Finite difference analysis of shell structures

9.600e-06
8.000e-06
6.400e-06
4.800e-06
3.200e-06
1.600e-06
0.000e+00

Utotal

Student:
Project duration
Assessment committee

Chulong Li

Utotal

3.200e-04
2.800e-04
2.400e-04
2.000e-04
1.600e-04
1.200e-04
8.000e-05
4.000e-05
0.000e+00

9.600e-03
8.400e-03
7.200e-03
6.000e-03
4.800e-03
3.600e-03
2.400e-03
1.200e-03
0.000e+00

Chulong Li

Dec. 3, 2020 — Oct. 31, 2021
Dr. ir. P.C.J. Hoogenboom
Prof. dr. ir. M.A.N. Hendriks
Dr. ir. C. Kasbergen

Dr. ir. F.P. van der Meer

Utotal

Utotal

TU Delft
TU Delft

1.800e-02

1.500e-02

1.200e-02

9.000e-03

6.000e-03

3.000e-03

0.000e+00

1.800e-04

1.500e-04

1.200e-04

9.000e-05

6.000e-05

3.000e-05

0.000e+00

Summary

The finite element method is widely used in modelling shell structures. However, the finite element method
does not solve the shell differential equations because shell finite elements are derived from solid elements.
Currently, there is not software available for solving the shell differential equations. For plates, a novel finite
difference method has been recently explored by the author (Li, 2020). This Python algorithm does not solve
the fourth-order plate differential equation directly. Instead, it solves eleven first-order differential equations
simultaneously. The advantage of the method is in the boundary conditions; no edge or corner molecules are
involved. Can this plate algorithm can be extended to shell structures? The general shell differential equations
(Sanders-Koiter equations) have never been solved by the finite difference method. If possible, this would
provide an independent way of checking shell finite element results.

The objective of this project was to develop and test a finite difference algorithm called shell code that can
solve the 21 Sanders-Koiter equations. The idea was to use first-order finite-difference approximation only
because this gives a simple discretization and modern computers may be able to handle the large number of
equations.

To this end, a 1200-line Python program has been built. In the process many versions of shell code were
considered, including

1) Two programming languages (Python and R)

2) Three interpolations for approximating gradients (three-point and five-point with two end slopes)

3) Determined and over-determined systems of equations (square and rectangular matrices)

4) Four solvers for the systems of equations

Important constraints are required memory and computation time and they were recorded for each test. Five
shell models with various geometries, loads, and boundary conditions have been analyzed. The results of these
model tests (displacement, bending moment, and shear force) were compared to finite element results.
Discussions on the comparisons have shown that almost all versions produced incorrect results and the most
important factor for affecting results is the solving method.

The version that works well has the following features; five-point interpolation with zero end slope, rectangular
matrix, solver Im.fit.sparse (R). Approximately 80% of the shell code results match the finite element results
with a deviation less than 5% (see Test BLM1-5). The deviation may be removed in the near future by a finer
grid on a powerful computer or by applying an advanced solver. The main conclusion is that it is not only
theoretically possible but also practically possible to solve the Sanders-Koiter equations by the finite difference
method.

Content

R 1411 £ To [FTox {To] o TSP PRORTRRTP 1
R e 0] o] (=] 0 BT =1 (=] T | TSRS OPI 1
A @ o =Tt £ S SSSSR 1
RGN o] o] (0 - Tol o USSP PP TR PR ORURPTPT 2
1.4 RESEAICN WOIKFIOW.uiiiiiiiciiciee et bbbttt bbbttt ee s 4
N B 1 (= LU0 (N =) =1 ARSI PR PRRRPRI 5
2.1 Asshort review on the development of plate and shell theories. ..o 5
2.2 SANAErS-KOIEr EUALIONS.cueiiiiiiiiiiteit etttk b bbbttt b ettt e e 6
2.3 Ashort review on the finite different Method ... 9
2.4 A short overview of application of finite difference method on shell theory ... 10
2.5 Sparse linear system: overdetermined and determined, its storage and solving methods................... 11
K S 1= | ol o (o= Lo I TS TSP PRR P 19
3.1 WOIK FIOW OF COUR ...ttt bbbttt bbb bbb 19
KT =T (=T o 0T Lo [PSS PR T SP 20
3.3 Differentiation approximated DY FDMcooiiiiiiiiiie et 21
3.4 Formation Of MALIIX [IM]......oiiiiiiiiii et bbbt 22
3.5 Loading steps and PIOTHING SLEPS.cuiiieiieiieiie ittt te e e e e aesreesaeennesreenre e 24
3.6 Formation of SquUAre MAatriX [IM]ooeoioiieiee bbb 25
3.7 Model tests of rectangular and SQUAIE MALFiX.........ccovveriiiieiieieeie e se e 30
KRR T T] 1Y g (1] T OSSPSR 31
3.9 Five-point difference approximation and their teStS..........ccvvieiieieiieeie e 32
N (<L] | OSSR UTTUSSRSTIN 34
4.1 Finite elemMent SOIUTIONoviiiieii i bbbttt sttt e r e s e e 34
4.2 Rectangular MAtriX tESE FESUILSooiiiiiiiiiie ettt 37
4.3 SQUAre MALFIX TS FESUITSicueiiieetecie ittt et e e s te e st e s be et e s st e sbe e teaneesreeseeneenreas 37
A4 SOIVET TESE FESUITSvvetieiteeie ettt et e st e e e s s e s bt e see e st e s beebeaseenteeteeneeaseenseaneenrens 38
4.5 Five-point difference approXimation teSt reSUIScoveviiiiiicie e 39
4.6 Overall comparison between shell Code reSUILS............cooiiiiiiii e, 40
4.7 Comparison between Rectangular matrix test and Square matrix test results...........ccocevveveivieieciiennen, 47
4.8 Comparison between pinv solver and Im.fit.sparse solver test reSultS..........ccccevviieiiiereeiesieneeie e 48

4.9 Comparison between five-point difference approximation and two-point difference approximation test
results48

Dot U1 (o] o [OOSR 50
5.1 Accuracy, reliability, and effICIENCYcoiiiiiiii e 50
IV Y - L1 € Qo V-1 L YOO R SRR 59
5.3 Possible factors affecting Shell code reSUILS ..o 61
5.4 SIMPICItY OF COUE SEIUCLUIE.........ciiiiicceicte ettt e e e e ste e nreenre e 67
TR O o] o] 01 [o SRS 69
7. RECOMMENUALION.ottt ettt et b et et e b e e se e st et et nbeebeebeebeeneeneenee s 70
S TR =] (=7 =] 0T 1] SO 71
TR Y o o 1= o [GO RSP PRSSR 73
Rectangular MAtriX TEST PIOTS.cviiiiieie et b e bbbt 73
SQUAIE MALIIX TEST PIOTS ...ttt e e e s e et e e s be e e beeasaeesbeesseeeteesnneenteeanees 76
SQUAIE MALFIX TEST PIOTS ...ttt bbb bbbttt b bbbt bttt 80
SOIVEE TESE TESUILS ...ttt sttt b e bt et e st e s bt et e e st e e b e et e e nbenbeenbeeneenreene e 91
Five-point difference approxXimation teSt PIOTSoouiiuiiiiiiiiiiieee e 102
MaLFIX QUATTTY CRECK ... e st e et e e st e e be e s saeebeesraeabeeanee s 117
Discussion 0N NUMDET OF ITEIALIONS..........cuiiieie ettt et e e sre e seeneesneenseens 118

DISCUSSION ON UNIT SYSTEIMtiiiieiiie et ettt ettt et et e st e et e e s te e e be e s se e e beesseeestaesaeaesbeessseenbeesneeanbaeanneas 118

List of figures

Figure 1: Result plots of uniformly loaded two-way slab 30*30 nodes (Li, 2020)ccccovevvrriverrevernenn 1
Figure 2: First order derivative by finite difference method............coccoooiiiiii i 9
Figure 3: Compressed Sparse Row format (index pointers, indices, and data)c.ccocevevveieivennene 13
Figure 4:Compressed Sparse Column format (index pointers, indices, and data)c.ccoovevvrreinennen, 13
Figure 5: Row permutation p, discovering banded structure in the matrix A. (c-d) Row permutation p,

while solving vertical concatenation Of tW0O MALIICESccviiiiiiriiiicee e, 17
Figure 6: WOrK fIOW OF COUB........ooiieiieiiee et nre e enes 19
Figure 7: Add equatioNS t0 [M]......oviiiiiiiiiee bbb 24
Figure 8: Non-zero value distribution in [M] and [f]......ccccoeiiiiiiie e 24
Figure 9: Distribution of assigned equations in the rectangular MatrixX............ccoccevvveveiienieesesie e 25
Figure 10: Modified distribution of assigned equations by central node method.............cc.cocvvviienennen, 26
Figure 11: Modified distribution of assigned equations by undefined node method..............c.ccccevvennenne. 28
Figure 12: Modified distribution of assigned equations by undefined node method............c.cccceevennnee. 29
Figure 13: WOrK fIOW OF SOIVEE TESTS.......cciiiiieiieciie sttt sre e ens 31
Figure 14: Model 1 displacement, bending moment and shear force finite element results by SCIA

T T L= SRS 34
Figure 15: Model 2 displacement, bending moment and shear force finite element results by SCIA

T T L= SRR 34
Figure 16:Model 3 displacement, bending moment and shear force finite element results by SCIA

T T L= SRS 35
Figure 17: Model 4 displacement, bending moment and shear force finite element results by SCIA

T T L= SRS 36
Figure 18: Model 5 displacement, bending moment and shear force finite element results by SCIA

T T L= SRS 36
120Figure 19: Comparison of overall test results for model 1..........ccccoiiiiiiiiiniiien e, 43
Figure 20: Comparison of overall test results for model 2 ... 43
Figure 21: Comparison of overall test results for model 3 ..., 44
Figure 22: Comparison of overall test results for model 4ccoovevieeiiece e 44
Figure 23: Comparison test results for MOdel 5.........cooiiiiiiiii s 44
Figure 24: Comparison of uz results for model 1ccoooeiiiiiic e 44
Figure 25: Comparison of Uz results for model 2 ... 44
Figure 26: Comparison of uz results for model 3ccooeii i 44
Figure 27: Comparison of Uz results for model 4 ... 44
Figure 28: Comparison of uz results for model 5 ..o 45
Figure 29: Comparison of mxx results for model 1coooviiiiiiiii e, 45
Figure 30: Comparison of mxx results for model 2............cooveiiiii i 45
Figure 31: Comparison of mxx results for model 3...........cooviiiiiiiii e, 45
Figure 32: Comparison of mxx results for model 4cooveiiiiiii i 45
Figure 33: Comparison of mxx results for model 5., 45
Figure 34: Comparison of vX results for model 1..........cccooviiiiiiii e 46
Figure 35: Comparison of vX results for model 2cocooiiieiiiiiii e, 46
Figure 36: Comparison of vx results for model 3 ..o 46
Figure 37: Comparison of VX results for model 4 ..., 46
Figure 38: Comparison of vX results for model 5.........ccooiiiiiiiii i 46
Figure 47:Actual deformed shape of models by shell code results (Test LM1-5).......cccccovvniiiiiniininnnen, 51
Figure 48:Actual deformed shape of models by finite element solution (SCIA Engineer 19)................. 51
Figure 49: 3D surface and projections of uz plots from Test R1-5.........cccocoiiiiiiiiiiinenc e, 52
Figure 50: 3D surface and projections of uz plots from Test LM1-5.......c.cccoiiiiiiiiiiiiicce e, 52
Figure 51:Bending moment mxx edge results by shell code (Test LM1-5, m=n=50).........cc.ccccervrrurr... 53

Figure 52:Bending moment mxx edge results by finite element solution (SCIA Engineer 19) 54

Figure 53:Shear force vx edge results by shell code (Test LM1-5, m=n=50)c.cccevrrirerrrrnrrerurne 54

Figure 54:Shear force vx edge results by finite element solution (SCIA Engineer 19).........ccccccevvenenne. 55
Figure 55: Plots of top 100 maximum and minimum values from Test LM1-5 (m=n=30)...........c......... 56
Figure 56: Plots of top 100 maximum and minimum values from Test R1-5 (M=n=30)c..ccerur.... 57
Figure 57: SPArsity OF MALICESc.eciviiieie ettt e et e e e s te e e e e e sraeeeenes 59
Figure 58: Condition number of rectangular MAIICESeiveriiiieiiere e e 60
Figure 59: Condition nUMber Of SQUAre MALIICES.c.ciieieiierecie e sre e e 60
Figure 60: Percentage of rank number (%) of rectangular matrices (A and [Ab]) ... 61
Figure 61: Percentage of rank number (%) of square matrices (A and [A| b]) 61
Figure 62: Deviation of Test R1 results by increasing number of iterations (m=n=20)c..ccceu.... 62
Figure 63: Deviation of Test R3 results by increasing number of iterations (M=n=20)cccccverur.... 62
Figure 64: Deviation of Test SE1 results by increasing number of iterations (m=n=20)..............c.cc...... 62
Figure 65: Deviation of Test SE3 results by increasing number of iterations (m=n=20)..............ceeu.... 62
Figure 66: Deviation of model 1 results with different unit SyStems..........ccccocvvveivevi s 64
Figure 67: Deviation of model 2 results with different unit SYSteMS..........ccccovvvieiienenieiie e 64
Figure 68: Deviation of model 3 results with different unit SyStems..........ccccccvvvveiveve s 64
Figure 69: Deviation of model 4 results with different unit SYStEmMS..........ccocovveiiiinencieeeee, 64
Figure 70: Deviation of model 5 results with different unit SyStems..........ccccccvvveiieveiic s 65
Figure 71: Condition number of rectangular matrices with different unit systems (m=n=15)................ 65
Figure 72: Percentage of rank number (%) of rectangular matrices (A and [A| b}) with different unit

SYSTEIMS (IMTNTL5) .ttt bbbt bbbt b ettt b e ne e e 65

Figure 73: Condition number of rectangular matrices with different approximation method (m=n=15) 66
Figure 74: Percentage of rank number (%) of rectangular matrices (A and [Ab]) with different

approximation Method (MZNZ15) ..c.viiii e sre e sae e e nrees 66
Figure 75: Tests on stopping tolerances in Ismr solver for Test R1 (M=n=30)cccccesrvrrrirriirirrrurne. 67
Figure 76: Tests on stopping tolerances in Ismr solver for Test R3 (M=n=30)ccccccesrverrrrrrerrerrrne. 67
Figure 77: Tests on stopping tolerances in Ismr solver for Test SE1 (M=N=30)cccccvrrvrrrrirrrrrrurnen. 67
Figure 78: Tests on stopping tolerances in Ismr solver for Test SE3 (M=N=30)cceevverrrrrerrernrnne. 67
Figure 79: Test R1 displacement uz results (M=n=20, 30, 50)ccccesreririririirieiere e, 73
Figure 80: Test R1 bending moment mxx results (m=n=20, 30, 50)........c.cccevrrrrrrrererireieere e 73
Figure 81: Test R1 shear force vx results (m=n=20, 30, 50)cccceririririririnieere e, 73
Figure 82: Test R2 displacement uz results (m=n=20, 30, 50)cccerrrrrerireriiie e 73
Figure 83: Test R2 bending moment mxx results (m=n=20, 30, 50)ccccurrrrrrrrrrererirenereseeeeeen, 74
Figure 84: Test R2 shear force vx results (m=n=20, 30, 50)cccesrrerririiiiere e 74
Figure 85: Test R3 displacement uz results (M=n=20, 30, 50)ccccesrrririririirieiere e, 74
Figure 86: Test R3 bending moment mxx results (m=n=20, 30, 50)........c.cccerrrrrrrirererireieere e 74
Figure 87: Test R3 shear force vx results (m=n=20, 30, 50)cccceririririririieee e, 75
Figure 88: Test R4 displacement uz results (m=n=20, 30, 50)cccerrrrririieiiiie e 75
Figure 89: Test R4 bending moment mxx results (m=n=20, 30, 50)..........ccccurrrrrrrirrerenirenereseeeeeen, 75
Figure 90: Test R4 shear force vx results (mM=n=20, 30, 50)cccesrrirrririiieeie e 75
Figure 91: Test R5 displacement uz results (M=n=20, 30, 50)ccccesreririririirieiere e, 76
Figure 92: Test R5 bending moment mxx results (m=n=20, 30, 50)........ccccccveriiriiieiiiiiieie e 76
Figure 93: Test R5 shear force vx results (m=n=20, 30, 50)cccceririririririnieee e, 76
Figure 94: Test SC1 displacement uz results (M=n= 30, 50)......cccccccerrirriiiiiiieiie e 76
Figure 95: Test SC1 bending moment mxx results (M=n=30, 50).........ccccccerrurrrrrrrrrrrenirereseeeeeeen, 77
Figure 96: Test SC1 shear force vx results (M=n=30, 50)ccccesiuriiimriiiiie e 77
Figure 97: Test SC2 displacement uz results (M=n=30, 50)........ccccerereriririiririeriene e 77
Figure 98: Test SC2 bending moment mxx results (M=n=30, 50).........ccccccerrrririiiieriieiie e 77
Figure 99: Test SC2 shear force vx results (M=n= 30, 50)cccerrreriririririeieiene e 78

Figure 100: Test SC3 displacement uz results (m=n=20, 30, 50)........ccccecrrriirriiiiiieiieeire e 78

Figure 101:
Figure 102:
Figure 103:
Figure 104:
Figure 105:
Figure 106:
Figure 107:
Figure 108:
Figure 109:
Figure 110:
Figure 111:
Figure 112:
Figure 113:
Figure 114:
Figure 115:
Figure 116:
Figure 117:
Figure 118:
Figure 119:
Figure 120:
Figure 121:
Figure 122:
Figure 123:
Figure 124:
Figure 125:
Figure 126:
Figure 127:
Figure 128:
Figure 129:
Figure 130:
Figure 131:
Figure 132:
Figure 133:
Figure 134:
Figure 135:
Figure 136:
Figure 137:
Figure 138:
Figure 139:
Figure 140:
Figure 141:
Figure 142:
Figure 143:
Figure 144:
Figure 145:
Figure 146:
Figure 147:
Figure 148:
Figure 149:
Figure 150:
Figure 151:
Figure 152:

