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Abstract

This thesis presents a design for a topology-optimized concrete floor slab, of which
the structural optimization process is guided by manufacturability constraints from
a vacuumatic formwork. The design has been obtained using an open-source, three-
dimensional topology optimization algorithm developed in Python.

Optimization plays a significant role in both this thesis and, increasingly, in the
building industry as a whole. Improving the quality of buildings is something many
engineers strive for, but there are many different aspects to optimize for. For example,
the sustainability can be improved or the amount of sunlight entering a building
can be optimized. Structurally, it is often attempted to reduce the self-weight of the
structure, since this can contribute to a reduction in material usage and foundation
costs. According to Georgopoulos and Minson (2014), floor slabs can comprise up
to 85% of the self-weight of a concrete structure. Therefore, the choice in flooring
system can be very influential in terms of structural dimensioning.

A common method for reducing the structural weight of a floor is by means of a
sizing optimization. By changing the slab thickness, the concrete type and/or the
amount of reinforcement, a floor slab can be optimized until it reaches the standard
set by the building codes. Other methods for reducing the floor slab weight include
shape optimization and topology optimization. In this thesis, topology optimization
is applied since it offers the most design freedom and, consequently, may provide
greater advantages.

Traditional floor slabs systems are cost-optimized but can have the disadvantage
of being structurally inefficient. The excessive weight has negative consequences
in sustainability and structural dimensioning of both the floor slab itself and the
supporting structure consisting of beams, walls, columns, foundation, et cetera.
Topology optimization allows for efficient material distribution, and thus a reduction
in weight. Topology-optimized floors are typically regarded as being difficult to pro-
duce, however, and as such cost too much to be considered in building designs.

In order to reach a compromise between a low self-weight and low production
costs, two features are included in the optimization process in this thesis. First,
manufacturability is directly incorporated in the optimization, rather than afterward.
Secondly, the highly malleable vacuumatic formwork system has been used as a
premise. Stabilizing sand formwork by means of a vacuum allows the sand to
assume more complex shapes than its own angle of repose will support. Major
advantages of this technique are reusability and adaptability. These advantages
may cause the formwork costs to be reduced considerably when producing floor
slabs. Vacuumatic formwork provides a method for producing complex shapes with
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a low-tech and sustainable procedure, and accordingly strengthens the advantages of
topology optimization while counteracting the disadvantages.

In order to utilize topology optimization for designing a concrete floor slab, several
features are incorporated in the topology optimization algorithm. In order to correctly
model concrete, self-weight and a reduced Young’s modulus for tensile elements are
included. From a functional point of view, the top of the floor is required to be
flat. Lastly, a minimum concrete thickness and casting constraint are applied in the
iterative optimization process to make the design more suitable for manufacturing
with vacuumatic formwork.

By developing an open-source topology optimization algorithm in Python, the final
result consists of a preliminary design for a topology-optimized concrete floor slab
to be produced with a vacuumatic formwork system. The advantages of this slab
compared to a traditional, monolithic slab include a weight reduction of 24%, the
potential for a cost decrease, a CO2 emission reduction of at least 17%, and increased
architectural value.
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1
Introduction

When a client wants to acquire a new building in order to fulfill a specific function,
a team of engineers, architects, contractors etc. are assembled to make a design
that best satisfies all the requirements set by the client. The conception this design
consists of several stages in which there is an iterative process of optimizing the
building as the final model becomes more and more clear. The optimization goal of
a project can be structural, cost, or aesthetics-based for example depending on the
requirements set by the client.

The development of a new project starts with a preliminary design and the load-
bearing structure of the building is no different. In this phase, there are still many
options to fulfill the safety requirements regarding the structural system, material,
shape, member cross-section and many more. Traditionally, before computational
power was not readily available, choices made by structural engineers were largely
based on experience, rules of thumb, simplified hand calculations, or in worse cases
based on subconscious motives, random selections, or even mere superstition (Iyengar,
2004). Several iterations later this would result in a final design that is more refined
when compared to the original preliminary design.

Design optimization in this thesis is largely based on the same traditional philosophy.
However, the recent advances in computational power have led to considerable differ-
ences. Nowadays, choices can be made based on the results of sophisticated Finite
Element Analysis software. The number of iterations can be increased considerably,
meaning that instead of five or ten, there can be hundreds. The process by which
the best options are selected differs also. Rather than basing choices on experience,
the choices are automatically made by the evaluation algorithms using the specified
boundary conditions and design variables; there has been a shift from qualitative to
quantitative decision-making. In conclusion, the vague traditional decision-making
aspects have made way for clear constraints, which can result in a structure with a
higher level of optimization.
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Chapter 1. Introduction

Provided that setting up the parametric structural model does not take too long, the
advantages of structural optimization may include cost saving by making the rest of
the design process more time-efficient. Reducing material usage has the potential to
help reduce expense and can result in a more sustainable building too. Lastly, as
computers allow for more design options to be evaluated, structural optimization
may add a new dimension of creativity and thus value for the client.

Structural optimization can be summarized as a design process in which there are
three distinctive types of optimization. After choosing a structural system, the
process begins with topology optimization, which can be described as the optimal
placement of material in terms of stress/stiffness in a design space. For a concrete
floor, this can be streamlined to the optimal placement of the ribs, which stiffen
the relatively thinner floor slab, resulting in an overall lower weight. While this
brings disadvantages in terms of fire safety and sound insulation, however, from a
structural, sustainable, and aesthetic point of view, in this thesis, it is assumed that
the light-weight floor is an improvement. Usually, the final design in the construction
stage differs from the topology-optimized structure because of manufacturability. In
theory, a structural topology-optimized floor is very efficient, but in practice, it can
be too expensive to produce. Complex connections and irregular members cause the
price to increase considerably. Therefore, what usually happens is that, after the
structural topology optimization of an element, the design is manually modified in
order to be suitable for manufacturing. This implies that the element is designed
in terms of manufacturability or costs and not entirely optimized in terms of its
structural performance anymore.

Concrete floors are a common component of buildings and over the years these
building elements have been greatly optimized for costs instead of weight. For almost
every span or support, there is a floor system that can satisfy those requirements
for a reasonable price. The majority of standard floor systems are flat plates
because formwork takes up roughly sixty percent of the production costs in the US
(Fanella and Alsamsam, 2007). Other Western countries will show similarities in
this cost distribution. The superfluous concrete that is used consequently is not
enough to justify complex surfaces. However, with the recent increase in interest
in sustainability and architectural value, there is potential in a topology-optimized
floor system, provided there is additional funding.

Up to now, the focus of sustainable building has been on reducing energy consumption
in heating, cooling, et cetera. While this has resulted in considerable improvements
in energy consumption, a truly sustainable building should also take structural
material usage into account. Material usage is becoming relatively more important
as energy consumption is being reduced more and more (Anink et al., 2015). In The
Netherlands, an environmental performance check called Milieuprestatieberekening
Gebouwen (MPG) has been required for the permit of new buildings larger than
100 m2 as of January 2013. The method is based on the Life Cycle Analysis (LCA),
which takes the entire life of an element into account when assigning it a certain
sustainability level. The regulation does not include a minimum quality level yet,
however, allowing construction firms to get used to the new method (Rijksoverheid,
2015; Boon et al., 2014). It can be expected that in the near future there will be
stricter rules on the environmental impact of material use, so a lighter optimized
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1.1. Problem definition

Figure 1.1: Three main components of this thesis

floor can have a positive effect on the MPG. Together with the additional aesthetic
enhancements, this gives a building more value for its users. Figure 1.1 displays
the three main components that make up this thesis. A concrete floor slab has
been topology-optimized with manufacturability constraints from a vacuumatic
formwork.

1.1 PROBLEM DEFINITION

Traditional cost-optimized concrete floor systems can have the disadvantage of being
structurally inefficient and, therefore, using a lot of material. The excessive weight
has negative consequences in sustainability and structural dimensioning of both the
floor slab itself and its supporting structure consisting of beams, walls, columns,
foundation, etc. Topology optimization allows for efficient material distribution in
floor designs, and thus a reduction in weight. Topology-optimized floors are typically
regarded as being difficult to produce, however, and as such cost too much to be
considered in building designs.

1.2 RESEARCH QUESTION

How can the topology of a concrete floor slab be optimized when taking manufac-
turability constraints from a vacuumatic formwork into account, and how would it
compare to a traditional, monolithic floor slab in terms of weight, costs, sustainability,
and appearance?

1.3 RESEARCH OBJECTIVE

The result of this research should help make topology-optimized floors more feasible in
terms of manufacturability and design, resolving the problem of designing lightweight
floors that are too complex to produce. By developing an open-source topology
optimization algorithm in Python, the final result should consist of a design for a
lightweight concrete floor to be produced with a vacuumatic formwork system.
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Chapter 1. Introduction

1.4 HYPOTHESIS & EXPECTATIONS

The problem of diminishing benefits of topology optimization due to manufacturabil-
ity constraints can be solved by reaching a compromise between a topology-optimized
lightweight floor and a cost-optimized standard floor. To achieve this, first, manufac-
turability is incorporated in the optimization loop, rather than afterward. Secondly,
the highly malleable vacuumatic formwork system allows a sand formwork to assume
more complex shapes than its own angle of repose will support. Major advantages
of this technique are reusability and adaptability. These advantages mean that
the formwork cost may be reduced severely when producing floors, especially since
floors have a high rate of repetition in most multi-story buildings. By combining
vacuumatic formwork with topology optimization, a floor slab can be designed that
has advantages over a traditional, monolithic floor slab in weight, costs, sustainability,
and architectural value.

1.5 RESEARCH METHODOLOGY

In order to reach the research objective, this thesis starts with an introduction to
structural optimization. Three distinct optimization types can be distinguished:
cross-section optimization, shape optimization, and topology optimization. Topology
optimization, being part of the research objective, is analyzed in more detail. This
iterative design method is applied to a concrete floor slab, so several alternatives
have been researched. At this point, both the optimization method and floor slabs
have been clarified, so the topology optimization algorithm is introduced. In order
to clarify how the algorithm works, pseudo code, an extensive step-by-step example,
and several smaller examples are employed.

Validation of the algorithm has been performed with examples from literature, after
which it is ready to be applied to a floor slab. The problem that arises with regard
to manufacturability has been described in problem definition. Since vacuumatic
formwork forms one part of the solution to making the design more suitable for
manufacturing, the method itself is researched and the ensuing required additions
to the algorithm are defined. Research of the method has been performed with a
literature study, first, and with a practical workshop, second.

The final part of this thesis brings vacuumatic formwork and the additional features
together in a modified topology optimization algorithm. In order to show the influence
of each feature, the topology-optimized floor slab design is gradually improved until
the final floor slab is presented. In order to check whether the objective has been
reached, the topology-optimized floor slab is compared to a traditional, monolithic
floor slab.

4



1.6. Thesis outline

1.6 THESIS OUTLINE

Chapter 1 – Introduction
The current chapter includes an introduction to the research subject. Figure 1.2
displays how the chapters are related, and what is discussed in each one.

Chapter 2 – Structural optimization
In the first part of the literature study, both structural optimization in general and
topology optimization, in particular, have been described.

Chapter 3 – Ribbed floor slab systems
In this chapter, several ribbed floor slab systems are analyzed. Floor slabs with
isostatic ribs are examined more extensively. While this system is vastly different
from topology optimization, the method can also be applied to the considered floor
slab of this thesis to provide some degree of comparability.

Chapter 4 – Topology optimization algorithm
The topology optimization algorithm is demonstrated here. The input variables are
clarified, so the algorithm can be used by anyone for any topology optimization
problem. The chapter concludes with a standard topology-optimized floor slab
design.

Chapter 5 – Vacuumatic formwork
The highly malleable vacuumatic formwork system can help make the complex floor
slab design more feasible. The chapter includes a description of the method and an
analysis of the strengths, weaknesses, opportunities, and threats.

Chapter 6 – Topology-optimized floor slab design
Using the topology optimization algorithm developed in Chapter 4, a design is made
for a concrete floor slab that can be produced with vacuumatic formwork.

Chapter 7 – Discussion
The discussion verifies the hypothesis, offers advice on advantages and disadvantages
of the optimizations, and proposes several applications for both the algorithm and
the topology-optimized floor slab.

Chapter 8 – Conclusions
The conclusion includes the answer to the research question and various general
conclusions.

Chapter 9 – Recommendations
The recommendations are split into three parts. There are suggestions for the
algorithm, for topology optimization and manufacturability, and for topology opti-
mization and manufacturability of a concrete floor slab.
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Chapter 1. Introduction

Figure 1.2: Thesis structure and chapters
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2
Structural optimization

According to Merriam-Webster (2015), the definition of optimization is the act,
process or methodology of making something (e.g., a design, system, or decision)
as fully perfect, functional, or effective as possible. In nature, this can refer to
the optimal conditions of, for example, light, temperature, or altitude for a species
to thrive. As in nature, in architecture, the optimal conditions are also sought-
after.

The process of optimization is about finding an optimal solution within a given model.
This model can be, among others, biological, architectural, or structural and is often
restricted by boundary conditions (Burry and Burry, 2010). Structural optimization
and biological evolution are closer connected than one might think. According to
Skedros and Baucom (2007), an example can be found in the way bone grows: tiny
beams inside of bone called trabeculae seem to follow the stress trajectories.

When applying optimization to the design of a structure, we are basically asking
ourselves: when given a design space with loads and boundary conditions, how should

(a) Photograph (Yale
Bone Lab, nd)

(b) Stress trajecto-
ries (Meyer, 1867)

Figure 2.1: Bone trabeculae
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Chapter 2. Structural optimization

the material be distributed within this space in order to achieve the most efficient
structure, in accordance with the optimization goal?

First, the structural model needs to be established using design variables (or pa-
rameters) when starting the structural optimization process. These parameters can
be related to geometry, such as height or thickness, but also to material properties
or other design aspects. Next, boundary conditions define the domain of the so-
lution. Lastly, the optimal solution depends on the objective the engineer wishes
to reach. Examples include the minimization of weight or the maximization of
stiffness. Combinations of objective functions are also possible in a multi-objective
optimization.

After making this parametric model and defining boundary conditions, the structural
optimization process can begin. Using optimization tools each design iteration
can be checked according to the constraints and parameters until the ’best’ design
follows.

The Iron Triangle is a model of showing how all projects are dependent on three
attributes: time, quality, and cost. This triple constraint symbolizes how one side
of the triangle cannot be improved without negatively affecting the others. Similar
to the Iron Triangle, three factors need to be taken into account when optimizing a
structural model. First, there needs to be knowledge of the problem at hand. This
knowledge can be used to increase the optimization algorithm efficiency. Each model
takes a certain time to run. After the algorithm is finished the quality of the result
can be measured. This triangle is visualized in Figure 2.2. From the figure we can
conclude that concessions need to be made when developing a new optimization
algorithm: it is either too slow, not smart enough, or the found solution is not the
optimal one. This does not mean structural optimization is without merit, however,
just that the perfect optimization algorithm does not exist.

(a) (b)

Figure 2.2: (a) Iron Triangle; (b) Optimization Triangle

2.1 STRUCTURAL OPTIMIZATION TYPES

The structural optimization process can be subdivided intro three different types:
member cross-section, shape, and topology optimization. All types can be applied
on various scales and in all design phases, but some are more effective than others
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2.1. Structural optimization types

or more reflect the choices to be made in this phase. Using a truss bridge as an
example, each type is visualized in Figure 2.3. This diagram also shows the relation
between the ease of formulation and the generality of each optimization type. It
indicates that a topology optimization problem has a general application, but as a
result, the problem can be challenging to define.

Figure 2.3: Optimization types per phase, examples of each optimization type (ABT bv,
2014), and simplicity versus generality (EDC, 2015)

2.1.1 Member cross-section optimization
This type of optimization is best used near the end of a project, as shown in Figure 2.3,
when the shape of the structure is already determined. By changing the shape or
size of a cross-section, small gains can be made, which ultimately add up. This type
can also be referred to as sizing optimization.

National Military Museum
The roof structure of the National Military Museum in Soesterberg, The Netherlands
(Figure 2.4) is an example where member cross-section optimization has been utilized.
In the acquisition stage, the design space was already determined by the architect.
After optimizing the center to center distance and height of the truss (topology and
shape optimization respectively), there were still gains to be made in the member
cross-sections.

Figure 2.4: Nationaal Militair Museum (Uponor, 2015; Nationaal Militair Museum, 2015)
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Chapter 2. Structural optimization

That is where ABT bv further optimized the structure, resulting in a weight reduction
of 40 kg per square meter compared to the first design, which translates to a cost-
saving of 2.5 million euros, as reported by Henket (2013).

2.1.2 Shape optimization
Shape optimization refers to changes in nodal positioning and element surface/cur-
vature. Both shape and topology optimization are most effective in an earlier design
stage. At the beginning of a project, the final shape or topology is not yet en-
tirely defined so this means that substantial changes to the design will have smaller
consequences for the project costs.

Communication tower
The communication tower near Geleen (Figure 2.5) is a project that had its shape
optimized by ABT bv in collaboration with BroekBakema architecture. After the
topology was set by the architect the exact curvature of the structure was determined
in an optimization process. This involved structural challenges, like fatigue, but also
practical constraints, such as the size of the staircase. After the shape, the structure
was also optimized in terms of the member’s cross-section.

Figure 2.5: Communication tower (BroekBakema, 2014; Living Projects, 2014)

2.1.3 Topology optimization
This refers to the placement of members and material in relation to the flow of
forces and stress levels. It is the broadest of the optimization types and, therefore,
maximizes its use in the earliest design phase. Several examples from practice are
mentioned in Section 2.5. In a basic sense, the topology optimization model consists
of three formulations:

• The design space is the area in which the optimal solution must be found, and it
can be divided into either pixels, voxels, or beams;
• The optimization objective is the type of optimal solution, which can, for example,

be based on stress or stiffness;
• The optimization constraint indicates the fraction of the design space that is

allowed to be filled.

The process of finding an optimal solution using these formulations can be described
as a hill climbing problem. It can be visualized with a surface area and corresponding
axes, a landscape on top of this plane, and a search algorithm that attempts to
find the top of the highest hill. The top of the hill symbolizes the point where the

10



2.2. Topology optimization model

parameters are such that the optimization objective reaches its greatest potential.
Figure 2.6 shows how in topology optimization three components are necessary to
find a solution:

• The model describes the design space in which the solution may be found, the
way in which this space is divided, and the parameters that are allowed to change.
These parameters give the x, y-axis.
• The landscape is defined by a formula, which is based on the optimization objective.

This formula may be called f and is dependent on the parameters x, y.
• The optimization method describes the method of finding the highest point and

thus the optimal solution. In other words: finding the optimal values of x, y for
which f is maximized.

Figure 2.6: Topology optimization and the required components

Figure 2.7 visualizes the way modifying certain parts of the components may affect
the outcome of the optimization algorithm using the method of steepest ascent as
search method. It should be noted that the problem in this thesis is a lot more
complex than the examples of Figure 2.6 and Figure 2.7. There are more parameters,
and the landscape will consist of many hills making it more challenging to find the
global maximum instead of a local maximum. Because of the complexity of this
problem, the triangle visualized in Figure 2.2 plays a greater role. The calculation
time can become lengthy and as such knowledge of the problem and applying a smart
algorithm is important.

2.2 TOPOLOGY OPTIMIZATION MODEL

The model for a structural topology optimization problem can be defined in three
different ways, namely as a space of virtual elements, a truss, or a Voronoi diagram.
Figure 2.6 shows these options in the left-hand box. Which one of these is the
most effective in solving the requirements depends on the used production technique
or material. The first option can add and subtract elements in order to reach an
optimum. The Voronoi model optimizes the location of the nodes such that the
resulting Voronoi diagram functions the best, according to the optimization objective.
The truss model is more commonly referred to as the growing ground structure
method, and it allows for truss elements to be turned on or off in a fixed grid.
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Chapter 2. Structural optimization

(a) Adjusting parameter constraints results in
changes in solution range

(b) Replacing one parameter with another re-
sults in a different landscape and axis

(c) Modifying the optimization objective
changes the landscape to find a solution which
better suits the new objective

(d) Modifying the search method results in a
change in the way the optimum is found and
sometimes a different optimum. Here, simu-
lated annealing is included

Figure 2.7: Adjustments in the components and the corresponding changes in the hill
climbing model using the method of steepest ascent

2.3 TOPOLOGY OPTIMIZATION LANDSCAPE

The optimization objective displayed in the second column of Figure 2.6, decides which
values of the parameters result in the ’best’ solution. The value of each combination
of parameters (as related to the optimization objective) can be visualized with a
landscape. Subsequently, a search method described in Section 2.4 can find an
optimum.

2.4 TOPOLOGY OPTIMIZATION METHODS

2.4.1 Evolutionary Structure Optimization method
The Evolutionary Structure Optimization (ESO) method by Xie and Steven (1993)
removes material from the design space with each iteration, resulting in an optimum
where the remaining material is the most efficient. By combining the ESO method
with a finite element analysis, the optimization is usually based on maximum stress.
The specific stress level of an element in the model is usually based on the Von
Mises stress, which is a method to translate the complex stresses of an element into
one number. In the Von Mises yield criterion, this stress is then compared to the
material’s yield strength (Burns, 2002). When then optimization objective is based
on overall stiffness, then compliance is considered. Compliance is the inverse of the
overall stiffness of the model and it represents the total strain energy of the structure
by the applied loading (Huang and Xie, 2010). When an element turns from a solid
to an empty element, the change of mean compliance is the same as the strain energy,
which in turn is called the elemental sensitivity number. The elements with the
lowest elemental sensitivity number are removed with each iteration.
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2.4. Topology optimization methods

The ESO method is a simple but quick concept that can easily be linked to finite
element method software. The output of such a model shows a clear design with no
porous elements, only empty or fully solid. There are several disadvantages, however.
Since material can only be removed, this means that an element erased in an early
iteration might still be of use in the final design. The ESO method, therefore, finds
a local optimum, instead of the global optimum (see Figure 2.8). The Bi-directional
ESO method aims to alleviate this problem by allowing the model to recover material
after it has been deleted.

(a) (b)

Figure 2.8: (a) Global vs. local minimum; (b) An example of an ESO model showing the
division of the model in elements (Huang and Xie, 2010)

2.4.2 Bi-directional Evolutionary Structure Optimization method
The Bi-directional Evolutionary Structure Optimization (BESO) method, also by Xie
and Steven (1997), is similar to the ESO method except that material can be both
added and discarded. For the optimal stress design, this means that the elements
with the lowest Von Mises stresses are removed using a Rejection Ratio while the
empty elements close to the maximum Von Mises stresses are returned to their fully
solid state using an Inclusion Ratio. The elemental sensitivity number, which is used
in the ESO method on solid elements, is also used for the empty elements in the
BESO method. Figure 2.9 shows an example of the BESO method.

Figure 2.9: An example of a BESO model showing the porous elements (Huang and Xie,
2010)

The Extended ESO (XESO) method is a variation on the BESO method which has
the optimization goal of minimizing the stress levels (Ohmori et al., 2005). It has
been used in the design of several constructed buildings and as such has proven itself
to be a valuable BESO method. These buildings include the Akutagawa River Side
Project in Japan and the Qatar Education City which will both be discussed later
in Section 2.5.
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2.4.3 Solid Isotropic Material with Penalization method
The Solid Isotropic Material with Penalization (SIMP) method by Bendsøe (1989)
does not remove elements that have a relatively low stress, but it changes their
stiffness to such a small number the element either practically has no use anymore
or it becomes porous. It is regarded as an efficient and effective method and has
proven itself in a wide range of models. A disadvantage compared to other methods
is that usually a local optimum is reached. This local optimum is very near the
global optimum, so for practical purposes, this does not necessarily pose a problem.
Similar to the ESO and BESO topology optimization method, an elemental sensitivity
number is utilized in each iteration to determine which elements should increase their
stiffness, and which ones should decrease their stiffness. The SIMP method is applied
in the developed tool in this thesis. Chapter 4 elaborates on this choice.

2.4.4 Ant colony method
The ant colony optimization (ACO) concept by Flint (2008) is based on the behavior
of ants. When looking for food, ants cover an area at random and upon finding a
meal, they leave behind pheromones. These pheromones attract other ants, which
also leave behind pheromones creating a positive feedback loop where more and
more ants are drawn towards the food. When using ACO for structural problems
the design space is colonized by artificial ants who travel every element and leave
pheromones when a solution performs well. Flint (2008) has shown this is a feasible
method to be used as the basis for a structural design.

2.4.5 Homogenization method
The homogenization method by Bendsøe and Sigmund (2003) also divides the design
space into many elements, and like the SIMP method, it alters the binary problem
into a continuum problem. In other words: the elements can also be porous instead of
only full or empty. It differs from the SIMP method in the way the porous elements
are modeled. Instead of adjusting the stiffness of an element, the homogenization
method appoints each individual element as part full and part empty, so there is a
hole in each one, shown in Figure 2.10. The hole size or porosity and orientation
angle dictate the stiffness of an element in an iterative process.

Figure 2.10: An example of a homogenization model (Orlando and Luege, 2014)
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2.4.6 Level set method
This is also widely accepted as a useful method and Huang and Xie (2010) summarize
it as a steepest descent method using a shape sensitivity analysis as well as the
Hamilton-Jacobi equation. Figure 2.11 shows how this method works.

Figure 2.11: An example of a level set model (Huang and Xie, 2010)

2.5 TOPOLOGY OPTIMIZATION IN PRACTICE

2.5.1 National Military Museum
The National Military Museum in Soesterberg, The Netherlands, also mentioned in
Section 2.1.1, is an example of a structure that had its topology optimized. The
spans and spacing (vertical and horizontal) between the members of the truss, based
on orthogonal placement, while keeping the design space constant, is a result of this
analysis.

2.5.2 Civil Engineering & Geosciences hall
Another example based on topology optimization is the design of the hall between the
lecture rooms of the Civil Engineering & Geosciences building in Delft (Figure 2.12).
The building itself was built in the sixties and as part of a redevelopment project in
2012 the new roof would create a new space between the already existing lecture
rooms. This project is currently on hold, but several designs were made, including
a preliminary design with a traditional Pratt truss by ABT bv and a topology-
optimized truss by Van der Ploeg (2013) using the SIMP method. Both designs also
had their member cross-sections optimized. Compared to the preliminary design
his final configuration in Figure 2.13 lowered both the number of elements and the
number of connections and reduced self-weight with 1000 kg, which is more than
10% of its original weight.
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Figure 2.12: Render of the new CiTG hall (OIII architecten, 2012)

(a) Design space

(b) Topology-optimized structure

(c) Inspired configuration structure

Figure 2.13: The design process of the CiTG hall (Van der Ploeg, 2013)
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2.5.3 Akutagawa River Side Project
The Akutagawa River Side Project is part of a shopping mall in Takatsuki, Japan.
The mall has been realized as part of a redevelopment plan because of the large
growth of this commuter town. Two walls of the building have an organic shape
based on the topology-optimized design using the Extended ESO method. Dead
weight acted as the vertical load while earthquakes acted as the horizontal load. The
boundary conditions include the floors of the building and the east side wall, which
both were not allowed to be removed. In the final iteration, it is clear they are both
included in the design presented in Figure 2.14.

(a) Design process (south wall) (b) Resulting construction (west wall)

Figure 2.14: Akutagawa River Side Project (Ohmori et al., 2005)

17



Chapter 2. Structural optimization

2.5.4 Qatar Education City
The Extended ESO method has been successfully introduced in the Qatar Education
City (QEC) in Doha, Qatar. The huge structure forms the entrance to the 250 m
wide convention center. The design is based on the Sidra tree, which symbolizes
knowledge of the divine (Burry and Burry, 2010). The support of the roof resembles
the native plant, but structurally it is also efficient since the shape almost exactly
follows the topology-optimized design as can be seen in Figure 2.15. The smooth
organic surface of the support is not the load-bearing structure, however. The
actual structure is hidden inside and was multi-objective optimized where the goal
was to keep the aesthetic outer surface very close, but at the same time keep a
straight structural profile over as long a distance as possible. The result is visible in
Figure 2.15b.

(a) Several iterations with the Extended ESO method (Sasaki, 2008)

(b) Structure of QEC entrance (Burry and Burry, 2010)

(c) Picture of QEC entrance (wikimapia, nd)

Figure 2.15: Qatar Education City entrance
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3
Ribbed floor slab systems

A structure consists of several elementary building components. Space for living,
working, etc. can be created by combining columns, walls, beams, and slabs. Columns
and/or load bearing walls serve as the vertical supports. Horizontal spans are
traversed by floors, which have multiple functions that all need to be considered
when designing a structure. There are structural, functional, building physical, and
durability requirements. Structurally, floors have strength, stiffness, and stability
requirements. Functionally, floors need to be level and have a smooth finish, while
at the same time allowing space for installations. The building physics require
soundproofing, insulation, and fire resistance. A durable floor needs to be resistant
to exposure from light, wind, and water. In this report, the only requirements the
floor will need to fulfill are the structural ones. The others are not focused on or
otherwise neglected.

