition can have three values: good, poor and bad [11]. Depending on the condition,
the statistical RL is adjusted according to the scheme in figure 2.11.

In this HI, two techniques are used to manage missing data [11], deduction and statistical
inference.

Construction of asset data by deduction is used when only a part of the required information is
available. Construction of asset data by statistical inference is used when for a specific subset
of the asset population, all required information is available. In this case, when taking a subset
representative for the whole population, the missing information may be estimated by statistical
inference.

Characteristic 5: HI foundation supporting methods

This characteristic covers the methods found in literature to support the HI foundation. In [18]
and [68], a method is proposed for the validation of a degradation model. This model translates
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Failure distribution
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——age 38 yrs
= average remaining life
008 +— — new ™\
}I\
£ 0,06
z Iy
-]
: A1
& 0,04
0,02 I \
0,00 I
0 10 20 30 40 50 80

Age [years]

Figure 2.10: Example of an updated failure distribution (the red
curve) for an asset of 38 years with the average expected age of failure
(the dotted blue line) [11]

The statistical function uses the current asset age to update the
failure distribution.

historical ambient temperature and transformer load into a degree of polymerization (DP). The
DP value is a measure for the degradation of insulation paper in power transformers.

The validation is done by comparing a simulated DP values to DP values from measurements
for the case of a machine transformer. Machine transformers are power or distribution
transformers that are installed in a factory. In this case, it was installed in an aluminium
plant. As a result, the loading pattern of this transformer was rather constant. This enabled
extrapolation of the recorded pattern of two years to the entire lifetime of the transformer.

In figure 2.12, the simulated DP value is shown in time. The continuous line represents the
simulated value in time with error margins indicated by dotted lines. The blue circle shows the
measured value of polymerization as measured in 2007 where the blue line crossing the circle
indicates the uncertainty induced by measurement error. The blue circle and its uncertainty are
within the error margin of the simulation. This proves the validity of this specific degradation

model for this transformer. This example shows validation of one of the degradation models
present in the DNV GL HI.
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Figure 2.11: Graphical representation of the condition remaining life
function [11].
Condition models adjust the statistical lifetime according to the
condition.
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Figure 2.12: Comparison of the results from a simulated value for
the degree of polymerisation to its measured value after transformer
failure [18]

For this specific transformer, the analysis proves the validity of the
degradation model for this case.

In [21], two models are compared for this practical case. This comparison is shown in figure
2.13, where the simulated and measured DP values are shown. The continuous lines represent
the simulated value in time with error margins indicated by dotted lines. Both lines use
different degradation models. The black line results from a simulation using a degradation model
developed by Lundgaard. The grey line results from a simulation using a degradation model
developed by Emsley. The black circle shows the measured DP value , which was measured 454
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in 2007 indicated by the circle, with 10% accuracy indicated by the line crossing the circle. The
horizontal dashed lines between DP values of 200 and 300 indicate the DP threshold and its
uncertainty margins.

Combined with the simulated DP-curve, this threshold could be used to predict the RL of
the transformer.

Looking at the uncertainty margins of the simulated DP curves and the threshold line, the
predicted RL that could be derived from these lines, still has a wide uncertainty margin. For
example, when looking at the case of Emsley’s degradation model, this uncertainty margin
translates to almost 50 years.
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Figure 2.13: Comparison of the results from a simulated DP-value to
the measured after failure (based on [21]).
The large width of the error margins induces large uncertainty in a
possible predicted year of failure.

A different method is described in [16], where a cable circuit equipped with an online distributed
temperature monitoring system is presented. This system is used in a cable circuit to compare
actual temperature measurements to temperature values from simulations. These simulations
are based on a thermal model using the loading of the cable system. It appeared that only a
small number of measurements was required to validate the simulations.
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2.1.2 EA Technology HI SoT

In the UK, the main driver for developing HIs was the sudden need for clear information on the
present condition of assets. This sudden need was caused by two recent developments.

The first development was the upcoming replacement wave at the time, caused by the large
number of equipment installed during the period 1950 - 1970.

The second development was a significant increase in economic and regulatory pressures in a
short period put on electricity companies, where activities and decisions are usually undertaken
with longer time frames in mind [6].

Characteristic 1: HI requirements

Asset data types

e The asset data types used to determine asset condition should be objective and verifiable.
This should be achieved by the incorporation of knowledge on degradation and failure
processes in assets [27].

HI output representations

e HI scores should be suitable to be quickly understood and interpreted by asset managers
[27].

Besides the requirements regarding the characteristics, this HI SoT also describes more general
characteristics. These characteristics are listed in section A.2.1.

Characteristic 2: Asset data types

In the EA Technology HI SoT, no specific asset data types are given. Therefore, no table to
compare the asset data could be derived. However, the number of asset data types for each asset
type is provided in literature. They are presented in table 2.7 as this still gives an indication of
the completeness of this HI SoT regarding asset data types.

Table 2.7: Number of asset data types as found in literature for the
EA technology HI SoT

Category Number of asset data types Reference
Transformer 24 [30]
Switchgear 169 [30]
Capacitors 9 [30]
Instrument transformer 42 [30]
Auxiliaries 127 (30]
Overhead lines 5 [27, 6]
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Characteristic 3: HI output representations

This characteristic covers the output of the EA Technology HI. In general, it can be concluded
that the HI output representations are defined together with the cooperating utility [6].

Many different HI output representations exist. Therefore, this characteristic starts with a
common representation for just a single asset and concludes with representations for multiple
assets. As described in [27], the general HI output representation is defined for single assets as
a percentage or on a scale from 0 to 10. A time to additional maintenance is not defined in this
HI, as this particular type of defects is expected to be detected during regular maintenance.

Furthermore, EA Technology links the HI to a probability of failure, as shown by figure 2.14.
In this figure, the increase in probability of failure (PoF) becomes significant from a HI score
of 7-8. This is done for the following main reasons:

e By defining this link, it becomes possible to derive and calibrate Hls [5].
o If this link is applied consistently [27]:

— It enables a HI comparison between asset types.

— It can provide insight in the future performance of the asset.

Probability of Failure

0 5 10
Health Index

Figure 2.14: Example of the link between HI score and probability
of failure (PoF) [25]
From a HI score of 7-8, the increase in probability of failure becomes
significant.

According to utilities” wishes, different HI output representations can be derived. An example
of a representation for a single asset type is given in figure 2.15. In this representation, the HI
scores from 0 to 10 are translated into a score from very poor to very good. For the example
assets in this figure, most assets are in a good to very good condition.
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Figure 2.15: HI output representation for a single asset type [30]
The majority of the assets appear in good to very good condition.

Besides showing the HI, a HI output representation can also be based on risk and financial
analyses. This representation can be in the form of a replacement profile (see chapter 1). An
example of a replacement profile based on minimal overall costs is presented in figure 2.16. Keep
in mind that due to the uncertainty in asset health prediction, the actual replacement profile

T

Poor Fair

Good

Health Index Categories

can show large deviations from the presented profile.

Replacement Profile for Years 1-20

B e

T

Very Good

Number replaced

12 345678 91011121314151617181920
Year

Figure 2.16: Optimized replacement programme [4]

The actual replacement profile can show large deviations from the

presented replacement profile.

Characteristic 4: Assessment functions

As [6] shows with the example of dissolved gas analysis results interpretation, the focus of a
HI is on providing the general overview of the asset’s health. Therefore, the added value of
performing separate condition assessments remains. Furthermore, EA technology incorporates
loading of the assets in their risk index, as this allows for including risk calculations for the

future based on predicted future load [28].

EA technology classifies the asset data types with respect to their individual impact on the
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HI score into four categories. Table 2.16 explains these categories. The categories are used

Table 2.8: Four categories of asset data types [27, 30]

Relative degree of importance Explanation

No impact Indicator reflects defects or deterioration measures that
have no impact on overall asset health.

Contributing factor Indicator reflects defects or deterioration measures that
range from low to high in importance, but typically in
combination with other meaures as part of a formulation
of generalized deterioration.

Combinatorial factor Indicator reflects a measure which does not represent
asset condition in isolation, but is a critical component
in a complex logical and/or mathematical formulation of
asset health.

Dominant factor Indicator reflects the health of a dominant subsystem
that makes up the asset, and end-of-life based on this
single factor represents end-of-life for the entire asset.

to combine the subcomponent condition indicators into a single HI by means of importance
weightings and formulas. The steps in this process are described by table 2.9.

After step 6, the asset overall health is converted into a discrete value ranging from ”very
poor” to ”very good”. To fine-tune the representation of the discrete values, the steps in table
2.9 may be repeated several times [27].

Characteristic 5: HI foundation supporting methods

This characteristic covers the actions EA Technology performs support the foundation of their
HI. This process is embedded in the development of a HI.

In the initial stage, a HI should be developed based on pre-defined objectives and available
information. Once the output representations of the HI can be used for asset management
decisions, continuous improvement is achieved by introducing the feedback in the process.

The steps Review and refine and Identify/Collect Additional Information represent this
feedback on the right-hand side of figure 2.17 [6].
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Table 2.9: Steps performed in asset health calculation [27]

Step  Explanation

1 ”Deterioration” assessments or scores are converted to
health scores in a defined range from ”perfect health” to
” end-of-life”.

2 Importance weighting is assigned to each factor in a range

from ”modest importance” to ”very high importance”.

3 General detoriation index is formulated by calculating
the maximum possible score by summing the multiples
of steps 1 and 2 for each factor.

4 The general deterioration index is normalized to a
maximum score of 100 based on having a defined
acceptable/minimum number of condition criteria.

5 Normalize the dominant factor to a maximum score of

100.

6 Calculation of the overall HI as the lesser of step 4 or 5,
where 100% is excellent health and 0% is "poor” health.

Developing a Health Index

| Define Objectives

| Identify and Qualify Condition Information |

| Assess Validity of HI |

i Identify/Collect
| Formulate HI 4 Addtional
1 ' Information
| Populate HI -

Review and
Refine

| Use Results |‘—{ Apply Initial Calibration '—’

Figure 2.17: Steps in the development of a HI [6]
The feedback introduced by the two steps on the right-hand side of this
figure ensure continuous improvement.
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2.1.3 Kinectrics HI SoT

Utilities worldwide need to meet higher demands than ever regarding financial and technical
performance [36, 39, 38]. To meet these needs, a balance between maintenance and associated
risk needs to be found [36, 39, 38]. Furthermore, decisions regarding risk are mostly assigned
to line management. To support this decision maker, analytical tools are required [33].
Kinectrics offers three of these tools, Asset Management Planner (AMP) [32], Risk-Based
Asset Management (RiBAM) [33] and a HI [36, 39, 38].
Characteristic 1: HI requirements
Asset data types
e The asset data used by the HI should be relevant, up-to-date and reliable [35].

e The HI should use objective and verifiable observations of asset condition [36, 38].

HI output representations

e The HI score should be indicative of the suitability of the asset for continued service and
representative of the overall asset health [36, 38].

e The HI score should be understandable and readily interpreted [36, 38].

Assessment functions

e Asin most cases proper asset failure data is absent, expert knowledge needs to be included
in the assessment functions for developing asset life expectancy and failure probability
curves [35].

Besides the requirements regarding the characteristics, this HI SoT also describes more general
characteristics, These characteristics are listed in section A.3.1.
Characteristic 2: Asset data types

This characteristic covers the number of asset data types found in literature by Kinectrics. They
are presented in table 2.10.

Table 2.10: Number of asset data types as found in literature for the
Kinectrics HI SoT

Category Number of asset data types Reference

Transformer 45 [36, 39, 35, 38]

Table 2.11 was constructed using the assumptions as explained in characteristic 2 of section
2.1.1. From this table, it appears that, for a large part similar as the other HI SoTs:

e Most asset data mentioned in the Kinectrics HI SoT is expensive to acquire for utilities
for all assets if this data is not yet available for any of the assets.

e For acquiring most asset data, it is not required to put the equipment out of service.
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Table 2.11: Classification of the detection methods of the Kinectrics
HI SoT for five subjects
The classification of detection methods was done qualitatively using the
author’s knowledge. This table summarizes the table in section A.3.5.
This table contains a classification for the individual detection

methods.
Number of detection
Subject Subject classification methods for subject
classification
Closts Low (often already available) 3
High 42
N 36
Out of service required ©
Yes 9
Mat 43
Maturity e
Development phase 2
L t i 21
Ageing detection One TOTHL AgeIs
Short term ageing 24
Good 44
Accuracy 0
Bad 1

e Most asset data types originate from mature (detection) methods.
e Most asset data covers both short and long term ageing.

e The majority of the (detection) methods responsible for the asset data achieve a good
accuracy.

Characteristic 3: HI output representations

The general output of the Kinectrics HI is based on an asset health score ranging from 0 to 100.
The Kinectrics HI links this score to a condition, expected lifetime and associated requirements,
as presented in table 2.12. From this table, the required action shifts according to the probability
of failure from preventive to corrective maintenance.

Figure 2.18 shows the example of a HI output representation according to the rules presented
in table 2.12. In this figure, a large number of assets is classified as fair. This might indicate a
large number of medium-term replacements including the need for the asset manager to increase
diagnostic testing.

This HI does not define a time to additional maintenance. Kinectrics considers types of
defects associated with additional maintenance to be detected and handled within regular
maintenance [39].

Figure 2.19 shows a HI output representation of risk for each of the asset locations. This
representation gives asset managers a quick overview of critical locations. For this example, an
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Table 2.12: HI scoring for Kinectrics (based on [36, 39, 38]) This
table provides a rough indication of the link between values used in
various oultpul representations.

HI score Condition Probability of Equivalent status Explanation
failure (PoF) on life curve

85-100 Very Low First half of mean Normal maintenance

good life expectancy

70-85 Good Low but slightly Second one-third of Normal maintenance

increasing mean life
expectancy

50-70 Fair Rapidly Final one-third of Increase diagnostic testing,
increasing but mean life possible remedial work or re-
lower than PoF  expectancy placement depending on criti-
at mean age cality

30-50 Poor Higher than First one-third after Start planning process to re-
PoF at mean the mean life place or rebuild considering
age and expectancy risk and consequences of fail-
increasing ure

0-30 Very poor Very high, more Second one-third Immediately assess risk, re-

than double the
PoF at mean
age

after the mean life
expectancy

place or rebuild based on

assessment

asset manager could give the assets indicated in yellow in the north-west the most attention.
Other representations include top worst asset types or stations by actual dollars spent and total

asset cost by age [37].
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Figure 2.18: Kinectrics HI example output representation (based on
[41])
A large number of assets is classified as fair, which can be a sign that
a large number of medium-term replacements is expected together with
a need to increase diagnostic testing.

Figure 2.19: Kinectrics HI output representation based on location
[37]
This representation gives asset managers a quick overview of critical
locations.

Characteristic 4: Assessment functions

The HI operated by Kinectrics uses HI sub-scores for each condition criterion. Two types of
translations to these sub-scores are present; comparison to a fixed limit based on one asset data
type and comparison to a limit based on multiple asset types. The resulting sub-scores can
range from A to E and are converted into a factor between / and 0. Furthermore, an asset data
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type specific factor is assigned as weighting factor for each HI sub-score. Kinectrics calculates
the asset’s HI score by taking the sum of the product of all HI sub-scores and weighting factors
[36].

In [40], a sensitivity analysis is performed to find the robustness of HI scores when varying
asset data. Despite this analysis, it is unclear whether a sensitivity analysis is integrated in the
Kinectrics HI.

In [35], the method used to calculate the overall probability of failure is described. To start
with, two probabilities of failure are calculated; a probability of failure PI based on the actual
age and life curve and a probability of failure P2 based on the condition and HI. P2 is calculated
linking the HI score to the probability of failure.

The graph in figure 2.20 shows a simplified version of this link.

Very Good Good Fair Poor Very Poor

25.0% 7

20.0% [ [ 7

15.0% <

10.0% ' /
Ao /

5.0% - /

_--'--F
0.0% J J L

100 9 80 70 60 50 40 30 20 10 0

Probability of Failure

Health Index Score

Figure 2.20: Simplified version of the link between probability of
failure and HI score [39]

P1 and P2 are combined to calculate the overall probability of failure. In this calculation, the
importance of the HI is given a weight, as indicated by k in [35]:

P=P +kP,-P) 0<k<1 (2.3)

Knowing the probability of failure for the asset, the effective asset age can be found using the
asset life curve.

The example of figure 2.21 shows the steps involved in calculating the effective age from the
HI. In this figure, both vertical axes indicate the probability of failure. In the left-hand graph,
the horizontal axis shows decreasing asset health towards the right.

The right-hand graph shows the asset life curve. The horizontal axis in this graph indicates
increasing effective age towards the right. Firstly, the HI score is translated into a probability
of failure using the left curve. Subsequently, the effective age is determined using the curve on
the right-hand side.
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Probability of
failure
Probability of
failure

- > >
100 Health index score 0 Effective asset age

Figure 2.21: Example of extracting effective age from the probability
of failure (based on [39])

The vertical axes in both graphs indicate probability of failure. The
horizontal axis in the left graph shows decreasing asset health towards
the right. The horizontal axis in the right graph shows increasing
effective age towards the right.

Characteristic 5: HI foundation supporting methods

This characteristic covers the methods found in literature to support the HI foundation.

Firstly, a comparison between alarm levels was made during the formulation of the power
transformer HI. Four recommendations taken from literature were considered for the choice of
alarm levels for dissolved gases. For each gas concentration, the best health prediction was in
most cases coupled to the worst case gas concentrations found in these recommendations [36].
In [39], a similar comparison is shown for the gases present in (on-line) tap changers.

Furthermore, [38] describes the development of the life expectancy curves. In this process,
two phases can be distinguished. The initial curves are based on standards for the asset,
accelerated ageing tests if available and industry’s collective experience. Subsequently, the
condition data was applied to a significant population and failure rates were determined over a
period of time to fine-tune the curves if necessary.
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2.1.4 TU Delft HI SoT

Besides companies, also universities are involved in research into (parts of) HIs.

Literature on HI SoTs of universities shows slight differences when compared to literature
of HI SoTs of companies. For example, universities tend to describe findings on parts of HIs,
while companies tend to describe complete HlIs.

The importance of power transformers is emphasized by their value, repair times/efforts and
outage costs, as stated in the work of Chmura [69]. The liberalization of electricity markets is
mentioned to be the cause of several developments:

e A focus of utilities towards optimization of maintenance and investment costs (Gulski,
Jongen, [60, 70, 59, 48, 64, 62, 55]).

e Requested higher reliability of the utilities by increasing cost of non-availability (Gulski,
[60, 70]).

e In combination with increased power demand, higher flexibility and in addition to
emergency repair, power cable failures may nowadays lead to loss of income or claims
(Gulski, [57]).

Characteristic 1: HI requirements

Asset data types

e In addition to available failure data, condition data should be used to perform condition
assessment (Smit, [50]).

HI output representations

e The first step in the development of a HI is to find what type of advice is needed by the
asset owner (Gulski, [71]).

Assessment functions

e From the work of Gulski [50], the following basic steps in the condition indexing process
are:

Gain general knowledge about the insulation defect.

Gain knowledge about ageing effects and the influence on diagnostic results.

