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Abstract

Timetables determine the service quality for passengers and the energy consumption of trains
in metro systems. In metro networks, a timetable can be made by optimizing train departure
frequencies for different periods of the day. Typically, the optimization problem that arises
from optimizing train departure frequencies in metro networks involves integer variables,
which can cause the computational complexity of the optimization problem to be too high
for real-time applications. The main objective of this thesis is to reduce the computational
complexity of optimizing train departure frequencies in metro networks while maintaining a
relatively accurate solution.

In this thesis, we first apply classical Benders decomposition to optimize train departure fre-
quencies in a metro network considering time-varying origin-destination passenger demands.
Subsequently, we apply ϵ-optimal Benders decomposition to reduce the computational com-
plexity further. A simulation-based case study using a grid metro network illustrates the
performance of the two Benders decomposition-based approaches.

The simulation results show that the classical Benders decomposition approach significantly
reduces the computational burden of optimizing train departure frequencies in metro net-
works. Moreover, the ϵ-optimal Benders decomposition approach can further reduce the com-
putation time of the optimization problem when the problem sizes increases while maintaining
an acceptable level of performance.
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Chapter 1

Introduction

Metro systems have become essential to urban transportation, providing millions of people
with fast, efficient, and sustainable travel options, especially in large cities. The metro sys-
tem is particularly critical in densely populated urban areas, where an efficient and reliable
timetable is paramount for passenger satisfaction and the energy efficiency of the metro sys-
tem. According to the International Energy Agency (IEA), rail accounts for 9% of the world’s
passengers and 7% of global freight transport while only representing 3% of transport energy
use [9]. Generally, rail requires 12 times less energy per passenger kilometer than cars and
airplanes and is one of the most energy-efficient methods for transporting goods [9]. In order
to realize the goals of the Paris Agreement to cut greenhouse gas emissions, increasing the
share of rail use for passenger and freight transport will be vital.

In addition, rail is a relatively safe method of transportation. According to the Dutch Insti-
tute for Road Safety Research (SWOV), there were about 14 times as many fatal accidents
involving cars compared with trains in the Netherlands between 2007 and 2016 [49].

Due to the energy efficiency and safety of rail, countries all over the world have been working
on upgrading and expanding their railway systems. With the increase in the use of rail,
efficient methods need to be developed to ensure passengers get to their destination as quickly
as possible while limiting operational costs. Real-time timetable scheduling is a commonly
used approach for creating efficient timetables. Efficient train scheduling approaches enable
metro systems to minimize operational costs, reduce waiting times, and adjust transport
capacity to meet passenger demands for different time periods.

A Nonlinear Programming (NLP) problem was formulated in [53] to minimize the time pas-
sengers spend in the metro network and the energy consumption of the dispatched trains, for
which an iterative convex programming approach was proposed. A bi-directional train line
was considered in [25], and a Lagrangian-based method was applied to solve the resulting
NLP problem. An adaptive large neighborhood search algorithm was developed in [4] for
the timetable scheduling problem of a rail rapid transit line to create convenient timetables
for passengers considering a dynamic demand pattern. While passenger satisfaction typi-
cally only includes the time passengers spend in the rail network, the time passengers spend
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2 Introduction

waiting outside stations due to station capacity limits was included in [69]. Since there can
be significant differences in passenger demands per station, the possibility of trains skipping
low-demand stations in their model was considered in [54].

The train departure frequency, which refers to the number of trains departing from a line
per time unit, determines the transport capacity of metro networks. To handle time-varying
passenger Origin-Destination (OD) demands, effective strategies must be implemented to op-
timize departure frequencies in real time. Line frequencies and train capacities were optimized
using both an exact algorithm and a heuristic approach in [20]. A Mixed-Integer Nonlinear
Programming (MINLP) problem was formulated in [11] to optimize line frequencies and ca-
pacities in metro networks. A novel passenger absorption model was proposed in [32] to
optimize the departure frequency of trains of each line in metro networks, and the resulting
problem was formulated as a Mixed-Integer Linear Programming (MILP) problem.

Real-time timetable scheduling models often involve integer variables, resulting in non-convex
optimization problems that can be time-consuming. Benders decomposition is an efficient
methodology to reduce the computational burden in large-scale MILP problems by splitting
the MILP into two small-scale problems [5,43]. Benders decomposition has been successfully
applied to railway timetable scheduling problems. For example, considering the uncertain
passenger transfer time in metro networks, a generalized Benders decomposition approach
was developed in [26] to efficiently solve the resulting MILP problem. A logic-based Benders
decomposition approach that could reuse the precomputed logic Benders cuts to reduce the
computational burden of the timetable rescheduling problem was applied in [30]. In [28],
which focused on modifying train routes and schedules in the case of train delays, the solution
time of the Benders decomposition algorithm was reduced by splitting the algorithm solution
process into three steps to address the fact that the relation between routing and scheduling
variables is absent in the master problem.

The Benders decomposition approaches applied in [26, 28, 30] were all shown to reduce the
solution time significantly; however, passenger OD demands were not considered explicitly.

1-1 Problem statement

Benders decomposition-based approaches have been shown to be able to significantly reduce
the solution time of timetable scheduling problems, enabling the use of these approaches for
real-time implementation. In addition, the passenger absorption model introduced in [33]
can explicitly include time-varying OD passenger demands and provides a balanced trade-off
between model accuracy and solution time. The passenger absorption model can be used
to formulate an optimization problem in which the train departure frequencies in a metro
network are optimized.

This thesis aims to investigate the possibilities of Benders decomposition in real-time timetable
scheduling. The main question can be summarized as follows:

Are Benders decomposition-based approaches suitable for optimizing train departure frequen-
cies in metro networks?

Benders decomposition will be applied to a passenger-oriented timetable scheduling model
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1-2 Thesis outline 3

to optimize train departure frequencies in metro networks. The performance of the Benders
decomposition-based approaches will be evaluated in terms of the objective function — a
combination of the time spent by passengers in the rail network and the operational costs —
and the computation time. The main question can be used to derive two sub-questions:

1. Can Benders decomposition reduce the computational complexity of optimizing train de-
parture frequencies in metro networks?

A state-of-the-art solver will serve as a benchmark to evaluate the performance of the
Benders decomposition-based approaches.

2. What acceleration methods can be applied to Benders decomposition when optimizing
train departure frequencies in metro networks?

Much research has focused on accelerating the classical Benders decomposition algo-
rithm. Choosing a suitable acceleration method is not trivial and is often problem-
specific.

1-2 Thesis outline

The remainder of this thesis is structured as follows. Chapter 2 presents relevant background
information and introduces Benders decomposition. Chapter 3 discusses the classical and
ϵ-optimal Benders decomposition algorithms that are used in this thesis. Chapter 4 evalu-
ates the Benders decomposition-based approaches in a simulation-based case study. Finally,
Chapter 5 concludes this thesis.
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Chapter 2

Background

This chapter overviews state-of-the-art techniques and research in passenger-centric timetable
scheduling. The chapter is structured as follows. In Section 2-1, different approaches to
railway traffic management are discussed. Section 2-2 presents an overview of Mixed-Integer
Linear Programming (MILP) and commonly used solution approaches for MILP problems.
Subsequently, Benders decomposition is discussed in Section 2-3. Finally, the chapter is
concluded in Section 2-4.

2-1 Railway traffic management

Railway operators generally rely on a hierarchical decision-making structure to plan and
manage railway operations, breaking down the process into smaller sub-problems. The main
sub-problems in the planning hierarchy are shown in Figure 2-1.

The first stage of the decision-making structure is referred to as the strategic level, which
comprises two phases, i.e., network planning and line planning. Network planning focuses on
the construction and maintenance of the railway infrastructure. In contrast, line planning
optimizes train routes, train frequencies, and types of trains to meet passenger demands and
ensure passenger satisfaction. Passenger satisfaction generally involves the time passengers
spend in the metro system. Operational costs are also considered in the line planning phase.

At the tactical level, railway operators allocate the available resources to comply with the
outcomes of the strategic phase through effective timetable scheduling, rolling stock circula-
tion, and crew scheduling. The timetable scheduling phase involves determining the depar-
ture and arrival times of all the train lines. Typically, the objectives of this phase are to
maximize passenger satisfaction and minimize operational costs, as evident in various litera-
ture [39,40,47,50,52,53,57,62,63]. At the same time, some studies focus solely on passenger
satisfaction [3, 4, 8, 10, 16, 24, 25, 48, 51, 64, 66, 69]. In some research, train speed profiles are
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6 Background

Network planning

Line planning

Timetable planning

Rolling stock scheduling

Crew scheduling

Timetable rescheduling

Strategic level

Tactical level

Operational level

Figure 2-1: Railway operations planning. Adapted from [39].

also considered, dividing train runs into several operational phases, including the acceleration
phase, cruising phase, coasting phase, and deceleration phase [54,60,61].

There are two main types of timetables in the daily operation of railway networks: periodic
and non-periodic. In a periodic timetable, each scheduled event occurs every cycle period,
e.g., one hour, whereas non-periodic timetables do not follow a fixed cycle period. Scheduling
non-periodic timetables in real time can be more challenging than periodic timetables. Non-
periodic timetables are advantageous when considering inhomogeneous passenger demands,
often encountered in real-life scenarios, as non-periodic timetables are not restricted by cycle
periods and offer more flexibility in accommodating varying passenger demands.

After the timetable scheduling phase, railway operators must consider rolling stock circu-
lation, which involves solving the shunting problem. Trains must be moved to a shunting
yard between operations for parking or maintenance purposes. In some cases, timetable and
rolling stock scheduling are integrated to optimize operational costs and passenger satisfac-
tion [8,39,40,50,64]. However, this approach may require increased computational effort. Fi-
nally, crew duties — including maintenance crews and conductors — are scheduled to complete
the tactical operation phase. Relevant examples of research in this area include [12,42,46].

At the operational level, railway operators need to manage the railway system in real time
to handle disturbances and disruptions during railway operations. In railway traffic manage-
ment, disturbances refer to events that cause relatively minor changes to the timetable. At
the same time, disruptions typically describe events that require rescheduling the timetable
and alteration of resource allocations. Disturbance and disruption management algorithms
focus on reducing delays caused by these events while ensuring passengers can reach their
destinations. Fast algorithms are critical for real-time timetable adjustments to minimize
delays. Examples of relevant literature on disturbance management include [35–37,70], while
examples of literature on disruption management include [6, 13,21,34,67,68].
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2-2 Mixed-Integer Linear Programming 7

Smart card technologies are widely used in railway systems, providing detailed time-varying
origin-destination (OD) passenger travel data that can be used to predict passenger demands.
Passenger demands are typically measured during specific time intervals. There are two main
approaches in the literature for describing passenger demand: OD-independent and OD-
dependent. OD-independent passenger demand models only consider passenger demands
between stations, while OD-dependent models consider the origin and destination of passen-
gers when scheduling the timetable. Robust methods have been developed in [10,31,55,62,63]
to deal with the uncertainty of passenger demands.

2-2 Mixed-Integer Linear Programming

The optimization problems encountered in passenger-centric timetable scheduling often in-
volve MILP problems, as they typically contain a combination of continuous and integer
variables. The model used in this thesis can also be used to derive a MILP problem. MILP
problems are typically classified as NP-hard problems, which means that the search space,
and therefore the computation time, increases exponentially with the size of the problem.
It is essential to choose a suitable solution approach for the optimization problem. In this
section, the possible solution approaches for MILP problems are discussed.

2-2-1 Solution approaches

Branch-and-Bound

Branch-and-Bound (BB) algorithms are commonly used for MILP problems and have been
successfully applied in railway traffic management problems, as demonstrated in prior studies
such as [10, 36, 37]. BB algorithms partition the solution space into smaller subsets, cor-
responding to different values of the integer variables in the case of MILP problems, and
eliminate subsets that do not contain the optimal solution based on a bound, which allows
BB algorithms to significantly reduce computation time compared to evaluating every possi-
ble solution.

Commercial solvers such as cplex and gurobi, which are commonly used in railway traffic
management problems, often employ BB algorithms. Both solvers incorporate enhancements
to the standard BB algorithm, such as strong branching and feasibility heuristics. For exam-
ple, gurobi combines BB with a barrier method [1], which is a type of interior-point method
that is particularly effective at solving Linear Programming (LP) problems with many con-
straints [7]. The barrier method is used to solve the LP relaxations within each branch of
the BB tree, which can improve the lower bounds and pruning of infeasible branches. On the
other hand, cplex combines BB with a simplex method [2], which is a classical LP-solving
technique that iteratively improves a feasible solution until it reaches an optimal solution
or proves optimality. Both cplex and gurobi are often used for optimization problems in
real-time timetable scheduling, leading to satisfactory results.
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8 Background

Heuristics

Heuristic search algorithms are commonly used to find approximate solutions for large-scale
MILP problems. A drawback of heuristic algorithms is that they are not guaranteed to find
the optimal or even a feasible solution [44]. Examples of heuristic algorithms used in railway
traffic management include:

• Neighborhood search algorithms: Neighborhood search algorithms find a solution to an
optimization problem by exploring solutions in the vicinity of the current best solution.
Neighborhood search algorithms have been used in studies concerning railway traffic
management such as [17,24,67].

• Genetic algorithms: Genetic algorithms simulate natural selection and evolution to find
a solution. Genetic algorithms start with a population of potential solutions, evaluate
their fitness based on an objective function, and then apply genetic operators to create
new offspring until a satisfactory solution is found. Genetic algorithms have been applied
in studies such as [47,52,57,60] in the context of railway traffic management.

Dantzig-Wolfe decomposition

Dantzig-Wolfe decomposition is a powerful mathematical technique developed in [19] for
solving LP problems, and has been widely used in various fields, including railway traffic
management. The method involves breaking down a complex LP problem into smaller, more
manageable sub-problems, offering an efficient approach for solving large-scale optimization
problems.

In the Dantzig-Wolfe decomposition approach, the original problem is formulated as a mas-
ter problem, which consists of a set of constraints and decision variables that describe the
overall problem. The master problem is then decomposed into a set of sub-problems, each
associated with a subset of the original decision variables. These sub-problems can be solved
independently, subject to constraints that ensure consistency among their solutions.

The solutions obtained from solving the sub-problems are combined to obtain the solution
to the original problem. This approach allows for efficient computation of solutions by ex-
ploiting the structure of the problem and leveraging the interactions among the sub-problems.
Examples of the successful application of Dantzig-Wolfe decomposition in railway traffic man-
agement can be found in studies such as [12,14,42,46]

Benders decomposition

Benders decomposition, introduced in [5], is a widely used method for solving large-scale
optimization problems involving complex variables. Benders decomposition is closely related
to Dantzig-Wolfe decomposition and is, in fact, equivalent to Dantzig-Wolfe decomposition
applied to the dual for LP problems [18].

The core idea of Benders decomposition is to divide the original problem into a master problem
and a sub-problem. The master problem is solved first, and the solution is then used as input
for solving the sub-problem. If the sub-problem finds a feasible solution, it is added to
the master problem, and the process is iteratively repeated until a satisfactory solution is
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2-3 Benders decomposition 9

obtained. If the sub-problem is infeasible, a constraint is added to the master problem to
eliminate the infeasible solution.

