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Abstract

Machine Learning (ML) is a rapidly growing field. There has been a surge of complex black-box models
with high performance. On the other hand, the application of these models especially in high-risk
domains is more stagnant due to lack of transparency and trust in these black-box models. There is a
disconnect between the black-box character of these models and the needs of the users. A sub-field
of explainable machine learning has emerged to fix this disconnect but it is still in its early stages.

In this thesis we have developed a new method called LEAFAGE that is able to extract an explana-
tion for a prediction made by any black-box ML model. The explanation consists of the visualization of
similar examples from the training set and the importance of each feature. Moreover, these explana-
tions are contrastive which aims to take the expectations of the user into account.

Furthermore, we evaluated the ability of LEAFAGE to reflect the true reasoning of the underlying ML
model. LEAFAGE performs overall better than the current state-of-the-art method LIME, on ML models
with non-linear decision boundary. At last, we performed a user-study to evaluate empirically how
useful example and feature importance-based explanations are, in terms of perceived aid in decision
making, acceptance and measured transparency. It showed that example-based explanations perform
significantly better than providing no explanation and feature importance-based explanation, in terms
of transparency, information sufficiency, competence and confidence. However in terms of acceptance
no significant differences were found between the different explanation types.
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Introduction

As humans we are able to learn from our own experience and make informed decisions. Applying the
same strategy to machines has resulted in the currently rapidly growing field of Machine Learning (ML):
making data driven predictions. As machine learning models become more accurate, they typically be-
come more complex and uninterpretable by humans. The black-box character of these models holds
back its acceptance in practice, especially in high-risk domains where the consequences of failure could
be catastrophic such as health-care or defense. Providing understandable and useful explanations be-
hind ML models or predictions can increase the trust of the user. Furthermore, providing explanations
allows to evaluate whether the black-box models make fair and ethical decisions i.e. that individuals
are not treated unfairly because of their membership in a particular group.

The solution of making Artificial Intelligence (AI) understandable, such that its acceptance in practice
becomes more feasible, is an emerging research topic namely eXplainable Artificial Intelligence (XAI)
and it's biggest subdivision eXplainable Machine Learning (XML).

1.1. Case for Explainable Machine Learning

Humans will not take a predictive model seriously if they do not trust it. As ML models are increasingly
being used in practice and influence our daily lives, it becomes crucial to evaluate their behaviour. To be
trusted they should make decisions fair and ethically. The requirements for trust can differ subjectively.
Trust in ML systems can be categorized in two granularity’s as seen across literature [1, 2]:

e Trust in a model: indicates whether the ML model can be trusted to perform well after deploy-
ment. This trust can be obtained by evaluating a global explanation of the model that states
the overall logic. Such explanations could answer questions such as “How does the model make
predictions?”, “In which situations does the model perform good/bad?” and “Which input features
does the model deem important for its predictions?”. For example an elected official, could have
these questions when he/she has to approve the use of a ML model by the police for profiling
criminals.

e Trust in a prediction: indicates whether a prediction can be trusted enough to base a decision
on. A local explanation illustrating the reasons behind a prediction is needed to obtain this trust.
Such explanations could answer questions such as “What is the logic behind this prediction?”,
“Why is this instance predicted as class A instead of class B?” and “Which input features were
the most important behind this prediction?”. For example, a doctor could have these questions
when he/she is consulting a ML model for the diagnosis of a patient.

The need for explanations to obtain the two types of trust and fair and ethical decision-making is
discussed in the following sub-sections.

1.1.1. Trust in a model
In many applications of ML, providing explanations of a prediction in run-time is not necessary, such
as classifying an email as spam/non-spam or making internal decisions in a self-driving car. Never-
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2 1. Introduction

theless, it is crucial that the model works well in run-time. Typically, in the evaluation of ML models,
cross validation is used to compute traditional performance metrics such as accuracy, area under the
curve and confusion matrix which should approximate the performance of the classifier on unseen data.
However, blindly relying on this approach has some drawbacks.

First, there could be a mismatch between optimized metrics and the actual metrics of interest. For
example in user recommendation the target is to show interesting and engaging content to make the
user stay and return. This target is an abstract concept and hard to quantify exactly. Using the amount
of clicks on different articles to deduce partly how interesting it is, sounds reasonable and a ML model
can be built to optimize that. If only traditional evaluation metrics are used, the performance might be
high but “click-bait” articles will be given high importance which does not match the real target of user
retention [1].

Second, sometimes there might be unintentional leakage of information about the target variable into
the training and validation set that would not be present when deployed [3, 4]. An example is given
in [4], in which a ML model has to predict whether a user of a retail website will leave their website or
stay to view another page. Unintentionally there was a variable session length that stated the number
of total visits by the user. This variable would give away the target and the obtained model would not
be useful in practice. This leakage could be avoided by for example investigating the legitimacy of the
discriminative features that predict the target variable [3].

Third, data shift occurs when the training and the test contexts do not match [5]. For example in [1]
they trained a classifier to predict whether an emails content is related to Christianity or atheism. The
trained model obtained an accuracy of 92% but their explanation framework of the model showed that
the word “posting” was a significant feature which indicated atheism. It turned out that 20% of the
atheism emails and only 2 emails of Christianity contained this word in the training and validation set,
which would not be the case when deployed. Moreover, the deployment environment can be non-
stationary. In some applications there could be adversarial agents trying to undermine the predictive
power of the model.

Humans are good in generalization. We are able to transfer learned skills to unfamiliar situations [2].
By inspecting the logic of a model through explanations, an expert in the field, even without technical
background, can assess whether the logic of the model can be generalized and avoid aforementioned
pitfalls. Furthermore, the system designer can improve the model through feature engineering, pa-
rameter tuning or choosing another model [6, 7].

1.1.2. Trust in a prediction

In some applications, the learning system is used to provide useful information to human decision
makers [1, 2]. In this case the users can combine their own knowledge and experience with the in-
formation given by the model to make the final decision. Providing useful explanation along with the
prediction is crucial. The application of ML models in these use-cases is challenging, because of the
lack of transparency of black-box models, An example of this use-case is helping a doctor to diagnose
a patient. Doctors want to understand the reasons behind a prediction such that they can combine it
with their own reasoning. The doctor will not trust the predictive model without explanations.

There already exists ML systems that decision makers use to ask for recommendations. IBM Watson
is a famous example. One of its biggest product is Watson for Oncology, which provides treatment
recommendations to doctors of patients with cancer. Given the medical details about the patient, Wat-
son provides three sets of treatments namely recommended, for consideration and not recommended.
According to the Watson for Oncology model, these set of treatments are respectively a good fit, a
moderate fit and a bad fit for the patient. Along with each treatment it provides published articles and
statistics backing up the treatment. The recommendation along with the evidence can help the doctor
to make an informed decision.

STAT researched the use of Watson for Oncology in different hospitals around the world [8]. STAT
reported that Watson isn't living up to their expectations and has a hard time to be adopted by hospitals.
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One of the reasons for the distrust is the black-box character of the suggestions. Even though each
of the suggested treatment is backed-up by evidence, Watson does not explain why the treatment is
a good fit for the patient. Dr. Taewoo Kang, a surgical oncologist who used Watson said that “when
asking Watson for advice on a patient whose cancer has not spread to the lymph nodes, and Watson
will recommend a type of chemotherapy drug called a taxane. But that therapy is normally used only
if the cancer has spread to the lymph nodes. And, to support the recommendation, Watson will show
a study demonstrating the effectiveness of the taxane for patients whose cancer did spread to their
lymph nodes.” [8] In this case, the provided information is not useful to Dr. Kang as Watson cannot
explain why the treatment is recommended even though it is normally not applied in the situation of
his patient.

1.1.3. Fair and ethical decision making

Algorithmic decision-making influences more and more the daily lives of people [2]. It can range from
personalized online advertisements to more serious encounters such as getting approval for a bank
loan, filtering job applicants and accessing the likelihood whether a criminal defendant will re-offend
in the future by the government [9]. It becomes crucial to make sure that there is no unfair treatment
of individuals because of their membership in a particular group. This could be mitigated by verifying
the logic behind a ML model and its predictions through explanations, but it is not always possible.

ML models need data to learn from and typically it is collected from society. The data will contain
immoral bias to the extent that the society does [10]. The ML models will reproduce this biased logic
for the classification if it is present in the training-data and it will be accurate when only traditional
evaluation metrics are used.

Recently on 25 May 2018, a set of comprehensive regulations adopted by the European Parliament for
the collection, storage and use of personal information, the GDPR (General Data Protection Regulation)
took effect [11]. The GDPR prohibits automated processing based on the following special categories
of sensitive data:

personal data revealing racial or ethnic origin, political opinions, religious or philosophical
beliefs, or trade-union membership, and the processing of genetic data, biometric data
for the purpose of uniquely identifying a natural person, data concerning health or data
concerning a natural person’s sex life or sexual orientation ...

By removing sensitive variables from the input of the learning algorithm, one might think that the re-
sulting model will not discriminate. This assumption has been widely disproved [12, 13]. It is possible
that other variables correlate to the sensitive ones. For example, [13] showed that Facebook likes of
a person could infer personal traits such as his/her race, gender, sex orientation, political view and
religion with respectively an accuracy of 95%, 93%, 88%, 85% and 82%. These correlations might
be very hard to detect by humans even through explanations especially in a large dataset with many
features.

Furthermore, there could be uncertainty bias towards one group that is underrepresented in the
training-set [11]. The predictions of an instance from a majority group can be made with a higher
certainty as they are represented well, compared to a minority group. Algorithms that are risk-averse
will prefer to only make predictions with high certainty, thus discriminating against the minority group.

Providing explanations behind algorithmic-decision making is also required due to regulatory con-
straints. The GDPR states in Article 13 and 14, that a person subject to algorithmic decision-making
has the right to "meaningful information about the logic involved”. It is not clear though what precisely
is meant by that, what kind of explanations and in which depth is required [11].

1.2. Multidisciplinary research

XML is not only a technical science but also has a social part which is as much as important. It is
important to understand what kind of explanations are useful to the user. The following questions are
important to address to increase the trust of a user in a prediction. What do people expect from an
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Figure 1.1: General overview of LIME [1]

explanation? How can an explanation efficiently help the user in decision-making? These questions
have been extensively researched in psychology, philosophy and cognitive sciences. These sources are
leveraged in this thesis.

One of the main findings is that, when people ask a why-question, they do not want to hear the whole
causal explanation, rather they are interested in a subset (contrastive explanation) that can answer the
conflict between the observed event and their own mental model of causation [14, 15]. In XML context
a contrastive explanation answers why class A (the most probable class) was predicted instead of class
B (the class that the user expected). Another important finding is that example-based reasoning is
an effective strategy for tactical decision-making [16—18]. Example-based reasoning entails leveraging
previous experience with analogous tasks to make a decision. At last, we consider the finding that
people prefer a cause that is more responsible for the occurrence of an event over others. In XML
context it can mean that more important features for a prediction are preferred over others.

1.3. Current solutions

There are three main strategies to extract human-understandable explanations from ML models, namely
globally transparent, model-oriented and model-agnostic [15].

Globally transparent strategy tries to find a balance between being accurate while not too complex,
such that the whole model is understandable to humans. In this case interpretable and transparent ML
models such as decision trees and linear model are used (see section 2.2.2). For example, the feature
weights of a linear model or the path that a prediction of a decision tree follows from the root to a
leaf can be shown as an explanation. This strategy poses a severe limitation because in some cases
complex black-box models have proven to perform better than globally transparent models [6].

In model-oriented strategy, the internal workings of the ML model is leveraged to extract an explana-
tion. This strategy has the advantage that the explanations reflect the true reasoning of the ML model
with high accuracy. The downside is that the explanation methods are model-dependent, requiring a
different explanation method for each type of ML model.

At last in model-agnostic strategy, the ML model is seen as a black-box. The inputs and outputs of the
model are analyzed to gain insights in the behaviour of the model. An advantage of a model-agnostic
explanation method is that it can be used for any type of ML model. Further, the ML model can be
built without taking explainability into account. A downside of these methods is that they can be less
accurate than the other strategies in terms of reflecting the true reasoning of the ML model. LIME [1]
is a well known model-agnostic method. An example of such method is provided in figure 1.1. The
black-box classifier predicts that the patient has flu from the given symptoms. The explanation method
LIME shows three symptoms that are the most important factors from the prediction as an explanation.
“Sneeze” and “headache” contribute towards the prediction while “no fatigue” is evidence against it.

The focus of the current research in XML is heavily on the technical part of creating XML method. There
is less focus on the human part of XML i.e. providing explanations according to the need of the users.
Social research on explanations are generally not being leveraged in XML research [19].
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1.4. Research questions

This study focuses on two types of explanations namely, feature importance-based and example-based
explanations. Furthermore, we research on how to create contrastive versions of these explanations.
The research questions entails:

1. How can feature-importance and example-based explanations make the prediction of a complex
ML model transparent?
We develop a new XML method called LEAFAGE (Local Example and Feature importance-based
model AGnostic Explanation). It can provide a contrastive explanation for a prediction made by
any black-box ML model. The explanation is local, i.e. it explains the reasoning of the black-
box ML model in the neighbourhood of the instance being explained. More specifically, this
explanation provides similar examples from the training-set and the importance of each feature
for the prediction.

(a) What is the importance of each feature for a prediction made by a black-box ML model?

(b) Which examples from the training-set are the most suitable as an explanation for the pre-
diction made by a black-box ML model?

2. How can we make a feature-importance and example-based explanation, contrastive?

3. What is the quality of feature importance-based and example-based explanations extracted from
LEAFAGE?
There are two main criteria for the evaluation of an explanation. Firstly, the local explanation
should reflect the true reasoning of the underlying black-box ML model in the neighbourhood of
the instance being explained. And secondly, the explanation should be useful to the user. We
have developed a new evaluation method to measure the fidelity of a local explanation to the
underlying model and have set-up an user-study.

(a) What should the scale of the evaluation be, which assess the local fidelity of an explanation?
(b) How faithful is a LEAFAGE explanation to the underlying black-box model?

(c) How useful are feature importance-based and example-based explanations to the user, in
terms of the perceived aid in decision making, acceptance and measured transparency?

1.5. Thesis Outline

This thesis is structured as follows. In chapter 2, background information and related work regarding
XML is presented. It provides a human and technical view on explanation. First, we look at the pre-
ferred characteristics of an explanation from the perspective of the user by leveraging sources from
social research. Second, the current XML methods that can extract explanations from ML models are
shown.

Chapter 3 defines a new method called LEAFAGE. It also provides different examples that explain how
the method works. This chapter aims to answer research question 1 and 2.