Gather data with the aid of on-site diagnostic tools.

Perform statistical analysis on the collected data.
— Generate norm values from the collected data and the statistical analysis.

— Combine important diagnostic parameters to determine the condition index.

e End of life estimation can be performed by statistical analysis of life time data (Jongen,
[58, 49, 62, 52, 72, 62]).

e When performing an end of life estimation, confidence bounds should be included [58].
e From the work of Smit [50], the following approach can be used to generate norm values:

— Collect data for a particular high voltage component.
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— Use a distribution fitting tool to estimate the best fitting distribution for this data.

— Based on the best fitting distribution calculate the norm values.

e For condition assessment, knowledge rules should be established (Smit, [50]).

e A HI should contain a reference for interpretation of the result from each diagnostic (Quak,
[56]).

e For the assessment of the technical performance, the following key factors should be taken
into account within a HI (Quak, [56]):
— condition
— load profile
— asset structure
— redundancy

— environmental factors

e In supporting the decision between repair and replacement, knowledge from past
experiences should be included in a HI (Jongen, [61, 66]).

e A HI should (support to) provide stakeholders with a clear overview of the effects by asset
management decisions (Quak, [65]).

e For a predictive health model, the load type and allowed limits should be based on the
preference of the utility (Bajracharya, [73, 74]).

Besides the requirements regarding the characteristics, this HI SoT also describes more general
characteristics. The requirements regarding these characteristics are listed in section A.4.1.

Characteristic 2: Asset data types

Most descriptions found from the TU Delft make use of statistical analysis to predict future
failure behaviour of single assets or asset populations. Complexity of assets is mentioned as
the cause for the difficulty of interpreting the measurement results by physics. This complexity
arises from the enormous variation in used materials, component ages, applied stresses and
maintenance (Quak, [56]).

This characteristic covers the main asset categories and number of asset data types found in
literature by the TU Delft. They are presented in table 2.13.

Table 2.13: Number of asset data types as found in literature for the
TU Delft HI SoT

Category Number of asset data types Reference
(Bajracharya, Chmura, Gulski,
Transformer 21 Jongen, [69, 63, 60, 45, 72, 15))
Gas insulated switchgear 4 (Chmura, [63])
Cable 42 (Gulski, [60, 70, 51])
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Table 2.14: Classification of the detection methods of the TU Delft
HI SoT for five subjects
The classification of detection methods was done qualitatively using the
author’s knowledge. This table summarizes the table in section A.4.5.
This table contains a classification for the individual detection

methods.
Number of detection
Subject Subject classification methods for subject
classification
Closts Low (often already available) 6
High 61
N 29
Out of service required ©
Yes 28
Mat 41
Maturity e
Development phase 26
L t i 22
Ageing detection One TOTHL AgeIs
Short term ageing 47
Good 41
Accuracy 0
Bad 26

Table 2.14 was constructed using the assumptions as explained in characteristic 2 of section
2.1.1. From this table, it appears that, for a large part similar as the other HI SoTs:

e Most asset data mentioned in the TU Delft HI SoT is expensive to acquire for utilities for
all assets if this data is not yet available for any of the assets.

e For acquiring asset data, it is in half of the (detection) methods required to take the
equipment out of service.

e The majority of the asset data types originates from mature (detection) methods.
e The majority of the asset data covers short term ageing.

e The majority of the (detection) methods achieves a good accuracy for almost all asset
data.

Characteristic 3: HI output representations

The HI description performed by the TU Delft in cooperation with network operators and a
cable manufacturer results in a HI score. This HI score is determined from a category and
reliability status of 1, 6 or 9 [60].

This HI score is presented in table 2.15. This table provides a rough indication of the link
between values used in various output representations. This table shows no clear distinction
between time to additional maintenance and replacement (Smit, [50]).
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Table 2.15: HI score for power cables (based on the work of Gulski [60])
This table provides a rough indication of the link between values used in various
output representations.

Reliabilit; - Service lif Conditi . . R dati
Category clabiity Condition status ervice e ondiion Required action ecommendation
status status index on maintenance
No extra
. attention .
No defects or ageing . No maintenance
Normal No problems New or aged 9 required, e.g.
symptoms observed . . necessary
next inspection
in 5 .. 10 years
Without any
Defect No impact on maintenance
initiation reliability . possible lifetime
Ce'rtaln dfegree Extra' ' reduction
of insulation attention is
degradation Strongly 6 needed, e.g.
Asset can observed; no aged inspection
still be harmful within 1 . .
Maintenance is
Defect operated but defects present year
P necessary
the reliability
is decreased
Significant . . Based on
. . Maintenance is . .
insulation economics, repair
. Asset can not . Nearby end of necessary, e.g.
Failure degradation e 1 . or replacement
be operated . lifetime repair or . .
observed and serious maintenance is
replacement

defects are present

necessary

Furthermore, statistical analysis can be utilized to find representations for power transform-
ers and power cables (Chmura, Jongen, Smit, [69, 58, 50, 54, 66, 45, 49, 62, 52]). An example
of such representation for mass insulated cables is given in figure 2.22.

This figure shows the expected failures on a yearly basis including the 90% confidence bounds
of this value. These confidence bounds show that the number of yearly failures is expected to
stay within the interval of the two bounds with a confidence of 90%.

A
== Expected failures

90% upper bound
90% lower bound

-~

>

Expected
failures

Year

Figure 2.22: Example failure prediction for a population of mass
insulated cables (based on the work of Jongen [52]).

The predictive health method as described in the work of Bajracharya [15] combines asset data
together with ambient temperature to predict the maximum loading of power transformers.

Characteristic 4: Assessment functions

The study of Chmura [63] mentions a method to calculate cable degradation based on loading.
This method is based on the quadratic relation between current and conductor temperature.
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Subsequently, the conductor temperature can be translated into degradation using a relation
derived by experiments.

Next, the study described by Chmura [63] reports a method for estimating insulation life
consumption (ILC) based two asset data types on testing voltages and relative tand. This
relation was also derived by experiments.

Subsequently, the study described in the work of Smit [50] proposes a method to rank insulation
condition of power cables based on partial discharge measurement results. This method uses
statistical methods to describe an assessment function based on several partial discharge ratings.

Finally, the work of Jongen [66] shows the use of statistics to describe future failure behaviour of
assets. The process of describing future behaviour using statistical analysis consists of multiple
steps. The main steps in the process of describing present failure behaviour include distribution
fitting to the data, goodness-of-fit tests and finding confidence bounds. Subsequently, an
additional analysis describes the future failure behaviour making use of the present failure
behaviour.

To conclude, the studies of Bajracharya [15, 74] describe a predictive health method. This
method is different from the aforementioned HIs regarding its goals and working principle.
However, as this method could play an important role in the future of health indexing, it is
included in this text. This method is part of a framework that prevents (excessive) asset ageing.
To illustrate its working principle, this framework has been applied to the example of power
transformers. Each transformer in a network predicts the values of its maximum load based on
the predicted transformer oil temperature. The transformers interact and take actions according
to these values. For this example, re-routing power is a possible action in the case of predicted
overloading. These actions lead to an overall decrease in ageing.

This method uses thermal models in finding the instantaneous maximum load. These models
are comparable to assessment functions, the difference is that they translate asset data into
instantaneous asset operating limits instead of asset health. The maximum load for the example
of a power transformer is determined by the maximum winding temperature at a certain location
in the transformer, the so-called hotspot temperature. In the studies of Bajracharya [15, 74],
a discrete-time state-space model is used to simulate the dynamics of this and related relevant
temperatures.

Characteristic 5: HI foundation supporting methods

Most TU Delft literature focuses on using statistics to describe failure rates using failure data.
However, one reference showed a method to minimize the difference between predicted and
observed asset health. This method is explained in this characteristic.

The study of Quak [46] describes a condition index selection process for cables. The main
steps are to collect partial discharge measurements, use knowledge rules to set boundary
values and based on these boundaries assign a condition index. The proposed future actions
are stored in the same database as the discharge measurements. This feedback enables a
continuous improvement of the condition index selection process by comparing proposed actions
to measured condition over time.
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2.2 Strengths/weaknesses analysis

In this chapter, the described HI SoTs were analysed with respect to their strengths/weaknesses.
This has provided insight in how they compare to each other regarding the relevant aspects for
the remainder of this thesis. Table 2.16 presents this analysis.

From this table, the following conclusions on strengths/weaknesses can be drawn:

HI requirements

e The DNV GL Energy and TU Delft HI SoTs describe the most requirements regarding Hls.
Furthermore, only these HI SoTs make statements regarding the process of developing a
new HI.

Asset data types

e Among all HI SoTs, only the Kinectrics HI SoT describes the HI for one asset type. This
suggests that the scope of the Kinectrics HI SoT is limited.

HI output representations

e Only the DNV GL Energy HI SoT includes both time to additional maintenance and
remaining lifetime in its HI output representations.

e Many types of health representations exist among the discussed HI SoTs, only the
representation of the TU Delft lacks the option of health estimation for a single asset.

Assessment functions

e The method in the assessment functions of the TU Delft HI SoT uses the lowest number
of asset data types.

e Only the assessment functions of the DNV GL Energy and TU Delft HI SoT include
uncertainty.

HI foundation supporting methods

e All HI SoTs describe methods to incorporate continuous improvements based on feedback
in the development of Hls or the fine-tuning of the assessment, except for the DNV GL
HI. This HI describes methods support its foundation by practical cases.
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Table 2.16: Strengths [+] / weaknesses [-] analysis of the discussed HI SoT's

Characteristic ~ Subject DNV GL Energy EA Technology Kinectrics TU Delft
HI General (+] [] [ [+]
requirements Many requirements Few requirements Few requirements Many requirements
described: described: described: described:
o Asset data types ® Asset data types e Asset data types e Asset data types
o HI output e HI output e HI output e HI output
representations representations representations representations
o Assessment e Capabilities e Assessment o Assessment
functions functions functions
e Compatibility e (Capabilities e Content
e Implementation /information
e Content handling
/information e Capabilities
handling
e Capabilities
Asset data Asset types [+] [+] [ [+]
types Many asset types Many asset types One asset type and Many asset types

and very general:

and very specific:

very specific:

and very specific:

o Power e Multiple types of e Power e Multiple
transformers transformer transformers transformers
e Switchgear e Multiple types of e Distribution e General GIS
e Power cables switchgear transformers technologies
e Generators e Capacitors e Multiple types of
e Multiple types of cables
instrument e Cable accessories
transformer
e Multiple
auxiliaries
e Overhead lines
HI output rep- General (+] [+] [+] -
resentations Single/multiple Single/multiple Single/multiple Only multiple
assets assets assets assets
Method [+] [+] [+] M
Lowest remaining Sumproduct by Sumproduct by Statistical analysis
lifetime by using using most asset using most asset using small number
Assessment most asset data data types data types of asset data types
functions types
Uncertainty [+] [] - [+]
Included in Monte  Not specified Unclear whether Included in
Carlo simulation included in HI statistical analysis
HI foundation — General [+] [+] [+] (+]
supporting Methods based on ~ Methods for Methods for Methods for
methods practical cases continuous continuous continuous
improvements improvements improvements
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2.3 Conclusions

The main focus of this chapter has been on providing an overview of the four main HI SoT's and
to find present methods in HI prediction quality quantification and validation. As mentioned
in section 2.1, this literature research does not cover all existing HI SoTs. In addition to this,
not all HI SoTs are described (in detail) in published scientific literature and publicly available
documentation of their institutions.

Regarding this overview, the following conclusions are drawn:

HI requirements

e The DNV GL Energy and TU Delft HI SoTs describe the most requirements regarding Hls.

Asset data types

e Among all HI SoTs, only the Kinectrics HI SoT describes the HI for one asset type. This
suggests that the scope of the Kinectrics HI SoT is limited.

HI output representations

e Only the DNV GL Energy HI SoT includes both time to additional maintenance and
remaining lifetime in its HI output representations.

e Many types of health representations exist among the discussed HI SoTs, only the
representation of the TU Delft lacks the option of health estimation for a single asset.

Assessment functions
e The method used to translate data into asset health differs among the HI SoTs.

e Only the assessment functions of the DNV GL Energy and TU Delft HI SoT include
uncertainty.

HI foundation supporting methods

e All HI SoT's describe methods to incorporate continuous improvements based on feedback
in the development of Hls or the fine-tuning of the assessment, except for the DNV GL
HI. This HI describes methods support its foundation by practical cases.

e In general, the HI SoT in scope presents only limited literature on HI prediction quality
quantification and wvalidation. Furthermore, no practical case studies were found used for
HI prediction quality quantification and validation of a complete HI. This suggests that
research using practical case studies for HI prediction quality quantification and validation
of a HI are necessary.
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Besides the conclusions on the HI characteristics, this literature research has also revealed
conclusions regarding the methods to be used for quantifying HI prediction quality:

e The HI foundation supporting methods, as described by the DNV GL HI SoT, lead to
the insight that for quantifying HI prediction quality and, as the next step, validation, a
comparison between two datasets is necessary. Chapter 3 explains this in more detail.

e Life data analysis (LDA) using distribution fitting, as described by the TU Delft HI SoT,
can be applied in order to find future failure behaviour of assets using the development
of present failure behaviour. LDA is possible on both of the two aforementioned datasets
and is explained in further detail in chapters 3 and 4.
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Chapter 3

Research approach

This chapter presents the approach used in this thesis to extend the scientific foundation of the
DNV GL Health Index (HI).

The methods as described in this approach aim for HI prediction quality quantification and
validation in order to find future improvements of the DNV GL HI. This approach considers
five methods for HI prediction quality quantification and validation. The methods described in
this chapter are the result of a combination of methods described in literature and discussions
at the Delft University of Technology and at DNV GL in Arnhem.

Section 3.1 provides an overview of the methods. Section 3.2 provides an overview of the
datasets distinguished in the methods of this chapter. Section 3.3 explains the definition of
predicted and observed lifetime. Section 3.4 explains how the predicted and observed lifetimes
can be compared. Section 3.5 discusses the five methods in further detail. Section 3.6 discusses
the methods by strengths/weaknesses and section 3.7 shows the methods adopted during the
research.

3.1 HI prediction quality quantification and validation: meth-
ods overview

The predictions of HIs consist of the statements HIs make on asset health (see section 2.1). In
order to quantify the quality of these statements, this section will use the statements on (asset)
remaining lifetime (RL). This RL is the period the asset is expected to survive, starting from
the moment of the HI prediction. The methods described in this section aim to quantify the
quality of HI predictions. This so-called HI prediction quality is given by the difference between
predicted and observed asset health.

Figure 3.1 provides an overview of the five HI prediction quality quantification methods
described in this section. Table 3.1 explains these methods in more detail. The methods
presented in figure 3.1 are presented in groups by the dataset types they use. Each method can
use multiple datasets. This chapter makes a distinction between three dataset types: predictions,
observations and dummy data. These three dataset types are explained in more detail in section
3.2.
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Methods

3. Binary 4. Prediction
classification error

1. New HI 2. Utility criteria 5. Life data
analysis

Predictions 1

Datasets

Predictions 2

Figure 3.1: Overview of the described HI prediction quantification methods
Fach method uses at least one dataset of the type predictions.

Table 3.1: Explanation of the methods for HI prediction quality
quantification and validation

Section Method Datasets

Explanation

3.5.1 1. New HI Predictions 1
Predictions 2

3.5.2 2. Utility criteria Predictions
Dummy data

3.5.3 3. Binary classification Predictions
Observations

3.5.4 4. Prediction error Predictions
Observations

3.5.5 5. Life data analysis Predictions
Observations

Comparison between a new HI and the
DNV GL HI.

Comparison of the assessment functions
to utility criteria, which results in
differences and similarities between the
assessment functions and wtility criteria.

Comparison of predictions to observed
health by using binary classification
based on the predicted health and
observed health which results in a
percentage of misqualification.

Comparison of predictions to observed
health by counting the number of
occurrences of the difference between the
predicted lifetime and observed lifetime
per asset which results in an indication
for the prediction error.

Comparison of predicted lifetimes to
observed lifetimes using life data analysis.

3.2 HI prediction quality quantification and validation: datasets

3.2.1 Predictions and observations datasets

The predictions dataset contains for each asset a predicted lifetime. The observations dataset
contains for each asset an observed lifetime or an observed operating time.

The HI predictions are based on a large number of asset data types. Some events cannot
be predicted, even though the available asset data originates from state-of-the-art detection
techniques that include all reasonably known failure modes. An example of such an event is a
failure due to excavation work. The assets that fail due to these events are therefore excluded

from both datasets.
The HI translates the asset data into RLs.
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3.2. HI PREDICTION QUALITY QUANTIFICATION AND VALIDATION: DATASETS

the year of the HI predictions, these RLs are subsequently translated into predicted lifetimes.
Depending on the method, these lifetimes are translated into the predictions dataset.

When the method uses only the exact moment of failure, the predictions dataset originates
directly from the predicted lifetimes. When the method includes the moment of predicted
failures relative to a reference moment, this information is included by translation of predicted
lifetimes to so-called suspensions, which are explained in the end of this section.

The blue boxes in figure 3.2 show the steps from the asset data to the prediction dataset.
The dataset of observations originates from a failure database combined with a database that
contains the entire asset population. A failure database consists of a chronological list of failures
and associated information. The entire asset population includes all assets in service at the
point in time the HI predicted the RLs. The green boxes in figure 3.2 show this combination.

Data sources Datasets

Asset data el Predictions

lifetimes
Failure
database
Asset
population

Figure 3.2: Origin of the predictions and observations datasets

Observations

As indicated in figure 3.2, each asset is assigned a prediction of the HI in terms of RL, starting
from the year of the HI prediction (7). The definition of RL is given in section 3.3. Figure
3.3a indicates the latter as the prediction moment, indicated in red colour. Furthermore, the
commissioning year (tcomm) is extracted from the asset data. This information enables the
finding of the predicted lifetime according to:

Predicted lifetime = (tgr — tcomm) + RL (3.1)

The moment of the most recent failure record is called the reference time (tges). This thesis
indicates the period between ¢y to tres by the time window. In the majority of the cases, the
asset is predicted to fail after tg.y. These cases are called predicted suspensions. Figure 3.3b
shows an example of this case.

Besides the predictions dataset, the dataset of observations originates from a failure database
combined with a database of the entire asset population. This dataset is based on the
observation moment at g.f, indicated in figure 3.4a and 3.4b.

The fact that assets are present in the failure database is shown in figure 3.4a by a failure
within the time window. The assets that are missing in the failure database but are present in
the database of the entire asset population are assumed to be still operational at tg., as shown
by the observed suspension in figure 3.4b.

In particular cases, assets are taken out of service during the time window due to a high
failure expectancy. These replacements in these cases are called preventive replacements. For
the assets in these cases, no conclusion can be drawn from the difference between predicted and
observed lifetimes. Therefore, all assets of this group are excluded from both datasets.

