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Abstract—The classical connectivity is typically used to capture
the robustness of networks. Robustness, however, encompasses
more than this simple definition of being connected. A spectral
metric, referred to as the algebraic connectivity, plays a special
role for the robustness since it measures the extent to which
it is difficult to cut the network into independent components.
We rely on the algebraic connectivity to study the robustness
to random node and link failures in three important network
models: the random graph of Erdős-Rėnyi, the small-world graph
of Watts and Strogatz and the scale-free graph of Barabási-
Albert. We show that the robustness to random node and link
failures significantly differs between the three models. This points
to explicit influence of the network structure on the robustness.
The homogeneous structure of the random graph of Erdős-Rėnyi
implies an invariant robustness under random node failures. The
heterogeneous structure of the small-world graph of Watts and
Strogatz and scale-free graph of Barabási-Albert, on the other
hand, implies a non-trivial robustness to random node and link
failures.

I. INTRODUCTION

Robustness of the network topology is a key aspect in

the design of computer networks. Network design heuristics

[6] that are typical for computer networks, rely for a large

part on the classical connectivity [13]. Network robustness,

however, encompasses more than just providing an answer

to questions of the form ”What is the maximum number of

node or link failures a network can accommodate before it

becomes disconnected?” [12]. Here, we rely on a spectral

metric, referred to as the algebraic connectivity [8], that

has been proven to be a distinguishable parameter in many

robustness related problems [16]. By considering the algebraic

connectivity as a measure of the network robustness, we show

that the structure, not only the classical connectivity, has a

clear influence on the robustness of the network topology.

In this paper we show that for a thorough understanding

of robustness, a proper knowledge of the topological struc-

ture of certain classes of networks is extremely important.

Furthermore, we show that the type of random failure is

highly predictable since the robustness to random node and

link failures differs significantly between certain classes of

networks. For that reason, we take network classes that have

two structurally opposite underlying mechanisms: the homoge-

neous structure of the random graph of Erdős-Rėnyi versus the

heterogeneous structure of the scale-free graph of Barabási-

Albert. In addition, we consider the small-world graph of Watts

and Strogatz as its exhibits the properties of both the random

graph and the scale-free model. These three models are widely

used for modeling the topology of computer networks [1] [17].
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The homogeneous structure of the random graph of Erdős-

Rėnyi implies an invariant robustness under random node and

link failures. The heterogeneous structure of the scale-free

graph of Barabási-Albert, on the other hand, implies a non

trivial robustness to random node and link failures. Such a

theoretically explained behavior was also confirmed for the

small-world graph of Watts-Strogatz.

The remainder of this paper is structured as follows. Sec-

tion II presents the theoretical background on the algebraic

connectivity. Section III gives an analytical result linking the

classical connectivity to the algebraic connectivity. Section IV

provides simulation results on the distribution of the algebraic

connectivity in the three network models subject to random

failures. Finally, Section V concludes and discusses further

work.

II. BACKGROUND

A network is represented as an undirected graph G =
(N ,L) where N denotes the set of nodes and L the set of

links, with N = |N | nodes and L = |L| links, respectively [4].

Before giving an overview of theoretical results on the alge-

braic connectivity, we define the Laplacian matrix associated

with a graph.

The Laplacian matrix of G with N nodes is an N × N

matrix Q = ∆−A where ∆ = diag(di), di is the nodal degree

of node i ∈ N and A is the adjacency matrix of G [14] The

eigenvalues of the Laplacian matrix λ1 ≥ ... ≥ λN−1 ≥ λN =
0 are all real and nonnegative [9][15]. The second smallest

eigenvalue of the standard Laplacian matrix, as proposed by

Fiedler [8], is called the algebraic connectivity. The following

results can be found [10] on the algebraic connectivity λN−1:

1) 0 ≤ λN−1 ≤ N
N−1 min{di: i ∈ N}: if a graph G is

a complete graph KN , then λN−1 = N and if G is a

disconnected graph, then λN−1 = 0.

