
 
 

Delft University of Technology

High Performance Streaming Smith-Waterman Implementation with Implicit
Synchronization on Intel FPGA using OpenCL

Houtgast, Ernst; Sima, Vlad; Al-Ars, Zaid

DOI
10.1109/BIBE.2017.000-6
Publication date
2017

Published in
2017 IEEE 17th International Conference on BioInformatics and BioEngineering (BIBE)

Citation (APA)
Houtgast, E., Sima, V., & Al-Ars, Z. (2017). High Performance Streaming Smith-Waterman Implementation
with Implicit Synchronization on Intel FPGA using OpenCL. In 2017 IEEE 17th International Conference on
BioInformatics and BioEngineering (BIBE) (pp. 492-496). IEEE. https://doi.org/10.1109/BIBE.2017.000-6

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/BIBE.2017.000-6
https://doi.org/10.1109/BIBE.2017.000-6


High Performance Streaming Smith-Waterman Implementation
with Implicit Synchronization on Intel FPGA using OpenCL

Ernst Joachim Houtgast1,2, Vlad-Mihai Sima1

1Bluebee Research & Development
Bluebee BV

Rijswijk, The Netherlands
E-mail: {ernst.houtgast, vlad.sima}@bluebee.com

Zaid Al-Ars2

2Department of Computer Engineering
Delft University of Technology

Delft, The Netherlands
E-mail: {e.j.houtgast, z.al-ars}@tudelft.nl

Abstract—The Smith-Waterman algorithm is widely used in
bioinformatics and is often used as a benchmark of FPGA
performance. Here we present our highly optimized Smith-
Waterman implementation on Intel FPGAs using OpenCL.
Our implementation is both faster and more efficient than
other current Smith-Waterman implementations, obtaining a
theoretical performance of 214 GCUPS. Moreover, due to the
streaming, implicit synchronizing nature of our implementa-
tion, which streams alignments and places no restrictions on
the number of alignments in flight, it achieves 99.8% of this
performance in practice, almost three times as fast as previous
implementations. The expressiveness of OpenCL results in a
significant reduction in lines of code, and in a significant
reduction of development time compared to programming in
regular hardware description languages.

Keywords-FPGA; OpenCL; Smith-Waterman; systolic array

I. INTRODUCTION

The Smith-Waterman algorithm [1] can be used to find

the optimal pairwise alignment between two (sub)sequences

of symbols, which in the context of bioinformatics usually

means sequences of amino acids (for protein sequences) or

nucleotides (for DNA sequences). Given a certain scoring

scheme that awards matching symbols and penalizes differ-

ences or missing symbols, it uses a dynamic programming

approach to calculate the optimal alignment between the

sequences. The continued growth of bioinformatics data sets

makes optimized and/or accelerated implementations of key

algorithms of vital importance.

Field-Programmable Gate Arrays (or FPGAs), with their

flexible and reprogrammable substrate, are a natural fit

for a computationally intensive algorithm such as the

Smith-Waterman algorithm. However, programming FPGAs

through hardware description languages such as VHDL or

Verilog is difficult, being somewhat comparable to writing

software in assembly language. The rise of higher level

programming languages such as OpenCL makes FPGA

programming a much more accessible venture.

In this paper we present the following contributions:

• An OpenCL FPGA Smith-Waterman implementation

that, limited development complexity notwithstanding,

outperforms other implementations almost threefold;

• A streaming systolic array architecture that eliminates

a key design issue: low utilization of the systolic array.

The remainder of this paper is organized as follows.

We review related work in Section II. In Section III, we

explain the Smith-Waterman algorithm. In Section IV, the

two key features of our implementation, streaming and

implicit synchronization, are discussed. Methods and results

are presented in Section V and VI, respectively. A discussion

follows in Section VII. Section VIII concludes the paper.