Traditional, monolithic floor slabs can have the disadvantage of being structurally
inefficient, so, naturally, there already exist solutions for producing light-weight floor
slabs. In a general sense, floor systems achieve this by adopting ribs that increase the
cross-sectional stiffness due to their height, while at the same time removing material
in between. Examples of external ribs or open structures include the waffle slab
and TT-slab. Internal ribs are employed by, e.g., hollow core slabs and BubbleDeck
floors. Appendix A describes several concrete floor systems that are often utilized,
nowadays.

3.1 FLOOR SLABS WITH ISOSTATIC RIBS

An alternative to the modern floor slab systems in Appendix A are floor slabs with
isostatic ribs. Several examples are displayed in Section 3.3. These designs are based
on the same principal of the tiny beams inside of bone called trabeculae, mentioned
earlier in the introduction to Chapter 2 and displayed in Figure 2.1. According to
Culmann (1875), the trabeculae are oriented towards the principal stress trajectories.
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Chapter 3. Ribbed floor slab systems

Just as with bones, plates also generate principal stress trajectories when loaded.
According to traditional plate theory, a two-dimensional plate under stress from a
bending moment produces two types of orthogonal curves. These curves are called
isostatics and follow the principal bending moment trajectories where the torsion is
equal to zero.

The first person to truly combine the theory of trabeculae and apply it to a structure
was the Italian structural artist Pier Luigi Nervi (1891-1979). He was an acclaimed
engineer, famed for his highly effective structures that were constructed using
minimum means while still allowing for aesthetics at the same time. He graduated
from the University of Bologna in 1913 before founding a construction company ten
years later. His initial work mostly consisted of contracting, but he especially excelled
from the 1950s onward when he started working as a structural designer.

While the isostatic aligned ribs are an integral part of Nervi’s floors, it was actually
one of his colleagues, Aldo Arcangeli, who proposed this structural improvement.
According to his findings, when the ribs in a floor are aligned to the isostatics, then the
floor is at its most efficient when given the same load and support conditions.

In comparison, topology optimization has a greater design freedom than the theory
behind the ribbed floor slabs with isostatic ribs and can be applied to a greater
range of structural challenges. While floor slabs with isostatic ribs are, therefore,
fundamentally different from topology optimized designs, for a floor slab, it can be
seen as an alternative.

3.2 PRODUCTION METHOD

Pier Luigi Nervi realized prefabrication has several advantages when compared to
in-situ concrete: the reduction of building time and the possibility of mass production.
His research on the feasibility of prefabrication was mostly focused on slabs, vaults,
and domes (Powell, 2011). Nervi’s ribbed floor slabs are actually very similar to
the waffle slab mentioned in Appendix A except that in the waffle slab design the
ribs are all square because it makes production easier. This forces the loads around
corners, which is not necessarily a problem. However, a more organic shape guides
the loads in a more natural way to the nearest support. This results in a lighter
structure and more architectural value.

Producing the organic shapes is a challenge that Nervi solved by making use of
ferrocement, which can be seen as the precursor of reinforced concrete. Ferrocement
is a composite material consisting of several layers of metal reinforcement, such
as wire mesh covered with enough cement to cover it all (Chiorino, 2012). It
is not the same as regular reinforced concrete because it is highly elastic and
moldable. Ferrocement was used to make prefabricated concrete elements in plaster
casts. Regular reinforcement was placed inside the ferrocement elements acting as
a permanent mold and afterward they were covered in concrete creating one single
slab. This seemingly complex method of producing floors was actually a cheap
option as steel usage was restricted from 1935. Iori and Poretti (2005) published that
the Fascist Italian administration envisioned a self-sufficient nation, which meant
rationing the import of steel.
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3.3. Designs with isostatics

3.3 DESIGNS WITH ISOSTATICS

3.3.1 Gatti wool factory
Nervi’s first application of the floor system with isostatic ribs was the Gatti wool
factory in 1951, where the floor was required to span a big distance and to support
heavy loading from wool-spinning machines (Gargiani, 2012). The floor, visible in
Figure 3.1, was made using the ferrocement molds explained in Section 3.2 and
each column carries a 5 × 5 meter part of the floor slab. The image on the right of
Figure 3.1 shows the maximum principal bending moments in red and the minimum
principal bending moments in blue. It can be concluded that the floor of the Gatti
wool factory shows a close resemblance to the isostatics.

(a) Photograph (b) Isostatics

Figure 3.1: Floor of the Gatti wool factory (Nervi, 1963; Halpern et al., 2013)

3.3.2 Palazzo del Lavoro
Built in 1961 for the Turin exhibition which celebrated Italy’s unification Palazzo
del Lavoro also features a ribbed floor slab by Nervi. Figure 3.2 shows the outer
perimeter of the building where this floor is situated and the similarities between
the structure and isostatics.

(a) Photograph (b) Isostatics

Figure 3.2: Floor of the Palazzo del Lavoro (Nervi, 1963; Halpern et al., 2013)
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Nervi’s floor was selected in the competitive tender because of its quick building
time (Sharp, 2002). Like the Gatti wool factory, it consists of a square floor plan
supported by columns. The center to center distance is increased to 10 meters,
however, and the shape of the isostatic ribs is also slightly different.

3.3.3 Palazzo dello Sport
Constructed along with the more renowned Palazzetto dello Sport, the Palazzo dello
Sport was built in 1961 to host the Olympic basketball tournaments. The ribbed
floors can be found in the outer perimeter of the building. The difference of the
slabs in the sports arena compared to the Gatti and Lavoro floors is the rectangular
shape of the plan. This small adjustment results in a drastic change in isostatics in
Figure 3.3. While the maximum and minimum principal bending moments don’t
follow the structure exactly, according to Halpern et al. (2013), it shows Pier Luigi
Nervi’s own creativity in designing the floor.

(a) Photograph (b) Isostatics

Figure 3.3: Floor of the Palazzo dello Sport (Nervi, 1965; Halpern et al., 2013)

3.3.4 Former zoology lecture hall at Freiburg University
The architect of the ceiling in the former zoology lecture hall at Freiburg University
was inspired by the floors Nervi had designed. Displayed in Figure 3.4, the floor was
built in the 1960s with isostatic ribs to minimize material input. The design space
is clearly more complex than the other examples since it combines a round shape
with several different support types. Antony et al. (2014) report that this floor is
significantly more sustainable in terms of greenhouse gas emissions and uses less
concrete and reinforcement steel than modern alternatives.
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3.4. Isostatics for the considered floor slab

(a) Photograph (b) Floor plan

Figure 3.4: Floor of the former zoology lecture hall at Freiburg University (Antony et al.,
2014)

3.4 ISOSTATICS FOR THE CONSIDERED FLOOR SLAB

Figure 3.5 displays the shape and boundary conditions of the plate that has been
topology optimized in the next chapter. In this section, the theory of isostatic ribs
beneath a thin floor slab been applied to this considered plate. Differences between
these two methods are described more extensively in Chapter 6.

In the beginning of last century, Stephen Timoshenko published several books on
mechanics and materials. His work can be viewed as the foundation of plate theory.
In this section, the theoretical stresses in a plate are derived, calculated, and plotted,
with the help of his book on plates and shells. First, the theory behind a simple
beam is addressed, which is the most obvious simplification of a plate. From there,
the step to a two-dimensional plate and the principal stress trajectories for the plate
considered in Chapter 6 can be made. In accordance with the design method of
isostatics, the principal stress lines can be used to make predictions about an optimal
topology of the floor slab.

(a) Context (b) Model

Figure 3.5: Design space of the floor with line supports
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3.4.1 Two-dimensional beam
A beam differs from a slab in the way the loads are transferred to the supports.
While a slab can carry loads in two directions, a beam spans only one direction. The
considered beam is displayed in Figure 3.6a, with a certain width b and depth d. At
this point, it is assumed there are no normal forces because w << d, flat cross-sections
stay flat, and the Poisson’s ratio is neglected. The beam has degrees of freedom φ
and w and the loads are a distributed load p and distributed torque q. The loads
cause a bending moment and a shear force, which in turn cause a curvature and shear
deformation. This relationship is displayed in Equation (3.1). The relation between
the deformations and the degrees of freedom are called the kinematic equations.
Next, the relation between the degrees of freedom and stress resultants, are called
the constitutive equations. Lastly, the relations between the stress and loads are
defined in the equilibrium equations. For slender beams, the shear deformation can
be neglected. So the equations are simplified in Equation (3.2).

(a) Definition variables (Blaauwen-
draad, 2010)

(b) Considered problem for a
floor beam

Figure 3.6: Two dimensional beam

{
w
φ

}
kinematic−−−−−−→
equations

{
κ
γ

}
constitutive−−−−−−−→
equations

{
M
V

}
equilibrium−−−−−−−→
equations

{
p
q

}
(3.1)

{
w
} kinematic−−−−−−→

equations

{
κ
} constitutive−−−−−−−→

equations

{
M
} equilibrium−−−−−−−→

equations

{
p
}

(3.2)

Rotations are defined in Equation (3.3). From the rotations, the curvature is defined
in Equation (3.4). These are the kinematic equations, and relate the deformations
with the bending curvature κ. From the curvature, the stress resultant is defined in
the constitutive relation Equation (3.5). Here, the plate stiffnessD is introduced in
order to account for the material properties of the slab. The equilibrium equations
are the last step. They are defined in Equation (3.6).

φ = −δw
δx

(3.3)

Kinematic equation:

κ = −δ
2w

δx2
(3.4)
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3.4. Isostatics for the considered floor slab

Constitutive equation:

M = EIκ (3.5)

Equilibrium equation:

− δ2M

δx2
= p (3.6)

By combining all these relationships, the fourth-order differential equation may be
stated in Equation (3.7).

EI
δ4w

δx4
= p (3.7)

Assuming the problem of a floor is as displayed in Figure 3.6b, according to Blaauwen-
draad (2006), Equation (3.8) can be assumed for the deflection w. The boundary
conditions are defined in Equation (3.9). By combining Equation (3.10) and Equa-
tion (3.7), the unknown value of C can be solved in Equation (3.11), resulting in the
deflection function in Equation (3.12).

w(x) = C
(
x4 − 2ax3 + a3x

)
(3.8)

at x = 0

 w = 0

M = −EI δ
2w

δx2
= 0

at x = a

 w = 0

M = −EI δ
2w

δx2
= 0

(3.9)

δw

δx
= C

(
4x3 − 6ax2 + a3

)
δ2w

δx2
= C

(
12x2 − 12ax

)
δ3w

δx3
= C (24x− 12a)

δ4w

δx4
= C · 24

(3.10)

EI · C · 24 = p0

C =
p0

24EI

(3.11)

w1(x) =
p0

24EI

(
x4 − 2ax3 + a3x

)
(3.12)
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The final function for the deflection in Equation (3.12) conforms to the boundary
conditions, as displayed in Equation (3.13).

w1(0) =
p0

24EI

(
04 − 2a03 + a30

)
= 0

w1(a) =
p0

24EI

(
a4 − 2a4 + a4

)
= 0

M(0) = −EI · p0

24EI

(
12 · 02 − 12a0

)
= 0

M(a) = −EI · p0

24EI

(
12a2 − 12a2

)
= 0

(3.13)

At this point, the results for a beam can be plotted in Figure 3.7. The span is
assumed to be 7 m, the distributed load 5.0 kN/m, the Young’s modulus 37.000 MPa,
and the second moment of area 1

12bh
3 = 1

121000 · 312.53. For these values, the
maximum deflection is found to be 1.66 mm, which also conforms to the result found
by the so-called vergeet-mij-nietjes (in Dutch). The maximum bending moment
is found to be 30.625 kN m, which conforms to the theoretical maximum bending
moment of 1

8pa
2.

(a) Deflection (b) Bending moment

Figure 3.7: Results for the beam

3.4.2 Three-dimensional slab
This section will expand on the theory behind slabs, which is a type of plate that is
loaded perpendicular to its plane. The stresses in these slabs follow from bending
moments and shear forces. According to traditional plate theory, two models can
be considered: a thin slab or a thick slab. Since the deflection is much smaller
than the height of the slab (w << h), the thin slab theory will be applied. Several
assumptions follow:

• Flat cross-sections stay flat after applying a load;
• Shear deformation is neglected, so tx = ty = 0;
• Deflections are independent of the z-coordinate;
• No stress σzz (Figure 3.8).
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3.4. Isostatics for the considered floor slab

(a) Slab (b) FEM element

Figure 3.8: Sign conventions (Blaauwendraad, 2006)

The relation between the deformations and the degrees of freedom are called the
kinematic equations, again. Next, the relation between the degrees of freedom
and stress resultants, are called the constitutive equations. Lastly, the relations
between the stress and loads are defined in the equilibrium equations, as displayed in
Equation (3.14) for general problems. These equations are simplified for thin plates
in Equation (3.15).


w
φx
φy

 kinematic−−−−−−→
equations


κxx
κyy
ρxy
γx
γy


constitutive−−−−−−−→
equations


mxx

myy

mxy

vx
vy


equilibrium−−−−−−−→
equations


p
qx
qy

 (3.14)

{
w
} kinematic−−−−−−→

equations


κxx
κyy
ρxy

 constitutive−−−−−−−→
equations


mxx

myy

mxy

 equilibrium−−−−−−−→
equations

{
p
}

(3.15)

Rotations are defined in Equation (3.16). From the rotations, three curvatures
are defined in Equation (3.17). These are the kinematic equations, and relate
the deformations with the bending curvatures κ and torsional curvature ρ. From
the three curvatures, the stress resultants are defined in the constitutive relation
Equation (3.18). Here, the plate stiffness D is introduced in order to account for the
material properties of the slab. The equilibrium equations are the last step. They
are defined in Equation (3.19) and follow from Figure 3.9.

φx = −δw
δy

φy = −δw
δx

(3.16)
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Kinematic equations:

κxx = −δ
2w

δx2

κyy = −δ
2w

δy2

ρxy = −2
δ2w

δxδy
= 2κxy

(3.17)

Constitutive equations:

mxx = D(κxx + νκyy)

myy = D(κyy + νκxx)

mxy = D(1− ν)κxy

In which: D =
Et3

12(1− ν2)

(3.18)

Equilibrium equations:

vx =
δmxx

δx
+
δmyx

δy

vy =
δmyy

δy
+
δmxy

δx

δvx
δx

+
δvy
δy

+ p = 0

Resulting in: −
(
δ2mxx

δx2
+ 2

δ2mxy

δxδy
+
δ2myy

δy2

)
= p

(3.19)

By combining all these relationships, the biharmonic equation may be stated in
Equation (3.20). This equation was formulated by Lagrange in 1811.

D

(
δ4w

δx4
+ 2

δ4w

δx2δy2
+
δ4w

δy4

)
= p (3.20)

Now that the biharmonic equation is defined, finding the deformation function is the
next step in the process, similar to how the two-dimensional problem was solved in
the previous section. Levy (1899) recommends finding the solution via the series in
Equation (3.21). Here, Ym is a function of y. The slab is displayed in Figure 3.10,
with hinged supports at two opposing sides. Therefore, it can already be stated that
Equation (3.21) conforms to the boundary conditions in Equation (3.22). Now, Ym
needs to be determined in order to conform to the boundary conditions at y = 0.5b
and y = −0.5b and to Equation (3.20).

w =

∞∑
m=1

Ym sin
(mπx

a

)
(3.21)
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3.4. Isostatics for the considered floor slab

(a) Vertical forces

(c) Moments over y

(e) Moments over x

Figure 3.9: Equilibrium of an element (Blaauwendraad, 2006)

Figure 3.10: Considered problem for the slab, top-down perspective
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at x = 0

 w = 0
δ2w

δx2
= 0

at x = a

 w = 0
δ2w

δx2
= 0

(3.22)

According to Nadai (1915), the solution of the biharmonic equation can be simplified
into Equation (3.23). Here, w1 is the solution of the middle strip at y = 0, which
has already been defined in Equation (3.12), Section 3.4.1. This solution of the
middle strip has been rewritten as a trigonometric series in Equation (3.24) by
Timoshenko (1956). Since w1 already satisfies both the boundary conditions at
x = 0 and x = a and the biharmonic equation, w2 needs to be chosen so it complies
with Equation (3.25). By taking w2 like the series in Equation (3.21), in which
m = 1, 3, 5..., and applying it in Equation (3.25), Equation (3.26) is determined.

w = w1 + w2 (3.23)

w1(x) =
p0

24EI

(
x4 − 2ax3 + a3x

)
=

4p0a
4

π5D

∞∑
m=1

1

m5
sin

mπx

a
(3.24)

δ4w2

δx4
+ 2

δ4w2

δx2δy2
+
δ4w2

δy4
= 0 (3.25)

∞∑
m=1

(
Y ′′′′m − 2

m2π2

a2
Y ′′m +

m4π4

a4
Ym

)
sin

mπx

a
= 0

Therefore: Y ′′′′m − 2
m2π2

a2
Y ′′m +

m4π4

a4
Ym = 0

(3.26)

Timoshenko and Woinowsky-Krieger (1959) suggest that by integrating Equa-
tion (3.26), Equation (3.27) can be derived. Because the plate in Figure 3.10
is symmetrical over the x-axis, only the even expressions need to be preserved. There-
fore, it can be assumed that Cm = Dm = 0. Finally, by substituting Equation (3.27)
into Equation (3.26), and Equation (3.26) into Equation (3.23), the total deflection
is found in Equation (3.28).

Ym =
pa4

D

(
Am cosh

mπy

a
+Bm

mπy

a
sinh

mπy

a
+

Cm sinh
mπy

a
+Dm

mπy

a
cosh

mπy

a

) (3.27)
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3.4. Isostatics for the considered floor slab

w = w1 + w2 =
4p0a

4

π5D

∞∑
m=1

1

m5
sin

mπx

a
+

pa4

D

∞∑
m=1

(
Am cosh

mπy

a
+Bm

mπy

a
sinh

mπy

a

)
sin

mπx

a

(3.28)

Only the integration constants of Am and Bm still need to be determined. They
follow from the boundary conditions set in Equation (3.29). Since the two remaining
edges are free, both the bending moments in the y-direction and the sum of the shear
force and derivative of the torsional moments are nil. From the boundary conditions,
Timoshenko and Woinowsky-Krieger (1959) solved the integration constants that
are displayed in Equation (3.30). The final deflection function is finally displayed in
Equation (3.31).

at y = ±1
2b


myy =

δ2w

δy2
+ ν

δ2w

δx2
= 0

vy +
δmyx

δy
= D

(
δ3w

δy3
+ (2− ν)

δ3w

δx2δy

)
= 0

(3.29)

Am =
4

m5π5
· ν(1 + ν) sinhαm − ν(1− ν)αm coshαm

(3 + ν)(1− ν) sinhαm coshαm − (1− ν)2αm

Bm =
4

m5π5
· ν(1− ν) sinhαm

(3 + ν)(1− ν) sinhαm coshαm − (1− ν)2αm

In which: αm =
mπb

2a

(3.30)

w = w1 + w2 =
p0a

4

D

∞∑
m=1

(
4

π5m5
+Am cosh

mπy

a
+

Bm
mπy

a
sinh

mπy

a

)
sin

mπx

a

(3.31)

When applying Equation (3.31) to Equation (3.32) and Equation (3.33), the results
that are displayed in Figure 3.11 can be found. The maximum deflection wmax
is obtained at the center of the span in the x-direction and at the boundaries in
the y-direction. It measures 1.68 mm. The distributions of the bending moments
can be derived from Equation (3.18). They are presented in Equation (3.32) and
Figure 3.11. The figure shows that the boundary conditions have been satisfied for
x = 0 and x = a since both the deflection and the bending moment is equal to
zero. Additionally, the shear forces are obtained via Equation (3.33). They are also
displayed in Figure 3.11, and they show that the boundary conditions at y = ± b

2 are
correct. The validation of the results is displayed in Table 3.1 and Figure 3.17, which
has been performed by modeling the slab in Scia Engineer using Kirchhoff theory.
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Chapter 3. Ribbed floor slab systems

The shapes of the diagrams in Figure 3.17 are similar to the ones in Figure 3.11 and
the minimum and maximum values in Table 3.1 are also practically the same.

mxx = −D
(
δ2w

δx2
+ ν

δ2w

δy2

)
myy = −D

(
ν
δ2w

δx2
+
δ2w

δy2

)
mxy = −(1− ν)D

δ2w

δxδy

(3.32)

vx = D

(
δ3w

δx3
+

δ3w

δy2δx

)
vy = D

(
δ3w

δy3
+

δ3w

δx2δy

) (3.33)

Table 3.1: Validation of the results for the slab
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w (mm) 0.00 0.00 1.68 1.68 0.00
mxx (kNm/m) 0.00 0.00 30.95 30.95 0.00
myy (kNm/m) 0.00 0.00 1.22 1.22 0.00
mxy (kNm/m) -2.73 -2.73 2.73 2.73 0.00
vx (kN/m) -15.50 -15.49 15.50 15.49 0.06
vy (kN/m) -0.99 -0.95 0.99 0.95 4.21
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3.4. Isostatics for the considered floor slab

(a) Deflection (b) Bending moment mxx

(c) Bending moment myy (d) Twisting moment mxy

(e) Shear forces vx (f) Shear forces vy

Figure 3.11: Results for the slab
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Chapter 3. Ribbed floor slab systems

3.4.3 Principal stress trajectories
One of the first researchers in structural optimization was an Australian mechanical
engineer called Anthony Michell. In 1904, he defined several optimal truss structures
(Michell, 1904). The designs were formulated by placing the truss members in such
a way that their strains are all equal, resulting in a minimization of the volume
of material. His results very closely resemble the principal stress trajectories, as
displayed in Figure 3.12. They are only applicable to two-dimensional problems,
however. A floor is loaded perpendicular to its plane so, as Figure 3.13 illustrates,
an additional dimension is required.

(a) Michell structure (b) Principal stress lines (c) Topology optimization

Figure 3.12: Optimal results for a cantilever beam according to different theories (Tam
et al., 2015)

(a) In-plane (b) Out-of-plane

Figure 3.13: Differences in loading

As mentioned earlier, Pier Luigi Nervi and his colleague Aldo Arcangeli utilized
principal stress lines as a design tool for their floors. The lines visualize the way
forces flow to their supports. Therefore, according to them, when the ribs in a floor
are aligned to these principal stress lines, the floor is at its most efficient when given
the same loads and support conditions. Contrary to the Michell structures, this
method also works for out-of-plane loading. There are several assumptions to be
made at this point. First of all, the considered material is isotropic, and secondly,
only the elastic range is regarded. While this might seem to be contradictory to
reinforced concrete, Nervi showed that even under these conditions, an efficient
structure in concrete can still be realized.

As documented by Chen and Li (2010), with these assumptions, stress lines are
not affected by the material stiffness or applied forces, but by the geometry of the
design space and properties of the boundary conditions. Now that all the stresses in
the slab have been determined in the last section, the principal stress trajectories
according to traditional plate theory can be plotted. Up until now, the stresses have
been calculated in the global x- and y-direction because it simplifies the calculation.
By changing the angle α of an element, the stresses are transformed as displayed in
Figure 3.14. For every element, there is a special value of this angle called α0, at
which the shear stress is zero and the normal stresses are at their highest or lowest.
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3.4. Isostatics for the considered floor slab

At this angle, the principal stresses σ1 and σ2 are found alongside their principal
stress direction α0.

Figure 3.14: Principal direction α0 and corresponding stresses σ1 and σ2 (Blaauwendraad,
2010)

This method also works for bending moments and shear forces. Then, the extreme
values are called the principal moments and principal shear force, respectively.
Blaauwendraad (2010) recommends using the expressions in Equation (3.34) and
Equation (3.35). They follow from simple transformation rules based on Figure 3.14.
The maximal principal moment m1 always appears with a minimum principal moment
m2, but without a twisting moment. For the maximal principal shear force v1, the
accompanying minimal shear force is always equal to zero.

tan(2α0) =
2mxy

mxx −myy

m1 = mxx cos2 α0 +mxy sin(2α0) +myy sin2 α0

m2 = mxx sin2 α0 −mxy sin(2α0) +myy cos2 α0

(3.34)

tan(β0) =
vy
vx

v1 =
√
v2
x + v2

y

v2 = 0

(3.35)

The resulting trajectories are displayed in Figure 3.15 and validated in Figure 3.17.
The maximum principal bending trajectories are indicated by the longer dashes,
the minimum principal bending trajectories by the shorter dashes. From them,
predictions for an optimized floor slab design with isostatic ribs can be made. An
interpretation has been sketched in Figure 3.16.
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Chapter 3. Ribbed floor slab systems

(a) Bending moments

(b) Shear forces

Figure 3.15: Principal stress trajectories
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3.4. Isostatics for the considered floor slab

The predictions include:

• Ribs are expected to ’flow’ along the principal moment trajectories. For the
considered design space and supports, this means that the main ribs will span
between the supports in an almost straight manner. This is not surprising since
TT-slabs, for example, show a similar design.
• Secondary ribs, following the minimum principal moment lines and perpendicular

to the main ribs, are also expected according to the theory of isostatics.
• The main ribs are expected to be located near the sides of the slab where the

bending moment in the main direction is the greatest.

The next chapter will elaborate on the topology optimization algorithm that has been
developed for this thesis. It has been used to make a design for the same floor slab
that was introduced in Section 3.4. The optimal result from topology optimization
can be compared to the predictions from isostatics that have been made, here.

(a) Perspective (b) Top-down view

Figure 3.16: Interpretation of a ribbed floor slab with isostatic ribs for the considered
design space
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Chapter 3. Ribbed floor slab systems

(a) Deflection Uz (b) Bending moment mx

(c) Bending moment my (d) Torsional moment mxy

(e) Shear forces vx (f) Shear forces vy

(g) Principal moment trajectories

Figure 3.17: Validation in Scia Engineer
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4
Topology optimization algorithm

As indicated in Chapter 2, there are many different ways to approach a topology
optimization problem, such as ESO, BESO, SIMP, etc. There are also many dif-
ferent software packages available that use different methods. Furthermore, each
method can be applied in both two- and three-dimensional problems. For this thesis,
the combination of several requirements made the production of a new algorithm
necessary, as their combination is not found in other software packages. The first
requirement is the option of three-dimensional analysis. A simplification of the
real scenario into a two-dimensional analysis would not include load dispersion in
two directions and thus give a very unfavorable result. The second requirement
is that the algorithm is available as open-source software. Closed-source software,
such as Matlab, Rhinoceros, Altair, or Abaqus, is closed in a sense that they are
closed to anyone who doesn’t pay the steep price, but also, they are often not
transparent. Transparency is essential for adding manufacturability constraints, for
example.

Similar to the three-dimensional topology optimization algorithm presented in this
thesis, are the studies and their resulting algorithms by Liu and Tovar (2014) and
Hunter (2009). Compared to the work from Liu and Tovar, this algorithm is open-
source. Compared to the work from Hunter, it is more transparent, consists of a
single file only, and does not require additional software for viewing the result. It can
be concluded that the advantages of the topology optimization algorithm presented
in this report over other packages include:

• Three-dimensional analysis: for the given design problem of a floor, three-
dimensional analysis is necessary.
• Open-source software: the algorithm is free to use for everyone.
• Single file: alternative open-source, three-dimensional topology optimization

algorithms are complex and consist of multiple files and computer programs.
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Chapter 4. Topology optimization algorithm

The topology optimization algorithm, introduced in Appendix F, is elaborated upon
in this chapter. It builds on research by Sigmund (2001), Andreassen et al. (2011),
and Liu and Tovar (2014). Figure 4.1 displays the topology optimization flowchart
as it is applied in the algorithm. Each step is clearly indicated in the code, and will
be explained in detail with the use of pseudo-code and an example. A small guide
on how to get started is presented in Appendix E.

Figure 4.1: Topology optimization algorithm TopOpPy.py flowchart
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4.1. Topology optimization method and assumptions

4.1 TOPOLOGY OPTIMIZATION METHOD AND ASSUMPTIONS

In Section 2.4, several different topology optimization methods were mentioned.
These include ESO, BESO, SIMP, ant colony method, homogenization method, and
level set method. The most common and proven methods are BESO by Xie and
Steven (1997) and SIMP by Bendsøe (1989). Because of the way BESO works, it is
called an evolutionary design method. According to Bendsøe and Sigmund (2003),
evolutionary methods can lead to invalid results since gradient information (in the
sensitivities) is used to formulate a discrete decision (is an element turned ’on’ or
’off’). This is not an issue in the SIMP method since the gradient information of
the sensitivities is applied to elements that also have gradient properties in their
densities. Additionally, the SIMP method is easier to adapt to alternative objectives
and Sigmund (2001) tells us it is equally computationally efficient. Therefore, the
SIMP method is applied in the topology optimization algorithm of this thesis.

There are several assumptions made in the algorithm that need to be borne in
mind. First, the design space that makes up the topology optimization problem
is a rectangular cuboid or box. Secondly, the elements that make up the design
space are cubes and, as is common in topology optimization, they have linear and
isotropic properties. Both the shape of the design space and the elements simplify
the numbering of the elements/nodes significantly in the Python script.

In a topology optimization problem, the objective is to place the material in such
manner that the optimal solution is found. In the discretized version of the problem,
this objective can be interpreted as the search of finding which elements are filled and
which elements are empty. This ’on/off’ problem is, in the SIMP method, replaced
with continuous variables in the elemental stiffnesses combined with a penalty
function that prevents intermediate stiffnesses in the optimal solution. Section 4.4
discusses the steps that are taken in the topology optimization algorithm in more
detail with the help of a small example.

