
Delft University of Technology
Master’s Thesis in Embedded Systems

SMoT: A Smartphone-Based Mobile Testbed
for Human-Centric Wireless Networks

Platon Efstathiadis

SMoT: A Smartphone-Based Mobile Testbed for

Human-Centric Wireless Networks

Master’s Thesis in Embedded Systems

Embedded Software Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Platon Efstathiadis
P.Efstathiadis@student.tudelft.nl

19th August 2015

mailto:P.Efstathiadis@student.tudelft.nl

Author
Platon Efstathiadis (P.Efstathiadis@student.tudelft.nl)

Title
SMoT: A Smartphone-Based Mobile Testbed for Human-Centric Wireless Networks

MSc presentation
August 27th 2015

Graduation Committee
Prof. Dr. K.G. Langendoen (chair) Delft University of Technology
M.A. Zuniga Zamalloa, PhD Delft University of Technology
Dr. Alessandro Bozzon Delft University of Technology

mailto:P.Efstathiadis@student.tudelft.nl

Abstract

Recently, wireless sensor networks (WSNs) are becoming vital to a wide
range of application domains, from precision agriculture and smart buildings
to health systems and monitoring of humans, animals, crowds and robots.
In particular, there is an increasing number of sensor devices that are worn
by persons who interact with them on a daily basis. In these applications,
networks are formed by the persons who wear the sensor devices and as a
result the mobility comes from them. This results in new protocols and
applications for this kind of networks and new challenges arise. Human
factors are crucial aspects in this case and researchers should consider them
in their designs. The protocols and applications developed, should be tested
and verified before their final deployment. We argue that a testbed, exposing
the human characteristics is needed.

In this thesis, we define the fundamental requirements that a testbed
for experimentation with human-centric wireless networks must fulfil. We
design and implement a fully functional testbed that allows researchers to
run experiments in a realistic and controlled testing environment. We show
that our testbed has the appropriate features and tools to make the running
of the experiments easy and effortless. In addition, our testbed gives the
ability to the researchers to observe how human diversity and variability
(like body orientation or walking speed) affect their work. Furthermore, we
evaluated the mechanisms of our testbed and present how they affect the
execution of an experiment.

iv

Preface

This thesis presents the work I have done in the Embedded Software Group
during my studies for completing my Master of Science in Embedded Sys-
tems. My interest for wireless sensor networks started during the first year
of my master degree. The applications, the particularities and the challenges
that these systems have, fascinated me from the beginning and this is the
reason I chose to do my graduation project in this field. During my thesis I
expanded my knowledge and met several notable people who helped me in
many ways.

I would like to thank my daily supervisor Marco Cattani for his support and
encouragements. He helped me with his ideas, taught me the insights and
the proper way to conduct research and our discussions were always very
instructive. My thanks also go to Marco Zuniga who helped me construct my
thoughts and choose the right topic for my graduation project. Many thanks
to my colleagues Ioannis, Michal, Dimitris, Michalis and all the people of the
group. Furthermore, I would like to thank Koen Langendoen, for hosting
me at the Embedded Software group and Alessandro Bozzon, for being a
member of my graduation committee. Finally, I would like to thank my
friends and family for their continuous support during all these years.

Platon Efstathiadis

Delft, The Netherlands
19th August 2015

v

vi

Contents

Preface v

1 Introduction 1

2 Requirements 5

3 Related Work 9

4 Design 13
4.1 Testbed Node . 14
4.2 Participants . 16
4.3 Testbed Manager . 17

5 Implementation 21
5.1 SMoT APP . 22

5.1.1 Serial Module . 23
5.1.2 BSL Module . 24
5.1.3 Logger Module . 27
5.1.4 Event Manager . 28
5.1.5 Communication Module 28

5.2 SMoT Server . 29
5.2.1 Communication Module 30
5.2.2 Node Manager . 32
5.2.3 Experiment Manager 32

6 Evaluation 33
6.1 Usability . 33
6.2 Participant Coordination . 36
6.3 Lifetime . 43

7 Conclusions and Future Work 47
7.1 Conclusions . 47
7.2 Future Work . 48

vii

viii

Chapter 1

Introduction

Wireless sensor networks (WSNs) consist of tiny devices with limited pro-
cessing power and sensors that communicate wirelessly with each other.
They have become valuable and appropriate systems for a diverse range of
applications and sectors. Precision agriculture, building management and
health care as well as environment and human sensing are some represent-
ative examples. During the last years, the characteristics of sensor networks
made them an effective and suitable solution for applications that involve
humans, like human-activity recognition and crowd monitoring.

Energy efficiency, power, compactness and cost-effectiveness are some
properties that enable wireless sensor networks to be used in applications
that involve humans in contrast to others. For instance, video based systems
exist for monitoring a crowd. In these systems, additional hardware compon-
ents and high implementation cost are two main disadvantages. Moreover,
tracking people in huge areas is difficult due to the limitations in equipment
and privacy concerns.

Protocols and applications for wireless sensor networks typically need to
be evaluated and tested before their final deployment to real-world solutions.
This procedure helps the researchers to understand the behaviour of their
protocols under specific conditions and settings. It also makes debugging
more efficient and gives the opportunity to fix potential bugs before the final
implementation of the application or protocol.

Tools that can be used for testing and verification are testbeds and simula-
tions. Although simulations provide a controlled testing environment, they
fail to provide a sufficient level of realism. Assumptions are made about
the radio propagation, traffic and topologies, which led to many weaknesses
as stated in Egea-Lopez’s work [24]. On the other hand, testbeds are able
to reveal the real vagaries of wireless communication and expose protocols
and applications to real-world wireless sensor network scenarios without the
idealities of simulation environments. Moreover, testbeds enable researchers
to design robust applications or protocols, and test them on real hardware.

1

We can classify testbeds in different ways, depending on the kind of the
applications that they have to assay. Applications and protocols for WSNs
expose diverse characteristics. For example, some protocols aim for WSNs
where the nodes are static in contrast to others where the nodes are mobile.
As a result, there are testbeds with static nodes like [31] [27] [14] [23],
testbeds with mobile nodes [29] [30] and testbeds that consist of other sub-
testbeds [19]. The kind of testbed that a researcher is going to choose to
test his application and protocol depends on the kind of real wireless sensor
network that will be implemented.

The work in this thesis is motivated by the fact that applications and pro-
tocols for human-centric wireless sensor networks (networks that are created
by devices that humans wear or carry) need a suitable testbed in order to
be tested and verified. A testbed is required where experimentation condi-
tions are as close as possible to the typical operating conditions of the final
deployed solutions. For instance, crowd proximity [28], density estimation
[18], human-activity recognition [35] and monitoring of the social behaviour
[17] are applications and protocols where the human factor has a signific-
ant role. Existing mobile testbeds fail to capture human-like effects, like
how body interference and orientation affects node connectivity. Realism
is also something really important. Human movement and variability (e.g.
every person performs the same instruction differently) are two aspects that
applications and protocols under experimentation should be exposed to.

The challenge of providing a functional testbed that will take into consid-
eration human characteristics and provide sufficient realism is not intuitive.
A possible solution could be to give the sensor nodes of the wireless sensor
networks to people. However, this way is not always feasible and has a list
of drawbacks. Coordination of the persons, debugging of the results and as-
signment of identifiers (IDs) are some problems that this solution struggles
to solve. Among these problems collection of the logging data, mass re-
programming of the testbed nodes and exposing the testbed nodes to the
human variability are some challenges that the thesis is trying to address.
The following question must be answered: ”How can we create an effective
mobile testbed for human-centric WSNs and solve the above challenges?”

The wide usage of smartphones inspired the design and implementation of
our testbed. Modern smartphones have become ubiquitous and supplanted
the desktop PC as the dominant mode for accessing the Internet. They
constitute a major part in the everyday life of people as they carry them
everywhere and use them in a variety of situations. They are equipped with
a powerful processor, connectivity capabilities and a wide range of sensors
that can be used to deduce information about the context of a user and the
environment. These properties make smartphones eligible and appropriate
components for the testbed we would like to deploy. We believe that the
combination of these powerful and pervasive devices with the sensor nodes of
a wireless sensor network will allow us to create a mobile testbed for sensor

2

networks oriented to humans.
SMoT, which is an abbreviation for Smartphone-based Mobile Testbed,

is the name of our testbed. It is a low-cost, easy to deploy, mobile testbed
that targets applications and protocols for human-centric sensor networks. A
representative example of these applications is the estimation of a crowd’s
density. Increasing the realism and including humans in the experiments
is something crucial for testing application and protocols like the above.
By doing that, researchers will be able to better understand the behaviour
of their work, fix contingent bugs and test them in a controlled realistic
environment.

The contributions of the work presented in this thesis are the following.
First, we define a complete set of requirements that a testbed for human-
centric WSNs should have. This set includes basic requirements that are
common to the majority of testbeds, but also some additional requirements
such as participant coordination, ground truth and participant’s feedback
collection. Second, we designed and implemented a fully functional testbed
for this kind of networks. We explain the challenges that we encountered as
well as the existing limitations. Finally, we present the results of evaluating
the mechanisms of our testbed, which contribute to the execution of an
experiment for human-centric WSNs.

The rest of the thesis is organized as follows. In Chapter 2, we describe
the requirements that a testbed for human-centric WSNs applications and
protocols should fulfil. Chapter 3 presents existing mobile testbeds and
in Chapter 4 we present our design choices with our motives. Chapter 5
describes the implementation of SMoT, followed by the evaluation of our
testing infrastructure in Chapter 6. Finally, the conclusions are drawn in
Chapter 7

3

4

Chapter 2

Requirements

The usage of sensor networks for human-centric applications opens up new
challenges that demand new capabilities and features from testbeds. Exist-
ing mobile testbeds do not present the characteristics that make them able
to cope with these kinds of applications and protocols.

After studying many surveys [25] [26] [32] [33] for a wide variety of test-
beds, we analysed and defined a set of requirements for a mobile testbed for
human-centric WSNs. There are requirements that are common to existing
testbeds and are necessary in order to have a fully functional testing infra-
structure. However, each testbed targets different domains and applications.
Each application has its own characteristics and peculiarities that must be
captured by the testbed. Thus, a testbed for human-centric applications and
protocols must provide features that capture the human variability in real-
istic conditions and provide a sufficient amount of realism. In this thesis, we
define and present the set of requirements that a testbed for human-centric
WSNs applications must fulfil.

Human factor — One of the goals of a testbed is to provide controlled
experimental conditions with a sufficient amount of realism. In particular,
a testbed for human-centric wireless sensor networks must be able to cap-
ture and expose to the applications and protocols the human variability and
characteristics like moving speed and body orientation, which can signific-
antly affect the results. A representative example can be found in Rensfelt’s
work [30], where the mean RSSI value measured from a sensor node carried
by a person and a robot shows significant differences. Furthermore, for some
applications interacting with humans is a vital requirement since it helps to
collect the ground truth. However, by involving humans, privacy should be
taken into consideration. Mechanisms are required to protect persons’ data,
control what information they share and grant their permission for taking
part in the testbed.

