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Chapter 1 — Introduction

This document describes the grammar of version 2.0 of the Rule Language (RL), as has
been implemented in the Rotan system. The Rule Language is a special purpose high
level language, intended to provide an easy-to-use interface for transforming Tm data
structures. (For information on Tm, see [4] and [5].)

The first versions of both the Rotan system and the Rule Language were developed as
part of the ParTool project ([1], [6]). Those versions were not yet based on Tm. Instead, a
data structure format of our own devising was used, limiting the general applicability of
the system.

For RL 2.0 we have, apart from adapting the language to take the new Tm basis into ac-
count, also evaluated all the previous experiences with RL 1.0 (documented in Chapter 7
of [2]), and as a result re-designed the language to be both more powerful and more user-
friendly.

For consistency’s sake, the structure and style of this document purposely resembles
that of the Vnus Language Specification ([4]). Some actual content has been borrowed
from that document as well, with no disrespect to the original author intended.

Thanks are due to Kees van Reeuwijk, Frits Kuijlman and Henk Sips for their input and
support during all phases of the RL 2.0 and Rotan development process.

Delft,
October 1997
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Chapter 2 — Grammar Notation

2.1 The purpose of the grammar rules

The grammar of the RL (unless explicitly specified otherwise we will assume RL means:
RL 2.0) is formally defined in appendix A. Throughout the text, parts of this grammar
are shown as illustrations. For didactic purposes, these parts can sometimes deviate
slightly from the official version.

The text accompanying the grammar rules is intended to annotate and clarify the lan-
guage. Text in italics indicates open questions that still need an answer, or parts of the
language that were unimplemented at the moment of writing.

2.2 The notation

The grammar consists of a series of productions, where each production specifies the
derivation of a nonterminal symbol from terminals and other nonterminals. Non-
terminal symbols are shown in an italic font, terminal symbols are shown in a courier
font.

The definition of a nonterminal is introduced by the name of the nonterminal being de-
fined, followed by a colon. One or more alternative production rules then follow on suc-
ceeding lines. For example, the production:

builtinFunctionCall:
close( tree )

states that the nonterminal builtinFunctionCall produces the terminal string “close(”,
followed by the nonterminal tree, followed by the terminal “)”.

To clarify the meaning of the language construct, it is allowed to prefix a nonterminal
with a name, followed by a dash. This prefix is ignored in the interpretation of the
grammar rules. For example, the following production is identical to the previous one:

builtinFunctionCall:
close( argument-tree )

A production may have more than one alternative; each alternative is listed on a sepa-
rate line, or in a separate production. For example, a tree has several possible produc-
tions:
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tree:
simpleTree
rule-identifier ( tree )

tree:
builtinFunctionCall

The subscripted suffix ‘opt’, which may appear after a terminal or nonterminal, indicates
an optional symbol. This suffix is a shorthand for two grammar rules, one that omits the
optional element, and one that includes it. For example:

pattern:
domainNode predicateopt

is a shorthand for:

pattern:
domainNode
domainNode predicate

If a grammar rule contains more than one optional symbol, all combinations of presence
and absence of the symbols are allowed.

When all the alternative productions of a nonterminal consist of single terminal sym-
bols, a more compact notation is used, where all alternatives are listed in a contiguous
list. For example:

relationOp: one of
==  !=

Finally, the symbol ‘λ’ denotes the empty production.
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Chapter 3 — Language Constructs

3.1 Comments

The Rule Language supports two forms of comment: line comments, that start with ‘//’,
and end at the end of the line; and multi-line comments, that start with ‘/*’ and end
with ‘*/’.

Comment cannot be nested.

3.2 Rules

rules:
ruleList

ruleList:
rule
ruleList rule

Rules are like C functions: all are equal and each can be invoked separately by the out-
side world. The language does not recognise or enforce the concept of a (file-based) pro-
gram as is usually the case in other programming languages. The hierarchical approach
of RL 1.0 (rules, drivers, engines) is completely gone. Instead, the RL parser sees a
source file as a sequence of individual rules.