Chapter 4 aims to answer research questions 3.a and 3.b. It first defines an evaluation method to as-
sess the fidelity of an explanation to the underlying model. Further, it applies that evaluation method
to LEAFAGE explanations.

Chapter 5 describes the set-up and results of an empirical evaluation of LEAFAGE. This chapter aims
to answer research question 3.c.

At last, chapter 6 concludes this thesis. It also presents some future directions for research.






Background and Related Work

2.1. Users’ perspective on explanation

In the recent years there has been an increase in research in XAI and efforts have been made to create
explanation systems to make the black-box ML models more transparent, but mostly from a technical
perspective. In XAl it is also important to understand what the expectations and needs are from the
perspective of the user, hence making it a multidisciplinary research including social science. Miller et
al. [19] analyzed 23 papers of the related work section from the website IJCAI 2017 Explainable Al
workshop, which can be considered as highly relevant papers compiled by the XAI community. They
looked into whether the references included articles on explanation in social science and whether the
evaluation of the explanation was based on data from human behavioral studies. They found out
that only 4 papers referenced relevant social science papers while only one used it in its model. ML
researchers and data scientists tend to build explainers from their technical perspective without ask-
ing questions such as: ‘What do people expect from an explanation?’ and ‘How can an explanation
efficiently help the user in decision-making?’ These questions have been extensively researched in
psychology, philosophy and cognitive sciences and should be leveraged in XAI. Furthermore, it is also
important to conduct user studies on the intended audience to evaluate the real usefulness of the
explanation system to the user.

In conclusion, by leveraging social science research one can understand the characteristics of a good
explanation and by conducting user experiments one can verify whether the explanation system is
useful in practice. In the following subsections the main findings from social research in the scope of
this thesis are presented i.e. explanations are contrastive, example-based reasoning and explanations
are selected. At last, different evaluation methods of explanations from the perspective of the user are
discussed.

2.1.1. Explanations are contrastive

As humans we have a mental model of the world through our experiences and imagination. Our rea-
soning and imagination can fill in the blanks even when incomplete information is provided. When
people ask a why-question often they do not want the whole explanation rather they are interested
in a subset that can answer the conflict between the observed event and their own mental model of
causation.

Most researchers in psychology, philosophy and cognitive scientist in this field agree that all why-
questions are contrastive [15]. Miller [15] states “people do not ask why event P happened, but rather
why event P happened instead of some event Q".

In this thesis we will use Lipton’s [14] definition of the events P and Q being respectively the fact and
foil. The fact is the event that occurred and the foil is the event that did not occur. For instance, a user
in robot-human interaction asks a robot “Why did you open the door?” and it answers “because it is
getting warm inside”. This answer would not satisfy the user if he/she wanted to know why the robot

7



8 2. Background and Related Work

did not open the window (the foil) instead; the explanation of the robot does not explain why the foil
did not take place. The possible foils are all feasible events except opening the door such as “instead
of turning on the air-conditioning”, “instead of asking for permission first” or “instead of starting to
dance”. The provided explanation by the robot would be useful if the foil was “instead of leaving the

door closed”.

As humans we are good at extracting the implicit foil of questions from language, tone and context,
moreover explanations are given, having a foil in mind [15]. It is challenging to detect the foil auto-
matically by a machine. This is both a curse and a blessing because answering contrastive questions is
often easier than providing a full explanation taking all possible causes into account . If the foil is clear,
the machine only has to understand the difference between the two events to provide a satisfactory
answer [14].

2.1.2. Example-based reasoning

In example-based reasoning the reasoner relates to previous experiences to understand and solve a
current problem he/she faces [20, 21]. This type of reasoning lies very close to how we as humans
think [22, 23]. We use it in our daily lives to solve problems. This learning approach has different
names in the literature namely cased-based reasoning (CBR), example-based reasoning (EBR) and
analogical reasoning (AR). In this thesis the term EBR is used.

The process of EBR can be typically divided into three steps namely retrieve, adapt and learn. For
example, let's take a problem of choosing a dish to cook in this situation: no onions at home and
wanting a light meal. We might think back to the different previous dishes we made and choose a
few of them that suit the current situation (retrieve step). It is possible that the chosen dishes do not
completely fulfill the requirements of the current situation e.g. all the known dishes use onions. In
that case the most suitable known dish is picked and adapted (adapt step) e.g. use cheese instead
of onions. The new dish can be leveraged to make future dishes or avoided completely (learn step),
according respectively to the liking or disliking of the dish.

The applications of EBR can be divided into two types namely problem-solving and decision-justification
[20]. In problem-solving previous similar situations are used as aid to decide how to proceed with the
current situation. While in decision-justification previous similar situations are leveraged to support or
dismiss certain possible decisions.

EBR for the purpose of problem-solving is commonly used in the health-care sector [16, 22]. For ex-
ample, physicians think back to patients from the past that had similar symptoms as the patient they
are examining. They remember the diagnosis of those previous patients and which treatment worked.
That information helps them to diagnose the patient in front of them and to suggest a treatment.
Moreover, real examples of medical cases in past are being used to train health-care professionals,
complete guidelines and provide anecdotal accounts of treatments of individual patients in the medical
literature [22]. Furthermore, EBR software systems are being used to aid health care professionals in
retrieving similar medical cases from the past [16].

Law is a prominent domain in which EBR is used for the goal of justifying arguments, positions and
decisions. Layers use EBR to justify a position by providing supporting relevant cases from the past
[20]. Moreover, common law, which is widely used in most English-speaking countries, is based on
precedence i.e. judicial decision made on similar cases from the past [21]. HYPO is an example of a
system that can help lawyers in example-based reasoning. HYPO works as follows:

e First, the new case is analyzed and relevant factors are extracted.
¢ Second, similar cases from the past are retrieved based on the relevant factors.
e Third, each of the retrieved cases are divided into two sets according to the preferred position

in the case i.e. whether they support or are against the position. The most relevant cases are
chosen from both sets.
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« Finally, cases from the support and the non-support set are used to respectively create an ar-
gument in favor of the preferred position and list possible counter-arguments that the opponent
can pose. Cases from the support set are further used to counter the counter-arguments.

2.1.3. Explanations are selected

There can exist a complex causal chain of an event. When people explain why an event has happened,
they typically select a small subset of causes from the whole causal chain. Miller et al. (2017) [19]
compiled the following six main criteria that people typically use to select causes to provide as an
explanation.

1. As argued in section 2.1.1 people ask contrastive why questions. In that cases causes that can
explain why the fact event occurred instead of the foil event are preferred.

2. People prefer abnormal or unusual causes over typical or obvious causes. Hilton and Slugoski [24]
give an example of two causes for the the explosion of the Challenger shuttle in 1989 namely,
because of the presence of oxygen in the atmosphere and because of faulty seals. The first
cause is obvious because oxygen is always present in the atmosphere around any shuttle. But
the second cause is abnormal which is not present in most shuttles.

3. Intentional actions as cause is preferred over non-intentional actions [25]. For example, if some-
one died by being pushed from a building, the intention to murder is deemed more important
than falling from a building as cause.

4. Necessary causes are preferred to sufficient causes [14]. For example, if cause a and either
causes b or ¢ are necessary for an event e to occur, than cause a is preferred over b and c. This
is because cause a is individually necessary while b and ¢ are not, for e to occur.

5. A cause that is more responsible for the occurrence of an event is preferred over others. To
take an example from Chockler and Halpern [26]: ‘if someone wins an election 11-0, then each
person who votes for him is less responsible for the victory than if he had won 6-5

6. Leddo et al. [27] conducted a study to establish the preference of people in goals, preconditions
and conjunctions of preconditions and goals as causes. They found out that goals were preferred
over preconditions and conjunctions over goals. For example for the event ‘Fred went to the
restaurant’, explanation ‘Fred was hungry and had money in his pocket’ was preferred over ‘Fred
was hungry’ and ‘Fred had money in his pocket’ was preferred the least.

2.1.4. Evaluation of explanations

The goal of an explanation system of a ML model is to be useful in practice for the intended users,
hence conducting user-studies on the explanation system is important. In recommendation systems,
extensive research has been conducted in designing user-studies which evaluate explanations that
clarify why a certain item is recommended, from the user’s point of view [28-32]. In recommendation
systems, explanations increase the user trust and satisfaction, allow a quicker and easier search for
relevant items and persuade the user to purchase the recommended item [28].

Before conducting a user-study it is important to understand what goals the explanation system tries to
achieve. [28] defines seven goals for an explanation system, namely transparency, scrutability, trust,
effectiveness, efficiency, persuasiveness and satisfaction which are respectively listed below:

1. Transparency entails whether the user is able to understand the logic behind why the ML model
made a certain prediction.

2. By making a prediction transparent, the user could spot errors in the reasoning, thus a logical
next step is to allow the user to correct the reasoning of the ML model.

3. Trust expresses whether the user has confidence that the ML model will work in practice.

4. Effectiveness expresses whether the explanation behind a prediction helps the user in better
decision making.
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5. Efficiency indicates the effort and time needed in making a decision given an explanation.

6. Persuasiveness entails whether the user is persuaded to follow the prediction of the ML model,
given the explanation.

7. Satisfaction expresses the feeling of joy while using the explanation system.

All of the goals can be evaluated subjectively by asking for the opinion of the user [28]. Moreover, trust,
persuasiveness and satisfaction are subjective by nature, and can only by evaluated subjectively. But,
transparency, effectiveness and persuasiveness can also be evaluated/measured objectively, by testing
the users whether they have understood the reasoning behind the recommendations [1], evaluating
whether the users get better suited recommendations with explanations compared to without any
explanations [31] and measuring the interaction time [30] or the number of interactions needed to find
a satisfactory item, respectively.

2.2. Explanations in machine learning

This section looks at extracting explanations from ML models from a technical point of view. In sub-
section 2.2.1, a global view is presented of the different types of XML methods. Further, in sections
2.2.2 and 2.2.3 a detailed analysis of globally transparent models and a XML method called LIME is
presented, respectively. At last, section 2.2.4 describes how other papers evaluate the fidelity of a local
explanation to the underlying model. The last three sections are more related to LEAFAGE. LEAFAGE
provides local explanations using a type of globally transparent model namely linear models and the
basic concepts of LIME has been used in the creation of LEAFAGE.

Let f : X - Y be a black-box ML model that solves a classification problem, with X = R%. X and Y
are called the input space and the target or output space, respectively. Next, let X = [x4,..,x;,] with
the corresponding true labels y;,,. = [y1,., ] be the training-set that f was trained on. Further, let
X' = [x],.,xy] with the corresponding true labels y/,,,. = [y1,.. yn] be the testing-set that can be used
to test the performance of f. x € X is called an instance, a sample or a data pointand y = f(x),y € Y
is called the predicted class or label of x. Further, (a;, .., a;)" with x = (a4,..,a;)T and x € X are called
the feature or attribute values of x. In this thesis the term ML model refers to a Machine Learning
model that solves a classification problem.

2.2.1. Characteristics of XML

Global vs Local explanation

An explanation about a ML model can be of global or local scale. A global explanation clarifies the
workings of a whole ML model. It explains how the relationship is modelled between the whole input
space and the output space [33]. But one can also zoom into smaller regions of the input space and
explain the working of the ML model there. These local explanations clarify the reasons behind the
predictions of instances that fall into those smaller regions. In some cases the ML model can be very
complex, thus making it hard to generate an understandable global explanation. But it is more likely
that the logic of the ML model is much simpler in a small section of the input space, thus allowing to
generate understandable local explanations.

An example of a decision tree model is shown in figure 2.2b. The classification problem is to classify a
house as value low or high, given its age and area. The whole decision tree can be seen as a global
explanation, because it explains how the features age and area of a house is used to determine its
value. But if one is only interested to understand why a particular house is predicted with a certain
value a local explanation is needed. For example a house with age=10 and area=30 is predicted as
value high because its age is greater than 5 and its area is greater than 20.

Strategy

In the literature there are three main strategies that extract human-understandable explanations from
ML models, namely globally transparent, model-oriented and model-agnostic [15]. In the first strategy,
the ML model is optimized to be accurate but also simple enough to be understandable by humans
(see section 2.2.2). While in the second and third strategy, the ML model is not required to be globally
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A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor.

Figure 2.1: An example from a paper by Xu et al. [34]. The explanation shows the most important part of the image for the
prediction.

transparent, instead human-understandable explanations are extracted from the complex ML model.
The difference between the last two strategies lies in the type of information used for the explanation
extraction.

In model-oriented strategy, the internal workings of the ML model is leveraged to extract an explana-
tion. For example, Xu et al. created an explanation method that can explain why the machine learning
model classified certain contents in an image. The explanation consists of an attention map that shows
which part of the image was important for the prediction. Figure 2.1 shows two examples, in which a
mask placed over the original images shows which parts of the images were important for the predic-
tion of a frisbee and a dog. The inner-workings of a LSTM ML model is directly leveraged to build the
attention map. This strategy has the advantage that the explanations reflect the true reasoning of the
ML model with high accuracy. The downside is that the explanation methods are model-dependent,
requiring a different explanation method for each type of ML model.

In model-agnostic strategy, the ML model is seen as a black-box. No internal information about the
ML model is used, rather the black-box model is queried using a set of instances from the input space.
The outputs of these queries are used to gain insights in the behaviour of the model, given the inputs.
In some cases the training instances are used to query the black-box model [35] and in other cases
new generated instances [1]. An advantage of a model-agnostic explanation method is that it can be
used for any type of ML model. Further, the ML model can be built without taking explanability into
account. A downside of these methods is that they can be less accurate than the other strategies
in terms of reflecting the true reasoning of the ML model. LIME [1] is a well known model-agnostic
method. LEAFAGE uses the basic ideas of LIME, hence it is important to have a good overview of LIME.
In section 2.2.3 LIME along with another related method LS [35] is explained in detail.

2.2.2. Globally transparent models
In high-risk applications such as health-care and defense, globally transparent and interpretable model
are preferred because it is important to understand how the ML model exactly works to avoid catas-
trophic consequences. The most prominent ML models that are regarded as transparent and inter-
pretable in the literature [36], are listed below.

A decision tree partitions the input space into cuboid regions, whose edges are aligned with the axes
[37]. Each cuboid region corresponds to a particular class. A new instance is predicted as the class of
the region that it falls into. The process of getting the prediction can be described as the traversal from
the root to a leaf of a decision tree. A two dimensional example of partitioning the input space and
the corresponding decision tree, are shown in figures 2.2a and 2.2b, respectively. The classification
problem is to classify a house as value low or high, given its age and area. First, the whole input space
is divided into two region i.e. age < 5 and age > 5. Further, the left and right regions are divided into
4 sub-region according to area < 15 and area > 15 and area < 20 and area > 20, respectively. The
predicted class of a new instance can be found by traversing from the top of the decision tree to a leaf
e.g. a house with feature values age = 7 and area = 15 has the predicted class low. Decision trees
are regarded as interpretable because predictions can be traced intuitively from the root to a leaf in a
visual manner [38].

