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†Dip. Ingegneria, Università degli Studi di Ferrara, Ferrara, Italy. Email: cristian.zambelli@unife.it
‡Computer Engineering Lab, Delft University of Technology, Delft, The Netherlands.

Email: {S.Hamdioui, S.S.Diware, R.K.Bishnoi, A.B.Gebregiorgis}@tudelft.nl

Abstract—Emerging device technologies such as Resistive
RAMs (RRAMs) are under investigation by many researchers
and semiconductor companies; not only to realize e.g., embed-
ded non-volatile memories, but also to enable energy-efficient
computing making use of new data processing paradigms such
as computation-in-memory. However, such devices suffer from
various non-idealities and reliability failure mechanisms (e.g.,
variability, endurance, and retention); these negatively impact the
memory robustness and the computation accuracy. This paper
discusses the non-idealities and reliability failure mechanisms
for RRAM devices, provides an overview on the most popular
ones. In addition, it reports detailed anlysis of some of these
based on data measurements. Finally, it presents two different
mitigation schemes for RRAM based accelerators; one is based on
RRAM non-ideality aware quantization and conductance control
for neural network accuracy enhancement while the second is
based on reliability-aware biased training technique.

Index Terms—RRAM, reliability, neural network, in-memory
computing

I. INTRODUCTION

Emerging IoT-edge applications are extremely demanding in
terms of storage, computing power, and energy efficiency to
enable the deployment of AI (Artificial Intelligence). On the
other hand, both today’s computer architectures and device
technologies are facing major challenges making them inca-
pable of delivering the required functionalities and features at
economical affordable cost [1], [2]. For computing systems
to continue delivering sustainable benefits for the foreseeable
future in society, where energy budgets are tight, alterna-
tive computing architectures (such as analog computation-in-
memory) that leverage novel post-CMOS device technologies
(such as Resistive RAMs) are being explored, while incorpo-
rating radically new concepts such as brain-inspired concepts
[3], [4]. Although these alternative architectures seem to be
extremely promising [5]–[7], there is a fundamental issue
that without solving it, such alternative computing paradigms
will be worthless; i.e., dealing with post-CMOS device non-

This work was supported in part by the EU H2020 grant “DAIS” that
has received funding from the ECSEL Joint Undertaking (JU) under grant
agreement No. 101007273 and by the Spoke 1 ”FutureHPC & BigData” of
the Italian Research Center on High-Performance Computing, Big Data and
Quantum Computing (ICSC) funded by MUR Missione 4 - Next Generation
EU (NGEU).

idealities and reliability failure mechanisms from which such
storage/computing devices (inherently) suffer [8], [9].

Research in the reliability failure mechanism of RRAM
devices, their impact on RRAM-based memories and com-
puting accelerators, and the way to mitigate these are still in
the early stages. Many reliability challenges of RRAM device
technology were reported in the community. Some of them are
quite popular (and are also applicable for other non-volatile
technologies) such as endurance, retention, parasitics, and R/W
disturb [10], [11], while others are unique to RRAM and/or
to the way they manifest themselves such as variability [12],
and intermittent faults [13]. Nevertheless, it is quite difficult
to know if all the reliability mechanisms of RRAM are also
known, as the technology is still evolving. To address these
challenges, mitigation techniques are being explored both for
RRAM-based memories as well as for RRAM-based acceler-
ators (computing). Schemes related to reliability improvement
for memory systems include redundancy, programming signals
control, error correction techniques [14], on-line testing and
repairing schemes [15], and error detection and mitigation
schemes [16]. On the other hand, robustness improvement and
reliability failures mitigation schemes targeting RRAM accel-
erators are an ongoing process that involves a combination
of hardware and software measures. Moreover, the choice of
the optimal reliability mitigation strategy is dictated by the
specific requirements and criticality of the targeted application.
Several software and hardware solutions have been proposed
to mitigate the impact of non-idealities on the computation
accuracy of Compute In-Memory (CIM) blocks [17]–[24].
Some of the software-based solutions focus on finding an
optimal mapping where less relevant values (e.g., LSB) are
mapped to the non-ideal memristor devices [17], [21], [23],
while others focus on retraining techniques to partially regain
the non-ideality induced accuracy reduction [18], [22], [24].
Similarly, the hardware-based solutions utilize redundancy
schemes to tackle the impact of non-idealities [19], [20].
Indeed, RRAM devices suffer from many issues potentially
impairing the operation of the applications relying on massive
CIM acceleration. The most challenging reliability threats are
represented by the conductance relaxation in time (i.e., drift),
the cycle-to-cycle (C2C), and the device-to-device (D2D) vari-
abilities [25]–[27]. Although mitigations are proposed, most of
them are inefficient and impose several hardware overheads.979-8-3503-2599-7/23/$31.00 ©2023 IEEE
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Thus, understanding the nature of memristor non-idealities and
providing efficient solutions is essential to realize reliable and
efficient CIM operations.