Test SC3 bending moment mxx results (m=n=20, 30, 50)........ccccccvrrrrrrmrirrrerriereereeseennenn, 78
Test SC3 shear force vx results (M=n=20, 30, 50)cccccerirrrrirriiieiie e 78
Test SC4 displacement uz results (M=n=20, 30, 50)........ccccerrrrrrrirrrrrrierrere e, 79
Test SC4 bending moment mxx results (m=n=20, 30, 50)........ccccecurrrrirriirrrrirrerrereeneenn, 79
Test SC4 shear force vx results (m=n=20, 30, 50)cccerrrreriierririeiiese e, 79
Test SC5 displacement uz results (M=n=20, 30, 50)........cccceererrimriirrrrirniere e 79
Test SC5 bending moment mxx results (m=n=20, 30, 50)........ccccccvrrrrrrrrirrreriereereseennea, 80
Test SC5 shear force vx results (m=n=20, 30, 50)ccccerrrrrriirrrrirniereee e 80
Test SC1 displacement uz results (M=n= 30, 50)........cccccerrrrrerrierrerie e, 80
Test SC1 bending moment mxx results (M=n=30, 50).........cccceerurrrrrrrimriirrerie e, 80
Test SC1 shear force vx results (M=n=30, 50)ccccceriierrireiierr e, 81
Test SC2 displacement uz results (M=N=30, 50)........cccccerrrrrrrirrrrieriereee e, 81
Test SC2 bending moment mxx results (M=n=30, 50)..........cccceeurrrrrrrieerirere e, 81
Test SC2 shear force vx results (M=n= 30, 50)cceccerrrrirreriereere e 81
Test SC3 displacement uz results (M=n=20, 30, 50)........ccccererrirririreiiereere e, 82
Test SC3 bending moment mxx results (m=n=20, 30, 50)........ccccecvrrrrrmriirrrrirrerrieneennenn, 82
Test SC3 shear force vx results (m=n=20, 30, 50)ccccerrrrrriieriirie e, 82
Test SC4 displacement uz results (m=n=20, 30, 50)........ccccurrirrrriririiinerersee e, 82
Test SC4 bending moment mxx results (m=n=20, 30, 50)........ccccccvrrrrrireririreriereereseeena, 83
Test SC4 shear force vx results (M=n=20, 30, 50)cescerirrrriirireriiiene e, 83
Test SC5 displacement uz results (M=n=20, 30, 50).........ccceererrirririreiieieere e, 83
Test SC5 bending moment mxx results (m=n=20, 30, 50).........cccccerrrrmreriniiririnineeene, 83
Test SC5 shear force vx results (m=n=20, 30, 50)ccccerrrirrrierierie e, 84
Test SU1 displacement uz results (M=n=20, 30, 50).......c.ccccvriririrmreriirireneneneeeeeeee e, 84
Test SU1 bending moment mxx results (m=n=20, 30, 50)cccevvrrrreririreiiere e, 84
Test SU1 shear force vx results (m=n=20, 30, 50)........ccccceririiriiririiiienc e, 84
Test SU2 displacement uz results (M=n=20, 30, 50).........cccevrrrrerrirerieirere e s, 85
Test SU2 bending moment mxx results (m=n=20, 30, 50)cccccererrrerrririrerieieeene, 85
Test SU2 shear force vx results (m=n=20, 30, 50)........cccceeivirrrieriirieiiere e, 85
Test SU3 displacement uz results (M=n= 30, 50)........ccccesreririiriirirriirene e, 85
Test SU3 bending moment mxx results (M=n=30, 50)cccecverrrrrriiereeresie e, 86
Test SU3 shear force vx results (M=n=30, 50)cccccceriririiriiriiriirieiene e, 86
Test SU4 displacement uz results (M=n=30, 50).........ccccceerrrrrerrierririesiese e, 86
Test SU4 bending moment mxx results (m=n=30, 50)c.ccecurrrrrrrrrereririreeeeeeeeen, 86
Test SU4 shear force vx results (M=n=30, 50).......ccccccesieriiiiiieir e, 87
Test SUS displacement uz results (M=n=30, 50).......c.ccccerreririmririirriiresere s, 87
Test SU5 bending moment mxx results (M=n=30, 50)ccccceerrrrrrieeriire e, 87
Test SUS shear force vx results (M=n= 30, 50)......ccccccereriririiririerierene e, 87
Test SU1 displacement uz results (M=n=20, 30, 50).........ccceererierrireiiieieere e s, 88
Test SU1 bending moment mxx results (m=n=20, 30, 50)cccccerrrrrrrerireriririeeenen, 88
Test SE1 shear force vx results (M=n=20, 30, 50)cccerrirreiieii e, 88
Test SE2 displacement uz results (M=n=20, 30, 50)c.cescerrrrrrrirmriririerene e, 88
Test SE2 bending moment mxx results (m=n=20, 30, 50)ccccceeveriiriiiieiieiiie e 89
Test SE2 shear force vx results (m=n=20, 30, 50)cceceriririiriiiririne e, 89
Test SE3 displacement uz results (M=n=30, 50)ccceriiriiieiiiiii e 89
Test SE3 bending moment mxx results (M=n=30, 50)cccccecurrrrrrrrirenirirereeeeee e, 89
Test SE3 shear force vx results (M=n=30, 50)cccceeiiiriiiiiieiie e 90
Test SE4 displacement uz results (M=n=30, 50)ccceccerreririiriiriirrierene e, 90
Test SE4 bending moment mxx results (M=n=30, 50)........cc.ccceerurrrieriieiiiesie e 90
Test SE4 shear force vx results (M=n= 30, 50)cceccerreriririiriiniiee e, 90
Test SE5 displacement uz results (M=n=30, 50)cccceriiriiiiiiiiii e 91
Test SE5 bending moment mxx results (M=n=30, 50).........ccccceeurrrrrmrrrireririresiseeeeen, 91

Figure 153:
Figure 154:
Figure 155:
Figure 156:
Figure 157:
Figure 158:
Figure 159:
Figure 160:
Figure 161:
Figure 162:
Figure 163:
Figure 164:
Figure 165:
Figure 166:
Figure 167:
Figure 168:
Figure 169:
Figure 170:
Figure 171:
Figure 172:
Figure 173:
Figure 174:
Figure 175:
Figure 176:
Figure 177:
Figure 178:
Figure 179:
Figure 180:
Figure 181:
Figure 182:
Figure 183:
Figure 184:
Figure 185:
Figure 186:
Figure 187:
Figure 188:
Figure 189:
Figure 190:
Figure 191:
Figure 192:
Figure 193:
Figure 194:
Figure 195:
Figure 196:
Figure 197:
Figure 198:
Figure 199:
Figure 200:
Figure 201:
Figure 202:
Figure 203:
Figure 204:

Test SE5 shear force vx results (M=n= 30, 50)ccccceriimrrriirieri e, 91
Test P1displacement uz results (M=n=210, 20)ccceeeriirriirrrrierieere e 91
Test P1 bending moment mxx results (M=n=10, 20)cccecerrrerrrrrrreereere e, 92
Test P1 shear force vx results (M=n=210, 20)........cccscerrrirrirrierrrrieriere e 92
Test P2 displacement uz results (M=N=10, 20)c.cccerirerrrreirierr e, 92
Test P2 bending moment mxx results (M=n=10, 20)ccccererrrrrrrrrrrerrirrie e 92
Test P2 shear force vx results (M=n=10, 20)........c.cccvsrerireririrerierrere e 93
Test P3 displacement uz results (M=N=10, 20)ccccvrierrirreriereere e 93
Test P3 bending moment mxx results (M=n=10, 20)cccecerreerrrrerreerrere e, 93
Test P3 shear force vx results (M=n=210, 20)........cccccvrrrrrrrrierreriererre e 93
Test P4 displacement uz results (M=N=10, 20)c.cccesirerrrrerierr e, 93
Test P4 bending moment mxx results (M=n=10, 20)ccccererrerrrrrrrrrrirrie e 94
Test P4 shear force vx results (M=n=10, 20)........cccccvsrreriierirereriere e 94
Test P5 displacement uz results (M=n=10, 20, 30)cccerrrrrrrrirrrrienieneeie e 94
Test P5 bending moment mxx results (M=n=10, 20)cccecerreerrrrerriereere e, 94
Test P5 shear force vx results (M=n=210, 20)........cccscerrerrrrrierrrriererrie e 95
Test LML displacement uz results (m=n= 20, 30, 50).......ccccccerreerrireiiierrerie e e, 95
Test LM1 bending moment mxx results (m=n= 20, 30, 50)ccccooerrrerrnierirrrinieeenen, 95
Test LML shear force vx results (m=n=20, 30, 50).......cccceeirrrriieriiiiiiese e, 95
Test LM2 displacement uz results (m=n=20, 30, 50)........ccccesrurrrimirmrinereneneneseeeeeeeen, 96
Test LM2 bending moment mxx results (m=n=20, 30, 50)cccvevrrrieeririiesiereere e, 96
Test LM2 shear force vx results (m=n=20, 30, 50)........ccccesrurrrrriimririne e, 96
Test LM3 displacement uz results (M=n=30, 50)..........ccccesrrrrrrierrirreriese e see e, 96
Test LM3 bending moment mxx results (m=n=30, 50)ccccurrrrrrrrrerenirirenieeeeenen, 97
Test LM3 bending moment vx results (M=n=30, 50)........cccccccerreerrirerrieireresie e, 97
Test LM4 displacement uz results (M=n=30, 50).........ccceceririmriimiiiiiiine e, 97
Test LM4 bending moment mxx results (m=n=30, 50)ccccceerrrrrrieerieeieiie e, 97
Test LM4 bending moment vx results (m=n=30, 50).........c.ccccurrrrirrrmrerereniririseeeeeeeen, 98
Test LM5 displacement uz results (M=n=30, 50)..........ccccesrrrrrrrrierrirresiese e e, 98
Test LM5 bending moment mxx results (m=n=30, 50)ccccurrrrrrrrmrereririrenineeeenen, 98
Test LM5 shear force vx results (M=n=30, 50)cccesirerriiiiiieiiere e, 98
Test SLM1 displacement uz results (m=n=20, 30, 50)ccccerrrrrrrrrrinerenerereeeeeeee e, 99
Test SLM1 bending moment mxx results (m=n=20, 30, 50)ccccccervverrirerriereerrecreennn, 99
Test SLM1 shear force vx results (m=n=20, 30, 50)........ccccurrurrrrirrrireiirerene e, 99
Test SLM2 displacement uz results (m=n=20, 30, 50)ccceereerrireriieiie e, 99
Test SLM2 bending moment mxx results (m=n=20, 30, 50)cccccererrererieririenieirnens 100
Test SLM2 shear force vx results (m=n=20, 30, 50).......c.ccceerrrrreriierrirresieieese e e 100
Test SLM3 displacement uz results (M=n=30, 50)ccccrrurirrririrririrererereeeeeeeee 100
Test SLM3 bending moment mxx results (M=n=30, 50)cccceverrrrreiiierieresie e 100
Test SLM3 bending moment vx results (M=n=30, 50)c.ccecurrrrrrreriereririreeieeeens 101
Test SLM4 displacement uz results (M=n=30, 50)ccccceerrrrieriieriere e 101
Test SLM4 bending moment mxx results (M=n=30, 50)cccccecrrererierereririneieens 101
Test SLM 4 bending moment vx results (M=n=30, 50)cccccoverrrrrrerieiiiesie e 101
Test SLM5 displacement uz results (M=n=30, 50)ccccesvurrrrririmrirerererereeeee e 102
Test SLM5 bending moment mxx results (M=n=30, 50)ccccevurrrreririiiesie e 102
Test LM5 shear force vx results (m=n=30, 50)ccccesceriririiririiiierese e 102
Test ALML1 displacement uz results (m=n= 20, 30, 50).......cccccccveriiriiiriiieirie e 102
Test ALM1 bending moment mxx results (m=n= 20, 30, 50).......cccccervriirrririirierirrirrnens 103
Test ALML1 shear force vx results (m=n=20, 30, 50)ccccevriiiiiiiiiicie e 103
Test ALM2 displacement uz results (m=n=20, 30, 50)........ccccsrrrrrrrrreriereririreseeieeeens 103
Test ALM2 bending moment mxx results (m=n=20, 30, 50)........cccccceevrrirriiierieiieerrrenne 103
Test ALM2 shear force vx results (m=n=20, 30, 50)ccccurrrrrrrimrriiienenereseseeees 104

Figure 205:
Figure 206:
Figure 207:
Figure 208:
Figure 209:
Figure 210:
Figure 211:
Figure 212:
Figure 213:
Figure 214:
Figure 215:
Figure 216:
Figure 217:
Figure 218:
Figure 219:
Figure 220:
Figure 221:
Figure 222:
Figure 223:
Figure 224:
Figure 225:
Figure 226:
Figure 227:
Figure 228:
Figure 229:
Figure 230:
Figure 231:
Figure 232:
Figure 233:
Figure 234:
Figure 235:
Figure 236:
Figure 237:
Figure 238:
Figure 239:
Figure 240:
Figure 241:
Figure 242:
Figure 243:
Figure 244:
Figure 245:
Figure 246:
Figure 247:
Figure 248:
Figure 249:
Figure 250:
Figure 251:
Figure 252:
Figure 253:
Figure 254:
Figure 255:
Figure 256:

Test ALMS displacement uz results (M=n=30, 50).........cccccuerirrrmrirerirrreriiereere e 104
Test ALM3 bending moment mxx results (M=n=30, 50).........ccccesverrrrrrrirrieerrrerreereenns 104
Test ALM3 bending moment vx results (M=n=30, 50).......ccccccerurrirrrrrrrriierieresieereereens 104
Test ALM4 displacement uz results (M=n=30, 50).........cccecurrirrrriirriirerirniee e 105
Test ALM4 bending moment mxx results (M=n=30, 50)..........ccccecurrrrrrrieerirerrriiereereenns 105
Test ALM4 bending moment vx results (M=n=30, 50)........cccccerrrrrmrirrrrrirrinrrsee e 105
Test ALMDS displacement uz results (M=n=30, 50).........ccccceerrrrmriierireresiereere e 105
Test ALM5 bending moment mxx results (m=n=30, 50).........ccccesrerrirrrrrrirriinrrrerreereenns 106
Test ALMD5 shear force vx results (M=n=30, 50)ccccccerirerirreriierieie e 106
Test BLM1 displacement uz results (m=n= 20, 30, 50)cccccerrrrimrirrrrriirrieresee e 106
Test BLM1 bending moment mxx results (m=n= 20, 30, 50)........cccccverrerirrrirerrrieerrerrene 106
Test BLM1 shear force vx results (m=n=20, 30, 50)cccccerirrirrrimrirrieniesiee e 107
Test BLM2 displacement uz results (m=n=20, 30, 50)cccccverurrirerrerrrreereere e e 107
Test BLM2 bending moment mxx results (m=n=20, 30, 50)........ccccecvrrrrverrrmrrrierreernnnnns 107
Test BLM2 shear force vx results (m=n=20, 30, 50)ccccerrrrimriimrieresieseere e 107
Test BLM3 displacement uz results (m=n=30, 50)cccecerrrrrriimriirreneniere e 108
Test BLM3 bending moment mxx results (M=n=30, 50).........cccccevurrrrrrrierirereriierrernenns 108
Test BLM3 bending moment vx results (M=n=30, 50).........c.ccecurrrrrmreriereririresieieenens 108
Test BLM4 displacement uz results (M=n=30, 50)cccccerrrrrriierriie e 108
Test BLM4 bending moment mxx results (m=n=30, 50).........ccccccerrrmrererieriinenieienens 109
Test BLM4 bending moment vx results (M=n=30, 50).........ccccccerrrmrirrreriierrereieeseereenns 109
Test BLMS5 displacement uz results (m=n=30, 50)c.cceourrririmiireienerereeeeeeeee 109
Test BLM5 bending moment mxx results (M=n=30, 50).........ccccceeverrrrerveeriierriiereereenes 109
Test BLMS5 shear force vx results (M=n=30, 50)ccccesvurirmrrimiiierene e 110
Test AR1 displacement uz results (m=n= 20, 30, 50)ccceccverrriierireiesiese e 110
Test AR1 bending moment mxx results (m=n= 20, 30, 50)cccoererrrereriiriririeieen 110
Test AR1 shear force vx results (m=n=20, 30, 50)ccceevverririiiierree e 110
Test AR2 displacement uz results (m=n=20, 30, 50)ccccurrurrrrimrrrenererereeeeeeees 111
Test AR2 bending moment mxx results (m=n=20, 30, 50)c.ccccerrrrrrierrerrriereerrenns 111
Test AR2 shear force vx results (m=n=20, 30, 50)cccceririmririirerere e 111
Test AR3 displacement uz results (M=n=30, 50)cccccesrrerrireiriere e 111
Test AR3 bending moment mxx results (M=n=30, 50).........c.ccerurrrrrrreriereririreeeeieeens 112
Test AR3 bending moment vx results (M=n=30, 50)ccccecvvrrrriierrireiiese e 112
Test AR4 displacement uz results (M=n=30, 50)cccrvirririiriiriirerere e 112
Test AR4 bending moment mxx results (M=n=30, 50).........ccccccverrrrrirrreiiieriere e 112
Test AR4 bending moment vx results (m=n=30, 50)cc.ceverrrirreriiirerreeeeeees 113
Test AR5 displacement uz results (M=n=30, 50)ccccccesreerrireirierrere e 113
Test AR5 bending moment mxx results (M=n=30, 50).........c.ccerurrrrrereriereririreeeeeeeens 113
Test AR5 shear force vx results (M=n=30, 50)ccceevrriieriiireiie e 113
Test BR1 displacement uz results (m=n= 20, 30, 50)ccccrveriirimrriinenerereeeeeeeees 114
Test BR1 bending moment mxx results (m=n= 20, 30, 50)ccccceerreveiieerieie e 114
Test BR1 shear force vx results (m=n=20, 30, 50).........ccccerirmrririrrierienereseseseeeeeees 114
Test BR2 displacement uz results (m=n=20, 30, 50)ccccevuririeiiiiiieiie e 114
Test BR2 bending moment mxx results (m=n=20, 30, 50)ccccoerrrrriereriiriiririeieens 115
Test BR2 shear force vx results (m=n=20, 30, 50).......cccccccveriirriiiiiiiiieie e 115
Test BR3 displacement uz results (m=n=30, 50)ccccsvtririmmrimiiriiere e 115
Test BR3 bending moment mxx results (m=n=30, 50)cccccccvervrrrrrerieiriesie e 115
Test BR3 bending moment vx results (M=n=30, 50)cc.ccscurrrrrrrrrrereresireseseeeeees 116
Test BR4 displacement uz results (M=n=30, 50)cccccevveririiieriiiiiie e 116
Test BR4 bending moment mxx results (m=n=30, 50)ccccecurrrrrrrriereririreneeens 116
Test BR4 bending moment vx results (M=n=30, 50)c.cccccvrrureriiiiiieiie e 116
Test BR5 displacement uz results (m=n=30, 50)ccccsetririiriimiiierene e 117

Figure 257: Test BR5 bending moment mxx results (m=n=30, 50)ccccccvsrrrrrrrrrirererrresieeseeiennens 117

Figure 258: Test BR5 shear force vx results (M=n=30, 50)........cccccerrrrirriirrrrierine e 117
List of tables