Benders decomposition has found successful applications in various areas of railway traffic
management, as evidenced by studies such as [26,28–30,45].

2-2-2 Conclusions

Heuristic algorithms can be useful in specific scenarios to quickly obtain a feasible or approx-
imate solution for MILP problems. However, they are not guaranteed to find the optimal
solution, and the solution quality may vary depending on the specific problem instance. On
the other hand, exact optimization methods such as Dantzig-Wolfe decomposition and Ben-
ders decomposition are guaranteed to find the optimal solution given enough computational
resources.

While Benders decomposition and Dantzig-Wolfe decomposition are similar for LP problems,
they differ when integer variables are present. In Dantzig-Wolfe decomposition, the relaxed
problem is an LP relaxation of the original MILP problem, where the integer constraints are
removed, allowing the problem to be solved as an LP problem. The solution to this relaxed
problem provides a lower bound on the optimal solution of the original MILP problem. By
iteratively improving the relaxed solution, the Dantzig-Wolfe decomposition can eventually
converge to the optimal solution of the original MILP problem.

On the other hand, the Benders decomposition algorithm directly converges to an optimal
solution without embedding in a BB framework, making Benders decomposition more efficient
than Dantzig-Wolfe decomposition for solving MILP problems with integer variables [43].
Hence, for our optimization problem, we decide to use Benders decomposition.

2-3 Benders decomposition

This section introduces the classical Benders decomposition algorithm [5] and discusses po-
tential enhancement strategies.

Master of Science Thesis Alexander Daman



10 Background

2-3-1 Classical Benders decomposition

Suppose an MILP problem is considered, consisting of continuous variables, discrete variables,
equality constraints, and inequality constraints, in the following form:

min
x,y

cTx+ fTy (2-1)

subject to Ax+By = b (2-2)

Dx+ Ey ≤ d (2-3)

Gy = g (2-4)

Fy ≤ e (2-5)

x ∈ Rn1 (2-6)

y ∈ Zn2 (2-7)

Here, y ∈ Zn2 are the so-called ’complicating’ variables as they are integers and satisfy con-
straints Gy = g and Fy ≤ e, with G ∈ Rg1 ; F ∈ Rg2 ; g ∈ Rg1 ; and e ∈ Rg2 . The continuous
variables are represented by x ∈ Rn1 and, together with y, satisfy the constraints Ax+By = b

and Dx+ Ey ≤ d, with A ∈ Rm1×n1 ; B ∈ Rm1×n2 ; D ∈ Rm2×n1 ; E ∈ Rm2×n2 ; b ∈ Rm1 ; and
d ∈ Rm2 .

Complicating variables y are fixed as ȳ, after which 2-1 becomes:

min
x

cTx+ fTȳ (2-8)

subject to Ax+Bȳ = b (2-9)

Dx+ Ey ≤ d (2-10)

x ∈ Rn1 (2-11)

The original MILP problem is re-expressed as:

min
ȳ∈Zn2



fTȳ + min
x∈Rn1

{

cTx | Ax = b−Bȳ,Dx ≤ d− Eȳ
}



(2-12)

Dual variables u1 ∈ Rm1 and u2 ∈ Rm2 are introduced, that satisfy constraint uT
1 A+ uT

2 D =
cT. Then, cTx is rewritten as uT

1 Ax+ uT
2 Dx. Since Ax = b−Bȳ, uT

1 Ax can be re-expressed
as uT

1 (b − Bȳ), and since Dx ≤ d − Eȳ it follows that uT
2 Dx ≤ d − Eȳ, ∀u2 ≥ 0. In other

words, the following inequality holds:

−


uT
1 (b−Bȳ) + uT

2 (d− Eȳ)


≤ uT
1 Ax+ uT

2 Dx ∀u2 ≥ 0 (2-13)

Therefore, with a fixed ȳ, the best lower bound of cTx can be found by solving the following
problem (referred to as the dual sub-problem):

max
u1,u2

−


uT
1 (b−Bȳ) + uT

2 (d− Eȳ)


(2-14)

subject to uT
1 A+ uT

2 D = cT (2-15)

u1 ∈ Rm1 (2-16)

u2 ∈ Rm2 (2-17)

u2 ≥ 0 (2-18)
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2-3 Benders decomposition 11

The feasible space of the dual sub-problem is denoted as: Ω =
{

u1, u2 | u
T
1 A+ uT

2 D = cT, u2 ≥ 0
}

.

If Ω is not empty, the dual sub-problem can be either unbounded or feasible for any arbitrary
choice of ȳ. If the dual sub-problem is unbounded, given the set of extreme rays Q of Ω, there
exists a direction of unboundedness {q̄1, q̄2} ∈ Q for which q̄T

1 (b−Bȳ) + q̄T
2 (d−Eȳ) < 0. To

restrict movement in this direction, the following feasibility cut is added:

q̄T
1 (b−By) + q̄T

2 (d− Ey) ≥ 0 (2-19)

The extreme rays q̄1 and q̄2 can be computed by finding a feasible solution for the following
problem:

qT
1 (b−Bȳ) + qT

2 (d− Eȳ) < 0 (2-20)

qT
1 A+ qT

2 D = 0 (2-21)

q2 ≥ 0 (2-22)

If, on the other hand, a feasible solution {ū1, ū2} ∈ E is found to the sub-problem, with E

being the set of extreme points of Ω, the upper bound Uub is updated such that it is always
equal to the best current solution of the sub-problem:

Uub = min


Uub, f
Tȳ + ūT

1 (b−Bȳ) + ūT
2 (d− Eȳ)



. In addition, the following optimality cut

is generated:

ūT
1 (b−By) + ūT

2 (d− Ey) ≤ η (2-23)

Finally, the master problem is formulated as follows:

min
y,η

fTy + η (2-24)

subject to q̄T
1 (b−By) + q̄T

2 (d− Ey) ≥ 0 (2-25)

ūT
1 (b−By) + ūT

2 (d− Ey) ≤ η (2-26)

Gy = g (2-27)

Fy ≤ e (2-28)

y ∈ Yn2 (2-29)

η ∈ R (2-30)

The solution ȳ to the master problem is used to update the lower bound Ulb:

Ulb = max


Ulb, f
Tȳ + η



, and to solve the dual sub-problem of the next iteration of the

algorithm.

The Benders decomposition algorithm iterates between solving the dual sub-problem and
the master problem, using the solution ȳ for the dual sub-problem and the feasibility cuts
and optimality cuts generated by the solution of the dual sub-problem as constraints for the
master problem. The algorithm terminates when the optimality gap falls below a specified
threshold, i.e., Uub − Ulb ≤ α. The threshold value α should be a small positive number to
obtain an accurate solution. The solution is globally optimal if the difference between the
upper and lower bound is zero.
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12 Background

2-3-2 Enhancement strategies

The classical Benders decomposition approach may pose challenges regarding computing time
and memory requirements [38,41]. The main potential drawbacks of classical Benders decom-
position include erratic behavior of primal solutions, slow convergence towards the end of the
algorithm, and the presence of equivalent solutions resulting in unchanging upper bounds [43].
To address these challenges, extensive research has been conducted to reduce the solution time
of the Benders decomposition algorithm, typically focused on two main areas: enhancing the
quality of generated solutions and cuts to minimize the number of iterations needed, or opti-
mizing the solution procedure for both the master problem and sub-problem in each iteration,
reducing the time required for each iteration. A four-dimensional taxonomy capturing these
factors was identified in [43].

The decomposition strategy refers to the approach used to partition the problem into the
master problem and the sub-problem. In the classical decomposition, the master problem
does not consider the linking constraints or the non-complicating variables. In a modified
decomposition, these constraints and variables are partially projected to retain an approxi-
mation of the projected terms in the master problem.

The solution procedure refers to the algorithms utilized for solving the master problem and the
sub-problem. Common techniques include the BB algorithm for the master problem and the
simplex method for the sub-problem. However, the master problem can pose computational
challenges, as it involves a non-convex problem that grows in size with each iteration. As a
result, alternative strategies can be employed to exploit the structure of the master problem
or the sub-problem to improve computational efficiency.

The solution generation refers to the approach used to set trial values for the complicat-
ing variables. In classical Benders decomposition, a typical strategy is to solve the master
problem without modification to obtain trial values for the complicating variables. The qual-
ity of these trial values directly impacts the number of iterations required, as they are used
to generate cuts and bounds. To improve the quality of the solutions or expedite their gener-
ation, several methods have been suggested, including (1) utilizing alternative formulations,
(2) enhancing the master problem formulation, and (3) employing heuristics to generate so-
lutions or enhance the ones obtained autonomously.

The cut generation refers to the approach used for generating optimality and feasibility cuts.
In classical Benders decomposition, the regular sub-problem obtained from the decomposi-
tion is solved to generate cuts. However, alternative methods can be employed — such as
reformulating the sub-problem or solving auxiliary sub-problems — to strengthen traditional
feasibility and optimality cuts or generate additional cuts to reduce the number of iterations
required.

ϵ-optimal approach

To reduce the computation time of the master problem, [23] proposed a variant of Benders
decomposition where the master problem stops as soon as a feasible instead of an optimal
solution is found. The requirement for this feasible solution is that the objective function
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value of the master problem must be below Uub − ϵ, where ϵ is a number between one and
zero, and Uub denotes the upper bound. Since there is a finite number of dual solutions for
the sub-problem, and each dual solution must be improved by at least ϵ in each iteration, the
ϵ-optimal approach is guaranteed to converge to an optimum in a finite number of steps, as
the optimal value is bounded below.

The motivation behind this algorithm is that optimizing the master problem each iteration,
especially in the early iterations, may not be efficient, as the master problem lacks information
about the optimization problem in the beginning and requires multiple Benders cuts before
this information is effectively incorporated. In addition, finding the optimal solution to the
master problem becomes more complex with each iteration, as a Benders cut is added with
each iteration. By focusing on finding a feasible solution instead of an optimal solution,
the master problem turns into a feasibility problem, which is often easier to solve than an
optimization problem. A potential drawback of this algorithm is that it may require more
iterations than the classical Benders decomposition approach, as the non-optimal results of
the master problem are likely to lead to non-optimal Benders cuts.

2-4 Conclusions

This chapter has provided a comprehensive overview of various aspects of railway traffic man-
agement, including the various aspects of railway operations planning, the types of models
commonly used, and the mathematical programming algorithms used in railway traffic man-
agement problems.

The model that is used in this thesis can be used to derive a MILP problem. MILP prob-
lems are typically classified as NP-hard problems, which means advanced mathematical pro-
gramming techniques might be required to overcome computational challenges. After a few
potential solution approaches were discussed, Benders decomposition was chosen as the opti-
mization technique for this thesis, highlighting its ability to find high-quality solutions with
relative ease for large-scale MILP problems.

Benders decomposition was introduced and discussed in detail, in addition to possible en-
hancement strategies to the classical Benders decomposition approach. One of these methods,
the ϵ-optimal Benders decomposition, was introduced and will be applied in this thesis.
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Chapter 3

Benders decomposition for train

departure frequency optimization

This chapter presents two Benders decomposition-based optimization approaches that will
be applied to the passenger absorption model introduced in [32]. Section 3-1 presents the
classical Benders decomposition approach, while Section 3-2 presents the ϵ-optimal Benders
decomposition approach. Section 3-3 concludes this chapter.

3-1 Classical Benders decomposition

Benders decomposition [5] is a widely used method for solving large-scale optimization prob-
lems involving continuous and discrete variables. The main idea of Benders decomposition is
to divide an optimization problem into a master problem and a sub-problem, each of which
can be solved independently. The master problem is formulated as a Mixed-Integer Linear
Programming (MILP) which is used to determine the integer variables, while the sub-problem
is formulated as a Linear Programming (LP) problem for which the integer variables are fixed.
The solution of the master problem is used as input for the sub-problem. The sub-problem
is formulated as a dual problem using duality theory. The dual sub-problem can be fea-
sible and bounded, feasible but unbounded, or infeasible. Depending on the feasibility and
boundedness of the dual sub-problem, so-called Benders cuts are added to the master problem.

Suppose the dual sub-problem is feasible and bounded. In that case, the resulting extreme
points (the optimal dual solutions) are used to generate a Benders cut — called an optimality
cut — which is added to the master problem. If the dual sub-problem is unbounded, a set of
extreme rays (the dual solutions leading to unboundedness) is used to generate a feasibility
cut — the other possible Benders cut — which is added to the master problem. Together,
the optimality and feasibility cuts define the feasible space and the projected costs of the
optimization problem. The process of solving the dual sub-problem, generating Benders cuts,
and solving the master problem is repeated iteratively until stopping criteria apply. If the
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16 Benders decomposition for train departure frequency optimization

solution of the dual sub-problem is equal to the solution of the master problem, this solution
is globally optimal.