5

Testbed Usability — From the researchers perspective, the testbed should
provide the appropriate tools and services to easily access, setup and run an
experiment. Remotely accessing the testbed is a basic functionality of any
testbed that allows the researchers to access the testbed at any time and
from any place without the need to visit the testbed’s location. Providing an
interface, which researchers can easily use, helps to set up and configure an
experiment. Since the sensor nodes need to be programmed in order to run
an experiment, pushing their firmware on the fly enables the massive deploy-
ment of an experiment with less time and effort from both the researcher
and participants. Another important aspect for the usability of a testbed is
the ability to synchronize the testbeds events with the experiment’s events.
To achieve this goal, being able to synchronize the experiment execution
across several nodes is an essential characteristic, which allows the testbed
to start the nodes in a simultaneous manner of a few seconds. Moreover,
parsing the results and debugging the protocols and application can be two
challenging procedures, especially when the logs are distributed and not syn-
chronized. Therefore, timestamping the results and any other event makes
these procedures more straightforward.

From the participants perspective, the testbed should not interfere with
their work flow. It should interrupt the participants only when it is necessary
for the experiment. Furthermore, the testbed nodes should be able to be
deployed in a small amount of time and effort, which will also make the
participation in the testbed and the redeployment of the infrastructures
easier.

Mobility — In human-centric WSNs the sensor nodes are attached to per-
sons that freely move around in a real-world environment. As a result,
mobility is one of the main characteristics that our testbed should support
and provide.

We can categorize mobility in two forms, Passive and Active. Passive
refers to the mobility of a device embedded in an object or carried by a
person, which cannot be controlled by the device itself. This kind of mobility
can be either non-predictive or predictive. An example of non-predictive
mobility is a human or an animal that can freely move through space. If an
observer watches their movements, he will not be able to predict their next
move. On the contrary, a bus that has a predefined and acquainted route to
follow, is an example of predictive mobility. Despite the fact that we know
the route of the bus, we are not able to control it. While predictive mobility
offers larger possibilities in terms of applications, controlling and exploiting
the results is a real challenge.

On the other hand, Active mobility refers to the object/person that is
moving following real time or predefined navigation instructions. Robots
usually provide this type of mobility. They can follow lines on the ground,
specific coordinates or pre-defined traces in a very accurate and precise way.

6

However, when using robots localization and battery charging are two ad-
ditional challenges.

For both humans and robots, handling mobility and the associated dy-
namics is thus a key requirement for mobile WSN testbeds. Therefore,
mechanisms to control and exploit realistic human mobility during experi-
mentation are necessary.

Cost — The deployment of a testbed includes some cost. The hardware, the
equipment needed, the connections between devices (and the experimenter)
and the maintenance are the main sources of expenses. Cost is an important
aspect of a testbed, since it is one of the main factors that limits the testbed
operation. The objective is to have a testbed with cost per node close to or
less than the cheapest static testbed for WSNs in the literature, Indria [23].
By using off-the-shelf-hardware we can reduce the cost of the testbed and
make also the deployment easier.

Scalability — Human-centric wireless sensor networks can consist of tens,
hundreds and even thousands of nodes that can be deployed in both an
indoor and an outdoor environment. Movement can range from the size
of a building up to the scale of a city. Thus, supporting experiments on
a wide range of scales is an important aspect that contributes toward the
realism of human-centric WSNs. In order to make the experimentation with
mobile sensor nodes at these scales possible, the way that nodes are added
or removed from the testbed should be simple and fast. Testbed designers
should consider that in their designs in order to deploy an easy to extent
testing infrastructure.

Participant Coordination — For robot-based mobile testbeds coordin-
ating the movements is simple. The researcher can create traces that the
robots are able to follow precisely (given a precise positioning system) in
different ways. On the other hand, in a testbed with people coordination is
a vital requirement. However, coordinating people, can be a very challen-
ging procedure. Imagine the case of a researcher giving directions to tens or
hundreds of people who participate to his experiment. Some of them may
not listen to what he said, leading to a number of consequences like delayed
or wrong movements. To avoid this kind of situations a testbed should be
able to guide the participants during an experiment.

Coordinating the participants individually, gives to the researcher the op-
portunity to have more control over the experiment. It makes the repetition
of an experiment in similar conditions feasible and better than in the case
where there is no guidance from the testbed. This also helps researchers
to compare and understand the behaviour of their applications and proto-
cols. By giving instructions, the testbed needs to have a way to capture
the participant’s reaction to those instructions. Thus, the testbed should

7

have a way to collect the feedback from the participants. In addition, the
testbed should have mechanisms that allow the participants to interact with
the testbed and produce events if an experiment demands it.

Testbed Lifetime — In a wireless mobile testbed the main power supply is
a battery. A battery-powered device is able to operate for a specific duration
depending on the capacity of the battery and the power consumption of the
device. As a consequence, the testbed nodes are able to operate for a specific
amount of time depending on their consumption. This places a boundary on
the amount of time that an experiment can run. We believe that running an
experiment for at least one hour per day is a logical low boundary. However,
by using battery-powered devices, a charge mechanism is needed in order to
keep the devices alive. Therefore the testbed should have a self-chargeable
mechanism, which will allow the recharging of the batteries of a testbed
node at least once per day.

According to our knowledge there is not a mobile testbed that fulfils all
of the above mentioned requirements. As we will discuss in Chapter 3,
existing mobile testbeds offer some of these features like mobility or self-
recharging mechanisms but they are not suitable for testing human-centric
sensor networks applications and protocols. They fail to address how the hu-
man factors affect the protocols and applications in a controlled and realistic
environment.

8

Chapter 3

Related Work

In this chapter we analyse existing mobile testbeds for wireless sensor net-
works, which have some common features and fulfil partially the require-
ments described in Chapter 2. The majority of the existing testbeds are
using robots to provide mobility. However, the use of robots implies some
overheads. Necessity for the design of moving patterns, obstacle and colli-
sion avoidance mechanisms and movement restrictions are some examples.
Moreover, the mobility patterns that robots will follow cannot be as random
as human movement and cannot be compared to the real true mobility of
humans.

Mobility is one of the main differences between existing mobile testbeds
and SMoT. In our testbed the mobility comes from persons, the participants
of the testbed. This way, SMoT can expose the applications and protocols
to the human characteristics such as unpredictable walking speed, body
orientation etc. In the following, we describe each individual mobile testbed
and analyse the reason why they do not completely fulfil our application
requirements.

MiNT-m [22] is a platform that supports a large number of experiments for
mobile multi-hop wireless network protocols. In order to support mobility
and to allow a flexible reconfiguration, each node is mounted on a centrally
controlled mobile Roomba [10] robot. Robots are located in a room with a
camera-based localization system in the ceiling for navigation purposes. It
has a number of special features like real-time visualization of the testbed
activity, topology reconfiguration, comprehensive control and monitoring of
node’s position. It also has an automatic battery recharging mechanism, like
SMoT but provided in a different way, supplied by Roomba robots which
makes it capable to operate 24/7.

However, the scalability of MiNT-m is very limited. The need for multiple
charging stations and several cameras, accurately installed on the ceiling in
order to provide positioning and localization of the nodes are two aspects
that reduce its scalability. Furthermore, as we can see in Table 3.2, the cost

9

of the facility and nodes makes the deployment of the complete infrastructure
expensive. In contrast, SMoT is able to scale from the size of a room to a
city with low cost and without the need of complex mechanisms for keeping
the testbed alive.

The SCORPION [15] testbed has as its main target heterogeneity. In par-
ticular, this mobile testbed consists of four different types of sensor nodes.
Aerial and ground robots, nodes located in the buses of university campus
and nodes inside a briefcase carried by persons are the nodes of this test-
bed. It combines mobility that comes from both robots and humans that are
able to move around in an indoor and outdoor environment. Unfortunately,
SCORPION does not provide any autonomous recharging mechanism, re-
mote access or reprogramming capabilities like SMoT. It is also an expensive
testbed with limited scalability. Nevertheless, it is suitable for testing and
evaluating a wide range of mobile protocols because of all the types of mo-
bility it provides.

Sensei-UU [30] uses robots, paired with a camera that follow pre-defined
paths created with lines on the floor. The utilization of robots provides
mobility precision to the facility that is difficult to achieved with human
mobility. In addition, one of the main advantages is that it can be deployed
easily in different places just by re-placing the guiding lines on the floor.
The Sensei-UU does not have features like remote access, self-rechargeable
mechanisms and bulk reprogramming of nodes because its scope is to be
deployed only when it is needed and not to be a permanent testing infra-
structure.

Model trains running on tracks are the main components of TrainSense
[31]. The testbed provides restricted mobility through fixed tracks. The
ability to track and localize the nodes as well as the reliable source of energy,
which is able to be provided continuously through the rails, are two main
advantages of this testbed. Moreover, it uses a portable device that can be
paired with the trains in order to reprogram the nodes and download the
results. The downside of this system is that the rails limit the scalability
and flexibility of the testbed.

Different from the previous mobile testbeds, which were targeting WSNs
and mainly using robots to provide mobility, PHONELAB [29] and Pogo [16]
are large-scale testbeds that consist only of Android smartphones and focus
on mobile phone sensing and smartphone research. That is, the researcher
can request and collect data from the different sensors of the participant’s
phone. In PHONELAB, the researcher develops an Android application (ex-
periment) locally, tags by using the PHONELAB’s library the sensor data
of the phone he is interested in and requests an upload of his application
(experiment) to PHONELAB. The experiments (applications) are distrib-
uted to the testbed nodes (the participants smartphones), through the Play
Store or over-the-air. The collection of the results is performed only when
the phone is charging to avoid draining the battery. In Pogo, the researchers

10

MiNT-m SCORPION Sensei-UU TrainSense PHONELAB Pogo SMoT

Mobility robots robots & humans robots robots humans humans humans
Scalability Low Medium Medium Low Medium Medium Medium
Participant
Coordination

NA NA NA NA Yes Yes Yes

Autonomous
Charging

Yes No No Yes Yes Yes Yes

Environment Indoor Both Both Indoor Both Both Both
Remote Access No No No No Yes Yes Yes
Re-programming No No No Yes NA NA Yes

Table 3.1: Testbed comparison. Existing robot-based testbeds for WSNs
are not able to fulfil all the requirements for a human-centric WSN since
they lack the involvement of humans. On the other hand, the testbeds that
involve humans fulfil the requirements, but their scope is not the WSNs.
SMoT is able to fulfil all the requirements for a human-centric WSN while
it combines sensor nodes and humans.

write their experiments in JavaScript and, by using the testbed’s API, are
able to run an experiment, access the smartphone’s sensor data and col-
lect the results. The testbed provides the necessary software, which runs
in the smartphones of the participants and the PC of the researcher, in or-
der to translates the API functions to Android calls. By doing so, it hides
the communication between the researcher and participant, which helps the
usability of the testbed.