47



CHAPTER 3. RESEARCH APPROACH

Health index prediction (1 asset - failure) Health index prediction (1 asset - suspension)

Prediction moment Prediction moment
tColmm tTI tFaiI,Ipred tF{Ief thimm t;—il tRef tFailipred
] | , ] ;I
X, , . —X,
I l¢ Lyl I le > Time !
| I Timejwindow Ime | | Time window N
| T RL | L - RL |
'Predicted lifetime ' I~ Predicted lifetime "l

(a) (b)

tcomm® Year of commissioning

th Year of HI prediction
trailpred  Year of predicted failure
tRef Reference year

—3¢ Predicted failure
—p=3¢ Predicted suspension
Time window Window of observed failures
RL Remaining lifetime

Figure 3.3: Explanation of: (a) a predicted failure; (b) a predicted suspension
tgr is the prediction moment.

Observation (1 asset - failure) Observation (1 asset - suspension)

Observation moment Observation moment
tcomm  thi trail  trer tcomm  thi tRef
| | | | | |
x| e ——
| | ~ | | ~
| le L—pl Time ! le > Time
| Timelwindow | Time window |
Observed lifetime "Observed operating time
(a) (b)

tcomm ¢  Year of commissioning

th Year of HI prediction
trail Year of observed failure
tRef Reference year

=3¢ Observed failure
=—p Observed suspension
Time window Window of observed failures
RL Remaining lifetime

Figure 3.4: Explanation of: (a) an observed failure; (b) an observed suspension
tRref s the observation moment.
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3.2.2 Dummy dataset

As an illustration of a dummy dataset, consider the following example, where fictional alarm
levels for distribution cables are used. These alarm levels are shown in table 3.2. The alarm

Table 3.2: Example of alarm levels of three asset data types for
distribution cables

Asset data type Alarm level
Partial discharge magnitude [pC] 5000
Tangens delta [%] 1
Historical peak load [% Syqted] 120

levels in this table are used to generate dummy datasets containing values for the combinations
of asset data types. These dummy datasets contain fictional assets with values that cover all
alarm level combinations. These combinations enable a comparison between the utility’s alarm
levels and the alarm levels present in the DNV GL HI. To test all combinations of N asset
data types, 2V criteria combinations are generated. The example with three asset data types
presented in table 3.2 results in the eight dummy datasets presented in table 3.3.

Table 3.3: Example of alarm levels of three asset data types for
distribution cables

Asset [#] Partial discharge [pC] Tangens delta [%] Historical peak load [% Srated]

1 0 0 0
2 0 0 120
3 0 1 0
4 0 1 120
5 5000 0 0
6 5000 0 120
7 5000 1 0
8 5000 1 120

3.3 Lifetime definition

To compare the predictions and observations datasets, the definition of lifetime should be clear
for each dataset. Ideally, exactly the same definition for lifetimes would apply to each of the
datasets that are used by the methods for HI prediction quality quantification and validation.
However, this appears not to be the case, as will be shown in the case studies of chapter 6 and
7.
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For each version of the DNV GL HI, the RL of an asset is defined in the HI as the period
during which at most X% of the assets with the same values for asset data is expected to
fail. Therefore, the predicted lifetimes in the predictions dataset are based on the period from
commissioning to the moment when at most X% of the assets is expected to have failed with
the same values for asset data. This moment is equal to the moment the failure probability is
at most X%, given by:

Predicted lifetime = tpreqmac. X% failed — teomm (32)

The observed lifetimes are defined differently from the predicted lifetimes. The observed lifetimes
are defined as the period starting from commissioning to the moment of the first observed failure.
This is given by:

Observed lifetime = tops: failed — teomm (3.3)

3.4 Lifetime comparison

The previous section has shown that the predicted and the observed lifetimes are defined
differently. This section explains how these differently defined lifetimes can be compared. To
explain this comparison, the difference between predicted and observed health is taken to be
zero, i.e. the HI prediction quality has the maximum value. In this thesis, this maximum value
is taken 1.

For this case, the predicted lifetime equals the lifetime during which a maximum of X% of
the assets that have the same values for asset data are observed to fail. A prediction holding a
maximum HI prediction quality for an asset which is expected to fail equals the lifetime when
the failure probability for that asset equals 50%. Figure 3.5 shows this graphically. The blue
line and dotted lines show that the predicted lifetime is the period from commissioning until
X% of the assets with the same values for asset data have failed. The green line and dotted lines
show that the observed lifetime is the period from commissioning until the failure probability
equals 50% for assets with the same values for asset data.

ity

a2

100%

50%

X%
0%

1
:
Predicted + *

Observed +

Failure probabil

n

Lifetime

X

Figure 3.5: Explanation of the difference in definition between the predicted and
observed lifetime for zero difference between predicted and observed health
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3.5. HI PREDICTION QUALITY QUANTIFICATION AND VALIDATION: METHODS
DESCRIPTION

Using this definition, it is not possible to directly compare the predicted asset health to the
observed asset health for single assets. To do this comparison, it would require to adjust the
predicted RL for a single asset to the period after which 50% of the assets that have the same
values for asset data have failed. To do so, the following two requirements should be met:

1. The HI needs to be adjusted for this new RL definition. This requires all assessment
functions to be re-written using expert knowledge, to make predictions that are in line
with this new definition.

2. It should be proven, that when the predictions of the adjusted HI are valid, the predictions
of the original HI are also valid.

To fulfil these requirements, adjusting the present HI to meet the above-mentioned requirements
using DNV GL’s experts would require these experts to be consulted more frequently than
feasible for this graduation project. Therefore, it can be concluded that within this thesis,
an adjusted HI following a different predicted lifetime definition can neither be developed nor
validated.

However, the lifetime definition does allow comparison for a group of assets. When
predictions are made for a group of assets, the lifetime for which the failure probability of
the predicted lifetimes equals 50% is equal to the lifetime for which at most X% of the assets
have failed. At most X% failed assets equals a maximum failure probability of X%. This is
explained in further detail in section 3.5.5.

As can be concluded from this section, in this thesis, only a comparison for a group of assets is
possible. However, in the future, also a comparison for a single assets could become possible.
Therefore, this chapter also describes methods using comparison for single assets.

3.5 HI prediction quality quantification and validation: meth-
ods description

3.5.1 Method 1: New HI

The first step in this method is to develop a new HI in addition to the existing DNV GL HI.
Next, the existing DNV GL HI and the new HI are provided with asset data (see section
3.1). This asset data consists of actual data from utilities or fictive data.

This method uses three steps:

1. The new HI and the DNV GL HI translate the asset data into RLs. According to the
translation described in section 3.1, these RLs are translated into predicted lifetimes.

2. The predicted lifetimes of the two HIs are compared. Using this comparison, the HI
prediction quality is derived. Methods to compare predicted lifetimes are discussed in
sections 3.5.3-3.5.5.

3. For this comparison, a maximum difference between the predictions of the two HIs is
defined using the methods discussed in 3.5.3-3.5.5 to enable wvalidation of the DNV GL
HI.

Figure 3.6 shows the abovementioned steps of this method.

o1



CHAPTER 3. RESEARCH APPROACH

Predicted lifetimes
new HI

Asset data Compare MaX|mum
difference

Predicted lifetimes
DNV GL HI

RLs new HI

DNV GL HI RLs DNV GL HI

Figure 3.6: Comparing remaining lifetimes (RLs) of a new HI to the DNV GL HI

3.5.2 Method 2: Utility criteria

Most utilities base the decision to take equipment out of service on certain criteria. In this
section, these criteria are referred to as utility out of service criteria. Using these criteria,
dummy datasets containing values for several asset data types are constructed to compare the
HI prediction quality of the DNV GL HI and the wutility out of service criteria.

The DNV GL HI translates the asset data of dummy datasets into RLs. Based on a reference
RL, RLx, the RLs are translated into a status prediction. This status prediction can adopt two
values: good or critical. The final step in this method is to compare the status predictions to
the utility out of service criteria. In this comparison, the number of cases for which the status
predictions match the wutility out of service criteria can be used as an indicator for HI prediction
quality. However, this method can not be used for a walidation of the DNV GL HI, as the
predictive value of utility out of service criteria is unclear. Figure 3.7 shows an overview of this
method.

Criteria Dummy GOOD
combination 1 dataset 1 CRITICAL

Utility out of L] o Y
service criteria DNV GL HI ) ) PY
b °

Criteria Dummy GOOD

RLy < RLx

combination N dataset N CRITICAL

4

Figure 3.7: Comparing the results of dummy datasets based on out of service
criteria used by utilities
The number of cases in which the status predictions match the utility out of
service criteria can be used as an indicator for HI prediction quality.

3.5.3 Method 3: Binary classification

This method classifies the outcome of entries in the predictions dataset of the HI for each
single asset to four cases. This classification is applied to multiple assets to find HI prediction
quality by looking at parameters resulting from the binary classification. These parameters are
explained in the end of this section.

Both the predictions and observations datasets are used to perform this classification. To
explain this classification, the time window between two points in time is used: ty; and tges
(see section 3.2.1).
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DESCRIPTION

The classification in this method distinguishes four cases:

L.

II.

I11.

IV.

The HI predicts the asset to fail within the time window and it failed during the time
window.

The HI predicts the asset to fail within the time window but it failed after the time
window (an observed suspension).

The HI predicts the asset to fail after the time window (a predicted suspension) but it
failed during the time window.

The HI predicts the asset to fail after the time window (a predicted suspension) and it
failed after the time window (an observed suspension).

In figure 3.8, these cases are further illustrated. Case I and IV show that the prediction matches
the observation. Therefore, these cases are coloured green in this figure. Case II and III show
that the prediction differs from the observation. Therefore, these cases are coloured red in this
figure.

th {Ref
] ]
Predicted e o u| s
. Orbe ic ed t 1 i
serve o 4 u s
.
Predicted *——-* o o
- ry— ¢ i [ thi Year of HI prediction
: P: tRef Reference year
" Predicted # T P, ©® @  Year of commissioning
" Observed *——_‘( INE * %% Range of predicted failure
Predicted ¢ " - ==X Range of observed failure
V. : a =  Predicted suspension
Observed ¢ : H > =l Observed suspension
—
' Time' Time
window

Figure 3.8: Graphical representation of the four cases, explained for a single asset

This method is applied to assets of a utility. The four cases form the basis for five HI prediction
quality parameters. Figure 3.9 shows the HI prediction quality parameters:

1.

4.
d.

Positive predictive value. Given a predicted failure, the probability that the asset
failed.

. Negative predictive value. Given a predicted suspension, the probability that the

asset failed.

. True positive rate. Given an observed failure, the probability that asset failure was

predicted.
True negative rate. Given a suspension, the probability that a suspension was predicted.

Accuracy. Given an outcome, the probability the outcome was predicted.

For these HI prediction quality parameters, threshold values should be chosen. Validation is
considered successful when all HI prediction quality parameters meet their threshold values.
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Figure 3.9: Comparing the results of predictions to observations

3.5.4 Method 4: Prediction error

The method introduced in this section compares the predictions and observations for individual
assets. For each asset, the time difference between predicted and observed moment of failure is
determined. The method from the previous section disregards the information of this difference
by only looking at the interval during which failures were predicted or observed. Using this time
difference, the prediction error is defined for HI prediction quality quantification. Subsequently,
two prediction error representations are discussed in this section and used for HI validation.

In this method, six cases are distinguished:

Xi:
Xo:
X3:
Xy:
Xs5:

Xg:

The asset fails within the time window ezactly in the year it was predicted to fail.

The asset fails within the time window before the year it was predicted to fail.

The asset fails within the time window after the year it was predicted to fail.

The asset fails after the time window but was predicted to fail within the time window.
The asset fails within the time window but was predicted to fail after the time window.

The asset fails after the time window and was predicted to fail after the time window.
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These cases are shown in figure 3.10a. This method bases HI prediction quality on the difference
between the predicted and observed year of failure.

For cases X4 and Xg, the observed failure occurs after the time window at an unknown moment.
The fact that this moment is unknown adds uncertainty to assessment of the prediction quality.

For case X4, only the minimum time the prediction differs from the observed failure (the
period from the predicted failure to the reference time) is known. In this case, this minimum
difference is taken.

For case Xg, no conclusion can be drawn based on the difference between the moment of
predicted failure and the observed failure. In this case, the asset is excluded from the analysis.
Furthermore, this case is added to the number of occasions where difference between prediction
and observation is unclear.

The values for examples of the abovementioned cases are presented in figure 3.10b. For example,
the difference between predicted and observed moment of failure for case X3 is 3 years. The
minus sign is added to show that the HI prediction was too pessimistic for this case.

Figure 3.10c shows the ordering of the values based on whether they represent too optimistic, or
too pessimistic values. The top of figure 3.10d shows the result representation by a histogram
counting the number of occurrences for each prediction difference interval. The bottom of figure
3.10d shows the parameters that are derived using figure 3.10c. Both representations quantify
the HI prediction quality.

For the histogram in top of figure 3.10d, reference values are established. Validation of the
DNV GL HI is successful when the values in this histogram comply with the reference values.

For the parameters in the bottom of figure 3.10d, reference values are established. Validation

of the DNV GL HI is successful when the values of these parameters comply with the reference
values.
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Figure 3.10: Explanation of the prediction error method: (a) Graphical representation
of the six cases distinguished in this method; (b) Prediction error quantification for the
six cases; (c) Positive and negative prediction error quantification; (d) Representations
for prediction error quantification
This method results in representations that take into account most of the available

information.
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3.5.5 Method 5: Life data analysis

The method introduced in this section compares predictions and observations for a group of
assets. The HI prediction quality is quantified by the difference between predictions and
observations on group level. Validation is done by comparing this difference to a reference
value.

In this method, the following four cases are distinguished.

For the predictions dataset:
1. The asset was predicted to fail within the time window.
2. The asset was predicted to fail after tg.y.

For the observations dataset:
3. The asset was observed to fail within the time window.

4. The asset was observed to fail after ..

For each case, the RL of the asset is translated into the corresponding predicted lifetime. This
translation is explained in section 3.2.1.

In figure 3.11a, the predictions for assets X; - X3 illustrate case 1. For this case, the failure
is predicted within the time window. Therefore, the asset in this case is in the failed (‘F’) state.

For this case, the period starting from the commissioning year and ending at year of predicted
failure is called state total time.

The predictions for assets X4 and Xj illustrate case 2. For this case, the moment of failure
is predicted after the time window. Therefore, this case is in the suspended (‘S’) state, i.e. a
suspension is predicted. For this case, the period starting from the commissioning year and
ending at tg.s is called state total time.

The observations dataset is translated in the same manner as the predictions dataset.

In figure 3.11b, the observations for assets X, Xs and Xy illustrate case 3. This case is in
the failed (‘F’) state. For this case, the period starting from commissioning year and ending at
the moment of failure is called state total time. The observations for assets X3 and X5 illustrate
case 4. This case is in the suspended (‘S’) state. For this case, the period starting from the
commissioning year and ending at tg.y is called state total time.

Life data analysis is used to compare both datasets. (Reliability) life data analysis is the
study and modelling of lifetimes [75] and is explained in further detail in section 4.3.

The steps necessary for life data analysis are:
1. Gathering the life data (this is described in section 3.1).
2. Selecting a lifetime distribution that fits the data and models the lifetimes.
3. Estimation of the parameters that fit the distribution to the data.

4. Generation of curves and results to estimate life characteristics.

o7



CHAPTER 3. RESEARCH APPROACH

t t
i—' I RIEf Asset | State totztlattiiqe t'i” tFief Asset | state totitlatti?ne
X, % | | | X, | F 5 X, % | | | X, | F 5
X, % | X, | F 6 Xz x| X | F 5
Xs | @ ' s | ) Xs | F 8 Xs | @ ! - ) Xs | S 10
X4 Q: H—x X4 S 6 X4 o+-x ! X4 F 3
1 1 1 1
Xs ? I r,—;( Xs s 9 Xs Q‘ ! ‘h > Xs S 9
. le—>»] . fe—>»]
Time "window Time "window
(a) (b)
th Year of HI prediction
{Ref Reference year

©® @  Year of commissioning
=3¢ Predicted failure
3l Observed failure
——Pp=)¢ Predicted suspension
=% Observed suspension
PoF Probability of failure

Figure 3.11: Preparation of datasets containing: (a) prediction life data; (b) observation life
data

This method uses the curves of step 4 to compare the life characteristics of the predictions and
observations datasets. This method uses the lifetime definition as described in section 3.3.

Figure 3.12 shows the lifetime curves for the predictions and observations datasets. In
figure 3.12a, the predicted health equals the observed health. In this figure, the threshold value
between a valid and a non-valid observed failure probability, for the average predicted lifetime,
equals X%.

1. When the average predicted lifetime, i.e. the lifetime for which a failure probability of
50% is predicted, shows an observed failure probability below this threshold value, the
prediction is considered not wvalid. This is shown by the red area in the figure.

2. When the average predicted lifetime, i.e. the lifetime for which a failure probability of
50% is predicted, shows an observed failure probability below this threshold value, the
prediction is considered wvalid. This is shown by the green area in the figure.

Figure 3.12b shows a case for which the average observed failure probability for the average
predicted lifetime is above the defined average predicted failure probability as given by the
definition of section 3.4. For this case, the HI predictions are too optimistic. In this case, the
HI prediction is not valid and the the lowest possible HI prediction quality is achieved.

Figure 3.12c shows a case for which the average predicted health is below the average observed

health. For this case, the HI predictions are too pessimistic. In this case, the HI prediction is
valid.
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The orange arrow in the right of this figure shows the distance from the predicted failure
probability to the defined predicted failure probability. This distance (in percent) is inversely
proportional to the HI prediction quality and is defined by:

Failure probability

distance [%)]

e predicted health < observed health
e Hlis valid
¢ HlI prediction quality ~
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Figure 3.12: Prediction quality and validity by lifetime for: (a) predictions that match

observations; (b) too optimistic predictions; (c) too pessimistic predictions

The orange arrow in figure 3.12¢ shows the distance of this prediction from the best HI

29

prediction quality, which is shown in figure 3.12a.
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3.6 Discussion of the methods

The five methods described in section 3.1 show that, using these methods, it is possible
to define HI prediction quality and to perform wvalidation of the DNV GL HI. This section
discusses the methods regarding their strengths and weaknesses. Table 3.4 summarizes the
strengths/weaknesses of the methods discussed in this section.

The first method is to develop a new HI. This method has the advantage that developing a
new HI is a good exercise to gain knowledge on the working principles behind the DNV GL HI.
Furthermore, this method might reveal weaknesses in the DNV GL HI. The new HI is developed
using only the experience of the author. The DNV GL HI is developed in multiple years using
expert knowledge.

Therefore, the drawback of this method is that the new HI will only reveal a very limited
number of weaknesses of the DNV GL HI. Besides, the new HI is also likely to contain
weaknesses, which further limits the value of this method.

The second method is to compare experience of utilities to the expert knowledge contained in
the DNV GL HI. The advantage of this method is that the comparison can reveal weak points
of the DNV GL HI by differences between experience of utilities and the expert knowledge
contained in the DNV GL HI. This then enables possible improvement of the DNV GL HI.

However, the predictive value of these out of service criteria is unclear and requires further
research. In addition to this, this method can not be used for a wvalidation of the DNV GL
HI. Furthermore, most of the out of service criteria are based on expert knowledge and values
provided by manufacturers. The expert knowledge put in these values could be subjective.
Manufacturers do not make these values publicly available. Besides, utilities need to maintain
a good relationship with manufacturers.