This section applies the classical Benders decomposition approach to the optimization prob-
lem derived from the passenger absorption model introduced in [32]. The passenger absorption
model can explicitly include time-varying Origin-Destination (OD) passenger demands. Fur-
thermore, the model provides a good balance between solution quality and computational
complexity. We briefly introduce the model and the corresponding optimization problem be-
low, and for more details on the model, we refer to [32]. In the passenger absorption model,
the planning time window is divided into several periods, and passenger OD demands are
assumed constant in each period. The total time of passengers within a given planning time
window is estimated as follows:

Jtime =
k0+N−1

∑

k=k0

∑

p∈P



np(k)T+ndepart
p (k)r̄p+narr,tra

p (k)θtrans
p



+
∑

p∈P

np(k0 +N)T,

(3-1)

where N denotes the number of periods in the planning time window; P is the set of all
platforms in the metro network; T is the length of a period; np(k) denotes the number of
passenger waiting at platform p at the start of period k; ndepart

p (k) represents the number
of passenger departing from platform p during period k; narr,tra

p (k) denotes the number of
passengers arriving at platform p with the intention of transferring to another platform during
period k; and θtrans

p is the average travel time for passengers transferring from platform p.
In the metro network, trains travel a predetermined route, stopping at every platform. The
average travel time for a train departing from platform p to the next platform on its route is
denoted as r̄p. The operational costs of trains in the planning time window are estimated as
follows:

Jcost =
k0+N−1

∑

k=k0

∑

p∈P

fp(k)Ēp, (3-2)

where fp(k) is the train departure frequency at platform p during period k and Ēp denotes
the average operational costs associated with dispatching a train from platform p towards the
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3-1 Classical Benders decomposition 17

next platform on its route. The optimization problem is given as follows:

min J = Jtime + ζJcost, (3-3a)

subject to

fp(k)=
T−γp
T

lp (k−δp) +
γp

T
lp (k−δp−1) , (3-3b)

fp(k) ≤ fmax
p , (3-3c)

Cp(k) = fp(k)Cmax −
∑

m∈S

ntrain
p,m (k), (3-3d)

np,m(k+1)=np,m(k)+λp,m(k)T+narr,tra
p,m (k)−nabsorb

p,m (k), (3-3e)

nwait
p (k) = np(k) + λp(k)T + narr,tra

p (k), (3-3f)

nabsorb
p (k) = min(Cp(k), nwait

p (k)), (3-3g)

nabsorb
p,m (k) = αp,m(k)nabsorb

p (k), (3-3h)

ntrain
p,m (k) =

T − r̄pla
p

T
n

depart
ppla (p,m)

(k) +
r̄pla
p

T
n

depart
ppla(p,m)

(k − 1), (3-3i)

n
alight
p,sta(p)(k) = ntrain

p,m (k), (3-3j)

n
alight
p,m∈S/{sta(p)}(k) = ntrans

p,q,m(k), (3-3k)

ndepart
p,m (k) = ntrain

p,m (k)− nalight
p,m (k) + nabsorb

p,m (k), (3-3l)

ntrans
q,p,m(k) = χq,p,m(k)ntrain

q,m (k), (3-3m)

narr,tra
p,m (k)=

∑

q∈sta(p)

T−θtrans
q,p

T
ntrans
q,p,m (k) +

θtrans
q,p

T
ntrans
q,p,m (k−1)



, (3-3n)

k = k0, k0 + 1, ..., k0 +N − 1,

where ζ is a weight used to balance both objectives; lp(k) denotes the train departure fre-

quency of the starting platform of the line on which platform p lies; δp = floor{
ψp

T } and
γp = ψp − δpT , with ψp denoting the average time for a train between departing from the
starting platform of a line and departing from another platform p of that same line; fmax

p de-
notes the maximum train departure frequency of platform p; Cp(k) represents the remaining
capacity on a train at platform p during period k with Cmax being the maximum capacity of
a train; ntrain

p,m (k) is the number of passengers on board of trains at platform p with destina-
tion m during period k; np,m(k) denotes the number of passenger waiting at platform p with
destination m during period k; λp,m(k) is the passenger arrival rate at platform p with desti-
nation m during period k; ntrans

q,p,m (k) denotes the number of transferring passengers arriving at

platform q to transfer to platform p with destination m during period k; nabsorb
p,m (k) represents

the number of passengers who board a train at platform p with destination m during period
k; nwait

p,m (k) denotes the number of passengers waiting for a train at platform p with destina-

tion m during period k; and nalight
p,m (k) denotes the number of passengers alighting a train at

platform p with destination m during period k. Parameter αp,m(k) is the relative fraction of
passengers that board a train at platform p whose destination is station m and parameter
χq,p,m(k) is the relative fraction of passengers arriving at platform q with destination m, who
will transfer from platform q to platform p. Both variables can be estimated using historical
data. The set of platforms belong to the same station as platform p is denoted as sta(p).
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18 Benders decomposition for train departure frequency optimization

Eq. (3-3g) is a nonlinear constraint, which can be transformed into linear inequalities using
the method in [56]. The transformation is described in Appendix A. For compactness, the
linear inequalities are expressed as:

nabsorb
p (k) = zwait

p (k) + Cp(k)− zcap
p (k), (3-4a)

Ep,1(k)δabsorb
p (k) + Ep,2(k)zwait

p (k) ≤ Ep,3(k)nwait
p (k) + Ep,4(k), (3-4b)

Ep,5(k)δabsorb
p (k) + Ep,6(k)zcap

p (k) ≤ Ep,7(k)Cp(k) + Ep,8(k), (3-4c)

where δabsorb
p (k) are auxiliary binary variables, and zwait

p (k) and zcap
p (k) are auxiliary con-

tinuous variables. By transforming the nonlinear function into linear inequalities, (3-3) is
transformed into a MILP problem.

In this thesis, lp(k) and δabsorb
p (k) are the so-called “complicating variables" according to

the definition used in [5], as they are integer variables; both variables are fixed as l̄p(k)

and δ̄absorb
p (k), respectively, for the sub-problem. Since T , γp, and δp are all parameters, it

follows from (3-3b) that once lp(k) is given, fp(k) is also known. All remaining variables are
continuous and can be derived by solving the following sub-problem:

min Jtime, (3-5a)

subject to

Cp(k) = fp(k)Cmax −
∑

m∈S

ntrain
p,m (k), (3-5b)

np,m(k+1)=np,m(k)+λp,m(k)T+narr,tra
p,m (k)−nabsorb

p,m (k), (3-5c)

nwait
p (k) = np(k) + λp(k)T + narr,tra

p (k), (3-5d)

nabsorb
p,m (k) = αp,m(k)nabsorb

p (k), (3-5e)

ntrain
p,m (k) =

T − r̄pla
p

T
n

depart
ppla (p,m)

(k) +
r̄pla

p

T
n

depart
ppla(p,m)

(k − 1), (3-5f)

n
alight
p,sta(p)(k) = ntrain

p,m (k), (3-5g)

n
alight
p,m∈S/{sta(p)}(k) = ntrans

p,q,m(k), (3-5h)

ndepart
p,m (k) = ntrain

p,m (k)− nalight
p,m (k) + nabsorb

p,m (k), (3-5i)

ntrans
q,p,m(k) = χq,p,m(k)ntrain

q,m (k), (3-5j)

narr,tra
p,m (k)=

∑

q∈sta(p)

T−θtrans
q,p

T
ntrans

q,p,m(k) +
θtrans

q,p

T
ntrans

q,p,m(k−1)


, (3-5k)

nabsorb
p (k) = zwait

p (k) + Cp(k)− zcap
p (k), (3-5l)

Ep,1(k)δ̄absorb
p (k) + Ep,2(k)zwait

p (k) ≤ Ep,3(k)nwait
p (k) + Ep,4(k), (3-5m)

Ep,5(k)δ̄absorb
p (k) + Ep,6(k)zcap

p (k) ≤ Ep,7(k)Cp(k) + Ep,8(k), (3-5n)

k = k0, k0 + 1, ..., k0 +N − 1,

Dual variables associated with the constraints are used to formulate a Lagrangian dual prob-
lem; ucapacity

p (k) is associated with (3-5b), unumber
p,m (k) is associated with (3-5c), uwait

p (k) is

associated with (3-5d), uabsorb
p,m (k) is associated with (3-5e), utrain

p,m (k) is associated with (3-5f),

u
alight
p,sta(p)(k) is associated with (3-5g), ualight

p,m∈S/{sta(p)}(k) is associated with (3-5h), udepart
p,m (k) is

associated with (3-5i), utrans
q,p,m(k) is associated with (3-5j), uarrive, trans

p,m (k) is associated with
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3-1 Classical Benders decomposition 19

(3-5k), uabsorb
p (k) is associated with (3-5l), uwait, auxiliary

p (k) is associated with (3-5m), and

ucapacity, auxiliary
p (k) is associated with (3-5n).

The dual variables are used to formulate the dual sub-problem using duality theory. The
characteristics of the corresponding constraints determine the domain of the dual variables.
For example, suppose a constraint has the form ax+by ≤ c; the dual variable associated with
this constraint will have a domain of [0,+∞]. On the other hand, the dual variable associated
with a constraint of the form ax + by = c will have an unrestricted domain. The objective
function of the dual sub-problem is as follows:

max Jdsp =
k0+N−1

∑

k=k0

∑

p∈P

∑

m∈S



ucapacity
p (k)Cmaxf̄p(k)− unumber

p,m (k)λp,m(k)T − uwait
p (k)λp(k)T

+ uwait, auxiliary
p (k)



Ep,1(k)δ̄absorb
p (k)− Ep,4(k)



+ ucapacity, auxiliary
p (k)



Ep,5(k)δ̄absorb
p (k)− Ep,8(k)

 

,

(3-6)
where Jdsp represents the objective function value of the dual sub-problem. The dual sub-
problem is given as follows:

max Jdsp (3-7a)

subject to

ucapacity
p (k) = uabsorb

p (k)− E7u
capacity, auxiliary
p (k), (3-7b)

unumber
p,m (k) = T + unp,m(k − 1), (3-7c)

uabsorb
p,m (k) = −unumber

p,m (k) + udepart
p,m (k), (3-7d)

uwait
p (k) = −E3u

wait, auxiliary
p (k), (3-7e)

utrain
p,m (k) = −ucapacity

p (k) + udepart
p,m (k) +

∑

q∈sta(p)

χq,p,m(k)utrans
q,p,m(k) + u

alight
p,sta(p)(k), (3-7f)

u
alight
p,sta(p)(k) = −udepart

p,m (k), (3-7g)

u
alight
p,m∈S/{sta(p)}(k) = −udepart

p,m (k), (3-7h)

udepart
p,m (k) = r̄p(k) +

T − r̄ppla(p)

T
utrain
p,m (k) +

r̄ppla(k)

T
utrain
p,m (k − 1), (3-7i)

utrans
q,p,m(k) = θtrans

q,p + u
alight
p,m∈S/{sta(p)}(k) +

T−θtrans
q,p

T
uarrive,trans
p,m (k) +

θtrans
q,p

T
uarrive,trans
p,m (k−1),

(3-7j)

uarrive,trans
p,m (k) = unumber

p,m (k), (3-7k)

uabsorb
p (k) =

∑

m∈S

αp,m(k)uabsorb
p,m (k), (3-7l)

uwait, auxiliary
p (k) = −Ep,2(k)uabsorb

p (k), (3-7m)

ucapacity, auxiliary
p (k) = Ep,6(k)uabsorb

p (k) + Ep,7(k)uabsorb
p (k), (3-7n)

ucapacity
p (k), ..., uabsorb

p (k) ∈ R, (3-7o)

uwait, auxiliary
p (k), ucapacity, auxiliary

p (k) ≥ 0, (3-7p)

k = k0, k0 + 1, ..., k0 +N − 1,
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20 Benders decomposition for train departure frequency optimization

By duality theory, if a finite solution exists, the optimal value of the dual sub-problem is equal
to the optimal value of the original problem for the given l̄p(k) and δ̄absorb

p (k) [7]. Therefore, if
the dual sub-problem is feasible and bounded, the optimal value of the objective function pro-
vides an upper bound of the original optimization problem, denoted as Uub. The upper bound

of the ith iteration is computed as follows: U i
ub = min



U i−1
ub ,

∑k0+N−1
k=k0

∑

p∈P ζf̄p(k)Ēp + J̄ i
dsp



,

∀i ∈ {1, 2, ...}, where J̄ idsp represents the objective function value of the dual sub-problem of
the ith iteration.

Constraints (3-7b):(3-7p) constitute polyhedron Ω, which represents the feasible space of the
original optimization problem for a given l̄p(k) and δ̄absorb

p (k). We use E and Q to denote the
sets of extreme points and rays of Ω, respectively. If there is an optimal and bounded solution
[ūcapacity
p (k), ..., ūcapacity, auxiliary

p (k)], then this solution is a vector of extreme points belonging
to the set E. The extreme points are used to add a constraint to the master problem, i.e., an
optimality cut.

If the solution is unbounded above, by duality theory, the original optimization problem
is infeasible [7]. In other words, the choice for l̄p(k) and δ̄absorb

p (k) does not satisfy the
constraints of the original optimization problem if the dual sub-problem is unbounded above.
The solution l̄p(k) and δ̄absorb

p (k) needs to be removed from the master problem; this can

be done by computing a vector of extreme rays [q̄capacity
p (k), ..., q̄capacity, auxiliary

p (k)] ∈ Q for

which the dual sub-problem is unbounded above, i.e.,
∑k0+N−1
k=k0

Jdsp(k) > 0, and adding a
constraint to the master problem such that the objective function of the dual sub-problem is
never positive for the given vector of extreme rays; this constraint is called the feasibility cut.

Since polyhedron Q is independent of f̄p(k) and δ̄absorb
p (k), the original optimization problem is

infeasible if the dual sub-problem is infeasible. The equations for the optimality and feasibility
cuts are, respectively, as follows:

Jopt =
k0+N−1

∑

k=k0

∑

p∈P

∑

m∈S



ūcapacity
p (k)Cmaxfp(k)− ūnumber

p,m (k)λp,m(k)T − ūwait
p (k)λp(k)T (3-8)

+ ūwait, auxiliary
p (k)



Ep,1(k)δabsorb
p (k)− Ep,4(k)



+ ūcapacity, auxiliary
p (k)



Ep,5(k)δabsorb
p (k)− Ep,8(k)

 

,

ūcapacity
p (k), ūnumber

p (k), ūwait
p (k), ūwait, auxiliary

p (k), ūcapacity, auxiliary
p (k) ∈ E

Jfeas =
k0+N−1

∑

k=k0

∑

p∈P

∑

m∈S



q̄capacity
p (k)Cmaxfp(k)− q̄number

p,m (k)λp,m(k)T − q̄wait
p (k)λp(k)T (3-9)

+ q̄wait, auxiliary
p (k)



Ep,1(k)δabsorb
p (k)− Ep,4(k)



+ q̄capacity, auxiliary
p (k)



Ep,5(k)δabsorb
p (k)− Ep,8(k)

 

,

q̄capacity
p (k), q̄number

p (k), q̄wait
p (k), q̄wait, auxiliary

p (k), q̄capacity, auxiliary
p (k) ∈ Q
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The extreme points are the optimal dual variables found by solving the dual sub-problem.
The extreme rays can be obtained by finding a solution to a set of equations for which
∑k0+N−1
k=k0

Jdsp(k) > 0 for the given l̄p(k) and δ̄absorb
p (k). The set of equations solved to obtain

extreme rays is given in Appendix B.

The master problem is constructed using the original constraints for variables lp(k), fp(k),
δabsorb
p (k); the optimality and feasibility cuts; and auxiliary variable η ∈ R. The objective of

the master problem is to minimize η, in addition to ζfp(k)Ēp, as this term is not included in
the objective of the dual sub-problem. The master problem is given as follows:

min Jmas = η +
k0+N−1

∑

k=k0

∑

p∈P

ζfp(k)Ēp (3-10a)

subject to

Jfeas ≤ 0, (3-10b)

Jopt ≤ η, (3-10c)

fp(k) ≤ fmax
p , (3-10d)

fp(k) =
T − γp
T

lp (k − δp) +
γp

T
lp (k − δp − 1) , (3-10e)

δabsorb
p (k) ∈ {0, 1}, (3-10f)

lp(k) ∈ Z, (3-10g)

η ∈ R (3-10h)

k = k0, k0 + 1, ..., k0 +N − 1,

The optimality cuts guide the master problem to the optimal solution for lp(k) and δabsorb
p (k),

while the feasibility cuts ensure the feasibility of the solution. The feasible space of η is reduced
with every added Benders cut; this means that — if an optimal solution is found — the objec-
tive function value of the master problem provides a lower bound on the solution of the orig-

inal optimization problem. The lower bound is denoted as Ulb, with U ilb = max


U i−1
lb , J̄ imas



,

∀i ∈ {1, 2, ...}, where J̄ imas represents the value of the objective function of the master problem
for the ith iteration of the Benders decomposition algorithm.