Both testbeds inspired our design and choices. In our solution, the humans
have a very significant role in the testbed too. They provide the mobility and
the autonomous charging mechanism. The participants of PHONELAB and
Pogo use the smartphones of the testbed as their regular phones. As a result,
in order to be functional the participants charge their phones at least on a
daily basis. Exploiting that fact the testbeds can operate 24/7. In addition
PHONELAB and Pogo are able to coordinate the participants by using
the smartphone capabilities. Furthermore, both testbeds are easily scalable
and provide realistic human movements (their intrusiveness is minimal).
The participant’s privacy is handled in both PHONELAB and Pogo using
sandbox techniques. An experiment can access only data for which the
participant gave his permission at the beginning of the experiment.

Table 3.1 compares the testbed characteristics with the requirements men-
tioned in Chapter 2. In addition, an overview of the deployment cost of the
testbeds is presented in Table 3.2. The table shows the per-node cost for each
testbed and the cost of the infrastructure needed to manage the testbed. As
we can observe, SMoT has the lowest cost of the mobile testbeds for WSNs
while fulfilling all the requirements. The cost per testbed node in SMoT
includes the price of the cheapest smartphone ($59.8) that supports our re-
quirement (USB OTG capabilities), the price of the sensor node ($74.41)
and the USB OTG cable ($0.79). However, if we use the same phone the
cost per node of PHONELAB and Pogo can be less than SMoT since they
require only the smartphone. In the case of PHONELAB we mention the
cost of the smartphones used in the testbed as provided in the paper. The

11

Testbed Name Cost/Node Facility Cost Number of Nodes Testbed Cost

MiNT-m $ 1665 $ 2100 12 $ 22080

SCORPION

Aerial Node: $ 464
Bus Node: $ 360
Briefcase Node: $ 282
Ground Nodes: $ 402

$ 0

Aerial Node: 8
Bus Node: 40
Briefcase Node: 20
Ground Nodes: 20

$ 31972

Sensei-UU $ 696 $ 20 - -
PhoneLab $ 195 $ 0 288 $ 56160
Indria $ 158 (average per node) 127 $ 20066
SMoT $ 134 $ 0 100 $ 13433

Table 3.2: Cost per testbed. Note that the Indria [23] testbed is a static
testbed and the reason we presented here is because it is the lowest costly
static testbed.

papers of Pogo and TrainSense do not provide any details about the cost of
each node. In addition, in the paper of Sensei-UU there is not any reference
to the total number of nodes since it is not a permanent testbed.

12

Chapter 4

Design

The basic idea behind the design of our testbed is the use of smartphones as
a testbed infrastructure. We attach the sensor nodes, which are the devices
that run an experiment, to the smartphones, which act as the means of
control and communication. We call the pair of a smartphone and a sensor
node, a testbed node and each testbed node is carried by a person that
participates in the testbed. This is not a limitation as a participant can carry
more than one testbed node, but it depends on the experiment requirements
defined by the researcher. The choice of smartphones gives us a number of
advantages and enable us to fulfil the requirements, mentioned in Chapter
2, for a human-centric WSN testbed.

First, the fact that the participants of the testbed carry the sensor nodes
gives the researchers the ability to exploit the natural mobility of humans.
Since we design a testbed for testing applications and protocols for sensor
devices that will be carried or worn by persons, providing realistic mobility
is a vital requirement. The participants of the testbed are able to move
around in a real-world indoor and outdoor environment without limiting the
movements inside a particular area like the existing solutions with robots.

Second, by attaching the sensor nodes to the participants smartphones our
testbed can capture and expose to the researchers the human characteristics
and variability in a realistic environment. Moreover, since the participants
of the testbed can use their own smartphone as part of the testbed node, our
testbed is equipped with an autonomous self-rechargeable mechanism. The
mechanism relies on the fact that the participants use their phone in many
aspects of their life for making calls, sending messages or taking pictures.
As a result, they have to charge it regularly (we assume at least once per
day) in order to use it. Exploiting this circumstance our testbed can operate
in 24/7 and be available at least once per day.

Third, the powerful capabilities, the wide range of sensors and the con-
nectivity features, which modern smartphones have, makes them suitable
choice for remotely accessing the testbed, run complex tasks like repro-

13

gramming the sensor nodes and interact with the participants. Using smart-
phone’s screen, buttons, sensors, the testbed is able to coordinate the parti-
cipants of the testbed and collect their feedback as well as the ground truth.
In addition, the sensors of the smartphone can be utilized in order to provide
feedback information to the testbed without demanding any actions from
the participants. For example, instead of requiring from the participant of
the testbed to press a button when he will move to a specific location, the
GPS of the phone can detect that and log it in a file.

Finally, the design of our testbed allows easy deployment without spending
a large amount of effort and money. Smartphones are common and cheap
devices (depending though on the specifications).

Besides the testbed nodes, a central server is part of our testbed. In SMoT
we call it the testbed manager. SMoT follows a master-slave approach similar
to a large majority of testbeds like Pogo [16], PHONELAB [29] and Sensei-
UU [30], in which the master is the testbed manager and the slaves are the
testbed nodes. The testbed manager provides an interface to the researchers
in order to be able to interact with the testbed. The researchers can manage
and control the testbed nodes, start and configure an experiment and collect
the results.

Figure 4.1 presents an overview of the testbed components as well as the
human entities involved in the system architecture, while Figure 4.2 shows
the relations between them.

For clarity we present an example usage scenario of an experiment that
can run in our testbed. The scenario demonstrates and makes the under-
standing of the testbed design easier. Imagine the case where a researcher
wants to run an experiment for testing his protocol in the corridor of a build-
ing. The researcher has gathered a group of people and gave each of them a
sensor node to hold, which communicates with the other sensor nodes and
performs some computations. The persons move to a number of waypo-
ints, which are specific locations in the corridor and it is the researcher’s
responsibility to set and manage these locations, when the researcher in-
structs them. The researcher is interested in the results of the protocol at
each specific waypoint. After the end of the experiment, the researcher has
to collect the results from the sensor nodes.

4.1 Testbed Node

In SMoT, a testbed node is a sensor node that is tethered together with a
smartphone. The sensor node is the device that runs the experiment and
communicates with the other sensor nodes. It is a device equipped with a
microprocessor, a transceiver, a flash memory and a set of sensors. While
usually a sensor node is powered by its own battery, in SMoT the battery
of the smartphone provides the power to the sensor node, which has some

14

Researcher

Sensor
Node

Smartphone
Participant

Sensor
Node

Smartphone

Participant

...

Figure 4.1: Overview of SMoT components.

advantages and disadvantages. It makes the testbed more usable since the
deployment of, and the participation in the testbed becomes easier removing
the need for periodically changing the sensor node’s batteries. Nevertheless,
powering the sensor node with the battery of the smartphone reduces the
battery life of the testbed node because the same battery has to provide
power to two devices, the smartphone and the sensor node. We discuss that
in Section 6.3, where we present a detailed analysis of the power consumption
of the testbed node.

Besides the power, the smartphone provides the main functionalities of
the testbed node.

First, the client part of the software of the testbed, which runs in the
smartphone, has the ability to communicate, program, reset the sensor node
and collect the results after the end of an experiment. This allows on-the-fly
reprogramming of the sensor nodes and reduces the effort and time needed
for both the researcher and the participants. In our example, the researcher
is able to run several experiments by commanding the smartphones to re-
program the sensor nodes with the new firmware. It is not necessary to
gather all the sensor nodes and distribute them again to the participants.

Second, the smartphone establishes a connection with the testbed man-
ager. Therefore, it can be remotely accessed, receive the necessary files of
an experiment and upload the results to the testbed manager. Finally, the
testbed software running in the smartphone of the participant is able to
interact with the participant, collect his feedback and the ground truth and

15

Tetsbed Manager Smartphone
Sensor
Node

Participant

GroundTruth/
Feedback/
Permission

Guidance/
Directions

Researcher

Figure 4.2: The testbed components with the supported functionalities
between them.

guide him. In the usage scenario, which we presented earlier in this chapter,
by using SMoT the researcher can easily guide the participants when and to
which waypoint to move. The participants, in turn, are able to interact with
the testbed and confirm their arrival to a particular waypoint. As we already
mentioned, coordinating the participants and collecting their feedback is a
challenging process, but assists the researcher in having better control of his
experiment, which improves the consistency of the results. Mobile testbeds
as PHONELAB [29] and Pogo [16] that consist of smartphones, provide
similar mechanisms to communicate with the researchers and guide the par-
ticipants, but they do not provide an interface to the sensor node since it is
out of their scope.

4.2 Participants

The participants are the persons that carry a testbed node and take part
in the experiments. They are able to interact with the testbed and the
experiments by using the smartphone of the testbed node. They can give
also their feedback to confirm a requested action from the researcher, either
as part of the application or the scenario under experimentation. They can
provide the ground truth for an experiment from the point of the application
user. The smartphone records every interaction with the participant and any
guidance message produced by the smartphone given a set of instructions
from the researcher. This is an important feature that helps the researcher
to parse and debug his results in a more understandable and smart way,

16

since he has a way to know the ground truth and what the events were
during an experiment.

Participation in an experiment is an important aspect in our approach,
since our testbed needs persons to operate. Therefore, we designed our
testbed in a way that the participation is as easy as possible. Similar to
PHONELAB [29] and Pogo [16], in SMoT the participants have to install
and run the software once on their phones and they do not have to per-
form extra actions unless the experiment demands it. It is a non-intrusive
approach in which the software runs silently in the background without dis-
turbing the participants from their current flow. However, the software can
also run in the foreground when it is necessary. For instance, when interac-
tion with the participants is required. To simplify the deployment process,
the attachment of the sensor node to the smartphone follows a plug-n-play
manner. The participants just connect the sensor node to the phone, using
a cheap USB-OTG cable. Moreover, we guarantee that we take into consid-
eration the participant’s privacy and acquire his permission to participate
in an experiment by using the smartphone’s permission dialogues when the
participant installs the software of the testbed. Permission dialogues are a
common way to deal with privacy issues in smartphone applications and it
is a mechanism that every modern operating system is equipped with.

To attract participants to our testbed, there are several policies. Like in
Pogo [16], we anticipate that research institutions will be able to provide
the testbed nodes to their employees or students and deploy the testbed.
They can motivate the participation in the testbed by giving study credits
to the students or some other kind of rewards. There are also other options
to gather participants like PHONELAB [29], where the persons that take
part in the testbed get a discount on their mobile contracts.

4.3 Testbed Manager

Our testbed follows a master-slave approach where the master is the testbed
manager. It is the component that provides an interface to the researchers
and it can run on any personal computer, which makes it portable. The
researchers can use it to have remote access to the testbed in order to keep
track of the status of the nodes that are on line, delegate tasks, send com-
mands and firmwares and collect the results.

The testbed manager exposes to the researcher various commands. The
set of commands includes the display of the registered and online testbed
nodes, the execution and termination of an experiment and the collection of
the results. The state of a testbed node can either be online or offline. A
testbed node is online if the smartphone has an active Internet connection
and a sensor node attached to it, which makes it ready to run an experiment,
otherwise it is offline. When a testbed node requests to be part of the

17

Type Files Parameters

plain firmware serial output, synchronous start, experiment duration
guided firmware, instructions serial output, synchronous start, experiment duration

Table 4.1: Type and parameters of an experiment.

testbed, it registers itself to the testbed manager, which has a database
that stores the registered testbed nodes. Thus, a registered testbed node is a
node that is part of the testbed, but it may be online or offline at a certain
moment.