Therefore, these values as provided by manufacturers are hard to obtain.

The third method is to classify the outcome of entries in the predictions dataset of the HI
for each single asset. This method has the advantage that it is possible to apply it (partly) to
the acquired data. Furthermore, it is applied in several fields of study. The disadvantage of
this method is that each of the quality parameters only represents the HI prediction quality in
a single number.

Therefore, it is complicated to do statements on HI prediction quality based on the values
of these parameters.

Another disadvantage arises from the information lost when translating predictions and
observations in the four cases. The lost information consists of the observed moment of failure
and the predicted moment of failure.

The fourth method is to compare predictions and observations of individual assets. The
advantage of this method is that a minimum amount of information is lost when finding the
prediction error. The disadvantage of this method is that the reference values for wvalidation
should still be defined properly.
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The fifth method is to compare predictions and observations of a group of assets. The advantage
of this method is that it enables comparison between predictions and observations on group
level. This enables to quantify HI prediction quality. The disadvantage of this method is that
no detection is possible of individual differences between predictions and observations. This
method can compare the two datasets in meaningful ways to find points of improvement for
the DNV GL HI. Despite this, this method does not take into account the differences between
predictions and observations of individual assets.

Figure 3.13 explains this by showing the data points of predicted and observed failures. In
this figure, the predicted failure of data point 5 has the largest difference in failure probability
compared to the observed failure of data point 5. The other data points show as well a (large)
difference in failure probability (execpt for data points 3). However, the HI prediction quality
has the maximum value, 1.

100%

50%

Failure probability

Lifetime

e predicted health = observed health
e Hlis valid
e HI prediction quality = 1

Figure 3.13: Copy of figure 3.12c, showing an example of individual differences
in predictions and observations datasets, which still result in the maximum value
for HI prediction quality
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Table 3.4: Strengths/weaknesses analysis of the methods for HI prediction
quality quantification and validation

Section  Method Strengths Weaknesses
3.5.1 1. New HI e Better understanding e Reveals limited number
DNV GL HI of weaknesses in DNV
GL HI
e New HI also likely to
contain weaknesses
3.5.2 2. Utility criteria Reveals weaknesses in e Predictive value out of
DNV GL HI service criteria unclear
e Criteria hard to obtain
3.5.3 3. Binary classification Can be applied (partly) e Hard to do statements on
to data HI prediction quality
Apphed ln SeVeral ﬁeldS ° Large amount Of
of study information lost in
representation
3.5.4 4. Prediction error Low amount of e Room for improvement
information lost in in HI prediction quality
representation definition
3.5.5 5. Life data analysis Comparison on group e Individual differences

level

between predictions and
observations neglected
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3.7 Adopted methods

The main argument for adopting the methods is their value for both the research described in
this thesis and future research. This value depends on two properties of the method:

1. The extent to which the method is suitable for HI prediction quality quantification and
validation.

2. The extent to which the method is suitable for enhancing the HI prediction quality for
validation of the DNV GL HI by future research.

Given the disparity between the level of expertise of the author and the experts that developed
the DNV GL HI, it is not realistic to expect that a newly developed HI by the author will
outperform the DNV GL HI. Therefore, developing a new HI does not yield reliable statements
on the HI prediction quality. This led to the decision to exclude this method from the research.

A comparison using utility criteria can only yield differences between the expert knowledge in
those criteria and the expert knowledge in the DNV GL HI. These differences could only yield
very specific points of improvement. Therefore, no quantification of the overall HI prediction
quality is possible using this method. As this thesis aims to extend the overall foundation of
the DNV GL HI by quantification of the HI prediction quality, this method was excluded as well.

Binary classification of the outcomes for each single asset is possible. However, using binary
classification, a large amount of information is disregarded during the classification. This
significantly reduces the usability to enhance the HI prediction quality of the DNV GL HI
in future research.

The prediction error method is able to provide several statements on the HI prediction quality.
Besides, this method can also be used for enhancing the HI prediction quality of the DNV GL HI.

The life data analysis method also enables statements on the prediction quality. Besides, its
results can be used to improve the HI prediction quality of the DNV GL HI. However, this
method can not be used for comparison on group level due to the definition of predicted lifetime.

To conclude, the prediction error and life data analysis methods complement each other
regarding their weaknesses. As the prediction error method can not be used for comparison on
group level, this method was excluded as well.

Therefore, only the life data analysis is adopted in this thesis to find the HI prediction quality
and for wvalidation of the DNV GL HI.
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Chapter 4

Statistical methods and background

This chapter presents and discusses the statistical methods used in this thesis for HI prediction
quality quantification and validation.

Section 4.1 presents an overview of common probability functions. Section 4.2 uses these
probability functions to describe three types of statistical distributions. Section 4.3 describes
the concept of life data analysis, as introduced in chapter 3, in more detail. Section 4.4 discusses
the assumptions made for failure distribution fitting and parameter estimation. Finally, section
4.5 summarizes the main conclusions of this chapter.

4.1 Probability functions

Probability functions describe the distribution of probabilities. In reliability engineering, they
are mostly used to describe failure behaviour of assets using statistical distributions. Statistical
distributions are explained in section 4.2.

Failure data of assets consists of the time to failure, representing the time span until failure,
occurs [58]. For this so-called time-to-failure data, the random variable X, the age of the failed
component, can have a value ranging from zero to infinity.

The probability density function (PDF) is a function f(t) that describes the likelihood of
random variables to take on a certain value. In reliability engineering, this function describes
the distribution of failure probability. An example of a PDF is given in figure 4.1.

a

f(t)

t (time to failure)

Figure 4.1: Example of a probability density function
Taking the integral of the PDF results in the cumulative distribution function (CDF). This
function, like the PDF, describes the likelihood of random variables to take on a certain value

for a specified interval. In reliability engineering, this function describes the probability of
failure for the interval starting from zero to ¢, and is denoted by F(t).
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The CDF relates to the PDF as:
¢
F(t) = / F(t)dt (4.1)

An example of a CDF is given in figure 4.2.

3

F(1)

t (time to failure)
Figure 4.2: Example of a cumulative distribution function (CDF), based on the PDF of
figure 4.1

Next to the PDF and CDF, reliability engineering often uses the failure rate function, \(t),
to represent reliability (also known as the hazard rate function, h(t)). This function describes
the failure rate (e.g. yearly number of failures) for a moment, indicated by ¢. The failure rate
function relates to the PDF and CDF as:

At) = % (4.2)

An example of a failure rate function is given in figure 4.3.

a

A(®)

t (time to failure)

Figure 4.3: Example of a failure rate function, based on the PDF and CDF of
figures 4.1 and 4.2

4.2 Statistical distributions

Several types of distributions exist. In this thesis, the distributions are used for modelling the
failure behaviour of assets. In failure behaviour of assets, multiple stages can be distinguished.
These stages can be described with a single curve, of which the shape is similar to a bathtub.
Section 4.2.1 explains this so-called bathtub curve. Sections 4.2.2 and 4.2.3 explain the two
distribution types present in this thesis.
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4.2.1 Bathtub curve

The failure behaviour of assets is generally characterized by three stages:

Stage 1: The stage of infant mortality. During this stage, most failures occur shortly after
installation and a decreasing failure rate A(t) is observed. This stage starts at the
assets commissioning year.

Stage 2: The stage of normal life. During this stage, failure behaviour is random and a constant
failure rate A(t) is observed. This stage is between the infant mortality and wear-out
stage.

Stage 3: The wear-out stage. During this stage, most observed failures are due to ageing and
an increasing failure rate \(¢) is observed.

Figure 4.4 shows an example of a bathtub curve as function of time for each of the three stages.
In the figure, the horizontal axis shows the time to failure ¢. The vertical axis shows the failure
rate A(t). The failure behaviour is illustrated by this figure for each stage.

Stage 1 Stage 2 Stage 3
Infant I Normal Iifel Wear-out
mortality

- -Infant mortality (A1)
..... Normal life (A2)
Wear-out (A3)

—Bathtub curve
(=A1+A2+A3)

t (time to failure)

Figure 4.4: Example of a bathtub curve including the three stages

4.2.2 Normal distribution
The normal distribution is characterized by two parameters:

1. u, representing the mean value of the distribution

2. o, representing the standard deviation of the distribution
The normal distribution is described by the PDF:

Ft) = e t=w?/20? (4.3)

oV 2

Figure 4.5 shows a plot of this PDF with the two parameters, i and o. For expert judgement
these parameters are not only well known, but also best interpretable. Therefore, failure
behaviour is described in the DNV GL HI using the parameters of the normal distribution
whenever expert judgement is required.
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f(t)

—
o

t (time to failure)

Figure 4.5: Example of a normal probability density function

4.2.3 Weibull distribution

For lifetime modelling, usually the Weibull distribution is used. Its strength lies is its flexibility,
which enables to describe the different life stages (see section 4.2.1) of a population of assets
[76].

The Weibull distribution is characterized by three parameters:

1. n, the scale parameter
2. [, the shape parameter
3. 7, the location parameter

The location parameter determines the moment when the first failures occur. For electrical
power equipment, the first failures can already occur from the moment of commissioning.
Therefore, the value of this parameter is set to zero in the majority of the reliability studies on
electrical power equipment. This results in a Weibull PDF characterized by the two parameters
n and B, also known as the 2P Weibull PDF'

f(t) = (5) (;)ﬁl () with Bt > 0 (4.4)

Figure 4.6a shows an example of the 2P Weibull PDF for three different values of n. This
example shows the effect of  on the scale of the PDF. Figure 4.6b shows an example of the 2P
Weibull PDF for three different values of 5. This example shows the effect of 8 on the shape
of the PDF.

n=0.5, B=3 n=0.6, B=
= n=1, p=3 & n=0.6, B=0.5
----------- n=2, B=3 we N=0.6, B= 3
¢ (time to failure) ¢ (time to failure)
(a) (b)

Figure 4.6: 2P Weibull PDF for three different values of: (a) the scale paramater 7;
(b) the shape parameter

68



4.3. LIFE DATA ANALYSIS

4.3 Life data analysis

A very brief introduction into life data analysis (LDA) has already been given in chapter 3 by
the application in a method for HI prediction quality quantification and validation. This section
explains this method for analysing life data in more detail. As shown in the work of Mehairjan
[76], two types of methods exist for analysing life data: parametric and non-parametric.

Of these two methods, the work of Mehairjan [76] shows that parametric methods are most
suitable for describing failure behaviour of a population, as these methods are most appropriate
for large data samples.

As LDA is used in this thesis to compare the failure behaviour of asset populations, the
parametric method is chosen. As mentioned in chapter 3, the four steps for life data analysis
are:

1. Gathering the life data (this is already described in chapter 3).

2. Selecting a lifetime distribution that fits the data and models the lifetimes.
3. Estimation of the parameters that fit the distribution to the data.

4. Generation of curves and results to estimate life characteristics.

The assumptions for steps 2 and 3 will be explained in section 4.4.

4.4 Failure distribution fitting and parameter estimation

Failure distribution fitting is the step during which a lifetime curve is fitted to the life data.
The work of Mehairjan [76] presents three methods for failure distribution fitting:

1. Probability plotting
2. Rank regression analysis (Least Squares Estimation, LSE)
3. Maximum likelihood estimation (MLE)

From these methods, only MLE can take into account large numbers of suspensions. The
datasets used in this text contain a large number of suspensions. Therefore, this thesis takes
MLE into account as the method for distribution fitting. Using MLE, the parameters of the
lifetime distribution are estimated.

The work of Mehairjan [76] describes the main methods to quantify the quality of the failure
distribution fit to the data. In summary, these methods include:

e Visual inspection, by visually looking how well the curve fitted to the data represents the
data points

e (Correlation coefficient, which shows how well the probability line fits the data.

e Likelihood value, which can be used to in addition to visual inspection to assess the fit of
the distribution to the dataset.

e Other methods, Kolmogorov-Smirnov test, Anderson-Darling test, etc.

From these methods visual inspection will be used to quantify quality of the failure distribution
fits to the data and is explained in the next section.
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4.4.1 Visual inspection

Visual inspection consists of visually looking how well the curve fitted to the data represents
the data points. The 90% confidence bounds show that the failure probability F(¢) is expected
to stay within the interval of the two bounds with a confidence of 90%. In the work of de Haan
[77], it is shown that during the distribution fitting, data points can be outside the confidence
bounds of the distribution. These data points are called outliers. Figure 4.7 shows an example
of a fit with two outliers (coloured grey). Furthermore, the work of de Haan [77] states that
when the number of outliers is very large, the data quality appears to be low. Low data quality
causes the data to be unrepresentative for modelling failure behaviour of assets.

F(t)

t (time to failur(;)

Figure 4.7: Failure probability plot with outliers

4.5 Summary and conclusions

This chapter has presented the statistical methods and background used for HI prediction quality
quantification and validation.

This chapter has shown three types of probability functions, the probability density function,
the cumulative probability function and the failure rate function. These functions are used to
describe failure behaviour of assets using statistical distributions. Three statistical distributions
have been presented in this chapter, the bathtub curve, the normal distribution and the Weibull
distribution.

Life data analysis, as introduced in chapter 3 has been explained in this chapter in more
detail. It was shown that for failure distribution fitting and parameter estimation, a parametric
method using MLE is most suitable to fit a failure distribution to the life data of the assets
discussed in this thesis. To conclude, from four methods to find the quality of the distribution’s
fit, the visual inspection method was chosen.
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Chapter 5

Utility data: collection and selection

The adopted research methods introduced in chapter 3 rely on utility data to enable HI
prediction quality quantification and validation. This utility data includes operational and failed
assets. Chapter 3 showed that these methods enable prediction quality quantification and that,
with future research, these methods could be used to enhance the prediction quality of the DNV
GL HI.

This chapter describes the collection and selection procedure of this failure, maintenance
and operation data.

Section 5.1 starts with the explanation of the data request process. In this request, data
requirements are formulated and used in a data request towards utilities. Section 5.2 provides
an overview of the acquired data and the data selected to be used as input for the methods
adopted in chapter 3.

5.1 Data request procedure

This section explains the steps taken during the data request. The first step is to define the
data requirements stated in the request, which will be described in section 5.1.1. The second
step is to request the data according to these data requirements. Section 5.1.2 presents the
organizations that were contacted regarding this data request.

5.1.1 Data requirements

The adopted methods of chapter 3 set data requirements for the utility data. This section starts
with an overview of the data requirements the data should at least meet to enable application
of the life data analysis method (see section 3.5.5). The data requirements are described per
data type.

All data types should at least meet the following minimum requirements:
e The data should be compliant with a version of the DNV GL HI. Therefore:

— a version of the DNV GL HI should cover the asset type of the data.

e Sufficient data should be present to create a predictions dataset using the DNV GL HI.
This data should at least:

— include the ages of in-service components to enable statistical analysis [58].
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— uniquely identify individual assets to ensure that exactly the same assets are used in
the predictions and observations datasets.

e The failure data should include a failure database:

— containing at least the date and cause of failure.

— containing a sufficient number of failures. For insulation breakdown data, data
containing at least ten failures should be used if possible [78].

When the data fulfils the above-mentioned minimum requirements, it is possible to quantify the
prediction quality of statistical remaining life functions of the DNV GL HI (see chapter 2).

To include quantification of the HI prediction quality of the utilisation remaining lifetime
functions, the data should, in addition to the above-mentioned minimum requirements, meet
the following requirements:

e The data should contain utilisation (loading) information which suits the format as
required by the DNV GL HI.

e The data should show a significant relation between the measured values in the asset data
and failure modes.

e The data should include the unit type and its operating limits [46].

To include quantification of the HI prediction quality of the condition remaining lifetime
functions, the data should, in addition to the above-mentioned minimum requirements, meet
the following requirements:

e The data should contain diagnostics (condition data) which suits the format as required
by the DNV GL HIL.

e The data should show a significant relation between the measured values in the asset data
and failure modes.

e The data should include threshold levels allowing interpretation of the data according to
the units and threshold levels of the DNV GL HI.

Quantification of the prediction quality is possible for all types of assessment function, when
the data meets all abovementioned requirements.

In addition to this, requirements for strengthening the methods for quantification of the HI
prediction quality are:

e The data should be available in a reliable and consistent dataset [58].

e The data should preferably include a maintenance database containing each maintenance
activity together with its date.

To conclude, a requirement to enhance the speed of data analysis, which allows for a study using
larger datasets, is:

e The data should be available in a format suitable for quick data analysis (e.g. available
in a database rather than separate paper reports).
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5.1.2 Contacted organisations

To find the data required for the research, the following persons and organisations were

contacted:

1. The supervisors of both the TU Delft and DNV GL.

2. Within DNV GL, Henk Wels, risk and reliability engineer. He provided access to a
significant number of reports on failure data. Besides, he had access to condition data
for a number of power transformers. The number of transformers covered by this data
appeared insufficient for application of the adopted method. Furthermore, he could not
provide the load profiles and other asset data essential for use in the adopted methods.

3. Maurice Roovers, manager Energy Infrastructure at the umbrella organization for Dutch

utilities, Netbeheer Nederland.

4. All Dutch utilities. The result of this data request is shown in table 5.1.

Table 5.1: Contacted utilities regarding data
Four utilities were willing to cooperate and did provide data.

Utility Data provided Comment

A No
‘B’ No
‘C No
‘D’ No
‘B’ Yes
‘F” Yes
‘G’ Yes
‘H’ Yes

No agreement established to provide data
Number of assets insufficient for a case study
No agreement established to provide data

Failure data does not fulfil the requirements
(individual assets are not indicated)

Willing to cooperate
Willing to cooperate
Willing to cooperate

Willing to cooperate

Four out of the eight contacted utilities were willing to cooperate and did provide data. The
data acquired from these utilities and the data selection are described in the next section.

5.2 Acquired data and data selection

5.2.1 Acquired data

As mentioned in section 5.1.2, a total of four utilities provided data. The level of detail of the
acquired data depended on two main properties of this data:

1. The number of asset owned by the utility that failed during the time window, should be
sufficient to apply the adopted methods.
If this criterion was not met, no additional/more detailed data was requested/acquired.
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2. The time windows of data for the predictions and observations datasets should be
sufficiently wide to enable application of the adopted methods.
If this criterion was not met, no additional data/more detailed was requested/acquired.

A wide variety of expressions is found in terminology of the utility data. Table 5.2 explains
these expressions as used in this chapter.

Table 5.2: Main utility data expressions
This table contains the main utility data expressions used in this

chapter.
Expression Explanation
DGA Dissolved gas analysis
IT Instrument transformer
CT Current transformer
VT Voltage transformer
CombiT Combined transformer

Online PD (SCG) Online partial discharge measurements by DNV GLs Smart
Cable Guard.

Offline PD Offline partial discharge measurements. In this thesis, they
refer to the Oscillating Wave Test System (OWTS) or the
0.1 Hz Very Low Frequency (VLF) method.