Decision rules are more general than decision trees. A decision rule maps an observation to an appro-
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priate action. If-then rules are commonly used in which the if clause is a combination of conditions on
an instance and the then clause contains an action. Some decision rules also contain an else clause that
states which action to take if the if clause does not hold. The combination of conditions can be formed
by conjunctions, negations and disjunctions. A decision tree can be converted into If-then-else rules.
Figure 2.2c shows the example 2.2b converted into If-then-else rules. Decision rules are considered
interpretable because they are can be presented in natural language [36].

A Linear model can be used for a regression or binary classification problem. In a binary classification
problem, a linear model aims to find a hyper-plane that separates the training instances according to
their class values. A linear model can be written as:

y(X) =Wy + W1Xq + Wy Xy + ..+ WaXg

Generally the predicted label of an instance x = [x4, .., x,,], is obtained by mapping all y(x) values above
a certain threshold to the first class ¢; and the rest to the second class ¢,. The weights w denotes
the most discriminative direction for the predictions made by the linear model. A positive (negative)
sign of a weight w; denotes a positive (negative) correlation between the increase (decrease) of x;
and the probability that x belongs to class c;, given all other feature values stay the same. Moreover,
the magnitude of w; indicates the size of the increase or decrease of the probability. Furthermore, the
magnitude of a contribution of a feature value x;, to the prediction is equal to abs(w; * x;).

When d = 2 of d = 3 the decision boundary can be visualized in a two or three dimensional plot,
respectively. An example is visualized in figure 2.3, in which a linear model aims to separate high
from low value houses, given its area and age. The first plot shows that the decision boundary is
more aligned with the axis area than age i.e. feature area is more important for the classification
then age. The second plot, illustrates the weights of the linear model. The absolute values of the
weights is represented by the bar size and the sign by the colors. It shows that an increase in feature
area and age, has a positive and negative contribution towards high value, respectively. Moreover, it
also shows that the feature area (w,,., = 1) is more important for the classification than feature age
(Wgge = 0.5). This can be seen as the global explanation of the linear model. Furthermore, the third
plot provides a local explanation for the prediction of a house with area=40 and age=80. The bar size
represents the importance of each feature value towards its prediction. The importance of area and
age is Woyeq * 40 = 20 and w4, * 80 = 40 respectively. For the local prediction of this house, feature
age is more important than area even though globally the opposite is the case.

These models have two drawbacks. Firstly, they are not inherently transparent and interpretable [2],
despite their apparent simplicity. The size of these models can be enormous, making them complex
and hard to grasp e.g. a decision tree model containing a lot of nodes or a long decision rules model
or a linear model in a high dimensional space. They could be restricted to have a small size, but that
can reduce the performance of these models significantly. Secondly, in certain domains complexer ML

High

20T
High

If age <5 then:

ow O
15+ - age<5 age2i3 If area < 15 then: Low
- @ () Else: High
g area<15 area>20 Else:
<<
e ; @ ® o ® If area s 20 then: Low
Low High Low High Else: High
(a) An two dimensional input (b) A decision tree with two (c) The decision tree converted
space partitioned into 4 regions. features. into decision rules.

Figure 2.2: Example of a decision tree and its corresponding decision boundary and decision rules in a two dimensional space.
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models such as deep neural-networks have proven to perform better than transparent models. In that
case, choosing a transparent model will be at the cost of its performance.

2.2.3. LIME

LIME [1] stands for Local Interpretable Model-agnostic Explanations. Given the prediction of an in-
stance x by a black-box classifier, LIME provides a local explanation which states why this prediction
was made. It focuses on a small neighbourhood which is centered around x. LIME approximates
the decision boundary of the black-box classifier in this neighbourhood by an interpretable model and
extracts an explanation from it. Linear regression model is chosen as interpretable model because the
importance of each feature for the classification can be extracted from it.

The high-level pipe-line of LIME is shown in figure 1.1. The black-box classifier predicts that the patient
has flu from the given symptoms. LIME provides an explanation in which the most important features
are shown. The explanation shows that three symptoms are the most important factors from the pre-
diction. “Sneeze” and “headache” contribute positively towards the prediction of having flu while “no
fatigue” is evidence against it. The explanation can help a doctor to diagnose the patient.

First the general overview of LIME is described using the paper of LIME [1] together with the online
available code [39]. Second, the shortcomings of LIME is analyzed.

Overview of LIME

We define £, : R — [0,1] as a black-box classifier and x € R? as an input instance of £, such that
fe(x) = p with p € [0,1]. d denotes the number of features and p the probability that x belongs to
class c. LIME extracts an explanation for why the black-box classifier f predicted instance x as class c.

LIME needs three inputs namely the black-box classifier f, the training-set X which was used to build
f and the instance that we want to explain x. The workings of LIME can be divided into four steps:

1. First, artificial instances Z are sampled from a distribution modelled as uni-variate normal dis-
tributions of each feature in the training-set. The probabilities y given by f. for the artificial
instances Z are obtained. Furthermore, these Z instances are given weights according to their
proximity to x, by using an exponential kernel: 7, (z) = e"?®®?/7” with D a distance function
and o the kernel width. In short, LIME does not directly sample around the neighbourhood of
x but samples new instances according to the distribution of the training-set and weights these
artificial instances according to their proximity to x. These weights represent the neighbourhood
of x i.e. close by instances are given weights close to 1 and far away points close to 0.

An illustration is presented in figure 2.4. The boundary of the black-box classifier is denoted
by blue and pink background. The bold pink plus point is the instance being explained. The
other pink and blue points are sampled artificially. The weights and the predicted labels of these
artificial points are respectively represented by their size and color.

2. Second, feature selection is performed. The number of features d can be very high, showing the
importance of all features can overwhelm the user. Thus only show a small k amount of features
is used. Feature selection using the Lasso method is performed, i.e. k most discriminative
features are chosen for the regression problem of Z with target values y. The weights of the
artificial samples 7, (z) are used in the feature selection process, i.e. giving more importance to
features that can separate the classes well in the neighbourhood of x. Z containing only k local
discriminative features is denoted as Z'.

3. Third, a linear model is trained to approximate the decision boundary in the vicinity of x. Let's
define g € G where G is a class of all potential linear models. A locally weighted loss function L is
used to get the optimal linear model g+. g* is obtained by performing a least square regression.

Lfgmd= ) n@)(@ - g@)y

z€Z,2' €7’
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As illustration, figure 2.4 shows the linear model that approximates the local decision boundary
around x.

4. At last, an explanation is extracted from the linear model g=. An example of the explanation is
given in figure 1.1.

LIME distinguishes between the original input space and the interpretable input space. The features
in the interpretable input space are supposed to be understandable to humans. It suggests that a
binary vector that indicates the presence or absence of the values of the instance being explained
is interpretable. The interpretable input space differs per instance being explained. An example is
shown in figure 2.5 in which for an instance being explained x with values Age = 30 and Area = 20
an interpretable input space is created that indicates whether an instance in the original input space
falls in the same range as x. These ranges are determined by discretizing the numerical features
according to their distribution in the training-set e.g. discretizing Age in quartiles could be Age < 5, 5
<Age < 11, 11 <Age < 20 and Age > 20. It further suggests to sample artificial instances (see step 1
algorithm above) in the interpretable input space and to further map it the original input space to get
the predicted label. The linear model is than built in the interpretable input space. But it is not clear
how it is possible to map from the interpretable input space to the original input space. When looking
at the implementation, they sample in the original feature space and map that to the interpretable
feature space.

Shortcomings of LIME

LIME chooses for a linear model as the interpretable model to approximate the local boundary. A big
advantage of linear models is that the importance of the features can be extracted and provided as an
intuitive explanation. However, it is possible that the linear model is too simple to represent a highly
nonlinear local black-box decision boundary, i.e. a linear approximation will not grasp the logic behind
the prediction well enough.

The approximation of the interpretable model is dependent on the instances used to learn from. We
further analyze the sampling method used by LIME.

First, LIME chooses to sample artificial instances instead of using the training instances. It tries to
sample realistic instances by sampling from a distribution modelled as uni-variate normal distribution
of each feature in the training-set. This might not be realistic in some cases when the data does not
follow a normal distribution.

Second, regardless of the first choice the size of the neighbourhood around x from which the instances
are sampled is important. If an instance is very far from the decision boundary compared to a closer
one, the neighbourhood should be bigger to incorporate the closest decision boundary. In LIME this
neighbourhood is determined by ¢ and in its implementation it is set to 0.75 * vd. ¢ is not dependent
on the distance to the closest decision boundary but only on the dimension of the input space. This
can lead to over-generalization or under-generalization of the local decision boundary respectively if
the neighbourhood is set too big or small.

In figures 2.6a, 2.6b, 2.6¢ three important sampling scenarios are presented in which the size of the
neighbourhood is varied by varying . It is a binary classification problem with red and green classes
and with two input features. The decision boundary of the black-box classifier is defined as a parabola.
The visualized points are instances from the training-set and the colors corresponds to the label given
by the black-box classifier. The instance being explained is in yellow. In figure 2.6a the neighbourhood
defined by m(o = 1) is too small in which all of the red instances have weights equal to zero. As a result
the linear approximation will be arbitrary (under-generalization). In figure 2.6¢c the neighbourhood is
too big which will result in a linear model that incorporates the global trends of the black-box model
(over-generalization). The neighbourhood defined by (o = 6) (figure 2.6b) is optimal in which enough
weight has been given to instances from both class.

Laugel et al. [35] spotted the problem of over-generalization of the local decision boundary by LIME.
They show an example (figure 2.7) in which the linear approximations (dotted lines) learned by LIME
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for the prediction of the 3 biggest colored points are shown. The black-box boundary is given by the
blue and pink background. The linear models of the points are very similar even-though the local
decision boundaries are different.

Laugel et al. [35] propose a new method LS (Local Surrogate) as an improvement on LIME and suggest
to sample instances from the training-set within a hyper-sphere with the center equal to the closest
decision boundary of x, and a radius r. r is fixed according to the maximum distance between the
training instances. The closest decision boundary of x is approximated by using the growing spheres
algorithm [40], in which artificial instances are sampled uniformly within a hyper-sphere of growing
radius centered on n, until an instance from the opposite class 1 ,,-4¢r iS found. The ny,, 4. is regarded
as the approximation of the local decision boundary. This brute-force way of approximating the local
decision boundary accurately is only feasible in a small dimensional input space but not in a high one,
because the volume of hyper-sphere increases exponentially with the number of dimensions. Like LIME,
LS also has three important sampling scenarios as shown in figures 2.8, in which the neighbourhood
can be too small, have a good size or too big, respectively. When the neighbourhood is too small or
too big, it will contain not enough training instances for a good linear approximation (figure 2.8a) or
too many instances that are not linearly separable (figure 2.8c), respectively.

(a) The size of the (b) The neighbourhood has a (c) The size of the neighbourhood
neighbourhood is too small. good size. is too big.

Figure 2.8: Three important sampling scenarios of LS

2.2.4. Evaluation of local explanations

An explanation that clarifies the local behaviour of a black-box ML model, should be faithful to the
underlying black-box ML model. This subsection describes evaluation methods to measure fidelity of a
local model-agnostic explanation (extracted from an interpretable model) to the underlying black-box
ML model.

LIME [1] suggests to measure the fidelity as follows. Two interpretable models are chosen as black-box
classifiers. They make sure that only 10 particular features (gold features) are used for any prediction
by the black-box classifiers. Further, they generate an explanation that shows the 10 most important
features for the prediction of each test instance. At last, they observe whether these important features
contain the 10 gold features. This is a very soft method to measure the fidelity, because is does not
test whether the relative importance of the features are respected in the explanation.

Method LS [35] defines a more rigid way to evaluate the local fidelity to the black-box ML model. It
defines the local fidelity within a neighbourhood V, , of an instance z as an evaluation score (e.g.
accuracy), of the predictions made by the interpretable model compared to f on the testing instances
that lie in v, ,.. V, , is defined as a hyper-sphere with z as center and r € [0, 1] as radius. r denotes
the locality of the evaluation and is expressed as the percentage of the maximum distance between
the instances of the testing-set and z. The final evaluation-score of the testings-set is an average of
the local fidelity scores applied on each of its instances. In the evaluation of LS, r is set to 0.05 for all
instances, without any justification.

Figure 2.9a shows an example of a testing-set and the values of r applied on a two dimensional space.
The corresponding local fidelity values (accuracy as evaluation score) of varying V, ,. over r € [0, 1] are
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shown in figure 2.9b. The blue and the orange line correspond to the local fidelity of the optimal linear
model g, and another model b, that always predicts the label of z, respectively. The local fidelity of
g and b, have optimal local fidelity score from 0 to 0.25 r. Furthermore, any arbitrary linear model
that does not go through V, ,. with = 0.25 and that predicts all the instances in the side of z as the
label of z, will have perfect accuracy. Thus in this case any local fidelity scores based on V, , with
r € [0,0.25] does not reflect how faithful the explanation is to the underlying model. The range of r
in which the local fidelity scores are not valid depends on each instance. Instances that are far away
from the decision boundary have a bigger range than instances that are closer.
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Figure 2.9: The local fidelity values with different values of r.



LEAFAGE

This thesis proposes a new method LEAFAGE that provides intuitive and understandable explanations
for a prediction made by any black-box ML model. LEAFAGE stands for Local Example and Feature
importance-based model AGnostic Explanation. The explanation makes the reasons behind a predic-
tion transparent to the user, by providing examples from the training-set that are similar to the instance
being explained and showing the importance of each feature for the prediction.

Let f : X - Y be a black-box ML model that solves a binary classification problem with X = R¢ and
Y = {c1,¢;}. Let z € X be an instance of the input space with f(z) = ¢,, ¢, € Y, for which an expla-
nation is needed. Furthermore, let X = [x4, ., x,] with the corresponding true labels vy, = [V1, - Ynl
be the training-set that f was trained on. Let y,,.cqictea = {f (x)|x; € X} be the predicted labels of the
training-set. Next, let {x € X |f(x) = ¢,} and {x € X |f(x) # c,} be defined as the ally and the enemy
instances of z [40], respectively. LEAFAGE needs X, Yp,eaictear z @and c, to extract an explanation for
why z was predicted as c, instead of the opposite class.

In a high-level overview, LEAFAGE works as follows. First, a sub-set of the training-set in the neigh-
bourhood of z, is used to build a local linear model, that approximates f in the neighbourhood of z.
The importance of each feature for the classification of z is extracted from that linear model. Next, the
importance of each feature is used to define a similarity measure that returns how similar an instance
x € X is to z. This similarity measure is used to retrieve similar examples as z from the training-set. At
last, the importance of each feature along with the most similar examples are given as an explanation
for why f classified the instance z as c,.