This paper provides an overview of RRAM device relia-
bility failure mechanisms and shows the impact and potential
mitigation schemes of some of these both on memory and
computing elements based on RRAM devices. Section 2
classifies these reliability mechanisms. Section 3 discusses the
impact of variability and intermittent faults in RRAM based on
measured data, and shows how these can influence some of the
KPI (key performance indicators) of RRAM-based systems.
Section 4 discusses how to deal with drift and variability when
RRAMs are used as a key element in crossbar neural networks.
Section 5 presents a memristor reliability-aware biased training
technique to mitigate the impact of non-ideality on the network
inference accuracy, while Section 6 concludes the paper and
gives some future directions.

II. CLASSIFICATION OF RRAM RELIABILITY FAILURE
MECHANISMS

This section provides first a classification of the RRAM
reliability metrics, which are considered of interest when using
RRAM devices as key elements for the realization of memory
systems (storage) or accelerators (computing). Thereafter, each
class will be discussed separately.

A. Classification of key reliability metrics

RRAM devices may suffer from reliability concerns either
due to immature manufacturing processes and/or due to the
inherent nature and properties of the device. This may impact
the technology parameters of the device (e.g., the length and/or
the width of the filament), which in turn impacts the electrical
parameters of the device such as the value of the resistance
of the device in ON state (or LRS for Low Resistance State )
and OFF state (or HRS for High Resistance State). The way
these non-idealities impact the functionality depends on the
way the RRAM devices are used. For example, an RRAM
device used to store the two binary values 0 and 1 will not
much suffer from variability. However, when these devices are
used for analog computing in a neural network context (where
devices are used as synaptic weights), such variability has a
large impact on the accuracy of computing as such computing
is based on weighted sums of currents.

Next, we give a classification of the main RRAM device
reliability metrics into time-zero reliability metrics and time-
dependant reliability metrics [28]; the overview is presented
in Fig. 1.

Time-zero reliability mechanisms: Time-zero reliability
mechanisms are mechanisms that occur at time t = 0. These
are caused by imperfections in the fabrication process. Due to
these varying conditions during fabrication, the specifications
of the chip differ from the intended ones. The main time-zero
mechanisms are:

• Variability [12]: refers to the variations that can occur in
RRAM electrical characteristics (due to process manufac-
turing variability), including RRAM conductance levels.

Fig. 1. Classification of RRAM reliability failure mechanisms.

It includes Device-to-Device (D2D) and Cycle-to-Cycle
(C2C) variability [25]. Variability directly impacts the
accuracy of RRAM-based analog computing.

• Intermittent faults [13]: refers to random changes in
the resistance of an RRAM cell that occur when write
operations are applied to fresh ”formed” devices. E.g., the
RRAM can get unpredictably stuck to a low ohmic state
after SET or a high ohmic state after RESET; the device
recovers to normal behavior in the following cycles. The
intermittent behavior may last one or a couple of cycles.

• Wire parasitics [29]: due to the finite parasitic resistance
and capacitance of the interconnect wires, signals suffer
from delay mismatch and voltage degradation, which can
lead to erroneous outputs [29]. For instance, in logic
operations, the reference and input signals reaching the
sensing circuits (e.g., sense amplifier) suffer from delay
mismatch caused by different critical paths. Additionally,
the wordline degrades along the path reaching farther
columns and degrading the associated current output.