Table 1: Sanders-Koiter equations (HO0genboom , 2021)........c.coeiiiiiiiiniiiiieieeese e 7
Table 2: Boundary conditions for an edge in the x direction and the y axis pointing outwards................ 8
Table 3: Boundary conditions for an edge in the x direction and the y axis pointing inwards.................. 8
Table 4: Boundary conditions for an edge in the y direction and the x axis pointing outwards................ 8
Table 5: Boundary conditions for an edge in the y direction and the x axis pointing inwards.................. 8
Table 6: Geometry and material parameters 0f MOUEISccoveiieii i 20
Table 7: Pinned edges and Cantilever boundary CONItIONScociiiiiiiniiicie e 20
Table 8: BOUNUAIY EQUALIONScc.eeiieiieiiieiieeiesieesieete st e ste et e teete s e teeaessaesteenaeaneesaaesseansesreeaeaneesnens 21
Table 9: Model CONTIGUIALION.oiiiieiie ittt et reeaeeneenreas 21
Table 10:Number of assigned equations in rectangular [M].......ccccooviiiiiiii i 25
Table 11:Number of assigned equations in square [M] by central node method..............ccocovviiiiicnenn, 27
Table 12:Number of assigned equations in square [M] by undefined node methodcccccvvennenee. 28
Table 13: Replaced S-K equations and boundary equations correlationcccoeoeveniieneniininicnenn, 30
Table 14:Number of assigned equations in square [M] by undefined node methodcccceeneeee. 30
Table 15: Additional boundary BQUALTONScoiiiiiiiiiieiee e 30
Table 16: Rectangular and square matrix test configurationc.ccccovveviiieie s 30
Table 17a: Solver test configuration of rectangular MatriCescoviiiriiiiieieie e 31
Table 17b: Solver tests of square matrices (The matrices are made square by the equation replacement

IMETNOM) ...ttt bbb bbb b et b e R bt n e 32
Table 18: Absolute maximum value of finite element results for modell-5........cccccoveviiiiiiiiiiiicnennn, 36
Table 19: Absolute maximum value Of test R1-5 PIOTS.........ccoiiiiiiiiiiieeee e 37
Table 20: Absolute maximum value Of teSt SC1-5 PIOLSccoeiiiiiiiiiiee e 37
Table 21: Absolute maximum value Of test SUL-5 PIOtS........ccoeeiieiiiiiiice e 37
Table 22: Absolute maximum value Of teSt SEL1-5 PIOLS........ccciiiiiiiiiiiiiieeee e 37
Table 23: Absolute maximum value OF teSt PL-5........ccciiiiiiiiieeere e 38
Table 24: Absolute maximum value Of teSt LM1-5 PIOtScooiiiiiiiiiiiiieeee e 38
Table 25: Absolute maximum value of test SLIML1-5 PlOtS.......cccccveviiiiiiiiiieceeecc e 38
Table 26: Absolute maximum value of test ARL-5 PIOLS.......c.coiiiiiiiiiiiiiie e 39
Table 27: Absolute maximum value of test BR1-5 PIOtS........ccociiiiiiiciicc e 39
Table 28: Absolute maximum value of test ALML-5 PIOtSc.oooviiiiiiiiiiiiieiee e 39
Table 29: Absolute maximum value of test BLM1-5 PIOtSc.ccceeviiiiiieicccceee e 39
Table 31: Deviation of Test R1-5 results (green:14%, blue: 42%, orange: 44%)c.ccocevvrvriveriernennns 40
Table 32: Deviation of Test SU1-5 results (green:12%, blue: 44%, orange: 44%)c.cccccceeveevvenennnn. 40
Table 33: Deviation of Test SC1-5 results (green: 7%, blue: 40%, orange: 53%)c.ccocerereriveriereennns 40
Table 34: Deviation Test SE1-5 results (green:12%, blue: 44%, orange: 44%)........c..ccceveeveiveeieevennnn, 41
Table 35: Deviation of Test P1-5 (green:33%, blue: 67%, orange: 0%0)ccccevererenenenenenneieeenns 41
Table 37: Deviation of Test LM1-5 results (green:61%, blue: 39%, orange: 0%)c.ccccevveeverreenennen. 41
Table 36: Deviation of Test SLM1-5 (green:53%, blue: 42%, orange: 5.7%0)cccocevereienenneieneennns 41
Table 36: Deviation of Test ALM1-5 (green:12%, blue: 44%, orange: 44%0).........cccccoveivvevveiineeseesnnens 42
Table 36: Deviation of Test BLM1-5 (green:78%, blue: 19%, orange: 3%0)ccccovevererenennniieniennns 42
Table 40: Summary of deviation Of teSt rESUILSc.coiieiie i 42
Table 37: Comparison between ISMr SOIVEr FESUILSooviiiieii e 47
Table 38: Comparison between pinv solver and Im.fit.sparse solver results...........ccccoocevviiiiiiiiiiiennn, 48
Table 39: Comparison between five-point and two-point difference approximation results (Ismr solver)

.. 48

Table 40: Comparison between five-point and two-point difference approximation results (Im.fit.sparse
101 V=T OSSPSR RUPRURSRN 49

Table 41:
Table 42:
Table 43:
Table 44:
Table 45:
Table 46:
Table 47:
Table 48:
Table 49:
Table 50:
Table 51:
Table 52:
Table 53:
Table 54:
Table 55:
Table 56:
Table 57:
Table 58:
Table 59:
Table 60:

Comparison between bending moment mxx edge reSultScccovevviieiieene e s, 52
Comparison between shear force VX edge reSUILSoovviieiiiiiiieieee e 53
Deviation of Test LM1-5 overall bending moment & shear force results (m=n=50).............. 53
Memory usage and time by finite element software (SCIA Engineer 19)........c.ccoccvvvvvvennene. 58
Memory usage and time by different solver in shell code..........ccooviieiiiiiciecc 58
Model parameters by different Unit SYSTEMSccooriiiiiiiiie e 63
Sparsity of rectangular MALIICES.c.ocviiieieiie e nrees 117
SPArsity OF SQUAIE MAIITCEScveviieriiitiiiieie ettt b e nes 117
Condition number of rectangular MALFICEScecviiiieiiiie e 117
Condition NUMDEr OF SQUAIE MALICEScueiieiieieieiee ettt 118
Rank number of rectangular MatriCeScciviieiiieii e e 118
Rank number of SQUAre MatriCeS.coviiiiiiiie e 118
Deviation of Test R1 results by increasing number of iterations (m=n=20)c........ 118
Deviation of Test R3 results by increasing number of iterations (m=n=20)c.cc0en.... 118
Deviation of Test SE1 results by increasing number of iterations (m=n=20) 118
Deviation of Test SE3 results by increasing number of iterations (m=n=20)coc...... 118
Deviation of Test R1-5 results by new unit systems (N, MM).......cccccoevieeivnieviieieece e, 118
Deviation of Test LM1-5 results by new unit systems (N, Mm)cccccooeienininininienenen, 119
Deviation of Test R1-5 results by new unit systems (KN, 10mM)ccccocevveveiieiineneseenen, 119

Deviation of Test LM1-5 results by new unit systems (KN, 10m)........ccccooeninininiinieniennnn, 119

1. Introduction

1.1 Problem Statement

The finite element method is the industry standard for analysing shell structures due to its generality and
sophistication. In popular commercial finite element software, the most used shell element type has been
derived from a solid, therefore, the shell differential equations (for example, Sanders-Koiter equations) have
not been used. In fact, currently, there is not a method available for solving the shell differential equations.
Solutions to those equations could be used to perform independent checks of finite element results. It can be
expected that the finite difference results will be the same as the finite element results, however, there might
be theoretically interesting differences, for example in edge stresses. This can provide insight into both the
Sanders-Kaoiter equations and the applied finite elements. Although the finite element method is a mature
method with a long history of application, it is always good to try and falsify theories. For this purpose, a
direct way to solve the shell differential equations is required.

The simplest way to solve differential equations is the finite difference method. This method has a long history
of application. For example, for plate problems the finite difference method was applied long before the finite
element method (Figure 1). The finite difference method was already used in hand calculations before the
development of electronic computers (Thomé, 2001). However, its application to shell theory was always
considered impractical. In shell theory many higher-order differentiations occur and the grid is curvilinear,
which means that the discretized form of those equations is large and different for every grid point.
Nonetheless, there must be a practical, even simple manner to apply the finite difference method to shell
theory.

uz s L
ig B3 10 10 a6
04
. noonIz4 . :
. na 0B
. DO 1E a4 L2
= oG o8
noon1l = a2 e [
o
o4 oa
noonIos :
oz al
\ na
T b -24
oo Qo
oo 01 o4 [o L0 oo =
u o5 Bz P 0 =5 5a an 03 o4 a8 A 10
u

=

=]

oa

a) Displacement {max = 0.000029) d) Bending moment (max = 0.444856) | ¢) Shear force (max = 3.212631)
Figure 1: Result plots of uniformly loaded two-way slab 30*30 nodes (Li, 2020)

One simple finite difference method is applied in a Python algorithm, called plate code, that has been recently
developed by the author (Li, 2020). The method is simple because only first-order derivatives are used instead
of the common forth-order derivatives. The advantage is that few simple molecules need to be implemented
for the various boundary conditions. The disadvantage is that the matrix constructed is very large, which gives
memory capacity problems and is time-consuming. This method was shown to work well, however, there was
still an unsolved challenge: The number of discretized equations exceeds the number of unknown, which leads
to a rectangular matrix, which is solved in a least square approximation. The least square approximation may
cut off peaks in the solution, for example it may cut of moment peaks or membrane force peaks. It should be
possible to remove some of the equations and make the matrix square without it becoming singular.

1.2 Objective

Based on the previously explored method of solving plates, the objective of this research is 1) to develop a

practical finite difference algorithm for solving the Sanders-Koiter equations for any shell model for available

orthogonal parameterization and 2) understand how the algorithm results can be affected by various factors.
1

This shell code should have the following key features:

1. Use the finite difference method to approximate the Sanders-Koiter equations

2. Results (extreme values, contour plots) agree with finite element solutions or analytical solutions

3. Universally applicable to shell models with different geometries, loads, and boundary conditions

4. Practical computation time and memory usage

5. Square matrix to avoid computing over-determined systems

6. Easy to modify in case of future changes in the Sanders-Koiter equations or the boundary conditions

1.3 Approach

To develop an algorithm with the above key features, the development process of this code is mainly divided
into the following steps. These steps describe the internal logic of the shell code and the work method
experienced by the author. The methodology and encountered difficulties mentioned below are summarized
from daily testing and coding the shell code program. At later stage of shell code development, many plots
and much data were obtained. To understand how the algorithm results can be affected by various factors, a
number of tests were organized and their results were compared. Those results and comparisons were evidence
of the feasibility of this algorithm. Based on those results, errors in the code were spotted and corrected.
Meanwhile, new methods and new concepts were tried to improve the performance of the algorithm.

a) Build the code

The first step to develop this new shell code is to extrapolate the verified method from the plate code (Li,
2020). Many ideas to develop this algorithm have been verified in the previous plate code including ideas on
how to add model equations, define boundary conditions, and correctly approximate differentiation with the
finite difference method. It is worth mentioning that the fundamental concept of solving Sanders-Koiter
equations by finite difference method is from an algorithm developed by Dr. Hoogenboom which was not
successful yet at early development. The number of implemented equations in shell code is nearly twice that
used in plate code and they have more components involved. In shell code, the model body requires 21
Sanders-Kaoiter (S-K) equations (plates 11) and every edge requires 4 boundary equations (plates 2). As the
most fundamental part of shell code, correctly adding equations for every node on the grid of the model is the
first challenge to be solved. Meanwhile, if a square matrix is required for testing, the specific method of
replacing model equations should be studied. After finishing constructing the matrix, a proper type of solver
should be selected to solve the system which may directly determine the quality of results. During this phase,
most time was spend on the mathematical interpretation of finite difference method and the S-K equations and
how to implement them in Python coding. The challenging part was on how to use programming to realize
the mathematical concepts and structural mechanics concepts.

b) Test the code

In order to prove the general universality of shell code, this new algorithm should be able to solve different
shell model problems with various material properties, geometry shapes, boundary conditions, and load cases.
For this reason, a number of tests was set up for testing shell code with different shell model problems to
prove the shell code can correctly convert models into matrix systems and solve them. Meanwhile, tests were
also organized to investigate other potential factors which might affect the code results like the number of
nodes, type of solvers, and type of matrices. If the shell code could work properly, plots of displacement,
shear force, bending moment, and other results were generated and collected after each test. Other information
like the setup of tests, spent time, and memory usage of the shell code were also recorded. A large group of
extreme values from every generated plot was collected and analyzed.

c) Validate the results

The above test results were used to prove three properties of code results: accuracy, reliability, and efficiency.
To prove accuracy, test results were used to compare with external finite element results. Those finite element
results were obtained from a popular commercial finite element software (SCIA Engineer) where the same
shell models were analysed. The difference between extreme values of displacement, shear force, bending

2

moment results from shell code and finite element software were calculated. They are listed and categorized
in terms of the type of model, the number of nodes, type of matrix, and types of solver in order to show the
accuracy of shell code results and extent of participation of each factor in affecting the accuracy. To prove the
reliability of results, the collected extreme values of displacement, shear force and bending moment were plot
and reviewed for any possible spike in the trend toward an infinite value (singularity). If such a case occurred,
this extreme value should be considered as a computational error and be excluded from comparing with finite
element results. To prove efficiency, spent time and memory usage for each running test were collected and
listed in terms of the type of model, the number of nodes, type of matrix, and types of the solver. By comparing
them with each other, factors that affect the efficiency of code were identified. Spent time and memory usage
were also compared with those of a popular commercial finite element software to show whether the shell
code is efficient for practical use.

d) Improve the code

After obtaining results from the initial version of the workable shell code, the performance of shell code,
including accuracy, reliability, and efficiency mentioned above, were improved if they were not in an
acceptable range. Clearly, this is a common issue at the initial stage of code development. The first step is to
check with the basic setting for shell model parameters or the adding process of S-K equations for model body
and boundary condition to ensure that the purposed model is correctly described. By iterating this step for
different tests which have various setting and requirement, those basic error related to describing model were
revised. Then the next step is to select a proper solver for solving the matrix system. The selection of the
solver is based on the properties and formation process of input matrices. If a square matrix is not required,
then the constructed matrices will be rectangular matrices, an overdetermined linear sparse system. If the
sguare matrix is needed, this square matrix is still a linear sparse system, but possibly a singular matrix. Further
research needs to be done to understand the characteristics of different solvers in order to select a suitable
solver for each test. The third step is to optimize the application of the S-K equations by applying additional
definitions for parts of the model. It is possible that the application of the S-K equations might be limited by
the mathematic property of the finite difference method or other factors. Therefore, additional equations were
used as theoretic reinforcement for correcting a potential error in edge or corner behaviour. For example, the
free corners or edges of models require additional equations for defining boundary conditions. Additionally,
new finite difference methods were tried since the performance of shell code is directly related to the finite
difference method applied. At the early stages of code development, a two-point difference approximation
was used to replace first derivative in Sanders-Koiter equations. To investigate the effect of computing
truncation errors arising in this process, a five-point difference approximation was also tested and its results
were compared to that of the previous method.

e) Compare the results

After going through the above development process, the shell code produced massive data and plots. In order
to display them in an orderly manner, the main results are categized into four test groups: rectangular matrix
tests, square matrix tests, solver tests, and five-point difference approximation tests. For each group of tests,
five shell models with various material properties, geometry shapes, boundary conditions, and load cases are
used. Meanwhile, at least two levels of the number of nodes were used for each model. In the rectangular
matrix tests, the matrix type is rectangular matrix and the selected solver is Ismr which can solve a linear
model by least square estimation (Fong and Saunders, 2011). In square matrix tests, there are three types of
square matrices generated by different methods and the selected solver was the same as that of rectangular
matrix tests. In solver tests, rectangular matrix and square matrix were both used and two types of the solver
(pinv, Im.fit.sparse) were used. The Im.fit sparse solver can solve the system as a sparse linear fitting problem.
The pinv solver aims to provide approximated inversion of matrices by SVD decomposition (Davis,
Rajamanickam and Sid-Lakhdar, 2016). Inthe above tests, only two-point difference approximation was used.
In five-point difference approximation tests, two types of five-point approximation and two types of solvers
(Ismr, Im.fit.sparse) were used. To show those results more properly, the first step is to calculate the deviation
of the obtained extreme values by using finite element results as the reference values. The following
comparisons were made: between shell code results and finite element results, between rectangular matrix test
and square matrix test results, between pinv solver and Im.fit.sparse solver results, and between five-point and
two-point difference approximation results. By reviewing those comparisons, it was found how those factors

3

could affect shell code results. Additionally, the calculated deviation of shell code results was also categized
by the type of model, to investigate how the model setting parameters could affect shell code results.

1.4 Research workflow

As shown in the above section, the shell code development can be divided into five sections: build the code,
test the code, validate the results, improve the code, and compare the results. In the workflow, those sections
are repeated a number of times until the shell code satisfies the purposed key features. The below flow chart
shows how the work has been done for the shell code development.

Workflow

Plate code by Shell code by Dr. PCT
the author Hoogenboom

Initial version of
shell code

Test the code

h

Modify & Add equations to
oo the model body
troubleshooting b
- and boundary v =
thealel::anfl?;?::;::t?oﬁ;:f:meS: / Chose the / leferent number // Squa.re matrix or
Fun the code and g + : y :
conditions, and load cases 501: e of nodes Recta_ngula_r matrix
L

Displacemnt, bending moment, | | validate the results
and shear force plots

L 4 A 4 ¥
Displacemnt, bending moment, Extreme values Spent time, and
No Whether the results are and shear force plots from plots memory usage
u within an acceptable rang I T T
I
Yes v

Whether the accuracy, reliability, and =/
efficiency are within acceptable range / -

Initial version of the Mo
workable shell code N M
v v v v
Build the code Check with the basic setting or the Study on selection of Optimize the application Try new finite difference
adding process of 5-K equations solver of 5-K equation methods

| I] A]

Final version of
Flodlﬁedshellmﬂq r shell code]

Improve the code
Compare the results Otzanize tests & Run the

code and obtain results

|
v v v v
Rectangular matrix Square matrix test Solver test Four-point difference
test results results results approxmation test results
¥
Calculate the deviation by
referening FEM results
2 L 2 v v
Comparison between shell Comparison between Comparison between pinv Comparison between four-
code results and finite rectangular matrix test results solver results and point and two-point difference
element results and square matrix test results Im fit sparse solver results approximation results

2. Literature review

This section aims to provide more information on the theoretical knowledge applied to this algorithm. The
below content includes a short review of general plate and shell theories and a short description of the
development of the S-K equations. Those equations are bounding rules for the behavior of the shell model
which can provide an argument when discussing abnormality among the generated shell code results. There
is also a short review on the finite difference method and its application. Those equations are the mathematical
tools used to approximate first-order derivatives that appear in the S-K equations. The inherited computational
error of the finite difference method could be important for shell code result analysis. The theoretical
knowledge on types of matrix systems is also included. Some explanation on major methods of solving sparse
overdetermined linear system through programming language is also included. That information can be used
to determine the proper solver for different types of matrices and predict the solver capacity in order to select
the best solver.