The optimal solution l̄p(k) and δ̄absorb
p (k) is then used to solve the dual sub-problem in the

next iteration until the difference between the lower bound and the upper bound is below a
certain threshold, i.e., Uub−Ulb ≥ α, where α is a positive number. If the difference between
the upper and the lower bound is zero, by duality, the solution is globally optimal. The
classical Benders decomposition algorithm is presented in Algorithm 1. A flowchart is given
in Fig. 3-1.
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22 Benders decomposition for train departure frequency optimization

Algorithm 1: Classical Benders decomposition-based train departure frequency optimization
algorithm

Input: α, ζ, N , P , S, θtrans
q,p , Ēp, r̄p, and ψp; estimated values for χq,p,m(k), αp,m(k) and

λp,m(k)
Set initial values:
U0

ub ←∞, U0
lb ← −∞, f̄p(k)← 0, δ̄absorb

p (k)← 0, i← 0

Output: lp(k), fp(k), and δabsorb
p (k)

while U iub − U
i
lb ≥ α do

i← i+ 1
Solve (3-7) using l̄p(k) and δ̄absorb

p (k)
if (3-7) is feasible and bounded then

Obtain J̄dsp and extreme points [ūcapacity
p (k), ..., ūcapacity, auxiliary

p (k)] ∈ E

Update upper bound:

U iub ← min


U i−1
ub ,

∑k0+N−1
k=k0

∑

p∈P ζf̄p(k)Ēp + J̄ idsp



Add optimality cut (3-8) using extreme points
else if (3-7) is feasible but unbounded then

Compute extreme rays [q̄capacity
p (k), ..., q̄capacity, auxiliary

p (k)] ∈ Q

Add feasibility cut (3-9) using extreme rays
else if (3-7) is infeasible then

Model is infeasible and algorithm is terminated
end if

Solve (3-10) to obtain new f̄p(k), and δ̄absorb
p (k)

Update lower bound:

U ilb ← max


U i−1
lb , J̄ imas



end while
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Solve dual sub-problem
(3-7) 

Is (3-7) feasible? Terminate
No

Is (3-7) bounded?
Yes

Compute extreme rays

Generate feasibility cut
(3-9) 

Solve master problem
(3-10)

Initialization

Update upper bound

Generate optimality cut
(3-8) 

Yes

No

Terminate
No

Yes

Update lower bound

Figure 3-1: Visualization classical Benders decomposition algorithm
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24 Benders decomposition for train departure frequency optimization

3-2 ϵ-optimal Benders decomposition

The classical Benders decomposition algorithm may face difficulties when many iterations are
required before a solution is found, as the master problem increases in size and complexity with
every added Benders cut, resulting in a high computation time. To reduce the computation
time of the master problem, this section applies the ϵ-optimal Benders algorithm introduced
in [23]. The new constraints of the master problem are given as follows:

η +
k0+N−1

∑

k=k0

∑

p∈P

ζfp(k)Ēp ≤ Uub(1− ϵ) (3-11a)

Jfeas ≤ 0 (3-11b)

Jopt ≤ η (3-11c)

fp(k) ≤ fmax
p (3-11d)

fp(k) =
T − γp
T

lp (k − δp) +
γp

T
lp (k − δp − 1) (3-11e)

δabsorb
p (k) ∈ {0, 1}, (3-11f)

lp(k) ∈ Z, (3-11g)

η ∈ R, (3-11h)

k = k0, k0 + 1, ..., k0 +N − 1

Instead of finding an optimal solution, the new master problem seeks a feasible solution for
which the objective function of the master problem is at least 100ϵ% lower than the current
upper bound Uub. The master problem has therefore turned into a feasibility problem, which
is generally easier to solve than an optimization problem. The feasible solution to the master
problem is used for the dual sub-problem of the next iteration, similar to the classical Benders
decomposition. Since the solution to the master problem is not optimal, the master problem
does not provide a valid lower bound. The ϵ-optimal Benders algorithm terminates when the
master problem cannot produce a feasible solution. The algorithm is guaranteed to terminate
in a finite number of steps, as there is a finite number of optimal dual solutions for the sub-
problem, and each optimal dual solution must improve the classical master problem objective
function. A potential drawback of the ϵ-optimal Benders algorithm is that it may require more
iterations than the classical Benders decomposition algorithm, as the non-optimal solutions to
the master problem may also lead to non-optimal Benders cuts. Two versions of the ϵ-optimal
Benders algorithm will be used: one with a constant value for ϵ and one where the value for ϵ
decreases until a minimum value is reached. The ϵ-optimal Benders algorithm with constant
ϵ is shown in Algorithm 2. A flowchart is given in Fig. 3-2.
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Algorithm 2: ϵ-optimal Benders decomposition-based train departure frequency optimization
algorithm

Input: α, ζ, N , P , S, θtrans
q,p , Ēp, r̄p, and ψp; estimated values for χq,p,m(k), αp,m(k) and

λp,m(k)
Set initial values:
U0

ub ←∞, f̄p(k)← 0, δ̄absorb
p (k)← 0, i← 0

Output: fp(k) and δabsorb
p (k)

while U iub ≥ α do

i← i+ 1
Solve (3-7) using l̄p(k) and δ̄absorb

p (k)
if (3-7) is feasible and bounded then

Obtain J̄dsp and extreme points [ūcapacity
p (k), ..., ūcapacity, auxiliary

p (k)] ∈ E

Update upper bound:

U iub ← min


U i−1
ub ,

∑k0+N−1
k=k0

∑

p∈P ζf̄p(k)Ēp + J̄ idsp



Add optimality cut (3-8) using extreme points
else if (3-7) is feasible but unbounded then

Compute extreme rays [q̄capacity
p (k), ..., q̄capacity, auxiliary

p (k)] ∈ Q

Add feasibility cut (3-9) using extreme rays
else if (3-11) is infeasible then

Model is infeasible and algorithm is terminated
end if

Solve (3-11)
if (3-11) is feasible then

Obtain new f̄p(k), and δ̄absorb
p (k)

else if (3-11) is infeasible then

Break while loop
end if

end while
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Solve dual sub-problem
(3-7)

Is (3-7) feasible? Terminate
No

Is (3-7) bounded?
Yes

Compute extreme rays

Generate feasibility cut
(3-9)

Solve master problem
(3-11)

 

Initialization

Update upper bound

Generate optimality cut
(3-8)

Yes

Is (3-11) feasible? Terminate

No

Yes No

Figure 3-2: Visualization ϵ-optimal Benders decomposition algorithm
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3-3 Conclusions

This thesis uses the passenger absorption model introduced in [32] to optimize train departure
frequencies in a metro network. A MILP problem is derived from the passenger absorption
model, for which two Benders decomposition-based algorithms are applied, i.e., the classical
Benders decomposition algorithm [5] and the ϵ-optimal Benders decomposition algorithm [23].
The two decomposition methods divide the original optimization problem into a master prob-
lem and a dual sub-problem, solving both problems iteratively. The master problem is used to
determine the integer and binary variables, while the dual sub-problem is used to determine
the other (continuous) variables. The ϵ-optimal Benders decomposition algorithm adds a con-
straint to the master problem and treats the master problem as a feasibility problem instead
of an optimization problem, aiming to accelerate the algorithm by reducing the computational
complexity of the master problem.
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Chapter 4

Case study

This chapter shows the efficiency of the Benders decomposition-based approaches for train
departure frequency optimization by comparing them against a state-of-the-art solver. A
simulation-based case study is performed on a grid metro network with time-varying Origin-
Destination (OD) passenger demands. The Benders decomposition-based approaches are
evaluated based on the objective function value and the solution time. Section 4-1 provides
the details of the simulation-based case study. Section 4-2 gives the results of the simulation-
based case study. Section 4-3 concludes this chapter.

4-1 Set-up

This section provides the details of the simulation-based case study. First, the metro network
that was modeled for the case study is shown. Next, the relevant parameters of the metro
network are given. Finally, the relevant computer specifications used for the simulations are
given.

The metro network used for the case study is shown in Fig. 4-1, consisting of twenty-one
stations, sixty platforms, and six bidirectional lines. The number on top of each link in
Fig. 4-1 represents the average travel time between two stations and is used to determine the
parameters r̄p and ψp. Parameters r̄p and ψp are assumed to be similar for both directions of
a line. Time-varying OD passenger demands are used for the case study.
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Figure 4-1: Railway operations planning
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The average transfer time between two platforms θtrans
q,p is assumed equal for each combination

of platforms q and p that belong to the same station. Each platform has a maximum train
frequency fmax

p , and each train has a maximum train capacity Cmax. The cost of a train run

Ēp depends on its associated travel time. The two objectives of the optimization problem, i.e.,
the time spent by passengers in the metro network and the operational costs, are balanced
with weight ζ. The classical Benders decomposition algorithm terminates when the difference
between the upper and lower bound is smaller than α. Table 4-1 gives an overview of all
parameters.

Table 4-1: Comparison of different methods for constant passenger demand

Parameter Value

Stop criterion α 1
Transfer time θtrans

q,p 1 [min]

Capacity Cmax 2000 passengers

Train cost Ēp 2 · r̄p
Max departure frequency fmax

p 20

Weight ζ 1000

In the passenger absorption model — the model used in this thesis — αp,m(k) represents the
relative fraction of passengers that board a train at platform p whose destination is station
m during period k and χq,p,m(k) represents the relative fraction of passengers arriving at
platform q to transfer to platform p with destination m during period k; these parameters
can be estimated using historical data. Since we use a fictional metro network and do not
have historical data available, parameters αp,m(k) and χq,p,m(k) are computed by assuming
that passengers will always choose the shortest path to their destination in terms of time
spent in the rail network. If multiple routes are equally long in travel time, we assume that
an equal number of passengers would choose each different route.

All the simulations are conducted using Matlab R2021a on a MacBook Pro 2017, which has
a 2.3 GHz Dual-core Intel Core i5 processor and 8GB of RAM. The version of gurobi used
is 9.5.2 build v9.5.2rc0 (mac64[x86]).
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4-2 Case study

This section evaluates the Benders decomposition-based algorithms in a simulation-based
case study. State-of-the-art solver gurobi is used as a benchmark. All methods are compared
based on the objective function value and the computation time. Additional information is
shown for the Benders decomposition-based algorithms, i.e., the number of iterations, the
cumulative computation time of the dual sub-problem, the cumulative computation time of
computing the extreme rays, and the cumulative computation time of the master problem.

First, the optimization problem is solved using gurobi. The computation time of gurobi

only includes the part of the computation time exclusive to solving the problem using gurobi.

Next, simulations are run for the classical Benders decomposition algorithm. The classi-
cal Benders decomposition algorithm consists of three parts, i.e., (1) the dual sub-problem,
(2) computing extreme rays when the dual sub-problem is unbounded, and (3) the master
problem. All individual optimization problems are solved using gurobi. The total computa-
tion time consists of solving the dual sub-problem and master problem, updating the upper
and lower bound, generating optimality and feasibility cuts, and obtaining extreme rays when
necessary.

The ϵ-optimal Benders algorithm turns the master problem into a feasibility problem in-
stead of an optimization problem, with the added constraint that the solution must be below
Uub(1 − ϵ), where Uub denotes the upper bound. In other words, the master problem no
longer attempts to find an optimal solution for a given set of dual variables. Instead, the
only requirement of the master problem is that the objective function value is below a specific
factor of the upper bound. An essential parameter for the ϵ-optimal Benders decomposition
algorithm is the value chosen for ϵ. The value for ϵ represents the acceptable optimality gap.
For example, if ϵ is set as 0.2 and the algorithm terminates, in the worst case, the solution is
20% lower than the solution found by the ϵ-optimal Benders algorithm. Therefore, the value
for ϵ must not be set too high. On the other hand, a low value for ϵ might result in a high
number of iterations.

Simulations are run for five different ϵ-optimal Benders decomposition algorithms. The first
three use a constant value for ϵ; the first uses a constant value of ϵ = 0.01 for all iterations,
the second uses a constant value of ϵ = 0.05 for all iterations, and the third uses a constant
value of ϵ = 0.1 for all iterations. The three ϵ-optimal Benders decomposition algorithms with
constant ϵ are denoted as ϵ-Benders (ϵ = 0.01), ϵ-Benders (ϵ = 0.05), and ϵ-Benders (ϵ = 0.1),
respectively.

Next, two ϵ-optimal Benders decomposition algorithms are used where the value of ϵ changes
for each iteration; the two algorithms are denoted as ϵ-Benders (ϵ1(i)), and ϵ-Benders (ϵ2(i)),
respectively, with ϵ1(i) = max(0.1·0.99i, 0.02), ∀i ∈ {1, 2, ...}, and ϵ2(i) = max(0.1·0.985i, 0.01),
∀i ∈ {1, 2, ...}, where i denotes the iterations of the ϵ-optimal Benders decomposition algo-
rithm. Hence, ϵ starts at 0.1 for both algorithms and decreases with each iteration until a
minimum value is reached.

Simulations are run for different planning time windows, i.e., for three hours (N = 3), for four
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hours (N = 4), for five hours (N = 5), and for six hours (N = 6). The time limit for solving
the optimization problem is set as three hours for all optimization approaches. The results
for gurobi, the classical Benders decomposition algorithm, and the five ϵ-optimal Benders
decomposition algorithms can be seen in table 4-2. In the table, N.A. indicates no solution
was found within three hours. In the column between the objective function value and the
computation time, the relative error is shown in terms of the objective function value relative
to the classical Benders decomposition algorithm. The following equation is used to compute
the error:

Error =
JMethod − Jgurobi

JMethod
· 100%, (4-1)

where Jgurobi indicates the objective function value obtained by gurobi and JMethod represents
the objective function value obtained by the method for which the relative error is computed.
If gurobi cannot find a solution within three hours, the relative error cannot be computed;
this is indicated in the table as N.B.
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4-2-1 Results

The performance of all methods is given in Table 4-2, showing the objective function value,
the relative error in the objective function value compared to gurobi, and the computation
time.

Solver gurobi can find a solution within three hours for N = 3 and N = 4, i.e., when
the problem size is relatively small. The classical Benders decomposition algorithm obtains
the same solution as gurobi for N = 3 and N = 4. If the difference between the upper and
the lower bound of the classical Benders decomposition algorithm is zero, then the solution
of the Benders decomposition algorithm is globally optimal. Since the classical Benders de-
composition algorithm is terminated when the difference between the upper and lower bound
is below one, the solution that is found is either globally optimal or very close to globally
optimal, which explains why there is no error compared to gurobi. The relative error cannot
be computed for N = 5 and N = 6, as gurobi cannot find a solution within three hours.

The ϵ-optimal Benders decomposition algorithm with ϵ set as 0.01 has no error for N = 3
and N = 4 compared to gurobi, and a small error compared to the classical Benders decom-
position algorithm when N = 5. The ϵ-optimal Benders decomposition algorithms with ϵ set
as 0.05 and 0.1 have more significant errors in the objective function value. The ϵ-optimal
Benders decomposition algorithm terminates when there is no feasible solution to the master
problem for which the objective function value is ϵ% lower than the upper bound; this means
that the maximum error relative to the classical Benders decomposition algorithm in the ob-
jective function values is ϵ%, which explains the difference in the relative errors.