For the Rule Language, different run-time systems are possible. The current Rotan im-
plementation defines a rule interpreter, which dynamically reads in a rule file, and
makes the parsed rules available as instances of the Rlib class Rule in an STL con-
tainer.

➠ What is still needed (and is in fact crucial for the ability to handle rules with embed-
ded code) is the implementation of a rule compiler, which can be used to convert a rule-
file into a true C++-library with an API that can be used from outside the Rotan run-time
environment (rcc), without further need for parsing.

➠  In analogy to C, we can establish the convention that a rule with a special reserved
name (such as, say, main), serves as a default entry point for executing a rule ‘program’ if
that is required.

In order to avoid the boring but complex problems associated with scoping and name-
space issues, the Rule Language recognises only a single global name-space and scope
for rules. There is no module concept, and files are considered operating system arte-
facts that play no semantic role in the Rule Language.

The Rule Language parser performs syntactical checks on the validity of the rules, as
well as a number of semantical checks. There are also run-time tests and sanity-check
assertions in the code that only take effect during the actual application of a rule.
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rule:
rule rule-identifier begin patternopt –> actionListopt end

repeat rule rule-identifier begin patternopt –> actionListopt end

Each rule always acts on exactly one input tree, which needs to somehow be specified as
a parameter when the rule is applied.

The input tree is made explicitly available to the rule itself as the predefined rule vari-
able $ROOT.

A rule is allowed to completely replace $ROOT by a new tree, with the one restriction
that the replacement must be of the same type as $ROOT was. By ‘type’ we mean here
one of the types defined by the Domain Library (i.e. in the Tm data structure file).

In RL 2.0, applying a rule causes an attempt by the system to match the rule’s pattern to
the input tree. This match is said to be successful if a mapping between the pattern
nodes and the tree nodes can be found such that both content (node types and values)
and structure (parent-child or sibling relationships) correspond (see Section 3.2).

The process of successfully matching a pattern results in the instantiation of a number
of rule variables (as specified by the rule programmer in the pattern itself), each of
which identifies a subtree of the original input tree.

When a condition has matched, the rule will fire, meaning that the list of actions, if pre-
sent, will be executed. Whereas the matching process is strictly read-only as far as the
input tree is concerned, an action can cause changes to the tree by using one or more of
the rule variables in the left hand side of assignment actions (see Section 3.3).

If no pattern is present, the rule always matches. This is useful when implementing
‘control flow’ rules, which specify a sequence of rule applications on a single input tree
(this is a good way of implementing rule ‘programs’ after all).

If no action list is present, the rule will be ‘const’, and have no effect on the input tree at
all. This is useful during the writing and debugging of complex match patterns.

If the keyword repeat precedes the rule definition, the rule is a so-called reappliccable
rule. After such a rule has been successfully applied, the system will continue to apply
the same rule to the same input tree for as long as new matches are found. It is up to the
programmer to avoid writing endlessly matching rules that never terminate.

3.3 Patterns

pattern:
domainNode predicateopt
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domainNode:
classNode
listNode

At the top level a pattern is either a classNode, which stands for any type as defined in
the Tm domain data structure file, or a listNode, which stands for a sequence of pat-
terns.

Both classNode and listNode map directly and intuitively to their Tm counterparts1, but
a major advantage of the Rule Language is that it allows us to specify for these domain
nodes an additional predicate that must hold before the match is considered successful.

classNode:
class-identifier rulevarDefopt

rulevarDef:
. rulevar-identifier

A classNode consists of a single type identifier, taken from the set of types defined by
the Domain Library. If a node with such a type is found at the appropriate position in
the input tree, it will be matched to the classNode, and the portion of the input tree
starting at that node will be optionally assigned to a rule variable for further reference.