2.1A short review on the development of plate and shell theories

The term shell refers to a physical body bounded by two curved surfaces whose distance is smaller than other
dimensions. The distance between the surfaces is called the thickness of the shell (t). The imaginative surface
that divide the thickness into equal halves is called middle surface. Such geometry structure makes the shell
structure has excellent performance in terms of strength / weight ratio and bearing efficiency.

The study on shell started can be dated back to the free vibration analysis of plate problems performed by
Euler (1766). Plate can be viewed as the shell without the curvature brought by curved surfaces. Then J.
Bernoulli (1789) presented a plate model in an attempt to theoretically explain those results. In his model,
plates were described as the combination of mutually perpendicular Euler—Bernoulli beams at right angles.
Furthermore, French mathematician Germain (1826) developed a plate differential equation which
mathematically describe the deformation of plate. The missing term for warping behaviour was added later
by her reviewer Lagrange (1828). The completed form of this equation is the well-known Germain-Lagrange
equation:

o*w o*w s o*w _q
where D is the flexural rigidity of the plate, W is the deflection of the plate, h is the plate’s thickness, and
is the uniform distributed load.

This equation as the governing differential equation for deflections can also be formulated based on general
equations of theory of elasticity. Cauchy (1828) and Poisson (1828) were the first to do so. The theory of
bending of plates was improved by Navier (1823), who considered flexural rigidity of the plate D in the above
equation as a function of the plate thickness. Later, Kirchhoff published an important thesis on the theory of
thin plates where he introduced physical meaning into the theory of plates by the famous “Kirchhoff’s

hypotheses” (1850). Kirchhoff’s hypotheses are a series of fundamental assumptions used in thin plate
bending theory in which the deflection of a plate is assumed to be small, linear, and elastic. Restated
assumptions (Ventsel and Krauthammer, 2001) are list as below:

< Elastic, homogenous, and isotropic material.
< Initially flat plate.
< Small vertical deflection of the midplane compared with the thickness of the plate.

< “Needle hypotheses”: The normal lines of the middle plane remain straight and normal to the middle
surface during the deformation. Thickness remains constant. Negligible vertical shear strains (yxy , Vyz)

and normal strain (¢,).
< Negligible normal stress o,
<~ Middle surface remains unstrained

Timoshenko also made a profound contribution to the plate bending theory and application of it by providing
solutions of circular plates considering large deflections (1915) and formulation of elastic stability problems
(1913). Moreover, he and Woinowsky-Krieger published a fundamental monograph (1959) which provided
several solutions to various plate bending problems.

The above-mentioned classical plate theory mainly focused on the describing bending and twisting behavior
of plate models while shell models are usually deformed in another way. It is because the shell has an
additional characteristic than a plate —curvature. It makes the deformation of the shell model is predominantly
induced by in-plane stressing. Depending on their curvatures, shells can be categorized as cylindrical (hon-
circular and circular), conical, spherical, ellipsoidal, paraboloidal, toroidal, and hyperbolic paraboloidal model.
The most available commercial finite element software is merely capable to solve shell model problems
without considering larger deformation and inelastic behaviour. In order to avoid the difficulties in solving
3D shell models, alternative 2D shell theories are to be more commonly used where shell problems are usually
reduced to the study of deformations of the middle surface. It is a practical and efficient way to solve shell
model problems as long as the above hypotheses were satisfied. However, those simplified elasticity equations
reduce the accuracy of analysis results since some degrees of freedom of the model are omitted.

The first successful approximated shell theory was developed by Love (1892). He took constitutive relations
from Kirchhoff’s hypotheses with his own assumption of small deflection and thinness of a shell to simplify
the strain—displacement relationships in shell models. This theory, called Kirchhoff-Love shell theory, is a
first-order approximation method to solve shell models. However, it is not a perfect theory which have several
inconsistencies. After that, many other first-order approximation theories were later developed based on it.
One of those later theories is Reissner’s linear theory of thin shells (1941). By taking the equilibrium equations,
strain—displacement relations, and stress resultants expression from the three-dimensional theory of elasticity,
the inconsistencies in Love’s theory were eliminated in Reissner’s theory. And Sanders develop his own first-
order approximation shell theory from the principle of virtual work equation and it also successfully removed
inconsistencies in Love’s theory.

2.2 Sanders-Koiter equations

The Sanders-Koiter equations have been individually developed by Sanders (Sanders, 1963) and Koiter (1966)
as a refined nonlinear theory of shells. The accuracy of the Sanders-Koiter theory for calculating larger
vibration amplitudes has been proved (Amabili, 2003).

Symbols

E o Young’s modulus

LS P Shell thickness

Oy Oy et Laméparameters

Ky, ky In plane curvature of parameter lines
Ky , kyy , kxy Curvature tensor

My Myy s Myy e Moment tensor

Nyex s Myy s My s My Membrane force tensor

Py, py Pz
VX,Vy,VZ
Sxx,gyy ,yxy
@X,Qy,@Z
Kyy,Kyy,pxy
A
U, Vo,
UX,Uy,uZ
S

Distributed load
Out of plane shear forces
Strain tensor of the middle surface
Rotation of a pin perpendicular to the surface

Curvature deformation tensor

Poisson’s ratio
Curvilinear coordinates

Displacements
Local Cartesian coordinates

Table 1: Sanders-Koiter equations (Hoogenboom , 2021)

=—2+—=—2KkyyU; —KyUy —kyu
Txy oy ox xydz ~BxUx —Ryly

ov
kxxnxx+kxy(nxy+”yx)+kyynyy+%+gy+kny+kay+pz=0 1
n n
n n
yy Xy _
Equilibrium (E+E)+kx(”w =)+ ky (g + Ny —kyyvy —kopvx +py =0 |3
equations
Myx . Mxy _
m m
kyy (Moox =My)= (ko —Kyy)My + Ny =Ny =0 6
1—v2
Nyy = Et (Syy +V5xx) 8
1—v2
Nyy +N Et
Xy TUyX
= 9
2 2’V
Constitutive Et3
equations Myx ZW(KXX + VKyy) 10
-V
3
myy :LZ(KW +VKxx) 11
12(1—v)
3
Et
i 24(1+v)p"y
OUy
Eyy =—2 —KyyU, +kyu 13
XX 8x XXMz X2y
. . ou
Kinematic e :—y—k U, +kyu 14
) z X
equations oy W J
Oy auy 15

by = _%Z_ Ky — Koy Uy 16

dy ‘%‘kyy”y‘kxy“x 17

d; :%£_a;yx 8_y_k Uy +kyuy] 18
XX :%_kxyd)z +kxody 19

Kyy =—+Kyyz +Kydx 20
_a"'l+ﬂ+(kxx—kyy)¢z kxty —Kydy 21

Boundary conditions for shell are defined as follows:

Table 2: Boundary conditions for an edge in the x direction and the y axis pointing outwards

Type Kinematic (K)
Impose displacement Uy

Impose displacement Uy

Impose displacement u,

Impose displacement —@y

Type Dynamic (D)
or apply line load dy =Ny —kyV | BC1
or apply line load
Gy =Ny —kayV oe2
O apply line load g, =v, + 2~ | BC3
OX
or apply line load —Mmyy BC4

Table 3: Boundary conditions for an edge in the x direction and the y axis pointing inwards

Type Kinematic (K)
Impose displacement Uy

Impose displacement Uy

Impose displacement u,

Impose displacement —@y

Type Kinematic (K)
Impose displacement Uy
Impose displacement Uy

Impose displacement u,

Impose displacement @y

Type Dynamic (D)
o apply line load Gy =—Nyy +KyV | BC5
or apply line load
or apply line load g, =-vy N BC7
OX
or apply line load myy BC8
Table 4: Boundary conditions for an edge in the y direction and the x axis pointing outwards
Type Dynamic (D)
or apply line load dy =Nyx —kyV | BCY
Or apply line load dy =Ny, —kywV | BC10
O apply line load g, = v, +% BC11
or apply line load Myy BC12

Table 5: Boundary conditions for an edge in the y direction and the x axis pointing inwards

Type Kinematic (K)
Impose displacement Uy

Type Dynamic (D)

Or apply line load Oy =—Ny +kyV | BC13

. or apply line load
Impose displacement Uy Gy =Ny +kny BC14
Impose displacement u, ©" apply line load g, = v, —% BC15
Impose displacement ¢x OF apply line load —Myy BC16

2.3 A short review on the finite different method

The idea of the finite difference method is studying the continuous process by applying mathematical
discretization. By dividing the process into a finite number of sufficiently small parts, the differential equations
are approximated by a large number of linear equations. The results of derivative over a continuous domain
can be approximated as the summation of a weight function multiplied with results of discrete points.

The general procedure of applying different finite difference schemes for the numerical solution of partial
differential equation is outlined as below:

< Convert the continuous process variables into a discrete set of points.

<~ Approximate partial derivatives using finite difference approximation.

< Solve the resulting finite difference equations.

By definition, the first order derivative can also be calculated as below. The first order derivative of a one-
dimensional, continuous function f (X) is calculated based on values of adjacent points

Frim f(x+h)—f(x): - f(x)—f(x—h): lim f(x+h)-f(x-h)
h—0 h h—0 h h—0 2h
¥y rF 3
* ______ x""--\.
ﬁfi
i i i T fx
| Jie-h) i i fix) i fix+l) X
Aa0) N A Bb.0)

Figure 2: First order derivative by finite difference method

The key point of the finite difference method is approximating the derivatives. For example, the domain of
variable x of the continuous function f (X) is interval AB. The interval AB starts at point A (a, 0) and ends

at B (b, 0) which is divided into equal intervals Ax=h. h is the finite increment of the variable x. Assume the

2
f (X)is linear continuous function with expression of f (X) =a+h-x+c-x",

The first order derivative of f (X) is given by below calculation:

fiig=f (x—h)

fi = f(x) N bz_fi—l—fi+1}:>5f(x):b: fig— fin
2h oX 2h

fiya=f(x+h)

In practice, it is called the expression for a central difference approximation of (af (x)/@x). It is also referred

to as the two-point derivative approximation since the calculation is based on the values of two adjacent points.
If the two adjacent points are on the one side, it is called the one-sided finite difference approximation which
is calculated as below:

fi=f(x)
fig=f(x+h) :>{b=3'fi_4'fi+1+fi+2}:>af(x)=b=3'fi_4‘fi+1+fi+2
2h OX 2h

firp = f(x+2h)

fi=f(x)

f 1:f(X—h) :{b:_3'fi_4'fi—l+fi—2} af(x):b:_s'fi_4'fi—l+fi—2
a 2h OX 2h

fi_p = f(x—2h)

Assume T (X)is linear continuous function with expression f(x)=a+b-x+c-x2+d-x3+e-x4. The first

order derivative of f (X) is given by the following calculation:

fi_p = f(x—2h)
fiig=f(x-h)
fi=f(x) :{b: fip—8fi_1+8fjs1— fi+2}:> o (%) _p,_ fizz =8fig +8fing — fio
g £ (0eh) 12h ox 12h
fio = f(x+2h)

It is the five-point derivative approximation since the calculation is based on the values of four adjacent points.

2.4 A short overview of application of finite difference method on shell theory

Analytical methods to solve plate and shell problems are limited to relatively simple geometries, load cases,
and boundary conditions. Exact solutions to plate and shell problems are difficult, or even impossible to find.
Even if it can be solved, those analytical solutions are usually expressed in terms of infinite trigonometric
series. Therefore, the finite element method is widely used. An alternative computational method is the finite
difference method. (Rudolph Szilard 1974) .

Some general concepts of the finite different method are listed in the following:

1. Finite difference mesh: the reference network that covers the middle surface of the shell in the shape of a
rectangular or triangular grid.

2. Finite difference operator: the finite difference equations that replaces governing differential equations of
shell theory at mesh point.

The finite difference operator is also used to formulate the boundary conditions. Applying the finite difference
method to shell models creates a set of linear algebraic equations for every node within the model. By solving
the linear system of equations, the numerical results of nodal displacement, shear force, bending moment, and
many other important results can be obtained. In the early stage of application, it was mostly used to obtain
the deformation results. It was achieved by solving biharmonic equations for each node where the fourth-order
differential equations are approximated by finite difference method. However, solving a system of equations
involved with four-order approximation usually results in excessive time on formulating equation molecules
for various boundary conditions and geometry shapes. One way to save time is to replace biharmonic equations
with lower-order equations. Marcus (1932) has split the biharmonic equation into three equations: two second-
order deflection equations and one normal moment equation. By solving them, good displacement results were
obtained for plates with simple supported edges.

10

Another alternative approximation was proposed by Reddy and Gera (1979) in which the fourth-order
differential equation is replaced with three second-order differential equations, as shown in Equation 1. For
various boundary conditions, those equations can perform bending moment analysis for rectangular plates
with conventional finite-difference molecules.

2 2 P 0 2
axZ oy? OX oy 12 OX
2 2 op 0 ? ow
My =-D a_W+Va_W My =- (—y+vﬁj Qyz——Gh — By
ox2 8y2 oy X 12 oy
82M aZW aZMy M =—(1—V)2 aB_y_FaB_X
-P= 2X—2D(1—V) 5t Xy 2\ ox oy
OX ox“oy OX ow ow
Equation 1: Three second-order differential Bx =&—yzx By =E—yzy
equations used in finite difference) o)) . S
approximation Equation 2:Six first-order differential equations used in finite

difference approximation (h = plate thickness)

Assadi-Lamouki and Krauthammer (1989) develop a method to solve plate vibration problem by solving the
finite difference approximation of six first-order equations (see in Equation 2). Their research has shown that
the obtained vibration study results were in good quality compared to results obtained by classical plate theory.
As mentioned above, the finite difference method replaces the governing equations with a set of algebraic
equations. Then computers are used to find the solution to the algebraic equations. Advantages are:

a) It is a straightforward method to be understood and applied;
b) Itis auniversal method that can be applied to various problems; and
c) This method can be relatively easily implemented.

Disadvantages are:

d) It requires a certain time and mathematical knowledge to find the proper finite difference operators;

e) To perform the analysis efficiently, this method is usually achieved through computer programming. It
requires more work to produce a program allowing complete automation of the procedure;

f) The parameter matrix of approximated algebraic equations is asymmetric, sparse, and highly possible to
be overdetermined, causing difficulties in finding its numerical solution unless using a least square solver;

g) It may have serious difficulties in applying finite difference method into complicated geometry rather than
the regular square and rectangular shape.

2.5Sparse linear system: overdetermined and determined, its storage and solving methods

The key to applying the finite difference method to shell problems is to solve the matrix of the approximating
system of linear algebraic equations. From previous experience and practice, the constructed matrix of shell
or plate models is usually overdetermined. 21 S-K equations are assigned to mn nodes of the model. To define
the boundary conditions, an additional number of 4 equations are assigned to the 2(m+n) edge nodes. The
resulting matrix is a rectangular matrix having 21mn columns and 21mn+8(m-+n) rows. Alternatively, a square
matrix is constructed by replacing 4 equations of the 21 equations at every edge and corner node. Consequently,
two programs were developed; one for overdetermined and one for determined systems (rectangular and
square matrices).

There are 21 dependent variables in the 21 S-K equations. One equation only contains 4 or 5 dependent
variables on average. Depending on what interpolation is used (two-point or five-point), the interpolation at
one point only involves 2 or 4 adjacent points. The factors of discretized dependent variable are distributed in

11

lines parallel to the diagonal of the matrix. Almost all entries in the matrix are zero, which is convenient for
computation. Matrices with this property are said to be sparse. Therefore, the constructed determined and
overdetermined systems are sparse.

It is important to have efficient storage of, and operations on large sparse matrices.

1. Storage

A sparse matrix is a matrix that has a value of zero for most elements. In a sparse matrix, the ratio of number
of non-zero elements to the size is considered as less than 0.5. If a sparse matrix is stored as a normal dense
matrix, most information stored will be zero elements which is highly inefficient. In order to perform faster
operations and use less memory, there are several different storage methods developed that only store those
non-zero elements, and the zero elements are left unspecified. Since the revolutionary development of
computers, many new alternatives have been developed. Many new algorithms and a number of new software
packages are designed for efficiently finding the solution of different sparse symmetric systems. However,
one important factor limiting the efficiency of solvers is the memory usage of the matrix. The author has
constructed a dense matrix for a shell model of 50*50 nodes which consumed 4 GB of RAM from a laptop
having 8 BG of RAM. Since the operation needed for solving a dense system increasing with the cube of the
matrix size, the computational time for solving this system is more than an hour when using a solver involving
factorization of the system matrix. The Python SciPy sparse package provides below implementations:

a) Coordinate Matrix & Dictionary of Keys Matrix

The simplest sparse matrix format is the Coordinate (COO) format. In this format, three subarrays are used to
store the element values and their coordinate positions. In doing so, the saved memory consumption can be
substantial for a large matrix. Managing the subarrays create overhead which can become negligible as the
dataset grows. It has to be noticed that the dataset should be sufficiently sparse enough otherwise the several
subarrays created by COO format might consume more memory.

Dictionary of Keys (DOK) format performs similar operations like COO except it stores element values and
their coordinates as key-value pairs in dictionaries. The built-in functionality come with dictionaries provide
convenience in constructing and updating matrices. In doing so, the key is hashed as the hash indicates for
looking up corresponding values. It means a constant lookup time for identifying values at any given location.

b) Compressed Sparse Matrices (CSR, CSC)

Three subarrays are stored in the compressed sparse matrices format: index pointers, indices, and data. The
(start, stop) slice of indices are recorded as adjacent pair of number in index pointers. The location of those
adjacent pairs in index pointers indicates the column number (if Compressed Sparse Row format (CSR) is
used) or row number (if Compressed Sparse Column format (CSC) is used). Then the left row number (if CSR
is used) or column number (if CSC is used) is determined by the numbers in the slice of indices. By doing so,
the location of each value in data array in the original matrix can be determined.

12

0 _ LRow 0 . Column
2 0 [——|8 ol1/2 3 4
=Row 1 ColNo.forrowt <
3 J ‘ 2 [——| 2 o |3 2
=-Row 2 -
3 Col No. for row 1 % 2 ——1 5 1 5
Row 3 — 5
3 2 |—1 7
Row 4 Row 3
6 ROW S Col No. forrow 4 = 3 S— 1 A 7) >
6 4 |——| 9 5
—Row 6
7 Col No. forrow 6 <’| 3 —* 2 6 9
Index Pointers Indices Data

Figure 3: Compressed Sparse Row format (index pointers, indices, and data)

- Row No.for Col 0 < 0 |——| 8 Column
0 ~ 01 2 3 4
— Column 0 0 |—.| 2
1 1 0 8 2
=] C(]lu]_]lu 1 Row No. for Col 2 < 1 - 5
1 1 5
= Column 2 4 |— | 7 2
4 —
Column 3 4 |——| 1 Row 3
6 Row N for Col 3 <
4 7 1 2
—¢ Column 4 6 |—— 9
7 — 5
-/ Row No. for Cal4 < 4 |—— 2 p 5
Index Pointers b

Indices Data
Figure 4: Compressed Sparse Column format (index pointers, indices, and data)

2. Solve

Solving large sparse linear systems has been a concerning issue for years. It lies at the heart of many problems
in computational science and engineering. Particularly when encountering discretizing continuous problems,
it is common that the constructed system is sparse and large. The direct method for solving a sparse linear
system A-x=bhinvolves the explicit factorization of system matrix A, such as Gaussian elimination, into the
product of lower and upper triangular matrices L and U. In the most case, a permutation of system matrix A
is used PAQ = LU where permutations P and Q are chosen to preserve sparsity and maintain stability.