4.2 INPUT BY THE USER

The input of the algorithm consists of all the factors that may affect the end result.
In topology optimization software this generally consists of the design space, volume
fraction, load definition, boundary conditions, relative material properties, and, for
this thesis, manufacturability constraints. Two factors that also influence the final
result are the optimization objective and the optimization method. Here, they are
fixed as compliance minimization and the SIMP method respectively. In Table 4.1,
the definitions of the input variables are elaborated. They are very similar to the
names in the notable Matlab topology optimization algorithms by Sigmund (2001),
Andreassen et al. (2011), and Liu and Tovar (2014). This makes understanding the
code easier for users that are already familiar with those algorithms. In this report,
expressions in the typewriter font refer to the names that are used in the topology
optimization algorithm.
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Chapter 4. Topology optimization algorithm

Table 4.1: Input variables

Input variable Description

nelx Number of elements in the x-direction.
nely Number of elements in the y-direction.
nelz Number of elements in the z-direction, as displayed in Figure 4.2.
volfrac Percentage of elements that are allowed to be fully solid.
penal Penalty factor, to penalize low stiffness elements and arrive at a

more black-and-white solution (Figure 4.4).
rmin Minimum radius of a sphere for which neighboring elements are

taken into account in the analysis (Figure 4.5a), in order to prevent
checkerboarding (Figure 4.5b), and to apply the minimum thickness
constraint.

maxloop Maximum number of iterations before the loop stops.
tolx The change per iteration below which the loop stops.
Ecmax Maximum Young’s modulus, applied in a fully solid element.
Emin Minimum Young’s modulus, applied in an ’empty’ element. The

value is required to be greater than zero to prevent singular matri-
ces.

nu Poisson’s ratio.
i, j, k Global node coordinates for loads and boundary conditions. Fig-

ure 4.6 displays several examples.
nid Global node ID’s for loads and boundary conditions. These are

numbered column wise up-to-bottom first, left-to-right second, and
back-to-front third (Figure 4.3).

dof Node degrees of freedom for loads and boundary conditions, where
a load/b.c. over the x-axis is defined as 3*loadnid.T-2, over the
y-axis as 3*loadnid.T-1, and over the z-axis as 3*loadnid.T.

Figure 4.2: Definition of the number of elements nelx, nely, and nelz for a 5x2x3
design space
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4.2. Input by the user

Figure 4.3: Definition of the global node ID’s nid for a 5x2x3 design space

Figure 4.4: Visualization of the penalty factor penal

(a) Visualization of the rmin fac-
tor

(b) Example of a checkerboard pattern, pre-
vented by the rmin factor (Huang and Xie,
2010)

Figure 4.5: The rmin factor (Huang and Xie, 2010)
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(a) For single elements

(b) For elements in a line

(d) For elements on a surface

Figure 4.6: Definition of the node coordinates used in il, jl, and kl, as well as in ibc,
jbc, and kbc
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4.3. Optimization objective

4.3 OPTIMIZATION OBJECTIVE

The Eurocode prescribes a maximum deflection of 0.004L in the Serviceability Limit
State (SLS), where L represents the span of the floor. As a result of this requirement,
it would make sense to limit the acceptable deflection of the model. This would,
however, result in structures that are considered ’optimal’ when the entire deflection
is at this limit. These undesirable deflections, displayed in Figure 4.7a, can be
prevented by considering the total stiffness of the structure. One common method
of defining the total stiffness is by expressing it in a total strain energy, which
is the external work done by the applied load. For Figure 4.7, the strain energy
is defined as

∑ 1
2FiUi and is thus expressed in force · length. In the example of

Figure 4.7, it is clear that Figure 4.7b has a lower strain energy than Figure 4.7a
and is thus the ’better’ structure. This corresponds with the structural engineer’s
preference, especially when taking potential structures such as walls on top of the
floor into account that do not benefit from the extreme curvatures that are visible in
Figure 4.7a near the supports.

(a) Deflection objective (b) Compliance objective

Figure 4.7: Deflections of hypothetical optimal floor slabs under different objectives

Compliance is similar to the total strain energy of the structure, which, for SIMP, is
defined as

∑
FiUi by Huang and Xie (2010). Compliance minimization is a common

optimization objective in topology optimization literature. The algorithm in this
thesis can be validated accurately with existing optimal solutions since they are both
optimized for compliance. A minimum compliance problem with the SIMP method is
defined in Equation (4.1) by Huang and Xie (2010). The objective function is subject
to a maximum volume fraction V ∗, that is composed of the volumes of individual
elements Vi multiplied with their relative densities xi. The relative densities are
anywhere between a minimum density xmin and 1.

Minimize c = fTu

Subject to V ∗ −
N∑
i=1

Vixi = 0

0 < xmin < xi < 1

(4.1)
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In which:

c compliance

f force vector

u displacement vector

V ∗ volume fraction

Vi volume element

xi relative density element

xmin minimum density element

4.4 MAIN CODE

The main code can be considered as the actual topology optimization algorithm
that uses definitions from other parts of the code. Algorithm 1 explains the steps
and loops made by the main in the pseudo code language. The size of the arrays is
displayed in gray at the end of each line. The pseudo code is slightly more in depth
than the flowchart in Figure 4.1.

Algorithm 1 Main code

procedure main(nelx, nely, nelz, volfrac, penal, rmin) . array size
2: PRINT input variables

COMPUTE nodal location of load F . ndof × 1
4: COMPUTE total degrees of freedom ndof . integer

COMPUTE free degrees of freedom freedofs . 1 × (ndof-bcdof)
6: CALL elemental stiffness matrix KE . 24 × 24

ASSEMBLE global connectivity matrix edofMat . nele × 24
8: COMPUTE row numbering global stiffness matrix iK . 1 × nele·24·24

COMPUTE column numbering global stiffness matrix jK . 1 × nele·24·24
10: CALL density filter preparation

SET initial densities per element x . 1 × nele
12: while change > allowed change and iteration < allowed iterations do

COMBINE all elemental stiffness matrices in sK . 1 × nele·24·24
14: COMPUTE global stiffness matrix K from iK, jK, and sK . ndof × ndof

REMOVE constrained DOF’s from K . freedofs × freedofs
16: SOLVE nodal displacement vector for the free DOF’s . ndof × 1

COMPUTE objective c . float
18: COMPUTE sensitivity objective function dc . 1 × nele

COMPUTE sensitivity volume fraction dv . 1 × nele
20: CALL optimality criterion

COMPUTE new densities xPhys with density filter update . 1 × nele
22: COMPUTE change of this iteration change . float

PRINT output of this iteration

24: PLOT result
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The main code will now be clarified more on a line-by-line basis. A simple problem
as proposed in Figure 4.8a will be addressed. It’s two-dimensional with a very coarse
mesh in order to simplify the topology optimization process. The optimal solution
is stated by Bendsøe and Sigmund (2003) in Figure 4.8. The simplified problem
with a very coarse mesh is displayed in Figure 4.9. The main code starts with the
preparation of the Finite Element Analysis (FEA). In each iteration, there is a FEA
to see how the updated model behaves, and, consequently, to see which elements
need to have an increase or reduction in stiffness with the next iteration. In the
Python code, the FEA consists of three parts: the definition of the elemental stiffness
matrix, the preparation of the FEA in the main code, and the FEA itself in the loop
in the main code.

(a) Problem (b) Solution
(Bendsøe and
Sigmund, 2003)

(c)
Found
solution

Figure 4.8: Visualization of the addressed problem with a dense mesh

(a) Problem (b) Solution (c) Found
solution

Figure 4.9: Visualization of the addressed problem with a coarse mesh

(a) Elements (b) Global nodes

Figure 4.10: Numbering in the addressed problem
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Prepare FEA
The preparation includes several definitions that are used later in the algorithm.
Starting with the number of elements nele and the accompanying degrees of freedom
ndof, which are three per node. The applied force vector F has the size of ndof.
Every three components represent the x-, y-, and z-degree of freedom of one node.
In this case, a force of −1 in the z-direction is applied to node 13, which translates
to component 38 in the force vector. The displacement vector works the same way
and has the same size. The vector containing all the free degrees of freedom consists
of the difference between all the degrees of freedom and the fixed ones. The vector is
called freedofs. From Figure 4.10b, we know which nodes are fixed: nodes 1 to 5
and nodes 16 to 20, which translates to degrees of freedom 1 to 15 and 46 to 60 in
bcdof since they are fixed in all three directions.

nele = nelx · nely · nelz = 8 (1×1)

ndof = 3(nelx + 1) · (nely + 1) · (nelz + 1) = 90 (1×1)

F = [

node 1︷ ︸︸ ︷
0︸︷︷︸
x

, 0︸︷︷︸
y

, 0︸︷︷︸
z

. . .

node 13︷ ︸︸ ︷
0︸︷︷︸
x

, −1︸︷︷︸
y: pos. 38

, 0︸︷︷︸
z

. . . 0, 0, 0]T (ndof×1)

U = [0, 0, 0 . . . 0, 0, 0]T (ndof×1)

bcdof = [

nodes 1 to 5︷ ︸︸ ︷
1, 2, 3 . . . 13, 14, 15,

nodes 16 to 20︷ ︸︸ ︷
46, 47, 48 . . . 58, 59, 60]

freedofs = [16, 17, 18 . . . 43, 44, 45, 61, 62, 63 . . . 88, 89, 90]

The 24 x 24 elemental stiffness matrix is found in the research by Liu and Tovar
(2014). It is determined in the definition ElStiffnMat in the algorithm and called
in the main code during the preparation of the Finite Element Analysis. The only
variable called in the definition is the Poisson’s ratio and it returns the elemental
stiffness matrix.

In the next line, edofMat is the connectivity matrix with size nele x 24 that stores
every element’s local node IDs. Note: the global node ID differs from the local
node ID! The next step is the density filter, which is prepared as explained in
Section 4.5.1.

edofMat =



4 5 6 . . . 46 47 48
7 8 9 . . . 49 50 51
10 11 12 . . . 52 53 54
13 14 15 . . . 55 56 57
19 20 21 . . . 61 62 63
22 23 24 . . . 64 65 66
25 26 27 . . . 67 68 69
28 29 30 . . . 70 71 72



Element No. 1
Element No. 2
Element No. 3
Element No. 4
Element No. 5
Element No. 6
Element No. 7
Element No. 8
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Initialize iteration
Before starting the iteration, several variables need to be assigned a starting point.
The physical element densities xPhys are all set to the desired volume fraction in
the first iteration. The elemental compliance ce, the derivative of the compliance dc,
and derivative of the elemental volumes dv are all set to 1 for each element. The
optimization loop runs until either the maximum allowed number of iterations have
been completed or the change per iteration becomes lower than the set limit.

volfrac = 0.5 (1×1)

xPhys = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5] (1×nele)

ce = [1, 1, 1, 1, 1, 1, 1, 1] (1×nele)

dc = [1, 1, 1, 1, 1, 1, 1, 1] (1×nele)

dv = [1, 1, 1, 1, 1, 1, 1, 1] (1×nele)

FEA
The function of the Finite Element Analysis is to determine the displacements U of
the structure under the applied load. After this, the internal force distribution can
be determined. It achieves this goal in several steps. The global stiffness matrix
K is put together as a sparse matrix. The sparse matrix employs three arguments:
row vector iK, column vector jK, and entry vector sK. The row and column vectors
indicate in which position the entries should be placed in the global stiffness matrix,
and they are a rewritten, flattened connectivity matrix edofMat. The entry vector
sK contains all the elemental stiffness matrices KE, multiplied with their stiffness.
Since this involves the structural densities of the elements, rather than the physical
densities xPhys, Huang and Xie (2010) tell us that the penalty factor is now also
included for calculating the stiffness, resulting in Equation (4.2), where xi is the
density of an element, p is the penalty, and K0

i is the elemental stiffness matrix of
the corresponding element.

K =
nele∑
i=1

xpiK
0
i (4.2)

sK =
[
xp0K

0
0 , x

p
1K

0
1 , . . . , x

p
iK

0
i

]
=(

Emin + xPhyspenal(Emax− Emin)
)
KE (1×242nele)

K = K =
nele∑
i=1

xpiK
0
i =

∑
sK (ndof×ndof)

Finally, the displacements U are solved according to Equation (4.3) for the free
degrees of freedom only, ensuring the boundary conditions are complied with. The
nodal forces f follow linearly from the displacement vector U. The sparse stiffness
matrix is inverted in a direct manner, which is considered very quick for small design
spaces and quick enough for larger ones.
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Ku = f (4.3)

u = K−1F, therefore: U = K−1F (ndof×1)

fi = uiK
0
i , therefore: f = KE× U (ndof×1)

(4.4)

Objective and sensitivities for a compliance problem
As mentioned in Section 4.3, the objective of the topology optimization is to maximize
the overall stiffness of the structure. The overall stiffness is measured by the
compliance and defined as c. The elemental compliance ce is computed by multiplying
the nodal forces f by the nodal displacements u, and is therefore measured in force
· length. The sum of the elemental compliances results in the final compliance c

that the quality of the iteration is measured with. Similar to the stiffness matrix,
the penalty factor is also included in the final compliance value.

The sensitivity of the objective function is called dc and signifies which elements
are the most sensitive to changing their stiffness. Elements which have the lowest
sensitivity, and thus increase the objective the least, are the most attractive for
removal. Similarly, elements which have the highest sensitivity, and thus increase
the objective the most, are the most valuable for stiffening. The sensitivity of the
objective function is derived in Equation (4.5).

If: c = fTu

Then:
δc

δxi
=
δfT

δxi
u+ fT

δu

δxi

(4.5)

At this point, Huang and Xie (2010) propose introducing a Lagrange multiplier λ,
which changes the function in Equation (4.5) to Equation (4.6). From Equation (4.3),
it is known this does not change the outcome of the compliance function since the
second term is equal to zero for every λ. The Lagrange multiplier can now be chosen
in order to remove the unknown factor δu

δxi
from Equation (4.8). From Equation (4.3),

it follows that this is the case for λ = u, resulting in Equation (4.9).

If: c = fTu+ λT (f −Ku) (4.6)

δc

δxi
=
δfT

δxi
u+ fT

δu

δxi
+
δλT

δxi
(f −Ku) + λT

(
δf

δxi
− δK

δxi
u−K δu

δxi

)
(4.7)
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If f −Ku = 0 and δf
δxi

= 0, then:

δc

δxi
= fT

δu

δxi
+ λT

(
−δK
δxi

u−K δu

δxi

)
δc

δxi
=
(
fT − λTK

) δu
δxi
− λT δK

δxi
u

(4.8)

δc

δxi
= −uT δK

δxi
u (4.9)

By combining Equation (4.2) and Equation (4.9), the final sensitivity function
displayed in Equation (4.10) is derived.

δc

δxi
= −pxp−1

i uTi K
0
i ui (4.10)

This is implemented in the algorithm as displayed below. During the filtering, the
sensitivities are updated according to the results from Section 4.5.1. In this particular
example rmin = 1.0, therefore the neighboring elements are not taken into account
and the density filter does not change the sensitivity values for both the volume and
the objective.

ce = fTi ui = uTi K
0
i ui = (UT × KE) · U (1×nele)

c =
nele∑
i=1

xpi f
TU =

∑(
Emin + xPhyspenal(Emax− Emin)

)
ce (1×1)

dc = −pxp−1
i uTi K

0
i ui = −penal · xPhyspenal−1ce (1×nele)

dv = [1, 1, 1, 1, 1, 1, 1, 1] (1×nele)

Optimality criteria update
Now that first the displacements and internal forces are determined, and secondly
the sensitivities, the updated structure can be determined during the Optimality
Criteria (OC) update. Section 4.5.2 contains the definition that is called in the loop.
The method was proposed by Bendsøe (1995) and utilizes the bisection method.
After the OC update, the updated elemental densities xPhys per iteration are known
and this results in the following values. When tolx=0.01, the algorithm reaches its
optimum after six iterations. The iterations are displayed in Figure 4.11.
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(a) Iteration 0 (b) Iteration 1 (c) Iteration 2 (d) Iteration 3

(e) Iteration 4 (f) Iteration 5 (g) Iteration 6 (h) 3D
result from
algorithm

Figure 4.11: Physical densities xPhys per iteration

Compute change and plot
The factor change is based on the change in elemental densities per iterations,
and not on the change in the objective function per iteration. The main loop
finishes when change becomes smaller than tolx, or when the maximum number of
iterations maxloop has been reached. In order to arrive at an optimum, however, the
optimization should be terminated by tolx and not by maxloop. The visualization
of the final result is achieved as described in Section 4.5.3.

4.5 DEFINITIONS

4.5.1 Density filter
Using a density filter kills two birds with one stone. First, a minimum member
radius rmin is useful in concrete modeling. Secondly, the density filter prevents
checkerboarding, as mentioned in Section 4.2. In this code, the density filter consists
of two parts: a preparation of the filter as a definition in the main code, and later,
the actual filtering during the optimization loop. Algorithm 2 elaborates on the
definition of the preparation, called df in the algorithm, after which the actual
filtering during each iteration occurs in the loop. The density filter is often used
in topology optimization and was proposed by Bruns and Tortorelli (2001) and
Bourdin (2001). The final updated physical densities of the iteration, are determined
according to Equation (4.11), which is based on research by Bruns and Tortorelli
(2001), in which R is the minimum radius and i, j, k denote the coordinates of the
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elements.

xfilteredi =
∑
i

ωi
ω
xi

ωj = max

(
0, R−

√
(ii − ij)2 + (ji − jj)2 + (ki − kj)2

)
ω =

∑
i

ωi

(4.11)

In the algorithm, it is applied as displayed below. The matrix H contains all the
relative distances between the elements that are closer together than rmin. However,
since the minimum radius is a lot smaller than the design space, the matrix mostly
consists of zeros and can, therefore, be made sparse.

xPhys = xfilteredi =
H

Hs
x (1×nele)

H = ωj = max
(

0, rmin−
√

(i− i2)2 + (j− j2)2 + (k− k2)2
)

(nele×nele)

Hs = ω =
∑

H (nele×1)

Algorithm 2 Preparation density filter

procedure def df(nelx, nely, nelz, rmin) . array size
2: SET size of filter nfilter . integer

for each element in z-direction do
4: for each element in x-direction do

for each element in y-direction do
6: COMPUTE row numbering row . integer

for each element within range of rmin in z-direction do
8: for each element within range of rmin in x-direction do

for each element within range of rmin in y-direction do
10: COMPUTE column numbering col . integer

DEFINE row vector iH
12: DEFINE column vector jH

COMPUTE filter vector sH . 1 × freedofs

14: RETURN sH, iH, and jH for assembly of H and Hs

4.5.2 Optimality criterion
Finding the solution to the compliance problem requires a method to find the
minimum. In this algorithm, the Optimality Criterion (OC) method is applied to
update the physical densities xPhys each iteration. The method was proposed by
Bendsøe (1995) and utilizes the bisection method. He states the update as displayed
in Equation (4.12). In this algorithm, it is defined as oc and called near the end of the
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optimization loop. Algorithm 3 includes the pseudo code for the OC definition.

Bi = − δc

δxi

(
λ
δv

δxi

)−1

= λ−1pxp−1
i uTi K

0
i ui

xk+1
i =


max(xmin, x

k
i −m) if xkiB

η
i ≤ max(xmin, x

k
i −m)

min(1, xki +m) if min(1, xki +m) ≤ xkiB
η
i

xkiB
η
i otherwise

(4.12)

In Equation (4.12), xki is the elemental density at iteration k, m is the positive move
limit set at 0.2, and η is the numerical damping coefficient set at 0.5 (Bendsøe, 1995).
Now, the only unknown is the Lagrange multiplier λ, which can be found with the
bisection method. The multiplier can be seen as a threshold at which material is
either removed or added to an element. The Lagrange multiplier is guessed to be
between a lower limit l1 and an upper limit l2. Each iteration these bounds are cut
in half until the solution is found within a range of 0.001.

Algorithm 3 Optimality Criterion

procedure def oc(nelx, nely, nelz, x, volfrac, dc, dv, g)
2: DEFINE boundaries l1 and l2

DEFINE positive move limit move . 0.2 recommended (Bendsøe, 1995)
4: while change > tolerance of 0.001 do

UPDATE physical densities xnew

6: COMPUTE new boundaries
RETURN new physical densities xnew

4.5.3 Visualization optimum
The output of the algorithm is presented per iteration as a line of text, where
It. gives the iteration number, Obj. the objective/compliance, Vol. the volume
fraction, and Ch. the change per iteration.

After the last iteration has finished, a three-dimensional model is constructed,
showcasing the final optimal result. This is accomplished with the help of the
MayaVi package in the definition called displayfigure (Algorithm 4). In order to
achieve a true black-and-white visualization, all the element densities larger than
0.5 are assumed to be ’filled’, and the elements with a smaller density are left out
of the figure. This interpretation of the actual ’gray’ result is always a point of
discussion inherent to the SIMP method. In practice, if the penalty factor is high
enough and the tolerance for ending the optimization is small enough, the physical
densities of the elements generally range between 0.8-1.0 for ’full’ and 0.0-0.2 for
’empty’ elements. This difference is considered acceptable for making a practical
design.
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Algorithm 4 Visualization optimum

procedure def displayfigure(xPhys, nelx, nely, nelz)
2: DEFINE empty array xPlot, which will contain the discretized xPhys

for each element in xPhys do
4: if element density is more than 0.5 then

UPDATE element density to be 1.0 in xPlot

6: if element density is less than 0.5 then
UPDATE element density to be 0.0 in xPlot

8: DEFINE element coordinates px, py, pz
for each element in xPlot do

10: if density is more than 0.5 then
DRAW filled element at its corresponding coordinate

12: DISPLAY final figure

4.6 VALIDATION

The topology optimization algorithm needs to be validated in order to confirm
its accuracy, and to see if it meets its intended purpose. Validation has been
performed by comparing the results to well-studied examples. These case studies
include two cantilever beams, a wheel, and an MBB-beam which was first proposed
by the Messerschmitt-Bölkow-Blohm aviation company. Repeatability has been
checked by performing each problem multiple times. The examples also demonstrate
the capabilities of the algorithm and can help the end user compose their own
problems.

Only the standard algorithm has been evaluated in this section. That is to say,
the algorithm without any additional constraints or self-weight. The variables are
displayed in the (nelx,nely,nelz,volfrac,penal,rmin) fashion. Figure 4.12 to
Figure 4.15 show that the results from the algorithm are almost identical to the
solutions that are described in literature. The small differences can be explained
by the manner in which the solution is found. Differences in the solution-finding
algorithm cause small differences in the found optimum. Additionally, the three-
dimensional visualization discretizes the solution, while the solution actually consists
of floats. Lastly, the density of the mesh also plays a role. A denser mesh will result
in figures that are closer to the optima defined by literature.

4.6.1 Cantilever beam A
The cantilever beam is displayed in Figure 4.12 and optimized with the following
input: (60,20,4,0.3,3,1.5). The load is defined as:

il = np.array([nelx])

jl = np.array([0])

kl = np.array([np.arange(0,nelz+1)])

loadnid = kl*(nelx+1)*(nely+1)+il*(nely+1)+(nely+1-jl)

loaddof = 3*loadnid.T - 1

The boundary conditions are defined as:
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[jbc,kbc] = np.mgrid[1:nely+2,1:nelz+2]

bcnid = (kbc.T-1)*(nely+1)*(nelx+1)+jbc.T

bcdof = np.hstack((3*bcnid, 3*bcnid-1, 3*bcnid-2)).flatten()

(a) Design space (b) Result from literature (Liu and To-
var, 2014)

(c) Result from the algo-
rithm

Figure 4.12: Cantilever beam A comparison

4.6.2 Cantilever beam B
An alternative cantilever beam is displayed in Figure 4.13. Instead of a line load at
the bottom end of the cantilever, there is a point load in the center of the profile. It
is noteworthy that the topology from TopOpPy differs from the BESO output. This
is an example of the SIMP method not always finding the global optimum. A denser
mesh might be able to achieve a more accurate result. The problem is optimized
with the following input: (60,24,12,0.1,3,1.5). The load is defined as:

il = np.array([nelx])

jl = np.array([nely/2])

kl = np.array([nelz/2])

loadnid = kl*(nelx+1)*(nely+1)+il*(nely+1)+(nely+1-jl)

loaddof = 3*loadnid.T - 1

The boundary conditions are, again, defined as:

[jbc,kbc] = np.mgrid[1:nely+2,1:nelz+2]

bcnid = (kbc.T-1)*(nely+1)*(nelx+1)+jbc.T

bcdof = np.hstack((3*bcnid, 3*bcnid-1, 3*bcnid-2)).flatten()

(a) Design space (b) Result from literature
(Huang and Xie, 2010)

(c) Result from the algorithm

Figure 4.13: Cantilever beam B comparison
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4.6.3 Wheel
The wheel is displayed in Figure 4.14 and optimized with the following input:
(20,10,20,0.2,3,1.5). The load is defined as:

il = np.array([nelx/2])

jl = np.array([0])

kl = np.array([nelz/2])

loadnid = kl*(nelx+1)*(nely+1)+il*(nely+1)+(nely+1-jl)

loaddof = 3*loadnid.T - 1

The boundary conditions are defined as:

ibc = np.array([0,0,nelx,nelx])

jbc = np.array([0,0,0,0])

kbc = np.array([0,nelz,0,nelz])

bcnid = kbc*(nelx+1)*(nely+1)+ibc*(nely+1)+(nely+1-jbc)

bcdof = np.hstack((3*bcnid, 3*bcnid-1, 3*bcnid-2)).flatten()

(a) Design space (b) Result from literature (Liu
and Tovar, 2014)

(c) Result from the algorithm

Figure 4.14: Wheel comparison

4.6.4 MBB beam
The MBB beam is displayed in Figure 4.15 and optimized with the following input:
(60,10,10,0.2,3,1.5). The load is defined as:

il = np.array([nelx/2])

jl = np.array([nely])

kl = np.array([nelz/2])

loadnid = kl*(nelx+1)*(nely+1)+il*(nely+1)+(nely+1-jl)

loaddof = 3*loadnid.T - 1

The boundary conditions are defined as:

ibc = np.array([0,0,nelx,nelx])

jbc = np.array([0,0,0,0])

kbc = np.array([0,nelz,0,nelz])

bcnid = kbc*(nelx+1)*(nely+1)+ibc*(nely+1)+(nely+1-jbc)

bcdof=np.hstack((3*bcnid[0:2],3*bcnid[0:4]-1,3*bcnid[0:2]-2)).flatten()
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(a) Design space (b) Result from literature (Liu and
Tovar, 2014)

(c) Result from the algorithm

Figure 4.15: MBB beam comparison

4.7 SPEED

In this section, the standard topology optimization algorithm is compared to the
similar Matlab algorithm by Liu and Tovar (2014). The algorithms by Sigmund
(2001) and Andreassen et al. (2011) have not been compared since they do not
function for three-dimensional problems. Table 4.2 displays the calculation times
for Python and Matlab when solving the aforementioned topology optimization
problems, for the same amount of iterations. They are measured using a laptop with
an Intel Quad-core i7-4720HQ 2.6 GHz CPU and 16.0 GB RAM. The total number
of elements and the number of neighboring elements influence the calculation times
the most. When expanding the design space, the number of elements increases
and, subsequently, so does the size of the global stiffness matrix. In each iteration,
solving the displacements by directly inverting the sparse global stiffness matrix takes
the longest time to accomplish. Additionally, bigger design spaces generally need
more iterations to reach an optimum. The number of neighboring elements is also a
factor that influences the calculation times, illustrated by the longer times from the
cube-like ’wheel’ problem versus the relatively flat ’cantilever beam’ problems. From
Table 4.2, it can be concluded that the Python algorithm is slower than the one in
Matlab and that the calculation durations increase exponentially for larger design
spaces.

Table 4.2: Calculation times
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Cantilever beam A 15× 5× 1 49 2.5 0.5
30× 10× 2 71 7.9 4.3
60× 20× 4 156 522.5 121.5

Cantilever beam B 15× 6× 3 55 3.3 1.6
30× 12× 6 90 64.4 25.5

Wheel 20× 10× 20 53 314.7 44.9
MBB beam 60× 10× 10 157 563.7 154.4
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4.8 SENSITIVITY

In this section, the algorithm’s sensitivity has been researched. The goal is to see how
different ratio’s in input variables influence the final design. The standard problem
of the second cantilever beam of Section 4.6.2 has been solved multiple times, with
various input parameters, but without self-weight. The design space size has been
left the same as 60 x 24 x 12, but the minimum radius, the penalty factor, and
volume constraint have been played with. The result is displayed in the following
figures. Starting with the minimum radius in Figure 4.16, the result is directly visible
in the thickness of the truss members. A smaller radius results in a greater quantity
of thinner members. In this case, a value of 1.5 is enough to prevent checkerboarding,
while still allowing very slender beams. The third image shows a minimum member
thickness of 3.0, which requires more volume to find a black-and-white solution. In
conclusion, the minimum radius seems to be rather sensitive as small changes result
in different topologies, while still conforming to the volume constraint.