Time dependent reliability mechanisms: Time-dependent
mechanisms include those that occur during the operational
lifetime (i.e., t > 0) of the device; they may be intrinsic
(caused by mechanisms that occur inside the device itself)
or extrinsic (caused by (external) environmental factors). The
main time-dependent mechanisms are:

• Endurance [30]: RRAMs suffer from limited endurance
due to the destructive nature of the programming opera-
tions (i.e., SET followed by a RESET operation or vise
versa). The number of times an RRAM cell can be cycled
before it fails is known as endurance. The endurance of
RRAM cells is typically measured in millions or even
billions of cycles, which is compatible with synaptic
weight update operations occurring during the learning
process of many neuromorphic applications.

• Retention [30]: the ability of the RRAM device to
maintain its resistance state over time. The retention
requirement for RRAM in neuromorphic applications is
typically in the range of years to decades to emulate the
persistent synaptic strengths found in biological synapses.
In other words, the resistance states should be stable over
a long period to avoid information loss.

• R/W disturb [31]: is a phenomenon that arises when
reading a specific RRAM cell multiple times in suc-
cession. The addressed cell can experience unintended
resistance changes due to the stress induced by the read
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operation. Read disturb is an important reliability issue
as it limits performances of read-intensive applications
generally associated with deep neural networks (DNN)
where synaptic weights are constantly and simultaneously
read during inference. Write (W) disturb occurs when
a neighboring memory cell is affected or altered during
a write operation in a specific memory cell, leading to
inadvertent resistance changes.

The above reliability mechanisms may impact the function-
ality of RRAM-based memory or RRAM-based accelerator
differently. Moreover, some parameters can have a beneficial
effect on storage but a negative effect on computing. For in-
stance, the nonlinearity of RRAM devices [25] is advantageous
for memory applications where a strict threshold between
LRS and HRS states is needed but critical for computing
applications. Indeed, to reach a high learning accuracy in
neural networks based on the backpropagation learning rule, a
linear weight update behavior of the analog RRAMs is a crit-
ical requirement [32]. Otherwise, it can result in inconsistent
conductance changes that can make synaptic weight tuning
difficult, affecting the convergence of training algorithms.

III. ANALYSIS OF RRAM RELIABILITY FAILURE
MECHANISMS BASED ON MEASUREMENT DATA

Two major reliability metrics will be analyzed in this sec-
tion: variability and intermittent faults. These two metrics lead
to a direct narrowing of the RRAM resistance window, hence,
reducing significantly the conductance modulation capability
of the technology. On the one hand and as already mentioned,
variability prevents a strict control of RRAM conductance,
hence, posing a significant hurdle for RRAM widespread adop-
tion. On the other hand, in addition to variability, intermittent
errors lead to important and sudden fluctuations in the RRAM
conductance levels.

A. Variability: C2C and D2D

Variability refers to the inherent differences in the electrical
characteristics of RRAM devices, even when fabricated under
the same manufacturing conditions. It includes D2D and C2C
variability. Variability can manifest as variations in the key
parameters of RRAM devices such as switching voltages
and resistance levels, thus, preventing reliable and predictable
device behavior [33]. For instance, neuromorphic computing
systems rely on training algorithms to adjust the synaptic
weights and optimize the network performances. However,
the variability in RRAM devices can affect the convergence
of these algorithms, turning the learning stage challenging,
although techniques such as adaptive learning algorithms and
training strategies that account for device variability can help
address this limitation [34]. Temporal and spatial resistance
variations in both LRS and HRS states are so erratic that
RRAM technology has been employed as an entropy source in
True Random Number Generators (TRNG) [35], [36]. Hence,
the successful implementation of a reliable conductance mod-
ulation scheme in a computing context mainly depends on

the ability to control the impact of variability on the dif-
ferent conductance levels. At the cell level, the conductance
modulation can be transposed to a segmentation of the I-V
plane by different I-V characteristics. For simplicity, only 8
I-V characteristics are presented in Fig. 2. Each characteristic
has a slope of GX equal to 1/RX , where X represents the
number of resistance states ranging from 0 to n. To take into
account the variability of the n HRS/LRS resistance states,
the conductance margin is highlighted in Fig. 2 by a shaded
strip encompassing each I-V characteristic. Also, e can see
that a reliable conductance modulation strategy does not just
depend on the programming operation, but also depends on an
accurate read mechanism as a read operation is conducted by
applying a low bit line voltage bias VREAD across the RRAM
cell and sensing the resulting currents. The latter, referred to
as IRead0

to IReadn−1, reflecs the RRAM conductance values.