The two ϵ-optimal Benders decomposition algorithms with varying ϵ generally perform better
in terms of the objective function compared to the ϵ-optimal Benders decomposition algo-
rithms with ϵ set as 0.05 and 0.1. The larger the problem size, the more significant the
difference in objective function value between these methods. When the problem size in-
creases, more iterations are required, resulting in ϵ reaching its minimum value during the
final iterations for the ϵ-optimal Benders decomposition algorithms with varying ϵ. The lower
value for ϵ during the final iterations ensures a more accurate solution.

The computation time of all methods is shown in the last column of Table 4-2. While gurobi

finds the solution in a relatively short amount of time (around 2 minutes) when the problem
size is small (N = 3), the computation time increases quickly when the problem size increases,
as it takes gurobi close to two hours when N = 4. When the problem size increases further,
gurobi cannot find a solution within three hours.

The classical Benders decomposition algorithm finds the solution much faster compared to
gurobi when the problem size increases. Nevertheless, the classical Benders decomposition
algorithm also requires a computation time that is too high for real-time applications when
the problem size increases.
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Table 4-2: Comparison of different methods. N.A. indicates that no solution was found after
three hours; N.B indicates the benchmark method (gurobi) was not able to find a solution after
three hours, which means the relative error cannot be computed; and Error denotes the relative
error of a method compared to gurobi

N Method Objective function value Error [%] Computation time [s]

gurobi 2.82 · 105 112.0
Classical 2.82 · 105 0 145.8

ϵ-Benders (ϵ = 0.01) 2.83 · 105 0.35 207.0
ϵ-Benders (ϵ = 0.05) 2.85 · 105 1.06 172.3

3 ϵ-Benders (ϵ = 0.1) 2.86 · 105 1.42 161.5
ϵ-Benders (ϵ1(i)) 2.95 · 105 4.61 133.6
ϵ-Benders (ϵ2(i)) 2.82 · 105 0 159.5

gurobi 4.00 · 105 6230.4
Classical 4.00 · 105 0 388.9

ϵ-Benders (ϵ = 0.01) 4.00 · 105 0 358.4
ϵ-Benders (ϵ = 0.05) 4.14 · 105 3.5 305.1

4 ϵ-Benders (ϵ = 0.1) 4.14 · 105 3.5 291.3
ϵ-Benders (ϵ1(i)) 4.14 · 105 3.5 309.0
ϵ-Benders (ϵ2(i)) 4.09 · 105 2.25 337.3

gurobi N.A. N.A.
Classical 5.25 · 105 N.B. 7373.3

ϵ-Benders (ϵ = 0.01) 5.28 · 105 N.B. 558.3
ϵ-Benders (ϵ = 0.05) 5.48 · 105 N.B. 475.9

5 ϵ-Benders (ϵ = 0.1) 5.48 · 105 N.B. 440.2
ϵ-Benders (ϵ1(i)) 5.34 · 105 N.B. 463.2
ϵ-Benders (ϵ2(i)) 5.27 · 105 N.B. 516.2

gurobi N.A. N.A.
Classical N.A. N.B. N.A.

ϵ-Benders (ϵ = 0.01) 6.80 · 105 N.B. 1771.2
ϵ-Benders (ϵ = 0.05) 7.07 · 105 N.B. 714.4

6 ϵ-Benders (ϵ = 0.1) 7.14 · 105 N.B. 687.9
ϵ-Benders (ϵ1(i)) 6.77 · 105 N.B. 737.6
ϵ-Benders (ϵ2(i)) 6.77 · 105 N.B. 773.0
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The ϵ-optimal Benders decomposition algorithms find the solution relatively quickly for all N .
The computation time does not increase as fast with the problem size as for the classical Ben-
ders decomposition algorithm and gurobi. Moreover, the ϵ-optimal Benders decomposition
algorithms with varying ϵ values are faster than the ϵ-optimal Benders decomposition algo-
rithm with constant ϵ = 0.01; the larger the problem size, the more significant the difference
in computation time. Moreover, the ϵ-optimal Benders decomposition algorithms with vary-
ing ϵ values are not significantly slower than the ϵ-optimal Benders decomposition algorithm
with constant ϵ = 0.05 or ϵ = 0.1. The high ϵ value at the start results in fast convergence of
the algorithm, while the low ϵ values during the final iterations ensure a relatively low error
regarding the objective function value.

Additional information for the classical Benders decomposition algorithm and the ϵ-optimal
Benders decomposition algorithms regarding the number of iterations, the cumulative com-
putation time for the dual sub-problem tdsp, the cumulative computation time for computing
the extreme rays trays, and the cumulative computation time for the master problem tmas, are
provided in Table 4-3. The computation time for updating the upper bound and generating
optimality cuts is added to the solution time of the dual sub-problem tdsp, the computation
time for generating feasibility cuts is added to the computation time of the extreme rays trays,
and the computation time for updating the lower bound is added to the computation time of
the master problem tmas.

For the classical Benders decomposition algorithm, the computation time of finding the ex-
treme rays is the most time-consuming part when the problem size is small. However, when
the problem size increases, the master problem becomes the most time-consuming part of
the algorithm by a significant margin. By increasing the problem size, the classical Ben-
ders decomposition algorithm requires more Benders cuts, which increases the computation
complexity of the master problem with each added iteration. The result is that the master
problem becomes very time-consuming during the final iterations.
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Table 4-3: Additional information Benders decomposition-based algorithms. N.A. indicates
that no solution was found after three hours; tdsp denotes the computation time of the dual
sub-problem; tray denotes the computation time of finding extreme rays; and tmas denotes the
computation time of the master problem

N Method Iterations tdsp tray tmas

Classical 62 50.7 74.0 21.1
ϵ-Benders (ϵ = 0.01) 79 85.1 91.8 30.1

3 ϵ-Benders (ϵ = 0.05) 68 62.9 89.7 19.7
ϵ-Benders (ϵ = 0.1) 63 57.0 85.6 18.9
ϵ-Benders (ϵ1(i)) 59 49.2 69.3 15.1
ϵ-Benders (ϵ2(i)) 72 59.4 80.8 19.3

Classical 85 96.1 145.6 147.3
ϵ-Benders (ϵ = 0.01) 113 141.3 158.8 58.3

4 ϵ-Benders (ϵ = 0.05) 99 108.6 157.9 38.6
ϵ-Benders (ϵ = 0.1) 97 103.3 149.9 38.0
ϵ-Benders (ϵ1(i)) 94 98.8 143.3 66.9
ϵ-Benders (ϵ2(i)) 99 113.9 163.0 60.4

Classical 104 135.7 208.2 7029.4
ϵ-Benders (ϵ = 0.01) 140 189.0 238.5 130.8

5 ϵ-Benders (ϵ = 0.05) 125 164.2 245.1 66.6
ϵ-Benders (ϵ = 0.1) 121 153.1 229.0 58.1
ϵ-Benders (ϵ1(i)) 126 163.0 234.3 65.8
ϵ-Benders (ϵ2(i)) 136 179.4 251.0 85.8

Classical N.A N.A N.A N.A
ϵ-Benders (ϵ = 0.01) 169 279.2 349.2 1142.8

6 ϵ-Benders (ϵ = 0.05) 151 235.5 349.4 129.4
ϵ-Benders (ϵ = 0.1) 147 237.4 355.7 94.8
ϵ-Benders (ϵ1(i)) 158 245.6 349.9 142.1
ϵ-Benders (ϵ2(i)) 168 268.3 361.0 143.7
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The reason for the ϵ-optimal Benders decomposition algorithms being faster than the classical
Benders decomposition algorithm when the problem size increases can be deduced from Table
4-3. By turning the master problem into a feasibility problem, the computation time of the
master problem remains relatively low, even when the problem size increases. On the other
hand, when the problem size is small, the ϵ-optimal Benders decomposition algorithms re-
quire a slightly higher computation time than the classical Benders decomposition algorithm.
The ϵ-optimal Benders decomposition algorithms require more Benders cuts than the classi-
cal Benders decomposition algorithm before the solution is found because the Benders cuts
are generated using non-optimal solutions to the master problem. The number of iterations,
therefore, increases; the computation time is mainly determined by the number of iterations
when the problem size is relatively small.

The convergence of the upper bound and the lower bound of the classical Benders decompo-
sition algorithm can be seen in Fig. 4-2 for N = 3, in Fig. 4-3 for N = 4, and in Fig. 4-4
for N = 5. In all three cases, the dual sub-problem has a feasible and bounded solution only
during two iterations, i.e., during the first and final iteration; this is why the upper bound
only changes during the last iteration. The dual sub-problem is unbounded for all other
iterations. The master problem, therefore, consists mainly of feasibility cuts; this explains
why the cumulative computation time is higher for finding the extreme rays than for solving
the dual sub-problem, as extreme rays are computed for all but two iterations, and the dual
sub-problem is unbounded for all these iterations, which can be determined relatively fast.
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Figure 4-2: Convergence upper bound and lower bound of the classical Benders decomposition
algorithm (N = 3)
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Figure 4-3: Convergence upper bound and lower bound of the classical Benders decomposition
algorithm (N = 4)
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Figure 4-4: Convergence upper bound and lower bound of the classical Benders decomposition
algorithm (N = 5)
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The evolution of the upper bound throughout the iterations of the ϵ-optimal Benders decom-
position algorithm is given for all N and all ϵ. Since the solution to the master problem is no
longer optimal, the solution does not provide a valid lower bound; only the evolution of the
upper bound is shown. The evolution of the upper bound is shown for all ϵ-optimal Benders
decomposition algorithms in Fig. 4-5 for N = 3, in Fig. 4-6 for N = 4, in Fig. 4-7 for N = 5,
and in Fig. 4-8 for N = 6.

While the upper bound only changes during the last iteration for the classical Benders de-
composition algorithm, the upper bound does change during other iterations for the ϵ-optimal
Benders decomposition algorithms. The optimal solutions to the classical Benders decompo-
sition algorithm cause the dual sub-problem to be unbounded for most iterations, while the
solutions to the master problem of the ϵ-optimal Benders decomposition algorithms — which
are not necessarily optimal — do not always cause the dual sub-problem to be unbounded.
The master problem of the ϵ-optimal Benders decomposition algorithms, therefore, consists
of more optimality cuts than the classical Benders decomposition algorithm.

For all ϵ-optimal Benders decomposition algorithms, the upper bound remains unchanged
during the beginning of the algorithm. The lower the constant value for ϵ, the faster the ϵ-
optimal Benders decomposition algorithm can find a bounded solution to the dual sub-problem
and use this solution to change the upper bound. The ϵ-optimal Benders decomposition al-
gorithms with varying ϵ start with a high ϵ, which explains why it takes relatively long for
the upper bound to change.

When the problem size increases, the number of times the upper bound changes increases
significantly. In addition, the number of times the upper bound changes depends on the value
chosen for ϵ: the lower ϵ, the higher the number of times the upper bound changes. The higher
the value of ϵ, the closer more likely the solution is to be close to optimal, which results in
an unbounded dual sub-problem, as we have seen from the classical Benders decomposition
algorithm.
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Figure 4-5: Evolution upper bound of the ϵ-optimal Benders decomposition algorithm (N = 3)
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Figure 4-6: Evolution upper bound of the ϵ-optimal Benders decomposition algorithm (N = 4)
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Figure 4-7: Evolution upper bound of the ϵ-optimal Benders decomposition algorithm (N = 5)
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Figure 4-8: Evolution upper bound of the ϵ-optimal Benders decomposition algorithm (N = 6)
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4-2-2 Evaluation

Solver gurobi is the best choice of all methods when the number of periods for which the
departure frequencies are optimized is three or lower. However, when simulating for more
periods and the problem size increases, gurobi has difficulties finding the optimal solution
fast enough for real-time applications.

The classical Benders decomposition algorithm can find the exact solution in a much shorter
time for N = 4 and N = 5 compared to gurobi. When the number of periods exceeds
five, the classical Benders decomposition algorithm cannot find a solution within three hours.
The high number of feasibility cuts required before the solution is found causes the master
problem to increase in computation complexity with each iteration, which is the cause of the
high computation time.

The ϵ-optimal Benders decomposition algorithm can find a solution much faster than both
gurobi and the classical Benders decomposition algorithm if the problem size is large. By
turning the master problem into a feasibility problem, the master problem remains relatively
easy to solve, despite the high number of optimality and feasibility cuts that are added to
the master problem. The ϵ-optimal Benders decomposition algorithm comes at a cost: the
solution is not necessarily optimal, and the optimality gap depends on the choice for ϵ. A
trade-off between solution quality and computation time can be made by choosing a value for ϵ.
Furthermore, by setting ϵ as high at the beginning of the algorithm and decreasing ϵ with each
iteration until a miminum value is reached, the ϵ-optimal Benders decomposition algorithm
can make a better trade-off between the objective function value and the computation time.

4-3 Conclusions

This chapter evaluated the performance of the classical Benders decomposition algorithm
and the ϵ-optimal Benders decomposition algorithm for the real-time optimization of train
departure frequencies in metro networks.

The optimization was first solved using state-of-the-art solver gurobi, which was chosen as
a benchmark. Next, the classical Benders decomposition algorithm was applied to the same
optimization problem, after which five variations of the ϵ-optimal Benders decomposition al-
gorithm were applied; three of these used a constant value for ϵ, while the other two decreased
the value of ϵ with each iteration until a minimum value was reached. From the simulations,
we can conclude that gurobi is not a suitable choice for real-time optimization of train de-
parture frequencies. When increasing the number of periods over which the optimization is
performed, the increase in the number of (integer) variables and constraints leads to a solution
time that is too high for practical use in real-time applications.

The classical Benders decomposition algorithm was shown to be more suitable than gurobi

when considering four or more periods for the optimization. However, the classical Benders
decomposition algorithm was unsuitable for real-time optimization when simulating more
than four periods. The classical Benders decomposition algorithm requires many Benders cuts
before the solution is found, which causes the master problem to increase in computational
complexity with every iteration until the master problem becomes a computational bottleneck.
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The more periods are simulated, the larger the problem size and the more Benders cuts are
required.

Much research has been carried out to accelerate Benders decomposition. A significant pro-
portion of the proposed methods in the literature are based on the existence of multiple
solutions to the dual sub-problem; these methods are unlikely to accelerate the classical Ben-
ders decomposition algorithm in this thesis, as the dual sub-problem is unbounded for all but
the first and last iteration. Strengthening the feasibility cuts is a less researched topic and
has mixed results.

The best method to accelerate Benders decomposition is, therefore, to reduce the compu-
tational complexity of the master problem directly. The ϵ-optimal Benders decomposition
approach introduced in [23] has been shown to lead to a considerable decrease in compu-
tation time of the master problem — and therefore the whole algorithm — by turning the
master problem into a feasibility problem. The best trade-off between solution time and qual-
ity can be achieved by choosing a relatively high initial value for ϵ and decreasing the value
with each iteration until a minimum value is reached.
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Chapter 5

Conclusions and discussion

This thesis applied Benders decomposition to decrease the computational burden of optimizing
train departure frequencies under time-varying origin-destination passenger demands in metro
networks. The ϵ-optimal Benders decomposition algorithm, a variation on the classical Bender
decomposition algorithm, was applied to decrease the solution time further. This chapter
concludes the thesis by answering the research questions and recommending future research.