By using the testbed manager, researchers are able to start and terminate
an experiment. The experiments in our testbed have a specific format, which
is characterized by two aspects, their type and the set of parameters (see
Table 4.1). The plain type, which consists only the firmware to upload on
the sensor node and the guided type, which consist of the firmware and the
instructions to coordinate the participants. With the latter, researchers are
able to give directions to the users of the testbed like guide them to move to
a specific point, or perform a particular action. For instance, in the waypoint
scenario we mentioned at the beginning of this chapter, the instructions of
the guided type of the experiment is a list with the number of the waypoints
and the amount of time the participants should stay at each waypoint.

Independent of the type of the experiment, the parameter set is the same.
The first parameter is about the logging data. The researcher can specify
if he is interested in collecting the serial output of the sensor node (if there
is any, depending on the firmware). Synchronous start of the experiment
is the second configurable parameter. That is, our testbed is able to start
the sensor nodes simultaneously with a difference in the starting time of a
few milliseconds. This is useful for instance, in case where the researcher
needs to add simultaneously a number of nodes and needs the devices to
simultaneously perform an action.

The last parameter is about the duration of an experiment. Note that,
the researcher should be careful with this value because it should not exceed
some limits, which we compute and present in Section 6.3. These limits are
introduced by the fact that the testbed nodes are battery powered resulting
in bounds on the duration of an experiment related to the energy available
in the battery of the smartphone.

Up to now, we discussed the configuration of an experiment, but ex-
periments give back results too. These results, the logging data, have a
particular structure in SMoT in order to be easy comprehensible and help
the debugging procedure. They are composed by the output of the sensor
nodes and some annotations like the participant’s feedback. Every output
and every event is timestamped by the smartphone. We use the operat-
ing system’s network protocol for clock synchronization in order to provide
a global time for our timestamping mechanism with millisecond accuracy.

18

By doing so, our system can produce understandable and easy to compare
logging data.

Furthermore, logging data can be enriched by smartphone’s sensor data
such as GPS or access point names or participant’s feedback in order to
record what is happening during an experiment. An example of that is
annotations showing that the participant has moved, in our usage scenario,
to a particular waypoint. Note that this information was generated by the
participant through pressing a button in the user interface of the SMoT
application running on the smartphone. The smartphone also annotates the
time that the participant should move to the next waypoint and notifies him
to perform the movement.

An important aspect here is how experiments and information in gen-
eral can be distributed between the testbed manager and the testbed nodes.
The choice of the method used is vital since it will affect the duration and
robustness of an experiment.

Broadly speaking two methods exist in the literature for information dis-
semination, pull-based and push-based systems. In the pull-based method
the client or the user starts the communication process by requesting some-
thing from a server, which respectively responds to the request. A typical
example of such a system is the Android Play Store [4] and iPhone App Store
[1]. In both systems the user selects a number of applications to download
and the system sends the applications to the user’s phone. The choice of
which application will be installed to the user’s phone lies completely with
the user. In contrast, push-based systems allow the servers (the researchers
in our case), to send their experiments to the testbed nodes without requir-
ing an action from the participant of the testbed. This can be automatic
like in AnonySense [20], or manual like in Prism [21].

In SMoT, like in Pogo [16], we have chosen a push-based system for dis-
seminating information between the testbed manager and the testbed nodes.
With this method the testbed does not bother the participants with unne-
cessary messages and changes in their work flow. In addition, the researchers
are able to run an experiment without waiting several minutes or even hours
as in the case of pull-based systems for the participant to receive and start
an experiment. In SMoT, the distribution of an experiment needs a few
seconds. Although this communication system is suitable for our testbed,
it limits the freedom of the participants in terms of not being able to select
what and how many experiments will run on their phones. As a result, in
order to ensure that participants have the full control of their privacy and
freedom, we always acquire beforehand their permission to participate in
the testbed.

19

20

Chapter 5

Implementation

This chapter describes our implementation of SMoT, which is written in
Java (more than 5K lines of code). The server part runs on a desktop
PC. The client part instead runs on Android smartphones. Android was a
suitable choice for a number of reasons. First, at the time of writing this
thesis Android had the biggest share of the market. Second, it supports
the USB On-The-Go (OTG) mode [12] (in contrast with iOS that does
not have software support). Third, the cost of an Android smartphone
with USB OTG support can be very low. By utilizing the OTG mode of
the USB protocol in our implementation we are able to provide a serial
bidirectional connection between the smartphone and the sensor node. The
smartphone, by acting as master, can have control of a sensor node. In
contrast to the serial connection, a wireless connection could also provide a
medium of communication with the sensor node by using for example the
smartphone’s Bluetooth connectivity. However, a wireless connection would
make the testbed more complex and a number of important operations like
the programming of the sensor nodes difficult to achieve or even infeasible.

In addition, by using a USB OTG connector the smartphone can power the
sensor node. A USB OTG connector is a normal USB connector with extra
modifications and when it is connected to the phone drains constantly its
battery even when there is no device connected. Alternative solutions could
be to power the sensor nodes directly from the battery of the smartphones
(requires soldering) or to use the audio jack connection of the phone in order
to enable and disable the OTG mode. Nevertheless, these solutions demand
extra modifications to the smartphones, to the USB OTG connector, which
make the setup of a testbed node difficult and reduce the usability of our
solution.

The current implementation of SMoT supports only one type of sensor
node, the G-Node G301 [11] from SOWNet technologies. It has a CC1101
radio chip, 8 KB RAM, 8 MB of external flash memory, 8 GPIO pins for
external connectivity and an MSP430 microproccessor. It is also equipped

21

File
Manager

Command
Manager

Serial
Module

BSL

Logger
Module

Event
Manager

Figure 5.1: SMoT APP software architecture.

with a USB interface by using a USB controller from FTDI [2]. These
capabilities make it suitable for wireless sensor network applications and
deployments and a reasonable choice for our testbed. Although our im-
plementation supports only one sensor node, adding a new device will not
require a significant amount of effort. Only minor changes in specific soft-
ware modules are needed because of the diversity in sensor node’s hardware
architecture. We have designed and implemented our software in a modular
way in order to increase the extensibility of our testbed.

5.1 SMoT APP

The SMoT APP is the software part of the testbed that runs on the smart-
phone of a testbed node. It can run on Android 3.1 and higher because
starting from that version, the software supports the USB OTG mode. The
current version of the SMoT APP is approximately 4K lines of Java code. It
is composed of six modules (see Figure 5.1) that interact between each other
and provide the functionalities of a testbed node. The SMoT APP provides
an interface to the sensor node, establishes the communication with the
testbed manager and implements the necessary mechanisms for a number of
features like timestamping events and coordinating participants.

It uses also the Android’s permission dialog to get the participant’s per-
mission for his participation to the testbed. In the following subsections we
discuss in detail each software module, its functionality, the interconnectivity
between them as well as the difficulties and the trade offs we encountered.

22

5.1.1 Serial Module

The first part that our interface with the sensor node needs is an object
that can establish communication, using the smartphone’s USB port, with
the microprocessor of the connected sensor node. The Serial module is
responsible for creating and maintaining this communication. It is the low-
level handler of the serial communication between the smartphone and the
sensor node. In G-Node sensor node, a FTDI USB controller is used to
translate the USB connection of the sensor node to a UART connection,
which the MSP430 is equipped with. As a result, the USB controller allows
the smartphone to establish a UART communication with the MSP430. The
TxD0 and RxD0 pins of G-Node’s FTDI USB controller (see Figure 5.2) are
directly connected to the MSP430 using its UART interface.

The Android Host API allows Android applications to communicate with
the connected USB devices. It provides also some additional functions that
applications could use in order to execute commands in the USB controller
such as setting one of its GPIO pins. However, each USB controller has
a different set of commands and command IDs. The application developer
should know the set of commands and IDs in order to use the Android Host
API. A solution to this problem is to use the API provided by the device
drivers of the USB controller. The device drivers use the Android Host API
and because they know the available commands in the USB controller are
able to provide the necessary functionality to the developer.

In our case, by using the API, which is offered by the drivers of the FTDI
USB controller, the Serial module is able to perform the following number
of actions:

• open and close the UART connection with the MSP430.

• check if a sensor device is connected.

• write data to, and read data from, the sensor node. The SMoT APP
uses a separate thread to read the data from the USB port and a ring
buffer data structure with a fixed-size to store them. Using a ring
buffer helps us to easily buffer and handle the data.

• configure the UART settings (see Figure 5.1) including the baudrate,
the number of data and stop bits and the parity. Configuring properly
the settings of the UART connection is an important aspect because
both the smartphone and the sensor node should have the same set-
tings in order to communicate.

• set and clear the GPIO pins of the USB controller, which is important
for the module that reprograms and resets the sensor node.

Note that, the Serial module is only dependant on the type of the USB
controller that the sensor nodes has. Therefore, different USB controllers

23

Figure 5.2: GNode hardware organization of USB Controller, I2C and
MSP430.

need different device drives to be used by the SMoT APP. However, the
majority of the sensor nodes are equipped with an USB controller from the
FTDI family.

5.1.2 BSL Module

Programming the microprocessor of a device requires the flashing of its
memory with the desired firmware, which can be done either by triggering
its JTAG pins (when available) or by starting its bootloader (if it exists).
In our case, the MSP430F2418 microprocessor of the G-Node is equipped
with a bootloader, which can be started by triggering the RST/NMI and
TCK pins of the microprocessor as the MSP430 BSL User Guide [8] states.
However, depending on how the hardware components of a sensor node are
connected there are different ways/paths to access and modify the pins that
start the execution of the bootloader. As a result, any time that we would
like to add a new sensor node in the testbed, we have to modify the BSL
module appropriately in order to have the proper logic to access the mi-
croprocessor’s pins. As we can see in Figure 5.2, the RST/NMI and TCK
pins of the G-Node’s microprocessor are connected to an I2C circuit and
subsequently to the FTDI USB controller. Therefore, the SMoT APP needs
to communicate with the I2C circuit, through the FTDI USB controller, in
order to access the microprocessor’s bootloader.

Before implementing the BSL module we tried to access the bootloader
and program the sensor nodes using an existing script in Python that we
executed on the Android smartphone. However, we failed to access the
FTDI USB controller because the script needed the appropriate FTDI USB
drivers that are not loaded in the default kernel of an Android system. A

24

solution to this problem is to build a custom Android kernel from scratch
including the FTDI USB drivers. However, it will reduce the usability and
the ease of deployment of our testbed since we have to install the new custom
Android system to every smartphone participating in the testbed. Therefore,
we implemented the BSL module, which allows us to interface with the
microprocessor of the sensor node and access the bootloader with in an easy
and flexible way.