Fig. 2. I-V plane segmentation after a programming operation. Variability is
illustrated by a shaded area encompassing each I-V characteristic. Adapted
with permission from [37] under Creative Commons License (CC BY 4.0)..

The impact of C2C and D2D variability is experimentally
revealed at the I-V characteristic level after a RESET/SET
operation applied to each cell of an elementary memory array
[38] to catch C2C variability (Fig. 3a) and after a RESET/SET
operation applied to an isolated cell of the same array to
catch D2D variability (Fig. 3b). Although only two resistance
levels are considered, HRS and LRS resistance values are both
affected by C2C and D2D variability, with a more marked
impact in the HRS state, particularly when D2D variability is
concerned.

B. Intermittent errors

RRAM technology suffers from intermittent [13] and hard
errors [30]. Both errors directly impact the RRAM resistance
window. Hard errors are a permanent corruption of a memory
cell resulting from physical defects usually activated after

Fig. 3. RRAM I-V characteristics highlighting (a) C2C and (b) D2D
variability.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2023 at 09:33:53 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. HRS/LRS resistances in log scale over 11,269 cycles.

cycling or retention tests, while intermittent errors are related
to a random, recoverable upsetting of the information stored in
a memory cell [39]. This drawback of the technology results
from the stochastic dynamics of resistive switching (i.e.,
oxygen vacancies/ions motion). Fig. 4 presents the evolution
of HRS and LRS extracted at 0.1 V versus the number of
programming cycles. Each programming cycle ranges from 0
to 11,269. When analyzing Fig. 4, many HRS and LRS level
overlaps are visible. These overlaps happen either because
one cell stops meeting its nominal characteristics or because
one cell is stuck at a resistance state for one or several
cycles before recovering. However, no specific pattern has
been detected, demonstrating the unpredictable nature of the
RRAM technology.

These overlaps can be explained from a physical standpoint.
If during a SET operation, too many bonds between some
of the metal and oxygen ions in the oxide layer break, too
many oxygen ions are attracted to the top electrode hence
leaving oxygen vacancies acting as a conductive filament (CF).
Therefore, the voltage applied across the cell to induce an
effective RESET operation might not be high enough. In such
a case, switching the cell may demand several programming
cycles to get those oxygen ions to drift back. Conversely, if
during a RESET operation, too many ions are displaced, the
voltage needed to induce an efficient SET operation in the next
programming cycle may not be sufficient, leading the device
to be stuck at HRS for several cycles. To mitigate intermittent
errors impact on memristive networks, it is necessary to design
specific circuits able to monitor the effectiveness of each
RESET/SET operation [40].

IV. RRAM-BASED NEURAL NETWORKS RELIABILITY

DNNs are one of the most essential tools in AI for a plethora
of applications, such as object detection, natural language,
and text processing [41]. Reaching a high accuracy comes
at the cost of increased computational complexity and model
size, jeopardizing their implementation on traditional Von
Neumann architectures due to the large energy consumption
required in the communication between processing and off-
chip memory elements [42]. To overcome this bottleneck,
the CIM paradigm allows the processing of the data in-situ,
proving to be an energy-efficient solution for DNN hardware

acceleration. RRAM devices have emerged as the ideal can-
didate for CIM because of their non-volatile characteristics,
conductance tuning for DNN synaptic weights representation,
and low power consumption [43]. RRAM devices (usually
connected to a select transistor as in 1T-1R structures) can be
organized in a crossbar array topology (see Fig. 5a), that can
perform analog matrix-vector multiplication (MVM) in one
computational step [44], thanks to the inherent parallelism.
This feature is of help in the hardware acceleration of a staple
operation in DNNs such as the Multiply and Cumulate (MAC).
Additionally, RRAM crossbars can be tiled and interconnected
with ADCs, DACs, and DSPs to implement a complete DNN
(see Fig. 5b). In this section, we present the most leveraged
spanning from device optimizations to the advanced circuit
and algorithmic strategy [45]. The reminder of this section
presents different techniques to deal with impact of RRAM
reliability failure mecahnisms on DNNs mapped to an RRAM-
based CIM crossbar.