(a) rmin=1.0 (b) rmin=1.5 (c) rmin=3.0

Figure 4.16: Sensitivity minimum radius

The sensitivity of the penalty factor has been researched, next. The higher this factor
is, the more intermediate densities are penalized. This results in more black-and-
white solutions, but can also result in not finding the global optimum. The images
in Figure 4.17 depict the effect of several factors on the final design. A low penalty
factor (Figure 4.17a) gives a topology that is nowhere near a viable structure. While
it is hidden in the visualization, there is simply too much intermediate material
in between the outer flanges. In order to arrive at a compromise between black-
and-white solutions and convergence, a value of 3.0 has been adopted for all the
designs in the rest of the report, as is customary with many other SIMP packages by,
e.g., Sigmund (2001) and Andreassen et al. (2011). A correct method of application
is running the first entire optimization for penal=1.0, then the second one for
penal=2.0, and one last time for penal=3.0, each time continuing from the optimal
solution of the previous optimization. This way the found optimum reaches closer to
the global optimum.

59



Chapter 4. Topology optimization algorithm

(a) penal=1.5 (b) penal=3.0 (c) penal=5.0

Figure 4.17: Sensitivity penalty factor

Similar to the minimum radius, adjusting the volume fraction also results in different
topologies, as displayed in Figure 4.18. As expected, a higher allowed volume fraction
gives a more filled design space, and a more stiff structure overall. The value of
the volume fraction often follows from the design problem, so in practice it can be
difficult to use the fraction in order to adapt the final design.

(a) volfrac=0.10 (b) volfrac=0.15 (c) volfrac=0.20

Figure 4.18: Sensitivity volume constraint

4.9 BASIC TOPOLOGY-OPTIMIZED FLOOR SLAB DESIGN

4.9.1 Design space and boundary conditions
After validation of the algorithm in Section 4.6, the algorithm can be used to design
a topology optimized floor slab. The design space represents the space in which the
optimal solution must be found. For the floor design, it is shaped as a rectangular
cuboid, because buildings and floors usually consist of rectilinear polygons. For
topology optimization in general, a design space can be divided into either pixels,
beams, or points. In this thesis, it has been divided in the three-dimensional
interpretation of pixels: cubic elements.

The potential for development of a topology-optimized floor is the highest when its
advantages are adequately exploited. A floor that can be produced with a complex
shape, can withstand high loads, and has additional value from its aesthetics, benefits
the most from a location where many people come together. Meeting areas in non-
residential building construction appear to be suitable for fulfilling this function.
These areas usually benefit from wide open spaces in order to keep the building
function flexible. To that end, a span of seven meters should be able to provide
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sufficient adaptability. This span is slightly bigger than the iconic Gatti wool factory
floor from Nervi, discussed in Section 3.3.1, which has a span of five meters. The
width of 2.5 m follows from the width of a truck, so the floor slabs can easily be
moved from the factory to the building site.

The boundary conditions follow from the context and supports of the floor: is it
supported by columns or walls, is the floor continuous or statically determined, or a
combination of the aforementioned? For the boundary conditions, a slab supported
by a beam or wall will be assumed. This translates to a hinged line support over
two opposing edges (Figure 3.5). One line support is not allowed to translate in any
direction, the other is allowed a degree of freedom in the x-direction to simulate a
roll. This results in a statically determinate structure and, as a consequence, the
forces in the structure are not influenced by their relative stiffness. The following
code has been applied to select all the nodes on the lower edges of two sides, and
secure their degrees of freedom:

ibc = np.array([0,nelx])

jbc = np.array([0,0])

kbc = np.array([np.arange(0,nelz+1),np.arange(0,nelz+1)])

bcnid = np.hstack((kbc[0]*(nelx+1)*(nely+1)+ibc[0]*(nely+1)+(nely+1-jbc[0])

, kbc[1]*(nelx+1)*(nely+1)+ibc[1]*(nely+1)+(nely+1-jbc[1])))

bcdof = np.hstack((3*bcnid, 3*bcnid-1, 3*bcnid[0:nelz+1]-2)).flatten()

4.9.2 Loads
For meeting areas in non-residential building construction, the load class is based on
class C3, according to Table 6.1 of NEN-EN 1991-1-1. This corresponds to an equally
distributed load over the top surface, with a value of 5.0 kN/m2 (Table 4.3) in the
Serviceability Limit State. The live load is implemented with the following code. It
can be interpreted as a vertical point load on all the top nodes, which resembles the
equally distributed load.

jl = np.array([nely])

[il,kl] = np.mgrid[1:nelx+2,1:nelz+2]

loadnid = (kl.T-1)*(nely+1)*(nelx+1)+il.T+jl*(il.T-1)

loaddof = 3*loadnid.T - 1

load = -5.*(7.*2.5)/(nelx*nelz)

Table 4.3: NEN-EN 1991-1-1, Table 6.2

Class of loaded area qk Qk
kN/m2 kN

Class C3 5.0 4.0

4.9.3 Result
Without any manufacturability constraints, the optimization reduces to a basic topol-
ogy optimization of a design space with a volume constraint. In theory, this results
in the most optimal structure according to the objective function. However, the con-
sidered material is not appropriate for concrete, there are gaps in the top of the floor,
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and the topology is still too complex to be manufactured. The design in Figure 4.20
has a maximum deflection of 3.7 mm and an objective of 0.0124 kN m.

Table 4.4: Input variables concrete topology optimization

Input variable Value

nelx 112
nely 4
nelz 40
volfrac 0.575
penal 3.0
rmin 0.5

What follows from the optimization process, is a hollow structure with the biggest
possible internal arm at midspan, and very slender webs near the supports. Both the
internal openings and the very thin members are not desirable. The checkerboard
pattern is also unwanted. These three problems are illustrated in Figure 4.19.

The next chapter introduces a manufacturing method called vacuumatic formwork
that is capable of producing complex shapes with a low-tech and sustainable proce-
dure. While even vacuumatic formwork would have trouble producing the floor in
Figure 4.20, utilizing such a versatile method can help make a topology-optimized
floor more practical. After introducing the manufacturing method in Chapter 5, the
optimization will be extended with all the additional manufacturability/material/-
functionality features in Chapter 6.

(a) Top-down view

(b) Side view

(c) Cross-section

Figure 4.19: Top: the checkerboard pattern near the supports; middle: the gap at midspan
where inefficient material is removed; bottom: cross-section to display the cavity inside
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(a) Perspective projection

(b) Parallel projection

(c) Optimization diagram

Figure 4.20: Underside of the optimal design according to traditional topology
optimization. The supports are displayed in blue
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5
Vacuumatic formwork

From Chapter 2, it can be concluded that the field of digital design and structural
optimization is progressing quickly. Making the design is only one part of the
building process, however, since manufacturability of that design is just as influential.
Usually, the final design in the construction stage differs from the topology-optimized
structure because of manufacturability. In theory, a structural topology-optimized
floor is very efficient, but in practice, it can be too expensive to produce, despite new
digital manufacturing methods, such as CNC-milling and additive manufacturing
(Appendix B). Complex connections and irregular members cause the price to
increase dramatically. Therefore, what usually happens is that, after the structural
topology optimization of an element, the design is manually modified in order to be
suitable for manufacturing. This implies that the element is designed in terms of
manufacturability and not entirely optimized in terms of its structural performance
anymore.

One possible solution is to apply a manufacturing method called ’sand casting’, which
is applied in the metal industry, mainly. It is characterized by using a mold made of
sand and stabilized with either clay, another bonding agent, or a vacuum. The latter
is used as the chosen manufacturing method of the topology-optimized floor, and
will be called ’vacuumatic formwork’ (Huijben, 2014) from now on. Stabilizing the
sand by means of a vacuum allows the sand to assume more complex shapes than its
own angle of repose will support. Major advantages of this technique are reusability,
demoldability, and adaptability. These advantages mean that the formwork cost may
be reduced severely when producing floors, especially since floors have a high rate of
repetition in most multi-story buildings. The reduction of waste of mold material is
also a sustainable consequence.

• Shape complexity : The constraints on the shape of the element are small. Very
complex shapes have already been realized in the metal casting industry.
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• Reusability : The mold can be used multiple times. Several topology-optimized
structures have been produced using CNC milled EPS blocks, which can also
produce highly complex shapes. However, these molds can only be used once.
• Demoldability : Even complex shapes can be demolded easily. After the vacuum is

removed, the sand falls away and the final building component remains.
• Adaptability: After casting an element the mold can easily adapt to other shapes.

This can be executed simply by removing the vacuum, placing another pattern,
and reapplying the vacuum. In this fashion, the same sand can be used for different
molds.

In following sections, several methods of sand casting are discussed. There can be
a clear distinction in the field it is applied in: sand casting in the metal industry
and sand casting in the building industry. The first has been more extensively
researched, but the second is more applicable to the subject of this thesis. Subse-
quently, an evaluation of the strengths, weaknesses, opportunities, and threats of the
vacuumatic formwork follows (otherwise known as a SWOT analysis). The chapter
concludes with several comments on the combination of topology optimization and
vacuumatics.

5.1 SAND CASTING IN THE METAL INDUSTRY

Sand casting is the most accepted production method for both ferrous and non-
ferrous metals, accounting for roughly ninety percent of all castings (Ravi, 2005).
The method is used to manufacture complex, small-scale elements, with a high
degree of precision. Generally, the steps involved in producing a casting using sand
include pre-casting, where the sand is prepared and compacted with the use of
moist sand (green-sand molding), a moist sand mold which is then baked (dry-sand
molding), organic binders with high strength after baking for elements with cores
(core-sand molding), or with the use of sand bound with a phenolic resin and alcohol
(shell molding). The production of the master pattern can be done by any other
manufacturing technique, and is often made of wood, metal, plastic, or expanded
polystyrene foam. The pre-casting is followed by casting, where the metal is melted
and poured into the mold. After cooling, the process finishes with post-casting. The
stabilized sand is removed and the cast element is ready for inspection (Wang et al.,
2010). The production procedure is displayed below.

• Pre-casting
· Sand preparation
· Core making
· Molding
• Casting
· Melting
· Pouring
· Cooling
• Post-casting
· Shake-out
· Cleaning
· Inspection
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5.1.1 V-process
A sand casting method with which the sand is enclosed by a flexible membrane and
stabilized by means of an internal under-pressure is referred to as the V-process
(Nakata and Kubo, 1974). Developed in Japan in 1969, the method is explained
step-by-step in Figure 5.1. In 1995, it was reported there were roughly 180 foundries
in Japan, 85 in Europe, and 10 in the USA. While the number of foundries has
dropped, it still is an outstanding production method in the metal casting industry
(Shengping et al., 2008). Compared to the other sand casting techniques for metal,
there are many advantages, according to Clark (nd). They include a zero degree draft,
which reduces weight and machining, while still allowing the cast to be removed
very easily from the mold. Thin walls, a high surface finish, and tight tolerances
reduce weight even further and create a product twice as accurate as typical sand
castings. The unlimited pattern life and a very high return of sand are sustainable
benefits.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.1: (a) The pattern is placed on a hollow plate. Vent holes allow the vacuum to
reach the foil; (b) The plastic film is heated; (c) The film is placed over the pattern, vacuum
shapes the foil; (d) A flask is set over the arrangement; (e) The flask is filled with dry sand
and compacted; (f) A sprue cup is formed and an additional plastic film over the flask; (g)

Vacuum is applied to the flask and atmospheric pressure helps preserve the shape; (h) During
pouring the mold is kept under vacuum; (i) After cooling the vacuum is released, the sand

falls away and a cast is left over (Kumar and Gaindhar, 1995)
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5.2 SAND CASTING IN THE BUILDING INDUSTRY

Where Section 5.1 focused on sand as a mold in the metal industry, this section
mentions several examples where sand was used as formwork in the building industry.
These examples, displayed in Figure 5.2 and Figure 5.3, are based on the natural
angle of repose of sand, while vacuumatic formwork allows for more complex shapes
and angles. In architecture, there are several examples of structures that utilized a
sand formwork during their construction. The sand formwork was convenient for
their complex double curved shapes because sand can be shaped and later reused
very easily. In 1959, Heinz Isler referred to the ’freely shaped hill’ as a design tool
that offers a lot of freedom for design. Shells can be poured over the sand, and after
hardening of the concrete, the shell can either be lifted or the sand can be excavated.
Figure 5.2a displays how the hill can be used as a type of formwork. As reported by
Chilton (2000), this particular example shows the beginnings of a test for an atomic
shelter of unreinforced concrete.

Around the same time, Le Corbusier and Iannis Xenakis worked on the Philips
electronics company pavilion for the World Expo of 1958 in Brussels (Figure 5.3a).
Duyster (1958) reveals the construction method. The pavilion consisted of prefab
reinforced concrete elements shaped like hyperbolic paraboloids, which were post-
tensioned by steel cables between rigid edge beams. The prefab elements were
manufactured with the use of sand formwork (Figure 5.3b). After hardening of
the concrete, the elements were numbered and assembled on site. The reusable
characteristic of the sand formwork was maximized in this structure: by changing
the slope of the sand hill, it was possible to easily produce the panels with a wide
range of curvatures.

The Teshima Art Museum (Figure 5.2b) is a contemporary example of sand being
used as formwork. It was designed by Ryue Nishizawa and Kazuyo Sejima of SANAA
architects and houses one single work of art by Rei Naito. Buntrock (2011) reports
that the 250 mm thick white concrete layer was poured in-situ over the sand formwork
over 22 hours. Similar to the freely shaped hill, after hardening, the sand was removed
from under the concrete. The result is a wide open space of almost 2000 m2, where
seven-meter large holes allow the wind and rain to enter the minimalistic structure
and exhibition.

(a) Heinz Isler’s freely shaped hill (Chilton,
2000)

(b) Teshima Art Museum (Buntrock, 2011)

Figure 5.2: Sand formwork examples
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(a) Finished Philips pavilion (Arch Daily, 2011) (b) Sand formwork of the Philips pavil-
ion’s panels (Sijpkes, nd)

Figure 5.3: Sand formwork examples

5.3 VACUUMATIC FORMWORK

The technique of applying vacuum stabilized sand for producing free-form structures
in concrete is referred to as vacuumatic formwork by Huijben (2014). It is the
proposed construction method for the topology-optimized floor system. It combines
the basic principles of the V-process method, with an application in the building
industry. There are no examples yet of the V-process being used to cast complex
reinforced concrete elements. It is assumed, however, that the advantages of the V-
process translate well to a vacuumatic formwork. The benefits for concrete structures
would then also include a zero degree draft, thin walls, a high surface finish, tight
tolerances, an unlimited pattern life, and a reusable formwork.

Generally, the steps involved in making a reinforced concrete structure consist
of the following. First, a pattern is made using any other production method.
Digital manufacturing methods, such as CNC milling or additive manufacturing, are
interesting options for making the often complex pattern, but traditional methods
such as carpentry are also a possibility. Afterward, sand is stabilized in the shape of
the pattern using a vacuum and an elastic film. The sand is now ready to be used
as a formwork for the concrete, and the pattern can be used in another sand form.
The same steps from the V-process are can be recognized. One major difference is
that for a floor, a one-sided mold is sufficient when the concrete is cast from the
top.

5.3.1 ISOFF-IASS workshop
At the International Association for Shell and Spatial Structures (IASS) symposium
on August 16, 2015, the International Society of Flexible Forming (ISOFF) organized
a two-day conference/workshop. Here, the feasibility of using vacuumatic formwork
for producing (potentially topology-optimized) ribbed structures in concrete with
low-tech equipment has been illustrated by Huijben (2015).
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As feasibility was one of the goals of the workshop, accessible and simple tools
were used to test the method. Timber planks for the outer mold, an EPS pattern,
and a vacuum cleaner are all easy to come by. Highly elastic film, in this case,
made from polyolefin copolymer, and a fine-grained sand complemented the applied
equipment.

As mentioned before, the first step involves making the pattern. Figure 5.4a displays
the pattern, which was cut from EPS. Next, the film was heated to increase the
elasticity and placed over the pattern in Figure 5.4b. A vacuum was applied and
the atmospheric pressure pushes the film further over the pattern. Once it all nicely
fits, the timber outer mold containing the film and pattern was filled with sand in
Figure 5.4c. Note that the vacuum is still applied.

Figure 5.4d shows the sand filled mold before a timber plate was placed on top and
the entire unit was flipped upside down. After removing the pattern in Figure 5.4e,
the mold was exposed and ready for casting the concrete in Figure 5.4f. After
hardening, the concrete element was easily removed from the mold, due to the film
not sticking to the structure, as displayed in Figure 5.4g. In the event of a more
troublesome removal, it is possible to apply an overpressure so the element ’pops’
out of its formwork.

Figure 5.4h shows how the sand was fully reusable after removing the vacuum. The
final result from the workshop is displayed in Figure 5.4i. The panels have a size of
700× 700 mm2 and a height of 100 mm.

5.3.2 Conclusion
Several conclusions can be drawn from the workshop. The most valuable outcome
is the practical feasibility of the vacuumatic formwork, even with very low-tech
equipment. While using identical tools, all four panels have a very different topology,
showcasing the reusability and potential of the method.

There are many aspects that can influence the design of the mold. In the test panels,
it can be seen that the ribs are shaped in a more organic form than the pattern was
because the film did not completely adhere to the pattern. If a product more similar
to the V-process’s result is desirable, then a more elastic film and a more powerful
vacuum pump are required.

Other than that, the grain size of the sand was sufficient for a smooth surface. The
viscosity of the concrete mixture during casting also needs to be low enough for the
mortar to reach everywhere. In this case, the fiber-reinforced UHPC mortar with
white pigment was satisfactory.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 5.4: ’Vacuumatic Formwork’ workshop at the ISOFF-IASS 2015 symposium
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5.4 SWOT ANALYSIS

One step in feasibility of the vacuumatic formwork has been performed in the form
of a practical, hands-on workshop. The scale and application of the production
method would be different in an actual construction process, however. In order to
evaluate the method, a SWOT analysis will be discussed in this section. The goal is
to find and take full advantage of the positive factors while managing or eliminating
the negative ones. Strengths and weaknesses are internal factors, opportunities and
threats are external factors. The analysis has been summarized in Figure 5.6.

5.4.1 Strengths
The strengths of vacuumatic formwork can be compared to other production methods
for reinforced concrete. As mentioned in earlier in this chapter, the advantages of a
vacuumatic formwork include the design freedom, a zero degree draft, thin walls, a
high surface finish, tight tolerances, an unlimited pattern life, and a reusable sand
core. Barring the additional research that is still required, the method has the
potential to be relatively cheap for very complex geometry, as it can be applied in
a low-tech fashion. The combination of these strengths is what makes vacuumatic
formwork unique.

5.4.2 Weaknesses
One of the obvious weaknesses of the method is that fact that it’s never been used
before in a structure. While the workshop was successful, the actual method is on
another scale and requires reinforcement bars. From the V-process it is already
established that upgrading the size does not necessarily pose a problem, because
the metal industry already manufactures elements of several meters long. Bending,
placing, and binding of the reinforcement can be a problem, however. The bending
is challenging, because of the complex shape of the ribs. Placing and binding of the
reinforcement might also be complicated, as the formwork is relatively vulnerable
(Huijben, 2014). Puncturing of the film, or making an unwanted imprint by workers
are reasonable risks. After hardening, transport to the building site and placement
of the prefab floor segments should be similar to other prefab floor systems.

5.4.3 Opportunities
The last few years, there has been an increase of interest in topology optimization,
as evidenced by Figure 5.5. Designs inspired by, or directly taken from a topology
optimization require a manufacturing method that is capable of producing them.
Secondly, there are opportunities in the reduction of material usage. The more
demanding requirements on sustainability, as explained in Chapter 1, make complex,
slender structures more appealing.

5.4.4 Threats
Other manufacturing methods that allow for great design freedom include CNC
milled EPS formwork and additive manufacturing. These relatively new digital
production methods benefit from more popularity and, as a result, more funding.
It is to be expected that their development will be quicker than the vacuumatic
formwork’s. Additionally, CNC milling has already been used in several structures
and has found its niche in the market. An example of a socio-cultural threat would
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Figure 5.5: Popularity of the subject of topology optimization according to Google Trends

be man-hour costs that remain high, meaning that a more complex structure would
never be appealing, anyway, from a monetary point of view.

5.4.5 Conclusion
From the strengths, weaknesses, opportunities, and threats, strategies can be formed
by identifying relations between these four aspects. The required research that needs
to be done might benefit from the increase in popularity of topology optimization.
This would then also help close the development gap with comparable digital produc-
tion methods. The current high costs of labor might be intimidating, but the trend
of the automation of the industry can be considered an opportunity. For example, in
the future, robots might be able to cut, bend, and binding the reinforcement for a
competitive price.

Fiber-reinforced concrete could also be considered a solution for the weaknesses
with traditional reinforcement. Research by Hermans (2011) shows ambivalent
opportunities for the topology-optimized floor slab, however. Conclusions in favor of
the application are that the test-loaded floors failed at a distributed load of 12 kN/m2

on average, with big deflections and a well distributed cracking pattern. On the
other hand, there are no regulations available yet and the test results are scattered.
It would probably be safer to use traditional reinforcement bars combined with extra
measures to counteract the weaknesses of the production method.

The floor would be made in prefabricated parts off-site, after which they are shipped
to the building site to be combined. From restrictions on the size of a truck, it
makes sense to divide a floor into parts of less than 12.0 × 2.5 m2. At this size,
the vacuumatic formwork system should still be able to operate while allowing the
workers in the factory to still place and bind traditional reinforcement bars. If the
risk of damaging the film or formwork is still too great, then it would be possible to
pour a thin layer of concrete, wait until it is hardened, then place the traditional
reinforcement, and finally pour the rest of the concrete layer. This would be similar
to the technique Nervi applied in the construction of his floors.
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Figure 5.6: Visualization of the SWOT analysis

5.5 COMBINING VACUUMATICS AND TOPOLOGY OPTIMIZATION

In this chapter, the advantages of a vacuumatic formwork were listed, and in Chap-
ter 2, the advantages of topology optimization can be found. In summary, the
strength of topology optimization lies in placing the material where it is the most
efficient, resulting in relatively lightweight structures with organic shapes. For
traditional manufacturing methods, this means that many man-hours are required
to produce the formwork. In Western countries, man-hours are the major compo-
nent of production costs, meaning that topology-optimized designs are extremely
expensive.

These highly organic shapes that follow from topology optimization can be scaled
down considerably by including manufacturability constraints inside the design
process. The second solution to potentially decreasing production costs is the
application of vacuumatic formwork. This manufacturing method is capable of
producing complex shapes with a very low-tech procedure. Advantages in reusability
and adaptability mean that it is also a sustainable technique. The costs of very
expensive structures that follow from traditional topology optimization can be
reduced by utilizing vacuumatics. The extent to which that is possible is not yet
clear for this new production method, however. An introducing analysis is made
in Section 7.1.2 but further research is needed to reveal how vacuumatic formwork
truly influences the production costs.
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As displayed in Table 5.1, vacuumatics strengthens the advantages of topology
optimization, while counteracting the disadvantages.

Table 5.1: Advantages and disadvantages of topology optimization and vacuumatics

Topology optimization Vacuumatic formwork

+ Sustainability increase + Sustainable manufacturing technique
+ Weight reduction
+ Aesthetics increase
− Complex shapes are difficult + Capable of producing complex shapes

to manufacture that are easily demolded
− Complex shapes are expensive + Low-tech procedure that has the

to manufacture potential to be inexpensive
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6
Topology-optimized floor slab design

In this chapter, topology optimization is combined with vacuumatic formwork and
applied to the challenge of designing a concrete floor slab. The input values for the
algorithm are given, so the problem can easily be recreated by anyone who wishes
to do so. The changes that have been made compared to the standard topology
optimization algorithm from Chapter 4 are described from Section 6.1 to Section 6.4.
Afterward, the final topology-optimized design is displayed in Section 6.5. It is
developed with all the manufacturability constraints and can be produced with a
vacuumatic formwork. After the final design has been obtained, Chapter 7 researches
whether the advantages of the topology-optimized floor, predicted in Chapter 1, were
correctly assumed.

6.1 ADDITIONAL INPUT BY THE USER

The input of the algorithm consists of all the factors that may affect the end result.
In order to arrive at a better floor slab design, several additional input variables
have been added to the standard algorithm. They are used to activate the manu-
facturability and functionality constraints and to define extra material properties.
Table 6.1 elaborates on the definitions of the additional input variables.

Table 6.1: Input variables

Input variable Description

Etmax Maximum Young’s modulus, applied in a fully solid ele-
ment that is under tension.

ft Elemental force at which an element is considered to be
cracked concrete.
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Table 6.1: Input variables

Input variable Description

Emin Minimum Young’s modulus, applied in an ’empty’ element.
The value is required to be greater than zero to prevent
singular matrices. For the modeling of concrete, it is
advised to apply a value of 100.

specweight Specific weight of the considered material.
activetop Implementation of a mandatory top layer when set to 1

activetopextra Implementation of a second mandatory top layer when
set to 1

selfweight Implementation of self-weight loading when set to 1

castingconstraint Implementation of the casting constraint when set to 1

6.2 SELF-WEIGHT

6.2.1 Input value
In addition to the live load from Section 4.9.2, self-weight is also modeled, since
it forms a significant part of the total floor slab loading. The self-weight can be
activated by setting the option selfweight to 1. A concrete specific weight of
24.0 kN/m3 is assumed as displayed on the next line and in Table 6.2.

specweight = -24.*(7.*2.5*0.375)/(nelx*nely*nelz)

6.2.2 Implementation in the algorithm
The self-weight of a single element in the model is directly related to the relative
stiffness of that corresponding unit. As Equation (6.1) implies, this means it differs
slightly from the definition of the elemental stiffness in which a penalization is
applied. Because of the penalty factor in the stiffness function, the solution of
the topology optimization already approaches a black-and-white structure. It is,
therefore, unnecessary to also penalize the self-weight. Additionally, it prevents the
algorithm from not achieving convergence.

Fe;sw = xe · ρ0

Ee = xpe · E0
(6.1)
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(a) Corner nodes

(b) Surface nodes

(c) Inside nodes

Figure 6.1: Self-weight distribution over different node locations of one layer of a
4xnelyx3 design space

In the algorithm, forces are applied on nodes, while the self-weight actually belongs
to an element. This is modeled by averaging the weight of its neighboring elements
to a node. Since the number of neighboring elements differs for corner nodes, surface
nodes, and inside nodes, the definition also differs for each of these types of elements.
Figure 6.1 and Algorithm 5 display how this is accomplished. Corner nodes transfer
the weight of a quarter of its element. Surface nodes average the weight of two
elements, and inside nodes average the weight of four neighboring elements.
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Algorithm 5 Self-weight

procedure def sw(xPhys, specweight, ndof, nelx, nely, nelz)
2: DEFINE empty self weight matrix

for each corner of the design space do
4: DEFINE node IDs

COMPUTE degrees of freedom over the y-axis per node
6: COMPUTE element corresponding to the node

UPDATE the self-weight matrix

8: for each surface on the side of the design space do
DEFINE node IDs

10: COMPUTE degrees of freedom over the y-axis per node
COMPUTE the two elements corresponding to the node

12: UPDATE the self-weight matrix

for each layer of inside nodes in the z-direction do
14: DEFINE node IDs

COMPUTE degrees of freedom over the y-axis per node
16: COMPUTE the four elements corresponding to the node

UPDATE the self-weight matrix

18: RETURN self-weight matrix Fsw

6.2.3 Validation
For the validation of the self-weight, an arch has been researched. For the self-weight
arch, only the self-weight of the structure is applied. The boundary conditions are
the same as for the wheel in Section 4.6. The model is displayed in Figure 6.2 and
optimized with the following input: (24,15,24,0.06,3,1.5). It is clear that result
from literature is the stiffer structure. Differences between the topologies can be
explained by the mesh density and optimization method. At the same time, the
modeling of the self-weight is considered to be accurate enough for next chapter.
While the topologies are not completely the same, the result from the algorithm is
still definitely an arch.

(a) Design space (b) Result from literature (Huang
and Xie, 2010)

(c) Result from the algorithm

Figure 6.2: Self-weight arch comparison
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6.3 CONCRETE PROPERTIES

Reference projects of built topology-optimized designs do not offer a solution for
the choice of concrete strength and type of reinforcement. While regular strength
concrete is often used, there are multiple projects where a higher strength class,
self-compacting, and/or sprayed concrete is applied. In this thesis, it is assumed that
the floor slabs are prefabricated in a factory off-site. Prefab elements usually utilize
a higher strength grade concrete than cast in-situ elements. The higher strength
concrete hardens quicker, which means that they can be demolded earlier and that
more elements can be produced per day. Therefore, the relatively high concrete
strength class C50/60 is considered for the floor slab design in this thesis. It is
advised to use a concrete mixture with self-compacting abilities, in order to prevent
technicalities during casting with the vulnerable vacuumatic formwork. The values
that would normally be used in the analysis of a concrete structure are displayed in
the third column of Table 6.2. The properties as applied in the algorithm for the
floor are displayed in the fourth column.