II. RELATED WORK

As the Smith-Waterman algorithm [1] is a common al-

gorithm in bioinformatics, it has received much attention

to optimize the algorithm’s performance, resulting in nu-

merous accelerated implementations. The fastest software-

only Smith-Waterman version is SSW [2], which extends

the striped Smith-Waterman approach of Farrar [3]. These

implementations make pervasive use of SIMD instructions

to attain their excellent performance. However, accelerator-

based implementations are still able to significantly outper-

form software-only implementations. For example, the GPU-

based CUDASW++ 3.0 [4] is able to attain a performance

of 119.0 GCUPS on a GeForce GTX 680. The highest

performing FPGA-based implementation is the implementa-

tion from Sirasao[5], which attains a performance of 135.4

GCUPS using an AlphaData board with a Xilinx Virtex-

7. Moreover, their FPGA-based design is significantly more

efficient compared to most GPU-implementation, requiring

an order of magnitude less power compared to a GPU-

based approach. They measured a power-efficiency of 2.8

GCUPS/Watt compared to 0.24 GCUPS/Watt on the GPU.

Similar to the Sirasao implementation, we use OpenCL as

our implementation platform. However, our streaming imple-

mentation with implicit synchronization makes pervasive use

of OpenCL features such as kernels and channels to allow

for a higher performing, and more importantly, a much more

efficient Smith-Waterman implementation. Utilization of our

design approaches 100%, compared to 57% utilization of the

Sirasao design. As a result, our implementation outperforms

their implementation by almost three-fold.

492

2017 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering

2471-7819/17/31.00 ©2017 IEEE
DOI 10.1109/BIBE.2017.00089



Figure 1. The Smith-Waterman algorithm operates by filling a dynamic
programming-based similarity matrix. Cells inside the matrix are only
dependent on their top, top-left, and left neighbor, allowing anti-diagonals
of the matrix to be processed in parallel. This maps naturally onto a
systolic array of Processing Elements. Each Processing Element calculates
the column for one of the query symbols. The traceback phase works
backwards from the highest scoring cell to produce the actual alignment.

III. SMITH-WATERMAN ALGORITHM

The Smith-Waterman algorithm is guaranteed to find the

optimal pairwise alignment of two sequences. It consists of

two phases: first, it uses a dynamic programming approach

to fill a similarity matrix, followed by a traceback phase to

retrieve the optimal alignment. As the first phase is the most

computationally demanding, it is the focus of this work.

The Smith-Waterman equations that govern similarity

matrix score calculations are similar to the Needleman-

Wunsch algorithm [6], except that disallowing negative val-

ues makes the algorithm search for optimal local alignments,

as compared to optimal global alignments:

Hi,j = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Hi−1,j−1 + s(ai, bj) : (mis)match

Hi−1,j − gap penalty : insertion/deletion

Hi,j−1 − gap penalty : insertion/deletion

0 : local alignment

This is illustrated in Figure 1. The highest scoring cell

in the similarity matrix indicates the optimal alignment

score. From the above equations it is clear that each cell

in the similarity matrix only depends on its top, top-left,

and left neighbor. Therefore, anti-diagonals in the matrix are

independent of one another and can be calculated in parallel:

a wavefront of parallelism flows through the similarity

matrix. This maps nicely onto a systolic array of Processing

Elements, which is the typical approach when implementing

the Smith-Waterman algorithm on an FPGA.

IV. IMPLEMENTATION DETAILS

Our implementation uses the Intel FPGA SDK for

OpenCL. Two key concepts of OpenCL are kernels and

channels. An OpenCL kernel is a function executed on a

compute device, so in the case of an FPGA, this is syn-

thesized into actual hardware. Multiple identical kernels are

synthesized to work in parallel to achieve higher throughput.

An OpenCL channel is a mechanism that implements on-

chip low-latency, high bandwidth communication between

kernels. Our implementation makes pervasive use of chan-

nels, only using the on-board DDR for reading of the input

sequences and writing of the output scores.