Fig. 5. RRAM 1T-1R crossbar array architecture for MVM operations
with additional peripheral circuitry (top). RRAM-based implementation of
a DNN (DeepSurv) using tiled crossbars. The additional circuitry such as
ADCs, DACs, and DSPs required for the operations outside the MVMs are
indicated as well (bottom). Adapted with permission from [46] under Creative
Commons License (CC BY 4.0).

A. Accurate conductance control for weights mapping

RRAM devices are used to map the synaptic weights of
a DNN architecture. MLC program and verify techniques
have been demonstrated as the best device-level solution to
precisely tune the conductance of RRAM cells, with the main
benefit of overcoming the C2C and D2D variability effects
[26]. In our work [47], we assessed the precision of two MLC
algorithms in RRAM-based CIM architectures by comparing
a program and verifying algorithm based on the modulation
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of top electrode voltage (Incremental Step Pulse with Verify
Algorithm – ISPVA) and a refined version based on the gate
voltage modulation of the select transistor (Incremental Gate
Voltage Verify Algorithm – IGVVA). The second algorithm
demonstrated better conductance control due to the higher
accuracy in the device current control arising from the tight
relation between the gate voltage applied to the transistor and
the compliance current used in RRAM operations [48]. The
IGVVA was tested using two voltage steps in the program
and verify approach, namely 100 mV (IGVVA-100) and 10
mV (IGVVA-10). To compare the programming accuracy of
these MLC algorithms, we programmed 5 levels into a 4-
kbit RRAM array and measured the conductance distributions
owing to the results of Fig. 6a. The accuracy of the different
MLC algorithms has then been studied for encoding synaptic
weights in a neural network by extending the programming
to 9 different conductance levels from 8 µS to 225 µS and
devising them to implement the 4-kbit synaptic weights of a
2-layer fully connected neural network (FC-NN) investigated
in [26]. The network consists of an input layer including
197 neurons, a hidden layer with 20 neurons, and an output
layer with 10 neurons. To maximize the inference accuracy
of the neural network, we implemented the FC-NN synaptic
weights using the 9 conductance levels obtained with the MLC
algorithms combined with the differential scheme illustrated in
[47], namely by encoding the weight as the difference of two
conductance G+ and G− [49]. Fig. 6b shows that the DNN
accuracy is heavily impacted by the conductance precision in
terms of the number of levels of the synaptic weight.

Fig. 6. (a) Conductance CDFs of HRS and 4 LRS levels measured after
the application of the ISPVA, IGVVA-100, and IGVVA-10 MLC algorithms.
IGVVA-10 CDFs display the lowest D2D variability. (b) Calculated inference
accuracy (η) of the 2-layer FC-NN as a function of the number of synaptic
weight levels programmed by IGVVA-100, ISPVA, and IGVVA-10 CDFs.
The higher number of levels combined with IGVVA-10 programming leads η
close to FP-64 accuracy. Reprinted with permission from [47] ©2021 IEEE.

B. Incremental Network Quantization

Despite reaching a considerable number of levels to rep-
resent synaptic weights with RRAM, we are still far from
the radix used by CPUs or GPUs (i.e., 32/64 bits). The
numerical precision of the synaptic weights can be reduced
without compromising on the network accuracy through a
quantization algorithm. We considered the use scenario of a
DeepSurv network used for medical applications [46], but can
be generalized to any DNN. As a preliminary step, we trained
the DeepSurv network on a GPU with 32-bit floating-point
precision using Tensorflow. Then, we implemented an iterative

training algorithm described in [50] as Incremental Network
Quantization (INQ). The key is to build an RRAM-aware train-
ing operation through the decision of the quantization steps
number that are to be followed. In our study case, we found
an acceptable trade-off in using 4 incremental quantization
steps: 50%, 75%, 87.5%, and 100%. These percentage values
allow for deriving the number of weights in each DeepSurv
layer that will be rounded to the nearest quantization level at
the end of each training epoch of the network while leaving
the remaining weights free to continue with the training
non-quantized. The advantage of this strategy lies in the
compensation of the quantization-induced non-idealities [50].
Fig. 7(a) depicts an example of the INQ procedure application.
Different INQ priority patterns can be exercised: i) weights
with the greatest absolute value; ii) weights with the lowest
absolute value; iii) weights featuring the lowest quantization
error. The quantization error refers to the value calculated as
the absolute difference between the value of the weight at the
end of the training and the value of the closest quantization
level. Fig. 7b shows an example of the efficiency of the three
different policies reached within 100 experiments considering
the C-index [51] DeepSurv accuracy metric.