The BSL module is currently, more than 1.5K lines of code and the most
complex module of the SMoT APP. It provides the necessary logic and func-
tionality to communicate with the bootloader of the sensor node. However,
before the BSL module is able to send commands to the bootloader it needs
to invoke the bootloader by applying the bootloader entry sequence, which
can be found in [8], to the RST/NMI and TCK pins of the MSP430F2418
microprocessor. In particular, the BSL module applies the entry sequence
to the P0 and P1 pins of the I2C circuit, which are accessible only by using
the RTS and DTR pins of the FTDI USB controller. The BSL module is
able to trigger the P0 and P1 pins of the I2C circuit by implementing the
I2C protocol and using the Serial module to access them.

Moreover, the bootloader of the microprocessor has a number of com-
mands that it can execute using a specific data frame protocol, called serial
standard protocol (SSP). A 16-bit checksum is calculated over all the trans-
mitted or received bytes in the data frame and some commands are password
protected in order to prevent direct data access. In addition, a synchron-
ization character should be sent before sending any commands and an ac-
knowledgement is sent back by the bootloader when a commands is received.
The BSL module in the current implementation can send a subset of these
commands, which are presented below:

• Mass erase: Performs a total erase of the microprocessor’s flash
memory.

• SYNC: Before sending any command, a synchronization character
must be sent to maintain internal parameters relevant to the UART
and memory timings.

• Transmit Password: Some of the bootloader’s commands need to
receive the bootloader’s password before the actual command. The
password prevents from actions aiming to harm the sensor node like
overwriting the node’s firmware.

• Reset: Applies the standard reset sequence and the sensor node starts
executing the firmware loaded in its flash memory. (Password protec-
ted)

• Bootloader Info: Gets info for chip’s family type and micropro-
cessor’s bootloader. (Password protected)

25

Operation Baudrate Stop bits Data bits Parity bits

Apply bootloader
entry sequence 9600 1 8 Even

Firmware transmission 38400 1 8 Even

Data exchange 115200 1 8 Even

Table 5.1: UART settings for each operation.

• Baudrate Change: Sets the baudrate of the communication with
the sensor’s node bootloader. (Password protected)

• Transmit Data Block: This command is important because it allows
the BSL module to write a block of data to the flash memory of the
microprocessor. The maximum size of data that it can be written with
one execution of the command is 250 bytes. (Password protected)

For each command, the BSL module creates the data frame of the com-
mand with the checksum and sends first the synchronization character and
then the command to the bootloader. Then it waits, without blocking the
SMoT APP, for the response from the bootloader and presents it to the
participant (if the SMoT APP is running in the background). The response
can be three types. First, the command was received and executed success-
fully, second the command was not valid or was not executed successfully
and third a data frame contains the response of the request. An example
of the latter is the Bootloader Info command where the BSL module will
receive the respective information about the version of the bootloader, the
ID of the chip etc.

The sending and receiving of the command data frames is performed us-
ing the UART connection, which is handled by the Serial module. Note
that the settings of the UART connection are different when we apply the
bootloader sequence, transmit the firmware and exchange data (see Table
5.1). Although the parameters for the first two operations are fixed, for the
data exchange they can be modified depending on the UART settings that
the firmware has set for the sensor node. In addition, we would like to make
clear here the main difference of the BSL with the Serial module. The Serial
module is a low-level component as it writes and reads whatever information
is given to it. The BSL module implements the logic and the protocols of
the hardware modules. It knows what and when to send data to the sensor
node and to the Serial module, and is able to interpret the received data.

The BSL module also reads and parses the firmware file in order to create
its memory image. The firmware has been generated from the researcher
by cross-compiling the source file of an experiment. Creating the memory
image is not a trivial procedure because the firmware is an object file in
ELF format. An ELF file has a specific format and is needed to be read and

26

timestamp (ms) sensor output/smartphone event annotations

Table 5.2: Log format.

parsed properly to get the information needed to build the memory image.
In order to create the memory image of the firmware, the BSL module creates
a representation of the memory contexts by finding the sections, segments
and the corresponding memory address of the microprocessors flash memory
where the firmware’s image will be placed. After creating the proper memory
image, the BSL module can finally flash the memory of the microprocessor
with the firmware of an experiment. Programming the sensor node is a
representative example of the functionality that BSL offers by combining its
features. Figure 5.3 presents the complete sequence of the steps that the
BSL module performs when it needs to program the sensor node.

Apply bootloader
entry sequence

Read ELF file

Create firmware
memory image

Write image to
the flash of the

MCU

Figure 5.3: BSL module steps for programming a sensor node.

5.1.3 Logger Module

In SMoT, both the sensor node and the smartphone can produce data. The
sensor node produces the results of an experiment and the smartphone the
events generated by the Event manager. These events include notifications
with the instructions of a guided experiment, the feedback from the parti-
cipants and the start and termination of an experiment. The Logger module
logs every output of the sensor node and every event from the smartphone
in a file stored in the internal flash memory of the smartphone. Every log
entry has a specific form specified in Table 5.2.

SMoT utilizes the Network Time Protocol (NTP) [9] of Android to create

27

the timestamps of a log entry and to provide a global time system for the
testbed nodes. Android uses NTP to synchronize the clock of the system
with the UTC time with an accuracy that ranges from 1 to 10 milliseconds.
However, it needs periodically an internet connection in order to get syn-
chronized with the NTP server. Alternatives exist like the SNTP protocol,
which is a simplified version of the NTP protocol, but it can provide an ac-
curacy of 100 milliseconds and GPS, which might not always be available as
in the case where the participant is inside a building, but provides a better
precision.

5.1.4 Event Manager

The Event manager is the module of the SMoT APP that keeps track of every
testbed related event that takes place in the smartphone. For instance, the
pressing of a button in the app’s interface or the start and termination of an
experiment. In addition, it handles any time related event by using timers,
which perform an action when they expire. A representative example is the
simultaneous start of the testbed nodes. The researcher sets the desirable
time and the Event manager of each testbed node, after the reprogramming
of the sensor node by the BSL module, starts a timer. When the timer
expires, the module gives again the control to the BSL module in order to
perform a reset and start the sensor node.

Moreover, the Event manager has the ability to generate events, which
can be useful for example to provide a synchronized guidance to the parti-
cipants of our testbed. In a guided experiment, the Event manager generates
and presents the notifications to the participants based on the instructions
provided by the researcher. The current version of SMoT APP uses the
Android’s Notifications and Toast Messages widgets in order to notify the
participants. There are also other ways to notify the participants like using
the speaker or the vibration of the phone.

5.1.5 Communication Module

It is essential for the testbed nodes to have an active communication with
the testbed manager in order to receive the experiments and send back the
results. The Communication module establishes and maintains the connec-
tion with the SMoT Server and it is divided in two parts, the File Manager
and the Command Manager.

The Command manager implements the client for the Google Cloud Mes-
sage (GCM) [3] service, which is a cloud messaging service that SMoT uses
to establish the bidirectional communication between the researcher and the
testbed node. We discuss it in detail in Section 5.2. The Command man-
ager runs in the background and listens for commands that are sent by the
SMoT Server. It parses the received commands and gives control to the ap-

28

propriate software module of the SMoT APP, which executes it. After the
receiving and completion of any command, the Command manager sends an
acknowledgement to the SMoT Server to ensure the correct reception and
execution of the command. The current version of the Command manager
supports the following sets of commands, which the researcher can issue to
control the testbed nodes:

• request the status of a testbed node (online or offline).

• command a smartphone to program the sensor node and start an ex-
periment with the selected parameters, which we have presented in
Table 4.1.

• download a specific file (e.g. the firmware of the sensor node or the
file with the instruction of the researcher).

• upload results.

• terminate an experiment. The termination of an experiment implies
the termination of the serial communication with the sensor node,
which is handled by the Serial module.

• register a new testbed node. The Command manager is responsible
for registering a new testbed node to the SMoT Server, but only the
first time. Note that this command can be issued only from the SMoT
APP and not from the researchers.

The File Manager implements instead the functionality needed to down-
load and store the necessary files of an experiment as well as upload the
results to the researcher. SMoT uses Dropbox as a cloud file hosting service
to store the files of an experiment. Drobox was a suitable choice for two
reasons. First, its API is well-integrated on Android and second, in contrast
with Google Drive, by using Dropbox the SMoT APP is able to download
files from the cloud that have been uploaded by another application or user.
However, a Dropbox account is needed in order to have access to the files
of an experiment. An FTP server could also be used for downloading and
uploading the associated files of an experiment.

5.2 SMoT Server

The SMoT Server is the software part of the testbed that runs on a PC.
The current version is more than 1K lines of Java code. It is the part
of the testbed that the researchers use in order to access the testbed, send
commands and set up their experiments. The software modules of the SMoT
Server are three (see Figure 5.4), each providing its own unique functionality.

29

Communication
Module

Experiment
Manager

Node
Manager

Figure 5.4: SMoT Server software architecture.

Figure 5.5: GCM implementation in SMoT.

5.2.1 Communication Module

The Communication module handles the connection between the SMoT
Server and the SMoT APP. SMoT uses a cloud messaging service by Google
[3] in order allow the SMoT Server to send commands to the testbed nodes.
It is a free service that enables the SMoT Server to establish a persistent,
asynchronous and bidirectional communication to the SMoT APP without
the need to set up our own server like Pogo [16]. The Google connec-
tion server receives every message from both parties, handles all aspects
of queuing of messages and delivers them to the target. It can transfer mes-
sages in JSON [6] format with up to 4KB payload, which is adequate for
our command messages. An overview of the GCM implementation in SMoT
can be seen in Figure 5.5.

The GCM service offers two types of connection server, an HTTP and an
XMPP server. SMoT uses the latter server that relies on the XMPP [13]

30

Figure 5.6: Flow of messages from the SMoT Server to the GCM server.

protocol for the communication between the SMoT Server and SMoT APP.
XMPP is an instant messaging protocol, which makes it a suitable choice
for our testbed because it gives the ability to the SMoT Server to send
commands with a delay of a few seconds. In contrast with the HTTP GCM
server, the XMPP GCM server gives the ability to the SMoT APP to send
messages to the SMoT Server, which is the case of the registration command
that is presented in Sub-section 5.1.5. The XMPP GCM server acknowledges
every messages it receives and if a problem occurs like a message loss, it will
resend it. If a device is offline, the Google server can store the messages
for this device for a certain amount of time specified by the developer and
delivers the messages as soon as the smartphone is online. A summary
of how the acknowledgement mechanism of XMPP GCM server works is
presented in Figure 5.6.

If a message is not delivered, it is considered a pending message. The
XMPP GCM server can store up to 100 pending messages before dropping
every message it receives. Therefore, the SMoT Server implements its own
sending and acknowledgement mechanisms. If the number of pending mes-
sages exceeds 100, the SMoT Server waits until the XMPP GCM server can
accept again new messages and resend it. Moreover, the SMoT Server dis-
cards any message that has been acknowledged by the XMPP GCM server,
but cannot be delivered. In order to provide a more robust communication
with the SMoT APP, the SMoT Server considers a message delivered only
if it has received the respective acknowledgement from the SMoT APP and
not only from the XMPP GCM server.