2) If λN−i+1 = 0 and λN−1 6= 0, then G has exactly i

components.

3) If G1 = (V,L1) is a subgraph of G, then λN−1(G1) ≤
λN−1(G).

Point 1) says that the algebraic connectivity is upper

bounded by N
N−1 times the minimal nodal degree of the graph.

Point 2) says that the multiplicity of zero as an eigenvalue

corresponds to the number of components of the graph. Point

3) says that if a subgraph G1 of a graph G has all the nodes

of G and a subset of the links of G, then the algebraic

connectivity of G1 is smaller than the one of G.

Let us also introduce two connectivity metrics of G: 1) for

k ≥ 1, a graph G is (node) k-connected if either G is a

complete graph Kk+1 or it has at least k+2 nodes and no set



of k − 1 nodes that separates it, 2) for k ≥ 1 a graph G is k-

link connected if it has at least two nodes and no set of at most

k−1 links that separates it. The maximum value of k for which

a connected graph is k-connected equals the node connectivity

κN . The link connectivity κL is defined analogously [4]. The

node (link) connectivity of an incomplete graph G 6= KN is at

least as large as the algebraic connectivity λN−1 ≤ κN ≤ κL

[8]. If G = KN , then λN−1 = N > κN = N − 1.

III. LINKING k-CONNECTIVITY AND THE ALGEBRAIC

CONNECTIVITY

In this section we present an analytic result that allows us to

determine the values of network model parameters that lead

to identical algebraic connectivity distributions. We start by

discussing the considered network model and a set of classical

theorems corresponding to it. We analyze then the distributions

of the algebraic connectivity on this network model.

A. Random graph of Erdős and Rėnyi

The random graph, by Erdős and Rėnyi, is the simplest

model to describe the topology of a network. We denote the

random graph by Gp(N), where N is the number of nodes in

the graph and p is the probability of having a link between any

two nodes (or shortly the link probability). Gp(N) is the set of

all such graphs in which a graph having L links appears with

probability pL(1 − p)Lmax−L, where Lmax is the maximum

possible number of links. Many properties of the random graph

are known analytically in the limit of large graph size N , as

was shown by Erdős and Rėnyi in a series of papers in the

1960s and later by Bollobás [5]. Typically, for large graph

size N , the degree distribution of the random graph model,

which is a binomial distribution, can be replaced by a Poisson

distribution, i.e.

Pr[D = k] =

(

N − 1

k

)

pk(1 − p)N−1−k ≃
µke−µ

k!
(1)

where µ = p(N − 1) equals the mean nodal degree E[D].
The expected structure of the random graph varies with

the value of p. For our purposes the most important property

of the random graph is that it possesses a phase transition

[7]: from a low-density, low p value for which there are

few links and many small components, having an exponential

size distribution and finite mean size, to a high-density, high

p value for which an extensive fraction of all nodes are

joined together in a single giant component, the remainder

of the nodes occupying smaller components with again an

exponential size distribution and finite mean size. This phase

transition is studied in detail by Janson et al. in [11] and given

with the following connectivity theorem.

Theorem 1. If we start with a random graph on N nodes and

an empty link set and add links randomly and independently

one by one until having L links, the graph almost surely

becomes 1-connected when L ≥ N log N
2 + O(N). Since

p = L

(N

2 )
we can say that for a random graph to be 1-connected

the following must hold, for large N ,

p ≥
log N

N
≡ pc. (2)

From the above theorem, the fundamental result [7] can

be deduced that the probability of a random graph being

connected is about the probability that it has no node of

degree zero. Given the importance of this result we also give

the following theorem, which relates the k-connectivity to the

minimum nodal degree [5].

Theorem 2. If links are added one by one to the empty

random graph of N nodes in an order chosen uniformly and

at random from the
(

N
2

)

! possibilities, then almost surely

the resulting graph becomes k-connected when it achieves a

minimum degree of k. In other words, for large N ,

Pr[Gp(N) is k-connected] = Pr[dmin ≥ k] (3)

where dmin is the minimum nodal degree.

