

Delft University of Technology

Online Automotive Hazardous Scenario Identification

Hanselaar, C.A.J. ; Venkatesha Prasad, Ranga Rao; Silvas, Emilia

Publication date

2025

Document Version

Final published version

Published in

Book of Abstracts 44th Benelux Meeting on Systems and Control

Citation (APA)

Hanselaar, C. A. J., Venkatesha Prasad, R. R., & Silvas, E. (2025). Online Automotive Hazardous Scenario Identification. In R. Carloni, J. Alonso-Mora, J. Dasdemir, & E. Lefeber (Eds.), *Book of Abstracts 44th Benelux Meeting on Systems and Control* (pp. 191-191). Rijksuniversiteit Groningen.

Important note

To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

44th Benelux Meeting
on
Systems and Control

March 18 – 20, 2025
Egmond aan Zee, The Netherlands

Book of Abstracts

The 44th Benelux Meeting on Systems and Control is sponsored by

Raffaella Carloni, Javier Alonso-Mora, Janset Dasdemir, and Erjen Lefeber (Eds.)
Book of Abstracts - 44th Benelux Meeting on Systems and Control

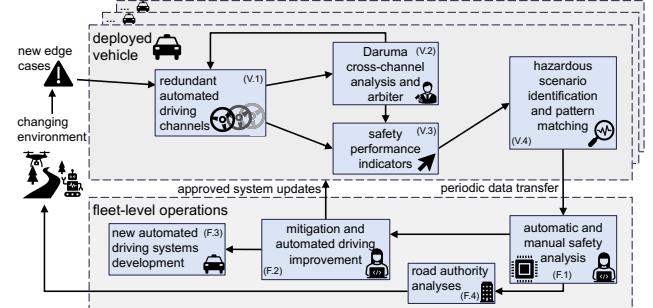
University of Groningen
PO Box 72
9700 AB Groningen
The Netherlands

ISBN (PDF without DRM): 978-94-034-3117-8

Online Automotive Hazardous Scenario Identification

C.A.J. Hanselaar¹R.R. Venkatesha Prasad²E. Silvas¹³

1 Introduction


Automated Driving (AD) vehicles are often seen as a way to make public roads safer. To have confidence in AD vehicle safety, these systems are currently deployed in geofenced areas under limited conditions. However, deployed AD vehicles will eventually encounter unforeseen or changing environments, exposing new edge cases in AD systems [5]. This necessitates both flexible immediate risk mitigation and feedback on the overall safety performance of the system. Multi-channel architectures using redundant and heterogeneous AD systems as parallel AD channels are proposed as suitable methods to reduce immediate risks of newly exposed edge cases [3, 4]. Unfortunately, current hazard-mitigation methods using cross-channel comparisons do not identify what issues contribute to the emergent hazard. Other overall safety and especially perception safety tracking functions are either computationally heavy and AD version specific or limited in their scope [5]. Therefore, we propose a new way to re-use the capabilities of multi-channel architectures to identify hazardous scenarios for enhanced continuous monitoring.

2 Daruma framework

As proposed by the UL4600 standard and the AVSC best practice guidelines, we use safety performance indicators (SPIs) to track the performance of safety claims. As seen in Fig. 1, we use the redundant AD channels (V.1) both to mitigate risks (V.2) and to compute SPIs (V.3). Via function (V.4) we extract hazardous scenarios and possible contributing causes from these SPIs. We use three SPIs, based on – (a) object count similarity, (b) ego location similarity and (c) safety scores. The system is tested using the setup developed in [3], using the CARLA simulator and the longest-6 benchmark [2], with AD channels Learn from All Vehicles (LAV) [1] and Transfuser [2].

3 Results

Using function (V.4), we successfully identify 87% of hazardous scenarios, as evaluated by the simulation operator. More importantly, the system automatically identifies contributing causes to hazardous scenarios, as shown in Table 1. For example, the framework automatically identifies significant WM issues in the Transfuser channel, as it does not detect pedestrians. Next, 48% of identified hazards judged to be unrealistic by the

Figure 1: The Daruma framework, with both online risk mitigation, safety performance indicator tracking and hazardous scenario identification.

Table 1: Overview of the identified contributing issues detected via the hazardous scenario identification logic.

Route	1	2	3	4	5	6	Total
Identified issues	32	26	28	15	10	14	125
WM issues	13	12	10	5	5	4	49
MP issues	15	12	17	9	6	9	67
Location issues	2	1	1	1	0	1	6
Unknown issues	2	1	0	0	0	0	3

operator. These are detected due to an overly conservative WM in the LAV channel. Without cross-comparing redundant AD channels and exposing that information concisely, such glaring issues can go undetected.

Acknowledgments

We thank M. M. Selva Kumar, Y. Fu and A. Terechko from NXP N.V. for all their work and time. This work was funded by the project NEON, through the Dutch Research Council (NWO) Crossover Programme (project number 17628).

References

- [1] D. Chen and P. Krähenbühl. Learning from all vehicles. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 17222–17231, 2022.
- [2] K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz, and A. Geiger. Transfuser: Imitation with transformer-based sensor fusion for autonomous driving. *arXiv:2205.15997*, 2022.
- [3] C. Hanselaar, Y. Fu, A. Terechko, J. Seemann, T. Beurskens, E. Silvas, and W. P. M. H. Heemels. Evaluation of the safety shell architecture for automated driving in a realistic simulator. 2024.
- [4] C. Hanselaar, E. Silvas, A. Terechko, and W. P. M. H. Heemels. The safety shell: An architecture to handle functional insufficiencies in automated driving. *IEEE Transactions on Intelligent Transportation Systems*, 2024.
- [5] S. Rahmani, S. Rieder, E. de Gelder, M. Sonntag, J. L. Mallada, S. Kalisvaart, V. Hashemi, and S. C. Calvert. A systematic review of edge case detection in automated driving: Methods, challenges and future directions. *arXiv:2410.08491*, 2024.

¹Dept. of Mech. Eng., CST Section, TUe, P.O. Box 513, 5600 MB Eindhoven, The Netherlands (c.a.j.hanselaar@tue.nl)

²Technical University Delft, The Netherlands

³TNO, Dutch Organization for Applied Scientific Research