In subsections 3.1 and 3.2 the similarity measure and two strategies to build the local linear model are
defined, respectively. Further, subsections 2.1.1 and 3.4 explain how an LEAFAGE explanation can be
made contrastive and visualized, respectively.

3.1. Defining Similarity

A classification example is shown in figure 3.1, in which the black-box classifier predicts whether a
house has a high or low value according to its area and age. A new house z is predicted as value
high. To find similar houses a similarity measure has to be defined. A trivial solution is to use euclidean
distance measure which gives equal weights to all features. Figure 3.1a shows two potential houses
(x4 and x,) from the training-set. According to the euclidean distance, z is more similar to house x,
than house x,. But the black-box classifier only looks at the feature area. Thus, according to the
black-box classifier z is more similar to x, than x, (figure 3.1b)

The importance of each features for the classification of z can be retrieved by approximating the
decision boundary of the black-box classifier linearly as shown by the blue line in figure 3.1c. Let
g(x) = w,x +c with w, = (w,4,..,w,4)T be the linear model that approximates the decision boundary.
w, denotes the most discriminative direction for the classification of z.

19
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In figure 3.1 the global decision boundary is a horizontal line which can be approximated accurately
by a linear model. But in practice the decision boundary of the black-box ML model can be arbitrarily
complex as shown in figure 3.2. In that case, a linear model will not be able to approximate the the
global decision boundary accurately. However, we assume that a small fragment of the global deci-
sion boundary which is the closest to z is smooth enough to be linearly approximated accurately, as
illustrated by the blue line in figure 3.2. In that case the linear model is not valid globally, but only
locally in the neighbourhood of z. We further assume that the closest decision boundary to z is the
most important fragment of the global decision boundary for the classification of z [35, 40].

The following definitions describe the local behaviour of the black-box ML model around z. These
definitions applied to the housing example are illustrated in figure 3.2.

Definition 3.1. Let the local decision boundary of z be defined as the closest fragment (according to
euclidean distance) of the global decision boundary to z.

Definition 3.2. Let the local linear model of z be defined as the linear model that approximates the
local decision boundary of z.

Definition 3.3. Given the local linear model g(x) = w, - x + ¢ of z let the the black-box similarity
measure between z and an instance t € X be defined as the following:

b(t) = Vd - [|wit — whz|| + llt - zII,

The black-box similarity values on the two dimensional housing example is shown on figure 3.3. In the
first term of the black-box similarity formula, z and t are projected onto the direction w (extracted from
g) and euclidean distance is applied onto those projected values, because w it is the most discriminative
direction for the classification of z. But g is only valid in the neighbourhood N of z, and it is not
straightforward to define N. This thesis proposes a heuristic solution in which the fact that closer
instances to z (according to the euclidean distance on the input space) are more likely to be within N,
is leveraged. The black-box similarity measure (definition 3.3) weights the euclidean distance on the
input space and the euclidean distance on the vector w equally.

3.2. Computation of the local-linear model

Definition 3.4. Let the local training-set of z be defined as the instances X, = x;, ., x;, Vx € X with
labels y, = {f (x)|x € X,}, which are used to build the local linear model of z.

For the generation an accurate local-linear model the sampling strategy of the local training-set of z is
very important. Methods LIME [1] and LS [35] have proposed solutions for sampling instances, which
are explained and reviewed in detail in section 2.2.3. We suggest three desired characteristics that a
local training-set of z should adhere to, taking the shortcomings of LIME and LS into account:

1. The convex hull of the local training-set of z should contain the local decision boundary of z.

E . Z ) X Legend
A A x Soundary "
- . ‘ A
g ZA g A g A \ Linear
High High < Z TW i approximation
low o A Anewinstance
A e
Age Age Age
(a) According to the (b) According to the (c) The black-box global decision
euclidean distance z is more black-box classifier z is boundary can be approximated
similar to z1 than z2 more similar to z2 than z1 accurately by a linear model.

Figure 3.1: Simple decision boundary of a black-box ML model that prediction whether a house has low or high value. A new
house z is predicted as value high.
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Figure 3.2: A complex decision boundary that cannot be accurately approximated by a linear model.
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Figure 3.3: The contour lines of the black-box similarity measure (definition 3.3) applied on a 2D classification example
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Figure 3.4: Two dimensional classification problem
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Figure 3.5: The minimum amount of instances needed for a good local linear model is 2 per class in this 2D example. This is
the case only if these instances lie along the local decision boundary of z

2. There should be enough instances of both classes. The minimum amount of instances per class
that lie along the local decision boundary, which are needed for a good linear approximation
is equal to the dimension d of the input space. For example in a two dimensional space, two
instances from each class that lie along the local decision boundary of z are needed as shown in
figure 3.5.

3. The instances should be linearly separable according to the classes.

We propose two solutions for sampling of the local training-set of z, taking the the desired charac-
teristics of a local training-set into account. The solutions are illustrated using a two dimensional
classification example shown in figure 3.4. The blue parabola is the decision boundary of the black-box
ML model. The triangles and circles are instances of different classes from the training-set that the ML
model was built on. The local-linear model needs to be computed of a new instance z (yellow triangle).

The first sampling strategy is called Boundary Independent Sampling (BIS). The main idea is to sample
around the closet enemy of z from the training-set. Its pseudo-code is provided in algorithm 1. Its
two steps and motivations are listed below:

1. The local training set z is sampled around the local boundary of z (similar to the idea of LS [35]).
This makes it possible to sample enough instances from both classes avoiding a bad sampling
scenario of LIME (figure 2.6a). We assume that the closest enemy x; ,,-4¢ Of z from the training-
set lies close to the local decision boundary of z and sample around x;,-4¢- The growing spheres
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algorithm (see section 2.2.3) suggested by LS is not used, because it is not accurate in a high

dimensional input space.

2. LS had two bad sampling scenarios (figures 2.8a and 2.8c) in which there were too few or too
many local training instances, that lead to bad linear approximations. To avoid these scenarios
as much as possible, this method proposes to sample i - d examples of each class from the
training-set that lie the closest to x;,,4¢-- The number of samples per class is dependent on the
input dimension d, because d instances per class are the minimum amount of examples needed
for a good linear approximation assuming that these d instances lie along the closest decision
boundary of n. These d instances might not lie exactly along the decision boundary, thus the
amount is increased with i, ,;; which is a small integer greater than 1. This strategy applied on
a two dimensional example with i = 3 is showed on figure 3.6. The green and red shapes are
instances sampled from the training-set (figure 3.4) to build the local linear model of z. The local
linear model of z is not completely approximating the local decision boundary correctly. This is
because most of the sampled instances do not lie along the local decision boundary of z. The

second sampling strategy tries to sample the instances that lie along the decision boundary.

BIS samples training-instances that lie close to x4 (figure 3.6), but instances that lie more along
the local decision boundary of z and are close to x,order as shown in figure 3.7¢, form a better
local training-set. Taking that into account, we propose a second sampling strategy called Boundary
Dependent Sampling (BDS) that builds upon the first strategy. Its pseudo-code is presented in algorithm
2. Two neighbourhood amounts are defined namely the iy, and iy;,, which correspond to the
amount of instances per class and dimension to be sampled form the training-set. is;,;; and iy;, are
respectively a small and a big integer greater than 0, with ispq; < ip;4. The BDS strategy works as

follows:

1. First, a large amount of training instances X,;, using BIS strategy with i = i,;, is sampled.
Examples of training instances extracted using the BIS strategy with ij;, = 10 and i,;; = 50 on
a 2D space, are shown in figure 3.7a and 3.7b, respectively. The main idea is to choose igy,q;; - d
amount of instances per class from X,,;, that are the most suitable as the local training-set of z.

2. A score is given to each instance of X,,;, which approximates how close this instance lies to the
local decision boundary of z. The score of an instance x; € Xp;, is equal to the smallest euclidean
distance from x; to an instance of X, that has a different prediction than x,. Figures 3.7c and
3.7d show the local training-set (with is,,,;, = 3) of z filtered using this score from i,;, = 10 and
ipig = 50 neighbourhoods, respectively. In the first example, the sampled instances are good to
build the local linear model of z, but this is not the case for the second one. In the second case,
the big neighbourhood crosses another decision boundary and subsequently training instance
from there are included.
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3. To avoid the scenario seen as seen in figure 3.7d, the score function is adjusted by taking the
euclidean distance from x; to x;,.-4¢r iNto account. This makes sure that the instances close to
Xporaer @nd to the local decision boundary are preferred over instances that are far away from
Xporaer- 1he final extracted local training-set of z from i,;, = 10 and i,;, = 50 neighbourhood
using this adjusted score are the same and shown in figure 3.7e.

At last, given the local training-set of z, any linear classification algorithm can be used to build the local
linear model of z.
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Figure 3.7: These example illustrate the working of the sampling strategy BDS.
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Algorithm 1: BIS(z, c,, X, y, i)
Input : z: instance to explain prediction of, c,: predicted label of z, X:the training-set, y:the
predicted labels of z, i,,4;;:the amount of instances per dimension and class to sample
(default value:3)
Output: The local training-set of z (X,,) and the corresponding labels v,

1 X, «{x€X |y =c,} // the allies of n from the training-set
2 X, «{x; €EX |y; # c,} // the enemies of n from the training-set
3 Xporder < argmin||z — x|, x € X,

4 amount <« igpa - d // the amount of instances to sample per class
5 dg = {IIxporaer — x|l |x € X}

6 do = {[xporaer — xIl [x € X}

7 Xy < sort(X,, key =dy)[1 .. amount]

8 X, « sort(X,, key = d,)[1 .. amount]

9 X, « concatenate(X;, X;)

10 y, « corresponding y values of X,

11 return X, y,

Algorithm 2: BDS(z, c;, X, y, ismau ibig)

Input : z: instance to explain prediction of, c,: predicted label of z, X:the training-set, y:the
predicted labels of X, is;,4i;:the amount of instances per dimension and class to sample
(default value: 3), iy;4: the amount of instances per dimension and class to consider
for sampling (default value: 15)

Output: The local training-set of z (X,,) and the corresponding labels y,

1 Xpig) Ypig < BIS(n, ¢, X, ¥, ipig)
2 Xq < {X; € Xpig | ¥i = ¢4} // the allies of n from Xy,
3 Xe < {X; € Xpig Vi #¢;} // the enemies of n from Xpy
4 Xporder < argmin|lz — x|, x € Xbig
5 d, « empty list // distance used to choose final samples
6 d, < empty list // distance used to choose final samples
7 for eachu € X,,;; do
/* Get the instances in X,;; that have the opposite class as u */
8 if u € X, then
9 | target < X,
10 else
11 | target < X,
12 | end
/* Get the shortest distance from u to an instance of target */
13 dye « min(Jlu —x||),x € target
/* Get the distance from u to Xporder */
14 dp < IxXporaer — ull
/* Combine the both distances */
15 final_distance = d,. + dj
16 if u € X, then
17 | dg.append(final_distance)
18 else
19 | d..append(final_distance)
20 end
21 end
22 amount « igman * d // the amount of instances to sample per class

23 X, < sort(X,, key =dy)[1 .. amount]
24 X, < sort(X,, key = d,)[1 .. amount]
25 X, « concatenate(X,, X;)

26 y, < corresponding y,;, values of X,
27 return X,, y,
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3.3. Generating contrastive explanations

One of the important finding from social research is that why questions are contrastive (see section
2.1.1). In ML context, if a ML model predicts an instance z to be of class ¢, than the user might ask
“Why did the ML model predict this instances as class c, instead of class c/". The user expected class ¢,
and wants a specific explanation of why c, (the fact class) was predicted instead of ¢, (the foil class).
If the ML model solves a binary classification, then any explanation is by definition contrastive and the
methods describes in the previous sections can be used. On the other hand if the ML model solves a
multi-class problem, providing a contrastive explanation is not trivial.

First, the foil class has to be determined. Determining the foil class means understanding which class
the user expected instead of the fact class. Performing this task exactly is a very hard task. We propose
a heuristic method to get the foil class. Generally, the ML model gives a score for each possible class.
A score of a class states how likely the instance z belongs to that class. The predicted class c, has the
highest score. We regard the class with the second highest score as the foil class c;.

The instances from the training-set that have the fact or the foil class as predictions are filtered. With
this filtered training-set along with the predicted labels, a LEAFAGE explanation can be extracted that
explains why the fact class was predicted instead of the foil class.

3.4. Explanation extraction

Given the local linear model g(x) = wy + wyx; + wyx, + .. + wyxy Of an instance z = [z, ., z4], the
importance of each feature for the prediction of z can be extracted. The prediction of z, can be de-
termined by the score g(z) (see section 2.2.2). Thus, the contribution of a feature value z;, to the
prediction is equal to abs(w; * z;). The magnitude of this contribution value denotes the importance of
the feature value z; to the prediction. The importance of each feature value for the prediction can be
provided as an explanation to the user.

Social research suggested that explanations are selected (see section 2.1.3) according to different cri-
teria. One of those criterion is responsibility, in which people prefer causes that are more responsible
for an event, over others. The importance of each feature value can be seen as how responsible the
feature is for the prediction. A small subset of feature values with high importance can be chosen to
give as an explanation.

Social research further indicated that Example Based Reasoning lies very close to how we as humans
think. It can be used for problem-solving and decision-justification. Given the black-box similarity
measure b of z, instances that have similar classification logic can be extracted from the training-set.
Furthermore, one can provide similar instances from the fact class and the foil class. That can give
insights on the differences between the instances from the fact and foil class in the neighborhood of z.

We propose to combine feature importance-based explanation with example-based explanation. This
combination will allow the user to understand the importance of each feature value and the differences
between the instances from the fact and foil class. An example of a house that is predicted as value
low by a ML model and an LEAFAGE explanation for its prediction are shown in figures 3.8 and 3.9,
respectively. The left graph of figure 3.9, shows which of the feature values of the house were the
most important to make the prediction. The length of each bar shows the relative importance of
each feature. In this case, the feature values Bathroom Amount=2 and Bedroom Amount=3 are not
important. Feature value Year Built=1989 is the most important followed by Living Area=184m? and
Overall Quality=7. The two tables in the right show houses that are similar to the house being explained.
The green table shows 5 similar houses that have low value and the red table shows 5 similar houses
with high value. These tables make clear how big the differences for each feature are, between similar
houses with value low and high. For example in this explanation, the differences in Living Area are big
between low and high value houses while there are no differences in Bathroom Amount and Bedroom
Amount.
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Importance

184 m? (1982 ft?)