Table 6.2: Properties for C50/60 as assumed in regular concrete models compared to the
ones in the topology optimization algorithm

Material property Regular Topology Unit
concrete optimization

modeling algorithm

Uncracked Young’s modulus Ecm 37,000.00 37,000.00 MPa
Cracked Young’s modulus Ectm 12,000.00 12,000.00 MPa
Compressive strength fck 50.00 N/A MPa
Tensile strength fctk,0.05 2.90 N/A MPa
Specific weight γc 24.00 24.00 kN/m3

Poisson’s ratio ν 0.20 0.20 –

6.3.1 Implementation in the algorithm
In the previous chapter, it was determined that in topology optimization, the
models generally consist of linear, isotropic elements, with equal compressive and
tensile properties. As displayed in Table 6.2, in reality, concrete performs very
well under compression but fails relatively quick under tension. The addition of
reinforcement bars results in a composite, inhomogeneous material that should be
described differently from the elements traditionally used in topology optimization.
The reinforced concrete acts nonlinear when taking cracking into account and the
addition of reinforcement bars means that it acts anisotropic. Therefore, for this
thesis, the material definition has been changed to model concrete more accurately
than the basic topology optimization algorithm.

In order to allow the algorithm to also take the cracked Young’s modulus into account,
several lines in the algorithm need to be adjusted. First of all, both the cracked
Young’s modulus and the stress at which concrete cracks need to be defined in the
input values.
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Etmax = float(12000000.0)

ft = float(0.0)

Then, in the FEA part of each iteration, the cracked stiffness is also included in the
global stiffness matrix. This involves altering the computation of the entry vector sK
so that it uses Ecmax when an element is under compression and it uses Etmax when
an element is under tension. Determining when an element is under compression or
tension is achieved by applying Equation (4.4), which gives the force in each node. If
the average of the nodal forces in the x-direction in an element is negative, then the
element is considered to be compressed. In Figure 6.3, the blue numbers indicate the
nodal forces that are taken into account (which follow the numbering of the degrees
of freedom), while the black circles indicate the local node numbering (which differ
from the global node numbering). The alteration is simplified in Algorithm 6. The
exact changes in the algorithm can be found in Appendix G.

Algorithm 6 Global stiffness entry vector assembly

procedure Determine sK
2: for every element do

if it is the first iteration then
4: DEFINE forces as zero because they are still unknown

COMPUTE nodal forces corresponding to the element
6: COMPUTE average elemental force

if element is under compression then
8: COMPUTE entry vector with compressive Young’s modulus

if element is under tension then
10: COMPUTE entry vector with tensile Young’s modulus

RETURN global stiffness entry matrix sK

(a) Force numbering (b) Examples

Figure 6.3: Utilized forces (in blue) in determining the stress state of the first element in a
4x1x1 design space
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The objective function c and the sensitivities dc are also calculated with the Young’s
modulus. Therefore, they also require an adjustment. Similar to the new definition of
the global stiffness matrix, Ecmax is applied when an element is under compression and
Etmax when an element is under tension. The alteration is simplified in Algorithm 7.
The exact changes in the algorithm can be found in Appendix G.

Algorithm 7 Objective and sensitivity

procedure Determine c and dc
2: for every element do

COMPUTE nodal forces corresponding to the element
4: COMPUTE average elemental force

if element is under compression then
6: COMPUTE objective with compressive Young’s modulus

COMPUTE sensitivity with compressive Young’s modulus

8: if element is under tension then
COMPUTE objective with tensile Young’s modulus

10: COMPUTE sensitivity with tensile Young’s modulus

RETURN objective c

12: RETURN sensitivity dc

6.3.2 Validation
Validation of the method of modeling the cracked stiffness of concrete in the tension
zone has been performed by two simple structural examples. The first is a com-
pression/tension beam, displayed in Figure 6.4, and the second is the MBB beam,
displayed in Figure 6.5. The displacements from the model have been compared
to the ones that are expected according to structural mechanics in Table 6.3 and
Table 6.4.

For a compression/tension beam with length L, cross section area A and Young’s
modulus E that is loaded with four forces F in the corners, the expected horizontal
displacement of the end of the beam can be defined as: 4F/EA · L. Assuming that
L = 4 m, A = 1 m2, Ec = 1 MPa, Et = 0.3 MPa, and F = 1000 N, then the
horizontal displacement is equal to −16 mm for the compression beam and 53 mm for
the tension beam, in theory. For the algorithm, the problem as displayed in Figure 6.4
is used as input, in which the allowed volume fraction is 50%, the penalty is 3.0, the
minimum thickness is 1.0 element. When using kilo Newtons and meters as the units,
then the load, compressive and tensile Young’s modulus are 1 kN, 1000 kN/m2 and
300 kN/m2, respectively. The model converges in 5 iterations and the result is as
displayed in Figure 6.4b and Table 6.3. It can be concluded that the displacements
are correct and that the appropriate Young’s modulus is applied in the matching
situation.
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(a) Problem (b) Solution

Figure 6.4: Compression beam model for the validation of the cracked stiffness

Table 6.3: Horizontal displacement of the end of the compression/tension beam

Algorithm (mm) Theory (mm) Accuracy (%)

Compression -15.86 -16.00 99.1
Tension 52.91 53.33 99.2

The MBB beam has been used to validate the stresses that occur in a beam when
subjected to a point load at the center top. For the design space, displayed in
Figure 6.5, it is expected that the upper row of elements is under compression, while
the lower row is under tension. When taking the reduced stiffness of cracked concrete
into account, the lower row should have a Young’s modulus of roughly one-third of
its maximum elastic modulus. Multiple combinations of mesh densities and stiffness
ratio’s have been checked in Table 6.4.

For a beam with length L, Young’s modulus E, and second moment of area I, that
is loaded with a single force F , the expected vertical displacement at 0 .5L is given
by 1

48
FL3

EI . Assuming that L = 8 m, Ec = 1.0 N/mm2, Et = 0.3 N/mm2, width
b = 1 m, height h = 2 m, and F = 1000 N, then the following values are returned.
The maximum deflection is −16 mm for a beam with only the compressive Young’s
modulus, −53 mm for a beam with only the compressive Young’s modulus, and
−31 mm for a beam with both the compressive and tensile Young’s modulus.

For the algorithm, the problem as displayed in Figure 6.5 is used as input, in which
the allowed volume fraction is 99%, the penalty is 1.0, the minimum thickness is
1.0 element. When using kilo Newtons and meters as the units, then the load,
compressive and tensile Young’s modulus are 1 kN, 1000 kN/m2 and 300 kN/m2,
respectively. The model converges in 2 iterations and results in the deflections as
displayed in Table 6.4. It can be concluded that the maximum vertical displacements
are not completely accurate. They are in the same order of magnitude, however,
so they are considered precise enough for the analysis of the concrete floor slab.
Additionally, the error has no significance when comparing different floor slab designs
that have been found with the same topology optimization algorithm.
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Figure 6.5: MBB beam model for the validation of the cracked stiffness

Table 6.4: Maximum vertical displacement of the MBB beam

Mesh density Algorithm (mm) Theory (mm) Accuracy (%)

Ecmax=1000, Etmax=1000 8× 2× 1 -19.26 -16.00 120
16× 4× 2 -18.83 118
32× 8× 4 -20.07 125

Ecmax=1000, Etmax=300 8× 2× 1 -39.98 -31.46 127
16× 4× 2 -39.04 124
32× 8× 4 -39.23 125

Ecmax=300, Etmax=300 8× 2× 1 -64.20 -53.33 120
16× 4× 2 -62.78 118
32× 8× 4 -66.89 125

It is important to note, that due to the method that determines whether an element
is considered under tension or not, this method of modeling concrete only works
for cracking due to forces in the x-direction. That is acceptable for the floor slab
that is modeled in this thesis which spans in the same direction, but for many
other problems this definition is not valid. Cracking due to shear force is also not
considered. Furthermore, the loops that are used to model the cracked concrete
slow the optimization process down considerably. As a result, the standard topology
optimization algorithm has a speed advantage for regular topology optimization
problems.

6.4 ADDITIONAL CONSTRAINTS

In order to arrive at a more manufacturable result, several constraints have been
added to the algorithm. They listed in this section. The constraints that are derived
from manufacturability with a vacuum stabilized sand mold are based on the findings
in Appendix B. The flat top surface constraint follows from functional requirements in
the utilization stage. Figure 6.6 visualizes how these additional constraints influence
the result.
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(a) Topology opti-
mization result

(b) Inclusion of
minimum thickness

(c) Inclusion of flat
top

(d) Inclusion of
casting constraint

Figure 6.6: Visualizations of the functioning of the additional constraints for a
hypothetical cross-section

6.4.1 Maximum curvature surface
The maximum curvature of the surface seemed to be a manufacturing constraint
during the test casts at the ISOFF-IASS 2015 symposium from Section 5.3. It occurs
when either the film that is placed over the pattern is not elastic enough or when the
applied partial vacuum pressure is not sufficient. This then results in a mold that
does not accurately follow the pattern. However, from the metal casting industry,
it is known that in practice there are films that are able to follow complex shapes.
For this thesis, it is therefore assumed that the maximum curvature of the surface
constraint is not of importance to the optimization model.

6.4.2 Casting constraint and void removal
The casting constraint places limits on how material is distributed in the design space.
During construction, it makes sense for a floor to have the vacuumatic formwork
on the bottom and to pour the concrete from the top. This results in the casting
constraint, visualized in Figure 6.8. While the vacuumatic formwork does allow for
holes in the structure when two separating formwork parts are utilized, as displayed
in Figure 6.7a and Figure 6.7b with a polystyrene mold, for the floor design in this
thesis, it is assumed only a one-sided formwork is allowed, similar to the method
applied in the ISOFF-IASS 2015 symposium. When looking at Figure 6.7c, the
displayed undercut can be manufactured with vacuumatics. However, this involves
pushing the film back by hand, which in practice is not desired in the production
process since it is needlessly complex. The casting constraint can be activated by
setting the option castingconstraint to 1. With the option enabled, the final
design is able to be cast with a one-sided mold.

(a) Separating formwork halves
(Van Velden, 2015)

(b) Result by Movares
from the halves

(c) Undesired undercut

Figure 6.7: Relevance casting constraint
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Implementation in the algorithm
In the algorithm, the casting constraint is activated with the use of the definition
called cc, detailed in Figure 6.8b and Algorithm 8. In this definition, an element
has its density updated whenever there is an element below it with a larger density:

xi ≥ xi+1 ≥ xi+2 ≥ ... ≥ xn (6.2)

The casting constraint is called during the Optimality Criterion of Section 4.5.2,
which means that the density of the elements is updated during each iteration, rather
than at the end of an iteration. Because of the penalty factor, the final result can
still be interpreted as a black-and-white solution.

(a) Problem and solution, show-
ing one void and two undercuts

(b) Examples of the applied
logic

Figure 6.8: Casting constraint

Algorithm 8 Casting constraint

procedure def cc(xnew, nelx, nely, nelz)
2: for each column in the design space do

for each element in the column, starting from the bottom do
4: if current element density is greater than above element density then

UPDATE above element density to match current element density

6: RETURN updated density array xnew

Validation
There are no examples available from literature to check whether the casting constraint
has been correctly implemented. However, when considering Cantilever beam A from
Figure 4.12, a prediction can be made for the result when the casting constraint
is activated. By simplifying the problem to a one-dimensional beam, the bending
moment can be found. Figure 6.9 displays a prediction of the solution and the one
found by the algorithm. For a volume fraction of 30%, the algorithm needs 171
iterations to reach the optimum. It can be concluded that the casting constraint
functions as required.
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(a) One dimen-
sional simplifica-
tion

(b) Size opti-
mization

(c) Predicted
topology op-
timization
with casting
constraint

(d) Found solution with the
algorithm

Figure 6.9: Validation casting constraint

6.4.3 Minimum thickness
Having a minimum thickness of the concrete is essential because the result of a
topology optimization can have very thin members. These thin members may
perform very well in creating a stiff structure, which the algorithm optimizes for,
but they can also be prone to breakage in practice. A minimum thickness constraint
prevents this problem. In the Python algorithm, the rmin variable represents the
minimal member radius. Assuming that the concrete cover for the reinforcement is
30 mm, the reinforcement itself consists of bars of 20 mm and some room for internal
spacing, then the minimum thickness can be presumed to be roughly 170 mm, which
corresponds to rmin = 2.5 elements in the design space.

6.4.4 Flat top surface
A floor without a flat top surface would not fulfill its function very well. As a
consequence, the top of the design space needs to be flat. This can be accomplished
by prohibiting the top layer(s) of elements from taking an ’empty’ value. These are
then called ’active elements’. That way, they are always present in the final design.
The flat top surface can be triggered by setting activetop and activetopextra to
1. In each iteration, it then returns the topmost elements, defined as activeele, to
their ’full’ state in the physical identities xPhys.

6.5 TOPOLOGY-OPTIMIZED CONCRETE FLOOR SLAB DESIGN

In this section, several topology-optimized floors are displayed. In theory, the most
optimal design is the one without any constraints in Section 4.9, but for manufacturing
a concrete floor, it is far from practical. Step by step, the aforementioned features are
included, which makes the designs less theoretically optimal, but more functional and
suitable for manufacturing. The topology optimization process has been repeated for
each additional feature, continuing from the previous optimum, so that the final result
is close to the global optimum. Otherwise, the optima that would be found would
be almost guaranteed to be local and far removed from the global minima.
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The final floor slab design is demonstrated in Section 6.5.4. It is able to be produced
with a vacuumatic formwork and has advantages in weight reduction, sustainabil-
ity, and aesthetics over traditional floors systems. These claims are verified in
Chapter 7.

6.5.1 Concrete topology optimization
The problem for a concrete floor is similar to the basic topology optimization of
Section 4.9 without any manufacturability constraints. The difference can be found
in the way the material is modeled. Compared to the previous design, several factors
have been changed. The Poisson’s ratio is adjusted from 0.3 to 0.2, the self-weight
of the floor is included in the load, and the reduced Young’s modulus for elements
under tension is also activated. In theory, this results in the most optimal concrete
structure according to the objective function. Since the self-weight changes the load
conditions and the reduced stiffness changes the global stiffness matrix and objective
in each iteration, compared to the design in Section 4.9, the optimization takes much
more iterations to converge and might show erratic behavior.

The optimization process with the objective and maximum deflection is displayed
in Figure 6.10c. Each rise indicates another change to the topology optimization
process being activated. It can be seen that each addition to design process of the
floor results in a less optimal design compared to the theoretical optimum.

The concrete floor slab design in Figure 6.10 has a maximum deflection of 12.4 mm
and an objective of 0.0720 kN m. The design shows similarities with the basic topology
optimization. The topology itself does not differ very much because the influence of
the Poisson’s ratio is not very big, the self-weight for a thin plate is very similar to
an equally distributed load that is already present, and because even though tensile
elements have a lower Young’s modulus, they cannot be avoided. The maximum
deflection is more realistic, however. The design still shows the same manufacturing
complications as before.

Table 6.5: Input variables concrete topology optimization

Input variable Value

nelx 112
nely 4
nelz 40
volfrac 0.575
penal 3.0
rmin 0.5
activetop off
selfweight on
castingconstraint off
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(a) Perspective projection (b) Parallel projection

(c) Optimization diagram

Figure 6.10: Optimal design according to concrete topology optimization

6.5.2 Inclusion of a minimum thickness
The design in Figure 6.10 shows several very thin members. These can be removed
or made thicker with the inclusion of a minimum member radius. As determined
in Section 6.4, the minimum radius is set to 170 mm. The floor slab in Figure 6.11
demonstrates how the minimum thickness influences the design. The very thin
members are removed and instead the material tends to stick together, creating two
beams on the sides. They are still connected in the center so that they work together
and a gap is also still visible at midspan. At the same time, the required number of
iterations increases considerably, partly due to the oscillating effect of the reduced
Young’s modulus for tensile elements.

Table 6.6: Input variables concrete topology optimization with a minimum thickness

Input variable Value

nelx 112
nely 4
nelz 40
volfrac 0.575
penal 3.0
rmin 2.5
activetop off
selfweight on
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6.5. Topology-optimized concrete floor slab design

Table 6.6: Input variables concrete topology optimization with a minimum thickness

Input variable Value

castingconstraint off

(a) Perspective projection (b) Parallel projection

(c) Optimization diagram

Figure 6.11: Optimal design according to concrete topology optimization with a minimum
thickness

6.5.3 Inclusion of a flat top
The previous floor slab designs show two big gaps in its surface. This can be resolved
with the inclusion of the flat top. For this particular mesh density, the upper two
elemental layers are active, rather than only the first layer. Now that elements
are required to be present in the top layers, that means that less material has
the freedom to be placed in an effective location. The top consists of 50% of the
volume fraction, leaving only 7.5% to be distributed over the rest of the design
space for stiffening. Compared to the previous section, this difference is immediately
noticeable in Figure 6.12. While this particular outcome already seems suitable for
manufacturing, the result can contain undercuts for taller design spaces or for denser
meshes, as displayed in Figure 6.13.
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Table 6.7: Input variables concrete topology optimization with a minimum thickness and a
flat top

Input variable Value

nelx 112
nely 4
nelz 40
volfrac 0.575
penal 3.0
rmin 2.5
activetop on
selfweight on
castingconstraint off

(a) Perspective projection (b) Parallel projection

(c) Optimization diagram

Figure 6.12: Optimal design according to concrete topology optimization with a minimum
thickness and a flat top
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(a) Perspective projection

(b) Side view z-direction (c) Side view x-
direction

Figure 6.13: Possible outcome with undercuts and gaps for taller design space or denser
mesh

6.5.4 Inclusion of the casting constraint and final result
The undesirable undercuts of the previous section can be removed with the use of
the casting constraint. The result of the topology optimization with the input from
Table 6.8 is displayed in Figure 6.14, for the following variables. The design has a
maximum deflection of 22.7 mm and an objective of 0.0884 kN m.

Table 6.8: Input variables concrete topology optimization with a minimum thickness, a flat
top, and a casting constraint

Input variable Value

nelx 112
nely 4
nelz 40
volfrac 0.575
penal 3.0
rmin 2.5
activetop on
selfweight on
castingconstraint on

In iteration 237, the casting constraint is added. It is interesting to note that this
change in material distribution results in only a small increase, while at the same
time making it much more suitable for manufacturing.

In iteration 271, the self-weight causes a jump in the objective function. Only 27
iterations are required to converge again. This is caused by the self-weight for a thin
plate having a very similar distribution to the equally distributed load. Therefore,
the design does not need to adapt very much.
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(a) Perspective projection

(b) Parallel projection

(c) Optimization diagram

Figure 6.14: Optimal floor slab design according to concrete topology optimization with a
minimum thickness, a flat top, and a casting constraint
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The last round in the optimization process starts in iteration 298 and includes
the reduced Young’s modulus for tensile elements. The design is already almost
converged due to the previous stages and as such, the objective function only reduces
0.000 016 kN m until the last iteration.

In Chapter 3, several predictions for a ribbed floor slab system were made with the
help of isostatics. While the process behind it differs from the topology optimization
process, the result of that analysis can be used to compare the topology-optimized
floor of this chapter. In summary, the main ribs were expected to flow between the
supports, the secondary ribs were expected to be perpendicular to the main ones,
and the main ribs were expected on the sides of the slab where the bending moment
is the highest at midspan. The final floor design follows a very similar design with
regard to these anticipations. It should be noted, however, that the reason that
ribs are formed in the first place, is mostly because of the casting constraint. This
forces the algorithm to find a solution similar to the floor slab system with isostatic
ribs.

Differences with the floor designs by Nervi are also visible. First of all, he seems to
have assumed that all the ribs have an equal height and width, while the topology
optimization algorithm allows for variation therein. As anticipated, the algorithm
then makes use of this freedom. A second difference is the absence of ribs in the
minimum principal moment trajectories. Assuming they are present in Nervi’s design
because of stability reasons such as buckling, it makes sense they are not featured in
the topology-optimized floor slab. The algorithm does not consider this failure mode
and, even if it did, the bottom side of the floor is not under compression for this
statically determinate design space, anyway.

For this particular design, two ribs are formed. The theory of isostatics does not
disclose how many there are expected to be. The topology optimization algorithm
can help in that regard. While the number cannot be given explicitly, more ribs
are anticipated by changing the following input parameters. When the design space
becomes wider, the relatively thin upper slab requires more ribs to retain its overall
stiffness. A smaller minimum member radius allows for more but thinner ribs while
still complying with the set volume fraction. A higher volume fraction means that
more material is allowed to fill the design space, so more volume means that either
the existing ribs become larger, or that more ribs are formed. Which option of the
two occurs, depends on the other input variables. Lastly, the thickness of the slab
can be considered a variable that influences the number of ribs. A very thin slab will
deform more than thicker slab. The resulting greater deformation will be corrected
by the formation of more ribs.
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Discussion

7.1 VERIFICATION OF THE HYPOTHESIS

In Chapter 1, several potential advantages of a topology-optimized floor slab were
mentioned in the hypothesis. In this section, it is checked whether they were correct.
The check is performed by comparing the topology-optimized floor to traditional
floor slab systems. The floor that was designed in the previous chapter is assumed to
be unprestressed and prefabricated. From the floor slabs discussed in Appendix A,
the composite plank floor is the most similar system. Both the topology-optimized
floor slab and the traditional, monolithic floor slab are displayed in Figure 7.1.
The suggested advantages over a composite plank floor can be summarized as
follows:

• Reduced weight;
• Reduced costs;
• Increased sustainability;
• Increased architectural value.

(a) Traditional, monolothic (b) Topology-optimized

Figure 7.1: The two floor slabs that have been compared
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7.1.1 Weight
The Eurocode prescribes a maximum deflection of 0.004L in the Serviceability Limit
State. For the given design space, that means that the deflection of the floor under
the design load is allowed to be anything up to 28 mm. The composite plank floor is
modeled in the topology optimization algorithm the same way the topology-optimized
slab is modeled. The only difference is in the height and volume fraction quantities.
The volfrac is set to 0.9999 so the solution is to fill the entire space, while the floor
thickness nely (or d1 in Figure 7.2) can be considered the variable, that needs to
match the maximum allowed deflection wmax.

Figure 7.2: Comparing the weight of two hypothetical structures

By applying this methodology to a composite plank floor, we arrive at a floor slab
with a maximum deflection of 27 mm for a space that is 3 elements or d1 = 187.5 mm
high and has a volume fraction of 99.99%. The topology-optimized floor slab reaches
a maximum deflection of 23 mm for a space that is d2 = 250 mm high and has a
volume fraction of 57.5%. These values are summarized in Table 7.1 .

The two floors can be compared fairly, now. The traditional floor slab has a total
concrete volume of 0.999 · (7.0 · 2.5 · 0.1875) = 3.28 m3, while the topology-optimized
floor has a total volume of 0.575 · (7.0 · 2.5 · 0.250) = 2.51 m3. It can be concluded
that the topology-optimized floor slab is roughly 24% lighter than the traditional
floor slab.

Table 7.1: Comparing the weight of a traditional floor slab and the topology-optimized floor
slab

Traditional Topology- Unit
optimized

Allowed deflection 28.0 28.0 mm
Measured deflection 27.0 22.7 mm
Height 187.5 250.0 mm
Span 7000.0 7000.0 mm
Width 2500.0 2500.0 mm
Optimization constraint 100.0 57.5 %
Volume 3.3 2.5 m3

7.1.2 Costs
This section does not aim to give a quantitative price tag but instead, focuses on
the aspects that can influence it because the vacuumatic formwork still mostly
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remains in uncharted territory. The direct costs of reinforced concrete can be
simplified as the sum of the concrete costs, the reinforcement costs, and the formwork
costs (Appendix C). The concrete costs consist of three parts: material, labor, and
transportation. In the previous section, it was found that the topology-optimized
floor slab requires less concrete than a traditional slab so the material costs will be
lower. Assuming that the distance between the factory and the building site are the
same and that pouring the concrete requires the same amount of effort, then the
topology-optimized floor slab offers an overall advantage in the concrete costs.

The reinforcement costs consist of material and labor costs. The topology-optimized
floor slab, on average, might require more reinforcement steel. This means a higher
material expense when compared to a traditional slab. The shape is also more
complex, which results in more labor for bending and binding of the reinforcement.
In the future, this difference might vanish, when workers get more familiar with
the production method, or when robots take over reinforcement placement. Quist
(2015) reports that one concrete factory in The Netherlands already operates with
robots only. The complexity of the formwork will play a much smaller role when
more factories are going to adopt this production method.

The formwork costs are composed of labor costs and the form efficiency. At the
moment, the labor costs for the production of the formwork itself will be in favor
of the traditional floor slab. The production of the vacuumatic formwork system
requires a lot of work, especially when the method is still unknown to the workers.
This was confirmed during the IASS-ISOFF 2015 workshop in Section 5.3. Similar
to the reinforcement labor, however, when the production method becomes more
familiar, the amount of labor reduces. Demoldability for the vacuumatic formwork is
also easier and requires less labor. Lastly, the formwork efficiency plays a significant
role in the costs. A vacuumatic formwork can be used over and over, whereas a
timber or steel formwork has a limited number of repetitions.

Compared to traditional floor slabs, it is reasonable to assume that the topology-
optimized floor slab is more expensive since the floor slab industry is greatly optimized
for costs. However, in the near future, this difference might become smaller or it might
even invert completely with the automation of the industry. Table 7.2 summarizes
this section and displays how a vacuumatic formwork compares to a traditional
timber or steel formwork, now and in the near future.

Table 7.2: Comparing reinforced concrete costs for a topology-optimized slab produced with
vacuumatics and a traditional slab with timber/steel formwork

Cost component Presently Prospective

Concrete Material + +
Transportation 0 0
Labor 0 0

Reinforcement Material − −
Labor − 0

Formwork Labor − 0
Form efficiency ++ ++
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7.1.3 Sustainability
The damage a product does to the environment can be expressed in the amount of
carbon dioxide it produces in its creation and transport to the building site. There are
several tools available to calculate the environmental impact of a reinforced concrete
component. In this thesis, a calculator developed by Dijkhuis (2015) from ABT bv
is utilized. Aspects such as sound insulation/reflection, waste, and reusability and
adaptability of the vacuumatic formwork are not examined.

To calculate the carbon emission of a floor slab, the amount of concrete and reinforce-
ment need to be determined. In Section 7.1.1, the volume of the floors was established
to be 3.28 m3 for a traditional floor and 2.51 m3 for the topology optimized floor. An
environmental class of XC1 is assumed according to Table 4.1 of NEN-EN 1992-1-1.
A distance of 30 km is adopted for the transportation. The concrete mixture has a
strength of roughly C50/60 for both floor slabs. The amount of reinforcement for
the traditional slab is assumed to be 100 kg/m3. An extra 20% of reinforcement is
adopted for the topology-optimized floor slab.

The calculator sheet is included in Appendix D, which demonstrates the input and
output of the comparison. It can be seen that the traditional slab produces1150 kg
and the topology-optimized slab produces 950 kg of CO2 per manufactured unit.
The total reduction in emission per produced floor slab is equal to 17%. This is
the equivalent of driving a car 1300 km or the CO2 absorption of one hectare of
trees over seven days. In conclusion, the topology-optimized floor slab design is
more sustainable than its traditional counterpart. When taking the reusability and
adaptability advantages of a vacuumatic formwork into account, this improvement
will be even greater than 17%.

7.1.4 Aesthetics
The aesthetics of the topology-optimized floor slab cannot be measured quantitatively.
It is therefore left up to the reader to conclude for him or herself whether the design
as displayed in Figure 6.14 has more architectural value than a traditional floor
slab.

7.2 LIMITATIONS, ADVANTAGES, AND DISADVANTAGES

7.2.1 Limitations
• Placing, bending, and binding reinforcement in the vacuumatic sand mold of the

topology-optimized floor slab can be complicated, because of the complex shape
and because of the fragility of the film containing the sand. The trend of the
automation of the industry can be considered an opportunity, however. In the
future, robots might be able to cut, bend, and binding the reinforcement for a
competitive price. If the risk of damaging the film or formwork is still too great,
then it would be possible to pour a thin layer of concrete, wait until it is hardened,
then place the reinforcement, and finally pour the rest of the concrete layer. This
would be in principle similar to the technique Nervi applied in his floors.
• If regular reinforcement bars prove to be too complicated to apply with the

methods mentioned above, then fiber-reinforced concrete would not be able to offer
a safe solution, at the moment. Research by Hermans (2011) shows ambivalent
opportunities for the topology-optimized floor slab. Conclusions in favor of the
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application are that the test-loaded floors failed at a distributed load more than
twice as big as the design load, with big deflections and a well distributed cracking
pattern. On the other hand, fibers are the most effective for big cross-sections
and statically undetermined spans in order to make use of stress redistribution.
The proposed floor slab design has neither. Additionally, there are no regulations
available yet and the test results are scattered. This uncertainty makes it rather
risky to only apply fibers as reinforcement to a slender topology-optimized floor
slab.

7.2.2 Advantages of the topology-optimized floor slab
• It is roughly 24% lighter than a traditional, monolithic floor slab.
• It at least 17% more sustainable than a traditional, monolithic alternative.
• It has more architectural value than a traditional, monolithic alternative.
• Due to its low-tech nature and reusability, the costs of vacuumatic formwork are

probably lower than other manufacturing methods for complex topologies such as
CNC-milled polystyrene.
• The costs of a topology-optimized floor slab produced with vacuumatic formwork

have the potential to be lower in the near future than that of a traditional,
monolithic floor slab produced with timber formwork.