A listNode works similarly, but consists of a sequence of patterns and regular expres-
sions enclosed in list brackets:

listNode:
[ listElementList ] rulevarDefopt

listElementList:
listElement
listElementList listElement

listElement:
pattern
regex

regex:
... rulevarDefopt  predicateopt

Apart from patterns, it is also possible to have a limited set of regular expressions ap-
pear as listElement. Currently, this set is very limited indeed, since only the ellipsis op-
erator (also known as the anyspan is implemented. This construct acts as a regular ex-
pression wildcard, representing zero or more list elements in the domain tree list to be
matched.

1In hindsight, it would have been better to name the classNode a typeNode instead, since the class is only one
of the Tm types being supported by the Rule Language.
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➠ Currently, the ellipsis wildcard is only rudimentary supported in the implementation.
Improving regular expression support (and, indeed, list support itself) is a high priority
item on the RL todo list.

Once a domain node is matched, the pattern itself is still not considered successful until
the predicate also evaluates to true (or is missing altogether). Note that a predicate can
contain further matches, and that the patterns in a listNode can each have predicates of
their own.

At the top level, a predicate is a boolean expression over terms called simple predicates:

predicateopt :

λ
< predicate >

predicate:
predicate and predicate
predicate or predicate
not predicate
( predicate )
simplePredicate

simplePredicate:
match
comparison
binding
embeddedFunctionCall

The C-like shortcuts &&, ||, and ! can be used as alternatives for and, or, and not.

The ‘simple’ in simplePredicate should, in this context, be seen as the antonym of
‘compound’, and definitely not of ‘complex’ — the simplePredicates can be almost arbi-
trarily complex and deep, and there are rather a lot of them, although the division into
four main groups is intended to clarify matters somewhat.

match:
contains pattern
member-identifier contains pattern
member-identifier matches pattern

A match predicate causes an attempt to find a deeper match within an already-matched
domainNode (the one that the closest surrounding predicate belongs to).

The first form is called the globalcontains, and tries to find the specified pattern in any
of the children of the domainNode, starting with the first (leftmost) child. For historical
reasons, a globalcontains also matches if the domainNode itself matches the pattern.

➠ It would be better to remove this historical meaning, and make the globalcontains a
‘true’ contains predicate that only looks at a node’s children, not at the node itself.
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The second form of match is the membercontains, which tries to find the pattern in the
specified member only.

The third form is the membermatch which only succeeds if the member in question is an
exact match for the pattern.

If a membermatch is successful, the corresponding membercontains (i.e. with the same
member-identifier and pattern) would also be successful, but not necessarily vice versa.
If a membercontains is successful, the corresponding globalcontains (i.e. with the same
pattern) would also be successful, but not necessarily vice versa.

In the Rule Language, classNode members are, like the types themselves, identified by
the same string used to denote them in the Tm data structure file.

➠ If the matched domainNode is a listNode, which does not have named members, mem-
ber matches and member contains are still possible, because the rule language recognises
“pseudo-members” for list classes. Instead of member identifiers, one can use number
strings, which the system will convert to the appropriate child index number.

comparison:
rValue relationOp rValue

relationOp: one of
==  !=

rValue:
member-identifier
simpleTree

simpleTree:
$ rulevar-identifier
stringLiteral
intLiteral

The Rotan system guarantees that the equality operator is defined for every possible
domain tree. Two trees are equal if they have exactly the same structure with exactly
the same values for the leaf nodes.

An rValue is basically composed of constructs in the Rule Language that yield a domain
tree when evaluated. It can be either a member reference (referring to a member of the
nearest surrounding domainNode), a rule variable reference (the rule variable must
have been bound to a subtree in a section of the match executed prior to the comparison),
signified by prefixing the name of the rule variable by a ‘$’, or a string/int-literal (which
of course does not point into the existing input tree but will rather yield a newly created
tree upon evaluation).
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binding:
rulevar-identifier = rValue

Binding or instantiating a rule variable can be done in two ways. We have already seen
that a domainNode match can be assigned to a rule variable by use of a pattern suffix,
but an explicit assignment is also possible. Such a binding will always yield the value
true (barring run-time problems, such as the attempted use of an invalid member string
or unbound rule variable as rValue).