XLPE Cross-linked polyethylene
PILC Paper-insulated lead covered (steel armour outer sheath)
“EDPLK” Paper-insulated lead covered (PE outer sheath)
Mixed Cable circuits that consist of combination of XLPE, PILC
and “EDPLK”

Table 5.3 summarizes the acquired data. This table shows the available asset data for each
utility. This asset data is presented by the number of assets for which data is provided and the
range of this data. For example, the commissioning year of PILC distribution cables for utility
‘H’ ranges from 1930 to 2013.

The reports of off-line partial discharge measurements for the same distribution cables show
measurements from 1996 to 2013. Data, for which the range is unclear, is indicated by ‘n.a.’.
The number of assets at SCG represents the number of assets on which a SCG system has ever
been installed. For each utility, less SCG systems than this number are concurrently operational.

Visual inspection parameters consist of corrosion, sweating, leaking and dripping. This table
shows that the largest number of failure records are available for distribution cables.
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Table 5.3: Available asset data

This table shows the available asset data for the four utilities.

Utility ‘E’ Utility ‘F’ Utility ‘G’ Utility ‘H’
Asset type  Data type Type Assets  Range  Assets Range  Assets Range  Assets Range
Transformers Asset data Commissioning year - - 1958-2012 151 1966-2011 89 - -
(MV&HY) . DQA - - 89 n.a. 151 n.a. - -
Failure data Failures - - - - - - - -
Commissioning year - - - - 11643 1950-2012 - -
(HI 2007)
Visual inspection - - - - 14064 2013 - -
Instrument  Asset data 5y i i i i 1719 >2007 - -
trans- CT - - - - 840  >2007 - -
igm VT - - - - 706 >2007 - -
CombiT - - - - 173 >2007 - -
(HV) .
Failures - - - - 12 2005-2013 - -
Failure data  CT - - - - 7 2005-2012 - -
VT - - - - 5 2011-2013 - -
Commissioning year - - - - - - 1008  1930-2013
PILC - - - - - - 898  1930-2013
XLPE - - - - - - 44 1997-2013
“EDPLK” - - - - - - 15 1970-2004
Asset data i ed - - - - - - 51 1931-2012
Distribution Online PD (SCG) 6 2008-2014 18 2007-2014 - - 18 2011-2014
cables Offline PD reports - - - - - - 76 1996-2013

Maximum load
Circuit diagrams

1296 2013
n.a. n.a.

Failure data

Interruptions
PILC
XLPE

97 2006-2014
83 2006-2014
14 2006-2014

NOLLDATIS VIVA ANV VIVA Ad49INDOV '¢'G
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5.2.2 Data selection

As a result of the requirements mentioned in section 5.1.1, only a part of the data was used for
HI prediction quality quantification of the DNV GL HI. This section describes the data selection.

From table 5.3, it appears that for the distribution cables of utilities ‘E’ and ‘F’, distribution
cable diagnostics of only 6 and 18 distribution cables were available. Due to this limited amount
of data, this data was not used during the research.

For utility ‘F’, diagnostics of 89 transformers were available. As no transformer failures were
reported, this data was not used during the research.

The data on the instrument transformers of utility ‘G’ included inspection and failure data.
This failure data was, however, limited to only seven and five failures, for current and voltage
transformers, respectively. Furthermore, only inspection data from 2013 was available. Despite
the limited amount of failure and inspection data, the data was already used in a version of the
health index. Therefore, this data helped in the practical aspects of handling the large amount
of asset data. The number of failures in this data was sufficient to show application of the life
data analysis method (see section 3.5.5). Section 5.3 shows the process of preparing this data
for the analysis in the case study of chapter 6.

The data of the 10kV distribution cables of utility ‘H’ included diagnostics, utilization and
failure data. Furthermore, the number of failures (97) present in this data was sufficient to apply
the life data analysis method (see section 3.5.5). Section 5.4 shows the process of preparing this
data for the analysis in the case study of chapter 7.

5.3 Data preparation: DNV GL HYV instrument transformer
Health Index

This section provides a detailed overview of the available utility data on HV instrument
transformers (ITs), as presented in table 5.3 and shows how the data is prepared for the HI
assessment. This includes the assumptions on data that was not available from the utility and
originated from other sources.

5.3.1 IT information

The data used in this case study covers over 13000 I'Ts of a HV transmission network. The data
shows three types of ITs: current transformers, voltage transformers and combined transformers.
This HI version was developed and used for HI predictions in 2009. The failure database
contained failures over the period 2005-2013. Therefore, the time window (see section 3.2.1)
was set to the period 2009-2013. From the dataset of I'Ts, only the ones commissioned before
2009 were selected for this analysis.

5.3.2 Utility data files summary

This section provides an overview of the data files available for the case study. Table 5.4 shows
the asset data types available for each data file.
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INDEX

Table 5.4: Summary of the utility’s data files

# Data file Format Description Unit
Date of failure [dd-mm-yyyy]
Rated voltage [kV]
CT, VT,
P o Cosr
Location ]
Brand/type -]
Manufacturing year [yyyy]
Event -]
Substation -]
Section -]
Component identification number -]
Healthindex 2009 MS Fxcel Man;facturer L]
v4.2 - ITs ype H
Commissioning year -]
Rated voltage [kV]
Location {Inside, Outside}
Gas insulated switchgear {Yes, No}
Substation ]
Object description -]
Substation type -]
Section -]
Type of section -]
Rekenblad Component identification number -]

3 20131907 MS Excel {In service,
Overzicht Status Removed, Out of
STRMTRF service}

Type of IT {C\Z);[nj,b?TT}j
Manufacturer ]
Manufacturing year ]
Corrosion {Yes, No}
Sweating {Yes, No}
Leakage {Yes, No}
Dripping {Yes, No}

5.3.3 Data organization

Data file #3 in table 5.4, which is from 2013, includes information on corrosion, sweating,
leakage and dripping. These parameters are called condition indicators (Cls) and are obtained
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by visual inspection of the asset. Data file #1 does not include these Cls. It was considered
to include the CIs of data file #3 for finding the predictions dataset, assuming that the values
for these CIs do not improve in time. However, no maintenance records were available for this
utility. Therefore, it was not possible to check the which assets should be excluded due to
maintenance during the time window. Consequently, only the asset data from data files #1 and
#2 of table 5.4 were used.

For the data of this utility, it was not possible to find the corresponding asset data for
the failed assets directly, as the failure database lacked a component identification number.
However, based on the data on the failed asset, as available in the failure database, it was
possible for each failed asset to derive the corresponding predicted RL.

5.3.4 HI asset data

For this utility, the data was already put in the HI format and results for RL were found in
2009. Therefore, the HI asset data equals the data given in data file #2. This data includes
only the assets with a known commissioning year before 2009. For the ITs, the manufacturing
year was assumed to be equal to the commissioning year.

Predictions dataset

The predictions dataset originated from the predicted RLs of the HI in 2009. For these assets,
at tgr, only the commissioning year was available.

Observations dataset

Failures in this dataset originate from the assets present in the failure database that failed
during time window, for this data the period 2009-2013. Suspensions in this dataset originate
from the assets that survived the time window.

5.4 Data preparation: DNV GL distribution cable Health Index

This section provides a detailed overview of the available utility data on HV instrument
transformers (ITs), as presented in table 5.3 and shows how the data is prepared for the HI
assessment. This includes the assumptions on data that was not available from the utility and
originated from other sources.

5.4.1 Cable circuit information

The data used in this case study covers a region from a distribution cable network of 4150 km
(2013, [79]). In the data of this distribution cable network, four types of distribution cables
appear, as already shown in table 5.2. The outer layers of the “EDPLK” type cable circuits
consists of polyethylene (PE) combined with a wire screen, while in the PILC type circuits,
these layers consist of tarred jute yarn with a steel armour outer sheath.

The failure database spans the period 2007-2013. Therefore, from the dataset of PILC cable
circuits, only those commissioned before 2007 were selected for this analysis.

5.4.2 Utility data files summary

This section provides an overview of the data files available for the case study. Table 5.5 shows
the most important available asset data types for each data file. Appendix B contains a complete
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version of this table. The case study using this data does not take into account individual joints.
Therefore, data file #7 was not used.

Table 5.5: Summary of the most important data files of utility ‘H’

# Data file Format Description Unit
From - To -]
1 Loadflow results ~ MS Excel Insulating material -]
Maximum load (%]
9 D'istr'ibu‘Fion cable PDF From - To ]
circuit diagrams Circuit number [

Conductor material ]

3 Data distribution MS Excel Insulating material -]

cables Commissioning year [yyyyl

Circuit number -]
From - To -]

A Offline PD PDF Circuit number ]
Test date [dd-mm-yyyy]
Test result [-]
From - To H

Region ]

5 Nestordata failures MS Excel Component type ]

Failure cause ]

Date of failure [dd-mm-yyyy]

# conductors -]

Conductor material ]

6 Cable type specs  MS Excel
Insulating material -]

Short circuit current rating (1 s) [kA]
Joint object ID ]

Joint asset number ]

Data distribution :
7 joints MS EXCQI Reglon [_]

Type [l
Comumissioning year [yyyyl

5.4.3 Data organization

This section explains the steps taken to put the available asset data in a single file for all assets.
Figure 5.1 shows the combination of the data files used during this case study.
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Loadflow MV circuit
results diagrams

x§
Data MV
cables

xH $:

Nestordata 6 Cable type
failures specs

$:
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4 Offline PD database

Figure 5.1: Overview of combined data files

As illustrated by figure 5.1, the data of six files in total was combined. This data combination
consists of five steps:

1.

5.

For

Combine data file 1 and 2 by manually finding the cable circuit number from the
distribution network circuit diagrams.

. Combine the result of the previous step with file 3 by extracting the commissioning year.

. Combine this result of the previous step with file 4 by extracting the results of partial
discharge measurements

. Combine this result of the previous step with file 5 by extracting the failures for each
cable.

Combine this result of the previous step with file 6 by extracting the short circuit current.

step 3, interpretation of the measurements in the PDF-files was necessary. Table 5.6 gives

the three possible PD classification types of the DNV GL distribution cable HI.

Table 5.6: Summary of the PD classification types (based on [80])

Abbreviation Explanation

Good All good, no issues
Fair Minor PDs found, need more intense monitoring

Poor PDs found: action required, but can be scheduled next maintenance

For

this dataset, two different companies have carried out PD measurements and separate

reports were available. No direct relation of this information to the DNV GL HI tool was
available. Therefore, a relation was constructed. To achieve this, interpretation according to

the

explanation given in table 5.6 was used. Table 5.7 shows the relation constructed for the

types of indication, where the column indicated by a ‘#’ is the condition index number, taken
from the measurement reports.
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Table 5.7: Interpretation of different PD measurement results.

Classification for DNV GL HI

Type of
indication # Explanation Good Fair Poor
(Company)
1 Directly replace component X
Required action 2 Replace component within 1 year X
(SEBA KMT) 3 New PD measurement within 1 year X
4 No action required within 5 years X
3 - X
4 - X
Condition code 5 - X
(SEBA KMT) ¢ New PD measurement within 1 year X
7  New PD measurement within 1 year X
9 New PD measurement within 2-5 years X
Priority 1 Dry paper or moisture in insulation X
(KEMA) 4 No preventive actions necessary X

Furthermore, the PD could be classified in two ways, namely global and local. Global PDs are
PDs that are found throughout the entire cable circuit. Local PDs are PDs that occur only at
single or multiple locations throughout the cable circuit.

For each PD measurement, an expert opinion on the PD occurrence was available in the
reports. Only when the report text mentioned that the PDs where found globally, they were
interpreted as global PD.

As mentioned in section 7.1.1, it was required to construct load profiles for the week and
weekend day. The organisation Energy Data Service the Netherlands (EDSN) provides this
type of data [81]. From this data, the average hourly values of the ‘E1A’ and ‘E1B’ profiles
were taken. These load profiles were normalised to the average estimated worst case load.
Figure 5.2 shows the resulting load profiles that were used in the HI.

50

"% 40

£

@ 30 -

= 20 —\Weekday

° /4 \

§ 10 —Weekend day
0 : : : :

0 6 12 18 24
Hour

Figure 5.2: Assumed load profiles for the utilities’ network

In conclusion, this resulted in an Excel-sheet containing a row for each cable section of a cable
circuit. This sheet is presented in appendix C.
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5.4.4 HI asset data

For this utility, the data was not yet put in the HI format. Therefore, it was put in the HI
format and results for RL were found in 2007. From this data, only the assets with a known
commissioning year before 2007 are included. For the distribution cables, the manufacturing
year was assumed to be equal to the commissioning year.

Based on the available asset data, subsets of assets were chosen for the analysis:

1. Cable circuits, for which the values for maximum load are available, are selected.
2. Only distribution cables with a known commissioning year before 2007 are selected.

3. For the XLPFE type, 11 cable circuits are present in the dataset. For the Mized type, 49
cable circuits are present in the dataset. To ensure a homogeneous dataset, only PILC
type cable circuits are included.

This resulted in a predictions dataset and observations datasets including 886 cable circuits.

Predictions datasets

To create a predictions dataset representative for a standard HI assessment, predictions should
originate from the HI based on all available asset data. Therefore, all available asset data was
taken into account.

For the assets in the dataset, two main types of asset data can be distinguished: mazimum
load values and PD values. For all assets covered in the data, maximum load values were
available. For only 18 assets in the dataset, PD values were available. First, the maximum
load values in the data are investigated for their relation to failure behaviour. Next, a dummy
dataset is used to find which mazimum load values and PD values affect RL predictions of
the HI. To conclude, based on the results using the dummy dataset, an additional dataset was
constructed by adjusting the load values.

The study presented in [82] suggests that a relation between cable load and failures exists
for cable joints. In order to find out to which extent the dataset can show the HI prediction
quality based on load values, the relation between maximum load and outages was investigated.
Figure 5.3 shows the cable circuits in the dataset. The horizontal axis shows the maximum load
in intervals of 10%. The vertical axis shows the number of circuits.

The green coloured bars on top represent the number of circuits in which no failure occurred
during the time window (see chapter 3). The red coloured bars on the bottom show the number
of circuits for which a failure occurred during the time window. This figure shows that the
majority of the circuits experiences a maximum load below 75%.

Figure 5.4 shows, for each load interval, which fraction of the cable circuits have failed during

the time window. This figure suggests that for this dataset, a relation between cable circuit
load and failure probability is present.
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Figure 5.4: Percentage of circuits with failures for each load interval
This figure suggests that a relation between cable load and failures is present.

For the first analysis of the predictions, the load settings as described in section 5.4.3 were
applied. The case with these settings is referred to as the ‘actual’ load case.

Using the values from the ‘actual’ load case, the HI was used to find the RLs. Figure 5.5
shows the result for the RL and statistical RL from the ‘actual’ load case.

In this figure, the horizontal axis shows the asset age at the moment of the HI prediction.
The vertical axis of this figure shows the predicted RL. In this graph, two types of predictions
are presented:

1. RL predictions for the ‘actual’ load case

2. RL predictions for the case using only the statistical remaining lifetime function (see
section 2.1.1)

As it appears for figure 5.5, the RL predictions of the ‘actual’ load (blue coloured triangles)
overlap exactly with the statistical RL predictions (orange coloured dots), except for one
prediction, which has a predicted remaining lifetime of one year. Inspection of this prediction
shows that one PD measurement with value ‘Poor’ has resulted into this predicted RL of one
year.

The similarity between the RL predictions of the ‘actual’ load and the statistical RL
predictions suggests that RL predictions using the ‘actual’ load values are insufficiently taking
into account the effect of cable circuit loading on the predicted RL.
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Figure 5.5: RLs of the predictions dataset under ‘actual’ load compared to the
statistical RLs of this dataset

Prior to preparing the predictions dataset, a dummy dataset was prepared to determine in
what way the condition parameters influence the RL. Figures 5.6a and 5.6b show the results
from application of this dummy dataset in the DNV GL distribution cable HI. In both figures,
the horizontal axis on the left-hand side shows the age at ty; and the vertical axis shows the
predicted RL (RLypyeq).

In figure 5.6a, the horizontal axis on the right-hand side shows the PD wvalue. In figure 5.6b,
the horizontal axis on the right-hand side shows the mazimum load.

The results presented in figure 5.6a show that for the PD values fair and good, the same
RL,cq results for each age at ;. For the PD value poor, the RL,,.q equals one year. This
shows that the influence of the PD value for cables with an age of 4 to 64 years is only visible
for the PD value poor.

The results presented in figure 5.6b show that for the maximum load values 0 through 0.75,
the same RL,,.q results for each age at t57. For the maximum load value 1, the RL,cq is lower
for each age at tz;. This shows influence of cable load for cable circuits in this case study with
an age of / to 64 years only above a maximum load value of 75%.

RLpred [y]

(a)

(b)

Figure 5.6: Results using a dummy dataset for finding the influence on predicted
remaining lifetime of: (a) the PD value; (b) the maximum load value
This figure shows, for cable circuits in this case study with an age of 4 to 64, that:
(a) only the PD wvalue ‘poor’ influences predicted RL; (b) only mazimum load
values above 75% influence the predicted RL
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Only load values from 75% to 100% influence the RL,,.q and figure 5.3 showed that the majority
of the cable circuits experiences a maximum load value below 75%. To investigate the effect of
load on the results, two datasets were prepared, based on the settings for maximum load:

1. ‘Actual’ maximum load dataset
2. ‘Tweaked’ maximum load dataset

For the ‘actual’ maximum load dataset, the settings as described in section 5.4.3 were applied.
For the ‘tweaked” maximum load dataset, two settings of the ‘actual’ maximum load dataset
were changed:

1. ‘Tweaked’ maximum load [%] = 3/4 + 1/4 x ‘actual’ maximum load [%]
2. Load profile (weekday and weekend day) = 100% continuous for each hour

The result after applying these settings is shown in figure 5.7. In this figure, the predictions
for the ‘tweaked’ load (orange coloured dots) show that, when looking at different ages, the
predicted remaining lifetime differs from the ‘actual’ load (blue coloured triangles). This shows
that the predictions dataset resulting from the settings for ‘tweaked’ load, clearly includes the
effect of ageing by load.
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Figure 5.7: RLs of the predictions dataset under ‘actual’ load compared to the
RLs under ‘tweaked’ load.

Observations dataset

As shown in [76], the topology of cable circuits in distribution cable networks changes over
time. Cable joints or cable sections that (have been predicted to) fail are in most cases replaced
by a new cable section and two new joints. These continuous changes in topology cause the
reliability of cable circuits, apart from its ageing-related changes, to change over time. These
changes can influence the observed reliability, which follows from the observations dataset, both
positively and negatively. A higher reliability can be observed due to the new cable sections and
joints in the normal life period that have survived the period of infant mortality (see section
4.2.1). However, the new cable sections and joints that are in the period of infant mortality can
introduce a lower reliability.

Interruptions in the observations dataset originate from the cable circuits present in the failure

database that experienced an interruption during the period 2007-2014. For this analysis, the
failure moment is taken equal to the first observed interruption of the cable circuit. As an
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interruption in a cable circuit is not a direct indication for end-of-life for this cable circuit, this
assumption is pessimistic and therefore, on the safe side. This has a negative influence on the
observed reliability, caused by the observations dataset.