7.2.3 Disadvantages of the topology-optimized floor slab
• The reduction in weight also brings a reduction in sound insulation.
• Currently, the costs are probably still higher than that of a traditional floor slab.
• The higher structural efficiency of the present material can result in a lower fire

resistance.

7.3 PROPOSED APPLICATIONS

7.3.1 Topology optimization algorithm
The topology optimization algorithm is open-source in the sense that it is open to
anyone to use for free, but also, it is one hundred percent transparent. As the name
already implies, the topology optimization algorithm is purely an algorithm to help
design structures. The results should therefore not be seen as a final structural
design. The algorithm may offer a solution to researchers or engineers that want to
have an indication of a three-dimensional topology-optimized structure.

7.3.2 Topology-optimized floor slab
Regarding the topology-optimized floor slab, it is advised to consider the design
when:

• The client is willing to pay extra for a floor that has more architectural value than
traditional floor slab systems;
• The client is willing to pay extra for a floor that is more sustainable than the

traditional alternatives;
• The rest of the structure benefits a lot from smaller detailing that can be achieved

thanks to the reduction in weight from the floor slabs;
• The decreased sound insulation from the mass reduction can be overcome by

insulation of the walls and/or the top side of the floors;
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• The fire safety can be still guaranteed by, e.g., applying a sufficiently thick
concrete/insulation cover (passive fire protection) and/or using a sprinkler system
and fire alarms (active measures);
• A building has many different floor contours or supports and thus different design

spaces, that maximize the advantages in adaptability of the vacuumatic formwork.

7.4 POTENTIAL OF THE METHOD

While the design from Section 6.5.4 performs very well compared to a traditional,
monolithic floor slab, visually, it is not very different from a TT-slab. This section
demonstrates the potential of the topology optimization methodology described in
this thesis, by providing several examples that highlight its capabilities for different
design problems.

7.4.1 Column-supported floor
By supporting the floor slab with four columns, rather than two beams, the opti-
mization gives a more interesting result because the load is not transferred to the
supports in straight, parallel lines, anymore. There are several examples that offer
different solutions to roughly the same problem that is posed, here. Both the Gatti
wool factory (Section 3.3.1) and the Palazzo del Lavoro (Section 3.3.2) show the
solution according to isostatics. Key differences between isostatics and topology
optimization are reported in Section 6.5.4.

Figure 7.3 displays how the design space is set up. The columns are modeled with
rolling, hinged supports. The gray arrows show in which direction displacements are
restricted. The floor is loaded by a distributed load and self-weight. The cracked
Young’s modulus is not introduced since previous optimizations show that it does
not affect the found topology. With the input values from Table 7.3, the results in
Figure 7.5a and Figure 7.6a are found. This design also inspired the front cover of
this thesis.

(a) Context (b) Model

Figure 7.3: Design space of the floor with four column supports

Table 7.3: Input variables for the column-supported floor

Input variable Value

nelx 80
nely 3
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Table 7.3: Input variables for the column-supported floor

Input variable Value

nelz 80
volfrac 0.57
penal 3.0
rmin 1.5
activetop on
selfweight on
castingconstraint on

7.4.2 Toadstool
In this thesis, the design space that consists of a slab supported by one column in
the center is called the toadstool. Similar to the column-supported floor slab, the
load is not transferred to the support in straight, parallel lines, anymore. Figure 7.4
provides the context for this optimization problem. The four neighboring nodes that
constitute the boundary condition from the head of the column have their degrees
of freedom restricted in all three directions. The folly at sanatorium Zonnestraal
by ABT bv & Hurks (2005) in Appendix B provides a similar but fundamentally
different design. Bak (2011) has researched the same design space for a structure
that is suitable for manufacturing with fabric formwork. With the input values from
Table 7.4, the results in Figure 7.5b and Figure 7.6b are found.

(a) Context (b) Model

Figure 7.4: Design space of the toadstool

Table 7.4: Input variables for the column-supported floor

Input variable Value

nelx 55
nely 8
nelz 55
volfrac 0.225
penal 3.0
rmin 1.5
activetop on
selfweight on
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Table 7.4: Input variables for the column-supported floor

Input variable Value

castingconstraint on

(a) Column-supported floor

(b) Toadstool

Figure 7.5: Results from the topology optimizations
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(a) Column-supported floor

(b) Toadstool

Figure 7.6: Interpretations of the topology optimizations
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8
Conclusions

8.1 ANSWER TO THE RESEARCH QUESTION

In Chapter 1, the research question was stated as follows:

How can the topology of a concrete floor slab be optimized when taking manufac-
turability constraints from a vacuumatic formwork into account, and how would it
compare to a traditional, monolithic floor slab in terms of weight, costs, sustainability,
and appearance?

The research question can now be answered. For the first part of the question, it
was found that the traditional, fictive topology optimization material model does
not translate too well to a reinforced concrete material model. In order to arrive at
a material that more closely resembles concrete, several changes have been made
to the topology optimization process. The Poisson’s ratio, the Young’s modulus
for compressed elements, and the Young’s modulus for cracked concrete have been
altered or added. With regard to manufacturability, the production method of a
vacuum stabilized sand mold brings constraints in the maximum curvature, the
minimum concrete thickness, and the size of the formwork. The maximum curvature
is not introduced in the design process because it is assumed the film is elastic
enough to completely follow the pattern shape. A minimum concrete thickness is
applied. Additionally, the size of the formwork is restricted to 2.5 m by 7.0 m. This
size also allows the prefabricated floor panels to be transported to the building site
by truck. It is assumed that only a one-sided mold is allowed, therefore voids are
not possible and a casting constraint has also been applied. Lastly, the floor slab
needs to have a flat top surface to allow people to walk on it. By constraining the
solution space of the topology optimization, the iterative design process is influenced
by both manufacturability and functionality.

107



Chapter 8. Conclusions

This methodology has been applied to arrive at a preliminary design for a topology-
optimized floor slab, answering the second part of the research question. It can be
concluded that the research objective has been accomplished, because this design,
which was made with the developed topology optimization algorithm in Python,
consists of a floor slab system that can be produced with a vacuumatic formwork
system. The advantages of the design compared to a traditional, monolithic slab
include a weight reduction of 24%, the potential for a cost decrease, a CO2 emission
reduction of at least 17%, and increased architectural value.

8.2 GENERAL CONCLUSIONS

• By combining topology optimization with vacuumatics, the strengths of topology
optimization are enhanced, while its weaknesses are scaled down. The costs of the
very complex structures that follow from traditional topology optimization can
be reduced by utilizing a vacuumatic formwork. Both vacuumatics and topology
optimization can also be applied to other structural components such as walls,
columns, or beams.
• In terms of being practical, topology optimization is already a step up from the

highly theoretical Michell structures. Despite still not being completely functional
for reinforced concrete structures, it is considered a valuable tool in designing
structures with an efficient material distribution. For now, it is concluded that the
bottleneck in the process is not caused by the manufacturing method, but by the
engineering, which is the opposite of what usually occurs in the building industry.
• Nervi’s ribbed floor slabs with isostatic ribs were and still are an effective method

for designing floors with a reduced material usage. The similarities between the
topology-optimized floor slab and his ribbed floor slab system are a testament to
that.
• It is possible to arrive at an optimal design by applying additional manufacturability

and functional constraints to the topology optimization process. However, with
each additional feature, the optimum becomes harder to find. The process then
requires more iterations, especially when the constraints are applied in a series
rather than all at once. Additionally, the objective function shows erratic behavior
for the features that change the conditions each iteration, such as the self-weight
and concrete modeling.
• The addition of a reduced Young’s modulus for tensile elements does not result

in a significantly different topology but does give a more realistic deflection for
each iteration. It is concluded that for concrete structures the quicker, standard
topology optimization algorithm is sufficient, provided that the exact deformations
are not of importance.
• In practice, topology optimizations of concrete floor slabs will have the most

added value when applied to very complex problems. The final floor slab from
Section 6.5.4 and both examples from Section 7.4, are not puzzling enough that
they cannot be predicted by structural engineers. The design space of the former
zoology lecture hall at Freiburg University from Section 3.3.4, on the other hand,
poses a more challenging problem where topology optimization has significant
advantages over traditional design methods.
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9
Recommendations

9.1 TOPOLOGY OPTIMIZATION ALGORITHM

• In the Finite Element Analysis part of each iteration, the function KU = F is
solved for U . At the moment, the global stiffness matrix K is sparse, which is
already a step up from the slower, dense alternative. The function is solved in
a direct manner with spsolve, which is considered very quick for small design
spaces, and quick enough for larger ones. However, for even larger design spaces,
or for denser meshes, the algorithm crashes when solving the function. Adding
the following options to the algorithm might speed up the optimization process
and also not crash the algorithm when a denser mesh is applied.
· In the scikit.umfpack module, the same function spsolve can be found, that

might be quicker than the one from the scipy.sparse.linalg module.
· There are iterative solvers available in the scipy.sparse.linalg module that

approximate the exact solution but might take less time to do so.
· Utilizing the GPU rather than the CPU with, for example, CUDA might be

quicker. However, since the speed is mostly dependent on one line in the
algorithm, parallel computing might not offer a satisfying solution.

• In contrast with many other topology optimization algorithms, the one presented
in this thesis is open-source. This provides opportunities in cloud computing to
speed up the optimization process. This would require the line in which the global
stiffness matrix is inverted to be distributed over multiple computers, however,
which calls for further research.
• At the moment, MayaVi models all the ’full’ elements as cubes, so elements on the

inside of the structure (that are not visible) are also drawn. This can make the
visualization slow for dense meshes. The speed of the visualization of the found
optimum in the displayfigure definition can be improved by only displaying the
outside surfaces or cubes of the result.
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Chapter 9. Recommendations

• The result that follows from the topology optimization algorithm can help with
making a design. It is strictly a tool to come up with designs and the result cannot
be viewed as definitive. There is still a step to be made in post-processing in order
to arrive at a structural design. Among other things, part of this post-processing
would include modeling of reinforcement and smoothing of the display.

9.2 TOPOLOGY OPTIMIZATION AND MANUFACTURABILITY

• The subject of optimization is very broad and as such, there are still many topics not
yet researched. In the area of topology optimization guided by manufacturability,
there are still many possibilities related to the material or production method
that is chosen. For example, the field of additive manufacturing shows a lot of
promise. The manufacturing method allows for placing material only where it
is wanted, which is exactly what topology optimization can provide. Currently,
however, more research is still required for both concrete and steel printing.
• Topology optimization can also be used to optimize steel truss structures. The

focus for manufacturability then moves more towards the reduction of connection
complexity and number of connections, among other things. The so-called growing
ground structure method is a suitable method for truss optimization. It does not
include manufacturability in the design process, however, so progress can be made
there.
• The methodology that is applied in this thesis can also be applied to structures

other than concrete floors. Concrete walls, bridges, columns, etc. are all possibilities
for further research.
• Since costs are an important factor in choosing a structural system or design,

adding a cost function to the optimization process would be a welcome addition.
This would result in a different or an extra optimization objective. For regular
manufacturing methods, there are key figures available to relate a design to
their costs. For a vacuumatic formwork, these do not exist yet. Therefore, this
recommendation for further research consists of two parts: research key figures for
a vacuumatic formwork first, and add a cost objective to the topology optimization
process second.

9.3 TOPOLOGY OPTIMIZATION AND MANUFACTURABILITY OF A CON-
CRETE FLOOR

• For topology-optimized floor designs, the addition of multiple materials for the
modeling of reinforcement would be valuable. The mesh is still too rough to
accurately model an extra material, however. One possible simplification of
reality would be to model the multiple reinforcement bars as one larger equivalent
reinforcement cylinder.
• If larger spans are required, then the inclusion of pre-stress would have its advan-

tages. In the topology optimization algorithm, this could be modeled as two point
loads where the cables are applied (as long as the tendons are laid out in a straight
line). This addition would also cause new challenging manufacturability problems.
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9.3. Topology optimization and manufacturability of a concrete floor

• For floors, more combinations of boundary conditions and design spaces can be
researched. Both topology optimization and the vacuumatic formwork system can
be applied to complex problems, so very specific flooring situations can also be
analyzed should a project call for that.
• Lastly, during the ISOFF-IASS workshop, it was found that the plastic film was

not elastic enough to accurately follow the shape of the pattern. A solution on the
manufacturing side of the problem would be to either heat the film more or to use
a more elastic film type. The solution can also be looked for on the design side of
the problem: the application of a curvature constraint can limit the curvature of
the surface that is allowed to be found.
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A
Traditional concrete floor systems

Concrete flooring systems can be divided into cast in-situ floors and precast floors.
A concrete floor, where the liquid concrete mixture is poured and hardens on
the building site, is called in-situ concrete. Precast floors are manufactured in a
factory and assembled on site. A combination of these methods is where part of
the floor structure is precast to function as a permanent formwork onto which a
concrete topping is poured. Figure A.1 displays these three different types and
some corresponding floor slab systems. In a multi-story building, the concrete floor
slabs can take up 85% of the total structural weight (Georgopoulos and Minson,
2014). Therefore, the choice in flooring system can have major consequences and
reduction of material use offers interesting opportunities for both weight reduction
and sustainability.

Figure A.1: Concrete floor systems divided by manufacturing method

119



Appendix A. Traditional concrete floor systems

A.1 CAST IN-SITU FLOORS

A.1.1 Flat slab
The flat slab (Figure A.2) scores the lowest of all floor systems in terms of material
efficiency since the dead load is rather high. Deflections and punching shear at the
column locations are usually the factors limiting the small span or slab thickness. A
thick, solid slab does have other advantages, however, such as a flexible column grid.
Since it is also easy and quick to build it is very popular. Therefore, when considering
current manufacturing technologies, it could be said that from a manufacturing point
of view this is an optimal structure.

Lightweight table forms allow for large areas to be poured at the same time. Repetitive
use of the forms results in the quickest floor erection, resulting in an average build
speed of 500 m2/week/crane, according to Georgopoulos and Minson (2014).

A.1.2 Beam and slab
This type of floor construction consists of a slab, which is positioned on top of beams
(Figure A.2). This addition to the flat slab system allows for medium spans, an
irregular grid, and/or bigger loads. Construction time is longer, however, as it takes
more effort to make the formwork and fix the reinforcement in the beams.

A.1.3 Waffle slab
The waffle slab (Figure A.2) aims to reduce the material efficiency of the flat slab
by removing concrete in the areas where it is used less. The result is a lighter and
stiffer slab, but with a greater thickness. This means that it is able to carry heavier
loads or span longer distances than the flat slab. Disadvantages include a stricter
column grid as a square grid is easier to produce. Near the columns, the waffle shape
changes to a solid slab to resist the shear stress, hogging moment, and punching
shear.

Just like the flat slab, the waffle slab is constructed using table forms, except that
there are additional molds added to the process on top of the forms. The construction
time is longer than the flat slab as a result.

(a) Flat slab (b) Beam and slab (c) Waffle slab

Figure A.2: Cast in-situ floor systems supported by columns
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A.2. Precast floors

A.2 PRECAST FLOORS

As mentioned in the introduction of Appendix A, precast floors are manufactured
in a factory and assembled on site. This brings several advantages. Scaffolding is
not necessary anymore as the elements are already hardened during assembly. The
construction time is shorter. The soffit has a smooth finish, so post-processing is not
absolutely necessary. Longer spans are possible since these elements are of a higher
concrete quality and also have the option of being prestressed. The precast floors
mentioned below are visualized in Figure A.3.

A.2.1 Hollow core slab
Hollow core slabs are prestressed units with round, square, or oval longitudinal cores
in the center in order to save weight. The units are usually manufactured using the
extrusion or slip forming process where either the mold or the extruding machine
pushes itself forward, leaving a hollow core slab behind. Options for sawing off a
slab are limited because of the prestressing tendons. Building speed is quick when
applying a concrete topping for structural integrity because the topping is relatively
thin. When not applying any topping at all the flooring system is even quicker.

A.2.2 Double tee slab
Also known as a TT-slab, this floor system is prestressed but allows for larger spans
than the hollow core slab. The price is higher, however. Each element consists of two
T-shaped ribs on the bottom while the top is flat. The possibility of adding a concrete
topping exists, but the building speed is even quicker without this layer.

A.3 HYBRID CONCRETE FLOORS

A.3.1 Composite plank floor
This is a hybrid concrete construction, where the advantages of a precast and in-situ
cast floor are combined. Since the quality is high and the construction time relatively
quick it is also very popular. Precast concrete elements act as a permanent mold
on the bottom side and concrete is cast on top. The precast mold can be either
prestressed or reinforced in two directions. A lattice girder in the element ensures
a good connection with the cast concrete and facilitates hoisting of the element on
site.

A.3.2 BubbleDeck floor
Precast concrete elements are used as a permanent mold. Plastic balls are then
placed on top and fixed using reinforcement before casting concrete in-situ. This
saves approximately 35% (Abspoel et al., 2012) of weight compared to a flat slab of
the same thickness. Near the supports, the balls are not used in order to increase the
shear stress and hogging moment capacity. Construction time is average, because
even though the mold is permanent and quick to place, the thick in-situ concrete
layer has a relatively long setting time.
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Appendix A. Traditional concrete floor systems

(a) Hollow core slab (b) Double tee slab

(c) Composite plank floor (d) BubbleDeck floor

Figure A.3: Precast and hybrid floor systems supported by columns and beams
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B
Topology optimization and concrete

production methods

There are many different techniques available for the production of concrete structural
elements; some of these are impractical for the application of this research, however.
The goal of this part of the research is organizing the manufacturing techniques
viable for the production of concrete topology-optimized structures. From this list
of methods, the manufacturability constraints can be researched. Supported by
reference projects, a selection has been made based on which production methods are
able to manufacture freely-curved concrete structures. Aspects such as surface finish
and production speed are also of importance, but not governing. These methods
include:

• Timber formwork
• Steel formwork
• Reconfigurable mold
• Ferrocement formwork
• Polyester formwork
• CNC milled EPS formwork
• Fabric forming
• Vacuum stabilized formwork
• Additive manufacturing

B.1 PRODUCTION METHODS

B.1.1 Timber formwork
The traditional timber formwork is commonly used as almost any shape can be
constructed. Combined with a good surface protection one mold can be used several
times. While timber molds are often used to manufacture elements with orthogonal
angles and flat surfaces, more complex double curved shapes are also possible.
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Appendix B. Topology optimization and concrete production methods

Adaptability for these complex molds is not optimal, however, so for structures
without repetition a different type of formwork should be considered. Two methods
are examined for the construction of topology-optimized structures. The first method
is displayed in Figure B.1 and uses CNC (Computer Numerical Control) milled timber
ribs for the supporting structure. On top of the ribs, a thin wooden layer forms the
contact surface. A thinner contact layer allows for more curvature. Displayed in
Figure B.2, the second method is based on the waffle-slab, but instead of using cubic
forms to shape the space between the ribs more complex forms are used. The folly at
sanatorium Zonnestraal is an example where the ribs are curved in a single direction.
With the use of UHPC, a very slender canopy has been realized.

(a) Timber ribs (b) Timber ribs with
plated contact surface

(c) After demolding

Figure B.1: Mercedes-Benz museum, Stuttgart (PERI, 2005)

(a) Timber formwork (b) Close-up (c) Finished structure

Figure B.2: Folly at sanatorium Zonnestraal, Hilversum (ABT bv & Hurks, 2005)

B.1.2 Steel formwork
Similar to the timber formwork, a steel mold consists of steel ribs for the supporting
structure and a steel plate for the contact surface. Making a steel mold with single
curvature is relatively simple with the use of rollers. Adding a second curvature can
be troublesome, however. Even with a thin plate, only low curvatures are generally
possible. The reference project in Figure B.3 demonstrates how the second curvature
is rather low. An advantage over the timber mold is the high reusability: they can
be reused more often which is useful for structures with a lot of repetition.

B.1.3 Reconfigurable mold
The reconfigurable mold can be seen as a solution to the problem of low adaptability.
The adjustable formwork consists of two elements: a flexible contact surface on top
of a pin bed where each pin’s height can be modified. Famous architect Renzo Piano
was one of the first to build such a mold in 1966. Since then many researchers have
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B.1. Production methods

(a) Steel formwork (b) Steel formwork and several fin-
ished elements

(c) Finished structure

Figure B.3: Millau viaduct toll gate (Structurae, 2005)

come up with improvements, several of which are displayed in Figure B.4. These
concepts allow for molds to be used many times over and they are also able to produce
double curved elements. There are limitations on the radius of the curves, however.
Construction firm mbX has successfully applied this method in the fabrication of
the façade of the Arnhem public transport terminal, as shown in Figure B.5.

(a) Piano (1969) (b) Spuybroek (2004) (c) Vollers and Riet-
bergen (2009)

(d) Schipper (2015)

Figure B.4: Reconfigurable mold concepts

(a) Applied method (b) Close-up of the elements

Figure B.5: Public transport terminal, Arnhem (mbX, 2015)

B.1.4 Ferrocement formwork
Ferrocement is the material used by Pier Luigi Nervi for the construction of the
Gatti wool factory and Palazzetto dello Sport, among others. Producing the organic
shapes is a challenge that Nervi solved by making use of ferrocement. It was used to
make prefabricated concrete elements in plaster casts. Regular reinforcement was
placed inside the ferrocement elements acting as a permanent mold and afterward
they were covered in concrete creating one single slab.
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Appendix B. Topology optimization and concrete production methods

(a) Formwork
production

(b) Finished structure (c) Formwork produc-
tion

(d) Finished structure

Figure B.6: Gatti wool factory and Palazzetto dello Sport (Nervi, 1965)

B.1.5 Polyester formwork
Fiber-reinforced polyester formwork refers to the material of the contact surface.
The shape of the polyester formwork is produced with the help of a counter mold or
pattern. The pattern is made with any of the other mentioned production methods,
after which the polyester can be applied in layers by hand or by spraying. The
amount of shapes possible with this type of mold is immense but generally restricted
by the production method of the pattern. The supporting structure can be made
with the any of the other production methods. The reusability is excellent with this
type of mold: 75 beams in three variants have been realized in Leidschenveen, The
Netherlands (Figure B.7).

(a) Polyester formwork (b) One fabricated element (c) Finished structure

Figure B.7: Ribcage bridges, Leidschenveen (Van de Brug et al., 2000)

B.1.6 CNC milled EPS formwork
Expanded polystyrene (EPS) blocks can be used as a mold after being milled with a
computer controlled cutter head or a wire. Depending on the milling machine, the
robot arm can translate in three directions and rotate over two axes, allowing for
almost any shape to be cut and ensuring a very accurate result. Afterward, the blocks
need to be coated for a good finish and to make demolding easier. A disadvantage is
a low adaptability: for every different shape, a new mold needs to be cut. The molds
are also not reusable. This was not an issue for the 3TU prototype (Figure B.8) &
the Unikabeton prototype (Figure B.9), and for highly unique projects such as the
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B.1. Production methods

Spencer Dock Bridge (Figure B.10), however.

(a) Formwork design (b) Milling the EPS blocks (c) Finished
EPS molds

(d) Finished
structure

Figure B.8: 3TU prototype (Studio RAP, 2015)

(a) Milled elements and reinforcement (b) Finshing
of the concrete

(c) Finished structure

Figure B.9: Unikabeton prototype, Aarhus (Dombernowsky and Sondergaard, 2010)

(a) Spraying the coating (b) The elements put to-
gether on site

(c) Finished structure

Figure B.10: Spencer Dock Bridge, Dublin (Nedcam, 2008)

B.1.7 Fabric forming
The production method of fabric forming replaces traditional formwork materials
with a flexible textile membrane. When concrete is poured inside, the fabric of
the mold tends to follow efficient structural curves. These curves are a result from
its own self-weight and can be influenced by changing and/or tightening the shape
of the textile. This characteristic of the method also brings severe constraints in
the possible shapes. There is still a lot of research being conducted in order to
discover the possibilities in shaping the formwork. Several examples are displayed in
Figure B.11.
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Appendix B. Topology optimization and concrete production methods

(a) Precast wall
panel (2002)

(b) Four meter span truss (2006) (c) Column
(2007)

Figure B.11: Research by the CAST-laboratory led by prof. Mark West from the
University of Manitoba (ISOFF, nd)

B.1.8 Vacuum stabilized formwork
Please refer to Chapter 5.

B.1.9 Additive manufacturing
Additive manufacturing (or 3D printing) is a relatively new production method still
in development. It shows a lot of promise for the production of topology-optimized
structures: a 3D printer can distribute material where it is needed, just like topology
optimization can. At the moment, there are two major additive manufacturing
techniques in development which are to be used in the construction of concrete
housing. The first is a method where a concrete house is 3D printed layer by layer
directly on top of each other. Examples of this are Contour Crafting (CC) on behalf
of the University of Southern California (Figure B.13a), and the houses by WinSun
Decoration Design Engineering in China (Figure B.12). The second method is the
3D print canal house to be built in Amsterdam and is researched by DUS Architects,
which prints a cast using a bioplastic that is later filled with a lightweight foaming
concrete (Figure B.13b).

(a) Printing (b) Wall element (c) Finished house

Figure B.12: Housing designed by WinSun (3ders, 2014)
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B.2. List of manufacturability constraints

(a) Contour crafting
printhead

(b) Contour crafting
beam

(c) 3D print canal
house cast

(d) 3D print canal
house filled cast

Figure B.13: Additive manufacturing of concrete structures

B.2 LIST OF MANUFACTURABILITY CONSTRAINTS

B.2.1 Minimum radius formwork curvature
Some of the production methods mentioned in this chapter are more suitable for
manufacturing freely-curved structures than others. A small analysis of the minimum
radius (Figure B.14) of the formwork curvature aims to demonstrate these differences.
A smaller radius means that more curvature can be reached and the structure is less
constrained by this manufacturability aspect.

Figure B.14: Minimum radius of the formwork curvature for a cross section of a rib

Timber formwork
Especially for the timber formwork that uses ribs, the minimum radius is important as
there is a double-curvature. Table B.1 shows these radii for different grain directions
and plate thicknesses. The timber formwork method that is more similar to the waffle
slab has most of its curvature in one direction, so the more constraining curvature
parallel to the grain is of less importance.
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Table B.1: Minimum radii plywood (Dubbeldam, 1991)

Thickness (mm) Curvature parallel to grain Curvature perpendicular to grain
Minimum radius (m) Minimum radius (m)

4 0.40 - 0.75 0.15
6.5 1.30 - 1.50 0.40 - 0.70
9 2.00 - 2.40 0.90 - 1.60
12 2.70 - 3.60 1.80 - 2.50
15 3.80 - 4.80 2.40 - 3.60
18 4.80 - 7.00 3.60 - 6.00

Steel formwork
Making a steel mold with single curvature is relatively simple with the use of rollers.
The second curvature is extremely complex to achieve.

Reconfigurable mold
The flexible mold method by (Schipper, 2015) has been applied successfully for the
production of precast concrete elements with a radius down to 1.50 m.

Ferrocement formwork
No constraint.

Polyester formwork
The polyester formwork is only constrained by the production method of the counter-
mold.

CNC milled EPS formwork
A wire cutter, the first CNC milling option, can only cut in straight lines. This
does not mean double-curved structures are impossible to manufacture: a hyperbolic
paraboloid consists of straight lines for example. The second option of a cutter head
robot that can move in three directions will show milling paths near high curvatures.
Therefore, for more complex structures a five-directional head is recommended. It
moves perpendicular to the surface and leaves a smoother result. There are no
curvature constraints from the production method.

Fabric forming
No constraint.

Vacuum stabilized formwork
Whether there is a radius constraint on the formwork depends on the air pressure
difference and the elasticity of the plastic foil. The V-process from the metalworking
industry proves that there are virtually no constraints as the foil follows the counter
mold almost perfectly. On a larger scale, the ISOFF workshop does show some issues,
as can be seen in the top right of Figure 5.4. More research needs to be conducted
in order to quantify the minimum radius of the curvature.

Additive manufacturing
No constraint.
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B.2. List of manufacturability constraints

B.2.2 Void removal & casting constraint
The result from a regular topology optimization of a structure often has the following
problem when manufacturability is taken into account. Usually, there are voids in
the optimized result. For small or practically two-dimensional objects this can be
overcome, for the production of a concrete floor, this is less than ideal. Void removal,
therefore, is an essential constraint (Figure B.15, left). The second problem, more
related to the scope of this thesis, is the process of the casting of an element. For a
floor, it makes sense to have the formwork on the bottom and to pour the concrete
from the top. This results in a so-called casting constraint, visualized in Figure B.15
on the right.

(a) (b)

Figure B.15: Void removal and casting constraint for a cross section of a rib

Timber formwork
Applicable.

Steel formwork
Applicable.

Reconfigurable mold
Applicable.

Ferrocement formwork
Applicable.

Polyester formwork
Applicable.

CNC milled EPS formwork
Applicable.

Fabric forming
Applicable.

Vacuum stabilized formwork
Applicable.

Additive manufacturing
Void removal should be applied, as falsework inside the structure cannot be removed.
The casting constraint should only be utilized when falsework is not desired.

B.2.3 Minimum thickness
In concrete construction, it is established that there needs to be a certain concrete
cover over the reinforcement bars. The minimum thickness in the model should then
be equal to twice the concrete cover plus the thickness of the reinforcement layer(s).
For fiber-reinforced concrete there also is a minimum thickness, otherwise the risk of
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breakage is too high. This constraint is applicable to all the production methods.