1989 7 2

Figure 3.8: Example of a house that is predicted as value low by the machine learning model.

The importance of each feature for the prediction

Features

Prediction: High

Figure 3.9: Example of a LEAFAGE explanation.

Most similar houses with value Low

Living Area Year Built Overall Quality(1-10) Bathroom Amount
135 m? (1456 ft?) 1978 6 2
137 m? (1479 ft?) 1976 6 2
133 m? (1441 ft%) 1978 6 2
135 m? (1456 ft?) 1976 6 2
112 m? (1218 ft?) 2009 6 2

Most similar houses with value High

Living Area Year Built Overall Quality(1-10) Bathroom Amount
171 m? (1850 ft?) 1994 7 2
194 m? (2093 ft?) 1986 7 2
181 m? (1950 ft?) 1997 7 2
194 m? (2097 ft?) 1993 7 2
149 m? (1614 ft?) 2005 7 2

Bedroom Amount

Bedroom Amount



Quantitative Evaluation

This chapter evaluates the ability of LEAFAGE in reflecting the true local reasoning of the underlying
black-box ML model. This subsection demonstrates the model-agnostic character of LEAFAGE by eval-
uating quantitatively how faithful the extracted explanations are to six different types of black-box ML
models applied on four different UCI' datasets and one artificial dataset. It compares the fidelity of
LEAFAGE's BIS and BDS strategy, LIME and a baseline model, with each other.

4.1. Evaluation method

A dataset is first split into two disjoint sets of training-set (X;rqin, Yerain) @nd testing-set (X;ose, Viest)r
which contain 70% and 30% of data, respectively. The training-set is used to build a black-box clas-
sifier . Further, a local linear model is built for each instance of the testing-set. To build these local
linear models, only the training-set and the black-box classifier f are available. The testing instances
Xtese With their predicted labels yi.s: 5 = {f (x;)|x; € X¢es¢} are used to get a local fidelity score of each
local linear model. At last, the individual local fidelity score of all the local linear models are averaged to
get one fidelity score per dataset and classifier. We propose a new method of getting the local fidelity
score of a local linear model g, of an instance z with f(z) = ¢,

The local linear model should be valid in the neighbourhood of z. The difficulty lies in how to set the
size of this neighbourhood. Method LS [35] suggested to test the performance of g, on the testing
instances that fall into a hyper-sphere with a fixed radius and z as center. Having fixed radius can lead
to too small or too big neighbourhoods (see section 2.1.4). We propose a custom radius per g,. The
hyper-sphere with center z is expanded until it includes p percentage of instances that do not have
the same predicted label as c¢,. p should be smaller than and close to one (p = 0.95 is used in the
experiments), such that the closest testing instances of the opposite class of z are included and to
make the evaluation local, respectively. The test instances X..,: , that fall into this hyper-sphere are
used to get the fidelity score of g,. The labels given by the black-box classifier f are compared to the
scores given by the local linear model g,, using the AUC evaluation metric. The local fidelity score of
a local linear model g, of instance z, to a black-box classifier f is defined as follows:

AUCH{f ()1 € Xeest 2} {92 (X |%i € Xiest_2})

The average local fidelity scores of four strategies are compared per dataset and classifier. The first
two strategies are Boundary Independent Sampling (BIS) and Boundary Dependent Sampling (BDS) of
LEAFAGE (see section 3.2). The third strategy is the current state-of-art model-agnostic method that
extracts local linear models called LIME (see section 2.2.3). At last, a baseline method is used, that
always predicts the class given by f, of the instance being explained.

IHyperlink UCI datasets
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4.2. Datasets and black-box models

The different black-box ML models used are namely Logistic Regression” (LR), Support Vector Machine
with linear kernel® (SVM), Linear Discriminant Analysis® (LDA), Random Forest® (RF), Decision Tree®
(DT) and K Nearest Neighbour’ with K = 1 (KNN). Scikit-learn 0.19.2 © library was used to build these
models with its default hyper-parameter unless stated otherwise.

These classifiers are applied to 5 different datasets with different number of features, rows and com-
plexities (see table 4.1) and described below. Multi-class datasets with n classes are converted into
n binary datasets of one-vs-rest fashion. We call a combination of a binary dataset and a classifier a
setting. In total there are 54 settings.

Dataset | Number of features Number of rows Number of classes Amount per class
Iris 4 150 3 50/50/50

Wine 13 178 3 59/71/48

Breast Cancer | 32 569 2 212/357

Bank Note 4 1372 2 762/610

AD 2 500 2 250/250

Table 4.1: UCI datasets used for quantitative evaluation

e Iris: This is a famous classification task of predicting the type of iris flower given it's different
attributes about the petal and sepal [41].

o Wine: This dataset contains the chemical analysis (independent variables) of three different types
of Italian wines (dependent variable) [42].

e Breast Cancer: It is a binary classification task of classifying whether a breast mass is benign or
malignant given different features about it [43].

e Banknote: This a binary classification problem of predicting the authenticity of a banknote as
fake or real, given its different numerical characteristics [44].

e Artificial dataset: At last, we include a two-dimensional binary artificial dataset (AD) with highly
non-separable classes (figure 4.1a). The instances from the purple and yellow classes are samples
from bi-variate normal distribution with different means ([0, 0] and [0, 1], respectively) and the

same covariance matrix ( (2) g ). The KNN classifier trained on this dataset is visualized on figure

4.1b. The decision boundary is complex and highly non-linear.

4.3. Results

Per setting, the average fidelity score along with the standard deviation in brackets is presented on
figure 4.2. LEAFAGE strategies are computed with ig,,,;; = 10. Further, we perform statistical tests per
setting between the strategy with the highest mean and the rest of the strategies. The strategy with
the highest mean along with the other strategies that are not significantly different are denoted with
a dark font color. While the rest of the strategies are denoted with a light font color. We perform a
Wilcoxon signed-ranked test which tests the null hypothesis that two related paired samples come form
the same distribution. The statistical tests are performed with a critical value of 0.05 with Bonferroni
correction.

2Hyperlink Scikit-learn’s Logictic Regression
3Hyperlink Scikit-learn’s Support Vector Machine
“4Hyperlink Scikit-learn’s Linear Discriminant Analysis
5Hyperlink Scikit-learn’s Random Forest

8Hyperlink Scikit-learn’s Decision Tree

7Hyperlink Scikit-learn’s K Nearest Neighbours
8Hyperlink Scikit-learn


http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
http://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
http://scikit-learn.org/stable/
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(a) A highly non-linearly separable binary dataset. (b) A KNN model trained on the AD dataset.

Figure 4.1

Iris Wine BreastCa.. | BankNote AD
Classifier versicolor wirginicawvs |class_Ovs class_1lwvs class_2vs |benignvs
Name Strategy vs rest rest rest rest rest malignant |Ows1 Ovs1
LDA Easeline 50.0 (0.0 50.0(0.0 5 0.0 50.0 (0.0 50.0(C o 50.0(0.0 50.0{0.C
100.0(0.0) 100.0(0.0)/100.0(0.0) 100.0(0.0) 100.0(D0) S55(1C 100.0(0.0)|100.0(0.0)
=.1(B:2) '100.0(0.0)|100.0(0.0) 36.0(3.4 100.0(D.0)|99.9(0.3) |35 7 38.6(4.0
; 100.0(0.0)|100.0(0.0) 360(54) 100.0(0.0)/99.9(0.3) = 5
LR 50.0(0.0 50.0(0.0 50.0{0.0 50.0(0.0 50.0(C 50.0(0.0 50.0(0.0 50.0{0.0
100.0(0.0) 100.0(0.0) 100.0(0.0) 100.0(0.0) 100.0(0.0) 99.9(0.6) 100.0(0.0)|100.0(0.0)
Leafage: 100.0(0.0) 56 ¢ 5)(100.0(0.0) 97.1(14.2) 100.0(0.0) 586(78 33.8(0.5 58.6 (4
Leafage: 100.0(0.0) 565 100.0(0.0) 97.1(14.2) 100.0{(0.0) 225&(7 7 45
SVM Baseline 50.0(0.0 50.0(0.0 50.0(C L0.0(0.0 50.0{0.0 50.0(0.0 50.0(0.0 50.0{0.0
Lime 100.0(0.0) 100.0(0.0)/100.0(0.0) 100.0(0.0) 100.0(D.0) 999(0.6) 100.0(0.0) 100.0(D.0)
35.4 (9.5 36.9(10.6 )|100.0(0.0) 100.0{0.0) 100.0(0.0)|27.5(11.3)|95.8(0.9 39.4(1.2
100.0(0.0) 100.0(0.0) 100.0(0.0) 57 7 -
DT 50.0(0.0 50.0(0.0 50.0(0.0 5 50.0(0.0 50.0(0.C
96.0(13.1) 100.0(0.0)|91.5(149) 87¥9(224) 51.9(14.7)|85.0(16.2)/99.0(26) [59.5(327)
Leafage: 815(366) 37 1(30) [929(16.0) 858(24.1) 100.0(0.0) 86.5(18.7) 98.7(4.2) |65.0(33.0)
Leafage: 76.1(426) 37.1(50) 925(16.0) 858(24.1) 100.0{0.0) 86.5(18.7) 98.6(4.7) |63.0(336)
RF Baseline 50.0(0.0 50.0(0.0 50.0(0.0 50.0(0.0 50.0{0.0 50.0(0.0 50.0(0.0
Lirme 97.1(9.5) 99.5(1.1) [100.0(0.0) 999(0.5) 100.0(0.0)/99.9(0.3) |99.1(25) |614(36.2
Leafage: 86.1(29.5) 100.0(0.0) 100.0(0.0) 99.2(3.7) 100.0(0.0) 99.5(0.8) |98.7(3.8) |67.4(329)
Leafage: BDS [100.0(0.0) 761 (425) 100.0(D.0)(100.0(00) 99.2(3.7) 1000{00) 99.9(0.8) [985(44) |679(317)
KNN Baseline 50.0(0.0 50.0(0.0 50.0(C 50.0{0.0 50.0(0.0 50.0(0.0) |50.C 50.0(0.0 50.0(0.0
Lirne 100.0(0.0) 98.0(10.0) 57 7(83) |98.0(136) 62.8(37.1) 60.5(35.7)|958(8.2 100.0(0.0) 65.6(34.3)
Lesfage: BIS |100.0(0.0) 87.9(29.2) 100.0(D.0)(513(15%) 68.9(36.1) 60.3(376) 97.3(6.0) |552(05) |65.5(36.8)
Leafage: BDS |100.0(0.0) 75.2(42.2) 100.0(0.0) 313 68.9(36.1) 60.3(37.6) 97.3(6.0) 100.0(0.1) 62.5(357)

Figure 4.2: The average local fidelity per setting with the standard deviation in brackets. The strategy with the highest mean
along with other strategies that are not significantly different are denoted with a dark font color.
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First, we view the performance of LIME, BIS and BDS versus the baseline model. All three methods
have a consistently average score higher than the baseline model over all settings.

Further, we establish whether there is a difference in performance between ML models with linear (SVM,
LDA, LR) and non-linear (DT, RF, KNN) decision boundaries. We expect that the strategies perform
better on the former models in comparison to the latter, because BIS, BDS and LIME are based on
linear models. Indeed, all three strategies do perform better on the former models. This is very clear
with the highly linearly non-separable AD dataset. On the models with linear decision boundaries these
strategies have an average fidelity score of greater than 98%, while on non-linear models the scores
are in the sixties.

Next, we look at the differences between LIME and LEAFAGE BIS and BDS. Overall none of the strate-
gies are consistently better than the others. On the models with linear decision boundary LIME scores
significantly better than the others in 13 out of 27 setting. While on the non-linear models LEAFAGE
strategies score significantly better than LIME on 7 out of 27 settings. The better performance of LIME
on models with linear decision boundary could be because LIME uses a high amount of samples over
the whole input space to fit the local linear model. The strategies of LEAFAGE on the other hand sam-
ples around the closest decision boundary and limits the sampling amount to a minimum. This might
explain the better performance of LEAFAGE over LIME on non-linear models. No significant difference
between LEAFAGE BIS and BDS is present.

Furthermore, we look at the influence of varying i, ,;; on the performance of LEAFAGE BIS and BDS.
Figures 4.3a and 4.3b show the results while varying ig,,;; on models with linear (SVM, LDA, LR)
and highly non-linear (KNN) decision boundaries, respectively. Generally on models with linear deci-
sion boundaries, the performance of both strategies increases with ig,,,,;;- This is expected because
increasing the sampling neighbourhood will allow to approximate the global linear decision boundary
better. On the other hand if the outcome of the black-box classifier is highly non-linear a smaller value
for ig,qu is better. This can be seen on the KNN model i.e. the performance decreases from ig,,q;; = 5
t0 igman = 10.