Suspensions in this dataset are the cable circuits, for which no interruption has occurred
during the time window.
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Chapter 6

Case study: DNV GL instrument
transformer Health Index

This chapter aims to show an application of the methods presented in chapter 3 using data of
HV instrument transformers.

In this particular case study, it will be the application of method 5, life data analysis, as
described in section 3.5.5. The case study focuses on instrument transformers (ITs) of a Dutch
TSO using the DNV GL instrument transformer HI.

For the ease of reading, in this chapter, the DNV GL IT HI will be denoted as just HI.

The chapter is divided into five parts. Firstly, in section 6.1, an explanation is given of the
items in this HI required for the case study. Secondly, section 6.2 presents the assumptions for
this case study and shows the hypothesis regarding the outcome of this case study. Thirdly,
section 6.3 shows the results of the case study. To conclude, sections 6.4 and 6.5 present the
conclusions and recommendations.

6.1 DNV GL IT HI

This section describes the HI version used for this case study. Firstly, section 6.1.1 presents the
available asset data and the settings. Secondly, section 6.1.2 explains the remaining lifetime
definition. Thirdly, section 6.1.3 shows the used HI output representation. To conclude, section
6.1.4 presents the software and hardware used by the HI.

6.1.1 Asset data

This section describes the asset data the HI can use to perform a HI assessment. As described
in section 2.1.1, even when part of this data is missing, it is still possible to determine asset
health. However, section 2.1.1 also showed that the amount of data that is available for such
calculation has a clear influence on the uncertainty in the output.

Table 6.1 provides an overview of asset data types used by this HI. Parameters #1 through
#7 identify the individual asset.
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Table 6.1: Asset data types for the DNV GL IT HI

Category # Parameter
Substation
2 Section
3 Component identification number
Asset identification 4 Manufacturer
5 Type
6 Commissioning year
7 Rated voltage

6.1.2 HI remaining lifetime definition

As already introduced in section 3.3, different definitions are used among the Hls for the
remaining lifetime (RL) of assets. For the HI of this case study, the RL is defined as the
period, starting from the predictions moment, during which at most 1% of the assets with the
same values for asset data is expected to fail [83].

6.1.3 HI output representation used for the comparison

As described in section 2.1.1, different output representations exist for the HI. For this HI
version, asset health is represented by a RL, a colour code and an intensity. From these
three values, the HI prediction quality quantification methods only use RL. Therefore, the
representations used for this case study are limited to the values for RL.

6.1.4 Software and hardware

This HI is based on a spreadsheet in Microsoft Excel 2003 using Visual Basic for Applications
(VBA) code. This HI uses the number of available asset data types to determine uncertainty.
The value of tg; was set to 2009 in the Excel sheet.

The calculations where performed on multiple computers. Using a computer equipped with
an Intel i7 processor, the computational time was approximately 20 minutes to find the HI for
around 13000 assets.

6.2 Assumptions and hyphothesis

The hypothesis for this case study is summarized in two main points:
1. For this case study, the assumptions on the utility data, as shown in chapter 5 are used.

2. Using the life data analysis method, it is possible to show the validity of the DNV GL IT
HI.
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6.3 Results

This section describes the results of the case study for the DNV GL IT HI using method 5, life
data analysis (see section 3.5.5). As described in section 3.2.1, two datasets are necessary for HI
prediction quality quantification and validation: predictions and observations. In the life data
analysis, the predicted RLs were translated to predicted failures and predicted suspensions.
The observed lifetimes were translated to observed failures and observed suspensions. For this
analysis 90% confidence bounds (see section 4.4.1) were applied.

Sections 6.3.1 and 6.3.2 show the results of the failure distribution fitting for the predictions and
observations datasets. Section 6.3.3 shows the comparison of these curves for the HI prediction
quality quatification and validation of this HI.

6.3.1 Predictions

Figure 6.1 shows the result of life data analysis for the predictions dataset. In this figure,
the horizontal axis shows the asset age on a logarithmic scale. The vertical axis shows the
probability of failure, also on a logarithmic scale. For this analysis, both predicted failures and
predicted suspensions were taken into account (see section 3.5.5).

The blue dots in this figure show the data points of failures, the blue triangles show the
suspension points. The striped dark blue line is the probability line. The striped light blue
lines are the 90% confidence bounds. These three lines almost follow the same line, showing
narrow confidence bounds. The majority of the data points are outside these confidence bounds,
i.e. the majority of the data points are so-called outliers (see section 4.4). This large number
of outliers shows that the data-quality is low. Therefore, the data is not representative for the
predicted failure behaviour of the assets and cannot be used in drawing a firm conclusion on
the validity of this HI.
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Figure 6.1: 2P Weibull fit on the predictions dataset assuming both predicted
failures and predicted suspensions
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6.3.2 Observations

Figure 6.2 shows the result of life data analysis for the predictions dataset. In this figure, like
figure 6.1, the horizontal axis shows the asset age on a logarithmic scale. The vertical axis shows
the probability of failure, also on a logarithmic scale. For this analysis, both observed failures
and observed suspensions were taken into account (see section 3.5.5).

Like in figure 6.1, the green dots in this figure show the data points of failures, the green
triangles show the suspension points. The striped dark green line is the probability line. The
striped light green lines are the 90% confidence bounds. Only one of these points is outside
confidence bounds, i.e. only one outlier is present in the dataset (see section 4.4). This would
suggest the data quality to be high. However, only eight failures are present in the dataset,
which explains the wide confidence bounds. As stated in 5.1.1, if possible, a minimum of ten
failures should be obtained to describe the failure behaviour of the assets. Therefore, this utility
data cannot be used in drawing a firm conclusion on the validity of this HI.
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Figure 6.2: 2P Weibull fit on the predictions dataset assuming both predicted
failures and predicted suspensions

6.3.3 HI prediction quality quantification and validation by predictions and
observations comparison

This section shows the results of the HI prediction quality quantification and validation by
comparing the life-curves shown in the previous sections.

The comparison between predictions and observations is done using method 5 as explained
in section 3.5.5. Figure 6.3 shows the life data analysis for the predictions (in blue colour) and
observations (in green colour) of figures 6.1 and 6.2 in a single graph.

The horizontal striped line points towards the average predicted lifetime for this group of
assets. As shown in section 6.1.2, this lifetime equals the lifetime for which at most 1% of
the assets have failed. The first row of table 6.2 shows this lifetime, including its confidence
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bounds.

The vertical arrow points towards the observed failure probability for this lifetime. The
second row of table 6.2 shows the observed failure probability for this lifetime, including its
confidence bounds.

Table 6.2: Derivation of the observed failure probability for the
average predicted lifetime

90% bound Lifetime 90% bound

Predicted lifetime

1 (failure probability < 1%) i pl.2 p1.6 o1.9

Observed failure probability

for predicted lifetime (7] 026 0.14 0.07
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Figure 6.3: Comparing the results of the dataset of predictions to the results of
the observations dataset (90% confidence bounds)

Figure 6.4 is a copy of figure 6.3, adding elements to show validation and HI prediction quality.

The red box in top of this figure shows the area, in which an observed failure probability
for the predicted lifetime shows that the HI prediction is non-valid.

Conversely, the green box on the bottom of this figure shows the area, in which an observed
failure probability for the predicted lifetime shows that the HI prediction is valid. For this HI,
the observed failure probability for the predicted lifetime is in the green box. Therefore, in this
case the HI prediction is considered walid, as shown in the third row of table 6.3.

The three arrows in the right of this figure show the distance of the observed failure probability
for the predicted failure probability including the 90% confidence bounds. This distance (in

91



CHAPTER 6. CASE STUDY: DNV GL INSTRUMENT TRANSFORMER HEALTH

INDEX

percent) is inversely proportional to the HI prediction quality and is defined by:

distance [%]
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Figure 6.4: Comparing the results of the dataset of predictions to the results of
the observations dataset (90% confidence bounds)
Table 6.3: Derivation of the observed failure probability for the
average predicted lifetime
90% bound Lifetime 90% bound
Predicted lifetime
1 . . 51.6 51.9
(failure probability < 1%) i
Observed failure probability
2 . o 0.14 0.07
for predicted lifetime (7]
- : o lid . .
3 Validity predicted lifetime 1\}{;@‘1&13 d} Valid Valid
4 HI prediction quality (0-1) 0.14 0.07
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6.4 Conclusions

From this case study, the following conclusions can be drawn:

1. This case study has shown the application of a method for quantifying prediction quality
of a HI and validation of a HI. The hypothesis, that it is possible to quantify HI prediction
quality and to validate this HI (see section 6.2) is therefore not rejected by this case study.

2. Both for distribution fitting of the predictions and observations datasets in this case study,
the data quality was too low to draw firm conclusions on the validity of this HI.

3. No firm conclusion can be drawn regarding the finding of this case study on the DNV
GL instrument transformer HI that the predictions were found to be too optimistic and
therefore non-valid. This finding followed from the value of the mean observed age, which
is higher than the value of the mean predicted age.

6.5 Recommendations

For this case study, no condition data was available at tz;. Therefore, only the HI prediction
quality of the statistical assessment functions was determined for this HI for walidation of this
HI. To enable better HI prediction quality quantification for this HI at a moment in the future,
the following is recommended:

1. For each failed asset, the utility should link the asset’s serial number to the asset in the
HI.

2. The time window should cover a time period during which sufficient failures have occurred.
When at least ten failures are considered the minimum and when extrapolating the number
of failures in the time window of this dataset, the minimum time window would be 6
years wide, allowing for an analysis in 2015. For this specific case study, it was found that
majority of the condition indicators were available starting from 2013. Therefore, a failure
database covering failures until at least the year 2015 are necessary for this dataset.
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Chapter 7

Case study: DNV GL distribution
cable Health Index

This chapter describes the case study for a population of 10 kV distribution cables.

The chapter is divided into five parts. Firstly, in section 7.1, an explanation is given of the
items in this HI required for the case study. Secondly, section 7.2 presents the assumptions for
this case study and shows the hypothesis regarding the outcome of this case study. Thirdly,
section 7.3 shows the results of the case study. To conclude, sections 7.4 and 7.5 present the
conclusions and recommendations.

7.1 DNV GL distribution cable HI

This section describes the HI version used for this case study. Firstly, section 7.1.1 presents the
available asset data and the settings. Secondly, section 7.1.2 explains the remaining lifetime
definition. Thirdly, section 7.1.3 shows the used HI output representation. To conclude, section
7.1.4 presents the software and hardware used to fin the HI.

7.1.1 Asset data and settings

This section describes the asset data and settings the HI uses to perform a HI assessment. As
described in section 2.1.1, even when part of this data is missing, it is still possible to determine
asset health. Notwithstanding, the amount of data that is available for such calculation has a
clear influence on the reliability of the assessment.

Table 7.1 provides an overview of asset data types used by the DNV GL distribution cable
HI that were available for this case study. Appendix C shows an extended version of this table,
including the parameters of this HI that were not available for the case study. Parameters
#1 through #3 identify the individual cable circuit. Based on the cable type(s), each cable
circuit belongs to a group of cables with particular failure behaviour. From this information,
the statistical remaining lifetime is calculated. The batch number selects a distribution which
represents the failure behaviour of the cable circuit.

Parameters #4 through #18 contain more detailed information on the cable circuit.
Appendix C explains these parameters in more detail.
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Table 7.1: Summary of the main available HI asset data

Category # Parameter Unit
Source ]
Asset -
identification 2 Destination §
3 Batch number [#]
4 Maintenance section -]
General
information 5 Cable insulation main cable {XLPE, PILC, Mixed}
6 Commissioning year [yyyy]
7 Rated current [A]
8 Rated short-circuit current (1 s) [A]
Design
details 9 Number of cores per cable [#]
10 Earthing {Single, Double, CrossB}
11 Waterblocking screen/conductor {Yes,No}
12 Max loading [MVA]
Utilization
data 13 Historical maximum loading (%]
Number of short circuit currents
14 e | . [#]
ince last maintenance
15 Date of test [dd-mm-yy]
Partial
discharge 16 Test result {Normal, Fair, Poor}
17 PD occurrence {Local, Global}
Failure Number of spontaneous failures in
18 [#]
data, cable

In addition to the asset data, this HI allows for application of more general settings that apply
to (groups of) the dataset. Table 7.2 provides an overview of these settings. The cells that
describe asset data that was not available or applicable for the case study are marked grey.

Items #1 through #3 are the ageing related settings. Items #4 through #6 are defined for
each batch. Together, they define which distribution type and parameters are used to derive the
statistical RL. Item #7 contains minimum values for dissolved gas analysis concentrations. Item
#8 contains two hourly load profiles: one for modelling the weekdays and one for modelling the

weekend days.
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Table 7.2: Summary of the main HI parameters
Items coloured grey were not available or applicable.

Category # Parameter Unit
1 Load growth factor (% /y]
Ageing ? Maximum leakage (oil-filled cables) [L/month]
? Minimum degree of polymerization 8

(paper-based cables)

4 Distribution type -]
Batch 5 Distribution parameter 1 ]

6 Distribution parameter 2 ]
DGA parameters 7 Minimum follow-up concentrations [ppm]
Load profile 8 Weekday,weekend day (24 values) [%]

7.1.2 HI remaining lifetime definition

As already introduced in section 3.3, different definitions are used among the HIs for the
remaining lifetime (RL) of assets. For the HI of this case study, the RL is defined as the
period, starting from the predictions moment, during which at most §% of the assets with the
same values for asset data is expected to fail [80].

7.1.3 HI output representation used for the comparison

As described in section 2.1.1, different output representations exist for the HI. For this HI
version, asset health is represented by a RL, a time to additional maintenance, a colour code
and an intensity. From these three values, the HI prediction quality quantification methods only
use RL. Therefore, the representations used for this case study are limited to the values for RL.

7.1.4 Software and hardware

This HI is based on a spreadsheet in Microsoft Excel 2003 using Visual Basic for Applications
(VBA) code. This HI uses the number of available asset data types to determine uncertainty.
The value of tg; was set to 2009 in the Excel sheet.

The calculations where performed on multiple computers. Using a computer equipped with
an Intel i7 processor, the computational time was approximately 20 minutes to find the HI for
around 13000 assets.

7.2 Assumptions and hyphothesis

For this case study, the assumptions on the utility data, as shown in section 5.4, are used. The
following hypothesis is formulated:

Using the life data analysis method, it is possible to test the validity of the DNV
GL distribution cable HI.
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7.3 Results

This section describes the results of the case study for the DNV GL distribution cable HI
using method 5, life data analysis (see section 3.5.5). As described in section 3.2.1, two
datasets are necessary for HI prediction quality quantification and wvalidation: predictions and
observations. In the life data analysis, the predicted RLs were translated to predicted failures
and predicted suspensions. The observed lifetimes were translated to observed failures and
observed suspensions. For this analysis 90% confidence bounds (see section 4.4.1) were applied.

Sections 7.3.1 and 7.3.2 show the results of the failure distribution fitting for the predictions and
observations datasets. Section 7.3.3 shows the comparison of these curves for the HI prediction
quality quantification and validation of this HI.

7.3.1 Predictions
Predictions ‘actual’ load

Figure 7.1 shows the result of life data analysis for the predictions dataset of the ’actual’ load
case, as shown in section 5.4.4. In this figure, the horizontal axis shows the asset age on a
logarithmic scale. The vertical axis shows the probability of failure, also on a logarithmic scale.
No failures were predicted in the time window (see section 3.5.5). Including suspensions would
lead to only predicted suspensions. As for failure distribution fitting, failures are necessary, only
predicted failures were taken into account.

The blue dots in this figure show the data points of failures. The striped dark blue line is
the probability line. The striped light blue lines are the 90% confidence bounds. These three
lines almost follow the same line, showing narrow confidence bounds. The majority of the data
points are outside these confidence bounds, i.e. the majority of the data points are so-called
outliers (see section 4.4). This large number of outliers suggests that the data-quality is low.

Besides, the distribution does not properly fit the data. Using a distribution different from
the 2P Weibull distribution would possibly result in a slightly better fit, but still a large part of
the data points would consist of outliers. This large number of outliers would still suggest that
the data-quality is low. As shown in section 3.5.5, only the lifetime for 50% failure probability
is used from this probability line. By visual inspection, a slightly better distribution fit would
lead to a slightly different lifetime for 50% failure probability with still a low data quality.

Therefore, the data is not representative for the predicted failure behaviour of the assets and
cannot be used in drawing a firm conclusion on the validity of this HI.
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Figure 7.1: 2P Weibull fit on the predictions dataset of ‘actual’ load, assuming
only predicted failures

Predictions ‘tweaked’ load

Figure 7.2 shows the result of life data analysis for the predictions dataset of the 'tweaked’ load
case, which was prepared to include the effect of cable circuit load on failure behaviour (see
section 5.4.4). In this figure, the horizontal axis shows the asset age on a logarithmic scale. The
vertical axis shows the probability of failure, also on a logarithmic scale. For this analysis, both
predicted failures and predicted suspensions were taken into account (see section 3.5.5).

The cyan blue dots in this figure show the data points of failures, the cyan blue triangles
show the suspension points. The striped cyan blue line is the probability line. The cyan light
blue lines are the 90% confidence bounds. These three lines almost follow the same line, showing
narrow confidence bounds. Some of the data points are outside these confidence bounds, i.e. the
majority of the data points are so-called outliers (see section 4.4). These three data points could
be removed. However, this would leave only eight failures. By visual inspection, a distribution
fit excluding these outliers would lead to a slightly different lifetime for 50% failure probability.
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Figure 7.2: 2P Weibull fit on the predictions dataset of ‘tweaked’ load, assuming
both predicted failures and predicted suspensions

7.3.2 Observations

Figure 7.3 shows the result of life data analysis for the predictions dataset. In this figure, like in
figures 7.1 and 7.2, the horizontal axis shows the asset age on a logarithmic scale. The vertical
axis shows the probability of failure, also on a logarithmic scale. For this analysis, both observed
failures and observed suspensions were taken into account (see section 3.5.5).

Like in figures 7.1 and 7.2, the green dots in this figure show the data points of failures, the
green triangles show the suspension points. The striped dark green line is the probability line.
The striped light green lines are the 90% confidence bounds. These three lines almost follow the
same line, showing narrow confidence bounds. A large number of the data points are outside
these confidence bounds, i.e. a large number of the data points are so-called outliers (see section
4.4). This large number of outliers shows that the data-quality is low.

Furthermore, changes in the topology of cable circuits (see section 5.4.4) can influence the
observed reliability, which follows from the observations dataset, both positively and negatively.
Next, the definition of a failure for cable circuits has a negative influence on the observed
reliability. Both the changes in topology as the failure definition can influence the results of
this case study significantly.

Therefore, the data is assumed to be not representative for the observed failure behaviour
of the assets and cannot be used in drawing a firm conclusion on the validity of this HI.

100



7.3. RESULTS

Probability - Weibull
99.000 Probability
CB@90% 2-Sided [R]
Data1
2P-Weibull
50.000 MLE SRM FM MED
F=47/S=835
e Data Points
) = Suspension Points
S Probability Line
= 10.000 ) Top CB-II
i; 5.000 ' Bottom CB-lI
z
: “
s 1.000
[}
5 0.500 ie
T e
b (]
0.100
(€]
0.050
00101 >>bbbbbbbh»»iillllllllll II>I> 00
Lifetime (distribution cable circuit) [y]

Figure 7.3: 2P Weibull fit on the observations dataset assuming both observed
failures and observed suspensions

7.3.3 HI prediction quality quantification and validation by predictions and
observations comparison

This section shows the results of the HI prediction quality quantification and validation by
comparing the life-curves shown in the previous sections.