B. Distribution of the algebraic connectivity

To understand the probability distribution of the algebraic

connectivity λN−1, we will use the second theorem of con-

nectivity to deduce the probability p of the presence of a

link between any two nodes in the Erdős and Rėnyi random

graph. From (3) and (1), we have that the probability of k-

connectivity in Gp(N) equals

Pr[Gp(N) is k-connected] = (1 −
k−1
∑

m=0

(µ)me−µ

m!
)N . (4)

Solving the above equation for a given probability of being

k-connected and a given number of nodes N , one can easily

find the probability p of the presence of a link between any

two nodes in Gp(N). In this paper, we use two arbitrary

probabilities, i.e. 0.5 and 0.9, of a graph being k-connected to

deduce p. The deduced probabilities of being k-connected are

listed in Table I. Figure 1 relates, for different values of N , the

probabilities of 1-connectivity and 10-connectivity to the link

probability p. We observe on Figure 1 that larger graph sizes

require smaller link probabilities p to have a given probability

of being k-connected.

Figure 2 includes the simulation results on Gp(N) with

N = 50 and 400 and the corresponding link probabilities p

(equation 4). From this Figure, we can observe that, for a

given probability of the graph’s k-connectivity, the algebraic

connectivity λN−1 has the same probability distribution for

different graph sizes N . Figure 2 suggests that the probability

of being k-connected might define robustness classes, as they

seem to correspond to a particular density of the algebraic

connectivity. Although it is proven to be a distinguishable

parameter in many robustness related problems [16], today not

much is known about the practical meaning of the algebraic

connectivity. It was shown in [12] that there is no trivial

connection between the algebraic connectivity and the connec-

tivity to node and link failures, i.e. the node κN and link κL

connectivity. Furthermore, [12] showed that the relationship

between the algebraic connectivity and the connectivity to

node and link failures depends on the considered network

model. Here we see that, at least in distributional terms, the

algebraic connectivity seems to provide a signature of the

probability of being k-connected. This result points towards

the possibility of defining robustness classes based on the

algebraic connectivity.



TABLE I
THE LINK PROBABILITY p IN Gp(N) WITH N = 50, 100, 200 AND 400, FOR VALUES OF THE PROBABILITY OF BEING 1-CONNECTED AND

10-CONNECTED OF 0.5 AND 0.9.

Pr[k-connectivity] N = 50 N = 100 N = 200 N = 400
Pr[1-connectivity] = 0.5 p = 0.0875 p = 0.0503 p = 0.0285 p = 0.0159
Pr[1-connectivity] = 0.9 p = 0.1258 p = 0.0693 p = 0.0379 p = 0.0207
Pr[10-connectivity] = 0.5 p = 0.3715 p = 0.1963 p = 0.1036 p = 0.0546
Pr[10-connectivity] = 0.9 p = 0.4378 p = 0.2280 p = 0.1189 p = 0.0620
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Fig. 1. The probability of being 1-connected and 10-connected as a function
of the link probability p in Gp(N) with N = 50 and 400. Black markers
indicate the values of the link probability p for wich the probability of being
1-connected and 10-connected equals 0.5. These values are also presented in
Table I.
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Fig. 2. The probability density function of the algebraic connectivity λN−1

in Gp(N) with N = 50 (dotted red line), 400 (full blue line) and the link
probability p, which is deduced from the probability of Gp(N) beeing k-
connected.

IV. BEHAVIOR OF THE ALGEBRAIC CONNECTIVITY UNDER

RANDOM FAILURES

In this section we present simulation results on the distri-

bution of the algebraic connectivity. We first discuss the con-

sidered network models. Then we analyze simulation results

where we apply topological changes in the form of random

node removal.