5-1 Conclusions

The main research question of this thesis was:

Are Benders decomposition-based approaches suitable for optimizing train departure frequen-
cies in metro networks?

To answer the main question, we will first answer the two sub-questions:

1. Can Benders decomposition reduce the computational complexity of optimizing train de-
parture frequencies in metro networks?

A simulation-based case study is utilized to evaluate the Benders decomposition-based
approaches by comparing them against state-of-the-art solver gurobi, which is used as
a benchmark. Simulations are done for three hours (N = 3), four hours (N = 4), five
hours (N = 5), and six hours (N = 6); each hour is modeled as one period for which
the passenger arrival rate is assumed constant.

When the problem size is small enough (N = 3), gurobi can find the solution fast
enough for real-time use. However, when the problem size increases, gurobi takes too
long to find the solution for real-time applications. The classical Benders decomposition
algorithm is significantly faster compared to gurobi when the problem size increases.
Nevertheless, the classical Benders decomposition algorithm takes too long for real-time
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use when N = 5 or higher. The reason for the high computation time of the classical
Benders decomposition algorithm when the problem size increases is the high computa-
tion time of the master problem, which is due to the many Benders cuts required before
the solution is found. The Benders cuts increase the computational complexity of the
master problem with each iteration, until the master problem becomes a computational
bottleneck.

The ϵ-optimal Benders decomposition algorithms can find a solution for all N relatively
quickly. The ϵ-optimal Benders decomposition algorithm turns the master problem into
a feasibility problem, which is generally easier to solve than an optimization problem. By
reducing the computation time of the master problem — the most time-consuming part
of the classical Benders decomposition algorithm for larger N — the ϵ-optimal Benders
decomposition algorithm significantly reduces the total computation time. The reduced
computation time does come with a drawback: the solution of the ϵ-optimal Benders
decomposition algorithm is not necessarily optimal. A trade-off can be made between
computation time and the solution accuracy by choosing a value for ϵ.

2. What acceleration methods can be applied to Benders decomposition when optimizing
train departure frequencies in metro networks?

Accelerating Benders decomposition is a heavily researched topic. A survey listing
various acceleration techniques used in literature is presented in [43]. Choosing a suit-
able acceleration method is often problem-specific.

Much of the research on accelerating Benders decomposition focuses on using the so-
lutions to the dual sub-problem and their corresponding optimality cuts. The classical
Benders decomposition algorithm found feasible and bounded solutions to the dual sub-
problem only for the first and the last iteration; the dual sub-problem was feasible but
unbounded for all other iterations. The master problem, therefore, consists mainly of
feasibility cuts instead of optimality cuts. Since there is no bounded solution to the dual
sub-problem for most of the iterations, methods that rely on the solution to the dual
sub-problem cannot are not likely to be effective for the model that is used in this thesis.

The method which might result in the most significant improvement in computation
time can be deduced by looking at the computation time of all components of the
classical Benders decomposition algorithm, i.e., the dual sub-problem, computing the
extreme rays, and the master problem. When the optimization problem is relatively
small, and few Benders cuts are required for the master problem, the dual sub-problem
and computing the extreme rays are the most time-consuming parts of the classical
Benders decomposition algorithm. However, when the problem increases in size, and
additional Benders cuts are required, the master problem quickly becomes the most
time-consuming part of the algorithm.

The ϵ-optimal Benders decomposition algorithm introduced in [23] focuses on directly
reducing the computation time of the master problem by turning the master problem
from an optimization problem into a feasibility problem. The only requirement of the
solution to the master problem is that its value is a specific factor below the current

Alexander Daman Master of Science Thesis



5-2 Future work 47

upper bound. The algorithm terminates when there is no feasible solution anymore to
the master problem. The accuracy and speed of the ϵ-optimal Benders decomposition
algorithm depend on the choice of ϵ. Five different ϵ-optimal Benders decomposition al-
gorithms are tested, three of which use constant ϵ values, while the other two use a high
ϵ value at the start, decreasing with each iteration. The simulation-based case study
shows that the ϵ-optimal Benders decomposition algorithm can achieve a relatively low
error regarding the objective function value while reducing the computation time sig-
nificantly compared to the classical Benders decomposition algorithm. The larger the
problem size, the more significant the difference in computation time. The best trade-off
between computation time and solution accuracy is made by starting with a high value
for ϵ and decreasing this value with each iteration until a minimum value is reached.

After answering the two sub-questions, we can answer the main question: Yes, Benders
decomposition-based approaches are suitable for optimizing train departure frequencies in
metro networks. The simulation-based case study shows that the ϵ-optimal Benders decompo-
sition algorithm can find a relatively accurate solution fast enough for real-time applications,
which means the algorithm is suitable for optimizing train departure frequencies in metro
networks.

This thesis dealt with the train departure frequency optimization problem in metro net-
works based on the model developed in [32], which can explicitly include time-varying origin-
destination passenger demands. The contributions of this thesis can be summarized as follows:

1. The main contribution of this thesis is reducing the computational burden of the train
departure frequency problem by applying Benders decomposition-based algorithms.
First, the classical Benders decomposition algorithm [5] is applied, after which the
ϵ-optimal Benders decomposition algorithm [23] is applied to reduce the computation
time further.

2. Several Benders decomposition-based algorithms are compared in a simulation-based
case study to facilitate the method selection when solving train departure frequency
optimization problems.

A paper based on this thesis has been written and submitted to the 26th IEEE International
Conference on Intelligent Transportation Systems ITSC 2023. The paper can be found in
Appendix C.

5-2 Future work

This section outlines the suggestions for future work.

Energy consumption

In this thesis, the objective function is a sum of the time passengers spend in the metro
system and the operational costs of the dispatched trains. For a more accurate model, the
energy consumption of the dispatched trains can be computed by considering the speed of
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the trains for all speed phases, the train traction force and train braking force, the aerody-
namic drag and rolling mechanical resistances, and the gradient resistances and curve resis-
tances [54,60,61]. Since the computation of energy consumption is nonlinear, computational
complexity significantly increases for models considering energy consumption as an objective.

Stop-skipping

In this thesis, it is assumed that every train stops at every station. In real life some stations
will naturally have a higher passenger flow than other stations. Therefore, some research
in timetable scheduling considers stop-skipping in their model, enabling trains to stop at
high-demand stations and skip low-demand stations [27, 52, 59, 65]. There are generally two
ways that stop-skipping can be applied: (1) by determining a predefined set of stations to
be skipped by certain trains and (2) by allowing all trains to skip a station when deemed
beneficial, typically called dynamic stop-skipping. Adding stop-skipping would likely improve
the objective function of the model used in this thesis at the cost of increased computational
complexity.

Pareto-optimal cuts

One of the most commonly used acceleration methods for Benders decomposition is by using
so-called Pareto-optimal cuts, introduced by [38]. The core idea is that when there are mul-
tiple solutions to the dual sub-problem, there exists a solution amongst those solutions for
which the resulting optimality cut leads to the fastest convergence of the algorithm. Since
the dual sub-problem of the classical Benders decomposition algorithm is unbounded for all
but the first and last iteration of the algorithm, it is unlikely that the Pareto-optimal method
would significantly reduce the total computation time. However, the dual sub-problem of the
ϵ-optimal Benders decomposition algorithm does have feasible and bounded solutions for more
than two iterations, especially when the value for ϵ is set low. Finding the Pareto-optimal cut
whenever there are multiple feasible and bounded solutions might result in faster convergence
of the ϵ-optimal Benders decomposition algorithm. Faster convergence is not guaranteed, as
solving the secondary problem (finding the Pareto-optimal cut) can be time-consuming. Dif-
ferent methods can be used to find the Pareto-optimal cut, such as an analytic-center cutting
plane method [22,41].

Tighter feasibility cuts

Since the solution to the dual sub-problem is unbounded for all but two iterations for the
classical Benders decomposition algorithm, it would make sense to investigate the possibility
of generating better feasibility cuts. By using the distance between the feasibility cuts and the
line connecting feasible and infeasible points, tighter feasibility cuts were generated in [58],
resulting in faster convergence. The tighter cut generation would be worth investigating,
although it does involve solving a computationally expensive auxiliary problem.

Combinatorial cuts

One of the potential causes of weak feasibility cuts is the presence of big-M coefficients [15].
By searching for minimal infeasible subsystems, stronger cuts — referred to as combinatorial
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cuts — were obtained in [15]. The model used in this thesis uses big-M coefficients to trans-
form the min function into linear inequalities (see Appendix A), and it would therefore be
worth investigating the effects of using combinatorial cuts.
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Appendix A

Transformation of the min function

The nonlinear equation

nabsorb
p (k) = min



nwait
p (k), Cp(k)



(A-1)

is used to compute the number of passengers who are able to board a train. When there is
enough remaining capacity, all waiting passengers are able to board the train. When there is
not enough capacity for all waiting passengers, the number of passengers who board the train
is equal to remaining capacity.

In this appendix, the method in [56] is used to transform the min function into linear inequal-
ities.

Auxiliary variable fabsorb
p (k) is introduced, with:

fabsorb
p (k) = nwait

p (k)− Cp(k) (A-2)

Next, auxiliary binary variable δabsorb
p (k) is introduced, which is equal to 1 if fabsorb

p (k) is non-

negative and equal to 0 if fabsorb
p (k) is negative; this can be expressed by using the following

equations:

fabsorb
p (k) ≤Mp(1− δ

absorb
p (k)) (A-3a)

fabsorb
p (k) ≥ ϵ+ (mp − ϵ)δ

absorb
p (k)), (A-3b)

where Mp and mp are the maximum and minimum value of fabsorb
p (k), respectively, and ϵ is

a small positive number. Now, (A-1) is rewritten as follows:

nabsorb
p (k) = δabsorb

p (k)nwait
p (k) + (1− δabsorb

p (k))Cp(k) (A-4)
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The product of variables δabsorb
p (k) and nwait

p (k) is re-expressed using the following linear
inequalities:

zwait
p (k) ≤Mwδ

absorb
p (k)), (A-5a)

zwait
p (k) ≥ mwδ

absorb
p (k)), (A-5b)

zwait
p (k) ≤ nwait

p (k)−mw(1− δabsorb
p (k))), (A-5c)

zwait
p (k) ≥ nwait

p (k)−Mw(1− δabsorb
p (k))), (A-5d)

(A-5e)

where Mw and mw represent the maximum and minimum value of nwait
p (k), respectively. The

product of variables δabsorb
p (k) and Cp(k) is re-expressed using the following linear inequalities:

zcap
p (k) ≤Mcδ

absorb
p (k)), (A-6a)

zcap
p (k) ≥ mcδ

absorb
p (k)), (A-6b)

zcap
p (k) ≤ Cp(k)−mc(1− δ

absorb
p (k))), (A-6c)

zcap
p (k) ≥ Cp(k)−Mc(1− δ

absorb
p (k))), (A-6d)

(A-6e)

where Mc and mc represent the maximum and minimum value of Cp(k), respectively. Finally,
for compactness, (A-4) is written as:

Ep,1(k)δabsorb
p (k) + Ep,2(k)zwait

p (k) ≤ Ep,3(k)nwait
p (k) + Ep,4(k) (A-7a)

Ep,5(k)δabsorb
p (k) + Ep,6(k)zcap

p (k) ≤ Ep,7(k)Cp(k) + Ep,8(k) (A-7b)
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Computation of extreme rays

In this appendix, the equations are given that are used to compute the extreme rays when
the dual sub-problem is feasible but unbounded. The set of equations is as follows:

Jdsp > 0, (B-1a)

qcapacity
p (k) = qabsorb

p (k)− E7q
capacity, auxiliary
p (k), (B-1b)

qnumber
p,m (k) = qnp,m(k − 1), (B-1c)

qabsorb
p,m (k) = −qnumber

p,m (k) + qdepart
p,m (k), (B-1d)

qwait
p (k) = −E3q

wait, auxiliary
p (k), (B-1e)

qtrain
p,m (k) = −qcapacity

p (k) + qdepart
p,m (k) +

∑

q∈sta(p)

χq,p,mq
trans
q,p,m(k) + q

alight
p,sta(p)(k), (B-1f)

q
alight
p,sta(p)(k) = −qdepart

p,m (k), (B-1g)

q
alight
p,m∈S/{sta(p)}(k) = −qdepart

p,m (k), (B-1h)

qdepart
p,m (k) =

T − r̄ppla(p)

T
qtrain
p,m (k) +

r̄ppla(k)

T
qtrain
p,m (k − 1), (B-1i)

qtrans
q,p,m(k) = q

alight
p,m∈S/{sta(p)}(k) +

T−θtrans
q,p

T
qarrive,trans
p,m (k) +

θtrans
q,p

T
qarrive,trans
p,m (k−1), (B-1j)

qarrive,trans
p,m (k) = qnumber

p,m (k), (B-1k)

qabsorb
p (k) =

∑

m∈S

αp,m(k)uabsorb
p,m (k), (B-1l)

qwait, auxiliary
p (k) = −Ep,2(k)qabsorb

p (k), (B-1m)

qcapacity, auxiliary
p (k) = Ep,6(k)qabsorb

p (k) + Ep,7(k)uabsorb
p (k), (B-1n)

qcapacity
p (k), ..., qabsorb

p (k) ∈ R, (B-1o)

qwait, auxiliary
p (k), qcapacity, auxiliary

p (k) ≥ 0, (B-1p)

k = k0, k0 + 1, ..., k0 +N − 1,
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where Jdsp is given as:

max Jdsp =
k0+N−1

∑

k=k0

∑

p∈P

∑

m∈S



ucapacity
p (k)Cmaxf̄p(k)− unumber

p,m (k)λp,m(k)T − uwait
p (k)λp(k)T

+ uwait, auxiliary
p (k)



Ep,1(k)δ̄absorb
p (k)− Ep,4(k)



+ ucapacity, auxiliary
p (k)



Ep,5(k)δ̄absorb
p (k)− Ep,8(k)

 

(B-2)

Solving the equations above leads to a vector of extreme rays [q̄capacity
p (k), ..., q̄capacity, auxiliary

p (k)].
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Conference paper

A paper was written based on the main findings of this thesis. The paper has been submitted
to the 26th IEEE International Conference on Intelligent Transportation Systems (ITSC
2023).
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Benders decomposition-based real-time optimization of train departure

frequencies in metro networks

Alexander Daman, Xiaoyu Liu, Azita Dabiri, and Bart De Schutter, Fellow, IEEE

Abstract— Timetables determine the service quality for pas-
sengers and the energy consumption of trains in metro systems.
In metro networks, a timetable can be made by designing train
departure frequencies for different periods of the day, which
is typically formulated as a mixed-integer linear programming
(MILP) problem. In this paper, we first apply Benders de-
composition to optimize the departure frequencies considering
time-varying passenger origin-destination demands in metro
networks. An ϵ-optimal Benders decomposition approach is
subsequently used to reduce the solution time further. The
performance of both methods is illustrated in a simulation-
based case study using a grid metro network. The results show
that both the classical Benders decomposition approach and
the ϵ-optimal Benders decomposition approach can significantly
reduce the computation time for the real-time optimization of
train departure frequencies in metro networks. In addition,
the ϵ-optimal Benders decomposition approach can further
reduce the solution time compared to the classical Benders
decomposition approach when the problem scale increases while
maintaining an acceptable level of performance.