Fig. 7. (a) Different application steps of the INQ algorithm. (b) CDF of the
DeepSurv C-index retrieved in Monte Carlo simulations with different weight-
picking strategies compared with the C-index without quantization in training
and working with full floating-point precision. Reprinted with permission from
[46] under Creative Commons License (CC BY 4.0).

C. Variation-aware training

The training of a DNN is a process that is extremely
sensitive to the fluctuations of the synaptic weights [41].
Even slight variations can move the optimal work of the
network leading to severe accuracy loss during inference. A
solution to improve network resilience against this issue is to
deliberately inject some noise into the synaptic weights during
the training, exploiting a technique called variability-aware
training (VAT) [52]. In RRAM-based DNN design, such noise
is linked to the D2D and C2C variability as both represent
a major reliability threat. Fig. 8a demonstrates the inference
accuracy of a Convolutional Neural Network (CNN) mapped
on RRAM crossbars without noise injection (VAT0, in red),
and with the injection of Gaussian noise having a standard
deviation of 8% over the maximum (VAT8, in violet). Under
ideal circumstances (i.e., no inference variability), the network
can reach the ideal software accuracy of 98% in both cases,
while, as the variability of weights during inference increases,
VAT8 performs significantly better, gaining roughly 10% in
accuracy. Fig. 8b shows that for variability spanning from
2% to 16% during the inference, VAT gradually increases the
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Fig. 8. The impact of the variability of the synaptic weights during the
inference on the model trained without VAT (in red), and with 8% VAT (in
violet) (a). Inference accuracy of DNN with different amounts of synaptic
weights variability. The most accurate results are obtained with an 8% VAT
model (b). Reprinted with permission from [53] ©2022 IEEE.

overall accuracy until a maximum effect around 8% of injected
noise. Another trade-off is exposed with VAT: injecting higher
noise leads to an accuracy decrease of the CNN, but a
minimum amount is required to improve the overall network
performance.

V. MEMRISTOR RELIABILITY-AWARE BIASED TRAINING

As already mentioned, conductance variation leads to an
undesired change in the neural network weights stored in
a memristor, resulting in low computing accuracy. Another
alternative way to address this issue is the mapping-aware
biased training methodology; we will discuss the approach
based on the work in [54]. We first identify memristor con-
ductance states with low variation impact (favorable states)
to derive a favorability constraint that only allows weight
values that map to these favorable states. Then, a mapping-
aware biased training is adopted to determine the weights
that are important for CIM hardware accuracy and impose
the favorability constraint on them. Finally, the post-training
important weights are mapped to the favorable states, leading
to high inference accuracy on CIM hardware.

A. Favorable Conductance States Analysis

Fig. 9 shows a CIM-based multiply-accumulate operation,
where Ierror is the error current in a single memristor device
due to conductance variation. As small Ierror is desirable, the

Fig. 9. Favorable conductance states analysis for a 2-bit memristor (four
conductance states). Reprinted with permission from [54] ©2023 IEEE. The
used conductance variation data is obtained from [55].

Given: Memristor bit capacity, CIM mapping scheme,
important columns percentage, favorable states,

standard (hardware unaware) trained weights

Determine the favorability constraint

Perform a backpropagation epoch with training data

Identify important weights for CIM accuracy 

Apply favorability constraint to important weights

Save the 
constrained

weights

Is Atest the best accuracy till now?

Last epoch?

Evaluate post-constraint test accuracy  (Atest)

Map the saved weights to CIM hardware

NO

YES

YES

NO

Fig. 10. Flowchart of the proposed mapping-aware biased training. Reprinted
with permission from [54] ©2023 IEEE.

preference order of states in Fig. 9 is: G00 (best), G01, G11,
G10 (worst). Despite having a higher variation percentage, G00
and G01 are preferred over G11 and G10 as their small mean
values result in small Ierror. Hence, the preference order of
conductance states must be based on Ierror contribution instead
of the variation percentage. The ordered conductance states are
then grouped into i) unfavorable states (U) to avoid mapping,
and ii) favorable states (F) to prefer mapping. Based on Fig. 9,
the possible grouping configurations are:

• Config-1: F={G00}, U={G01,G11,G10}
• Config-2: F={G00, G01}, U={G11,G10}
• Config-3: F={G00, G01, G11}, U={G10}

Config-1 sets weights only to zero while config-2 forces them
to the same sign. This is undesirable as the neural network
requires both positive and negative non-zero weights. As
config-3 can represent non-zero weights with different signs,
it is used in our mapping-aware biased training methodology.