A. Random Graph of Erdős-Rényi

In the previous section we have seen that in the Erdős-Rényi

random graph, the parameters of interest are N and p. We

simulate for each combination of N and p, 103 independent

Gp(N) graphs. The number of nodes is 250 and the link

probability takes one of the following two values, p = 0.008
and p = 0.016. From each combination of N and p, we

compute the algebraic connectivity λN−1 and sort the 103

values in increasing order. We plot them so that the ith smallest

algebraic connectivity value λi
N−1, 1 ≤ i ≤ 103, is drawn at

(x, y) with x = (i−1)
(103

−1) and y = λi
N−1. In this way all values

in the x-axis are in the [0, 1] range. In Figure 3, the distribution

of the algebraic connectivity is given for the Erdős-Rényi

random graph with N = 250 and p = 0.008. Note that

considered values of the link probability p are smaller than

the value for which a random graph with N = 250 almost

surely becomes connected (equation 2). For that reason, we

compute the algebraic connectivity of the largest connected

component. We also compute the distribution when the random

graph is affected by random node failures: in two consecutive

steps, we randomly remove a node and all its connections and

compute the algebraic connectivity from the remaining largest

connected component. Figure 3 shows that the random graph

subject to random node removal, exhibits a slight decrease

in the distribution of the algebraic connectivity. A similar

behavior has been observed for the random graph with twice

the number of links (not shown due to space limitations). The

analytical results presented in Section II explain the decrease

in the algebraic connectivity under the condition that removal

of links would negatively effect the link density of the resulting

graph (third result on the algebraic connectivity). Taking this

result into account, it seems that the random removal of nodes

leaves a subgraph that has approximately the same (or a

slightly smaller) proportion of nodes to links as the original

graph. Figure 4 supports this observation by showing that

nodes to links ratios after one or two node removals are the

same. Consequently, the removal of random nodes results in

a subgraph that has approximately the same structure as the

random graph upon which the changes were applied.

B. Small-World Graph of Watts-Strogatz

The small-world model describes the fact that despite the

large graph size, in most real-world networks there is a rela-

tively short path between any two nodes. There are different

realizations of the small-world model, but the original model

as proposed by Watts and Strogatz [19] is by far the most

widely studied. It starts by building the ring RN with N nodes,

and then joining each node to 2s neighbors (s on either side of

the ring). This results in the ring lattice C(N, s) with L = sN

links. The small-world graph is then created by moving, with

probability pr, one end of each link (connected to a clockwise

neighbor) to a new node chosen uniformly in the ring lattice,

except that no double links or loops are allowed. The rewiring
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Fig. 3. Distribution of the algebraic connectivity for the random graph
of Erdős-Rényi with 250 nodes and a link probability p = 0.008. The
distribution of the algebraic connectivity is also measured when the model
is subject to topological changes in the form of random node removal.
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Fig. 4. The ratio of the number of nodes to the number of links after the
random graph of Erdős-Rényi with 250 nodes and p = 0.008 is subject to
the topological changes in the form of random node removal.

process allows the small-world model to interpolate between

a regular lattice (pr = 0) and something which is similar,

though not identical, to a random graph (pr = 1). For already

small pr the small-world becomes a locally clustered network

in which two arbitrary nodes are connected by a small number

of intermediate links [19].

We simulate, for N and s, 103 independent Watts-Strogatz

small-world graphs. The number of nodes N is 250 and s takes

one of the following two values, s = 1 and s = 2. The rewiring

probability is set to be pr = 0.008. Similarly to results for the

Erdős-Rényi random graph, we plot in Figure 5 the distribution

of the algebraic connectivity as a function of the normalized

graph rank. We also compute and plot the distribution when

the small-world network is affected by random node failures:

in two consecutive steps, we randomly remove a node and all

its connections and compute the algebraic connectivity from

the remaining largest connected component.