I. INTRODUCTION

Metro systems have become essential to urban transporta-

tion, providing millions of people with fast, efficient, and sus-

tainable travel options, especially in large cities. The metro

system is particularly critical in densely populated urban

areas, where an efficient and reliable timetable is paramount

for passenger satisfaction and the energy efficiency of the

metro system.

Efficient train scheduling approaches enable metro sys-

tems to optimize energy consumption, reduce waiting times,

and adjust transport capacity to meet passenger demands of

different periods. A nonlinear programming problem (NLP)

was formulated in [1] to minimize the time passengers

spend and the energy consumption of trains in a metro

line, for which an iterative convex programming approach

was proposed. A bi-directional train line was considered in

[2], and a Lagrangian-based method was proposed to solve

the resulting NLP problem. An adaptive large neighborhood

search algorithm was developed in [3] for the timetable

scheduling problem of a rail rapid transit line so as to create

convenient timetables for passengers considering a dynamic

demand pattern. To improve the efficiency of passenger-

centric timetable scheduling in metro networks, a simplified

model was developed in [4], where the resulting optimization

problem is solved in a moving horizon manner for real-time

timetable scheduling.

The authors are with the Delft Center for Systems and
Control, Delft University of Technology, 2628CD Delft, The
Netherlands alexander.daman1996@gmail.com,
x.liu-20@tudelft.nl, a.dabiri@tudelft.nl,
b.deschutter@tudelft.nl

In metro networks, trains typically operate with a rela-

tively short headway, and thus the train departure frequency,

which refers to the number of trains departing from a

line per time unit, is crucial for the transport capacity of

metro networks. To handle time-varying passenger origin-

destination demands, it is necessary to implement effective

strategies for optimizing departure frequencies in real time.

Previous studies, such as [5], have utilized heuristic and exact

methods to optimize train capacities and line frequencies

within metro networks. Similarly, [6] applied mixed-integer

nonlinear programming (MINLP) to optimize train capacities

and line frequencies in urban metro networks. A passenger

absorption model was proposed in [7] to optimize the de-

parture frequency of trains of each line in metro networks,

and the resulting problem was formulated as a mixed-integer

linear programming (MILP) problem.

Real-time scheduling models for timetables often involve

non-continuous variables, resulting in non-convex optimiza-

tion problems that can be time-consuming to solve. Ben-

ders decomposition is an efficient methodology to reduce

the computational burden in large-scale MILP problems

by splitting the MILP into two small-scale problems [8],

[9]. Benders decomposition has also been used in railway

timetable scheduling problems. Taking into account the

uncertain passengers transfer time in metro networks, a

generalized Benders decomposition approach was developed

in [10] to efficiently solve the resulting MILP problem.

A logic-based Benders decomposition approach that can

reuse the precomputed logic Benders cuts to reduce the

computation burden of the timetable rescheduling problem

was proposed in [11]. In [12], the solution time of the

Benders decomposition algorithm was reduced by splitting

the algorithm solution process into three steps to address

the fact that the relation between routing and scheduling

variables is absent in the master problem. The proposed

Benders decomposition approaches in [10], [11], and [12]

were all shown to reduce the solution time significantly;

however, passenger origin-destination (OD) demands were

not considered explicitly.

This paper deals with the train departure frequency op-

timization problem in metro networks based on the model

developed in [7], which can explicitly include time-varying

OD passenger demands. The main contribution of this paper

is twofold: (1) Benders decomposition-based algorithms are

used in the train departure frequency optimization prob-

lem to reduce the computational burden; (2) several Ben-

ders decomposition-based algorithms are compared on a

simulation-based case study, which can facilitate the method



selection when solving train departure frequency optimiza-

tion problems.

The remainder of this paper is structured as follows. In

Section II, a problem formulation is given. In Section III, the

classical and ϵ-optimal Benders decomposition algorithms

used for the passenger absorption model are discussed. Simu-

lation results are provided in Section IV. Finally, conclusions

are given in Section V.

II. PROBLEM FORMULATION

In this work, the model proposed in [7] is used to optimize

train departure frequencies of metro networks. Time-varying

passenger demands are approximated using piecewise con-

stant functions in the model, allowing a balanced trade-off

between solution time and accuracy. We briefly introduce the

model and the corresponding optimization problem below,

and for more details on the model, we refer to paper [7].

In the passenger absorption model, the planning time

window is divided into several periods, and passenger OD

demands are assumed to be constant in each period. The

total travel time of passengers within a given planning time

window is estimated by:

Jtime =

k0+N−1
∑

k=k0

∑

p∈P

(

np(k)T+n
depart
p (k)r̄p+n

arr,tra
p (k)θtrans

p

)

+
∑

p∈P

np(k0 +N)T,

(1)

where N denotes the number of periods in the planning time

window; P is the set of all platforms in the metro network;

T is the length of a period; np(k) denotes the number of

passenger waiting at platform p at the start of period k;

ndepart
p (k) represents the number of passenger departing from

platform p during period k; narr,tra
p (k) denotes the number of

passengers arriving at platform p with the intention of trans-

ferring to another platform during period k; and θtrans
p is the

average travel time for passengers transferring from platform

p. In the metro network, trains travel a predetermined route,

stopping at every platform. The average travel time for a

train departing from platform p to the next platform on its

route is denoted as r̄p. The energy consumption of trains in

the planning time window is estimated by:

Jcost =

k0+N−1
∑

k=k0

∑

p∈P

fp(k)Ēp, (2)

where fp(k) is the departure frequency at platform p during

period k, and Ēp denotes the average operational costs

associated with dispatching a train from platform p towards

the next platform on its route. The optimization problem is

given as:

min J = Jtime + ζJcost, (3a)

subject to

fp(k)=
T−γp

T
lp (k−δp) +

γp

T
lp (k−δp−1) , (3b)

fp(k) ≤ f
max
p , (3c)

Cp(k) = fp(k)Cmax −
∑

m∈S

n
train
p,m(k), (3d)

np,m(k+1)=np,m(k)+λp,m(k)T+n
arr,tra
p,m (k)−n

absorb
p,m (k), (3e)

n
wait
p (k) = np(k) + λp(k)T + n

arr,tra
p (k), (3f)

n
absorb
p (k) = min

(

Cp(k), n
wait
p (k)

)

, (3g)

n
absorb
p,m (k) = αp,m(k)nabsorb

p (k), (3h)

n
train
p,m(k) =

T − r̄pla
p

T
n

depart

ppla (p,m)
(k) +

r̄pla
p

T
n

depart

ppla(p,m)
(k − 1), (3i)

n
alight

p,sta(p)(k) = n
train
p,m (k), (3j)

n
alight

p,m∈S/{sta(p)}(k) = n
trans
p,q,m(k), (3k)

n
depart
p,m (k) = n

train
p,m(k)− n

alight
p,m (k) + n

absorb
p,m (k), (3l)

n
trans
q,p,m(k) = χq,p,m(k)ntrain

q,m (k), (3m)

n
arr,tra
p,m (k)=

∑

q∈pla(p)

(T−θtrans
q,p

T
n

trans
q,p,m(k) +

θtrans
q,p

T
n

trans
q,p,m(k−1)

)

,

(3n)

k = k0, k0 + 1, ..., k0 +N − 1,

where ζ is a weight used to balance both objectives; lp(k)
denotes the train departure frequency of the starting platform

of the line on which platform p lies; δp = ⌊ψp/T ⌋ and

γp = ψp − δpT , with ψp denoting the average travel time

for train between departing from a starting platform of a line

and departing from another platform p of that same line; fmax
p

denotes the maximum train departure frequency of platform

p; Cp(k) represents the remaining capacity on a train at

platform p during period k with Cmax being the maximum

capacity of a train; ntrain
p,m (k) is the number of passengers

on board of trains at platform p with destination m during

period k; np,m(k) denotes the number of passenger waiting

at platform p with destination m during period k; λp,m(k)
is the passenger arrival rate at platform p with destination m
during period k; narr,tra

q,p,m(k) denotes the number of transfer-

ring passengers arriving at platform q to transfer to platform

p with destination m during period k; nabsorb
p,m (k) represents

the number of passengers who board a train at platform p
with destination m during period k; nwait

p (k) denotes the

number of passengers waiting for a train at platform p with

destination m during period k; and nabsorb
p,m (k) denotes the

number of passengers alighting a train at platform p with

destination m during period k. Parameter αp,m is the relative

fraction of passengers that board a train at platform p whose

destination is station m; and χq,p,m is the relative fraction

of passengers arriving at platform q with destination m, who

will transfer from platform q to platform p.

Note that (3g) is a nonlinear function, and we can use

the method in [13] to transform (3g) into linear inequalities.

Then, we obtain an MILP problem for train departure fre-

quency optimization; for a more elaborate explanation of the



resulting MILP problem, we refer to [7].

The solution time of directly solving this MILP problem is

significant. Therefore, this paper aims to present approaches

to solve the resulting MILP in a time-efficient manner.

III. BENDERS DECOMPOSITION-BASED TRAIN

DEPARTURE FREQUENCY OPTIMIZATION

Benders decomposition [8] is an efficient method for

solving large-scale optimization problems involving both

continuous and discrete variables. In Benders decomposition,

an optimization problem is divided into a master problem

and a dual sub-problem that can be solved independently.

The master problem is formulated as an MILP problem to

determine the integer variables, while the dual sub-problem

is formulated as a linear programming problem. The dual

sub-problem is either feasible and bounded, after which a

so-called optimality cut is added to the master problem, or

is unbounded, after which a feasibility cut is added to the

master problem.

A. Classical Benders Decomposition for Train Departure

Frequency Optimization

The classical Benders decomposition [8] is applied in this

section for the MILP problem (3) described in Section II.

In this paper, according to the definition used in [8], lp(k)
and δabsorbp (k) are the so-called “complicating variables”,

as they are integer and binary variables, respectively. the

MILP problem is non-convex due to these variables. Since

T , γp(k), and δp(k) are all parameters, it follows from (3b)

that once lp(k) is given, fp(k) is also known. We define

a vector y(k0) to collect the integer variables lp(k), binary

variables δabsorbp (k), and fp(k) in the planning time window

starting from period k0. Then, all other variables related

to the number of passengers in the planning time window

starting from period k0 are collected in a vector x(k0). For

compactness, we can write problem (3) as:

min
x(k0),y(k0)

J = cT(k0)x(k0) + gT(k0)y(k0) (4a)

s.t. A(k0)x(k0) +B(k0)y(k0) = b(k0), (4b)

D(k0)x(k0) + E(k0)y(k0) ≤ d(k0), (4c)

x(k0) ∈ Rn1 , (4d)

y(k0) ∈ Yn2 , (4e)

x(k0) ≥ 0, (4f)

where (4a) represents the objective function (3a), (4b) col-

lects the equality constraints, (4c) collects the inequality

constraints, and Yn2 defines the feasible set for y(k0).

By fixing y(k0) as ȳ(k0) in Benders decomposition, the

sub-problem turns into a linear programming problem, and

by using duality theory and introducing dual variables u1(k0)

and u2(k0), the dual sub-problem becomes:

max
u1(k0),u2(k0)

Jdsp=uT
1 (k0)

(

B(k0)ȳ(k0)− b(k0)
)

(5a)

+ uT
2 (k0)

(

E(k0)ȳ(k0)− d(k0)
)

+ gT(k0)ȳ(k0)

s.t. uT
1 (k0)A(k0) + uT

2 (k0)D(k0) = cT(k0), (5b)

u1(k0) ∈ Rm1 , (5c)

u2(k0) ∈ R
m2

≥0 . (5d)

If the feasible set of (5) is not empty, the dual sub-problem

can be either unbounded or feasible for any arbitrary choice

of ȳ(k0). If the dual sub-problem is unbounded, there exists

a pair of extreme rays r̄q1(k0) ∈ Q1 and r̄q2(k0) ∈
Q2, with Q1 and Q2 being the sets of extreme rays, for

which r̄Tq1(k0)(B(k0)y(k0)−b(k0))+r̄Tq2(k0)(E(k0)y(k0)−
d(k0)) > 0. To avoid this, the following feasibility cut is

added to the master problem:

r̄
T
q1(k0)

(

B(k0)y(k0)−b(k0)
)

+ r̄
T
q2(k0)

(

E(k0)y(k0)−d(k0)
)

≤ 0.
(6)

While there may be multiple possible extreme rays which

lead to unboundedness in the dual sub-problem, only one

pair of extreme rays is used for the feasibility cut.

If a feasible and bounded solution can be found for dual

sub-problem (5), the solution for the dual variables can

be denoted as the extreme points, i.e., ūe1(k0) ∈ E1 and

ūe2(k0) ∈ E2, with E1 and E2 being the sets of extreme

points. We use Jdsp to denote the value of the objective

function of the dual sub-problem. The optimal value of the

objective function provides an upper bound of the original

optimization problem, which is denoted as Uub. For the ith
iteration of the Benders decomposition algorithm, the upper

bound is updated as follows: U i
ub = min

(

U i−1
ub , J i

dsp

)

. In

addition, an optimality cut is added to the master problem:

ū
T
e1(k0)(B(k0)y(k0)+b(k0))−ū

T
e2(k0)(E(k0)y(k0)−d(k0))≥−η.

(7)

Finally, the master problem (MP) is formulated as:

min
y(k0),η

Jmp = gT(k0)y(k0) + η (8)

s.t. (4e), (6), (7)

The solution ȳ(k0) to the master problem is used for dual

sub-problem (5) in the next iteration and is also used to

update the lower bound: U i
lb = min

(

U i−1
lb , J i

mp

)

, where Jmp

denotes the objective function value of the master problem.

The procedure of the classical Benders decomposition-

based train departure frequency optimization algorithm used

is presented in Algorithm 1.