Note that rule variable references are always prefixed by ‘$’, whereas definitions are not
(this is similar to the way shell programming works under Unix).

embeddedFunctionCall:
{ codeString }

➠ The codeString needs to be executed, and must therefore represent a callable C++ func-
tion in the run-time environment. This poses obvious problems for an interpreter, which
will always cripple an interpretative application such as the rcc somewhat. Rules con-
taining embedded code must be read-in, dumped to file, compiled, and then linked back
into the rcc itself, before such rules can be applied. If any rule containing embedded code
changes, the entire rcc must be relinked. What happens in the codeString is entirely up to
the programmer. The current state of the match (i.e. the rule variable values) will be
passed to the function, so the codeString has access to all the rule variables matched up
to the point of the codeString’s occurrence, and will be able to add new rule variables of
its own. Some simple preprocessing must be done to convert the $FOO syntax of referring
to rule variables into something that is a legitimate C++ identifier.

➠ The C++ code used in embeddedFunctionCall should, since the nonterminal is used as
a predicate, be suitable for using as the body to a boolean function in C++. In particular,
this means that  the codeString must end with a “return <boolean>” C++ statement.
This is a semantical requirement on the codeString that cannot be enforced during pars-
ing of a rule.

3.4 Actions

actionList:
action
actionList ; action

action:
assignment
embeddedProcedureCall

assignment:
$ rulevar-identifier = tree
rulevar-identifier = tree
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embeddedProcedureCall:
{ codeString }

The embeddedProcedureCall is similar to the embeddedFunctionCall from the match,
only this code should not return anything, but be a true procedural (void) function in-
stead.

The rulevar-identifier in the left-hand side of an assignment can be prefixed by ‘$’ or
not. In the first case, the rule variable must already exist, and the subtree it points to
will be replaced by the value yielded by an evaluation of the tree in the right hand side of
the assignment. In the second case, the semantics of the assignment are similar to that
of the binding in a match: a new rule variable is initialised (with the evaluated tree
value) and made available to subsequent actions.

tree:
simpleTree
ruleCall
builtinFunctionCall
buildTree

The tree construct is similar to the rValue construct we encountered in match patterns,
but contains a few extra constructs that make no sense in the match context, whereas
the member identifiers allowed in the former case make no sense here.

Another difference, speaking semantically, is that rule variable references evaluated in
the context of an assignment will always yield a clone of the original domain-(sub)tree
they point to. So although assignments are the means by which the original tree is
changed, these changes can never cause common sub-trees to come into existence.
Sections of the original tree may become ‘orphaned’, but will never have more than one
link pointing to them.

So if $FOO is a rule variable, then an assignment $A = $FOO, will cause the subtree
that $A points to to be replaced by a clone of $FOO. Any other rule variables pointing
into the original $FOO continue to point there, and any changes to those rule variables
in subsequent actions will only affect the original $FOO, and not the clone that was just
assigned to $A. Had that been the intention, the changes to those other rule variables
should have been made before the assignment to $A. This cloning behaviour of the Rule
Language implies that the order in which actions are written down greatly influences
the final outcome of the rule.

ruleCall:
rule-identifier ( tree )

builtinFunctionCall:
close( tree )

A ruleCall applies a rule (this can be the current rule) to its tree argument. Rule calls
are side-effect free, and are guaranteed not to change their argument, but simply yield a
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new domain-tree as a result. A consequence of this functional behaviour is that if any
rule wants a ruleCall to affect its argument, this must be written as e.g. “$A = foo($A)”.
This is important to remember for sequencing rules.