From Figure 5 we observe that the value of the algebraic

connectivity is constant for nearly all simulated small-world

graphs. We also observe that the higher value of the algebraic

connectivity is a consequence of a graph with a higher value

of the link density: for N = 250 and s = 2, the small-world
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Fig. 5. Distribution of the algebraic connectivity for the small-world of Watts-
Strogatz with 250 nodes and 250/500 links. The distribution of the algebraic
connectivity is also measured when the model is subject to topological changes
in the form of random node removal.

graph has twice as much links, i.e. L = 500, as the small-

world with N = 250 and s = 1. The constant behavior

of the algebraic connectivity comes from the fact that the

small-world process introduces prNs non-lattice links, which

for pr = 0.008 results in only few rewired links. Therefore,

resulting small-world graphs are almost regular ring lattices

so that their values of the algebraic connectivity are constant

for almost all simulated graphs. Furthermore, the removal of

random nodes in a nonsparse small-wold graph (see dashed

lines in Figure 5) results in a slight decrease in the distribution

of the algebraic connectivity. Then, the remaining largest

connected component have the same proportion of nodes to

links, i.e. N
L

= 0.5, as the initial small-world graph (not shown

due to space limitation).

On the other hand, for the sparse small-world graph, i.e.

L = N , the distribution of the algebraic connectivity is

surprisingly different. After random removal of one node,

there seems to be a substantial decrease in the robustness of

the remaining largest connected component. However, after

random removal of two nodes, the distribution of the algebraic

connectivity is likely to be increasing. Take notice of an

unchanged ratio between the number of nodes and the number

of links, i.e. the ratio after random removal of one or two

nodes is equal to the ratio in a given small-world graph with

N = L. As evident from the figure, this does not mean that

remaining largest connected components after random removal

of nodes will have the same robustness as the original graph.

While this may appear inconsistent with prior results, it can be

easily understood: random removal of nodes in a practically

regular graph, i.e. here the ring graph with small number of

rewired links, most likely fragments the small-world so that in

the remaining largest connected component a highly regular

structure is observed again. This process is repeated until the

network is fragmented in such a way that the regularity is

hardly perceptible.

C. Scale-Free Graph of Barabási-Albert

Scale-free models have a power-law degree distribution

which contrasts with that of random or small-world graphs.

Barabási [2] showed that growth and preferential attachment
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Fig. 6. Distribution of the algebraic connectivity for the scale-free graph
of Barabási-Albert with 250 nodes and 250 links, with and without random
nodes removal.

of nodes, which implies that the nodes with larger degree are

more likely candidates for attachment of new nodes, give rise

to a class of graphs with a power-law degree distribution. The

Barabási-Albert model starts with a small number m0 of fully-

meshed nodes, followed at every step by a new node attached

to m ≤ m0 = 2m + 1 nodes already present in the system.

After t steps this procedure results in a graph with N = t+m0

nodes and L = m0(m0−1)
2 + mt links.

We simulate, for N and m, 103 independent Barabási-

Albert scale-free graphs. The number of nodes is 250 and the

parameter m takes one of the following two values, m = 1
and m = 2. For each combination of N and m, we compute

the algebraic connectivity λN−1, and sort the 103 independent

values in increasing order. We plot them in the same way

as in the simulations for the Erdős-Rényi and Watts-Strogatz

graph. In Figures 6 and 8, the distribution of the algebraic

connectivity is given, respectively for the Barabási-Albert

scale-free graph with m = 1 and with m = 2. Note that

for the Barabási-Albert scale-free with m = 2, the number

of links, i.e. L = 500, is twice as large as for the Barabási-

Albert scale-free with m = 1, i.e. L = 250. Along with the

standard behavior of the algebraic connectivity, we also show

the distribution when the model is exposed to the random node

removal: in two consecutive steps, we randomly remove a node

and all its connections and calculate the algebraic connectivity

from the remaining largest connected component.

The first observation from Figure 6 is that there seems to

be a slight increase in the value of the algebraic connectivity

due to the random removal of nodes. On the contrary, from

Figure 8 we observe that the value of the algebraic connectivity

decreases due to the random removal of nodes.

To illustrate how different link densities influence the

robustness, we show in Figures 7 and 9 the ratio of the

number of nodes to the number of links after the scale-free

graph of Barabási-Albert undergoes random node removals.

We also see on Figures 8 and 9 that the gap between the

algebraic connectivity before and after the removals reflects

the decreasing degrees of the removed nodes. This illustrates

the effect of the centrality of a node on the network robustness.