Figure 2 shows the kernels and channels of a single

Smith-Waterman module. The largest area is reserved for the

systolic array of Processing Elements, which calculates the

Smith-Waterman similarity matrix. For each alignment, each

Processing Element has its unique query symbol, whereas

the symbols of the target sequence flow through the array.

There are two key innovations that work in unison to allow

for high utilization of the systolic array:

Implicit Synchronization: Our implementation does not

use a dedicated control unit. Instead, control and synchro-

nization is implicitly arranged within each kernel. Control

and data signals flow from left to the right: the Input Parser

sends packets to the Target and Query Loaders, and to the

Result Parser. These packets contain all the information re-

quired to know how many iterations this particular alignment

requires. This allows each kernel to work independently

without explicit synchronization with other kernels.

Streaming: Typically, due to the central control, a systolic

array is only able to work on a single alignment at a

time. However, the distributed control of our implementation

allows for a streaming nature. This is illustrated in Figure 3.

A key enabler is the use of Query Buffers, which for each

Processing Element hold the query symbols for upcoming

alignments. Whenever the current alignment is finished, a

New Read token is passed through the array, signaling to a

PE that it should reinitialize and load a new Query symbol.

The combined effect of both innovations is that, except

for the first alignment, processing time for an alignment

only depends on the length of the target sequence, and is

independent of query length. The only overhead is the New

Read token that is passed to indicate a new alignment. Thus,

very short target sequences do slightly impact efficiency. In

contrast, efficiency of the systolic array is mostly dependent

on the query length as compared to systolic array size, as

for shorter queries part of the systolic array will be idle. To

alleviate this, it would be possible to use multiple systolic

arrays of different size (refer to [7] for more details). Our

designs use multiple identically sized modules to utilize all

available resources on the FPGA.

493



Figure 2. Overview of the kernels and channels of the Smith-Waterman module. Control and data signals flow from left to right through OpenCL channels,
with no dependencies or loops, removing any limitation on the number of simultaneous alignments in flight. This way, kernels are decoupled from one
another and operate asynchronously. The Query Buffer contains for each Processing Element a separate queue with query symbols for the alignments it
needs to process. Whenever the Processing Element encounters the new read token, it checks against the query length to verify if it is active during this
alignment; if so, it reads the next query symbol from its queue. Only the Input Parser and Output Parser communicate with the on-board DDR memory.

Figure 3. This example illustrates the difference in processing time for Serialized Processing compared to Streaming Processing, with three alignments
being performed. A traditional Smith-Waterman systolic array performs serialized processing of the alignments. Each alignment requires [tlen+# of PE-1]
cycles. The large amount of white space in the figure is indicative of the fact that large parts of the array are idle during the computation. Streaming
processing results in much higher utilization of the systolic array as, except for the first alignment, each alignment only requires [tlen+1] cycles. A
New Read token is inserted in-between sequences to signal to a Processing Element that is should proceed onto the next alignment. For ”real” systolic
arrays consisting of tens of Processing Elements, the benefits to systolic array utilization are even more pronounced.

494



Table I
SMITH-WATERMAN KERNEL PERFORMANCE RESULTS

Design FPGA Resource Utilization Performance (GCUPS)