Dataset Name / Class vs Class
Iris Wine BreastCanc..| BankMNote AD

Classifier
Name Strategy
LDA Leafage: BIS

Dataset Name.
AD
Classifier.. Strategy <1
KNN Leafage: BIS 2 644(340)
5 |eo.

svC

10 |625(357)

(b) On a highly non-linear
(a) On models with linear decision boundary ML model

Figure 4.3: Fidelity results of LEAFAGE strategies while varying i qi:-

At last, we establish the differences between LEAFAGE BIS and BDS. Applied on models with linear
decision boundary (figure 4.4), BDS performs significantly better than BIS on a high dimensional dataset
with a small value for i,,,;; (dataset Breast Cancer with dimension 32 and i,,,; = 2). While on non-
linear models (figure 4.5), BIS performs significantly better than BDS on 15 out of 81 settings. This
better performance, might be because BDS samples along the non-linear decision boundary while BIS
around the closest enemy. BIS samples will include a smaller region of the decision boundary than
BDS. A smaller region is more likely to be less non-linear, which leads to a better linear approximation
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Dataset Name / Class vs Class

Iris Wine BreastCancer BankNote AD
Classifier I
Name i Strategy est est e res Ovs1 Ows1
LDA 2 & 5 0.0 5 C 5 0 5 0.0
95.4(11.1) 98.3(5.1) 98.0(5.2) 97.2(84) 100.0(0.0) 99.8(0.4 97.9(9.2) 946(96)
97.5(8.2) 96.6(15.1) 98.6(4.1) 97.1(87) 100.0(0.0) 99.9(0.3) 97.5 (6.7 92.5(11.2
95.0(106) 96.0(15.5) 98.8(4.0) 96.0(9.4) 100.0(0.0) 100.0(0.3) 99.6 (1.9 98.0(42)
94.9(106) 98.3(5.2) 100.0(0.0) 96.0(9.4) 100.0(0.0) 99.9(03) 99.8(1.0) 95.8(7
96.1(8.2) 100.0(0.0) 100.0(0.0) 96.0(9.4) 100.0(0.0) 99.9(03) 99.9(17) 98.6(40)
95.5(8.9) 100.0(0.0) 100.0(0.0) 96.0(9.4) 100.0(0.0) 99.9(0.3) 99.9(0.5) 98.0(45)
LR 2 50.0 (0.0 50.0 (0.0 50.0(0.C 50.0 50.0{0.0 50.0 (0.0 50.0 (0.0
100.0(0.0) 99.7(14) 98.0(5.2) 937(184) 100.0(0.3) 94 9 (115 98.2(486) 946(96)
100.0(0.0) 97.2(106) 986(41) 96.2(116) 100.0(0.0) 97.0(83) 96.4(7.5 92 5(11.2
100.0(0.0) 996(18) 98.8(40) 97.1(142) 100.0(0.0) 97.6(83) 995(16) 98.0(42)
100.0(0.0) 99.6(1.3) 100.0(0.0) 97.1(142) 100.0(0.0) 97.6(85) 995(18) 35.8(7
100.0(0.0) 965(106) 100.0(0.0) 97.1(14.2) 100.0(0.0) 986(78) 598(05 386(40)
100.0(0.0) 965(106) 100.0(0.0) 971(142) 100.0(0.0) 986(78) 395(07) S80(45)
SWC 2 5 0.0 50.0(0.C 50.0 50.0(0.0 5 0.0 50.0(0.0
91.4(16.8) 99.7(14) 98.0(5.2) 98.9(44) 100.0(0.1) 96.3(136 98.2(46) 942(111)
90.0(21.4) 97.2(106) 98.6(4.1) 99.1(4.2) 100.0(0.0) 96.9(13.3) 96.4(7.5 S 1.4
92.0(16.4 99.2(2.8) 98.8(4.0) 100.0(0.0) 100.0(0.0) 96.6(13.5 99.5(16) 98.2(31)
97.3(6.2) 96.8(10.6) 100.0(0.0) 100.0(0.0) 100.0(0.0) 98.1(8.4) 99.5(1.8) 95.1(7.8
35.4(3.5 96.9(106) 100.0(0.0) 100.0(0.0) 100.0(0.0) 97.5(11.3) 99.8(05 99.4(12)
99.0(2.1) 96.9(106) 100.0(0.0) 100.0(0.0) 100.0(0.0) 97.5(11.3) 99.9(0.7) 99.4(13)

Figure 4.4: The average local fidelity per setting (models with linear decision boundaries) with the standard deviation in brackets
of LEAFAGE Strategies. The strategy with the highest mean along with other strategies that are not significantly different are
denoted with a dark font color.

of closest decision boundary.

In conclusion, there is no clear winner among the different methods. LIME, BIS and BDS perform
consistently better than the baseline model. Overall LIME performs better than the other strategies, on
model with linear decision boundaries. However, BIS and BDS perform better than LIME on non-linear
models. Between BIS and BDS, BIS performs slightly better on non-linear models.
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Dataset Name / Class vs Class

Iris Wine BreastCancer BankNote AD
Classifier vs
Name i Strategy virginica vsrest |class_Ovsrest class_lw Ovsl
DT 2 Baseline 50.0(0.0 50.0(0.0 50.0 (0 50.0(0 50
62.4(468) 975(83) 952(86) 80.1(27.4) 98.7(23) 96.3(10.2) 63.2(352)
60.5(48.5 55.1(11.4 93.5(155) 83.4(262) 100.0(0.1) 93 5 57.8(359)
76.1(426) 97.7(83) 92.8(15.9) 85.8(24.1) 100.0(0.0) B6.0 (18.5 98.4(5.8) 65.2(336)
50.6(49.0 97.7(83) 92.7 (15.9) 85.8(24.1) 100.0(0.0) 86.2(18.7) 97.8(72 58.9(35.4
10 50.0(0.0 50.0 (0.0 50.0 (0 50.0(0.0 50.0(C 50.0(0 50.0(0.0 50.0(0.0
81.5(366) 97.1(9.0) 92.9(16.0) 85.8(241) 100.0(0.0) 86.5(18.7) 98.7(4.2) 65.0(33.0)
76.1(426) 97.1(9.0) 92.9(16.0) 85.8(24.1) 100.0(0.0) 86.5(18.7) 98.6 (4.7 63.0(336)
RF 2 50.0 50.0(0.0 50.0(0 50 0 50.0(C 50.0(0 |s0.0(a0 50.0(0.0
62.4(46.8) 97.3(9.2) 100.0(0.0) 94.1(129) 99.9(0.4) 97.6(7.4) 96.0(9.8) 66.8(33.5)
60.5(48.3 97.3(7.8) 100.0(0.0) 96.0(8.9) 100.0(0.0) 98.3(43) 54.8(12.0 60.7(24.4
5 50.0(0.0 50.0 (0.0 50.0(C 50 50.0 50.0(0.0
76.1(426) 973(6.1) 100.0(0.0) 99.2(3.7) 100.0(0.0) 99.7 (1 P 67.0(32.4)
60.6(49.0 98.7(26) 100.0(0.0) 99.2(3.7) 100.0(0.0) 99.8(15) 98.1(6.5) 64.3(344)
10 50.0 50.0(0.0 5 0 50 5 0 50.0(0.0 50 0
861(299) 100.0(0.0) 100.0(0.0) 992(37) 100.0(0.0) 395(08) 387(38) 674(329)
76.1(426) 100.0(0.0) 100.0(0.0) 992(37) 100.0(0.0) 595(08) 985(44) 679(317)
KNN 2 50.0(0.0) 50.0 (0.0 50.0 (0 50.0(0.0) 50.0(0.0) 500 50.0(0.0 50.0(0.0
638(426) 938(193) 921(185) 627(360) 534(353) 93.5(140) 993(29) 644(340)
58.2(481) 941(17.2) 90.2(224) 60.3(358) 57.8(361) 932(122 99.1(3.0) 58.6(37.2)
5 50.0 50.0(0.0 50 50 0 50.0(0.0) 50.0(0 50.0(0.0 50.0(0.0
748(421) 57.9(8.2 936(153) 68.9(361) 55.0(36.6 36.4 (5.6 5999(06) 69.9(32.4)
58.4 (477 99.5(04) 939(151) 68.9(36.1) 60.6(357) §7.0(50) 995(06) 643 (34
10 50.0(0.0 50.0 (0.0 50.0 (0 50.0(0.0 50.0(0.0) 50.0 (0 50.0(0.0 50.0(0.0
87.9(29.2) 100.0(0.0) 91.3(15.9) 68.9(36.1) 60.3(376) §7.3(6.0) 99.9(0.5) 65.5(36.8)
75.2(42.2 100.0(0.0) 91.3(15.9) 68.9(36.1) 60.3(376) 57.3(6.0) 1000(0.1) 35.7

Figure 4.5: The average local fidelity per setting (models with non linear decision boundaries) with the standard deviation in
brackets of LEAFAGE Strategies. The strategy with the highest mean along with other strategies that are not significantly different
are denoted with a dark font color.



Empirical Evaluation

To assess the real usefulness of LEAFAGE we perform a user-study. This user-study researches how
useful the different parts of a LEAFAGE explanation are to the user. More specifically we evaluate the
usefulness of example-based and feature importance-based explanations in terms of the perceived aid
in decision making, acceptance and measured transparency.

Each participant is introduced to the user-study as follows:

Imagine you are looking to buy a property. You are searching online and you find a couple
of houses you like. Because it is a big investment, you are interested in the real value
of the house. You find a smart application called LEAFAGE that estimates the value of a
house automatically given its different features. For simplicity, let’s say it predicts whether
a property has low or high value. LEAFAGE provides four types of explanation, indicating
why the house was predicted with a certain value. In this study we want to understand
which type of these explanations are useful to the user in decision making.

5.1. Dataset used

The user-study will be applied on the IOWA housing dataset [45]. It is an online free available public
dataset that describes the sale of individual residential property in Ames, Iowa from 2006 to 2010. It
has been made available by the Ames City Assessor’s Office in 2011. Different important characteristics
along with the sale price per property are specified in the dataset.

We consider houses with sale price lower than 150.000$ and higher than 200.000$ as value /ow and
high, respectively. Houses in-between those prices are removed, such that an ML model can be built
that can predict the sale value (low or high) with high performance. A bad reasoning of the underlying
ML model can affect the perception of an explanation negatively. To mitigate this influence, we choose
a high performing ML model. The resulting dataset contains 619 houses with value low and 427 houses
with value high. Furthermore, we use 5 features of each of these houses to estimate their value. These
features are Living Area, Year Built, Overall Quality, Bathroom Amount and Bedroom Amount. They
are chosen because they are understandable to the general public.

The dataset is split into two disjoint sets of training and testing set, which contain 70% and 30%
of data, respectively. A SVM model with RBF kernel is built on the training set to predict sale value
(low or high) of a house given its five features. This model has an AUC score of 98% on the testing
set. The average local fidelity measure on the testing-set of LEAFAGE BIS strategy is equal to 98%
with a standard deviation of 0.02%. In this user-study we use explanations extracted from LEAFAGE
BIS strategy, because on average it performed better than LIME and LEAFAGE BDS on models with
non-linear decision boundary.

35
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5.2. Experimental Design

The objective of the experiment is to investigate the effect of example-based and feature importance-
based explanations extracted from LEAFAGE on the perceived aid in decision making, acceptance and
measured transparency.

5.2.1. Independent variable

We investigate 4 types of explanations namely feature importance-based, example-based, a combina-
tion of example and feature importance-based and finally providing no explanation as a baseline. An
example of each explanation can be found in figure 5.1. Figure 5.1a shows an example of a house.
Figures 5.1b, 5.1c, 5.1d, 5.1e show four types of explanations for the prediction of the house.

192 m? (2076 ft?) 2006 10 3 2 Prediction: High

(a) House being explained (b) Explanation type: No explanation

Prediction: High

Prediction: High

Most similar houses with value Low

The importance of each feature for the prediction Living Area Year Built ‘Overall Quality(1-10) Bathroom Amount  Bedroom Amount
0.6 113 m? (1218 ft) 2009 3 2 2
164 m? (1774 ft?) 1931 7 2 2
05
71 m? (767 ft}) 1998 7 2 1
2
W 04 99 m? (1072 ft)) 2005 6 2 2
";’ 135 m? (1456 ft?) 1978 6 2 3
8 03
E Most similar houses with value High
02 Living Area Year Built Overall Quality(1-10) Bathroom Amount  Bedroom Amount
244m? (2633 ft) 2001 10 3 2
01 159 m? (1718 ft?) 2006 10 3 3
186 m? (2007 ft?) 2008 10 3 3
Living Area Year Built ‘Overall Quality(1-10) Bathroom Amount Bedroom Amount 187 m? (2020 2009 10 3 3
Features 219 m? (2364 ft}) 2003 ) 3 2
(c) Explanation type: Feature importance-based (d) Explanation type: Example-based

Prediction: High

The importance of each feature for the prediction Most similar houses with value Low
Living Area Year Built Overall Quality(1-10) Bathroom Amount Bedroom Amount
o 113 m? (1218 ftd) 2009 6 2 2
164 m? (1774 ft)) 1931 7 2 2
71 m? (767 ft?) 1998 7 2 1
99 m? (1072 fi%) 2005 6 2 2
E 135 m? (1456 ft2) 1978 6 2 3
g_ Most similar houses with value High
E Living Area Year Built Overall Quality(1-10) Bathroom Amount  Bedroom Amount
244 m? (2633 ft) 2001 10 3 2
158 m? (1718 ft%) 2006 10 3 3
186 m? (2007 ft2) 2008 10 3 3
187 m? (2020 ft%) 2009 10 3 3
219 m? (2364 ft?) 2009 9 3 2
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(e) Explanation type: Example and feature importance-based.

Figure 5.1: The first figure on the left shows the house being explained. The rest of the figures are the different types of
explanations considered in the user-study.

5.2.2. Dependent variables

First, we look into how the explanations are perceived by the participants in terms of aid in decision-
making. We hypothesize that providing explanations behind predictions, aid more in decision making
than providing no explanation. Example-based reasoning is known to be used in problem-solving e.g.
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diagnosing a patient [20]. But given LEAFAGE example-based explanation, it might not be easy to
understand which features were important for the prediction. We further hypothesize that providing
feature importance-based explanation in addition, will aid more in decision making. We propose four
different variables that are important in an explanation such that the user can make an informed
decision. The descriptions of these variables along with the null hypothesis are listed below.

1. Transparency: Whether the user understands the reasons behind a prediction
H,1: The median transparency score is the same for all explanation methods.

2. Information sufficiency: Whether the user has enough information to make an informed decision
Hy2: The median information sufficiency score is the same for all explanation methods.

3. Competence: Whether the explanation corresponds to the user’s own decision making logic
Hy3: The median competence score is the same for all explanation methods.

4. Confidence: Whether the explanation makes the user more confident about his/her decision
Hy4: The median confidence score is the same for all explanation methods.

Next, we look into whether the different explanation types have different affect on the acceptance of
a prediction by the user. Example-based reasoning is heavily used in law for the goal of justifying
arguments, positions and decisions [20]. We hypothesize that LEAFAGE example-based explanation is
more persuasive than feature importance-based explanation. Further, we hypothesize that a example
and feature importance-based explanation is more persuasive than each separate.

H,5: There is no association between the different explanation types and acceptance of a prediction.

The previous hypotheses are about how the user perceives an explanation. We would like to measure
objectively in what degree an explanation type makes the underlying black-box ML model transparent.
We establish whether there is an association between the different explanation types and the measured
transparency with the following null hypothesis.

H,6: There is no association between the different explanation types and measured transparency.

An overview of all hypotheses can be found in figure 5.2. In the aid decision making part the participants
are asked to rate an explanation in Likert scale [46] according to transparency, information sufficiency,
competence and confidence. The chosen scale has five values namely strongly disagree, disagree,
undecided, agree and strongly agree. In the agreement part the participants are asked whether they
accept the prediction after seeing the explanation. At last, the transparency is objectively measured
by testing the participant. The participant is shown another house in the neighbourhood of the house
being explained. He/she has to indicate what the system would predict as the sale value of this new
house given the explanation. The participant has the options of low, high or I do not know. If the
participants are not sure about their answer they are recommended to choose I do not know.

5.2.3. Attention checks

To make sure that the participants are filling in the survey with concentration, we include two types of
attention checks in the survey. First, before starting the survey the user is asked four basic questions
about the different explanation methods. They should be able to answer those trivial questions if
they have read the descriptions of the different explanation methods with concentration. Second,
two extra example-based explanations are added that have an obvious and simple correct answer for
the measured transparency part. The new house for which they have to indicate what the predicted
sale value would be, is one of the houses from the example-based explanation. If the participant looks
at the explanation with concentration he/she will be able to get the correct predicted sale value of the
new house. Furthermore, in the beginning the participants are told that attention checks are included
in the survey. They are also told that they will receive a bonus if they pass the attention checks.