B. ϵ-Optimal Benders Decomposition for Train Departure

Frequency Optimization

To reduce the computation time of the master problem,

[14] proposed a variant of Benders decomposition where

the master problem stops as soon as a feasible solution is

found, as opposed to an optimal solution. The algorithm is

then guaranteed to terminate in a finite number of steps, as

there is a finite number of optimal dual solutions for the

sub-problem. Like the classical Benders decomposition, the



Algorithm 1 Classical Benders decomposition-based train

departure frequency optimization algorithm

Input: α, ζ, N , P , S, θtrans
q,p , and Ēp; r̄p, ψp, χq,p,m(k);

estimated values of βj,p,m(k), λstation
j,m (k), and αp,m(k)

Set initial values:

U0
ub ←∞, U0

lb ← −∞, f̄p(k)← 0, δ̄absorb
p (k)← 0, i← 0

Output: fp(k), δ
absorb
p (k)

while U i
ub − U

i
lb ≥ α do

i← i+ 1
Solve (5) using f̄p(k) and δ̄absorb

p (k)
if (5) is feasible and bounded then

Obtain Jdsp, ūe1(k0), and ūe2(k0)
Update upper bound:

U i
ub ← min

(

U i−1
ub , J i

dsp

)

Add optimality cut (7) using extreme points

else if (5) is feasible but unbounded then

Compute extreme rays r̄q1(k0) and r̄q2(k0)
Add feasibility cut (6) using extreme rays

end if

Solve (8) to obtain new f̄p(k), and δ̄absorb
p (k)

Update lower bound:

U i
lb ← min

(

U i−1
lb , J i

mp

)

end while

feasible solution to the master problem is used for the dual

sub-problem of the next iteration. Since the solution to the

master problem is no longer optimal, the master problem no

longer provides a valid lower bound. Instead, the ϵ-optimal

Benders algorithm terminates when the master problem can-

not produce a feasible solution. The master problem is then

turned into a feasibility problem in the form of (9) instead

of an optimization problem and hence is generally easier to

handle, especially for large-scale problems.

gT(k0)y(k0) + η ≤ Uub(1− ϵ) (9)

s.t. (4e), (6), (7)

where ϵ ∈ (0, 1) is the slackness variable. A higher value

for ϵ might result in faster convergence to the solution at the

cost of a potentially worse solution.

A potential drawback of the ϵ-optimal Benders decompo-

sition algorithm is that it may require more iterations than

the classical Benders decomposition algorithm, as the non-

optimal solutions to the master problem may also lead to

non-optimal Benders cuts.

The detailed procedure of ϵ-optimal Benders

decomposition-based train departure frequency optimization

algorithm is shown in Algorithm 2.

IV. CASE STUDY

In this section, we conduct a case study to compare the

Benders decomposition-based algorithms for train departure

frequency optimization.

A. Set-up

The metro network that is used for the case study is shown

in Fig. 1, which consists of 21 stations, 60 platforms, and 6

Algorithm 2 ϵ-optimal Benders decomposition-based train

departure frequency optimization algorithm

Input: α, ζ, N , P , S, θtrans
q,p , Ēp, and ϵ; r̄p, ψp, χq,p,m(k);

estimated values of βj,p,m(k), λstation
j,m (k), and αp,m(k)

Set initial values:

U0
ub ←∞, f̄p(k)← 0, δ̄absorb

p (k)← 0, i← 0
Output: fp(k), δ

absorb
p (k)

while U i
ub ≥ α do

i← i+ 1
Solve (5) using f̄p(k) and δ̄absorb

p (k)
if (5) is feasible and bounded then

Obtain Jdsp, ūe1(k0), and ūe2(k0)
Update upper bound:

U i
ub ← min

(

U i−1
ub , J i

dsp

)

Add optimality cut (7) using extreme points

else if (5) is feasible but unbounded then

Compute extreme rays r̄q1(k0) and r̄q2(k0)
Add feasibility cut (6) using extreme rays

end if

Solve (9)

if (9) is feasible then

Obtain new f̄p(k), and δ̄absorb
p (k)

else if (9) is infeasible then

Break while loop

end if

end while

bidirectional lines. The number on top of each link in Fig. 1

represents the average travel time between two stations and

is used to determine the parameters r̄p and ψp.

Fig. 1. Railway operations planning

We use time-varying passenger OD demands data, and

passenger demands are considered to be constant for one

period. The length of one period is set to 60 minutes. The

average transfer time between two platforms is assumed to

be equal. The cost per train run Ep is a function associated

with the travel time r̄p. The values of the parameters are

given in Table I.

In general, parameters αp,m and χq,p,m can be estimated

using historical data. However, since we use a fictional metro



TABLE I

PARAMETER VALUES

Parameter Value

Stop criterion α 1

Transfer time θtransp 1 [min]

Capacity Cmax 2000 passengers
Operational cost Ep 2 · r̄p

Max departure frequency fmax
p 20

Weight ζ 1000
Epsilon benders ϵ 0.01, 0.05, and 0.1

network, Dijkstra’s algorithm [15] is utilized to compute the

values for βj,p,m, αp,m, and χq,p,m, considering the average

travel time between stations and assuming that passengers

will always choose the shortest path to their destination in

terms of time spent in the metro network.

We first apply the classical Benders decomposition-based

algorithm for optimizing train departure frequencies. The

total computation time consists of solving the dual sub-

problem and master problem, updating the upper and lower

bound, generating optimality and feasibility cuts, and ob-

taining extreme rays when necessary. The computation time

for the ϵ-optimal Benders decomposition-based algorithm is

computed in the same manner as for the classical Benders

decomposition-based algorithm. Three different ϵ values are

compared, i.e. 0.01, 0.05, and 0.1. For comparison, the

resulting MILP problem is also directly solved by using

gurobi, i.e., a state-of-the-art commercial solver for mixed

integer programming problems.

The algorithms will be compared based on the objec-

tive function value and the required computation time. All

the simulations are conducted using Matlab R2021a on a

MacBook Pro 2017 with 2.3 GHz Dual-core Intel Core i5

processor and 8GB RAM. For the direct MILP algorithm, we

use the commercial solver gurobi v9.5.2rc0 (mac64[x86]).

Simulations are done for different planning time windows,

i.e., from 2 (N = 2) to 6 hours (N = 6). The time limit for

solving the resulting train departure frequency optimization

problem for all the algorithms is set to 2 hours.

B. Results

The simulation results for all methods can be seen in

Table II, where N.A. is used to indicate that no solution

was found within 2 hours. For the sake of simplicity, we

use “Gurobi” for the results obtained by solving the MILP

problem using gurobi, “Benders” to denote the classical

Benders decomposition algorithm, and “ϵ-Benders” to denote

the ϵ-optimal Benders decomposition algorithm.

From Table II, we can find that when N = 2, gurobi has

a better performance than both Benders decomposition-based

methods. However, this changes when N = 4; the solution

time of gurobi is significantly higher than that of both the

Benders algorithm and the ϵ-Benders algorithm. For N = 4
and N = 6, both gurobi and the classical Benders decom-

position algorithm cannot find the solution within 2 hours.

The ϵ-optimal Benders decomposition algorithm outperforms

the classical Benders decomposition algorithm when N = 6

TABLE II

COMPARISON OF DIFFERENT METHODS

N Method Objective function value CPU time [s]

gurobi 1.70× 10
5 16.1

Classical Benders 1.70× 10
5 66.9

2 ϵ-Benders (0.01) 1.70× 10
5 79.4

ϵ-Benders (0.05) 1.71× 10
5 70.6

ϵ-Benders (0.1) 1.87× 10
5 69.2

gurobi 4.00× 10
5 6230.4

Classical Benders 4.00× 10
5 388.9

4 ϵ-Benders (0.01) 4.00× 10
5 358.4

ϵ-Benders (0.05) 4.14× 10
5 305.1

ϵ-Benders (0.1) 4.14× 10
5 291.3

gurobi N.A. N.A.
Classical Benders N.A. N.A.

6 ϵ-Benders (0.01) 6.80× 10
5 1771.2

ϵ-Benders (0.05) 7.07× 10
5 714.4

ϵ-Benders (0.1) 7.14× 10
5 687.9

in terms of solution time; this is because the master problem

increases significantly in computation complexity with each

added feasibility or optimality cut. When N = 6, the

classical Benders decomposition algorithm cannot find the

solution within 2 hours due to the master problem taking too

long. The ϵ-optimal Benders decomposition can significantly

reduce the computational complexity of the master problem.

TABLE III

SIMULATION RESULTS FOR BENDERS DECOMPOSITION APPROACHES

N Method Iterations tsub [s] tray [s] tmas [s]

Classical Benders 43 24.8 33.9 8.2
ϵ-Benders (0.01) 51 32.4 36.5 10.4

2 ϵ-Benders (0.05) 47 26.7 35.4 8.4
ϵ-Benders (0.1) 44 25.3 35.9 7.9

Classical Benders 85 96.1 145.6 147.3
ϵ-Benders (0.01) 113 141.3 158.8 58.3

4 ϵ-Benders (0.05) 99 108.6 157.9 38.6
ϵ-Benders (0.1) 97 103.3 149.9 38.0

Classical Benders N.A N.A. N.A. N.A.
ϵ-Benders (0.01) 169 279.2 349.2 1142.8

6 ϵ-Benders (0.05) 151 235.5 349.4 129.4
ϵ-Benders (0.1) 147 237.4 355.7 94.8

To further illustrate the results, the number of iterations

and the total time spent in each part of the algorithm are

given in Table III. The evolution process of the different algo-

rithms for N = 4 is also given. The convergence of the upper

and lower bound is shown in Fig.2 for the classical Benders

decomposition algorithm. The upper bound of the classical

Benders decomposition algorithm changes only once. The

dual sub-problem is unbounded for all other iterations. Since

the ϵ-optimal Benders decomposition algorithm does not

produce a valid lower bound, only the evolution of the

upper bound is provided. The evolution of the upper bound

for the different ϵ values is displayed in Fig.3 The upper

bound of the ϵ-optimal Benders decomposition algorithm

changes several times; the lower the value of ϵ, the more

times the upper bound changes. As the master problem of

the ϵ-optimal Benders decomposition algorithms becomes

a feasibility problem, the computation time of solving the



master problem is reduced.

Fig. 2. Convergence upper bound and lower bound of classical Benders
decomposition algorithm (N = 4)

Fig. 3. Evolution of upper bound of ϵ-optimal Benders decomposition
algorithm for different ϵ values (N = 4)

The simulation shows that the ϵ-optimal Benders de-

composition algorithm is suitable for real-time optimization

of train departure frequencies in metro networks. When

simulating for multiple cycles, increasing the number of (in-

teger) variables and constraints leads to long solution times

for gurobi. While the classical Benders decomposition

approach outperforms gurobi in terms of solution time

when the number of cycles is four or higher, the high number

of feasibility cuts required before the solution is found leads

to a computationally complex master problem, which takes

too long to solve to be effective in real-time applications. The

ϵ-optimal Benders decomposition algorithm has been shown

to be able to provide a solution fast enough for real-time

use at the cost of some accuracy. By changing the value for

ϵ, train operations can make a balanced trade-off between

solution time and performance.

V. CONCLUSIONS

The real-time optimization of the departure frequencies in

metro networks can be formulated as a mixed-integer linear

programming problem. This paper has applied the Benders

decomposition approach to reduce the computational burden

of the train departure frequency optimization problem. To

further improve the efficiency of the Benders decomposition-

based approach, an ϵ-optimal strategy is used, which reduces

the solution time by turning the master problem of the

Benders decomposition into a feasibility problem. Simulation

results indicate that the Benders-decomposition-based meth-

ods can reduce the computational time of train departure

frequency optimization problems when the problem size

increases. The ϵ-optimal Benders decomposition algorithm

can further reduce the solution time of the classical Benders

decomposition algorithm when the problem size increases.

In the future, we will focus on further reducing the compu-

tation time of Benders decomposition-based approaches. The

potential approaches are to improve the efficacy of feasibility

cuts and generate them based on the problem’s structure.
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Glossary

List of Acronyms

MINLP Mixed-Integer Nonlinear Programming

MILP Mixed-Integer Linear Programming

OD Origin-Destination

BB Branch-and-Bound

LP Linear Programming

NLP Nonlinear Programming
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64 Glossary

List of Symbols

Symbols related to the passenger absorption model

N Number of periods in planning time window
P Set of platforms
S Set of stations
T Period length [s]
p Platform index
m Station index
k Period index
Jtime Time spent in the metro network by passengers in a given time planning [s]

window
Jcost Operational costs of dispatched trains in the metro network in a given

time planning window
J Objective function
ζ Weighting term
np(k) Number of passengers waiting at platform p at the start of period period k

np,m(k) Number of passengers waiting at platform p with destination m at the
start of period k

ndepart
p (k) Number of passengers departing from platform p during period k

ndepart
p,m (k) Number of passengers departing from platform p with destination m during

period k

narr,tra
p (k) Number of transferring passengers arriving at platform p during period k

narr,tra
p,m (k) Number of transferring passengers arriving at platform p with destination m

during period k

fp(k) Train departure frequency at platform p during period k

lp(k) Train departure frequency of the starting platform of the line on which
platform p lies

Cp(k) Remaining capacity on a train at platform p during period k

ntrain
p,m (k) Number of passengers on board of trains at platform p with destination m

during period k

ntrans
q,p,m (k) Number of transferring passengers arriving at platform q to transfer to

platform p with destination m during period k

nabsorb
p (k) Number of passengers who board a train at platform p during period k

nabsorb
p,m (k) Number of passengers who board a train at platform p with destination m

during period k

nwait
p (k) Number of passengers waiting for a train at platform p during period k

nwait
p,m (k) Number of passengers waiting for a train at platform p with destination m

during period k

nalight
p,m (k) Number of passengers alighting a train at platform p with destination m

during period k

δabsorb
p (k) Auxiliary (binary) variables used to transform the min function

zwait
p (k) Auxiliary variable used to transform the min function

zcap
p (k) Auxiliary variable used to transform the min function
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fmax
p Maximum train departure frequency of platform p

λp(k) Passenger arrival rate at platform p during period k [passengers/s]
λp,m(k) Passenger arrival rate at platform p with destination m during period k

[passengers/s]
Cmax Maximum capacity of a train

and departing from another platform p of that same line
αp,m(k) Relative fraction of passengers that board a train at platform p whose

destination is station m

χq,p,m(k) Relative fraction of passengers arriving at platform q with destination m, who
will transfer from platform q to platform p

ppla Predecessor platform of platform p

sta(p) Set of platforms belong to the same station as platform p

Ēp Average operational costs associated with dispatching a train from platform p

towards the next platform on its route
ψp Average time for a train between departing from the starting platform of a line [s]
θtrans
p Average travel time for passengers transferring from platform p to another

platform [s]
θtrans
q,p Average travel time for passengers transferring from platform p to platform q [s]

r̄p Average travel time for a train travelling from platform p to the next platform [s]

Symbols related to Benders decomposition

i Iteration index
Jdsp Objective function dual sub-problem
Jmas Objective function master problem
Jopt Optimality cut
Jfeas Feasibility cut
Uub Upper bound
Ulb Lower bound
η Auxiliary variable used for master problem
ucapacity
p (k) Dual variable associated with constraint (3-5b)

unumber
p,m (k) Dual variable associated with constraint (3-5c)

uwait
p (k) Dual variable associated with constraint (3-5d)

uabsorb
p,m (k) Dual variable associated with constraint (3-5e)

utrain
p,m (k) Dual variable associated with constraint (3-5f)

ualight
p,m (k) Dual variable associated with constraints (3-5g) and (3-5h)

udepart
p,m (k) Dual variable associated with constraint (3-5i)

utrans
q,p,m(k) Dual variable associated with constraint (3-5j)

uarrive, trans
p,m (k) Dual variable associated with constraint (3-5k)

uabsorb
p (k) Dual variable associated with constraint (3-5l)

uwait, auxiliary
p (k) Dual variable associated with constraint (3-5m)

ucapacity, auxiliary
p (k) Dual variable associated with constraint (3-5n)

Ω Feasible space of the dual sub-problem
E Set of extreme points of Ω
Q Set of extreme rays of Ω
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