Figure B.16: Minimum thickness for a cross section of two hypothetical ribs

B.2.4 Angle constraint
Most production methods are not suitable for the production of structures with sharp
angles. While concrete also does not benefit from very sharp angles, in this section
only the feasibility of the production method is regarded. The constraint is not
applicable to the reconfigurable mold, since it is restricted by its curvature constraint.
For a vacuumatic formwork, the minimum radius of the formwork curvature should
already solve the restrictions on angles.

B.2.5 Formwork size
Depending on the size of the formwork, an entire floor can be cast in one go, or
needs to be cast in elements that need to be connected on site.

Timber formwork
No constraint.

Steel formwork
No constraint.

Reconfigurable mold
The reconfigurable mold currently has a size limit of roughly 2× 1 m2, but larger
elements are expected to be feasible, according to Schipper (2015).

Ferrocement formwork
No constraint.

Polyester formwork
No constraint.

CNC milled EPS formwork
The EPS blocks come in two standard sizes: a small 4.00 × 1.25 × 1.00 m and a
larger 8.00× 1.25× 1.00 m. Usually, the smaller block size will be used because these
can result in less material waste. Combining the blocks after milling is not an issue,
however, so casting can still be achieved in one go.

Fabric forming
No constraint.
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Vacuum stabilized formwork
The size of the flask influences the size of the element. Larger elements are desirable
but a larger flask comes with several disadvantages. The larger the flask, the more
powerful the vacuum pump needs to be in order to create a large enough pressure
difference. Secondly, the weight of the unit is increased dramatically as the amount
of sand increases. This can result in a massive, unmanageable mold. However, from
the V-process it is already established that upgrading the size does not necessarily
pose a problem, because the metal industry already manufactures elements of several
meters long.

Additive manufacturing
No constraint.

B.2.6 CNC milling robotic arm range
This constraint is only applicable to the CNC milling of EPS blocks. The robotic
arm of the milling machine has a certain range in which it can operate. This means
that very large mold parts are restricted by this range. The degree to which this
constraint is leading is closely related to the EPS block size.

B.3 CONCLUSION

The result from this chapter is visualized in Table B.2. It shows each analyzed
production method, which constraints are applicable, and the extent to which they
are decisive when designing for this method. Two conclusions can be made: there
are three constraints which are shared across all production methods. Void removal,
a casting constraint, and minimum member thickness can be viewed as the minimum
requirements for adding manufacturability in the design process of a concrete floor.
The second conclusion is that there is not a single method with which a design
can be made with only these three constraints because there are always additional
constraints necessary. From Table B.2, it seems the polyester formwork requires
only three constraints. The counter mold needs to be made with any of the other
methods, however.
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Table B.2: Production methods and their accompanying constraints; a larger/darker circle
means the constraint is more influential
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C
Reinforced concrete costs

In the construction industry, estimating the costs of a project is of great importance
to the contractor and owner. A good estimation of a construction project includes
the total costs of all materials, labor, subcontractors, equipment, and overhead.
These factors can be divided into direct costs, indirect costs, and overhead costs
(Figure C.1). Direct costs include the expense of materials, labor, and equipment.
These are all directly related to an activity or a service. The indirect costs, on
the other hand, do not have this clear attribution and are instead related to the
realization of a service in general. Overhead costs include expenses for risk, profit,
interest, etc. (Van der Horst, 2013). Indirect costs and general overhead are often
a percentage of the total costs, so they are irrelevant when comparing alternatives.
Consequently, they are not incorporated in the cost function in this chapter.

The unit price estimating method is most commonly used in competitive bidding. It
consists of dividing a building into its basic elements and applying a price per unit
of material use. As long as it is properly applied it is an accurate tool to predict
project costs. The final Estimate Summary accumulates the cost of each separate
element. It is greatly dependent on the location and time of the project so the result
may not be completely accurate everywhere in the world. However, it can still be
utilized as a tool to compare different floor lab designs (Del Pico, 2013).

C.1 INTEGRAL COST

The integral costs of reinforced concrete is the sum of the concrete costs (Ap-
pendix C.2), the reinforcement costs (Appendix C.3), and the formwork costs
(Appendix C.4), resulting in Equation (C.1).

C = Cc + Cr + Cf (C.1)
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Figure C.1: Components of the reinforced concrete cost

C.2 CONCRETE COSTS

As displayed in Figure C.2 and Equation (C.2), the concrete costs consist of three
components. Procurement of the materials includes cement, sand, gravel, admixtures,
and water. The ratio depends on the type of concrete. The mixture is made at a
batching plant where depreciation, maintenance, and interest drive the costs. The
price of pouring and finishing depends on the shape, size, and complexity of the
element. Lastly, the costs of transportation from the plant to the building site
depend on the distance between these two.

(a) Material (b) Labor (c) Transportation

Figure C.2: Concrete costs
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C.3. Reinforcement costs

Cc = Vc · Ic︸ ︷︷ ︸
material

+hr · Cmhr︸ ︷︷ ︸
labor

+ (Tc:0 + Tc:1 · L)︸ ︷︷ ︸
transportation

(C.2)

In which:

Cc costs of concrete [AC]

Vc volume of concrete [m3]

Ic investment for the procurement of the concrete [AC/m3]

Tc:0 transportation cost initial [AC]

Tc:1 transportation cost per kilometer [AC/km]

L travel distance [km]

hr workload in hours [h]

Cmhr costs of one man-hour [AC/h]

C.3 REINFORCEMENT COSTS

The costs of reinforcement depend first on the procurement of the steel as the market
value has the greatest impact on the price. When the reinforcement steel is on
location it needs to be bent and cut in order to fit the formwork. Besides the
diameter of the steel, the shape and complexity of the element play a significant role
again. This has been summarized in Figure C.3 and Equation (C.3). Any potential
fiber reinforcement costs can be included in the concrete costs in Equation (C.2),
because it is part of the concrete mixture and not cut, bent, and placed on site or
the factory.

(a) Material (b) Labor (c) Labor

Figure C.3: Reinforcement costs

Cr = Vr · Ir︸ ︷︷ ︸
material

+hr · Cmhr︸ ︷︷ ︸
labor

(C.3)

In which:

Cr costs of reinforcement [AC]

Vr volume of reinforcement steel [m3]

Ir investment for the procurement of the steel [AC/m3]

hr workload in hours [h]

Cmhr costs of one man-hour [AC/h]
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C.4 FORMWORK COSTS

There are many types of formwork and the costs depend on which specific type is
used. Important aspects of choosing a formwork system are the complexity of the
shape and the number of times the formwork needs to be reused. A steel form has
high initial costs compared to a timber mold, for example, but because it can be
used a greater number of times it may still be economically viable. For traditional
structures, the formwork costs exceed the concrete and reinforcement costs so there is
a lot to be gained here (Peurifoy and Oberlender, 1996). A cost model for formwork
is displayed in Figure C.4 and Equation (C.4).

(a) Labor (b) Formwork effi-
ciency

Figure C.4: Formwork costs

Cf = hr · Cmhr︸ ︷︷ ︸
labor

+
If
N︸︷︷︸

form efficiency

(C.4)

In which:

Cf costs of formwork [AC]

If initial investment of the formwork system [AC]

N number of repetitions, or times the formwork can be reused [−]

hr workload in hours [h]

Cmhr costs of one man-hour [AC/h]

138



D
Sustainability comparison

The input values displayed on the next page have been determined as follows:

• The amount of concrete for both floor slabs is determined in Section 7.1.1.
• The sheet does not allow C50/60 to be used as the concrete strength class.

Therefore, the similar C53/65 has been assumed for both floor slabs.
• The environmental class of XC1 is assumed according to Table 4.1 of NEN-EN

1992-1-1. This class can be applied concrete structures inside buildings with a low
humidity. Both floor slabs have the same environmental class.
• The average concrete mixture in The Netherlands consists of roughly 65% CEM

III (blast-furnace cement) and 35% CEM I (Portland cement). This mixture has
been assumed for both floor slabs.
• The transport distance is assumed to be 30 km for both floor slabs.
• The amount of reinforcement has been estimated with a two-dimensional simplifi-

cation of the floor slab. In the Ultimate Limit State, the total distributed load
is roughly qd = 1.5 · qlive + 1.35 · qdead = 1.5 · 5.0 + 1.35 · 2.5 = 10.9 kN/m. This
results in a bending moment at midspan of Md = 1

8qdL
2 = 1

810.9 · 7.02 = 67 kN m.
Assuming an internal arm of z = 0.9d = 0.9(h− 0.03− 0.05), then the required
amount of reinforcement is As = Ns/435 = Md

z·435 = 1582 mm2/m. Assuming that
the density of steel is equal to 7859 kg/m3, and that the total reinforcement in the
slab is 3

2 times the lower reinforcement layer, then the amount of reinforcement is
determined to be 7859× 1.5× 15.81 · 10−4/0.1875 = 100 kg/m3 for the traditional
floor slab.
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Ontwerptool groen beton CO 2 -emissie "cradle to site"            

project : werkcode    :

opdrachtgever : referentie : mgn

onderwerp : printdatum : 16-jun-16

origineel betonmengsel/ontwerp

hoeveelheid beton 3.28 m
3

betonkwaliteit C53/65

milieuklasse XC1

typering mengsel

cementgehalte 370 kg/m
3

bouwkosten

waarvan 65% CEM III 72 kg CO2/m
3

18.04€         

35% CEM I 106 " 11.66€         

vliegas toegevoegd 0 kg/m
3

0.0 " -€            

water 241 kg/m
3

0.1 " 0.26€           

zand 667 kg/m
3

2.1 " 3.34€           

grind 1,001 kg/m
3

3.2 " 18.01€         

transport grondstoffen-centrale 10 "

transport centrale-bouwplaats 30 km 13.7 " 17.00€         

productie 5.9 " 8.25€           

Totaal beton 213 kg CO2/m
3

76.56€         /m
3

wapeningshoeveelheid 100 kg/m
3

137 " 125.00€       

transport wapening-bouwplaats 0 km 0.0 " 1.52€           

Totaal staal 137 kg CO2/m
3

126.52€       /m
3

Totaal 350 kg CO 2 /m
3

203.07€      /m
3

alternatief betonmengsel/ontwerp

hoeveelheid beton 2.52 m
3

betonkwaliteit C53/65

milieuklasse XC1

typering mengsel

cementgehalte 370 kg/m
3

bouwkosten

waarvan 65% CEM III 72 kg CO2/m
3

18.03€         

35% CEM I 106 " 11.65€         

vliegas toegevoegd 0 kg/m
3

0.0 " -€            

water 241 kg/m
3

0.1 " 0.26€           

zand 667 kg/m
3

2.1 " 3.34€           

grind 1,001 kg/m
3

3.2 " 18.01€         

transport grondstoffen-centrale 10 "

transport centrale-bouwplaats 30 km 13.7 " 17.00€         

productie 5.9 " 8.25€           

Totaal beton 213 kg CO2/m
3

76.54€         /m
3

wapeningshoeveelheid 120 kg/m
3

164 " 150.00€       

transport wapening-bouwplaats 0 km 0.0 " 1.52€           

Totaal staal 164 kg CO2/m
3

151.52€       /m
3

Totaal 378 kg CO 2 /m
3

228.06€      /m
3

vergelijking betonmengsels/ontwerp (alternatief - origineel)

verschil hoeveelheid beton -0.77 m
3

verschil emissie -199 kg CO2

verschil hoeveelheid wapening -26.25 kg verschil kosten 92.62-€         

Duurzaam construeren

CO2 quick scan

TU Delft
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E
Getting started guide

1. Download and install a Python distribution: Enthought Canopy includes a user-
friendly package manager and doesn’t require a separate Python 2.7 install. It
can be downloaded at:
https://store.enthought.com/downloads/#default

Other distributions, such as Anaconda, Pythonxy, etc. also include Python
combined with the most popular packages. They can be found at:
https://www.python.org/download/alternatives/

Alternatively, download and install Python 2.7:
https://www.python.org/downloads/

And download and install the required packages separately: numpy, scipy, time,
traits, and mayavi.

2. Download and install an editor. A list of editors can be found at:
https://wiki.python.org/moin/PythonEditors

3. Run TopOpPy.py via one of two ways:

• From the editor
• From command prompt

4. Changes to the input can be made in the code itself. The included file input.py

can help with reproducing the problems presented in this thesis.
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Appendix E. Getting started guide

5. Other included algorithms at http://repository.tudelft.nl/:

• TopOpPy_concrete.py: the modified algorithm for designing the topology-
optimized floor.
• TopOpPy_concrete_sequential.py: the same modified algorithm for designing

the topology-optimized floor but with a sequential addition of the constraints.
This gives a solution closer to the global optimum.
• TopOpPy_visualizer.py: an algorithm than can read .csv files that contain

the physical densities xPhys. These are automatically generated at the end of
the optimization with both concrete versions of the algorithm.
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F
Topology optimization algorithm

1 """

================================================================================================

3 --- Topology optimization of a Concrete Floor Slab Guided by Vacuumatic Formwork Constraints ---

================================================================================================

5 This code is discussed in the paper ’Topology optimization of a Concrete Floor Slab Guided by

Vacuumatic Formwork Constraints ’ by C.M. Magan (2016) , which can be found on

7 repository.tudelft.nl

9 Author: Christopher Magan

Date: July 2016

11 Delft University of Technology

________________________________________________________________________________________________

13 """

import numpy as np

15 from scipy.sparse import coo_matrix

from scipy.sparse.linalg import spsolve

17 import time

from traits.etsconfig.api import ETSConfig

19 ETSConfig.toolkit = ’qt4’ # Force PyQt4 utilization for the GUI of MayaVi

from mayavi import mlab

21
# ==============================================================================================

23 # --- Input by the User ---

# ==============================================================================================

25 # ____________________

# --- Design Space ---

27 nelx = int (60)

nely = int (20)

29 nelz = int(4)

volfrac = float (0.3)

31 penal = float (3.0) # default value: 3.0

rmin = float (1.5) # default value: 1.5

33
# _______________________

35 # --- Loop Parameters ---

maxloop = int (200) # default value: 200

37 tolx = float (0.01) # default value: 0.01

39 # ___________________________

# --- Material Properties ---

41 Ecmax = float (1.0) # default value: 1.0

Emin = float(1e-9) # default value: 1e-9

43 nu = float (0.3) # default value: 0.3

45 # _________________________________

# --- Loads & Degrees of Freedom ---

47 il = np.array([nelx])

jl = np.array ([0])

49 kl = np.array([np.arange(0,nelz +1)])

loadnid = kl*(nelx +1)*(nely +1)+il*(nely +1)+(nely+1-jl)

51 loaddof = 3*loadnid.T - 1

load = float (-1.0) # default value: -1.0

53
# _______________________________________________

55 # --- Boundary Conditions & Degrees of Freedom ---
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Appendix F. Topology optimization algorithm

# ibc = empty

57 [jbc ,kbc] = np.mgrid [1: nely +2,1: nelz +2]

bcnid = (kbc.T-1)*(nely +1)*(nelx +1)+jbc.T

59 bcdof = np.hstack ((3*bcnid , 3*bcnid -1, 3*bcnid -2)).flatten ()

61 # ==============================================================================================

# --- Topology Optimization Definitions ---

63 # ==============================================================================================

# _________________

65 # --- Main Code ---

def main(nelx ,nely ,nelz ,volfrac ,penal ,rmin):

67 starttimer = time.clock ()

print "Minimum compliance topology optimization guided by manufacturability constraints."

69 print "Number of elements: " + str(nelx) + " x " + str(nely) + " x " + str(nelz)

print "Volume fraction: " + str(volfrac)

71 print "Penalty factor: " + str(penal)

print "Minimum radius: " + str(rmin)

73 # Prepare FEA

nele = nelx*nely*nelz

75 ndof = 3*(nelx +1)*(nely +1)*(nelz +1)

F = np.zeros ((ndof ,1))

77 F[loaddof -1,0] = load

U = np.zeros ((ndof ,1))

79 freedofs = np.setdiff1d(np.arange(1,ndof +1),bcdof)

g = 0 # for oc

81 KE = ElStiffnMat(nu)

edofMat = np.zeros((nelx*nely*nelz ,24),dtype=int)

83 for elz in range(nelz):

for elx in range(nelx):

85 for ely in range(nely):

el = ely + elx * nely + elz * nelx* nely

87 n1 = (ely+1) + elx *(nely +1) + elz * nelx*(nely +1) + (nely +1)*elz

n2 = (ely+1) +(elx +1)*(nely +1) + elz * nelx*(nely +1) + (nely +1)*elz

89 n3 = (ely+1) +(elx +1)*(nely +1) + (elz+1)*nelx*(nely +1) + (nely +1)*elz

edofMat[el ,:]=np.array( [3*n1+1, 3*n1+2, 3*n1+3, 3*n2+1, 3*n2+2, 3*n2+3, 3*n2 -2, 3*n2

-1, 3*n2, 3*n1 -2, 3*n1 -1, 3*n1, 3*n3+1, 3*n3+2, 3*n3+3, 3*n3 +13+(3*nely -9), 3*n3 +14+(3*nely -9), 3*

n3 +15+(3*nely -9), 3*n3 +10+(3*nely -9), 3*n3 +11+(3*nely -9), 3*n3 +12+(3*nely -9), 3*n3 -2, 3*n3 -1, 3*n3

] )

91 iK = np.kron(edofMat ,np.ones ((24 ,1))).flatten ()

jK = np.kron(edofMat ,np.ones ((1 ,24))).flatten ()

93 # Prepare density filter

sH,iH,jH = df(nelx ,nely ,nelz ,rmin)

95 H = coo_matrix ((sH ,(iH ,jH)),shape =(nele ,nele)).tocsc()

Hs = H.sum (1)

97 # Initialize iteration

x = volfrac*np.ones(nele)

99 xold = x.copy()

xPhys = x.copy()

101 loop = 0

change = 1.

103 ce = np.ones(nele)

dc = np.ones(nele)

105 dv = np.ones(nele)

# Start iteration

107 change = 1.

while change >tolx and loop <maxloop:

109 loop = loop + 1

# FEA

111 sK = ((KE.flatten ()[np.newaxis ]).T*(Emin+(xPhys)**penal*(Ecmax -Emin)).flatten ()).flatten(order=

’F’)

K = coo_matrix ((sK ,(iK -1,jK -1)),shape=(ndof ,ndof)).tocsc()

113 K = (K+K.T)/2

K = K[freedofs -1,:][:, freedofs -1]

115 U[freedofs -1,0] = spsolve(K,F[freedofs -1,0])

# Objective and sensitivities for a compliance problem

117 ce[:] = ( np.dot(U[edofMat -1]. reshape(nele ,24),KE) * U[edofMat -1]. reshape(nele ,24) ).sum(1)

c = ((Emin+xPhys**penal*(Ecmax -Emin)) * ce).sum()

119 dc[:] = -penal*xPhys**(penal -1)*(Ecmax -Emin)*ce

dv[:] = np.ones(nele)

121 # Filtering

dc[:] = np.asarray(H*(dc[np.newaxis ].T/Hs))[:,0]

123 dv[:] = np.asarray(H*(dv[np.newaxis ].T/Hs))[:,0]

# Optimality criteria update

125 xold [:] = x

(x[:],g)= oc(nelx ,nely ,nelz ,x,volfrac ,dc ,dv,g)

127 xPhys [:]= np.asarray(H*(x[np.newaxis ].T)/Hs)[:,0]

# Compute change

129 change = np.linalg.norm(x.reshape(nele ,1)-xold.reshape(nele ,1),np.inf)

# Print iteration history

131 print ’It.: {} Obj.: {:.3f} Vol.: {:.2f} Ch.: {:.3f}’.format(loop ,c,np.mean(xPhys

[:]),change)

# Plot final design

133 endtimer = time.clock()

print ’Optimization finished in {:.0f}s. Preparing visualization ...’.format(np.ceil(endtimer -

starttimer))

135 displayfigure(xPhys ,nelx ,nely ,nelz)

print ’MayaVi finished.’

137
# __________________________________

139 # --- Elemental Stiffness Matrix ---

def ElStiffnMat(nu):

141 A = np.array ([[32 , 6, -8, 6, -6, 4, 3, -6, -10, 3, -3, -3, -4, -8],[-48, 0, 0, -24, 24, 0, 0, 0,
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12, -12, 0, 12, 12, 12]])

k = 1/144. * A.T.dot( np.array ([[1] ,[nu]]) )

143
k1 = np.empty ((6,6))

145 k1[0,0]=k[0]; k1[0 ,1]=k[1]; k1[0,2]=k[1]; k1[0,3]=k[2]; k1[0 ,4]=k[4]; k1[0 ,5]=k[4]

k1[1,0]=k[1]; k1[1 ,1]=k[0]; k1[1,2]=k[1]; k1[1,3]=k[3]; k1[1,4]=k[5]; k1[1 ,5]=k[6]

147 k1[2,0]=k[1]; k1[2 ,1]=k[1]; k1[2,2]=k[0]; k1[2,3]=k[3]; k1[2 ,4]=k[6]; k1[2 ,5]=k[5]

k1[3,0]=k[2]; k1[3 ,1]=k[3]; k1[3,2]=k[3]; k1[3,3]=k[0]; k1[3,4]=k[7]; k1[3 ,5]=k[7]

149 k1[4,0]=k[4]; k1[4 ,1]=k[5]; k1[4,2]=k[6]; k1[4,3]=k[7]; k1[4 ,4]=k[0]; k1[4 ,5]=k[1]

k1[5,0]=k[4]; k1[5 ,1]=k[6]; k1[5,2]=k[5]; k1[5,3]=k[7]; k1[5,4]=k[1]; k1[5 ,5]=k[0]

151 k2 = np.empty ((6,6))

k2[0,0]=k[8]; k2[0 ,1]=k[7]; k2[0,2]=k[11]; k2[0,3]=k[5]; k2[0,4]=k[3]; k2[0,5]=k[6]

153 k2[1,0]=k[7]; k2[1 ,1]=k[8]; k2[1,2]=k[11]; k2[1,3]=k[4]; k2[1,4]=k[2]; k2[1,5]=k[4]

k2[2,0]=k[9]; k2[2 ,1]=k[9]; k2[2,2]=k[12]; k2[2,3]=k[6]; k2[2,4]=k[3]; k2[2,5]=k[5]

155 k2[3,0]=k[5]; k2[3 ,1]=k[4]; k2[3,2]=k[10]; k2[3,3]=k[8]; k2[3,4]=k[1]; k2[3,5]=k[9]

k2[4,0]=k[3]; k2[4 ,1]=k[2]; k2[4,2]=k[4]; k2[4,3]=k[1]; k2[4,4]=k[8]; k2[4 ,5]=k[11]

157 k2[5,0]=k[10];k2[5,1]=k[3]; k2[5 ,2]=k[5]; k2[5,3]=k[11]; k2[5,4]=k[9]; k2[5,5]=k[12]

k3 = np.empty ((6,6))

159 k3[0,0]=k[5]; k3[0 ,1]=k[6]; k3[0,2]=k[3]; k3[0,3]=k[8]; k3[0 ,4]=k[11];k3[0,5]=k[7]

k3[1,0]=k[6]; k3[1 ,1]=k[5]; k3[1,2]=k[3]; k3[1,3]=k[9]; k3[1,4]=k[12];k3[1,5]=k[9]

161 k3[2,0]=k[4]; k3[2 ,1]=k[4]; k3[2,2]=k[2]; k3[2,3]=k[7]; k3[2 ,4]=k[11];k3[2,5]=k[8]

k3[3,0]=k[8]; k3[3 ,1]=k[9]; k3[3,2]=k[1]; k3[3,3]=k[5]; k3[3,4]=k[10];k3[3,5]=k[4]

163 k3[4,0]=k[11];k3[4,1]=k[12];k3[4,2]=k[9]; k3[4 ,3]=k[10];k3[4 ,4]=k[5]; k3[4,5]=k[3]

k3[5,0]=k[1]; k3[5 ,1]=k[11];k3[5 ,2]=k[8]; k3[5,3]=k[3]; k3[5,4]=k[4]; k3[5,5]=k[2]

165 k4 = np.empty ((6,6))

k4[0,0]=k[13];k4[0,1]=k[10];k4[0,2]=k[10];k4[0,3]=k[12];k4[0,4]=k[9]; k4[0 ,5]=k[9]

167 k4[1,0]=k[10];k4[1,1]=k[13];k4[1,2]=k[10];k4[1,3]=k[11];k4[1,4]=k[8]; k4[1 ,5]=k[7]

k4[2,0]=k[10];k4[2,1]=k[10];k4[2,2]=k[13];k4[2,3]=k[11];k4[2,4]=k[7]; k4[2 ,5]=k[8]

169 k4[3,0]=k[12];k4[3,1]=k[11];k4[3,2]=k[11];k4[3,3]=k[13];k4[3,4]=k[6]; k4[3 ,5]=k[6]

k4[4,0]=k[9]; k4[4 ,1]=k[8]; k4[4,2]=k[7]; k4[4,3]=k[6]; k4[4,4]=k[13];k4[4,5]=k[10]

171 k4[5,0]=k[9]; k4[5 ,1]=k[7]; k4[5,2]=k[8]; k4[5,3]=k[6]; k4[5 ,4]=k[10];k4[5,5]=k[13]

k5 = np.empty ((6,6))

173 k5[0,0]=k[0]; k5[0 ,1]=k[1]; k5[0,2]=k[7]; k5[0,3]=k[2]; k5[0 ,4]=k[4]; k5[0 ,5]=k[3]

k5[1,0]=k[1]; k5[1 ,1]=k[0]; k5[1,2]=k[7]; k5[1,3]=k[3]; k5[1,4]=k[5]; k5[1 ,5]=k[10]

175 k5[2,0]=k[7]; k5[2 ,1]=k[7]; k5[2,2]=k[0]; k5[2,3]=k[4]; k5[2 ,4]=k[10];k5[2,5]=k[5]

k5[3,0]=k[2]; k5[3 ,1]=k[3]; k5[3,2]=k[4]; k5[3,3]=k[0]; k5[3,4]=k[7]; k5[3 ,5]=k[1]

177 k5[4,0]=k[4]; k5[4 ,1]=k[5]; k5[4,2]=k[10]; k5[4,3]=k[7]; k5[4,4]=k[0]; k5[4,5]=k[7]

k5[5,0]=k[3]; k5[5 ,1]=k[10];k5[5 ,2]=k[5]; k5[5,3]=k[1]; k5[5,4]=k[7]; k5[5,5]=k[0]

179 k6 = np.empty ((6,6))

k6[0,0]=k[13];k6[0,1]=k[10];k6[0,2]=k[6]; k6[0 ,3]=k[12];k6[0 ,4]=k[9]; k6[0,5]=k[11]

181 k6[1,0]=k[10];k6[1,1]=k[13];k6[1,2]=k[6]; k6[1 ,3]=k[11];k6[1 ,4]=k[8]; k6[1,5]=k[1]

k6[2,0]=k[6]; k6[2 ,1]=k[6]; k6[2,2]=k[13]; k6[2,3]=k[9]; k6[2,4]=k[1]; k6[2,5]=k[8]

183 k6[3,0]=k[12];k6[3,1]=k[11];k6[3,2]=k[9]; k6[3 ,3]=k[13];k6[3 ,4]=k[6]; k6[3,5]=k[10]

k6[4,0]=k[9]; k6[4 ,1]=k[8]; k6[4,2]=k[1]; k6[4,3]=k[6]; k6[4,4]=k[13];k6[4,5]=k[6]

185 k6[5,0]=k[11];k6[5,1]=k[1]; k6[5 ,2]=k[8]; k6[5,3]=k[10]; k6[5,4]=k[6]; k6[5,5]=k[13]

187 KE = 1/((nu+1)*(1-2*nu)) * np.concatenate ([np.concatenate ([k1 , k2, k3 , k4 ],axis =1),

np.concatenate ([k2.T, k5 , k6 , k3.T],axis =1),

189 np.concatenate ([k3.T, k6 , k5.T, k2.T],axis =1),

np.concatenate ([k4 , k3, k2 , k1.T],axis =1)])

191 return (KE)

193 # ____________________________

# --- Density Filter ---

195 def df(nelx ,nely ,nelz ,rmin):

nfilter = int(nelx*nely*nelz*((2*(np.ceil(rmin) -1)+1)**3))

197 iH = np.zeros(nfilter)

jH = np.zeros(nfilter)

199 sH = np.zeros(nfilter)

counter = 0

201 for k in range(nelz):

for i in range(nelx):

203 for j in range(nely):

row = k*nelx*nely + i*nely + j

205 k2a = int(np.maximum(k-(np.ceil(rmin) -1) ,0))

k2b = int(np.minimum(k+(np.ceil(rmin)),nelz))

207 i2a = int(np.maximum(i-(np.ceil(rmin) -1) ,0))

i2b = int(np.minimum(i+(np.ceil(rmin)),nelx))

209 j2a = int(np.maximum(j-(np.ceil(rmin) -1) ,0))

j2b = int(np.minimum(j+(np.ceil(rmin)),nely))

211 for k2 in range(k2a ,k2b):

for i2 in range(i2a ,i2b):

213 for j2 in range(j2a ,j2b):

col = k2*nelx*nely + i2*nely + j2

215 if counter >nfilter -1:

iH = np.concatenate ((iH ,np.array ([0])),axis =1)

217 jH = np.concatenate ((jH ,np.array ([0])),axis =1)

sH = np.concatenate ((sH ,np.array ([0])),axis =1)

219 iH[counter] = row

jH[counter] = col

221 sH[counter] = np.maximum (0.0,rmin -np.sqrt((i-i2)**2+(j-j2)**2+(k-k2)**2))

counter = counter +1

223 return(sH,iH ,jH)

225 # ____________________________

# --- Optimality Criterion ---

227 def oc(nelx ,nely ,nelz ,x,volfrac ,dc,dv ,g):

l1 = 0

229 l2 = 1e9

move = 0.2

231 xnew = np.zeros(nelx*nely*nelz)

while (l2-l1)/(l1+l2) >1e-3:
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233 lmid = 0.5*(l2+l1)

xnew [:] = np.maximum (0.,np.maximum(x-move ,np.minimum (1.,np.minimum(x+move ,x*np.sqrt(-dc/dv/lmid

)))))

235 gt = g+np.sum((dv*(xnew -x)))

if gt >0:

237 l1 = lmid

else:

239 l2 = lmid

return(xnew ,gt)

241
# _____________________________

243 # --- Visualization Optimum ---

def displayfigure(xPhys ,nelx ,nely ,nelz):

245 xPlot=np.empty(nelx*nely*nelz)

for ele in range(nelx*nely*nelz):

247 if xPhys[ele ]>0.5:

xPlot[ele ]=1.