5.2.4. Participants

The participants for this user-study were recruited from Amazon Mechanical Turk (MTurk). Participants
received a monetary compensation for their time.

In total 114 participants completed the survey. In the attention checks the average score is equal to
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| understand how the system made the prediction.

Information The explanation provided has sufficient information to
sufficiency make an informed decision.

The explanation corresponds to my own decision
making logic.
Type of

Sl el The explanation made me more confident in making a

decision.

| agree with the prediction made by the system.

Correct prediction

Figure 5.2: The dependent and independent variables.

3.55 with a standard deviation of 1.48. We assume that participants with a score smaller than 3 did
not fill in the survey with sufficient concentration. We perform the analysis of 86 participants who
scored at least 3 out of 6. The target group for this study is the general public. The demographics
of the participants can be found in table 5.1. In terms of Sex, Age and Highest level of education the
distributions seem well spread. Regarding Region, most of the participants are from the Americas. This
could bias the results towards the preferences of the people of that region. Most of the participants are
native or fluent English speakers. At last, 86% percentage of the participants have looked into buying
a house.

5.2.5. Procedure

The different steps that the participants followed, are described in figure 5.3. Participants are first
provided with a general introduction about the survey and asked to accept the terms of an informed
consent. Next, they are provided with a demographic questionnaire. Further, the different types of
explanations considered in this study are explained. Participants are then asked basic questions about
the different explanation methods. The dependent variables described in figure 5.2 are measured next,
on 42 explanations. Each participant saw 10 explanations per explanation type (40 explanations), plus
two example-based explanation for attention check. The 42 houses being explained, were randomly
chosen from the testing set. Moreover, all participants saw the same explanations in a randomized order.
Before, the thank you and general remarks, the users are asked to provide their general perceptions
for each type of explanation. The actual survey is available in the Appendix (chapter A).

5.3. Results

5.3.1. Descriptive statistics

Table 5.2 shows an overview of the means, including the standard deviation in brackets, of the score
given by the participants on the dependent variables related to aid in decision making, for each expla-
nation type. The mean score of all explanation types are higher than providing no explanation over
all columns. Furthermore, example-based and the combination explanation have a higher mean score
over all columns.



5.3. Results 39

Sex Highest level of education
Male 45.3% Less than high school 0.0%
Female 54.7% High school 8.1%

Age Some college (no degree) 15.1%
18to24 17.4% Associate degree 15.1%
25t034 39.5% Bachelor degree 48.8%
35t044 32.6% Graduate degree 12.8%
45t054 17.4% Looked into buying a house
55to64 7.0% Yes 86.0%
65t074 2.3% No 14.0%
75+ 0.0% Level of English

Region Native/Fluent 89.5%
Africa 0.0% Good 14.0%
Americas 80.2% Satisfactory 0.0%
Asia 16.3% Not very good 0.0%
Europe 3.5% Bad 0.0%
Oceania  0.0%

Table 5.1: Demographics information of the participants

Describe
different types of
explanations

Introduction, Fill in

Informed consent demographics Test the user

Measure: aid decision
making, acceptance General Thank you,
and actual perceptions remarks
transparency

Figure 5.3: The procedure of the user-study.

Transparency Information Suff. Competence Confidence

No Explanation 3.66 (1.03) 3.43 (1.17) 3.70 (0.96) 3.52 (1.1)
Feature importance 3.92 (0.85) 3.76 (0.97) 3.78 (0.91) 3.68 (1.04)
Example-based 4.07 (0.76) 4.02 (0.84) 3.96 (0.86) 3.98 (0.86)
Example and Feature im. 4.13 (0.8) 4.10 (0.83) 3.93 (0.93) 3.98 (0.9)

Table 5.2: Means with standard deviation in brackets of the score given by the participants of the aid decision making part.
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I accept I do not accept

No Explanation 748 112
Feature importance 736 124
Example-based 771 89

Example and Feature im. 751 109

Table 5.3: A cross table of the type of explanation and the acceptance by the user

Correct Estimation  Wrong Estimation I do not know

No Explanation 722 89 49
Feature importance 620 173 67
Example-based 759 88 13
Example and Feature im. 736 101 23

Table 5.4: A cross table of the type of explanation and the performance of the measured transparency part.

Next, table 5.3 shows a cross table of the type of explanation and the acceptance by the user. The
predictions of the black-box model are accepted the most after participants were given example-based
explanations. However, providing no explanation has more I accept than feature importance-based
explanation.

At last, table 5.4 shows another cross table of the type of explanation and the performance of the
measured transparency part. The correct estimation and wrong estimation columns lists the total
amount of correct and wrong estimation of the sale value per explanation type, respectively. The
participants were most uncertain about their answer and have the least amount of correct estimation
after seeing a feature importance-based explanation. Furthermore, example-based explanations lead
to the most amount of correct predictions and the least amount of I do not know.

5.3.2. Hypothesis testing
All of the hypotheses are tested with a significance level of « = 0.05 with Bonferroni correction.

First, we test the four hypotheses related to aid in decision making. We verify whether there is a
significant effect of the type of explanation on transparency, information sufficiency, competence and
confidence. Four Kruskal-Wallis H-tests [47] are performed on each of those dependent variables. The
results are visualized in table 5.5. We reject Hy1, Hy2, Hy3 and Hy4 with p-value < 0.001.
Furthermore, a Dunn’s post-hoc test [48] is performed to look at significant differences (a = 0.0083")
in performance between different explanation types. In terms of transparency, information sufficiency,
competence and confidence both example-based and combination explanation perform significantly
better than providing no explanation and feature importance-based explanation. No significant dif-
ferences were found in performance between example-based and combination explanation regarding
all four dependent variables. Feature-based explanation performs significantly better than providing
no explanation in transparency, information sufficiency and confidence. But in terms of competence,
feature-based does not perform significantly better than providing no explanation.

1 Applying Bonferroni correction: 6 comparison per dependent variable leads to a significance level of 0.05/6 = 0.0083

Dependent Variable H statistic p-value
Hy1 Transparency 124.22 < 0.001
Hy,2 Information Sufficiency 202.71 < 0.001
Hy3 Competence 54.83 < 0.001
Hy4 Confidence 125.24 < 0.001

Table 5.5: Kruskal-Wallis H-tests are performed on the dependent variables related to aid in decision making.
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Second, we verify whether there is a relation between the type of explanation and the acceptance of the
prediction. A chi-square test of independence was performed to verify this relation. No significant re-
lation was detected between the explanation type and acceptance, y?(3, N = 3440) = 6.67,p = 0.083.

At last, a second chi-square test of independence was performed to verify an association between the
type of explanation and measured transparency. For the analysis the amount of Wrong Estimation
and I do not know are grouped together per explanation type. The result indicates that there is
a significant association between those variables, y?(3,N = 3440) = 91.04,p < 0.001. Post-hoc
comparisons (a = 0.0083) of the measured transparency by pairs of explanation types revealed that
feature importance-based explanation lead to significantly less amount of correct estimation, compared
to the rest of the explanation types. The amount of correct estimation was statistically similar between
pairs of providing no explanation, example-based and combination explanation. It should be noted
that between example-based explanation and providing no explanation the highest difference in correct
estimation was measured with p-value=0.012.

5.3.3. General remarks about the explanation types

After the experiment the participants were asked to state their likes and dislikes for each of the ex-
planation types. Figures 5.4a, 5.4b, 5.4c and 5.4d show word clouds of the free text given by the
participants about each explanation type. These word clouds give a first glance of the impressions of
the participants about the different types of explanation.
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Figure 5.4: Word clouds of the free text written by the participants about each explanation type.

The word cloud of providing no explanation (figure 5.4a) contains positive and less positive terms such
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as simple, easy, vague and lack. The answers show that the participants liked that the prediction was
straightforward, easy to understand, simple, to the point and allowed them to make quick decisions.
To quote a few: “Easy to digest and comprehend and conveys the key information that one wants to
obtain”, "I do not have to make any analysis”, "No need to overthink” and “Easy to make a decision
quickly”. Furthermore, the participants disliked the lack of information supporting the prediction, the
fact that the prediction provides no context and its vagueness. Here are a few quotes expressing those
concerns: “Need complete trust in the system to find it helpful”, “Could be seen as just a guess with no
rational behind, doesn’t seem as legitimate”, "It felt like no information was used to give the prediction”,
“We should rely on the prediction made by the system but cannot verify the prediction” and "I don't
want a simple rating without anything to back it up. Show me the numbers and let me decide what is
important”.

In the word cloud (figure 5.4b) of feature importance-based explanation, words related to the expla-
nation type and some judgment stick out, such as important, easy, feature and clear. The participants
found this explanation type straightforward, in showing how the sale value was determined and easy
to read. They liked the visual aspect of the graph. The following quotes summarize their likes of the
explanation type: "I like the easy to grasp and digest nature of this visual depiction of the rationale
behind the rating used to evaluate a house.” and "I like this type of explanation because it gives a
graphical depiction of which features of the home is most important in the evaluation. This allows me
to quickly look over different features and make a more informed choice.” However the participants
also had some concerns about this explanation type. They found this explanation type not detailed
enough to perform well on the measured transparency part of the study. It was not clear how the
importance really relates to the prediction of the house. Moreover, it was hard for them to understand
the threshold of a feature which changes the prediction of a house. One participant wrote “If I had
to list a dislike, it would be that there is no explanation WHY these features are of importance to the
prediction model? How are they rated compared to one another? Do some features hold more weight
overall? Because it seemed like it at times.”

In the word cloud of example-based explanation (figure 5.4c), words about comparison and some con-
tradicting judgments stand out such as similar, compare, easy and hard. The participants liked the
fact that they could compare between similar houses with different sale values. They could see how
the feature values differ between houses with different sale values. However, the participants both
liked and disliked this explanation type because of the amount of information present in the tables.
The large amount of raw data helped them to understand in detail why the prediction was made but
lot of numbers were harder to digest and made the information look cluttered. Moreover, they found
it hard to figure out which features were important. Two participants summarized the pros and cons
as follows: "I like this explanation because it provides references as to what would be considered a
high or low valued home. With this layout I can easily compare the target home to similar homes on
the market and decipher what features are associated with the high or low value homes. The only
downside this explanation is that he does not provide a detailed explanation as to the importance of
each feature in making the decision.” and "I think the best thing about this type of explanation is that it
is very quick and easy to compare multiple models at the same time. It is much easier to see how the
features compare to one another here. And by looking at that, I get a better idea of why the prediction
was made. I suppose a con could be too much information at once.”

The word cloud (figure 5.4d) of example and feature importance-based explanation shows words re-
lated to the previous two explanation types and one word in particular namely best stands out. The
participants liked the combination of example-based and feature importance-based explanation but
also stated that the amount of information can be overwhelming. Some participants said that they
only looked at one chart and ignored the other. The overall remarks of this explanation type is nicely
summarized by one participant as follows: "I like this explanation type because it incorporates both
an easy to digest visual depiction i.e. the bar graph and the raw data used to build this algorithm
calculator. This juxtaposition of key elements of the algorithm facilitates the ability of users to obtain
a more detailed and informed idea regarding the backbone of the algorithm. I guess one potential
downside is that low information users may be turned off and/or intimidated by the juxtaposition of a
graph and data chart.”
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At last, the participants were asked to give general remarks about the survey. The participants stated
that even though the survey was long they could stay engaged because of the measured transparency
part. One participant wrote: "The survey was lengthy, but engaging and fun to participate in. I strongly
believe that information like this will be a great benefit to home buyers.”






Conclusion

In this thesis we developed a new method called LEAFAGE that provides contrastive example and
feature-based explanations for the predictions made by a black-box ML model. Two different sam-
pling strategies to build the local interpretable model have been defined in the workings of LEAFAGE,
namely: Boundary Independent Sampling (BIS) and Boundary Dependent Sampling (BDS). Further-
more, for the evaluation of LEAFAGE two evaluation methods were used. The first method evaluated
whether LEAFAGE explanations reflect the true reasoning of the underlying black-box ML model (/ocal
fidelity). Second, we looked into the usefulness of the explanations from the user’s point of view,
through conducting a user-study.

We proposed a new method to evaluate the local fidelity of a local interpretable model that mimics the
black-box classifier, in the neighbourhood of the instance being explained. This evaluation method was
used to evaluate the BIS and BDS methods, along with the current state-of-art method LIME [1]. The
evaluation was done for 4 datasets with different characteristics and 6 different ML models. No clear
winner among the three strategies was found. Overall LIME performed better than the other strategies,
on models with linear decision boundaries. On the other hand, BIS and BDS performed overall bet-
ter than LIME on non-linear models. Between BIS and BDS, BIS performed better on non-linear models.

By performing a user-study, we evaluated the usefulness of example-based and feature importance-
based explanations extracted from LEAFAGE, in terms of the perceived aid in decision making, ac-
ceptance and measured transparency. The context of the user-study was to help the participants in
estimating the value of a house, by providing a prediction made by a ML model and an explanation.
Example-based explanation performed significantly better than providing no explanation and feature
importance-based explanation, regarding perceived transparency, information sufficiency, competence
and confidence. This was expected because example-based reasoning is regarded as a natural way of
solving problems in our daily lives [22, 23]. Moreover, we had expected that adding information about
the importance of features would increase the perceived aid in decision making, but no significant
difference was found. This could be because the amount of information became overwhelming and
seemed cluttered as the comments of the participants suggested. Feature importance-based explana-
tion performed significantly better than providing no explanation in terms of transparency, information
sufficiency and confidence. However no significant difference with providing no explanation was de-
tected regarding competence. This result suggests that feature importance-based explanation does
not align more with the decision making of the participants than providing no explanation.

We expected a significant difference between example-based explanation and providing no explanation
in relation to acceptance, because example-based reasoning is generally used to justify arguments and
convince judges in court [20]. However, no significant relation was detected between the explanation
types and acceptance. This could be because even without any explanations, the participants already
had a judgment of the house because most of them indicated that they have been looking into buying
a house in the past. The prediction could have validated their judgment which led to acceptance of
the prediction, even without seeing an explanation. We suspect that a significant difference can be
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measured in a use-case in which it is hard to make a decision after only looking at an instance.