The comparison between predictions and observations is done using life data analysis, as
explained in section 3.5.5. Firstly, the dataset of ‘actual’ load predictions is compared to
the observations. Secondly, the dataset of ‘tweaked’ load predictions is compared to the
observations.

Comparison predictions ‘actual’ load to observations

Figure 7.4 shows the life data analysis for the predictions (in blue colour) and observations (in
green colour) of figures 7.1 and 7.3 in a single graph.

The horizontal striped line points towards the average predicted lifetime for this group of
assets. As shown in section 7.1.2, this lifetime equals the lifetime for which at most 5% of
the assets have failed. The first row of table 7.3 shows this lifetime, including its confidence
bounds.

The vertical arrow points towards the observed failure probability for this lifetime. The
second row of table 7.3 shows the observed failure probability for this lifetime, including its
confidence bounds.
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Table 7.3: Derivation of the observed failure probability for the
average predicted lifetime

90% bound Lifetime 90% bound

Predicted lifetime

(failure probability < 5%) i 679 08.4 08.4

Observed failure probability

for predicted lifetime (%] 10.6 13.8 17.7

Failure probability F(t) [%]

Probability - Weibull

99.990 ] Probability
CB@90% 1-Sided TB [R]
Predictions - 'actual' load
2P-Weibull
MLE SRM FM MED
F=882/S=0
50.000 * Data Points
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................................. Jo7 . | ==Bottom CB-II
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Figure 7.4: Comparing the results of the dataset of predictions of ‘actual’ load to

The red
for the predicted lifetime shows that the HI prediction is non-valid.

the results of the observations dataset (90% confidence bounds)

Figure 7.5 is a copy of figure 7.4, adding elements to show wvalidation and HI prediction quality.

bozr in top of this figure shows the area, for which an observed failure probability

Conversely, the green box on the bottom of this figure shows the area, in which an observed

case the

failure probability for the predicted lifetime shows that the HI prediction is walid. For this HI,
the observed failure probability for the predicted lifetime is in the red box. Therefore, in this
HI prediction is considered non-valid, as shown in the third row of table 7.4. This
non-valid HI prediction, cause the HI prediction quality to be equal to zero, which is shown in
the fourth row of table 7.4.
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Figure 7.5: Derivation of validity and HI prediction quality

Table 7.4: Derivation of the observed failure probability for the

average predicted lifetime

90% bound Lifetime 90% bound
1 (faih]frree iﬁgjbllllfi;n; 5%) i 679 0.4 0.4
p Obsfeoivf)(jeﬁiclgg Eggﬁfhty %] 10.6 13.8 17.7
3 Validity predicted lifetime 1\}{;/3321’1 d) Non-valid Non-valid Non-valid
4 HI prediction quality (0-1) 0 0 0

Comparison predictions ‘tweaked’ load to observations

Figure 6.3 shows the life data analysis for the predictions (in blue colour) and observations (in

green colour) of figures 7.1 and 7.3 in a single graph.

The horizontal striped line points towards the average predicted lifetime for this group of
assets. As shown in section 7.1.2, this lifetime equals the lifetime for which at most 5% of
the assets have failed. The first row of table 7.5 shows this lifetime, including its confidence

bounds.

103




CHAPTER 7. CASE STUDY: DNV GL DISTRIBUTION CABLE HEALTH INDEX

The vertical arrow points towards the observed failure probability for this lifetime. The
second row of table 7.5 shows the observed failure probability for this lifetime, including its
confidence bounds.

Table 7.5: Derivation of the observed failure probability for the
average predicted lifetime

90% bound

Lifetime 90% bound

Predicted lifetime

L (failure probability < 5%) i 99.7 120.2 144.8

Observed failure probability

for predicted lifetime (%] 18.2 324 56.9
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Figure 7.6: Comparing the results of the dataset of predictions of ‘actual’ load to
the results of the observations dataset (90% confidence bounds)

Figure 7.7 is a copy of figure 7.6, adding elements to show wvalidation and HI prediction quality.

The red bor in top of this figure shows the area, for which an observed failure probability
for the predicted lifetime shows that the HI prediction is non-valid.

Conversely, the green box on the bottom of this figure shows the area, for which an observed
failure probability for the predicted lifetime shows that the HI prediction is valid. For this HI,
the observed failure probability for the predicted lifetime is in the red box. Therefore, figure 7.7
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suggests that the HI prediction is non-valid, as shown in the third row of table 7.6. Therefore,

the HI prediction quality is equal to zero, which is shown in the fourth row of table 7.6.

Furthermore, compared to the results using the ‘actual’ load dataset, the results using the
‘tweaked’ load dataset suggest that the observed failure probability for the predicted lifetime
has a larger distance from the defined 5 % HI observed failure probability. This would suggest

that these predictions are even less accurate.

However, as shown in section 5.4.4, the values of the RL predictions for ‘tweaked’ load are
in general lower than the RL predictions for the ‘actual’ load. Therefore, it could be expected
that the ‘tweaked’ load would show that the HI predictions more accurate than for the ‘actual’
load case. Only the ‘tweaked’ load case included predicted suspensions, which can be the cause

for this finding.
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Figure 7.7: Comparing the results of the dataset of predictions to the results of
the observations dataset (90% confidence bounds)
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Table 7.6: Derivation of validity and HI prediction quality

90% bound Lifetime 90% bound

Predicted lifetime
1 (failure probability < 5%) i 9.7 1202 144.8

Observed failure probability

2 for predicted lifetime [72] 18.2 32.4 56.9
- : e {Valid, ) . .
3 Validity predicted lifetime Non-valid} Non-valid Non-valid Non-valid

4 HI prediction quality (0-1) 0 0 0

7.4 Conclusions

From this case study the following conclusions can be drawn:

1. This case study has shown the application of a method for quantifying prediction quality
of a HI and validation of a HI. The hypothesis, that it is possible to quantify HI prediction
quality and to validate this HI (see section 7.2) is therefore not rejected by this case study.

2. Both for distribution fitting of the predictions and observations datasets in this case
study, the data quality was low. Furthermore, the observations dataset introduces large
uncertainty in observed reliability, caused by the definition of a failure and the changes in
topology of cable circuits. Therefore, no firm conclusions can be drawn on the validity of
this HI.

3. No firm conclusion can be drawn regarding the finding of this case study on the DNV GL
distribution cable HI that the predictions were found to be too optimistic a case using
‘actual’ load values and a case using ‘tweaked’ load values and therefore non-valid.

7.5 Recommendations

For this case study, only maximum load data was sufficiently available at ty;. Therefore,
only the HI prediction quality of the statistical assessment functions and utilization assessment
functions was determined for this HI for validation of this HI. To enable better HI prediction
quality quantification for this HI using the assets of this utility, at a moment in the future, the
following is recommended:

e The time window should cover a time period during which a sufficient number of failures
have occurred. When at least ten failures are considered the minimum and when
extrapolating the number of failures in the time window of this dataset, the minimum
time window would be 6 years wide, allowing for an analysis in 2015. For this case study,
it was found that majority of the condition indicators were available starting from 2013.
Therefore, a failure database covering failures until at least the year 2015 are necessary
for this dataset.
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Chapter 8

Conclusions and recommendations

To ensure a reliable electricity network today and in the future, asset managers of utilities rely
on predictions of asset management software tools in their asset management decisions. The
DNV GL Health Index (HI) is one of these tools. This thesis has shown methods to quantify the
HI prediction quality for validation of the DNV GL HI. Practical case studies were performed
to use additional utility data in the application of one of these methods.

In this chapter, the conclusions and recommendations are presented.

8.1 Conclusions

The conclusions are presented according to the three main questions addressed in this thesis:

1.

2.

In which way can the HI prediction quality of the DNV GL HI be quantified?

In which way can HI prediction quality quantification of the DNV GL HI be used to
validate the DNV GL HI?

. Using additional data, which statements can be made on prediction quality and validation

of the DNV GL HI?

Firstly, five HI prediction quality quantification methods have been presented in this thesis.

e Two HI prediction quality quantification methods presented in this thesis enable HI

prediction quality quantification of the DNV GL HI. These methods, as described in
chapter 3, consist of a method that quantifies prediction error for every single asset and
a method that quantifies the prediction error for a group of assets. These methods use,
compared to the three methods that are described, most information from the predicted
asset health. Furthermore, they complement each other with respect to weaknesses
introduced by their working principle: on group level and on single asset level. This
makes the combination of these methods suitable for HI prediction quality quantification.

Secondly, it was found that four out of five HI prediction quality quantification methods can be
used for validation of Hls.

e Due to the remaining lifetime definition in the HI, only one HI prediction quality

quantification method presented in this thesis is suitable for HI prediction quality
quantification and validation of the DNV GL HI.
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Thirdly, a limited number of failures, data on a only a limited number of condition data
parameters and limited utilization data was gathered during the collection of the utility data.
In other words, only limited data was available. Furthermore, the quality of the data in both
case studies was too low to use life data analysis in drawing firm conclusions on the validity of
the HIs.

e The practical case study for the DNV GL instrument transformer HI presented in
this analysis using one HI prediction quality quantification method does not reject the
hypothesis that it is possible to quantify HI prediction quality using utility data.

e No firm conclusion can be drawn regarding the finding of this case study on the DNV
GL instrument transformer HI that the predictions were found to be too pessimistic and
therefore valid.

The practical case study for the DNV GL distribution cable HI included two additional
assumptions on the observations dataset (see the observations data in section 5.4.4): the first
interruption in a cable circuit were taken equal to a failure and the changing cable circuit
reliability by changes in network topology due to maintenance were not taken into account.

e The practical case study for the DNV GL distribution cable HI presented in this analysis
using one HI prediction quality quantification method does not reject the hypothesis that
it is possible to quantify HI prediction quality using utility data.

e The practical case study for the DNV GL distribution cable HI presented in this analysis
has revealed that for HI prediction quality quantification of cable circuits, besides a
required data quality, the influence of the definition of a failure and changing reliability
by changes in network topology should be incorporated.

e No firm conclusion can be drawn regarding the finding of this case study on the DNV GL
distribution cable HI that the predictions were found to be too optimistic and therefore
non-valid.

8.2 Recommendations

8.2.1 Recommendations for DNV GL

A limited number of failures, data on a only a limited number of condition data parameters and
a limited amount of utilization data was gathered during the collection of the utility data. In
order to collect utility data which encompasses these data types, the following is recommended:

e An investigation should be performed looking for a platform that enables quick data input
for utilities and keeps the effort for development of assessment functions in the present
tool to a minimum. A start could be to look at existing maintenance software tools (e.g.
DNV GL’s own maintenance management software CASCADE).

The case studies have demonstrated a step-wise approach in using utility data for HI prediction
quality quantification and validation for two asset types covered by the DNV GL Health Index.
When this step-wise approach is automatized and embedded in the Health Index, this will
ensure continuous enhancement of the tool’s quality.

e DNV GL should consider to embed this step-wise approach in its health index.
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Remaining lifetime in the DNV GL HI is currently defined as the period after which the value
of failure probability does not exceed a given reference value. In order to compare predicted
health and observed health on a single asset level, the following is recommended:

e A feasibility study should be performed in including a remaining lifetime definition for
the moment when the failure probability equals 50%. This feasibility study includes the
proof that when validity of the health index using this definition is shown, it also holds
for the health index using the remaining lifetime definition for the moment when the
failure probability equals X%. This enables to apply the methods based on single asset
level, which complement the methods based on group level. Therefore, it is expected that,
when methods are applied both on group and single asset level combined with asset data
of sufficient quality and quantity, stronger statements on the validity of the Health Index
become possible.

8.2.2 Recommendations for further research

The data of the case studies in this analysis was insufficient for drawing firm conclusions. The
cable circuits appeared to introduce two additional assumptions: the first interruption in a
cable circuit was taken equal to a failure and the changing cable circuit reliability by changes
in network topology due to maintenance was not taken into account. For a more extensive case
study in the future, it is recommended to take this into account during the choice of the asset
type. Therefore, it is recommended to:

e investigate assets with a more firmly defined end-of-life than distribution cables:

— Instrument transformers
— Power transformers

— Circuit breakers

Limited advice from statisticians was used to test the methods presented in this thesis on their
statistical correctness. Together with the aforementioned recommendation, the following is
recommended:

e The methods presented in this thesis need further investigation with respect to the
statistical correctness of their statements on HI prediction quality and validation. This
investigation should focus on the extending the definition of walidation for the prediction
error and life data analysis methods, as presented in sections 3.5.4 and 3.5.5. An extended
definition for validation using these methods combined with data without the limitations
of the data used in this thesis is expected to result in validation of the DNV GL HI.

To conclude, this research has been a contribution on the road towards a health index that
can provide asset managers with more reliable predictions to support their asset management
decisions. This will ensure a more reliable, sustainable and cost-effective electricity network for
today and the future, in the Netherlands and across its borders.
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Appendix A

Additional health index
requirements, asset data and
comparison

This chapter lists, for each HI SoT, the additional HI requirements to those mentioned in
characteristic 1 of section 2.1. Furthermore, it shows, for each HI SoT, the entire tables for the
asset data types and comparison in characteristic 2 of section 2.1.

A.1 DNV GL HI SoT

A.1.1 Additional requirements DNV GL HI SoT
Compatibility

e A HI is required to achieve optimal solutions. Therefore, it should be part of a uniform
system with a systematic and consistent approach [12].

e The HI needs to be applicable to multiple types of assets and configurations [16].
e The decision support software that contains the HI should:

— support condition based maintenance (CBM) [67].

— be able to interface with other software [67, 8].

Implementation

e During the implementation phase of the decision support software, a step-wise approach
needs to be followed consisting of the following parts [8]:

Selecting components by investment analysis.
— Perform a system functional analysis using statistics and FMECAs.

— Build ageing models.

Include the system in the maintenance activities.

— Use feedback to improve the ageing model.
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Content /information handling
e A HI should contain databases to store the information from measurements.

e Translating partial discharge (PD) data into asset health makes use of pattern recognition
and fingerprint techniques. This requires reference databases to be included in the HI [19].

Capabilities
e HIs should be created with the following objectives in mind [8]:
— Control and reduce maintenance costs.
— Maintain acceptable reliability and safety levels.

— Prevent ageing-related failures.

— Apply lifetime extension to reduce costs if feasible.

Preserve the expert knowledge of the ageing workforce.

— Enhance the knowledge of maintenance activities.

e It should be possible to update the HI according to utilities needs [8].

A.1.2 Asset data types DNV GL HI SoT

Table A.1: (Number of) asset data types as found in literature for
the DNV GL Energy HI SoT

Category Asset type # (Number of) asset data types Reference
Bushings loss angle [9]
2 Core loss angle [9]
3 Core no load losses [19]
4 Degree of Polymerisation [18]
5 Dissolved Gas Analysis [20, 19, 9]
6 Furfural analysis [9]
7 Historical ambient temperature [18]
8 Historical hourly loading pattern [18]
Transformer f:;z:;“ormers 9 Installation date [18]
10 Loading [18]
11 Oil analysis [9]
12 OLTC drive power [19]
13 OLTC dynamic resistance [19]
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Table A.1: (Number of) asset data types as found in literature for

the DNV GL Energy HI SoT (continued)

Category Asset type # (Number of) asset data types Reference

14  Paper insulation furfural analysis [19]
15 Partial Discharge analysis [20]
16 Resistance measurements [9]
17 Thermal imaging [9]
18 Type of paper [18]
19 Corrosion [9]
20 Deformation [9]
21 Drive contact position [19]
22 Drive contact velocity [19, 9, §]
23 Drive trip coil current [19, 9, 67]
24 Drive vibrational analysis [19, 9]
25 Gas analysis (SFg) [9]
26 Leakage [9]
27 Leakage current 8]
28 Number of switching operations [9]

Switchgear General 29 Oil analysis 19
30 Oil leakage [67]
31 Oil level [67]
39 On-line partial discharge [19]

measurement

33 Partial discharge measurement [9, 8]
34 Resistance measurement [9]
35  Secondary system trip coil current [19]
36 Sound [9]
37 Thermal imaging [9]
38 Vacuum leakage test 9]
39 Vegetation [9]
40 Vibration of bushings [9]

Power G 4 Dleleczl;l;ascli)te;;zzscopy: [19]

cables eneral
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Table A.1: (Number of) asset data types as found in literature for
the DNV GL Energy HI SoT (continued)

Category Asset type # (Number of) asset data types Reference
42  Dielectric spectroscopy: loss angle [19]
43 Distributed temperature sensing [16]
44 Partial discharge localization [19]
A5 Partial discharge. on-line VHF [19]
detection

Partial discharge 0,1 Hz off-line

16 detection and localization [19]
A7 Partial d'ischarge single and double [19]
sided measurements
48 Capacitance [19]
49 Conductor resistance [19]
50 High voltage tests [19]
51 Insulator resistance [19]
Gonerators Sttorand gy e 19
53 Loss angle [19]
54 Partial discharge measurement [19]
55 Polarization index [19]
56 Video endoscopy [19]
57 Condition of wedges [19]
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A.1.3 Detection method classification DNV GL HI SoT

Table A.2: Classification of the detection methods of the DNV GL Energy HI
SoT for five subjects

The classification of detection methods was done qualitatively using the author’s
knowledge. This table contains a classification for the individual detection methods.

Subject

Subject value

Detection methods for subject
value

Costs

Low (often already available)

7,8,9,10,18

High

1,2,3,4,5,6,11,12,13,14,15,16,17,19,

20,21,22,23,24,25,26,27,28,29,30,31,

32,33,34,35,36,37,38,39,40,41,42,43,

44,45,46,47,48,49,50,51,52,53,54,55,
56,57

Out of
service
required

5,6,7,8,9,10,11,17,19,20,25,26,28,29,
30,31,32,36,37,39,40,43,44,45,46,47,
48,49,50,51,52,53,54,55,56,57

Yes

1,2,3,4,12,13,14,15,16,18,21,22,23,
24,27,33,34,35,38,41

Maturity

Mature

1,2,3,4,5,6,7,8,9,10,11,12,15,16,
17,18,19,20,21,26,27,28,29,30,31,
36,37,39,40,46,47,50,52,53,57

Development phase

13,14,22,23,24,25,32,33,34,35,38,
41,42,43,44,45,48,49,51,54,55,56

Ageing
detection

Long term ageing

5,6,7,8,9,10,11,28,29,30,34,38,
39,56,57

Short term ageing

1,2,3,4,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,31,32,

33,35,36,37,40,41,42,43,44.45,
46,47,48,49,50,51,52,53,54,55

Accuracy

Good

1,2,3,4,5,6,7,8,9,10,11,12,13,14,

16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31,34,35,36,37,38,39,

40,41,42,43,48,49,50,51,52,53,55,
56,57

Bad

15,32,33,44,45,46,47,54
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A.2 EA Technology HI SoT

A.2.1 Additional requirements EA Technology HI SoT
Capabilities

e A HI should represent the overall asset health indicating the suitability for continued
service from multiple condition indicators [27].