Cholesky factorization u = LT is used if system matrix A is symmetric. Forward elimination followed by
backward substitution completes the solution process for each given right-hand side b. The direct methods are
the general and robust solution for many sparse linear systems. Meanwhile, the constructed system matrix A
in this shell code was a determined or overdetermined sparse matrix and storaged in CSR format. Below are
listed the solving methods which can deal with such systems matrices in an efficient way.

a) Linear regression:
In linear regression, the response of a system is assumed to be the linear combination of the predictors. From
the lecture from NYU (Fernandez-Granda, 2016), the linear regression model can be described as below: the

linear regression model is parametrized by the intercept f and weight vector ﬁ . For each value of response
vector y , the corresponding values of the predictors are Xjy Xijp Xj3, ... Xjp where p is the number of
predictors. And the response vector y contains 1 number of responses. The linear model is given by:

13

p
Yi =ﬂ0+zxijﬂj,1<i<n
j=

yi| [1 X Xz o Xp |4

ya | |1 Xo1 X2 - Xpp || B2

y=| |porXp=| x| ot |-
1 Ynl L1 X Xnz = Xnp |[Bp

The linear regression model is usually used in statistics aiming to predict the values of response accurately for
new values of the predictors. The accuracy of prediction of response can be improved as more data points are

included. The weight vector é is updated during this process. The sparse linear system A-x=b can also be
viewed as a linear regression model where the intercept By = Oas an inverse problem aiming to determine

weight vector é :

For p>n, in the condition of full-rank X, the solution of least-square problems is weight estimate s_ and
it is given by:

pe=(x"x) X"y

For n=p, which means the number of data points to fit the linear model that is the same as the number of
parameters, the exact solution of weight vector é can be found. However, this solution usually does not
reflect the actual relation between y and X since the model is too flexible with respect to the number of

available data. This phenomenon is called overfitting. As discussed above, the system matrices in the shell
code can be both determined and overdetermined, which means n > p. Linear regression is a suitable method

for a linear model when the number of data points Nl is large than the p is the number of predictors.

In this way, the problem of solving a sparse linear system A-Xx=bcan be restated as the estimation of the
weight vector s from the linear regression model y =X/ where the predictors X and response y are

known.

Currently the most popular method to estimate the weight vector s is to minimize the sum of the squares of
the fitting error on the training set, which is called least-squares estimation.

Minimize |y - X,

b) Least-squares estimation: Ismr solver from Python Package ‘scipy.sparse.linalg’

The Python Package ‘scipy.sparse.linalg’ provides an iterative solver ‘Ismr’ for least-squares estimation. Ismr
can solve the system of linear equations A-x=b. A is a sparse or dense matrix of dimension MXN where
all cases are allowed: M=N, M>N_ or M<N_ b isavector of length M. This solver is developed based
on the iterative method LSMR proposed by Fond and Saunders(2011).. LMSR is a numerical method for

computing a solution X of linear least square problem || Ax—b],. Compared to the well-known method LSQR

(Paige and Saunders, 1982), LMSR is also based on Golub-Kahan bidiagonalization of A. It has the property
of reducing HrkH and HArk H monotonically, where r, =b — Ax, is the residual for the approximate solution

14

x, - Hence, although LSQR and LSMR ultimately converge to similar points, it is safer to use LSMR in
situations where the solver must be terminated early.

The LSMR algorithm contains following major steps:

1. The Golub-Kahan process: It is an iterative procedure for transoforming A and b into upper-bidiagonal
form B8 and By. It is equivalent to what would be generated by the symmetric Lanczos process with

AT A and AT
2. Using Golub-Kahan to solve the normal equation: In order to find the solution X of the equation

ATA.x= ATb, the subproblem is to choose Yk to minimize HArkH at each stage. It is given by:

.
min||Ar || = min| Be; - ?k B
Yk Yk !

— tk
ke \Sk+1 0
4. The heart of LSMR algorithm: Thourgh matrix roatations and substitutions, the recurrence for the
approximated solution X is given by:

Xk :Xk—l_'_(ck jﬁk) I’_]k :hk_(ﬂJﬁk—l’ hk+1=l)k+1—(9/k)_l:1jhk

3. Two QR factorizations: Convert the subproblem into: min||Ark || =min
y

Pk Pk Pk-1Pk-1
Xy Py hk are updated for each iteration until the stopping rules are satisfied
5. Stopping rules: HrkH HAT e H HXkH and estimates of ||A|| and cond(A) are used. All quantitties are

computated at each iteratioin for checking the stopping rules. The pratical stoppig criteria includes three
rules:

S1: Stop if || < BTOL | + ATOL| Al
S2: Stop if HAT i H < ATOL || Al x|

S3: Stop if cond (A) > CONLIM

ATOL and BTOL are cv that can be set by the user. S1 is applied when the A-x =b system is consistent.
S2 is applied when the A-x=b system is inconsistent. If the both stop tolerances are le—6, then the

iteration will stop when the final residual |ri| is accurate to about 6 digits. Those stop tolerances are the

estimates of the relative error in entries of A and b, allowing for uncertainty in the system. This prevents
the algorithm from doing unnecessary calcualtion beyond the uncertainty of the input data.

CONLIM s the user-set limit for the conditon number of A. The stop rules S3 means the algorithm
terminates if the an estimate of cond (A) exceeds CONLIM . S3 can be applied to any system, consistent

or inconsistent. The cond (A) , the condition number for inversion of A ,is used to measure how sensitive

the inversion of matrix is to changes or errors in the input.

c) Sparse QR factorization:

15

As discussed above, the linear regression method can deal with a linear model when the number of data points
N is larger than the number of predictors P . However, in many applications, the number of data might not be

sufficient enough. Although the system matrices in the shell code gives n> p, difference ratio between
and p is 1=P- N

n M + N
equations. Meanwhile, M = 21x Number of body nodes and N =4 x Number of edge nodes . It means the

difference ratio actually becomes smaller for a model with larger number of nodes. In most cases, the number
of data points 1 is roughly equal to the number of predictors p . The linear regression may not able to solve

the system accurately. The overdetermined problem is obviously expected when fitting such model through
linear regression. Due to the sparsity of the system, not all predictors are involved for each data point. The S-
K equation contains 4 or 5 quantities on average, which means only around 20% of predictors are involved
for each data point. So, in terms of the linear regression problem, the matrix of predictors still is very sparse.

where M is the total number of S-K equations and N is total number of boundary

In the least-squares estimation of linear regression problem, QR decomposition is usually used to convert the
given matrix A into orthonormal matrix Q and upper triangular matrix R and A= QR . For a rectangular

matrix A with size of M x N, Q has size of M x Nand R has size of N x N . By introduce the A= QR
into system equation A-x =D, it gives below equation.

Ax=b—>ATA-x=ATb—LR ,rTATH=QTph

It is notable that the matrix R in the QR decomposition is a Cholesky factor of A'A. The A'A has a condition
number which is the square of A. On the other hand, the orthonormal matrix Q will be very dense in general
since A is large and sparse. It means A'A and Q usually cannot be computed explicitly which can adversely
affect numerical precision and robustness. So, it may not be advantageous to directly use the QR

decomposition for large linear sparse systems. Consequently, new steps are needed to provide more accurate
calculation, which is called the sparse QR factorization.

A sparse QR factorization usually contains following steps:

1. Permute the columns or rows of A so that the Cholesky factor of AT A (or the matrix R, which has the
same structure) remains sparse.
Compute a QR decomposition based on the permuted A to obtain matrix R

Solve Rx = QTb where QTb =R TATH

One solver with such features is the Im.fit.sparse solver from R Package 'MatrixModels'. It is a basic
computing engine for sparse linear least squares regression. This solver receives a sparse overdetermined
matrix as input and returns a vector of approximated solution where the sparse QR factorization method can
be used. However, due to the lack of information in the user manual and source code, the mathematical details
of this solver remain unclear. Previous research done by Svoboda, Cashman, and Fitzgibhon (2018) introduces
an open-source suite of solvers QRKit that can perform sparse QR factorization for common sparsity patterns.
Since QRKkit solvers share similar features with Im.fit.sparse solver, it can help to understand the how the
actual Im.fit.sparse solver might work.

The general strategy of QRKit solvers is to express matrix A as some combination of smaller matrices A, .
A, are divided based on shape and sparsity patterns to store and compute the QR factorization more

efficiently. Then those smaller matrices are processed through different methods leading to easier QR
factorizations. The final result of factorization of A is the combination of factorization of smaller matrices.
One of those process methods is row and column permutations which is are used in the most of sparse QR
factorization solver. If the sparsity pattern of A is not obvious enough to be categized, applying row and

16

column permutations is a suitable method which can convert an overdetermined and sparse A into a block
diagonal/banded matrix. The row and column permutation p, , p, would reorder the rows or columns of A

in order to create an A’ with ‘As-Banded-As-Possible’ sparsity pattern.
A'=P.A, A = AP,

In practice, both permutations are used in order to create A" with row-banded structure and reduce the fill-in
of the QR decomposition at the same time.

A =PAP,

Figure 5: Row permutation P, discovering banded structure in the matrix A. (c-d) Row permutation p, while
solving vertical concatenation of two matrices

=

-

(a) A b) P A (c) B (d) P B
d) Moore-Penrose inverse

The Moore—Penrose inverse, variously known as the generalized inverse, pseudoinverse, or Moore-Penrose
inverse, is common MxN method to find the solution of linear equations that cannot be computed through

least square method. For all matrices A whose entries are real or complex numbers, their Moore—Penrose
inverse A" is defined and unique. This matrix was independently defined by Moore in 1920 and Penrose (1955)
A Moore—Penrose inverse satisfy all of the following four criteria:

AATA= A ATAAT = AT, (AA+) — AAT, (A+A) —ATA

where A™ denotes the conjugate transpose for matrix A.

* _1 *
If the inverse of A*A exists, then: A* :(A A) A and ATA=1,

* * 1
If the inverse of AA™ exists, then: A" = A (AA) and AAT =1,

However, it is common that above conditions are not satisfied, meaning those inversions have zero or many
solutions. In this case, the approximated pseudoinverse can still be found with the help of single value

decomposition (SVD). Since A"A=1, is impossible, the problem now is to find the A*A~ 1, by minimizing
HAJ“A— I”Hg' The SVD provides the following solution:

At =vDTUT

17

where U, D, V respectively the left singular vectors, the singular values and the right singular vectors of A.

*
In SVD, the matrix A is a factorization of form UDV which is not unique. Since the singular values D is
rectangular diagonal matrix with on-negative real numbers on the diagonal, the pseudoinverse D+ can be
calculated by taking the reciprocal of non-zero values of D .

One significant impact of applying SVD is the high computational cost during the decomposition of the matrix.
According to Trefethen (1997), the first step of SVD is reducing the matrix into a bidiagonal matrix. The
second step is to compute the SVD of the bidiagonal matrix through an iterative method with set-up certain

precision. The overall computational cost is about O(mn?) floating-point operations (flops). With particular
p Y

methods (Householder reflections, QR algorithm), the overall cost ranges from 2mn? to 4mn? flops. It is
several times higher than the normal matrix multiplication.

The pinv solver from the Python numpy package is able to perform the above calculation.

18

3. Shell code and tests

This section provides the general mathematic details and programming structure of the shell code. The basic
workflow of the code is introduced. Some important steps like the formation of matrices, construction of
square matrices, and loading and plotting are explained specifically. In order to prove the general universality
of the shell code, two shell models with various material properties, geometry shapes, boundary conditions
were set up. A number of tests were organized to investigate influential factors including number of nodes,
types of solvers, different methods of keeping the matrix square, and different difference approximation
methods.

3.1Work flow of code

This code is designed to deal with simple shell model problems by solving Sanders-Koiter equations at a nodal
level where the differentiation in equations is replaced by the finite difference method. With proper input
parameters, several sparse matrices are constructed to form an overdetermined sparse linear system [M]*[u]
= [f] where [M] represents the stiffness matrix of the modelled shell structure, [u] represents the vector of
deformations, forces and moments at nodal level, and [f] represents the vector of applied forces or prescribed
deformation at nodal level. Vector [u] is solved and reconstructed to generate 21 plots of nodal results of u,,

uyl uzv gxxv gyyv 7xy’ (oxa ¢y1 wza Kxxa Kyyv pxya nxxa nyya nxya nyxa an Vya mxx) myyaand rnxy
The work flow of code can be summarized and illustrated as below:

Step 1: Inputs of parameters to determine material property, geometry of models and boundary
" condition type

Step 2: Define differential equations in x and y direction by finite difference methods

Step 3: Create empty matrices for [M], [u] and [f]

Step 4: Add Sanders-Koiter equations to overdetermined sparse matrix [M] while add load
" components to [f]

Step 5: Defined the boundary conditions by adding components to [M] and [f]

Step 6: Solve [u] from [M]*[u] = [f] by several different solvers

Step 7: Postprocessing and display results of solved [u]

o~ -

o ™,
[SolvedbyR

/_ - \ solvers / _ -
."/ Construct \\ S A .f/ Plot output \\
| matrixes in } | vector in |
_ pythn S| 7 ™, | _ Python /

h - { Solvedby) — —

Step 1-5 \, Python solvers | Step 7
N d
Step 6

Figure 6: Work flow of code

In step 6, several different solvers from the R language and Python language are tried and compared in order
to obtained satisfactory accuracy. The comparison between different solver results is shown in below section
of solver performance analysis with solver computation time and memory usage.

By comparing shell code results with the analytical solution and finite element solution, one set of results with
highest accuracy is selected as main results to be shown in below section of code results.

Meanwhile, for an overdetermined system like [M]*[u] = [f], [u] cannot be solved exactly and an
approximated [M] is used in the calculation. To find out which Sanders-Koiter equations are approximated
and the extent of that approximation, some equations are left out in order to construct [M] as a square matrix.

19

The specific details of replacing equations with boundary conditions are shown in section of formation of

square matrix (Section3.3.6, page 27).

3.2Tested models

To fully demonstrate the capability of the shell code, two shapes were tested (Table 6) with various boundary
conditions (Table 7) and various numbers of nodes. Table 8 specifies the boundary condition equations. The
configuration of tested five tested models are summarized in Table 9. There are two load cases involved:

uniformly vertical load and uniformly normal load. They both have the magnitude of p=-10 kN/m? . The
direction of uniform vertical load is aligned with the global vertical axis. The direction of uniformly normal

load is perpendicular to the middle surface of shell.

Table 6: Geometry and material parameters of models

Flat square shape

Length | =1m, thickness t =0.06m
Young's modulus E =21-10" kN/m?
Poisson's ratio nu =0.3

Number of nodes in x direction: m
Number of nodes in y direction: n

Shell curvature: kyy =Ky =kyy =0

I
m-1"Y n-1
In plane curvature: Ky =k, =0

< I
Lameparameters: «, = ay =

Canopy shape

Length I =12m, radius a =2m,thickness t =0.06m
Young's modulus E =21-10" kN/m?

Poisson's ratio nu =0.15

Number of nodes in x direction: m

Number of nodes in y direction: n

Shell curvature: k,, = Ky =0,kyy =—=

?
o

Lameéparameters: «, = ——1’ay -2

n—

In plane curvature: Ky =k, =0

Table 7: Pinned edges and Cantilever boundary conditions

edges

Pinned edges: Fixed translation at all | Cantilever: Fixed translation and rotation

at one edge

Flat square shape

20

Canopy shape

Table 8: Boundary equations

Pinned edges: Fixed translation at | Cantilever: Fixed translation and
all edges rotation at one edge
Edge in the x direction and Ux=Uy =U; =0 Nyx —KxxMyy =0, Nyy —KyyMyy =0
the y axis pointing OMyy
outwards —Myy =0 Yyt =0 My =0
— —Nyy + KyxMyy =0, —Ny, + KyoyMyy =0
Edge in the x direction and Uy =y =tz =0 T
- - - - Xy _ _
the y axis pointing inwards My =0 —Vy —— 0,myy =0
Edge in the y direction and Uy=Uy =U; =0 Uy=Uy =U; =0
the x axis pointing
outwards —Myy =0 px =0
Uv=Uv =U 0 Ny kxymxy =0, Nyy kyymXy =0
Edge in the y direction and XHy =" om
the x axis pointing inwards Myy =0 Vy + =0,myy =0
Free corners / My Ty Myy =0
2
Table 9: Model configuration
No. Shape Bour_@ary Load case Number of
conditions nodes
Model 1 Pinned edges . .
- m=n =20, 30,50

Model 2 Flat square shape Cantilever Uniformly vertical load

Model 3 Pinned edges | Uniformly vertical load

Model 4 Canopy shape . Uniformly vertical load m=n=230,50

Cantilever -
Model 5 Uniformly normal load

3.3Differentiation approximated by FDM

Ky Ny + K (n +n)+k n +%+%+kq +kyqy +p; =0
xxxxxyxyyxyyyyaxayyxxyz

Sanders-Koiter equation 1

© ®

Differentiation

In order to add Sanders-Koiter equations to matrix [M] at nodal level, differentiation of that equation is
required to be translated into a discrete form where the finite difference method takes place. The first order

21

ot () _fia—fi

derivative of f(X)is given as PO *L and the one-sided finite differences of first order derivative
Oy
of (x 3.fi—4.f; f.
is a(x):_) ; 417042 e giferentiation of one quantity (ey, o,) in the shell code is
Uy

approximated by predefined finite difference functions (Dx(k,g), Dy(k,g)) where k represents the quantity
to be differentiated while §works as positive/negative sign of the value (g = -1/1).

g
Central Dy (k) =5 —(i1~ fisa) Dy (K, g)zi(fia- fj_l)
difference: X 20y
Forward Dy(K,9)=52—(3- fi—4-fisg+ fiu2) Dy (k,g)=—2 ' ' '
N ! ,g = 3‘f _4'f+1+f+2
difference: 20t y (k.9) 201y]])
g
Backward Dx(k,g):—20L (3-fj—4-fig+ fi_2) Dy(k,g)z_i(gfj_4.fj_1+fj_2)
difference X 201y
def Dlx(k,q): Location:
if 1i==0: (at left edge)
M[row, k*m*n+j*m+i+2]=-1*qg/ (2*alphax (i/ (m-1),3/(n-1))) k3 = k*m*n+j*m+i+2
M[row, k*m*n+j*m+i+1]= 4*g/(2*alphax (i/ (m-1),3/(n-1))) k2 = k*m*n+j*m+i+l
M[row, k*m*n+j*m+i]=-3*g/(2*alphax(i/(m-1),3/(n-1))) k1l = k*m*n+j*m+i
elif i==m-1: (at right edge)
M[row, k*m*n+j*m+i]= 3*g/(2*alphax(i/(m-1),3/(n-1)) k3 k*m*n+j*m+i

M[row, k*m*n+j*m+i-1]=-4*g/ (2*alphax (i/ (m-1),3/ (n-1))
M[row, k*m*n+j*m+i-2]= 1*g/ (2*alphax(i/ (m-1),3/(n-1))

k2 k*m*n+j*m+i-1
k1l = k*m*n+j*m+i-2

—_— — —

else: (inside grids)
M[row, k*m*n+j*m+i+1]= 1*g/ (2*alphax(i/(m-1),3/(n=-1))) k2 = k*m*n+j*m+i+1
M[row, k*m*n+j*m+i-1]=-1*g/ (2*alphax (i/ (m-1),3/(n-1))) kl = k*m*n+j*m+i-1
return

Code 1: Finite difference approximation in x direction

3.4Formation of matrix [M]

The size of matrix [M] depends on the number of nodes and applied boundary conditions. The number of
columns is 21-mn and number of rows is 21-mn+8-m+8-n for pinned edge boundary condition where
8-m+8-n is from four boundary equations for each edge node. If free corners exist, the additional boundary
equations are added at free corner nodes. Each free corner node requires two additional boundary equations.
For cantilever boundary condition where two free corners exist, the number of rows is 21-mn+8-m+8-n+4.