B. Mapping-aware Biased Training Methodology

The flowchart of the mapping-aware biased training is
shown in Fig. 10. Firstly, the network is trained in a con-
ventional manner to extract the initial weights for mapping-
aware training. Then, a favorability constraint is determined
to ensure the mapping of desired weights to the favorable
conductance states. For example, consider 2-bit memristors
(slices), 8-bit fixed-point weights (6-bit fraction), and CIM
architecture in [56]. Fig. 11 shows the favorability constraint
to map the most significant 2-bit slice to favorable states (G00,
G01, and G10) as described in Section V-A. The favorability
constraint is then used during mapping-aware biased training
to determine the weights that are important for high hardware
accuracy and map them to the favorable states.

C. Results and discussion

1) Simulation Setup: A Python-based framework is devel-
oped for the behavioral simulation of neural network inference
on CIM hardware. It is based on in-situ multiply-accumulate
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Fig. 11. Illustration of favorability constraint derivation for mapping MSB
slice of 8-bit weight to favorable conductance states in a 2-bit memristor.
Reprinted with permission from [54] ©2023 IEEE.

(IMA) units in state-of-the-art CIM architectures [56], [57].
We consider 8-bit weights split across four memristors of
2-bit capacity. Experimental memristor device parameters
and conductance variation data are obtained from [55]. The
evaluation is performed using MNIST [58], Fashion MNIST
(FMNIST) [59], and EMNIST (EMNIST-L) [60] datasets.

2) Network accuracy evaluation: Fig. 12 shows the ac-
curacy of the proposed technique in comparison to the con-
ventional training (backpropagation). The proposed mapping-
aware biased training has a slightly lower software accuracy
compared to conventional training. This is because cost func-
tion minimization during training becomes difficult due to
the favorability constraint on important weights. However,
the proposed biased training provides up to 2.4× hardware
accuracy compared to conventional training. This can be
attributed to the mapping of important weights to conductance
states having a low variation impact.

The comparison of hardware metrics between the proposed
mapping-aware biased training and the conventional training
(backpropagation) is shown in Table I. They both need identi-
cal hardware components and hence consume the same energy
and area. We define a new metric “correct operations per unit
energy” as the ratio of the number of correct operations to
energy consumption (unit: Giga-operations per joule (GOP/J)).
Here, the number of correct operations is the product of
accuracy (as a fraction) and the total number of operations.
Table I shows that the proposed mapping-aware biased training
achieves up to 2.4× correct operations per unit energy than

Fig. 12. Inference accuracy comparison across various datasets. Reprinted
with permission from [54] ©2023 IEEE.

conventional training without any hardware overhead.

TABLE I
HARDWARE METRICS PER IN-SITU MULTIPLY-ACCUMULATE UNIT.

REPRINTED WITH PERMISSION FROM [54] ©2023 IEEE.

Metric Conventional Training Proposed Mapping-aware
Biased Training

FMNIST accuracy (%) 35.4 85.2
Energy consumption (pJ) 3738 3738

Area (µm2) 21765 21765
Correct operations per unit

energy for FMNIST (GOP/J) 96.9 233.4

VI. CONCLUSION

RRAM is an emerging non-volatile memory technology that
has generated significant interest in the field of computing due
to its potential advantages, such as high speed, low power
consumption, and scalability. However, its reliability faces
serious challenges in two aspects: (1) time-zero reliability
and (2) time-dependent reliability. In particular, RRAM-based
computing accuracy is impacted by variability as well as
intermittent faults (i.e., sudden conductance drifts). Several
research directions intended to mitigate these drawbacks of
the technology have attracted much attention. Among these,
variation-aware training and reliability-aware biased training
are developed in this review. The outcomes of this review show
that designing reliable RRAM-based computing systems in-
volves hardware combined with software strategies to address
non-idealities and ensure reliable operation over time.
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