249 else:

xPlot[ele ]=0.

251 py,px,pz = np.mgrid [0:nely , 0:nelx , 0:nelz]

fx = px.T.flatten ()

253 fy = py.T.flatten ()

fz = pz.T.flatten ()

255 for ele in range(nelx*nely*nelz):

if xPlot[ele ]>0.5:

257 point = mlab.points3d(fz[ele],fx[ele],--fy[ele], mode=’cube’, opacity=xPlot[ele],

scale_factor =1., color =(1. ,1. ,1.))

mlab.show()

259
# ==============================================================================================

261 # --- Topology Optimization Main ---

# ==============================================================================================

263 if __name__ == "__main__":

main(nelx ,nely ,nelz ,volfrac ,penal ,rmin)
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G
Topology optimization algorithm for

the concrete floor slab

"""

2 ================================================================================================

--- Topology optimization of a Concrete Floor Slab Guided by Vacuumatic Formwork Constraints ---

4 ================================================================================================

This code is discussed in the paper ’Topology optimization of a Concrete Floor Slab Guided by

6 Vacuumatic Formwork Constraints ’ by C.M. Magan (2016) , which can be found on

repository.tudelft.nl

8
Author: Christopher Magan

10 Date: July 2016

Delft University of Technology

12 ________________________________________________________________________________________________

"""

14 import numpy as np

from scipy.sparse import coo_matrix

16 from scipy.sparse.linalg import spsolve

import time

18 from traits.etsconfig.api import ETSConfig

ETSConfig.toolkit = ’qt4’ # Force PyQt4 utilization for the GUI of MayaVi

20 from mayavi import mlab

22 # ==============================================================================================

# --- Input by the User ---

24 # ==============================================================================================

# ____________________

26 # --- Design Space ---

nelx = int (112)

28 nely = int(4)

nelz = int (40)

30 volfrac = float (0.575)

penal = float (3.0) # default value: 3.0

32 rmin = float (2.5) # default value: 1.5

34 # _______________________

# --- Loop Parameters ---

36 maxloop = int (999) # default value: 200

tolx = float (0.01) # default value: 0.01

38
# ___________________________

40 # --- Material Properties ---

Ecmax = float (37000000.) # default value: 1.0, for concrete: 37000000. kN/m^2

42 Etmax = float (12000000.) # default value: 1.0, for concrete: 12000000. kN/m^2

Emin = float (100.) # default value: 1e-9, for concrete: 100. kN/m^2

44 ft = float (0.) # default value: 0.0

nu = float (0.2) # default value: 0.3, for concrete: 0.2

46
# _________________________________

48 # --- Loads & Degrees of Freedom ---

jl = np.array([nely])

50 [il ,kl] = np.mgrid [1: nelx +2,1: nelz +2]

loadnid = (kl.T-1)*(nely +1)*(nelx +1)+il.T+jl*(il.T-1)

52 loaddof = 3*loadnid.T - 1
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load = -5.*(7.*2.5) /(( nelx +1.)*(nelz +1.)) # in kN/elementface , default value: -1

54 specweight = -24.*(7.*2.5*0.250) /(nelx*nely*nelz) # in kN/element

56 # _______________________________________________

# --- Boundary Conditions & Degrees of Freedom ---

58 ibc = np.array ([0,nelx])

jbc = np.array ([0 ,0])

60 kbc = np.array ([np.arange(0,nelz +1),np.arange(0,nelz +1)])

bcnid = np.hstack ((kbc[0]*(nelx +1)*(nely +1)+ibc [0]*(nely +1)+(nely+1-jbc [0]) , kbc [1]*(nelx +1)*(nely +1)+

ibc [1]*(nely +1)+(nely+1-jbc [1]))) - 2

62 bcdof = np.hstack ((3*bcnid , 3*bcnid -1, 3*bcnid [0: nelz +1]-2)).flatten ()

64 # __________________________

# --- Additional Options ---

66 activetop = 1 # active elements top layer = 1; no active elements = 0

activetopextra = 1 # active elements layer below top = 1; no active elements = 0

68 selfweight = 1 # self -weight is considered = 1; no self -weight = 0

castingconstraint = 1 # casting constraint is applied = 1; no casting constraint = 0

70
# ==============================================================================================

72 # --- Topology Optimization Definitions ---

# ==============================================================================================

74 # _________________

# --- Main Code ---

76 def main(nelx ,nely ,nelz ,volfrac ,penal ,rmin):

starttimer = time.clock ()

78 print "Minimum compliance topology optimization guided by manufacturability constraints."

print "Number of elements: " + str(nelx) + " x " + str(nely) + " x " + str(nelz)

80 print "Volume fraction: " + str(volfrac)

print "Penalty factor: " + str(penal)

82 print "Minimum radius: " + str(rmin)

# Prepare FEA

84 nele = nelx*nely*nelz

ndof = 3*(nelx +1)*(nely +1)*(nelz +1)

86 F = np.zeros ((ndof ,1))

F[loaddof -1,0] = load

88 U = np.zeros ((ndof ,1))

freedofs = np.setdiff1d(np.arange(1,ndof +1),bcdof)

90 g = 0 # for oc

KE = ElStiffnMat(nu)

92 edofMat = np.zeros((nelx*nely*nelz ,24),dtype=int)

for elz in range(nelz):

94 for elx in range(nelx):

for ely in range(nely):

96 el = ely + elx * nely + elz * nelx* nely

n1 = (ely+1) + elx *(nely +1) + elz * nelx*(nely +1) + (nely +1)*elz

98 n2 = (ely+1) +(elx +1)*(nely +1) + elz * nelx*(nely +1) + (nely +1)*elz

n3 = (ely+1) +(elx +1)*(nely +1) + (elz+1)*nelx*(nely +1) + (nely +1)*elz

100 edofMat[el ,:]=np.array( [3*n1+1, 3*n1+2, 3*n1+3, 3*n2+1, 3*n2+2, 3*n2+3, 3*n2 -2, 3*n2

-1, 3*n2, 3*n1 -2, 3*n1 -1, 3*n1, 3*n3+1, 3*n3+2, 3*n3+3, 3*n3 +13+(3*nely -9), 3*n3 +14+(3*nely -9), 3*

n3 +15+(3*nely -9), 3*n3 +10+(3*nely -9), 3*n3 +11+(3*nely -9), 3*n3 +12+(3*nely -9), 3*n3 -2, 3*n3 -1, 3*n3

] )

iK = np.kron(edofMat ,np.ones ((24 ,1))).flatten ()

102 jK = np.kron(edofMat ,np.ones ((1 ,24))).flatten ()

# Prepare density filter

104 sH,iH,jH = df(nelx ,nely ,nelz ,rmin)

H = coo_matrix ((sH ,(iH ,jH)),shape =(nele ,nele)).tocsc()

106 Hs = H.sum (1)

# Initialize iteration

108 x = volfrac*np.ones(nele)

xold = x.copy()

110 xPhys = x.copy()

loop = 0

112 change = 1.

ce = np.ones(nele)

114 dc = np.ones(nele)

dv = np.ones(nele)

116 # Start iteration

while change >tolx and loop <maxloop:

118 loop = loop + 1

# Update total load with self -weight

120 if selfweight == 1:

Fsw = sw(xPhys ,specweight ,ndof ,nelx ,nely ,nelz)

122 Ftot = F + Fsw

# FEA

124 sK = 1.

for el in range(nele):

126 if loop == 1:

fele = 0.

128 else:

fn = np.dot(KE,U[edofMat[el ,:] -1])

130 fele = np.mean( np.array ((fn[3],fn[6],fn[15],fn[18],-fn[0],-fn[9],-fn[12],-fn[21])) )

if fele <= ft: # if the stress in the element is smaller than the tension strength , use

Ecmax

132 sK = np.hstack ((sK , ((KE.flatten ()[np.newaxis ]).T*(Emin+( xPhys[el])**penal*(Ecmax -Emin)

).flatten ()).flatten(order=’F’) ))

if fele > ft: # if the stress in the element is greater than the tension strength , use

Etmax

134 sK = np.hstack ((sK , ((KE.flatten ()[np.newaxis ]).T*(Emin+( xPhys[el])**penal*(Etmax -Emin)

).flatten ()).flatten(order=’F’) ))

sK = sK[1:]

136 K = coo_matrix ((sK ,(iK -1,jK -1)),shape=(ndof ,ndof)).tocsc()
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K = (K+K.T)/2

138 K = K[freedofs -1,:][:, freedofs -1]

if selfweight == 1:

140 U[freedofs -1,0] = spsolve(K,Ftot[freedofs -1,0])

else:

142 U[freedofs -1,0] = spsolve(K,F[freedofs -1,0])

# Objective and sensitivities for a compliance problem

144 ce[:] = ( np.dot(U[edofMat -1]. reshape(nele ,24),KE) * U[edofMat -1]. reshape(nele ,24) ).sum(1)

c = 1.

146 dc = 1.

for el in range(nele):

148 fn = np.dot(KE,U[edofMat[el ,:] -1])

fele = np.mean( np.array ((fn[3],fn[6],fn[15],fn[18],-fn[0],-fn[9],-fn[12],-fn [21])) )

150 if fele <= ft: # if the stress in the element is smaller than the tension strength , use

Ecmax

c = np.hstack ((c, (Emin+xPhys[el]**penal*(Ecmax -Emin))*ce[el] ))

152 dc = np.hstack ((dc , -penal*xPhys[el]**(penal -1)*(Ecmax -Emin)*ce[el] ))

if fele > ft: # if the stress in the element is greater than the tension strength , use

Etmax

154 c = np.hstack ((c, (Emin+xPhys[el]**penal*(Etmax -Emin))*ce[el] ))

dc = np.hstack ((dc , -penal*xPhys[el]**(penal -1)*(Etmax -Emin)*ce[el] ))

156 c = (c[1:]).sum()

dc = dc[1:]

158 dv[:] = np.ones(nele)

# Filtering

160 dc[:] = np.asarray(H*(dc[np.newaxis ].T/Hs))[:,0]

dv[:] = np.asarray(H*(dv[np.newaxis ].T/Hs))[:,0]

162 # Optimality criteria update

xold [:] = x

164 (x[:],g)= oc(nelx ,nely ,nelz ,x,volfrac ,dc ,dv,g,activetop ,castingconstraint)

xPhys [:]= np.asarray(H*(x[np.newaxis ].T)/Hs)[:,0]

166 # Compute change

change = np.linalg.norm(x.reshape(nele ,1)-xold.reshape(nele ,1),np.inf)

168 # Print iteration history

print ’It.: {} Obj.: {:.7f} Defl.: {:.3f} Vol.: {:.2f} Ch.: {:.3f}’.format(loop

,c,np.amin(U[3*nely +1::3*(nely +1)])*1000.*(nelz /2.5) ,np.mean(xPhys [:]),change)

170 # Plot final design

endtimer = time.clock()

172 print ’Optimization finished in {:.0f}s. Preparing visualization ...’.format(np.ceil(endtimer -

starttimer))

np.savetxt("xphys.csv", xPhys , delimiter="\t", fmt=’%.1e’, header=’xPhys ’)

174 displayfigure(xPhys ,nelx ,nely ,nelz)

print ’MayaVi finished.’

176
# __________________________________

178 # --- Elemental Stiffness Matrix ---

def ElStiffnMat(nu):

180 A = np.array ([[32 , 6, -8, 6, -6, 4, 3, -6, -10, 3, -3, -3, -4, -8],[-48, 0, 0, -24, 24, 0, 0, 0,

12, -12, 0, 12, 12, 12]])

k = 1/144. * A.T.dot( np.array ([[1] ,[nu]]) )

182
k1 = np.empty ((6,6))

184 k1[0,0]=k[0]; k1[0 ,1]=k[1]; k1[0,2]=k[1]; k1[0,3]=k[2]; k1[0 ,4]=k[4]; k1[0 ,5]=k[4]

k1[1,0]=k[1]; k1[1 ,1]=k[0]; k1[1,2]=k[1]; k1[1,3]=k[3]; k1[1,4]=k[5]; k1[1 ,5]=k[6]

186 k1[2,0]=k[1]; k1[2 ,1]=k[1]; k1[2,2]=k[0]; k1[2,3]=k[3]; k1[2 ,4]=k[6]; k1[2 ,5]=k[5]

k1[3,0]=k[2]; k1[3 ,1]=k[3]; k1[3,2]=k[3]; k1[3,3]=k[0]; k1[3,4]=k[7]; k1[3 ,5]=k[7]

188 k1[4,0]=k[4]; k1[4 ,1]=k[5]; k1[4,2]=k[6]; k1[4,3]=k[7]; k1[4 ,4]=k[0]; k1[4 ,5]=k[1]

k1[5,0]=k[4]; k1[5 ,1]=k[6]; k1[5,2]=k[5]; k1[5,3]=k[7]; k1[5,4]=k[1]; k1[5 ,5]=k[0]

190 k2 = np.empty ((6,6))

k2[0,0]=k[8]; k2[0 ,1]=k[7]; k2[0,2]=k[11]; k2[0,3]=k[5]; k2[0,4]=k[3]; k2[0,5]=k[6]

192 k2[1,0]=k[7]; k2[1 ,1]=k[8]; k2[1,2]=k[11]; k2[1,3]=k[4]; k2[1,4]=k[2]; k2[1,5]=k[4]

k2[2,0]=k[9]; k2[2 ,1]=k[9]; k2[2,2]=k[12]; k2[2,3]=k[6]; k2[2,4]=k[3]; k2[2,5]=k[5]

194 k2[3,0]=k[5]; k2[3 ,1]=k[4]; k2[3,2]=k[10]; k2[3,3]=k[8]; k2[3,4]=k[1]; k2[3,5]=k[9]

k2[4,0]=k[3]; k2[4 ,1]=k[2]; k2[4,2]=k[4]; k2[4,3]=k[1]; k2[4,4]=k[8]; k2[4 ,5]=k[11]

196 k2[5,0]=k[10];k2[5,1]=k[3]; k2[5 ,2]=k[5]; k2[5,3]=k[11]; k2[5,4]=k[9]; k2[5,5]=k[12]

k3 = np.empty ((6,6))

198 k3[0,0]=k[5]; k3[0 ,1]=k[6]; k3[0,2]=k[3]; k3[0,3]=k[8]; k3[0 ,4]=k[11];k3[0,5]=k[7]

k3[1,0]=k[6]; k3[1 ,1]=k[5]; k3[1,2]=k[3]; k3[1,3]=k[9]; k3[1,4]=k[12];k3[1,5]=k[9]

200 k3[2,0]=k[4]; k3[2 ,1]=k[4]; k3[2,2]=k[2]; k3[2,3]=k[7]; k3[2 ,4]=k[11];k3[2,5]=k[8]

k3[3,0]=k[8]; k3[3 ,1]=k[9]; k3[3,2]=k[1]; k3[3,3]=k[5]; k3[3,4]=k[10];k3[3,5]=k[4]

202 k3[4,0]=k[11];k3[4,1]=k[12];k3[4,2]=k[9]; k3[4 ,3]=k[10];k3[4 ,4]=k[5]; k3[4,5]=k[3]

k3[5,0]=k[1]; k3[5 ,1]=k[11];k3[5 ,2]=k[8]; k3[5,3]=k[3]; k3[5,4]=k[4]; k3[5,5]=k[2]

204 k4 = np.empty ((6,6))

k4[0,0]=k[13];k4[0,1]=k[10];k4[0,2]=k[10];k4[0,3]=k[12];k4[0,4]=k[9]; k4[0 ,5]=k[9]

206 k4[1,0]=k[10];k4[1,1]=k[13];k4[1,2]=k[10];k4[1,3]=k[11];k4[1,4]=k[8]; k4[1 ,5]=k[7]

k4[2,0]=k[10];k4[2,1]=k[10];k4[2,2]=k[13];k4[2,3]=k[11];k4[2,4]=k[7]; k4[2 ,5]=k[8]

208 k4[3,0]=k[12];k4[3,1]=k[11];k4[3,2]=k[11];k4[3,3]=k[13];k4[3,4]=k[6]; k4[3 ,5]=k[6]

k4[4,0]=k[9]; k4[4 ,1]=k[8]; k4[4,2]=k[7]; k4[4,3]=k[6]; k4[4,4]=k[13];k4[4,5]=k[10]

210 k4[5,0]=k[9]; k4[5 ,1]=k[7]; k4[5,2]=k[8]; k4[5,3]=k[6]; k4[5 ,4]=k[10];k4[5,5]=k[13]

k5 = np.empty ((6,6))

212 k5[0,0]=k[0]; k5[0 ,1]=k[1]; k5[0,2]=k[7]; k5[0,3]=k[2]; k5[0 ,4]=k[4]; k5[0 ,5]=k[3]

k5[1,0]=k[1]; k5[1 ,1]=k[0]; k5[1,2]=k[7]; k5[1,3]=k[3]; k5[1,4]=k[5]; k5[1 ,5]=k[10]

214 k5[2,0]=k[7]; k5[2 ,1]=k[7]; k5[2,2]=k[0]; k5[2,3]=k[4]; k5[2 ,4]=k[10];k5[2,5]=k[5]

k5[3,0]=k[2]; k5[3 ,1]=k[3]; k5[3,2]=k[4]; k5[3,3]=k[0]; k5[3,4]=k[7]; k5[3 ,5]=k[1]

216 k5[4,0]=k[4]; k5[4 ,1]=k[5]; k5[4,2]=k[10]; k5[4,3]=k[7]; k5[4,4]=k[0]; k5[4,5]=k[7]

k5[5,0]=k[3]; k5[5 ,1]=k[10];k5[5 ,2]=k[5]; k5[5,3]=k[1]; k5[5,4]=k[7]; k5[5,5]=k[0]

218 k6 = np.empty ((6,6))

k6[0,0]=k[13];k6[0,1]=k[10];k6[0,2]=k[6]; k6[0 ,3]=k[12];k6[0 ,4]=k[9]; k6[0,5]=k[11]

220 k6[1,0]=k[10];k6[1,1]=k[13];k6[1,2]=k[6]; k6[1 ,3]=k[11];k6[1 ,4]=k[8]; k6[1,5]=k[1]

k6[2,0]=k[6]; k6[2 ,1]=k[6]; k6[2,2]=k[13]; k6[2,3]=k[9]; k6[2,4]=k[1]; k6[2,5]=k[8]

222 k6[3,0]=k[12];k6[3,1]=k[11];k6[3,2]=k[9]; k6[3 ,3]=k[13];k6[3 ,4]=k[6]; k6[3,5]=k[10]

k6[4,0]=k[9]; k6[4 ,1]=k[8]; k6[4,2]=k[1]; k6[4,3]=k[6]; k6[4,4]=k[13];k6[4,5]=k[6]
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224 k6[5,0]=k[11];k6[5,1]=k[1]; k6[5 ,2]=k[8]; k6[5,3]=k[10]; k6[5,4]=k[6]; k6[5,5]=k[13]

226 KE = 1/((nu+1)*(1-2*nu)) * np.concatenate ([np.concatenate ([k1 , k2, k3 , k4 ],axis =1),

np.concatenate ([k2.T, k5 , k6 , k3.T],axis =1),

228 np.concatenate ([k3.T, k6 , k5.T, k2.T],axis =1),

np.concatenate ([k4 , k3, k2 , k1.T],axis =1)])

230 return (KE)

232 # ____________________________

# --- Density Filter ---

234 def df(nelx ,nely ,nelz ,rmin):

nfilter = int(nelx*nely*nelz*((2*(np.ceil(rmin) -1)+1)**3))

236 iH = np.zeros(nfilter)

jH = np.zeros(nfilter)

238 sH = np.zeros(nfilter)

counter = 0

240 for k in range(nelz):

for i in range(nelx):

242 for j in range(nely):

row = k*nelx*nely + i*nely + j

244 k2a = int(np.maximum(k-(np.ceil(rmin) -1) ,0))

k2b = int(np.minimum(k+(np.ceil(rmin)),nelz))

246 i2a = int(np.maximum(i-(np.ceil(rmin) -1) ,0))

i2b = int(np.minimum(i+(np.ceil(rmin)),nelx))

248 j2a = int(np.maximum(j-(np.ceil(rmin) -1) ,0))

j2b = int(np.minimum(j+(np.ceil(rmin)),nely))

250 for k2 in range(k2a ,k2b):

for i2 in range(i2a ,i2b):

252 for j2 in range(j2a ,j2b):

col = k2*nelx*nely + i2*nely + j2

254 if counter >nfilter -1:

iH = np.concatenate ((iH ,np.array ([0])),axis =1)

256 jH = np.concatenate ((jH ,np.array ([0])),axis =1)

sH = np.concatenate ((sH ,np.array ([0])),axis =1)

258 iH[counter] = row

jH[counter] = col

260 sH[counter] = np.maximum (0.0,rmin -np.sqrt((i-i2)**2+(j-j2)**2+(k-k2)**2))

counter = counter +1

262 return(sH,iH ,jH)

264 # ____________________________

# --- Optimality Criterion ---

266 def oc(nelx ,nely ,nelz ,x,volfrac ,dc,dv ,g,activetop ,castingconstraint):

l1 = 0

268 l2 = 1e9

move = 0.2

270 xnew = np.zeros(nelx*nely*nelz)

while (l2-l1)/(l1+l2) >1e-3:

272 lmid = 0.5*(l2+l1)

xnew [:] = np.maximum (0.,np.maximum(x-move ,np.minimum (1.,np.minimum(x+move ,x*np.sqrt(-dc/dv/lmid

)))))

274 if activetop == 1:

activeele = np.zeros(nelx*nely*nelz)

276 activeele [:: nely] = 1

xnew[np.nonzero(activeele)] = 1

278 if activetopextra == 1:

activeele = np.zeros(nelx*nely*nelz)

280 activeele [1:: nely] = 1

xnew[np.nonzero(activeele)] = 1

282 if castingconstraint == 1:

xnew = cc(xnew ,nelx ,nely ,nelz)

284 gt = g+np.sum((dv*(xnew -x)))

if gt >0:

286 l1 = lmid

else:

288 l2 = lmid

return(xnew ,gt)

290
# ___________________

292 # --- Self -weight ---

def sw(xPhys ,specweight ,ndof ,nelx ,nely ,nelz):

294 Fsw = np.zeros ((ndof ,1))

# Self -weight corner nodes

296 swnidcorner1 = np.sort(np.array ([0])*(nelx +1)*(nely +1)+np.array ([0])*(nely +1)+(nely+1-np.arange(1,

nely +1)))

swdofcorner1 = 3*swnidcorner1.T - 1

298 for el in range(nely):

Fsw[swdofcorner1 -1] = specweight*(0.25*xPhys[el])

300 swnidcorner2 = np.sort(np.array ([0])*(nelx +1)*(nely +1)+np.array ([nelx])*(nely +1)+(nely+1-np.arange

(1,nely +1)))

swdofcorner2 = 3*swnidcorner2.T - 1

302 for el in range(nely):

Fsw[swdofcorner2 -1] = specweight*(0.25*xPhys[(nelx -1)*nely+el])

304 swnidcorner3 = np.sort(np.array([nelz])*(nelx +1)*(nely +1)+np.array ([0])*(nely +1)+(nely+1-np.arange

(1,nely +1)))

swdofcorner3 = 3*swnidcorner3.T - 1

306 for el in range(nely):

Fsw[swdofcorner3 -1] = specweight*(0.25*xPhys[nelx*nely*nelz -nelx*nely+el])

308 swnidcorner4 = np.sort(np.array([nelz])*(nelx +1)*(nely +1)+np.array([nelx])*(nely +1)+(nely+1-np.

arange(1,nely +1)))

swdofcorner4 = 3*swnidcorner4.T - 1

310 for el in range(nely):
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Fsw[swdofcorner4 -1] = specweight*(0.25*xPhys[nelx*nely*nelz -nely+el])

312 # Self -weight surface nodes

[j,k] = np.mgrid [1: nely +1,2: nelz +1]

314 swnidsurface1 = (k.T-1)*(nely +1)*(nelx +1)+j.T

swdofsurface1 = 3*swnidsurface1.T - 1

316 for elz in range(nelz -1):

for el in np.arange(elz*(nelx*nely),elz*(nelx*nely)+nely):

318 Fsw[swdofsurface1 -1] = specweight*(0.25*xPhys[el ]+0.25*xPhys[el+nelx*nely])

[j,i] = np.mgrid [1: nely +1,2: nelx +1]

320 swnidsurface2 = (i.T-1)*(nely +1)+j.T

swdofsurface2 = 3*swnidsurface2.T - 1

322 for el in range(nely*(nelx -1)):

Fsw[swdofsurface2 -1] = specweight*(0.25*xPhys[el ]+0.25*xPhys[el+nely])

324 [j,i] = np.mgrid [1: nely +1,2: nelx +1]

swnidsurface3 = (i.T-1)*(nely +1)+j.T+(nelx +1)*(nely +1)*nelz

326 swdofsurface3 = 3*swnidsurface3.T - 1

for el in range(nelx*nely*(nelz -1) , nelx*nely*(nelz -1)+nely*(nelx -1)):

328 Fsw[swdofsurface3 -1] = specweight*(0.25*xPhys[el ]+0.25*xPhys[el+nely])

[j,k] = np.mgrid [1: nely +1,2: nelz +1]

330 swnidsurface4 = (k.T-1)*(nely +1)*(nelx +1)+j.T+nelx*(nely +1)

swdofsurface4 = 3*swnidsurface4.T - 1

332 for elz in range(nelz -1):

for el in np.arange(elz*(nelx*nely)+nely*(nelx -1),elz*(nelx*nely)+nely+nely*(nelx -1)):

334 Fsw[swdofsurface4 -1] = specweight*(0.25*xPhys[el ]+0.25*xPhys[el+nelx*nely])

# Self -weight inside nodes

336 [j,i] = np.mgrid [1: nely +1,2: nelx +1]

for zlayer in range(nelz -1):

338 swnidinside = (i.T-1)*(nely +1)+j.T + (nelx +1)*(nely +1) *(zlayer +1)

swdofinside = 3*swnidinside.T - 1

340 for el in range(nely*(nelx -1)):

Fsw[swdofinside -1] = specweight*(0.25*xPhys[el+nelx*nely*zlayer ]+0.25*xPhys[el+nely+nelx*

nely*zlayer ]+0.25*xPhys[el+nely*nelx+nelx*nely*zlayer ]+0.25*xPhys[el+nely*nelx+nely+nelx*nely*

zlayer ])

342 return(Fsw)

344 # __________________________

# --- Casting Constraint ---

346 def cc(xnew ,nelx ,nely ,nelz):

for col in range(nelx*nelz):

348 for el in range(col*nely+nely -1,col*nely ,-1):

if xnew[el] > xnew[el -1]:

350 xnew[el -1] = xnew[el]

return(xnew)

352
# _____________________________

354 # --- Visualization Optimum ---

def displayfigure(xPhys ,nelx ,nely ,nelz):

356 xPlot=np.empty(nelx*nely*nelz)

for ele in range(nelx*nely*nelz):

358 if xPhys[ele ]>0.5:

xPlot[ele ]=1.

360 else:

xPlot[ele ]=0.

362 py,px,pz = np.mgrid [0:nely , 0:nelx , 0:nelz]

fx = px.T.flatten ()

364 fy = py.T.flatten ()

fz = pz.T.flatten ()

366 for ele in range(nelx*nely*nelz):

if xPlot[ele ]>0.5:

368 point = mlab.points3d(fz[ele],fx[ele],--fy[ele], mode=’cube’, opacity=xPlot[ele],

scale_factor =1., color =(1. ,1. ,1.))

mlab.show()

370
# ==============================================================================================

372 # --- Topology Optimization Main ---

# ==============================================================================================

374 if __name__ == "__main__":

main(nelx ,nely ,nelz ,volfrac ,penal ,rmin)
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