31

5.2.2 Node Manager

The Node Manager is responsible for the management of the registered test-
bed nodes. It uses an SQLite database to store the registered devices. Each
entry of the database stores the unique ID of a testbed node, the manufac-
turer, the model and the IMEI of the smartphone connected to the testbed
node. Android provides full support for SQLite databases, thus the SMoT
Server can easily run on Android smartphones instead of PCs. Only minor
changes are required and the proper libraries that the application uses. Us-
ing the Node manager, the researchers can get information about the details
and status of each testbed node and select all or a subset of them in order
to run their experiments.

5.2.3 Experiment Manager

The Experiment Manager handles the specification and configuration of an
experiment. It prompts the researcher with an interface to specify the name
of the firmware and the guidance file, the duration of an experiment and start
time as well as the option for the logging of the serial output. It creates the
JSON messages with these parameters and use the Communication module
to send them to the testbed nodes. Note that in our implementation it is the
researcher’s responsibility to upload the necessary files of an experiment to
Dropbox. The SMoT Server does not send the firmware file of an experiment,
but only commands the smartphones to download it from Dropbox. Similar,
the researcher takes his results from Dropbox and not from the SMoT Server.

32

Chapter 6

Evaluation

In this chapter we evaluate SMoT on three different aspects: usability, parti-
cipant coordination and lifetime. In Section 6.1 we quantify the mechanism
for the synchronous start of the testbed nodes, which improves the usability
by reducing the delays introduced by the communication between the SMoT
Server and SMoT APP. In Section 6.2, we present the delays introduced by
the participants and show that the SMoT mechanisms are able to reduce
them and provide an amount of control during an experiment with a suffi-
cient level of realism. Finally, we present the bounds of our testbed in the
duration of an experiment in Section 6.3.

6.1 Usability

In SMoT we use smartphones, which act as a means to provide the main
functionality of a testbed node. However, the usage of smartphones can
introduce delays at the execution time of an experiment. The delays are
caused by the time a smartphone needs to program a sensor node, which
depends on the software and hardware of the smartphone. As a result, the
variance at the execution time of an experiment increases between different
testbed nodes. To reduce the delays, SMoT has a synchronization mech-
anism that allows the researchers to set the desirable execution time of an
experiment and start the testbed nodes simultaneously. We quantified how
simultaneous different testbed nodes can execute an experiment by measur-
ing their starting times

The amount of time needed to program and start a sensor node is divided
in four events. The first event is the time interval for receiving the command
from the SMoT Server. Once the smartphone receives the command it starts
programming the sensor node, which is the second event. This event is the
most time consuming and we are not able to control it since it depends on
the hardware capabilities of the smartphone and on the tasks running at
the moment. The third event is the reset of the sensor node, which signals

33

Events

ReceivedCMD Program Reset Running

R
e

la
ti
v
e

 d
e

la
y
 f

ro
m

 t
h

e
 q

u
ic

k
e

s
t

te
s
tb

e
d

 n
o

d
e

 (
s
)

0

1

2

3

4

5

6

7

8

Figure 6.1: Relative delay distributions of the three phones from the quickest
phone per event in ten repetitions. Because we do not use the synchron-
ization mechanism of SMoT the Running event includes the delays of the
ReceivedCMD, Program and Reset events.

the execution of its firmware and the last event is the time the smartphone
needs to receive from the sensor node the first serial output of an experiment.
We used four testbed nodes with four smartphones, two Samsung Galaxy
Nexus running Android 4.4.4 and 4.4.2 respectively, one Samsung GT-I9100
running Android 4.4.4 and a Samsung GT-I9300 running Android 4.3.1 and
we measured the time when each event takes place in ten repetitions. At
each repetition and event, we computed the relative delays of the three
smartphones from the smartphone that performed each event first.

Figure 6.1 shows the distribution of the relative delays of the three smart-
phones (we exclude the quickest smartphone, which relative delay is always
0) in 10 repetitions when the synchronization mechanism of SMoT is not
used. We can see that the four phones receive the command from the SMoT
Server with a difference of approximately half a second. The use of the
XMPP protocol contributes to achieve this bound. However, the time the
four smatphones need to program their sensor nodes vary a lot and this
variance affects the reset of the sensor nodes and the start of their firm-
wares since it is accumulated. As a result, the four testbed nodes start the
execution of an experiment at different times. In addition, we can observe
that the reset operation, which happens after the programming of the sensor
node, and the time needed for the sensor to start the firmware are not time
consuming operations.

34

Events

ReceivedCMD Program Reset Running

R
e

la
tiv

e
 d

e
la

y
fr

o
m

 t
h

e
 q

u
ic

ke
st

 t
e

st
b

e
d

 n
o

d
e

 (
s)

0

1

2

3

4

5

6

7

8

Figure 6.2: Relative delay distribution of the three phones from the quickest
phone per event in ten repetitions using the synchronization mechanism of
SMoT.

As Table 6.1 shows, the reset operation lasts on average roughly one
second and the smartphones receive the first output from the sensor after a
few milliseconds.

Event Average duration (sec)

ReceivedCMD min=0.056, avg=0.199, max=0.368
Program min=10.639, avg=13.250, max=18.081

Reset min=0.316, avg=0.558, max=1.182
Running min=0.301, avg=0.305, max=0.308

Table 6.1: Average time needed for the completion of each event in ten
repetitions of four testbed nodes.

On the other hand, Figure 6.2 shows the case where the sensor nodes start
simultaneously by using the SMoT mechanism. Because the smartphones
are synchronized, by using a global time system provided by the SMoT APP,
researchers are able to delegate tasks to them in the future. Thus, they
are able to set the absolute time that a reset command will be executed
simultaneous as soon as all the smartphones finish the programming of their
sensor node. Therefore, the absolute time must be set to an arbitrary value
that it will be at least later than the time that the slowest phone of the
testbed programs its sensor node. Comparing the two figures, we show
that the sensor nodes can start almost synchronously with a difference of
hundreds milliseconds. Thus SMoT’s synchronous start mechanism is able
to alleviate the uncontrolled delay introduced by the programming of the

35

WayPoints
1 2 3 4 5 6

A
rr

iv
a

l
ti
m

e
s
 (

s
)

0

50

100

150

200

250

300

350

(a) Absolute arrival times.

WayPoints
1 2 3 4 5 6

R
e
la

ti
v
e
 A

rr
iv

a
l
ti
m

e
s
 (

s
)

-3

-2

-1

0

1

2

3

4

5

(b) Relative arrival times.

Figure 6.3: Distribution of the absolute and relative arrival times at each
waypoint of 10 participants in 20 repetitions without using the SMoT’s
guidance mechanism.

sensor nodes.

6.2 Participant Coordination

One of the main goals of SMoT is to provide both control over the exper-
iment and realistic conditions. Involving humans makes the control of an
experiment difficult since it implies the coordination of the participants of
the testbed, which is a challenging task. In addition, human variability in-
troduces delays in the coordination of the participants because each persons
walks for example at different speeds. Nevertheless, using SMoT, researchers
are able to run an experiment in realistic conditions (e.g. human mobility)
while having a sufficient amount of control over it.

To evaluate SMoT’s coordination capabilities, we examined how its guid-
ance, feedback and logging mechanisms affect the execution of an exper-
iment. We run an experiment in a corridor of our building with 10 par-
ticipants and 20 repetitions (2 repetitions per participant). We set up 6
waypoints, specific spots on the floor, with 4 meters distance between each
other where the participants moved and stood for 60 seconds. At each way-
point we marked the arrival time of each participant in each repetition by
using a stopwatch.

Figure 6.3(a) shows the distribution of the arrival times at each waypo-
int. We can see that as the participants were moving along the waypoints
the variance in the arrival times was increasing. The reason is the human
variability since the participants were moving with different speeds. Some
of the participants were arriving at a waypoint earlier or later than others
as it can be seen in Figure 6.3(b), which presents the relative arrival times
at each waypoint. The relative arrival time is the result of the subtraction

36

WayPoints
1 2 3 4 5 6

A
rr

iv
a

l
ti
m

e
s
 (

s
)

0

50

100

150

200

250

300

350

Figure 6.4: Arrival time after SMoT guidance, feedback and logging mech-
anisms.

of the mean arrival time (of all repetitions) from the absolute arrival time
at a waypoint.

Figure 6.4 presents the arrival times at each experiment if we do not
take into consideration the movement between the waypoints. By using the
SMoT’s guidance, feedback and logging mechanisms we can align the logging
data and the arrival times to those in Figure 6.4. Despite the fact that during
the experiment the participants arrived to the waypoints at different times,
the testbed mechanisms enable us to know when a participants has left and
arrived at a waypoint and as a result to correlate the logging data with the
proper waypoint and arrival times.

Until now we showed the delays introduced by the smartphones of the test-
bed nodes and the participants of the testbed. We analysed and quantified
the delays and we presented how the mechanisms of our testbed can reduce
them. By reducing the delays of an experiment using SMoT’s mechanism
for coordination, feedback collection and logging we give to the researcher
the ability to have more control over his experiments, which in turn improves
the consistency of his results.

We evaluated how the control over an experiment can affect the con-
sistency of the results by running three experiments and comparing three
different control scenarios. For our experiments we used The Rack [34], a
static testbed that consists of 100 nodes located in the ceiling of the 9th

floor of the EWI faculty building at the Technical University of Delft. Dur-
ing each experiment the participant, who was holding a testbed node, was
moving in one direction towards 6 predefined waypoints, stopping at each
waypoint for 60 seconds. The participant’s testbed node was communicat-

37

(a) (b)

Figure 6.5: The trolley standing in a waypoint in a fixed position (black
tape in the ground) while was carrying in fixed orientation a SMoT testbed
node.

ing wirelessly with the nodes of The Rack and was executing an algorithm
that was collecting and writing to the serial the IDs of the neighbors at each
waypoint.

For each scenario, we computed the similarity between the neighborhood
cardinality at each waypoint over 10 different repetitions. To compare the
different repetitions we used the Jaccard Index [5] because of its simpli-
city and the fact that we had sets, which represent the neighbors at each
waypoint. However, it is possible to use another similarity metric.

The first scenario provides a fully controlled but non-realistic environment
since we used a trolley (to emulate a robot) instead of a human. The trol-
ley was carrying one testbed node in a fixed orientation (see Figure 6.5).
We moved the trolley along the waypoints and placed it in a fixed position
(marked by tape on the floor). We used SMoT’s guidance, feedback and
annotation mechanisms in order to collect and correlate the results to the
correct waypoints. In Figure 6.6, we present the distribution of the similar-
ities between different repetitions of the experiment at each waypoint. The
only factor that affects the experiment here, is the wireless link character-
istics that were fluctuating due to changes in the environment and people
moving around the offices. Thus, this is the best similarity we can achieve.
Note that at waypoint 6 the similarity is constant due to the fact that the
half side of the ceiling do not have The Rack’s nodes because it is where the
heating systems of the floor is located.

38

WayPoints
1 2 3 4 5 6

S
im

ila
rit

y
(%

)

0

20

40

60

80

100

Figure 6.6: Distribution of similarities between 10 repetitions at each way-
point using a trolley.