As defined in Sanders-Koiter equations, 21 unknown quantities are assigned to each node. which are Uy, Uy,

UZ! 8X)(! 8yy! nya (PX1 (Py; (P21 KXX! Kyy; pxy, n)()(1 nyy; nyx, VX; Vy; mXX1 myy, me . Durlng the COde

tests, they are assigned with an integral value from 0 to 21 indicating their proposed location in a solved [u]
in order to extract results accordingly.

For example, Sanders-Koiter equation 1 is added to the matrix [M] by the adding process code. For adding
one value to matrix, the process can be described as
M[Row number, K -m-n+ j-m+i]= Parameter of unkown . In this expression, K is the assigned integral
value from 0 to 21 representing the location in the solved [u] vector. j is the coordinate of the node in v
direction and i is the coordinate of the node in u direction.

22

oay Yy
Ky + Ky (Ny + Ny)+ Ky Nyy +—= +—=+ Ky 0y +KyQy + p; =0
xxxx xy(Xy yx) why 5, Y ydx +Xx0Ay + Pz

@ @ ©

Sanders-Kaoiter equation 1

1: M[row,nxx*m*n+j*m+i]=kxx (i/ (m-1),73/
2: M[row,nxy*m*n+j*m+i]=kxy (i/(m-1),73/(
3: M[row,nyx*m*n+j*m+i]=kxy(i/ (m-1),7/

Adding process

The adding process contains two loops (Loop (1) & Loop 2). In Loop (1), adding process is repeated for every
node at one line along u-direction. Loop (2) repeats Loop (1) until all lines are fulfilled, so that unknown

quantities are added to every node. In each adding process, the parameters of unknowns are added into
matrices as their location in [M] is altered with changing i and j in the loops.

row=-1
for j in range(n): # Add Sanders-Koiter equation 1 to the matrix Nttt
for i in range (m) : 3\
row=row+1l
M[row, nxx*m*n+j*m+i]=kxx (i/ (m-1),3/ (n-1))
M[row, nxy*m*n+3j*m+i]=kxy (i/ (m-1),73/ (n-1))
M[row, nyx*m*n+j*m+i]=kxy (i/ (m-1),3/ (n-1))
M[row, nyy*m*n+j*m+i]=kyy (i/ (m-1),73/(n-1)) >L00p @ >Loop ®
Dx (vx,1.0) - -
Dy (vy,1.0)

M[row,vx*m*n+j*m+i]=ky(i/ (m-1),3/ (n-1))
M[row, vy*m*n+j*m+i]=kx (i/ (m-1),73/(n-1))
flrow]=-pz (i/(m-1),3j/(n-1)) J /
Code 2: Add Sanders-Kaoiter equation 1 to the matrix [M]

3/
3/

The column number of starting points for unknown quantity K is K -m-n. For each adding process in Loop
(1), the column number and row number increased accordingly for m times. Then Loop (2) repeats Loop (1)
for n times. Meanwhile for every Loop (1), the row number is incremented by one. By adding one equation,
m-n rows of matrix have been generated.

The below figure shows the pattern of non-zero values in matrix [M] during this adding procedure where the
values are diagonally distributed. The same adding procedure is also utilized for adding boundary conditions
at edges and corners. While adding values to [M], the force vector [f] is also filled with applied force
components.

Loop_©
K1-n1-n |(2.rn.n T(S.nq.n
\Y4 v \%

row=row+1@)

j=0 > row=m
i =m

— — Y,

Loop @ @ {
j=1 L row=m

J

T

Ki-m-n+j-m 23
Ki-m-n+j-m+i

Figure 7: Add equations to [M]

After all equations and boundary conditions have been added to [M], the distribution of non-zero values in
matrix [M] is simplified as below. The completely assembled matrix [M] is a rectangular sparse matrix where
values are in parallel to the diagonal line of the matrix.

We0 uy=l | uz=2 psilonwc3psilonyy=tammaxy=5 _phix6: _phiy=T:

phiz=8; kappaxc9appayy=1C how=11; necl2i nyy=13 nw=14 nyels wels | vy=IT | mecls | my=19 my=20

Eql

B

Eq@

E3

Eqd

g5

£

Eq7

Eq8

Eq9

Eq10

Eqll

Eq12

Eq13

Equ4

Eql5

Eql6

Eq17

M] [f]

Figure 8: Non-zero value distribution in [M] and [f]

3.5Loading steps and plotting steps

Sanders-Koiter equations give the vertical displacement u, which is in the normal direction of the mid surface
of the shell. For the non-flat geometry like the canopy shape used in model 3-5, the direction of u, for those

models does not comply with the global z-axis. In order to apply vertical load and plot the vertical
displacement in global z-axis, different definition is required at loading step and plotting step of shell code.

The total displacement Uyy, is calculated as u,y, :\/uX2+uy2+u22 by those calculated u, , Uy, and u,

results.

Uniformly vertical load for model 1& 2:

Uniformly vertical load for model 3-5:

def px(u, v):
return 0O
def py(u, v):
return O
def pz(u, v):
return p #p = 10 kN

def px(u, v):
return 0
def py(u, v):
return
p/ (math.sin(v*math.pi) *math.tan (v*math.pi)+math.cos (v*m
ath.pi))
def pz(u, v):
return
p*math.tan (v*math.pi) / (math.sin (v*math.pi) *math.tan (v*m
ath.pi)+math.cos(v*math.pi)) #p = 10 kN

Normal load for model 3-5:

def px(u, v):
return 0

def py(u, v):

24

return 0
def pz(u, v):
return p #p = 10 kN

Code 3: loading step for different models

x[31011, yI[jl1[il, z[Jjl[i] are the displacement results solved by S-K equations

if modelv == 1: # when geometry shape is canopy shape
for j in range(n):

for i in range (m)
X[310i] = x[3][4]
Y[31[1i] = y[jl[il*math.sin(j/ (n-)*math.pi)+z[j][i]*math.cos(j/(n—l)*math.pi)
Z[31[1i] = y[jl[i]l*math.cos(j/ (n-1)*math.pi)+z[j][i]*math.sin(j/ (n-1) *math.pi)
UXYZ[]] [1] = math.sqrt (x[]] [11**2+ym [1]**2+2[§] [1]**2)
elif modelv == 2: # when geometry shape is flat square
for j in range(n):
for i in range(m):
X[J1[1i] = x[3]1[1]
UY[]][i] = y[31I[1i]
UzZ[j11i] = z[3]1[1]
UXYZ[J][1] = math.sgrt(x[J][1]**2+y[J][1]1**2+2z[J][1]**2)

Code 4: plot the vertical displacement in global z-axis for different models

3.6 Formation of square matrix [M]

As shown in above section, the constructed matrix is in rectangular shape. It requires the solver of shell code
should able to solve an overdetermined sparse system. Only an approximated solution can be found for such
system. It is possible to find a way to make the matrix square by replacing boundary condition equations at
edge nodes with S-K equations at internal nodes. Solving such square matrix might produce results with higher
accuracy compared to the solution of rectangular matrix. Below sections show how the equations are
distributed for nodes and show three different ways of making the matrix square.

a) Distribution of assigned equations in rectangular matrix

As shown above, the matrix [M] is a rectangular sparse matrix because additional boundary condition
equations are defined for edge and corner nodes. In order to make a square matrix, some of the equations at
edges and corners need to be removed. The distribution of assigned equations for the nodes can be different
in case of the appearance of free corner.

Free corner . fixed corner T fixed corner
| nodes Edge nodes nodes Edge nodes nodes

D - 0~ 0=
e s s esess0s s s S0 0 s 00080000000
® & & & & & & & & O OO e EeeeD ® 0SSOSO CRTPOIEOIPOICOTPOTETPTTPOETS
400 e 0000000000000 LA S A g
e s 000t e 000000000 A A A A
IR R R AR AR S S S S
e s eessesssscsssnsse AR AL A AL A S S i
e s s essss 0000000 AR RS EEE LR
¢ o e 00 e o e e e ofnemalnodes| o o o o.-....!.o[nfemaluodes * e 0
I R R Ry ¢ees st L
-

e s e s sesssscssssse AR A A A A AR A S S S
e s s 00 sss s s 0000 bR AR A S
4000000000000 000000 ¢ee sttt
g0 0000000000000 0000 SN NEIINIONOSIOESES e
e s s s sssosscssss e ¢ttt

ARy
® & & & & & & & & O O O e Pee e
40 e 0000 000000000000 S0t seNRNESINRNRNTe

tSe s s s s s ses st eSO
® © & © 0 0 0 0 " 0 " 00 e e 0

AR R R
4000000 000000000000 p
[n1- &> $u 1
=

—>
m-1 L J
{) v
v m
m

Figure 9: Distribution of assigned equations in the rectangular matrix

Table 10:Number of assigned equations in rectangular [M]
Cantilever: Pinned edges:
Number of nodes Number of nodes

Nsk Nge | Nage

Node type

25

Edge nodes 2-m+2-n—8 2-m+2-n—8 21 4 /
Free corner) / 21 8)
nodes
Fixed corner) 4 21 g /
nodes
Internal nodes | (m-2)-(n-2) (m-2)-(n-2) 21 / /
(Total number
of nodes) m-n m-n

(NSK : Number of defined Sanders-Koiter equations per node,
Ngg : Number of defined regular boundary equations per node

N agg - Number of defined additional boundary equations per node)

In addition, on the cantilever fixed edge corner node only impose ux = uy = ux = phix = 0. The reason is that
this node is fixed and not free at the same time. The adjacent node on the free edge is really free

The total number of equations are calculated for the two boundary conditions which determines the number
of rows in rectangular matrix [M].

Cantilever: (21+4)-(2-m+2-n—8)+(21+8+2)-2+(21+8)-2+21-(m—2)-(n—2)=21-mn+8-m+8-n+4

Pinned edges: (21+4)-(2-m+2-n—8)+(21+8)-4+21-(m—2)-(n—2)=21-mn+8-m+8-n

b) Central node method
As boundary equations are essential for constraining shell behavior, some Sanders-Koiter equations at internal
nodes have to be taken out. One way of doing that is only add the full Sanders-Koiter equations to a small
group of central nodes (4 < i <m-5, 4 <j < n-b). Except the internal nodes marked below, only 20 Sanders-
Koiter equations are added for the rest nodes.

fixed corner

Edge nodes nodes

0=

® © & & 0 0 ¢ 0 O 0 000 0 0 0 00
® © & & 0 0 0 0 O O 000 0 0 0 00
® © 0 0 0 0 9 0 0 0 0 00 0 0 0 00
® © 0 0 0 0 9 0 0 0 0 00 0 0 0 00

Central nodes

® & & & & 0 & & O

.

[]
[]
[]
L]
L]
[]
[]
[]
[]
[]

Intermediate
nodes
]

L]
L]
L]
L]
L]
L]
L]
L]
L]
L]
L]
L]
L]
.
L]
L]
L]
L J

L]
L]
L]
L]
.
L]
L]
L]
L J

m-5 m-1

Y
m

Figure 10: Modified distribution of assigned equations by central node method

Node type

Cantilever: Number of

nodes

Pinned edges: Number of
nodes

Nsk

Ngg

N ABE

26

Edge nodes 2-m+2-n—8 2-m+2-n—8 20 4 /
Free corner ? / 20 8 2
nodes
Fixed corner
nodes
'”ter:(rﬂj‘zci'ate 2.(4-(m=6))+2-(4-(n-6)) | 2-(4-(m—6))+2-(4-(n-6)) | 20

Central
nodes
(Total

number of m-n m-n
nodes)
Table 11:Number of assigned equations in square [M] by central node method

2 4 20 8 /

(m-10)-(n-10) (m-10)-(n-10) 21 / /

The total number of equations are calculated for the two boundary conditions which determines the number
of rows in rectangular matrix [M]:

(20+4)-(2:m+2-n—8)+(20+8+2)-2+(20+8)-2+20-[2:(3-(M=6))+2:(3:(n-6))]
+21-(m-10)-(n-10)=21-mn—-2-m—-2-n+104
(20+4)-(2:m+2-n—8)+(20+8)-4+20-[2:(3:(Mm—6))+2-(3:(n—6))]|
+21-(m-10)-(n—-10)=21-mn—-2-m—2-n+100

Cantilever:

Pinned edges:

In fact, by removing one Sanders-Koiter equation for intermediate nodes, when m=n>25, the previous
overdetermined matrix becomes underdetermined. The spare rows are filled with zeros in order to make the
matrix square. If m=n<=25, the row number is larger than the column number making an overdetermined
matrix. So that in following model tests, the model 1 and model 2 with 20*20 node are not tested.

for j in range(n): # Add Sanders-Koiter equation 21 to the matrix ------——---------------————
for i in range (m):
BCs () # adding boundary conditions at edges and corners

if i <m-5 and 1 > 4 and j < n-5 and j > 4:
row=row+1l
M[row, rhoxy*m*n+j*m+i]=-1
Dly (phix,1.0)
D1x (phiy,1.0)
M[row,phiz*m*n+j*m+i]=kxx(i/ (m-1),3/(n-1))-kyy(i/ (m-1),3/(n-1))
M[row,phix*m*n+j*m+i] +=-kx(i/(m-1),3/(n-1))
M[row,phiy*m*n+j*m+i] +=-ky(i/ (m-1),3/ (n-1))

Code 5: Adding Sanders-Koiter equation 21 only to central nodes

c) Undefined node method
Another way is simply not adding one of the Sanders-Koiter equations for all nodes. The adding process stops
when the number of remained nodes is equal to the number of required boundary equations. | In this way,
there is a part of the internal nodes only having 20 Sanders-Koiter equations which is called an undefined
internal node as shown below.

27

fixed corner
nodes

® & 06 0 0 00
o e 0 0 00

=
=
5
=1
w

® O ® 0 0 0 0 0 0 0 00
® © & 0 & 060 000 — 00 00 0 0o

® & & 0 &6 0 0 0 0 0 0o
® e & & 0 06 0 0 00 0 00

® 0 ¢ 0 0 ¢ 0 0 0 0 0 00

Undefined
Internal
nodes

® © ¢ 0 9 0 000000 0O 0 o0
® © & 0 0 06 0 000 00 0 00 0 00
® & & 0 0 06 0 00600060 00 0 0o
® ¢ 0 0 000 00 O O O 00O O OO0
® © & 0 & 060000 0 00 00 0 0o
® & 0 0 0 0O 00000000
..0....0..&.......
® ® & 0 0 0 0 0 0o

® & & 0 0 06 0 00600060 00 0 0o
® © ¢ 0 9 0 000000 0O 0 o0
® © & 0 0 06 0 000 00 0 00 0 00

® & & 0 0 0 0 0 00
® ¢ 0 0 0 0 0 00

s
m

Figure 11: Modified distribution of assigned equations by undefined node method

Table 12:Number of assigned equations in square [M] by undefined node method

Cantilever: Pinned edges: N N N
Node type Number of nodes | Number of nodes SK BE ABE
Edge nodes 2-m+2-n—-8 2-m+2-n—-8 21 4 /
Free corner nodes 2 / 21 8 2
Fixed corner ’ 4 21 8 /
nodes
Undefined internal 8-m+8-n+4 8.m+8-n 20
nodes
m-2)-(n—-2 m-2)-(n-2
Internal nodes () () () () 21 / /
—(8-m+8-n+4) —(8:m+8-n)
(Total number of
nodes) mon mon

Under such configuration, the calculated total number of equations is equal to the number of columns in both
two boundary conditions.

Cantilever: (21+4)-(2-m+2-n—8)+(21+8+2)-2+(21+8)-2+20-[(m-2)-(n—2)—(8-m+8-n+4)]
+21-(m-2)-(n—2)=21-mn
(21+4)-(2-m+2-n—8)+(21+8)-4+20-[(m—2)-(n—2)—(8-m+8-n+4)]

Pinned edges: +21-(m-2)-(n—2)=21-mn

28

for j in range(n):
for i in range (m):
row row + 1
M[row, rhoxy*m*n+j*m+i]=-1
Dly (phix,1.0)
Dlx (phiy,1.0)
M[row,phiz*m*n+7j*m+1i]
M[row,phix*m*n+j*m+i]
M[row,phiy*m*n+7j*m+1i]
if row > B-(C)-1: # B
break

+=-ky (i/ (m-1)
21*(m) * (n) ;

else:
continue

if row >= B-(C)-1:
break

for j in range(n):
for i in range (m):
BCs ()

ZkXX(i/(m—l),j/(n—lﬂ
+=-kx (i/ (m-1), 73/ (n-

+ 3/ (n-

’

C

adding boundary condtions

))

Add Sanders-Koiter equation 21 to the matrix

kyy(l/(m 1),3/(n-1))

8*n+8*m+4 or 8*n+8*m+

Code 6: Adding Sanders-Koiter equation 21 to nodes except the undefined nodes

d) Equation replacement method

The third method is replacing specific Sanders-Koiter equations at only edge nodes. The selection of replaced
Sanders-Koiter equations follows the types of quantities in defined boundary condition equations.
Additionally, several Sanders-Koiter equations at corners are also replaced based on the types of quantities in
defined corner boundary condition equations. The number of replaced Sanders-Koiter equations is equal to
the number of added boundary equations at edges and corners. The correlation between replaced Sanders-
Koiter equations and added boundary equations is listed in below.