EA Technology uses the term ”Condition Based Risk Management” (CBRM) for the framework
their HI is a part of. As a consequence of cooperation with utilities, the initial versions of this
framework were developed bearing in mind the following (from [5]):

e Utilities should be able to use them for achieving their short term objectives. This required
the first HI predictions to aim for the short term.

e Developing a representation of asset health within a short time period allowing use for
potential investment plans. This time pressure caused to focus on the use of existing data.
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A.2.2 Asset data types EA Technology HI SoT

Table A.3: (Number of) asset data types as found in literature for

the EA technology HI SoT

Category Asset type (Number of) asset data types  Reference
Distribution transformers 6 [30]
Transformer Power transformers 7 [30]
Reactors 7 [30]
Tap changers 4 [30]
Distribution transformers 6 [30]
Transformer Power transformers 7 [30]
Reactors 7 [30]
Tap changers 4 [30]
Air blast circuit breakers 17 [30]
Air magnetic circuit breakers 16 [30]
Circuit switchers 10 [30]
Disconnecting switches 10 [30]
Fuses 2 [30]
Switchgear GIS Systems 28 [30]
Metal clad switchgear 35 [30]
Oil circuit breakers 11 [30]
Reclosers 7 [30]
SF¢ circuit breakers 17 [30]
Vacuum circuit breakers 16 [30]
- Capacitors 9 [30]
Capacitive voltage 3 130]
transformers
Instrument Oil filled current transformers 12 [30]
transformer Oil filled potential 11 [30]
transformers
Tt ! w
Batteries 10 [30]
Auxiliaries Buildings 3 [30]
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Table A.3: (Number of) asset data types as found in literature for
the EA technology HI SoT (continued)

Category Asset type (Number of) asset data types  Reference
Cables and potheads 6 [30]
Chargers 7 [30]
Drainage and geo-technical 6 130]
systems
Fences 6 [30]
Fire protection systems 6 [30]
Grounding systems 10 [30]
High pressure air systems 44 [30]
Insulators 6 30]
Mobile unit substations 17 [30]
Power line carrier 6 [30]
Cross arm [27, 6]
Wood pole Fittings [27, 6]
Overhead overhead Guys (27, 6]
lines lines
Insulators [27, 6]
Wood pole [27, 6]
Steel tower overhead lines Not given (6]

A.2.3 Detection method classification EA Technology HI SoT

As no asset data types were found in literature of the EA Technology HI SoT, no asset detection
method classification was possible for this HI SoT.
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A.3 Kinectrics HI SoT

A.3.1 Additional requirements Kinectrics HI SoT
Capabilities

e As stated in [36], well-established methods are not yet available to quantify asset health
based on all available data. Therefore, HIs should be clear on their capabilities and
limitations.

A.3.2 Asset data types Kinectrics HI SoT

Table A.4: (Number of) asset data types as found in literature for
the Kinectrics HI SoT

Category Asset type (Number of) asset data types  Reference
Distribution transformers 6 [30]
Transformer Power transformers 7 [30]
Reactors 7 [30]
Tap changers 4 [30]
Air blast circuit breakers 17 [30]
Air magnetic circuit breakers 16 [30]
Circuit switchers 10 [30]
Disconnecting switches 10 [30]
Fuses 2 [30]
Switchgear GIS Systems 28 [30]
Metal clad switchgear 35 [30]
Oil circuit breakers 11 [30]
Reclosers 7 [30]
SFg circuit breakers 17 [30]
Vacuum circuit breakers 16 [30]
- Capacitors 9 [30]
Capacitive voltage 3 130]
transformers
Instrument Oil filled current transformers 12 [30]
transformer Oil filled potential 1 130]
transformers
e ! w
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Table A.4: (Number of) asset data types as found in literature for
the Kinectrics HI SoT (continued)

Category Asset type (Number of) asset data types  Reference
Batteries 10 [30]
Buildings 3 [30]
Cables and potheads 6 [30]
Chargers 7 (30]
Drainage and geo-technical 6 130]
systems
Auxiliaries Fences 6 [30]
Fire protection systems 6 [30]
Grounding systems 10 [30]
High pressure air systems 44 [30]
Insulators 6 [30]
Mobile unit substations 17 [30]
Power line carrier 6 [30]
Cross arm [27, 6]
Wood pole Fittings [27, 6]
Overhead overhead Guys [27, 6]
lines lines
Insulators [27, 6]
Wood pole [27, 6]
Steel tower overhead lines Not given [6]
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A.3.3 Detection method classification Kinectrics HI SoT

Table A.5: Classification of the detection methods of the Kinectrics
HI SoT for five subjects
The classification of detection methods was done qualitatively using the
author’s knowledge. This table contains a classification for the
individual detection methods.

Detection methods for subject

Subject Subject value
value

Low (often already available) 12,28,34

1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,
Costs Hiol 17,18,19,20,21,22,23,24,25,26,27,29,
6 30,31,32,33,35,36,37,38,39,40,41,42,
43,44,45

1,2,3,5,6,7,8,10,12,13,14,15,16,17,18,
Out of No 20,21,22,23,24,25,27,28,30,31,32,33,

servi‘ce 34,37,38,39,40,41,42,44,45
required

Yes 4,9,11,19,26,29,35,36,43

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
Mature 17,18,19,20,22,23,24,25,26,27,28,29,
Maturity 30,31,32,33,34,35,36,37,38,39,40,41,
42,4445

Development phase 21,43

4,5,6,9,11,12,13,14,15,16,17,18,19,
Aved 21,35,36,38,41,43,44,45
geing

detection Shost term anein 1,2,3,7,8,10,20,22,23,24,25,26,27,28,
ort term ageing 29.30,31,32,33,34,37,39,40,42

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
Cood 16,17,18,19,20,22,23,24,25,26,27,28,
Accuracy 29,30,31,32,33,34,35,36,37,38,39,40,
41,42.43.44,45

Long term ageing

Bad 21
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APPENDIX A. ADDITIONAL HEALTH INDEX REQUIREMENTS, ASSET DATA AND

COMPARISON

A.4 TU Delft HI SoT

A.4.1 Additional requirements TU Delft HI SoT

Content /information handling

Information on stresses in service, maintenance experience, failures and defects, laboratory
tests and exit materials could be collected for use in health indexing (Gulski, [60]).

Within a HI, a selection should be made regarding the parameters indicating component
health (Quak, [56]).

An increasing amount of condition data enhances the quality of the assessment as
performed by a HI (Gulski, [44]).

A HI needs to cover all of its relevant disciplines and aspects (Gulski, [71, 47]).

To prevent excluding the most profitable scenario, a HI should be able to calculate the
asset health in all types of maintenance scenarios (Quak, [56]).

A HI should take into account all types of information and different levels in the decision
process (Jongen, Quak, [56, 72]).

A HI should support the decision process of the asset manager (Quak, [56]).

Capabilities

For a HI incorporating reliability centred maintenance or risk based maintenance, the
failure behaviour, probability of failure and failure rate of the asset should be known
(Jongen, [64]).

A.4.2 Asset data types TU Delft HI SoT

Table A.6: (Number of) asset data types as found in literature for
the TU Delft HI SoT

Category Asset type # (Number of) asset data types Reference

Dielectric losses, tand behaviour

1 (up to 1.7xUyp)

36, 39, 35]

Dielectric response (return voltage
2 amplitude, shape, time behaviour [63]
and linearity)

3 Failure data [69, 45]
General 4 In-service data [69, 45]
5  OLTC dynamic contact resistance [63]
Transformer
6  Partial discharge inception voltage [63]
7  Partial discharge location/patterns [63]
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A.4. TU DELFT HI SOT

Table A.6: (Number of) asset data types as found in literature for

the TU Delft HI SoT (continued)

Category Asset type # (Number of) asset data types Reference
g Partial discharge magnitudes (up 63]
to 1.7XUO)
9 Dissolved gas analysis [60, 72]
10 Frequency response analysis [60]
11 Functional check [60]
12 Infrared scan [60]
Power
transformer 13 Oll analysis [60]
On-line partial discharge analysis;
14 N [60]
localisation inside the transformer
On-line partial discharge analysis;
15 : [60]
phase resolved pattern analysis
On-line partial discharge analysis;
16 . . . [60]
time domain analysis
17 On-line partial discharge analysis; 160]
VHF /UHF spectral analysis
18 Tap-changer diagnostic [60]
19 Visual inspection [60]
20 Ambient temperature pattern [15]
21 Load pattern [15]
22  Partial discharge inception voltage [63]
Gas 23  Partial discharge location/patterns [63]
Insulated General Partial discharge magnitudes (up
. 24 [63]
Switchgear to 1.7xU0)
95 VHF /UHF part}al discharge [60]
detection
Partial discharge diagnosis with
26 Oscillating Wave Test System [60, 70, 51]
Methodology
27 Failure data [64]
General
28 Life time data [64]
Cable Return voltage with CDS
eturn voltage wi
29 Methodology 160, 57]
Power cablos 30 Partial discharge extinction voltage [46, 51]
31  Partial discharge inception voltage [46, 51]
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COMPARISON

Table A.6: (Number of) asset data types as found in literature for
the TU Delft HI SoT (continued)

Category Asset type # (Number of) asset data types Reference
32 Partial discharge intensity [46, 51]
33 Partial discharge magnitude [46, 51]
34 Partial discharge pattern [46, 51]
a5 Partial discggfﬁlele(’iettje;c)tion (50 Hz (70, 51]
Distribution Partial discharge detection (50 Hz
cables 36 on-line, Up) [70]
g7 VHF partial disch‘arge detection [70]
(50 Hz off-line, Up)
38 VHF partial disch.arge detection (70]
(50 Hz on-line, Uy)
39 VLF partial dischf.irge detection [70]
(0.1 Hz off-line, Uy)
40 Check oil pressures [51]
41 Dlelectrlfulgstsssl,";a;g Ol;ehawour 63, 57, 72, 51]
42 Dissolved gas analysis (DGA) [57, 72]
43 Inspection of hydraulic system [51]
44 Load current [63]
45 Oil analysis [51]
46  Oil analysis: AC electric strength [51]
. A7 Oil analysis: Dielectric dissipation [51]
HYV oil-filled factor
paper insulated 48  Oil analysis: dissolved gas analysis [51]
49 Paper quality [51]
50  Partial discharge inception voltage [63, 46]
51  Partial discharge location/patterns [63]
59 Partial disc&)af; >ir{l;mog)nitudes (up 63]
53 Relative tand [63]
54  Visual inspection cable terminals [51]
55 Atand [63]
HV oil-filled 56 DC sheath test [51]

paper
insulated /mass
impregnated
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A.4. TU DELFT HI SOT

Table A.6: (Number of) asset data types as found in literature for
the TU Delft HI SoT (continued)

Category Asset type # (Number of) asset data types Reference
57 Determination of: lmpregnation [51]
coefficient
58 g-value measur.ement (soil thermal [51]
resistance)
HYV tests on cable samples
o9 (destructive) [51]
60 Inspection of earthing system [51]
61  Lead sheath analysis (destructive) [51]
62 Visual inspection of accessories [51]
HV XLPE 63 VHF /UHF partial discharge [60]
accessories detection
64 Thermal conductivity (k) [60]
Soil parameters 65 Thermal diffusivity (Dh) [61]
66 Volume heat capacity (C) [61]
External 67 Ambient temperature [61]
parameters
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A.4.3 Detection method classification TU Delft HI SoT

Table A.7: Classification of the detection methods of the TU Delft
HI SoT for five subjects
The classification of detection methods was done qualitatively using the
author’s knowledge. This table contains a classification for the
individual detection methods.

Subject Subject value

Detection methods for subject
value

Low (often already available)

3,4,25,26,65

Costs
High

1,2,5,6,7,8,9,10,11,13,14,15,16,17,18,
19,20,21,22,23,24,27,28,29,30,31,32,
33,35,36,37,38,39,40,41,42,43,44,45,
46,47,48,49,50,51,52,53,54,55,56,57,
58,59,60,61,62,63,64

Out of

3,4,12,13,14,15,16,17,18,23,25,
26,38,41,42,43,44,45,46,52,56,
60,61,62,63,64,65

service

required
Yes

1,2,5,6,7,8,9,10,11,19,20,

21,22,24,27,28,29.30,31,

32,33,34,35,36,37,39,40,
47,48,49,50,51,53,54,55, 57,58,59

Mature

1,2,3,4,5,9,10,11,12,13,18,19,

20,21,27,28,29,40,41,42,43,44,

45,46,47,51,52,53,54,55,56,57,
58,59,60,62,63,64,65

Maturity

Development phase

6,7,8,14,15,16,17,20,21,22,23,24,28,
29,30,31,32,33,34,35,36,37,48,49,50,
61

Long term ageing

1,2,3,4,9,10,13,25,26,38,39,40,
42.47,51,54,55,58,65

Ageing
detection
Short term ageing

5,6,7,8,11,12,14,15,16,17,18,19,20,21,

22,23,24,27,28,29.30,31,32,33,34,35,

36,37,38,41,43,44,45,46,48,49,50,52,
53,56,57,59,60,61,62,63,64

Good

1,2,3,4,5,9,10,11,12,13,18,19,

25,26,27,38,39,40,41,42.43,44,

45,46,47,51,52,53,54,55,56,57,
58,59,60,62,64,65

Accuracy

Bad

6,7,8,14,15,16,17,20,21,22,23,24,28,
29,30,31,32,33,34,35,36,37,48,49,50,
61
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Appendix B

Extended tables with asset data

Table B.1: Summary of the data files of utility ‘H’

# Data file Format Description Unit
From ]
To [
Length [m]

# conductors -]

Conductor material [-]

Conductor surface area [mm?]
1 Loadflow results ~ MS Excel Insulating material H
Nominal voltage (Upnom) [kV]
Nominal current (Zom) [A]
Maximum power (P) kW]
Maximum reactive power (Q) [kvar]
Maximum apparent power (S) [kVA]
Maximum current (I) [A]
Maximum load (%]
Distribution cable From [
2 network circuit PDF To []
diagrams .
Circuit number ]
Cable object ID ]
3 Data distribution Cable asset number [-]

cables Surface area [mm?2]

Conductor material [-]

MS Excel Insulating material -]
Rated voltage (Uyqted) [kV]
Location [©1,y1,72,y2]
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APPENDIX B. EXTENDED TABLES WITH ASSET DATA

Table B.1: Summary of the utility’s data files (continued)

# Data file Format Description

Unit

Commissioning year

[yyyy]

Region

Circuit number

From

To

4 Offline PD PDF Circuit number

Test date

[dd-mm-yyyy]

Test result

PD occurrence

From

To

Region

) Nestordata failures MS Excel Component type

Component age bin

Failure cause

Date of failure

# conductors

Conductor material

6 Cable type specs ~ MS Excel Conductor surface area

Insulating material

Short circuit current rating (1 s)

Joint object ID

Joint asset number

Start date

[dd-mm-yyyy]

7 Data distribution MS Excel End date

[dd-mm-yyyy]

Joints Region

Type

Commissioning year

Location
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Appendix C

Extended tables with asset data

Table C.1: Main HI asset data, items marked grey were not available

Category +# Parameter Unit

1 No. -]

2 Source [
Asset 3 Destinati N
identification estination i

4 Voltage level [kV]

5 Batch number [#]

6 Maintenance section ]
G 1 .
eneral. 7 Cable insulation main cable {XLPE, PILC, Mixed}
information

8 Commissioning year [yyyy]
Environmental Mechanical conditions (forces like {Vibrations, Sinking,
asset sinking soils or vibrations) No}

10 Rated current [A]

11 Rated short-circuit current [A]

12 Rated short-circuit period [s]
Design
dotails 13 Number of cores per cable [#]

. {Single, Double,

14 Farthing CrossB}

15 Waterblocking screen {Yes, No}

16 Waterblocking conductor {Yes, No}

17 Max loading [MVA]

18 Historical maximum loading (%]
Utilization Historical loading (entire lifetime,
data 19 . . [A]

in 15 min intervals)
20 Actual short circuit current [A]
21 Actual short circuit period [ms]
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APPENDIX C. EXTENDED TABLES WITH ASSET DATA

Table C.1: Main HI asset data, items marked grey were not available

(continued)
Category # Parameter Unit
Number of load variations more
22 than 50% Inom [#/year]
Number of short circuit currents
23 ) . [#]
since last maintenance
24 Level of oil leakage {Good, Fair, Poor}
Good, Fair, P
25 Sheath test results {Goo ) A, B0t
Critical}
26 Damage level of terminations {No, Minor, Major,
Severe}

. 27 Date of test [dd-mm-yy]
P.artlal 28 Test result {Normal, Fair, POOI“}
discharge

29 PD occurrence {Local, Global}
30 Overall lab code {Green, Amber, Red}
Dissolved 31 DGA joints (HQ, CH4, CQHQ, [ppm]
gas analysis CQH4, CzHﬁ, CO and COQ)
39 DGA terminations (Ha, CHy, fppm]
CoHy, CoHy, CoHg, CO and COs) PP
33 Paper DP test [DP Value]
o 34 Tan delta {good, fair, poor}
;Aecsitdsltwnal 35 Sheath crystallization test {Passed, Failed}
36 Metal sheath damage {Yes, No}
Good, Fair, Poor,
37 OWTS results {Goo Lak, Foor
Critical}
Auxiliaries 38 General alarm cable condition {Good, Poor, Critical}
39 Number of spare cores [#]
Maintainability 40 Availability of spare parts {Yes, No}
Availability of maintenance
4l knowledge {Yes, Noj
Failure 49 Number of spontaneous failures in [#]
data cable

In conclusion, this resulted in an excel-sheet containing a row for each cable section of a cable

circuit. For use in the HI, a single row per cable circuit was required.

This was achieved by combining the columns:

1. Circuit name: used for combination

2. From: used for combination

138



10.

11.

12.

13.

14.
15.
16.

17.

18.

. To: used for combination
. Core material: not used in HI
. Surface area: not used in HI

. Length: sum of all the lengths of a circuit

Load: one of the values (all equal)

. Cable type: PILC, XLPE, mixed. Only PILC cables selected

. Surface area: not used in the HI

Unom: value (final dataset: all 10 kV).

Si: maximum load, one of the values (all equal). This value was converted into an
expected maximum load value of 2007, based on a publication (KCD) of the utility [79].

Load: maximum load [%], one of the values (all equal) This value was converted into an
expected maximum load value during 2007. This was done taking into account a 1,9%
load growth per year, based on a publication of the utility [79].

Failed joints: first occurred failure, the total number of failures and the number of failures
before 2007.

Off-line PD: per circuit date, PD level and PD occurrence.
Commissioning year: lowest year is taken from all circuit parts.
Is. (1s): lowest values of allowed short circuit current were taken.

Water-blocking screen: all cables include a water-blocking screen and water-blocking
conductor [84].

Number of cores per cable circuit: only for XLPE or mixed, one core per cable was
observed (22 circuits). All PILC cables consist of three cores per cable.
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