In the second scenario, we used a person for the experiment but without
any guidance from the testbed. This resulted in a realistic, but uncontrolled
environment. We gave a testbed node to a participant who was moving
towards the waypoints and stood at each of them for 60 seconds. It was
the participant’s responsibility to keep track of the time and decide when to
move to the next waypoint. In contrast to the previous experiment, Figure
6.7 shows that the similarity between the repetitions of the experiment at
each waypoint is very low because we did not have control during the experi-
ment. The results of the experiment did not have any annotations about the
time that the participant left or arrived at a waypoint, but only the serial
output of the sensor node with its timestamp. Thus, we could not correlate
the correct logging data with the appropriate waypoint and we split the res-
ults in portions of 60 seconds (the time that the participant stood at each
waypoint). As a consequence, the logging data that corresponds to each
waypoint could include data that belong to the previous waypoint and to
the physical space between them.

In the third scenario, the participant was moving using the guidance
and the feedback mechanisms of SMoT. This way, we were able to achieve
realistic conditions, exposing the protocols to human characteristics while
providing a good amount of control. The similarity results can be seen in
Figure 6.8. The distribution of the similarities between repetitions is smal-
ler than without guidance, with a mean value that is similar but lower than
the trolley experiments. By guiding the participant, collecting his feedback
and annotating each event in the results we could distinguish which logging

39

WayPoints
1 2 3 4 5 6

S
im

ila
rit

y
(%

)

0

20

40

60

80

100

Figure 6.7: Distribution of similarities between 10 repetitions at each way-
point using a participant and SMoT without guidance.

data belong to which waypoint and as a result have better control of our
experiment. There was no need for extra assistance to keep track of the
participant’s actions since the smartphone of the testbed node performed
that. Comparing Figures 6.7 and 6.8, we can see that our testbed with
its mechanisms helps researchers to obtain an amount of control over their
experiments, which assists the collection and understanding of their results.

Human Factor

In the last two scenarios, we exposed the application to realistic conditions
since the participant was the subject that was carrying the testbed node and
was moving every time with different orientation and stand position at each
waypoint. The human diversity, like the movement speed or the orientation
of the testbed node, was exposed to the application while debugging and
collection of the results were feasible with low effort and time.

Comparing Figure 6.6 with Figure 6.8, we show that the human factor and
especially the human variability can affect the protocol or the application
since the only difference between these two experiments is the use of a person
for carrying the testbed node. In addition, even with perfect coordination,
we show in Figure 6.8 that the results are not identical but similar. That is,
our testbed can capture the consequences of human variability, and is able
to expose the application or protocol to human characteristics.

40

WayPoints
1 2 3 4 5 6

S
im

ila
rit

y
(%

)

0

20

40

60

80

100

Figure 6.8: Distribution of similarities between 10 repetitions at each way-
point using a participant and SMoT with the guidance and feedback mech-
anisms.

Real Case - Estreme

We testbed SMoT in a different set up using a real-world protocol for
neighborhood cardinality estimation, named Estreme [18]. Estreme is an
estimator for dynamic wireless networks. That is, networks that are dense
(up to one hundred of neighbors) and mobile as in the case of crowds. Es-
treme is able to estimate in a concurrent, fast, asynchronous and accurate
manner the number of the nodes that a node has in its neighborhood. In
addition, the experiment consisted of two participants carrying each a test-
bed node who were moving towards six predefined waypoints with 8 meters
distance between them and stood at each waypoint for 15 minutes. At each
waypoint we wanted to collect the estimation of the protocol running on the
sensor nodes.

Since the improvements of SMoT over the participant coordination are
very similar to the ones in the previous section, we do not present the results
of the experiment but we give a brief description.

Each participant arrived to each waypoint at different times with a dis-
tribution of the arrival times that is similar to Figure 6.3(a). Moreover, by
using SMoT to guide the participants and collect their feedback we were
able to know when the participants left or arrived to a waypoint, since there
were annotations in the logging data added by the SMoT APP. Thus, SMoT
helped us to get consistent results with the estimations of the protocol from
each participants at each waypoint.

41

Time (minutes)
0 WP1 15 WP2 30 WP3 45 WP4 60 WP5 75 WP6 90 105

N
ei

gh
bo

rh
oo

d
E

st
im

at
io

n

0

10

20

30

40

50

60

70

80

90

100

Participant 2
Participant 1

(a) Before parsing with SMoT.

Time (minutes)
0 WP1 15 WP2 30 WP3 45 WP4 60 WP5 75 WP6 90

N
ei

gh
bo

rh
oo

d
E

st
im

at
io

n

0

10

20

30

40

50

60

70

80

90

100

Participant 2
Participant 1

(b) After parsing with SMoT.

Figure 6.9: SMoT’s coordination, feedback collection and logging mechan-
isms improves the consistency of the results.

In figures 6.9(a) and 6.9(b), we show the estimation of Estreme before and
after parsing them with SMoT’s logging annotations and timestamps. We
can see that if we do not parse the logging data with SMoT, the duration
of our data is more than 90 minutes. However, 90 minutes is the correct
duration of the experiment since we had 6 waypoints and the participants
stood at each of them for 15 minutes. In addition, the data related to each
waypoint is not the proper because each waypoint (except the first) has
data that belongs to the previous or the distance in between them. On the
other hand, using SMoT’s logging annotations and timestamps we are able
to assign the data to the correct waypoints and discard the data between
the waypoints.

42

6.3 Lifetime

By understanding and analysing the lifetime of SMoT, we are able to set
some boundaries to the maximum duration of an experiment and avoid
situations where the participants will leave the experiments because our
infrastructure drained the battery of their phones. Moreover, the researchers
can organize and set up their experiments better, based on the amount of
time available without intermediate unnecessary stops and pauses. The
maximum duration of an experiment depends on the available energy of the
participant’s smartphone battery, which is the main source of power for both
the smartphone and the sensor node.

To understand the energy requirements of SMoT, we measured the power
consumption of a smartphone using the Monsoon Power Monitor [7] tool,
which provides a comprehensive and easy to use interface for this purpose.
Our experiments were conducted with three different smartphones, a Sam-
sung Galaxy S II, a Samsung Galaxy S III and a Samsung Galaxy Nexus
running Android 4.4.4, 4.3.1 and 4.4.4, respectively. We measured the power
consumption in five different cases:

• IDLE – The sensor node is not connected to the smartphone and the
phone has its screen off and no applications are running.

• USB OTG – Only the USB OTG connector is attached to the smart-
phone without the sensor node.

• SENSOR – The sensor node is connected to the smartphone using the
USB OTG cable.

• EXP. – The sensor node is connected and the SMoT APP is running
in the background an experiment without guidance. It is reading the
logging data from the serial and writing them on a file in the flash
memory of the phone.

• EXP.+GUIDANCE – The SMoT APP is running in the foreground an
experiment with guidance. Thus, it performs the same operations as in
the EXP. case plus the screen is always on (in the lowest brightness)
in order to collect the participant’s feedback and guide them with
notifications.

Figure 6.10 presents the power consumption of each phone for each of the
above cases as well as the estimation of the lifetime of the testbed node, and
as a result the estimation of the maximum duration of an experiment. The
lifetime is related to the battery capacity of the phone, so it is different for
each phone and case, see the legend in Figure 6.10.

A number of important observations can be seen in Figure 6.10. First,
we can observe that the power consumption increases drastically when the

43

Cases
IDLE USB OTG SENSOR EXP. EXP.+GUIDANCE

P
o

w
e

r
(m

W
)

0

500

1000

1500

2000

2500

3000

3500

525h

63h

218h

24h

14h

9h

15.32h

10.24h

7.88h

6.25h

2.95h

5.01h

←
 L

if
e
ti
m

e

4.43h

2.75h

2.54h

Samsung Galaxy S III 2100 mAh

Samsung Galaxy S II 1650 mAh

Samsung Galaxy Nexus 1750 mAh

Figure 6.10: Smartphones power consumption.

USB OTG cable is connected to the phone, without the sensor node. This is
a limitation of the USB On-The-Go mechanism, which has a special circuit
that allows it to operate either in the normal USB mode or in the USB
OTG mode. As we already mentioned in Chapter 5 we can alternatively
power the sensor node directly from the battery of the phone and use the
USB OTG connection only to program the sensor node and log data when
it is needed. Powering directly the sensor node will increase the life time
of our testbed while the sensor node is continuously active and can run
experiments. Furthermore, connecting the sensor node does not increase
the power consumption significantly.

Second, we can see that in the EXP. case in which the SMoT APP is
running, there is a big increase in the power consumption in all the phones.
When the SMoT APP is running an experiment, two operations take place
constantly. The serial connection of the smartphone is always active because
the sensor node sends its results to the smartphone. As a result, reading
from the serial prevents the CPU of the smartphone from going to sleep.
The smartphone also writes the logging data, which it receives from the
sensor node, to its flash memory.

We measured the power consumption of the SMoT APP when it writes
data to the flash memory of the smartphone without reading from the serial,

44

and the operation costs a few mW at each phone. In addition, we measured
the power consumption of the SMoT APP when it reads continuously data
from the serial without writing to the flash memory of the smartphone, and
we noticed that this operation consumes hundreds of mW. Therefore, it is
the main reason for the big increase in the power consumption.

Moreover, depending on the hardware of the smartphone and the Android
version, the increase in the power consumption when the SMoT APP is run-
ning varies a lot. For instance, in the case of the Samsung Galaxy SII, which
is the oldest of the three phones, the increase in the power consumption is
higher compared to the other two smartphones. After performing a number
of measurements with Monsoon Power Monitor, we could not understand
what is the main source of the big increase in the specific smartphone. We
assume that the different kernel version from the Samsung Galaxy Nexus,
which runs the same version of Android, and the way the hardware manip-
ulates the serial connection are the main causes for this big increase.

Finally, Figure 6.10 shows that running an experiment with guidance can
be very expensive in terms of power. The guidance decreases the lifetime of
the testbed and shortens the duration of an experiment because the screen,
which is one of the most power consuming components of a smartphone, is
always on in order to guide the participants and collect their feedback. We
can see that for some cases like the Samsung Galaxy Nexus, the duration of
an experiment can be reduced by half because its screen is consuming a lot.
On the other hand, in the case of the Samsung Galaxy SII the screen does
not consume a lot of power due to the fact that it has the smallest screen size
of the three phones and the lowest resolution, which is three times smaller
than the resolution of the other two phones.

Note that we measured also the power consumption of the phone when the
SMoT APP programs a sensor node, downloads the files of an experiment
and uploads the results. Nevertheless, we do not present these results here
because these operations last for a few seconds and they do not significantly
affect the life time of a testbed node.

45

46

Chapter 7

Conclusions and Future
Work

7.1 Conclusions

Wireless sensor networks have recently started to become valuable solutions
for a variety of applications that involve humans. Some representative ex-
amples are human-activity recognition and crowd monitoring. Researchers
design and implement protocols and applications for this kind of networks,
taking also into consideration the human factors such as the body orienta-
tion and moving speed. Before the final deployment the functionality and
correctness should be tested both in simulation and in real-world experi-
ments.