From the figures showing the ratio between the number

of nodes and the number of links, we observe that for the
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Fig. 7. The ratio of the number of nodes to the number of links after the
scale-free graph of Barabási-Albert with 250 nodes and 250 links is exposed
to the topological changes in the form of random node removal.
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Fig. 8. Distribution of the algebraic connectivity for the scale-free graph
of Barabási-Albert with 250 nodes and 500 links, with and without random
nodes removal.

scale-free graph of Barabási-Albert with N = L, the random

removal of nodes results in a similar topological structure, i.e.

it results in a graph where the number of nodes approximately

equals the number of links N ≈ L. On the other hand, for the

scale-free graph of Barabási-Albert with N ≪ L, the random
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Fig. 9. The ratio of the number of nodes to the number of links after the
scale-free graph of Barabási-Albert with 250 nodes and 500 links is exposed
to the topological changes in the form of random node removal.



removal of nodes results in a graph where the ratio of nodes

to links increases compared to the original graph (where the

ratio is 0.5). Note that for the scale-free graph of Barabási-

Albert with N = 250 and L = 500, the random removal of

i nodes results in a connected component with the number of

nodes always equals to N − i.

The analysis of the random node failures allow us to

conjecture the existence of networks belonging to two different

robustness classes:

• The value of the algebraic connectivity slightly increases

or remains the same: a graph has approximately the same

number of nodes and links. After random node or link

removal, a graph has on average the same number of

nodes and links. This is either due to random nodes or

random links whose removal results in a subgraph with

the proportional number of nodes and links as in the

original graph.

• The value of the algebraic connectivity decreases: a graph

has more links than nodes. After random node or link

removal, a graph has still on average more nodes than

links. This decreasing algebraic connectivity is either due

to

1) random nodes whose removal results in a subgraph

with the node set that spans almost all nodes and

consequently much less links than in the given

graph.

2) random links whose removal results in a subgraph

with the same node set as in the given graph.

Sparse and dense graphs hence will exhibit different behav-

iors of the algebraic connectivity under topological changes in

the form of random node and link removal.

V. CONCLUSION AND FUTURE WORK

Looking at the Erdős-Rényi random graph, we observed that

different values of the link probability p and graph size N

may lead to identical probability distributions of the algebraic

connectivity. Graph parameters of interest that correspond to

an identical algebraic connectivity behavior, are deduced from

the probabilities of a random graph being k-connected. This

result supports a direct relationship between the algebraic

connectivity and graph’s robustness to node and link failures.

Furthermore, we have studied how the algebraic connec-

tivity is affected by topological changes in the form of

random node removal. For the Erdős-Rényi random graph, our

findings confirm their well-know property: random removal

of nodes results in a distribution similar to the distribution

of the original random graph. Consequently, remaining largest

connected components have similar structure and hence are

equally robust to random removal of nodes. The random link

removal strategy would most probably result in a decreasing

distribution of the algebraic connectivity: remaining largest

connected components most probably have unchanged set of

nodes but a subset of the original links. Results obtained in

the Erdős-Rényi random graph are confirmed but only by the

small-world graph of Watts-Strogatz with higher link densities

than its sparse counterparts (where a non-trivial robustness to

random node failures is observed).

For the scale-free graph of Barabási-Albert, the distribution

of the algebraic connectivity provides information on the type

of failure the considered network has undergone: random node

or link removal will increase the value of the algebraic con-

nectivity only if the resulting subgraphs have approximately

same number of nodes and links. On the other hand, random

node or link removal will decrease the value of the algebraic

connectivity only if the resulting subgraphs have a larger

number of nodes than links.

Our results provide several immediate starting points for

future work. First, we intend to use this insight for the

problem of understanding how the algebraic connectivity is

affected by other failure strategies. Second, we plan to apply

the same reasoning to other network models. Third, it is

extremely important to study the algebraic connectivity in

real-world networks. Beside these three main goals, many

invariants representing the robustness of networks are yet to

be investigated thoroughly.
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