Corner nodes Edge nodes

e —0—0—0—0—0—0 o —0—0—0—0—0—0—0
¢ 6 06 0060600600000 0090 0 0 0 ¢
® & & 0 O 0 5 OO OO0 SO0
® O & 0 O O O OO OO OO OO O OO 0
¢ 0 0006000 00000090 0 0 0 ¢
¢ 6 06 0060600600000 0090 0 0 0 ¢
® & & 0 0 & 0 5 000 0 0 0 000 0 0
® ¢ & 0 O O O O O OO OO Oe e O e 0
® ¢ 0 0 ¢ ¢ 0 @ ¢ ¢ ¢ Infernalnodes | @ @ ¢ o
¢ 0 00 06000 0066 00000 0 0 ¢
¢ 6 06 0060600600000 0090 0 0 0 ¢
® & & 0 O 0 5 OO OO0 SO0
® O & 0 O O O OO OO OO OO O OO 0
¢ 0 0006000 00000090 0 0 0 ¢
¢ 6 06 0060600600000 0090 0 0 0 ¢
® & & 0 0 & 0 5 000 0 0 0 000 0 0
® ¢ & 0 O O O O O OO OO OO O OO 0
O & 0 O ¢ O O O O O OO OO OO0
Comernodes | @ @ © @ ¢ ¢ ¢ @ ¢ ¢ ¢ 0 ¢ o

0
L

m-5

0

Corner nodes

rn

Corner nodes

Y
m

—

én 1

Figure 12: Modified distribution of assigned equations by undefined node method

Added boundary Replaced Sanders- Added boundary Replaced Sanders-
equations Koiter equations equations Koiter equations
u; =0 S-K equation 1 Nxy —KyyMxy =0 S-K equation 9
ux =0 S-K equation 2 Nyx —KsxxMxy =0 S-K equation 9
uy =0 S-K equation 3 My =0 S-K equation 10
Omxy . —0 .
vy + Y 0 S-K equation 4 Myy = S-K equation 11
y
o
vy + f;]xxy =0, S-K equation 5 Myy =0 S-K equation 12
Myox — Ky My =0 S-K equation 7 ¢x=0 S-K equation 16

29

Nyy ~ Koy My S-K equation 8 gy =0 S-K equation 17
Table 13: Replaced S-K equations and boundary equations correlation

For pinned edges boundary condition, as shown in boundary equation table (Table 8), five different boundary
equations are involved: u, =0, u, =0, Uy =0 Myx =0 and Myy =0. The corresponding replaced Sanders-

Koiter equations are equation 1 to 3 and 10 to 11. For cantilever boundary condition, the replaced Sanders-
Koiter equations include equation 1 to 11 and 16. Based on boundary equations, four corresponding Sanders-
Koiter equations are replaced for each edge node. For corner nodes, the Sanders-Koiter equations are removed
without adding boundary equations to avoid repeated definition of boundary condition. The required boundary
condition equations are defined by adding additional boundary equations.

Table 14:Number of assigned equations in square [M] by undefined node method

Cantilever: Pinned edges: N N N
Node type Number of nodes | Number of nodes K BE ABE
Edge nodes 2-m+2-n—-8 2-m+2-n—-8 17 4 /
Free corner nodes 2 / 17 0 4
Fixed corner . 4 17 0 4
nodes
Internal nodes (m=2)-(n-2) (m=2)-(n-2) 21 / /
(Total number of
nodes) mon mon

The total number of equations are calculated for the two boundary conditions which determines the number
of rows in rectangular matrix [M]:

Cantilever: (17+4)-(2-m+2-n-8)+(17+4)-2+(17+4)-2+21-(m—2)-(n—2)=21-mn
Pinned edges: (17+4)-(2-m+2-n-8)+(17+4)-4+21-(m-2)-(n—2)=21-mn

Table 15: Additional boundary equations

Pinned edges Cantilever
n +Nn
Free corners / 2
Myx =0 myy =0
. uZ:O’uXZO’Uy:O’ uZ:O’uXZO'Uy:O'
Fixed corners
myx =0 OF myy:O oy =0 OrF (Py:O

3.7Model tests of rectangular and square matrix

For the purpose of finding the approximation of results during the sparse matrix solving, both rectangular and
square matrices are constructed for all models. The constructed systems are solved with a least square solver
(Python solver: from scipy.sparse.linalg import Ismr) for further comparison. The test configuration is listed
below.

Table 16: Rectangular and square matrix test configuration

(Leastsquare method | \io4ei9 | Model2 | Model3 | Model4 | Model5
solver)

Rectangular matrix Test R1 Test R2 Test R3 Test R4 Test RS

Square matrix Test SC1 Test SC2 Test SC3 Test SC4 Test SC5

30

(central node method)

Square matrix
(undefined node method)
Square matrix
(equation replacement Test SE1 Test SE2 Test SE3 Test SE4 Test SE5

method)

Test SU1 Test SU2 Test SU3 Test SU4 Test SU5

3.8Solver tests

The performances of three solvers have been compared

1) Python least square method (rectangular and square matrices)
2) Python singular value decomposition (rectangular)

3) R linear sparse model fitting (rectangular and square)

Table 17 and 18 show the extra computations that have been performed.
By various initial inputs of geometry, boundary conditions, load components and node number, sparse
matrices [M] and [f] are constructed and saved in files. To evaluate the capacity of various solvers, all models

are solved with other solvers than the least square method solver. The test configuration is list as below.

Table 17: Solver test configuration of rectangular matrices
Model 1 Model 2 Model 3 Model 4 Model 5

Python solver:

from numpy.linalg import pinv Test P1 Test P2 Test P3 Test P4 Test PS5
(Singular value decomposition)

R solver:

MatrixModels:::Im.fit.sparse Test LM1 | Test LM2 | Test LM3 | Test LM4 | Test LM5

(Linear sparse model fitting)

The sparse rectangular matrix [M] is constructed in the form of the Python dok matrix (dictionary of keys
based sparse matrix). The completely assembled matrix [M] is converted into coordinate format and saved as
npz. file whose size is determined by the number of nodes. The size of the saved [M] is 175 kb for 30*30 node
model and 450 kb for 50*50 node model. If a R solver is applied, the [M] have to be reconstructed into a
readable R sparse matrix, while sparse matrix [f] is constructed in the form of a Python array and saved as
npy. file. The size of saved [f] is 154 kb for 30*30 node model and 420 kb for a 50*50 node model. Then the
calculated [u] array is saved as npy. file and results are extracted from it to generate the 21 plots (Fig. 17).
The above process can be summarized as the flow chart below. Beside the generated plots, the computational
time and memory usage during the execution process is also recorded.

Solved by R solvers

—Toaded & (181
‘*a@cmsfuc/teﬂ/. R dgC Matrix.
[™M] 3;\[e
i ket Y
- - python .dok —>< oo ">—->

/ Construct N matr S~

| mauixesin) /7 Plot output

N python 4 [vector in]

python _ Pythm
Step 1-5 array - .-~

Step 7

Salved by Python solvers
Step 6

Figure 13: Work flow of solver tests

31

For the constructed sparse square matrix [M] by equation replacement method, the R script solver of linear
model fitting is used to be compared with the results of least square method solver.

Table 18: Solver tests of square matrices (The matrices are made square by the equation replacement method)
(Square matrix, Equation replacement Model 1 | Model 2 Model 3 Model 4 Model 5
method)

R solver:
MatrixModels:::Im.fit.sparse
(Linear sparse model fitting)

Test Test Test Test Test
SLM1 SLM2 SLM3 SLM4 SLM5

3.9Five-point difference approximation and their tests

In the above tests, three-point interpolation is used for the first derivative expression in the Sanders-Koiter
equations. When performing a finite number of steps to approximate a process with infinitely many steps,
discrepancies arise between the approximation and actual expression. By expanding the function in a Taylor
series around the point where the finite difference formula approximates the derivative, the truncation error
can be calculated.

Truncation error

Central _ 1., 2 4)
difference: R_24f (t)at +O(At
Forward IR PYTRGW, 3)
difference: R_sf (t)at +O(At
Backward _ ol a2 3)
difference R= 3f (t)at +O(At

1

The dominating term for small Atis 2—14 f7(t)At?, 3 f7(t)At? and —% f"(t)At? in above expressions which

are proportional to at? and the truncation error for two-point difference approximations is of second order in
At. Thus, three-point difference approximation is a second-order accurate discretization of the derivative.
Such error might play an essential role in evaluating the accuracy of calculation results of shell code. In order
to investigate the effect of truncation error, two set of difference approximations with higher level accuracy

were used in several tests. They both are five-point interpolations but with different difference coefficients as
listed below.

Five-point difference approximation type A:

Central 39 g _9 .

D, (k,g)=—(f_,—f = (-1 f. Dy(k,g)=—"{--- fooerenn
difference: x(k.9) 4ax(i-1 |+1)+8ax(i2* fi2) y(g) ay(J)
Forward :i(_i o3y 3 A5, Tlg j g
difference: Dy (k,9) oy | 56 fi + >8 fina 7 firo+ 58 fir3 56 fira Dy(k,g)—a—y(----- fj ------)

13 3 6 3 1
Dx(k,g):ai[—z—S fl_l_ﬁfl+7f|+1_ﬁfl+2+2_8f|+3) Dy(k'g)zi(...... fJ)
X a
y
Backward =_i[_i o, 3 3. 4. Tl j g _
Backward Dy (k,9) o | 55 fitosfia—-fia+ fia—c fia Dy(k'g)_a_y(...... e)
13 3 6 3 1
Dx(k,g)z—aix[—g f|+1_ﬁfl+7fl—l_ﬁfl—2 +%f|_3j Dy(k,g):i(...... fJ)
o
y

Five-point difference approximation type B:
32

difference: Dx(k’9)=é—gx(fi—1—fi+1)+&(—fi—z+fi+2) Dy(k’9>:f—y(""" fjeee)
o Dx(k'g):%(‘%fi+48fi+1—36fi+2+16fi+3‘3fi+4) Dy(k’g)za%(""" feeee)
Dx(k,9)=lzix (-3fi_1-10f; +18fj,1 -6\ 5 + fiy3) Dy(k’9)=0%(""" fjeeee)
Backward Dx(k,g)=-%(—2sfi+48fi_1—36fi_2+16fi_3—3fi_4) Dy(k,g)=o?—y(------ i)
Dx(k,g):—lz?xx (=3fi41—10f; +18f;_1 —6fi_p + fi_3) Dy(k,g)=0?—y(------ i)

New tests with five-point difference approximations are proposed and their test configuration is in the list

below:

(R?;:taa;?igglar Solver type Model 1 | Model 2 | Model 3 | Model 4 | Model 5
Leastsquare | roq AR1 | Test AR2 | Test AR3 | Test AR4 | Test AR5
Type A method solver
approximation | Linear sparse Test Test Test Test Test
model fitting ALM1 ALM?2 ALM3 ALM4 ALMS
Leastsquare | roi BR1 | Test BR2 | Test BR3 | Test BR4 | Test BR5
Type B method solver
approximation | Linear sparse Test Test Test Test Test
model fitting BLM1 BLM?2 BLM3 BLM4 BLM5

33

4. Results

This section presents the test results obtained mainly as plots and extreme values, and compares them. Other
information like solver capacity and singularities are also shown. For each run of the code, 21 plots were
generated. In order to prevent excessive work, only three plots (displacement uz, bending moment mxx, and
shear force vx) and their extreme values were analyzed. Below sections only show the extreme values and the
plots are listed in appendix (Page 82). The first shown are the plots generated by finite element software,
which work as a reference for calculating the errors of shell code results. Subsequently presented are results
from rectangular tests, square tests, solver tests, and five-point difference approximation tests. These results
are compared. In addition, several 3D plots show the overall deformation of the structures and distortion at
boundaries more intuitively. At the end of this section is a summary of major findings.

4.1Finite element solution

The defined five models are also tested in finite element software SICA Engineer (version 19.1.3). The
generated displacement, bending moment and shear force plots are shown in below. The averaged element
size is 0.05 m for all models so that the number of nodes is 20*20 for model 1 & 2 and 240*125 for model 3,
4&5.

047849
0.00000000 3.36886

0.42000

max [kNm/m]
e [kN'm]

-0,00000060 2.80000

-0.00000120 0.39000

2.40000

-0.00000180 0.38000 2.00000

-0.00000240 0.33000 160000
0.00000300

-0.00000360

0.30000 1.20000

0.27000 0.80000

000000420 024000 0.40000

-0.00000480 0.21000

-0.00000540

-0.00000
0.18000 -0.40000
-0,00000600

-0.00000660

0.15000 -0.80000

012000 -1.20000
-0.00000720

000000780

0.09000 -1.60000

0.06000 -2.00000
-0.00000840 0.03000 -2.40000

-0,00000900
000000378

000373 -2.80000

-3.36886

Displacement uz Bending moment mxx Shear force vx
Figure 14: Model 1 displacement, bending moment and shear force finite element results by SCIA Engineer

ug [m]

0.00000000 0.00449 18.29606

ve [km]

-0.40000
-0.80000
-1.20000

15.00000
12.00000
9,00000

-0,00002000

mx [kNn/m]

-0.00004000

-0,00005000

-1.60000 600000
3.00000

-0,00000

-0,00008000

-0.00010000 -2.00000

-0.00012000

-2.40000

-0,00014000
-0.00015000

-2.80000 ~3.00000

-6.00000

-3.20000

-0.00018000 -3,60000 -2.00000

-0,00020000 ~4.00000
-4.40000

-4,80000

-12.00000
-17.15976

-0.00022000

-0,00024000

-0,00025000 -5.30985

-0.00028000

1l
i

0,00031071

I
H
[

Displacement uz Bending moment mxx Shear force vx
Figure 15: Model 2 displacement, bending moment and shear force finite element results by SCIA Engineer

34

|

Displacement uz (abs max value: 0.0001935)

—10.00000

Shear force vx (abs max value: 2.393)

Figure 16:Model 3 displacement, bending moment and shear force finite element results by SCIA Engineer

Displacement uz (abs max value: 0.007884)

Bending moment mxx (abs max value: 5.0646)

000001935

0.00000000

-0.00002000

-0.00004000

-0.00006000

-0.00008000

-0.00010000

-0.00012000

-0.00014000

-0.00016000

-0.00017318

uz [m]

0.21144
0.18000
0.15000
0.12000
0,09000
0.06000
0.03000
0.00000

-0.03000

-0.06000

-0.09000

-0.12000

-0.17665

my [kin/m]

- 10.00000

10 000

239350
1.80000
1.50000
1.20000
050000
060000
0.30000
0.00000
-0.30000
-0.60000
-0.50000
-1.20000
-1.50000
-1,80000
-2,39391

vy [kN'm]

0.00000000
0.00000000

-0.00080000

-0.00160000

-0.00240000

-0.00320000

-0.00400000

-0.00480000

-0.00560000

-0.00640000

-0.00720000

-0.00788453

uz [m]

5.06457
2.40000
4,00000
3.60000
3.20000
280000
240000
2.00000
160000
120000
0.80000
0.40000
000000

-0.40000

-0.50000

-1.24215

my [k fm]

35

v [kNm]

Shear force vx (abs max value: 30.699)
Figure 17: Model 4 displacement, bending moment and shear force finite element results by SCIA Engineer

Displacement uz (abs max value: 0.009739)

Table 19: Absolute maximum value of finite element results for model1-5

Shear force vx (abs max value: 38.9266)
Figure 18: Model 5 displacement, bending moment and shear force finite element results by SCIA Engineer

nnnnnnnn

nnnnnnnn

aaaaaaaaa

aaaaaaaaa

8
my [kNm /]

38.92266

vy [kNm]

Model 1 Model 2 Model 3 Model 4 Model 5
Displacement uz (m) 0.78-1070 | 3.107.107% | 1.935.107* | 7.884.1073 | 9.734.1073
Bending moment mxx (KNm/m) | 0.478 5.310 0.2114 5.0646 9.5143
Shear force vx (KN/m) 3.369 18.296 2.393 30.699 38.9366

36

4.2Rectangular matrix test results
(Please find plots in Appendix)

Table 20: Absolute maximum value of test R1-5 plots

Number

Model 1 Model 2 Model 3 Model 4 | Model 5
of nodes
20720 | 7333.107° | 2896107
Displacement _ _ _
e 3030 | 7006.10° | 2525.107% | 3062207 | 0166 | 0.101
50*50 | 6728107 | 1.746.107 | 3281.1073 | 0182 | 0.116
Bending 20*20 0.39 7.42
moment 30*30 0.39 7.29 571 290.74 179.39
(KNm/m) 50*50 0.39 8.73 577 299.47 189.15
20*20 3.28 4.45
Sr(‘ﬁ?\r';r‘;]r)ce 30%30 3.32 452 15.15 9551 | 5849
50*50 3.32 4.61 15.13 97.50 60.62
4.3Square matrix test results
(Please find plots in Appendix)
Table 21: Absolute maximum value of test SC1-5 plots
Number Model 1 Model 2 Model 3 Model 4 Model 5
of nodes
_ 20*20
D'Sp'(""n‘;g’me"t 30*30 | 6.063E-6 | 2.594E-04 | 2.526E-03 1.398 1.085
50*50 6.146E-6 1.779E-04 2.970E-03 1.720 0.885
Bending 20*20
moment 30*30 0.252 8.238 5.691 537.988 340.874
(KNm/m) 50*50 0.246 7.55 5.759 478.973 304.628
Shear force 2020
(kN/m) 30*30 3.316 4,162 15.154 119.880 74.463
50*50 3.342 4,049 15.137 112.732 70.404
Table 22: Absolute maximum value of test SU1-5 plots
Number Model 1 Model 2 Model 3 Model 4 | Model 5
of nodes
) 20*20 5.915E-06 3.699E-04
D'Sp'(""rﬁg’me”t 30*30 | 5.644E-06 | 3.317E-04 | 2.681E-03 | 1.727 1.087
50*50 5.714E-06 1.997E-04 2.948E-03 1.406 0.888
Bending 20*20 0.261 8.094
moment 30*30 0.252 8.224 5.692 538.000 | 340.879
(KNm) 50*50 0.246 7.551 5.759 478.976 | 304.630
Shear force 20*20 3.277 4.229
(KN/m) 30*30 3.316 4162 15.154 119.876 74.461
50*50 3.342 4,049 15.137 112.731 70.403
Table 23: Absolute maximum value of test SE1-5 plots
Number Model 1 Model 2 Model 3 Model 4 | Model 5
of nodes
) 20*20 6.715E-06 3.215E-05
D'Sp'(""rﬁime”t 30*30 | 6517E-06 | 2.731E-05 | 3.152E-03 | 1.449 0.915
50*50 6.413E-06 1.847E-04 3.348E-03 1.148 0.728