Modules PEs Frequency Logic RAM Blocks Theoretical Actual Utilization

BittWare A10PL4 2 131 153 MHz 27% 23% 40.1 40.0 99.8%

BittWare A10PL4 4 131 150 MHz 44% 34% 78.6 78.4 99.8%

BittWare A10PL4 6 131 137 MHz 59% 54% 107.4 107.2 99.8%

Intel A10 REF 2 131 193 MHz 25% 18% 50.5 50.4 99.8%

Intel A10 REF 4 131 188 MHz 41% 40% 98.5 98.3 99.8%

Intel A10 REF 6 131 166 MHz 58% 40% 130.4 130.2 99.8%

Intel A10 REF 8 131 178 MHz 69% 98% 186.5 186.2 99.8%

Intel A10 REF 10 131 164 MHz 91% 98% 214.8 214.4 99.8%

Sirasao[5] 42 32 N/A N/A N/A 135.4 77.0 56.9%

V. EXPERIMENTAL SETUP

Results were obtained on a system with an Intel Xeon

E5-1650 (six cores, twelve threads @ 3.2 GHz) with 64

GB of RAM. We used a BittWare A10PL4 PCIe board with

an Intel Arria 10 GX FPGA (BittWare A10PL4), and the

Intel Arria 10 GX FPGA Development Kit Reference Plat-

form board (Intel A10 REF). The only relevant difference

between these two boards is that the Intel Reference board

uses an Arria 10 GX with higher FPGA fabric speed-grade.

Both devices have the same logic density of 1150k logic

elements. We used the latest Intel FPGA SDK for OpenCL,

which is version 17.0.1 [8]. The results are obtained using

a data set of 100’000 pairwise alignment query/target pairs,

with a query length of 131 and a target length of 400.

VI. RESULTS

The standardized metric for comparing the performance

of Smith-Waterman implementations is by using the GCUPS

unit: giga-cell updates per seconds. This number indicates

the billions of cell updates that can be performed every

second on the Smith-Waterman similarity matrix. The the-

oretical value can be attained only when all Processing

Elements are busy performing useful work. This is not often

the case, usually only for very long target sequences. A

key innovation of our implementation is that our efficiency

is virtually independent of target sequence length. The

theoretical maximum GCUPS value is calculated by:

Maxtheo = # of modules× frequency× # of PEs

The results for the various designs are shown in Table I.

We show a number of designs, with increasing number of

modules, and for both Arria 10 FPGA boards (A10 REF and

A10PL4). The largest 10-module design is able to achieve

a theoretical maximum performance of 214 GCUPS. From

the results, it is clear that the higher FPGA speed-grade used

by the A10 REF board has a significant effect on achievable

frequency, improving it by 21-26%. The larger designs show

a bit reduced frequency compared to smaller designs, as

the FPGA synthesis tool chain has to put more effort into

generating a functional design.

We compare our results to the previously highest perform-

ing FPGA Smith-Waterman implementation of Sirasao [5].

Sirasao evaluated a variety of designs of which the ratio

between number of Processing Elements and number of

modules varied. Here, we included only the results for their

best performing design, which includes 42 modules of 32

PEs each. Note that the total number of Processing Elements

is quite similar to our largest design, with 1344 PEs for

Sirasao compared to 1310 for our 10-module design. This

42-module design is able to achieve a theoretical maximum

performance of 135 GCUPS. This means that our design has

a +58% higher theoretical performance.

However, for traditional Smith-Waterman systolic array

designs, the GCUPS value achievable in practice is sub-

stantially lower than the theoretical maximum performance.

Utilization can be defined as:

Utilization =
(PEs × cycles)useful

(PEs × cycles)overall

For example, the Sirasao design only achieves 56.9%

utilization on their data set, for an actual performance of

77 GCUPS. In contrast, our design achieves almost full

utilization, still obtaining 214 GCUPS. Peak performance

is only slightly reduced, as for each alignment, one target

symbol per alignment is used to indicate a new sequence,

thus resulting for our data set with target sequence length

400 in an efficiency of 99.8% (=400/401). In their paper,

Sirasao [5] tested with a data set with target length 256

sequences and query length 128, for this the efficiency of

our design would be 97.3%. This shows that in practice,

our streaming, implicit synchronizing design is almost three

times as fast as the fastest previously known implementation.

VII. DISCUSSION

The Streaming architecture significantly improves systolic

array utilization. Figure 4 and Figure 5 illustrate how uti-

lization depends on target and query length, respectively.

495



Figure 4. Systolic array efficiency dependence on target length (data set:
100 alignments with query length 131 and variable target length).