Currently, there is only one recognised builtin function call: the close function.
Semantically, a function call behaves similar to a rule call: its return value is a domain
tree, and its argument is not changed. The close primitive only makes sense in the
context of a reappliccable rule. It returns a tree where subsequent applications of the
current rule will always fail, no matter what pattern is being looked for. By assigning
‘closed’ trees to parts of the original tree, it can be assured that the rule, when re-ap-
plied, will find the ‘next match’ instead of endlessly looping on the same first match.

Note that the functional behaviour of close with respect to its argument implies that af-
ter the assignment “$A = close($B);”, the subtree pointed to by $B is not closed off —
only the closed clone of $B assigned to the location of $A will be closed.

buildTree:
buildClassNode
buildListNode

buildClassNode:
class-identifier buildMembersopt

buildMembers:
< buildMemberList >

buildMemberList:
buildMember
buildMemberList ; buildMember

buildMember:
member-identifier = tree

buildListNode:
[ treeList ]

treeList:
tree
treeList tree

A buildTree builds, as the name implies, a new domain tree from scratch. It does this
using a syntax that is similar to the one used to match a pattern, but with some signifi-
cant differences.

One major difference between the buildTree and the pattern is that the former does not
have the notion of a wildcard. The tree is constructed explicitly, node by node. Another
difference is that although the predicate syntax is used, the only ‘predicates’ allowed
here are straightforward member-instantiations for created class nodes.
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Appendix A — The Rule Language Grammar

A.1 Rules

rules:
ruleList

ruleList:
rule
ruleList rule

rule:
rule rule-identifier begin patternopt –> actionListopt end

repeat rule rule-identifier begin patternopt –> actionListopt end

A.2 Patterns

pattern:
domainNode predicateopt

domainNode:
classNode
listNode

classNode:
class-identifier rulevarDefopt

rulevarDef:
. rulevar-identifier

listNode:
[ listElementList ] rulevarDefopt

listElementList:
listElement
listElementList listElement

listElement:
pattern
regex

regex:
... rulevarDefopt  predicateopt
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predicateopt:

λ
< predicate >

predicate:
predicate and predicate
predicate or predicate
not predicate
( predicate )
simplePredicate

simplePredicate:
match
comparison
binding
embeddedFunctionCall

comparison:
rValue relationOp rValue

rValue:
member-identifier
simpleTree

simpleTree:
$ rulevar-identifier
stringLiteral
intLiteral

binding:
rulevar-identifier = rValue

embeddedFunctionCall:
{ codeString }

A.3 Actions

actionList:
action
actionList ; action

action:
assignment
embeddedProcedureCall
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assignment:
$ rulevar-identifier = tree
rulevar-identifier = tree

embeddedProcedureCall:
{ codeString }

tree:
simpleTree
ruleCall
builtinFunctionCall
buildTree

ruleCall:
rule-identifier ( tree )

builtinFunctionCall:
close( tree )

buildTree:
buildClassNode
buildListNode

buildClassNode:
class-identifier buildMembersopt

buildMembersopt:

λ
< buildMemberList >

buildMemberList:
buildMember
buildMemberList ; buildMember

buildMember:
member-identifier = tree

buildListNode:
[ treeList ]
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treeList:
tree
treeList tree

A.4 Tokens and lexical entities

relationOp: one of
==  !=

keyword: one of

identifier:
identifierChars but not a keyword

identifierChars:
letter
identifierChars letter
identifierChars digit

letter: one of:
_ a b c d e f g h i j k l m n o p q r s t u v w x y z A B C

D E F G H I J K L M N O P Q R S T U V W X Y Z

stringLiteral:
" stringChars "

stringChars:
stringChar
stringChars stringChar

stringChar:
any char except an unescaped ‘"’

intLiteral:
signopt  digits

digits:
digit
digits digit

digit: one of:
0 1 2 3 4 5 6 7 8 9

sign: one of:
+ –
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char:
any character
escapedCharacter

escapedCharacter:
\b

\f

\n

\r

\t

\"

\\

\ digit
\ digit digit
\ digit digit digit
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