At last, we expected that example-based explanations would lead to higher measured transparency
than providing no explanation but no significant association was found. Moreover, feature importance-
based explanation led to significantly less amount of correct estimation, compared to the rest of the
explanation types. These results suggest that there is a discrepancy between the perceived trans-
parency and the measured transparency, because the participants preferred both feature-importance
and example-based explanation over providing no explanation. This could be because the task was too
easy and people were able to guess the sale value of the house even without seeing an explanation.
The fact that the participants performed worse after seeing a feature importance-based explanation
than providing no explanation, suggests that feature importance-based explanations confuse the users
in how they can generalize the provided classification logic in the explanation to other instances. In
the comments some participants noted that it was not clear how the importance of a feature really
relates to the prediction of the house.

Furthermore, we list some possible interesting directions for future research. We currently only use
the training instances to build a local linear model. If an instance to be explained is an outlier, the
corresponding LEAFAGE explanation about its prediction might no be locally faithful to the underlying
model. For future work, we can study the use of generated artificial samples which enrich the training
instances such that even for outlier instances, faithful explanations can be extracted.

LEAFAGE is able to generate example-based explanations only of tabular datasets. It is an interesting
direction of research to expand it to text and image data. Especially, providing images as examples
could be a lot easier to understand than cluttered tabular data.

In conclusion, LEAFAGE explanation performed overall better than the current state-of-the-art method
LIME on non-linear models, in terms of local fidelity. The empirical evaluation showed that overall
the participants perceived receiving explanations behind a prediction as more helpful than providing
no explanation for the goal of decision making. However when the participants were tested about
their gained knowledge after seeing an explanation, no significant advantage was found compared to
providing no explanation. We suspect that this is due to the simplicity of the test, as future work a
more comprehensive test could be used to measure the actual transparency. Furthermore, example-
based explanation significantly performed better than feature-importance based explanation in terms
of aid in decision making. Showing both example-based and feature-importance-based explanation did
not increase the perceived aid in decision making, significantly. This could be due to the overload of
information as the participants described.
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Introduction

Thank you for your interest in this online survey. The survey will take approximately 40 minutes.

Buying a house

Imagine you are looking to buy a property. You are searching online and you find a couple of houses you like.
Because it is a big investment, you are interested in the real value of the house. You find a smart application called
LEAFAGE that estimates the value of a house automatically given its different features. For simplicity, let's say it
predicts whether a property has low or high value. LEAFAGE provides four types of explanation, indicating why the
house was predicted with a certain value. In this study we want to understand which type of these explanations are
useful to the user in decision making.

Experiment

You will be shown 42 houses, along with its predicted values and explanations made by the smart application. For
each house you have to rate the explanation and indicate whether you agree with the prediction. Further, to assess
whether the explanation is clear, you will be shown a similar house and you have to indicate what the smart
application would predict as the sale value. At last, after your input on the 42 houses, you will receive questions
about your general perceptions of the different types of explanations.




Informed Consent

Before taking part in this study, please read the consent form below and and continue to the next page if you
understand the statements and freely consent to participate in the study.

Your responses will be collected anonymously and are kept confidential. There are no known or anticipated risks
associated with this study. If participants have further questions about this study or their rights, or if they wish to
lodge a complaint or concern, they may contact the researchers at ajaya.adhikari[at]tno.nl

By continuing to the next page you indicate that you are at least 18 years old, have read and understood this
consent, and voluntarily participate in this study.




Payment

At the end of the survey you will receive a code, that you can enter in Amazon Mechanical Turk. In that way we can
verify that you have participated in the survey. You will be awarded $4 through Amazon Mechanical Turk. You are
free to withdraw and stop at any moment of the experiment. If you decide to do so, you will not be paid for the
survey.

Before approving your payment to Amazon Mechanical Turk, your responses will be first checked to make
sure that you have filled in the survey with concentration. There are a few attention checks through out the
survey. If you do not pass any of those checks you will not be paid. And if you pass all of these tests you
will gain a bonus of $2.




Demographics

What is your sex?

O Male
() Female

What is your age?

() 18t024 () 55t064
() 251034 () 651074
() 351044 () 75o0rolder
() 451054

In what region do you currently reside?

() Africa () Europe
() Americas () Oceania
() Asia

What is the highest level of school you have completed or the
highest degree you have received?

Q Less than high school degree O Associate degree
O High school degree or equivalent (e.g., GED) Q Bachelor degree

Q Some college but no degree O Graduate degree

Have you ever bought or looked into buying a house before?

O Yes
() No

What is your level of English?
Bad Not very good Satisfactory Good Native/Fluent

O O O O O




Information about the experiment

Imagine you are looking to buy a property. You are searching online and you find a couple of houses you like.
Because it is a big investment, you are interested in the real value of the house. You find a smart application called
LEAFAGE that estimates the value of a house automatically given its different features. For simplicity, let's say it
predicts whether a house has low or high value. LEAFAGE provides four types of explanation, indicating why the
house was predicted with a certain value. In this study we want to understand which type of these explanations are
useful to the user in decision making.

A lot of features could be important to you in judging the value of a house, but to make this experiment simple we

consider the following five features: living area, year built, overall quality, bathroom amount and bedroom amount.
The overall quality is in a scale from one (poor) to ten (excellent). An example is shown below.

House being explained

184 m? (1982 ft%) 1989 7 2 3

In the next pages the four types of explanations are explained with an example.
Please read it carefully and take notes if necessary. Later, you will be will be asked a few questions about these
types of explanations to test your knowledge. You will not be able to return back to previous pages.




Explanation type

House being explained

184 m? (1982 ft%) 1989 7 2 3

Output of LEAFAGE

Prediction: High

The importance of each feature for the prediction
0.4

0.35
0.3
0.25

0.2

Importance

015

0.1

Living Area Year Built Overall Quality(1-10) Bathroom Amount Bedroom Amount

Features

This explanation type first shows the predicted value of the house. Furthermore, it shows which of the features of
the house were most important to make the prediction. The length of each bar shows the importance of the feature.
In this case, the features Bathroom Amount=2 and Bedroom Amount=3 are not important. Feature Year
Built=1989 is the most important followed by Living Area=184m? and Overall Quality=7.




Explanation type

184 m? (1982 ft%)

Living Area

135 m? (1456 ft)
137 m? (1479 ft%)
133 m? (1441 ft%)
135 m? (1456 ft%)

113 m? (1218 ft9)

Living Area

171 m? (1850 ft?)
194 m? (2093 ft%)
181 m? (1950 ft%)
194 m? (2097 ft?)

149 m? (1614 ft%)

House being explained

1983 7 2

Output of LEAFAGE

Prediction: High

Most similar houses with value Low

Year Built Overall Quality(1-10) Bathroom Amount
1978 6 2
19786 6 2
1978 6 2
1976 6 2
2009 7] 2

Year Built

1994 7 2
1986 7 2
1997 v 2
1993 7 2
2005 7 2

Bedroom Amount

Bedroom Amount

This explanation type first shows the predicted value of the house. Furthermore, it shows houses that are similar to
the house being explained. The green table shows 5 similar houses that have low value and the red table shows 5
similar houses with high value. These tables make clear how big the differences for each feature is, between similar
houses with value low and high. For example in this explanation, the differences in Living Area are big between low
and high value houses while there are no differences in Bathroom Amount and Bedroom Amount.




Explanation type

House being explained

184 m? (1982 ft%) 1989 7 2 3

Output of LEAFAGE

Prediction: High

The importance of each feature for the prediction Most similar houses with value Low
0.4
Living Area Year Built Overall Quality(1-10) Bathroom Amount Bedroom Amount
035 135 m? (1456 ft?) 1978 6 2 3
137 m? (1479 ft9) 1976 6 2 3
0.3 133 m? (1441 ft9) 1978 6 2 E
135 m? (1456 ft?) 1976 6 2 3
025
113 m? (1218 ft?) 2009 6 2 2

Most similar houses with value High

Importance
°
8

Living Area Year Built Overall Quality(1-10) Bathroom Amount Bedroom Amount
o 171 m? (1850 ft?) 1994 7 2 3
04 194 m? (2093 ft?) 1986 7 2 3
181 m? (1950 ft?) 1997 7 2 3
0.05 194 m? (2097 ft?) 1993 7 2 3
. 149 m? (1614 ft?) 2005 7 2 3
'h"@4pee R"ifp Loy 9 %r"ﬂf,, o,
ey, o, %,
70} g/ 't

Features

This explanation type first shows the predicted value of the house. Furthermore, it combines the two types of
explanation.

The left graph shows which of the features of the house were the most important to make the prediction. The length
of each bar shows the importance of the feature. In this case, the features Bathroom Amount=2 and Bedroom
Amount=3 are not important. Feature Year Built=1989 is the most important followed by Living Area=184m?2 and
Overall Quality=7.

The two tables in the right show houses that are similar to the house being explained. The green table shows 5
similar houses that have low value and the red table shows 5 similar houses with high value. These tables make
clear how big the differences for each feature are, between similar houses with value low and high. For example in
this explanation, the differences in Living Area are big between low and high value houses while there are no
differences in Bathroom Amount and Bedroom Amount.




Explanation Type

House being explained

184 m? (1982 ft) 1989 7 2 3

Output of LEAFAGE

Prediction: High

This explanation type only shows the predicted value of the house.




Type of questions

After seeing an output of LEAFAGE, you will be asked three types of questions.

First, to assess whether the explanation is clear, you will be shown another house and you have to indicate what
LEAFAGE would predict as the sale value. You will have the option of Low, High and | do not know.

If you are not sure please indicate / do not know.

An example is shown below.

What would LEAFAGE predict as the value of the following
house?

O | do not know

105 m? (1131 ftd) 1941 5 1 3

Next, you will be asked to rate the explanation as shown below.

How much do you agree with the following statements:

Strongly
Disagree Disagree Undecided Agree Strongly Agree

| understand

how LEAFAGE O O O O O

made the prediction.

The explanation
provided has

sufficient

information to make O O Q Q O
an informed

decision.

The explanation

corresponds to my

own decision O O O O O
making logic.

The explanation

made me more O O Q O O

confident about my
decision.




At last, you will be asked to indicate whether you accept the prediction after seeing the output of LEAFAGE.
An example is shown below.

Do you accept the prediction made by LEAFAGE?

() Yes
O No




Here are a few questions to test whether you have understood the different types of explanations.

House being explained

184 m? (1982 ft?) 1989 7 2 3

Output of LEAFAGE

Prediction: High

The importance of each feature for the prediction Most similar houses with value Low
o4 Living Area Year Built Overall Quality(1-10) Bathroom Amount Bedroom Amount
035 135 m? (1456 ft) 1978 6 2 3
137 m? (1479 ft?) 1976 6 2 3
0.3 133 m? (1441 ft9) 1978 6 2 E
135 m? (1456 ft9) 1976 6 2 3
E 113 m? (1218 ft?) 2009 6 2 2
%_ Most similar houses with value High
E Living Area Year Built Overall Quality(1-10) Bathroom Amount Bedroom Amount
171 m? (1850 ft?) 1994 7 2 3
194 m? (2093 ft?) 1986 7 2 3
181 m? (1950 ft?) 1997 7 2 3
194 m? (2097 ft) 1993 7 2 3
143 m? (1614 ft?) 2005 7 2 3
"'o%’
Ung g

Features

What is the predicted value of the house being explained?
O Low Q High

Which features are not important for the prediction?

|| Living Area || Bathroom Amount

D Year Built D Bedroom Amount

|| overall Quality(1-10)

Which is the second most important feature for the prediction?

Q Living Area O Bathroom Amount
() Year Built (") Bedroom Amount

() overall Quality(1-10)




Between the low and high houses, which features have different
values?

D Living Area D Bathroom Amount
D Year Built D Bedroom Amount

D Overall Quality(1-10)




Start experiment

Click next to start with the experiment. Please fill in the questions with concentration.
Attention checks are included in the survey.




Final Questions

Now, you can provide your opinion on the different types of explanation in free text. Please state what you
like and dislike about the different types for the goal of decision making.

Prediction: High

The importance of each feature for the prediction

0.6

0.5

0.4

0.3

Importance

0.2

0.1

Living Area Year Built Overall Quality(1-10) Bathroom Amount Bedroom Amount

Features

What are your likes and dislikes in the above type of
explanation?




Importance

Living Area

Year Built

Prediction: High

Most similar houses with value Low

Overall Quality(1-10) Bathroom Amount Bedroom Amount

113 m? (1218 ft%)
164 m? (1774 ft%)
71 m? (767 ft%)
99 m? (1072 ft9)

135 m? (1456 ft)

Living Area

244 m? (2633 fth)
159 m? (1718 ft%)
186 m? (2007 ft%)
187 m? (2020 ft%)

219 m? (2364 ft9)

2005

1931

1998

2005

1978

Year Built

2001

2006

2008

2009

2005

5} 2 2
7 2 2
7 2 1
6 2 2
B 2 B2

Most similar houses with value High

Overall Quality(1-10) Bathroom Amount Bedroom Amount

10 3 2
10 3 3
10 3 B
10 3 3
9 3 2

What are your likes and dislikes in the above type of

explanation?

The importance of each feature for the prediction

0.6
0.5
0.4
03
0.2

01

“e.
e,

Features

Prediction: High

Most similar houses with value Low

Living Area Year Built Overall Quality(1-10) Bathroom Amount Bedroom Amount
113 m? (1218 ) 2009 6 2 2
164 m? (1774 ft9) 1931 7 2 2
71 m? (767 ft?) 1998 7 2 1
99 m? (1072 ft?) 2005 6 2 2
135 m? (1456 ft?) 1978 6 2 3

Most similar houses with value High

Living Area Year Built Overall Quality(1-10) Bathroom Amount Bedroom Amount
244 m? (2633 ft?) 2001 10 3 2
159 m? (1718 ft?) 2006 10 3 3
186 m? (2007 ft?) 2008 10 3 3
187 m? (2020 ft) 2009 10 3 3
219 m? (2364 ft?) 2009 9 3 2
Seo,
o,
0,
0, 4”’%
Ung 3




What are your likes and dislikes in the above type of
explanation?

Prediction: High

What are your likes and dislikes in the above type of
explanation?




Mechanical Turk Code and ID

Thank you for your participation in this survey!

Please fill in the following code in the Mechanical Turk page and provide your Mechanical Turk ID, such that we can
verify that you have completed the survey.

jtirwimO7M
UIYAMEC23D
EbGpxhPufp
KkSJ5PPivB
8vnw3GkOLb
OEL51CKAas
liYP4i7LPS
vMgC9OxKQk8
QAB6axRIt7j
mly3kS3ZUj
sKUoigllOo
49T9B7WxXc
VTTtWpgfts
ngoxFeqUue
9MxozFmZzZbl
6vPkImOter
yjJmCxLOly
HrFUNHoXHE
C56EOGHSsQ5
ZRXAQY7DU4

What is your worker ID of mechanical turk?

If you have remarks on the survey, please feel free to write them
below.
Have a nice day further and many thanks :)
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