Whereas efficiency of the Serialized systolic array slowly

increases with target length, the Streaming systolic array

obtains high efficiency almost immediately. For a data set

with so few alignments, the disproportionate long cycle time

of the first alignment has a large impact on efficiency; a

bigger data set would mask this better. The dependence on

query length is similar for both systolic array architectures,

showing linear dependence. In [7], various solution are

proposed to improve utilization in situations that have an

imbalance between systolic array size and query length.

For example, the Variable Physical Length (VPL)-systolic

array contains multiple sized systolic arrays: alignments with

shorter query length go to the smaller arrays. Therefore, the

improvements proposed here represent the missing link to

achieve a high utilization systolic array.

Compared to using normal hardware description lan-

guages, using a high-level language such as OpenCL has

two main benefits. First, OpenCL is more expressive (our

Processing Element kernel code in OpenCL requires 90 lines

of code compared to about 450 lines of VHDL). Second,

OpenCL development has more convenient testing and de-

bugging capabilities, such as rapid testing using software

emulation, and the ability to use printf statements inside

kernels. The end result is a much faster development cycle.

VIII. CONCLUSION

We presented our OpenCL-based FPGA Smith-Waterman

implementation that employs two key techniques to greatly

improve the utilization of its underlying systolic array ar-

chitecture. By eliminating centralized control and through

the use of Query Buffers, an arbitrary number of alignments

can be in flight at the same time, resulting in utilization

close to theoretical maximum performance. The techniques

presented here are generally applicable to any linear systolic

array design, although here we only consider the Smith-

Waterman algorithm. Our resulting implementation is both

the fastest and most efficient, resulting in a maximum

performance of 214 GCUPS and outperforming other Smith-

Waterman FPGA implementations almost three-fold.

Figure 5. Systolic array efficiency dependence on query length (data set:
100 alignments with variable query length and target length 400).

Compared to typical hardware description languages used

for FPGA development, OpenCL simplifies writing code,

testing and debugging. The ability to emulate and debug in

software allows for a much more agile development cycle,

allowing one to test many more different designs.

ACKNOWLEDGMENTS

The authors would like to thank the kind people at Intel

and OVH, for providing support on all questions regarding

the Intel FPGA SDK for OpenCL, and for providing access

to their cloud nodes for development and testing.

REFERENCES

[1] T. Smith and M. Waterman, “Identification of Common Molec-
ular Subsequences,” Journal of molecular biology, vol. 147,
no. 1, pp. 195–197, 1981.

[2] M. Zhao, W. Lee, E. Garrison, and G. Marth, “Ssw library:
an simd smith-waterman c/c++ library for use in genomic
applications,” PloS one, vol. 8, no. 12, p. e82138, 2013.

[3] M. Farrar, “Striped smith–waterman speeds database searches
six times over other simd implementations,” Bioinformatics,
vol. 23, no. 2, pp. 156–161, 2006.

[4] Y. Liu, A. Wirawan, and B. Schmidt, “CUDASW++ 3.0: Ac-
celerating Smith-Waterman Protein Database Search by Cou-
pling CPU and GPU SIMD Instructions,” BMC bioinformatics,
vol. 14, no. 1, p. 117, 2013.

[5] A. Sirasao, E. Delaye, R. Sunkavalli, and S. Neuendorffer,
“Fpga based opencl acceleration of genome sequencing soft-
ware,” System, vol. 128, no. 8.7, p. 11, 2015.

[6] S. B. Needleman and C. D. Wunsch, “A general method appli-
cable to the search for similarities in the amino acid sequence
of two proteins,” Journal of molecular biology, vol. 48, no. 3,
pp. 443–453, 1970.

[7] E. Houtgast, V. Sima, K. Bertels, and Z. Al-Ars, “An FPGA-
Based Systolic Array to Accelerate the BWA-MEM Genomic
Mapping Algorithm,” in Intl. Conf. on Embedded Computer
Systems: Architectures, Modeling, and Simulation, 2015.

[8] Intel, “The Intel FPGA SDK for Open Computing Language,”
https://www.altera.com/products/design-software/embedded-
software-developers/opencl/overview.html, last visited:
2017-08-24.

496