For these reasons, in this thesis, we designed and implemented SMoT,
a novel testbed facility for human-centric wireless sensor networks. SMoT
consists of participants who each carry a testbed node, which is a sensor
node attached to a smartphone. The sensor node is the component where
the experiments run and the smartphone, which runs the SMoT APP, acts
as a mean to provide the functionality and the power of the testbed node.

The SMoT APP interfaces with the sensor node, communicates with the
researcher, programs the sensor nodes, guides the participants and collects
their feedback. The researchers are able to access the testbed, setup and
run an experiment by using the SMoT Server, which communicates with
the testbed nodes, sends commands, delegates tasks and collects the results.
With that way, SMoT exposes the WSN applications to the human factors,
while giving the researchers a platform where they are able to test and
verify the correctness and the behaviour of their designs in a realistic and
controlled environment.

Before implementing SMoT, we defined the appropriate set of require-
ments that a testbed for human-centric WSNs should fulfil. We evaluated
how SMoT fulfils these requirements and examined the efficacy of its mech-

47

anisms and the overall usability of the testbed. Finally, we showed how the
testbed’s mechanisms help providing realistic conditions while guaranteeing
an amount of control over an experiment. This makes running experiments
faster, coordinating the participants simpler and the collected results more
understandable and consistent.

7.2 Future Work

SMoT is a fully functional testbed, able to run experiments for human-
centric wireless sensor network research. However, there are some limitations
and some improvements that can be applied in the future.

• The lifetime of a testbed node is an important aspect for our testbed.
The current version of SMoT has limitations in the duration of an
experiment. The sensor node drains the battery of the smartphone
even when it is not running an experiment. As a result, a possible
solution is to modify the USB connector in order to be able to switch
between the normal USB and USB OTG mode. We already have a
PCB with a USB controller and an audio jack but the integration with
the SMoT APP is a work in progress.

Another alternative is to power the sensor node with the smartphone’s
battery and use the USB connection only to reprogram and log data
from the sensor node. In that case the sensor node will be continuously
active and we will use the USB connection when needed. This will also
extend the lifetime of our testbed and the duration of an experiment.
However, we should evaluate both solutions and analyse the power
consumption before the final integration with the testbed.

• In order to estimate the lifetime of a testbed node we have to measure
the power consumption of its smartphone. In this thesis, we measured
the power consumption of three specific phones. If we would like to use
a new smartphone as part of a testbed node, we have to measure again
its power consumption. To avoid performing measurements for each
phone, the development of a model that it will estimate the available
lifetime of a testbed node depending on the available energy of the
smartphone is necessary.

• In the current implementation of SMoT, the testbed nodes support
only one sensor node, the G-301 from SOWNet. There is a wide vari-
ety of sensor nodes that are used for wireless sensor networks. There-
fore, the support of more sensor nodes by the testbed would make the
testbed applicable to more protocols and applications, since each of
them is designed for a specific sensor node. In addition, it would make
the testbed heterogeneous, which is the case for some scenarios.

48

Bibliography

[1] Apple app store. http://store.apple.com/.
[2] Future technology devices international. http://www.ftdichip.com/.
[3] Google cloud messaging cloud connection server (xmpp). ht-

tps://developer.android.com/google/gcm/ccs.html.
[4] Google play store. http://play.google.com.
[5] Jaccard index. http://ag.arizona.edu/classes/rnr555/lecnotes/10.html.
[6] Json. http://www.json.org/.
[7] Monsoon power monitor. https://www.msoon.com/LabEquipment/PowerMonitor/.
[8] Msp430 programming via the bootstrap loader(bsl).

http://www.ti.com/lit/ug/slau319j/slau319j.pdf.
[9] Network time protocol. http://www.ntp.org/.

[10] Roomba discovery. http://www.irobot.com/.
[11] Sownet g-node g301. https://www.sownet.nl/index.php/products/gnode.
[12] Usb on-the-go. http://www.usb.org/developers/onthego/.
[13] The xmpp standards foundation. http://xmpp.org.
[14] C.A. Boano, M. Zuniga, J. Brown, U. Roedig, C. Keppitiyagama, and

K. Romer. Templab: A testbed infrastructure to study the impact of temper-
ature on wireless sensor networks. In Information Processing in Sensor Net-
works, IPSN-14 Proceedings of the 13th International Symposium on, pages
95–106, April 2014.

[15] S. Bromage, C. Engstrom, J. Koshimoto, M. Bromage, S. Dabideen, M. Hu,
R. Menchaca-Mendez, D. Nguyen, B. Nunes, V. Petkov, D. Sampath,
H. Taylor, M. Veyseh, J. J. Garcia-Luna-Aceves, K. Obraczka, H. Sadjad-
pour, and B. Smith. Scorpion: A heterogeneous wireless networking testbed.
SIGMOBILE Mob. Comput. Commun. Rev., 13(1):65–68, June 2009.

[16] Niels Brouwers and Koen Langendoen. Pogo, a middleware for mobile phone
sensing. In Proceedings of the 13th International Middleware Conference, Mid-
dleware ’12, pages 21–40, New York, NY, USA, 2012. Springer-Verlag New
York, Inc.

[17] Marco Cattani, Ştefan Gună, and Gian Pietro Picco. Group monitoring in
mobile wireless sensor networks. In Distributed Computing in Sensor Sys-
tems and Workshops (DCOSS), 2011 International Conference on, pages 1–8.
IEEE, 2011.

[18] Marco Cattani, Marco Zuniga, Andreas Loukas, and Koen Langendoen. Light-
weight neighborhood cardinality estimation in dynamic wireless networks. In
Proceedings of the 13th International Symposium on Information Processing
in Sensor Networks, IPSN ’14, pages 179–189, Piscataway, NJ, USA, 2014.
IEEE Press.

49

[19] Ioannis Chatzigiannakis, Stefan Fischer, Christos Koninis, Georgios Mylonas,
and Dennis Pfisterer. Wisebed: an open large-scale wireless sensor network
testbed. In Sensor Applications, Experimentation, and Logistics, pages 68–87.
Springer, 2010.

[20] Cory Cornelius, Apu Kapadia, David Kotz, Dan Peebles, Minho Shin, and
Nikos Triandopoulos. Anonysense: Privacy-aware people-centric sensing. In
Proceedings of the 6th International Conference on Mobile Systems, Applica-
tions, and Services, MobiSys ’08, pages 211–224, New York, NY, USA, 2008.
ACM.

[21] Tathagata Das, Prashanth Mohan, Venkata N. Padmanabhan, Ramachandran
Ramjee, and Asankhaya Sharma. Prism: Platform for remote sensing using
smartphones. In Proceedings of the 8th International Conference on Mobile
Systems, Applications, and Services, MobiSys ’10, pages 63–76, New York,
NY, USA, 2010. ACM.

[22] Pradipta De, Ashish Raniwala, Rupa Krishnan, Krishna Tatavarthi, Jatan
Modi, Nadeem Ahmed Syed, Srikant Sharma, and Tzi cker Chiueh. Mint-m:
An autonomous mobile wireless experimentation platform. In Proc. of Mobisys
2006, pages 124–137, 2006.

[23] Manjunath Doddavenkatappa, MunChoon Chan, and A.L. Ananda. Indriya:
A low-cost, 3d wireless sensor network testbed. In Thanasis Korakis, Hongbin
Li, Phuoc Tran-Gia, and Hong-Shik Park, editors, Testbeds and Research In-
frastructure. Development of Networks and Communities, volume 90 of Lecture
Notes of the Institute for Computer Sciences, Social Informatics and Telecom-
munications Engineering, pages 302–316. Springer Berlin Heidelberg, 2012.

[24] E. Egea-Lopez. Simulation tools for wireless sensor networks. In SPECTS,
2005.

[25] A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, and T. Razafindralambo.
A survey on facilities for experimental internet of things research. Commu-
nications Magazine, IEEE, 49(11):58–67, November 2011.

[26] Osman Khalid and Muhammad Sualeh. Comparative study on mobile wire-
less sensor network testbeds. International Journal of Computer Theory &
Engineering, 5(2), 2013.

[27] Roman Lim, Federico Ferrari, Marco Zimmerling, Christoph Walser, Philipp
Sommer, and Jan Beutel. Flocklab: A testbed for distributed, synchronized
tracing and profiling of wireless embedded systems. In Proceedings of the
12th International Conference on Information Processing in Sensor Networks,
IPSN ’13, pages 153–166, New York, NY, USA, 2013. ACM.

[28] Claudio Martella, Maarten van Steen, Aart Halteren, Claudine Conrado, and
Jie Li. Crowd textures as proximity graphs. Communications Magazine, IEEE,
52(1):114–121, 2014.

[29] Anandatirtha Nandugudi, Anudipa Maiti, Taeyeon Ki, Fatih Bulut, Murat
Demirbas, Tevfik Kosar, Chunming Qiao, Steven Y. Ko, and Geoffrey Challen.
Phonelab: A large programmable smartphone testbed. In Proceedings of First
International Workshop on Sensing and Big Data Mining, SENSEMINE’13,
pages 4:1–4:6, New York, NY, USA, 2013. ACM.

[30] Olof Rensfelt, Frederik Hermans, Per Gunningberg, Lars-Ake Larzon, and
Erik Bjornemo. Repeatable experiments with mobile nodes in a relocatable
wsn testbed. The Computer Journal, page 14, 2011.

[31] Hugues Smeets, Chia-Yen Shih, Marco Zuniga, Tobias Hagemeier, and
Pedro Jos Marrn. Trainsense: A novel infrastructure to support mobility

50

in wireless sensor networks. In Piet Demeester, Ingrid Moerman, and Andreas
Terzis, editors, EWSN, volume 7772 of Lecture Notes in Computer Science,
pages 18–33. Springer, 2013.

[32] L.P. Steyn and G.P. Hancke. A survey of wireless sensor network testbeds. In
AFRICON, 2011, pages 1–6, Sept 2011.

[33] A.-S. Tonneau, N. Mitton, and J. Vandaele. A survey on (mobile) wireless
sensor network experimentation testbeds. In Distributed Computing in Sensor
Systems (DCOSS), 2014 IEEE International Conference on, pages 263–268,
May 2014.

[34] M. Woehrle, M. Bor, and K. Langendoen. 868 MHz: A noiseless environment,
but no free lunch for protocol design. In Networked Sensing Systems (INSS),
2012 Ninth International Conference on, pages 1–8, June 2012.

[35] Allen Y. Yang, Roozbeh Jafari, S. Shankar Sastry, and Ruzena Bajcsy. Dis-
tributed recognition of human actions using wearable motion sensor networks,
2009.

51

	Preface
	Introduction
	Requirements
	Related Work
	Design
	Testbed Node
	Participants
	Testbed Manager

	Implementation
	SMoT APP
	Serial Module
	BSL Module
	Logger Module
	Event Manager
	Communication Module

	SMoT Server
	Communication Module
	Node Manager
	Experiment Manager

	Evaluation
	Usability
	Participant Coordination
	Lifetime

	Conclusions and Future Work
	Conclusions
	Future Work