20*20 0.269 7.693

37

Bending 30*30 0.258 7.791 5.655 501.722 | 310.424
moment .
(KNm/m) 50*50 0.249 7.128 5.642 490.586 | 293.100
Shear f 20*20 3.068 4,105
(‘fj\rl /rf];ce 30*30 3.164 4.058 15.767 | 135.343 | 83.841
50*50 3.252 4.639 15.707 129.465 80.819
4.4Solver test results
(Please find plots in Appendix)
Table 24: Absolute maximum value of test P1-5
Number | \iodel1 | Model2 | Model3 | Model4 | Models
of nodes
Displacement 1010 | 9.741E-06 | 3.172E-04 | 1.307E-04 0.0103 0.0131
(m) 20*20 | 9.704E-06 | 3.140E-04 | 1.647E-04 7.828 0.0144
Bending 10*10 0.460 5.436 0.111 4,967 4,901
moment .
(kNm/m) 20*20 0.473 5.691 0.182 1.624 5.192
Shear force 10*10 3.299 13.503 0.127 4,262 5.595
(KN/m) 20*20 3.368 15.854 0.458 1.278 4.162
Table 25: Absolute maximum value of test LM1-5 plots
Number Model 1 Model 2 Model 3 Model 4 Model 5
of nodes
_ 20*%20 9.707E-06 | 3.142E-04
DBF"&??"“*”‘ 3030 | 9.704E-6 | 3.134E-04 | 1.660E-4 | 7.703E-03 | 9.375E-03
50*50 9.770E-06 | 3.126E-04 1.703E-04 | 7.776E-03 | 9.329E-03
moment 30*30 0.476 5.732 0.201 1.598 7.300
(kNm/m) 50*50 0.478 5.519 0.208 2.590 8.927
Shear force 20*20 3.367 15.866
(kN/m) 30*30 3.325 16.042 0.407 1.809 8.181
50*50 3.363 15.881 0.578 8.887 13.311
Table 26: Absolute maximum value of test SLM1-5 plots
Number Model 1 Model 2 Model 3 Model 4 Model 5
of nodes
Disol 20%20 9.707E-06 3.107E-04
ISP gﬁ‘;me”t 3030 | 9.748E-06 | 3.107E-04 | 1.685E-04 | 7.847E-03 | 9.671E-03
50*50 9.764E-06 3.107E-04 1.715E-04 | 7.882E-03 | 9.559E-03
moment 30*30 0.476 5.312 0.201 1.676 7.080
(KNm/m) 50*50 0.478 5.312 0.208 3.060 8.377
Shear force 20*20 3.355 15.502
(kN/m) 30*30 3.368 37.308 0.836 4.040 21.910
50*50 3.373 85.032 1.278 12.221 27.159

38

4.5Five-point difference approximation test results
(Please find plots in Appendix)

Table 27: Absolute maximum value of test AR1-5 plots

Number

of nodes Model 1 Model 2 Model 3 Model 4 Model 5
_ 2020 | 6.92E-06 | 1.62E-04 0.0026 0.1275 0.0798
D'Sp'("";?me”‘ 3030 | 6.56E-06 | 2.22E-04 | 0.0031 0.1460 0.0916
50*50 | 6.24E-06 | 2.43E-04 0.0027 0.1854 0.1229
Bending 20*20 0.4008 5.6398 6.2022 270.1302 | 171.0242
moment 30*30 0.3903 6.5045 6.0320 281.4246 | 176.5635
(kNm/m) 50*50 0.3815 7.8378 5.7824 297.1835 | 190.9475
shear force 20720 3.3058 4.2638 145238 | 103.3915 | 64.3321
(KN/m) 30*30 3.3283 4.4615 14.7720 | 102.5811 | 63.6840
50*50 3.3459 45138 14.9345 | 102.8183 | 64.5399
Table 28: Absolute maximum value of test BR1-5 plots
Number | \1ode11 | Model2 | Model3 | Modeld4 | Model5
of nodes
_ 2020 | 6.86E-06 | 5.62E-05 0.002 0.158 0.101
D'Sp'("";sme”‘ 30*30 | 6.52E-06 | 5.70E-05 | 0.003 0.225 0.145
50*50 | 6.22E-06 | 5.46E-05 0.003 0.271 0.173
Bending 20*20 0.397 3.965 5.863 229.598 145.720
moment 30%30 0.389 4481 5.939 247476 157.932
(kNm/m) 50*50 0.380 4.919 5.830 253.871 161.883
shear force 2020 3.297 4.175 14.995 98.603 61.354
(KN/m) 30%30 3.323 5.106 15.102 100.866 63.118
50*50 3.344 7.108 15.085 100.285 62.853
Table 29: Absolute maximum value of test ALM1-5 plots
(’}unrgggg Model 1 Model 2 Model 3 Model 4 Model 5
_ 20%20 | 9.926E-06 | 3.119E-04 | 1.795E-04
D'Sp'(""rfsme”t 30%30 | 9.660E-06 | 3.117E-04 | 1.412E-04 | 8.24E-03 | 9.39E-03
50*50 | 9.671E-06 | 3.123E-04 | 1.536E-04 | 7.89E-03 | 9.59E-03
Bending 20*20 0.4837 5.3274 1.0208
moment 30*30 0.4757 5.4997 0.6447 3.4571 5.9238
(kNm/m) 50*50 0.4757 5.5936 0.4981 2.9374 7.3001
shear force 20720 3.2730 13.0253 4.8254
(KN/m) 30*30 3.0708 13.8312 3.7759 7.3638 6.0894
50*50 3.0451 14.5493 3.4545 5.2990 8.1810
Table 30: Absolute maximum value of test BLM1-5 plots
Number | \1ode11 | Model2 | Model3 | Modeld4 | Model5
of nodes
_ 2020 | 9.72E-06 | 3.12E-04
D'Sp'ﬁrﬁime”t 30*30 | 9.75E-06 | 3.11E-04 | 1.71E-04 | 7.79E-03 | 9.48E-03
5050 | 9.77E-06 | 3.11E-04 | 1.73E-04 | 7.81E-03 | 9.51E-03
Bending 20*20 0.4767 5.5872
moment 30*30 0.4779 5.6588 0.2087 3.6551 9.6528
(kNm/m) 50*50 0.4785 5.5902 0.2112 5.0066 9.2010
Shear force 20*%20 3.3681 19.6723

39

(KN/m)

30*30

3.3785

27.1999

0.8588

16.9374

17.1115

50*50

3.3755

52.9049

2.4201

29.3033

14.4334

4.60verall comparison between shell code results

To show the accuracy of shell code results, the absolute maximum values of the above plots are compared to
absolute maximum values obtained by the finite element method. The deviation is calculated as (shell code
result - finite element result)/ finite element result. The deviation is converted into percentage form if it is in
range of (-1,1). Those results are listed in the below tables and their absolute values are labeled with different
colors where green represents less than 10%, blue represents ranged from 10% to 100%. and orange represents
over 100%. Overall considered, the results of Test BLM1-5 show the best accuracy where green results take
accunt for 78%. In the results of tests using Ismr solver (Test R1-5, Test SU1-5, Test SC1-5 and Test SE1-5),
the accuracy of results of model 1 and model 2 is relatively good. The results of rest models are heavily

overestimated.

Table 31: Deviation of Test R1-5 results (green:14%, blue: 42%, orange: 44%)

Node Model 1 | Model 2 | Model 3 | Model 4 | Model 5
number
20*20
Displacement (m) 12.121 20.012 9.417
13.024 22.039 10.913
Bending moment
(kNm/m) 26.000 56.406 17.855
26.315 58.131 18.881
Shear force (KN/m) 5.332 2.11
5.324 2.18
Table 32: Deviation of Test SU1-5 results (green:12%, blue: 44%, orange: 44%)
Node | niodel1 | Model 2 | Model3 | Model4 | Model 5
number
20*20
Displacement (m) 12.855 218.051 | 110.670
14.235 177.336 90.227
Be”d'(rll?\lmg’me”t 25025 | 105228 | 34.828
26.242 93.573 31.018
Shear force (kN/m) 5.333 2.90
5.326 2.67
Table 33: Deviation of Test SC1-5 results (green:7%, blue: 40%, orange: 53%)
Node Model 1 | Model2 | Model 3 | Model 4 | Model 5
number
20*20
Displacement (m) 12.818 176.321 | 110.465
14.349 | 217.163 89.918
Be”?&gmr}‘r?];“e”t 25.048 | 105205 | 34828
26.242 93.573 31.018
Shear force (kN/m) 5.333 2.91
5.326 2.67

40

Table 34: Deviation Test SE1-5 results (green:12%, blue: 44%, orange: 44%)

Node
number Model 1 | Model 2 | Model 3 | Model4 | Model 5
20*%20 3.48%
Displacement (m) 15.289 182.790 93.000
16.302 144.611 73.789
Be”d'(rllgNm;’mem 25.750 | 98.064 | 31.627
25.689 95.866 29.806
Shear force (KN/m) 5.589 3.41 115.33%
5.564 3.22 107.57%
Table 35: Deviation of Test P1-5 (green:33%, blue: 67%, orange: 0%)
Numberof | \1odel 1 | Model2 | Model3 | Model4 | Model 5
nodes
. 10*10 -0.40%
Displacement (m)
20*20 -0.78%
Bending moment 10*10 -3.77%
(kNm) 20%20 -1.05%
10*10 -2.08%
Shear force (KN/m)
20%20 -0.03%

Table 36: Deviation of Test LM1-5 results (green:61%, blue: 39%, orange: 0%)

ntlr(:]cki)?er Model 1 Model 2 | Model 3 | Model 4 | Model 5
20*%20 -0.75% 1.13%
Displacement (m) 30*30 -0.43% 0.87% -0.60% | -1.45%
50*50 -0.10% 0.61% -0.96% -1.98%
) 20*%20 -1.05% 1.27%
Be”d'(’ll?\lm‘)’mem 30*30 042% | 7.95% | -5.15%
50*50 0.00% 3.94% -1.73% -6.17%
20*20 -0.06%
Shear force (kN/m) | 30%30 -1.31%
50*50 -0.18%
Table 37: Deviation of Test SLM1-5 (green:53%, blue: 42%, orange: 5.7%)
Mode | Model 1 | Model2 | Model3 | Model4 | Model 5
20*20 -0.75% 0.00%
Displacement (m) 30*30 -0.33% 0.00% -0.47% -0.65%
50*50 -0.16% 0.00% -0.03% -1.80%
20*20 -1.26% 0.02%
Be“d”llg moment [™a0x39 | 0429% | 004% | -4.92%
(kNm) 50*50 0.00% 0.04% -1.61%
20*20 -0.42%
Shear force (KN/m) 30*30 -0.03% 103.91%
50*50 0.12% 364.76%

41

Table 38: Deviation of Test ALM1-5 (green:12%, blue: 44%, orange: 44%)

ntlr(r)\%ir Model 1 Model 2 | Model 3 | Model 4 | Model 5
20*20 1.5% 0.4%

Displacement (m) 30*30 -1.2% 0.3% 4.49% -3.58%
50*50 -1.1% 0.5% 0.12% -1.45%

Bendi 20%20 1.2% 0.3%

* -0.5% 6% .
en '(rll?\lm‘)’me”t 30*30 0.5% 3.6% 2.05

50*50 -0.5% 5.3% 1.36
20%20 -2.8%

Shear force (kN/m) 30*30 -8.9%
50*50 -9.6%

Table 39: Deviation of Test BLM1-5 (green:78%, blue: 19%, orange: 3%)

Mode | Model 1 | Model2 | Model 3 | Model4 | Model 5
20*20 -0.6% 0.3%

Displacement (m) 30*30 -0.3% 0.3% -1.18% -2.56%
50*50 -0.1% 0.1% -1.00% -2.33%

Bendi ‘ 20*20 -0.3% 5.2%
30*30 .0% .6% -1.28% 46%

en '(’ll?\lmg’me“ 0.0% 6.6% 1.28% 1.46%

50*50 0.1% 5.3% -0.09% -1.15% -3.29%
20*20 0.0% 7.5%

Shear force (KN/m) 30*30 0.3%
50*50 0.2% 1.89 1.13% -4.55%

Table 40: Summary of deviation of test results

Green (<10%) | Blue (<100%) | Orange (>100%)
Test R1-5 13.89% 41.67% 44.44%
Test SC1-5 6.67% 40.00% 53.33%
Test SU1-5 11.11% 44.44% 44.44%
Test SE1-5 11.11% 38.89% 50.00%
Test P1-5 33.33% 66.67% 0.00%
Test LM1-5 61.11% 38.89% 0.00%
Test SLM1-5 58.33% 36.11% 5.56%
Test AR1-5 11.11% 44.44% 44.44%
Test ALM1-5 52.78% 41.67% 5.56%
Test BLM1-5 77.78% 19.44% 2.78%

It can be observed that the accuracy of shell code results is strongly related to model types and test
configurations. In order to show their influence more comprehensively, the deviation of shell code results was
reorganized into model result plots categorized by its test type. In this way, it can be shown more clearly that
how the shell results can be influenced by those important factors including the number of nodes, type of
solver, type of matrix, and type of approximation. In the below plots, the deviation of all test results is shown
in one figure for every model.

The type of solver is the most important factor on the accuracy. The Im.fit.sparse solver (Test LM, SLM,
ALM, BLM) generally gives far more accurate results than Ismr solver (Test, R, AR, BR, SC, SU, SE). As
shown in the summary table (Table 40), the green results in Im.fit.sparse solver tests take up over 50% while
the percentage of green results in Ismr solver tests is less than 15%. As shown in Figure 24 to Figure 28, under
Im.fit.sparse solver the most results of model 1 and model 2 have excellent accuracy around 1% while only
shear force results of model 2 have deviation over 10%. The rest Ismr solver results are mostly orange where

42

the deviation of many results is even over 1000%. For model 3 to 5, in fact there are only a few green results

no matter which solver is used.

Other factors like the type of matrices (Rectangular or square), difference approximation (five-point or two-
point) play a less significant role in the accuracy. The different matrix types (square: Test SC, SU, SE or
rectangular: Test R, AR, BR) and different finite difference approximation methods (two-point: Test R, LM
or five-point: Test: AR, BR, ALM, BLM) did not cause not significant difference. In the most cases, the use
of square matrix and new approximation method has made the shell code give less accurate results. As shown
in summary table (Table 40), shell code give less green results when use square matrix and new approximation
method. However, the Test BLM is an exception with the highest rate of green results.

Another important factor is number of nodes and its influence differs for different types of models and types
of solvers. For models 1 to 3, generally the deviation of displacement and bending moment results is increased
for higher number of nodes when Ismr solver is used. If pinv solver and Im.fit.sparse solver is used, a higher
number of nodes bring lower deviation. For model 4 to 5, not matter which solver is used, higher number of

nodes often means lower deviation.

By comparing absolute maximum values of plots to finite element results, the accuracy of shell code results
can be found to be related to the type of solver, number of nodes, and type of model. The type of solver is the
most important factor on the accuracy. The accuracy is also various between different types of results. Other
factors like the type of matrices (Rectangular or square), difference approximation (five-point or two-point)

does not play a significant role in the accuracy.

Accuracy by type of solver: R solver: Im.fit.sparse > Python solver: pinv > Python solver: Ismr

Accuracy by models: model 1= model 2 > model 3 = model 4 = model 5

Accuracy by type of matrices: square matrix ~ rectangular matrix

Accuracy by type of difference approximation: five-point approximation > two- point approximation (only in

a limited cases)

Accuracy by type of result: displacement result > shear force, bending moment result

Accuracy by number of nodes: 50*50 > 30*30 > 20*20

a) Overall test results per model

mm Test R mm Test BR mmm Test SU Test P Test SLM = Test BLM
Test AR B Test SC I Test SE I Test LM I Test ALM

Result Comparsion Model 1

n | ||| II‘ ey l.RI‘ R ..!

Result Comparsion for te§t P, LM, SLM, [ALM, BLM
0.0 . R
el II I Lol il || --III-

0

N HI
|

=20

®

~30

60 70 80 ‘90 100
mm Test P mm Test SLM mm Test BLM

Test LM mmm Test ALM
—40

—————————————————
%
(-
~ w
| n o
s —t
————

—50

mm Test R mmm Test BR mm Test SU Test P Test SLM mm Test BLM
Test AR mmm TestSC mmm Test SE mm TestlM mm Test ALM

Result Comparsion Model 2
Result Comparsion for test P, LM, SLM, ALM, BLM

300 4 I
3007 200 H
| il
[F —— . - e
200 | II) LLL}

Gb 7b Bb 9’6\ lll)D
mm Test P mm Test SLM mm Test BLM
1004 TestLM mmm Test ALM

o

—100

Figure 19: Comparison of overall test results for model 1

Figure 20: Comparison of overall test results for model 2

43

m Test R e TestBR ww Test SU wom Test P o TestSLM - mmm Test BLM
o Test AR mmm Test SC mmm Test SE wom TestLM wom Test ALM
Result Comparsion Model 4
20000
15000 Result C. i for test P, LM, SLM/ALM, BLM
25 I
“ 10000 N I ’ I I [
s 25
-50
=75
5000 100
60 70 &0 |90 100
mm Test P mm Test SLM mm Test BLM
II II o Test LM mm Test ALM
0 - as - - - - |

Figure 22: Comparison of overall test results for m

odel 4

mm TestR mm Test BR W Test SU mm Test P [TestSLM mmm Test BLM
mm Test AR mmm Test SC mm Test SE m TestLM mm Test ALM
Result Comparsion Model 3
2500 i i
2000 || ||
|| || Result Comparsion for test P, LM, SLM] ALM, BLM
I 200 i
1500 - i |
100 4 1
. E
1000 | , [}
,I.I-II - II.--II|| - I
500 4 || = || - || = || || = || - || || BE 1004 = . S -
60 70 80 ‘90 100
mm Test P mmm Test SLM mmm Test BLM
0- —— - Test LM mm Test ALM
==t 3 ‘
Figure 21: Comparison of overall test results for model 3
mm Test R B TestBR Bl Test SU mm Test P Test SLM mmm Test BLM
B Test AR BN Test SC MM Test SE Ml TestLM mmm Test ALM
Result Comparsion Model 5
10000 i i
8000 I I I
|| || || Result C for test P, LM, SLM, ALM, BLM
50
6000 II
0 - 2 0 | B -
|| || || : || II I II I II II II II
4000
(T L I
2000 I 60 7 80 [s0 100
mm Test P mm Test SLM mmm Test BLM
II |I o TestLM mEm Test ALM
[o] == - == - - —— ‘

Figure 23: Comparison test results for model 5

Displacemnt uz results for
20%20, 30*30, 50%30 nodes

10

Bending moment mxx
results for

b) Displacement uz test results per model

mm Test R B TestBR M TestSU mm TestP Test SLM mmm Test BLM
mmm Test AR = Test SC mm Test SE mm TestLM mmm Test ALM
Displacement uz comparsion Model 1
01 e ‘
1.5 4
—5 1.0
0.5
=101 0.0 . — - l [E
- "N
~15
—1.04
® T T T T T T
—20 22 24 26 28 bn 32
mm Test LM mm Test ALM mmE Test
—251 e Test SLM
—30
=35
—40 T T T T T T T

mm Test R B TestBR = Test SU mm Test P mm Test SLM mm Test BLM
I Test AR BEE Test SC W Test SE mm Test LM = Test ALM
Displacement uz comparsion Model 2
20+
o [| I. - —
L
I IIIIII II I IIII -
—201 = 0.75
II III II I IIIg o
0.25
8 —404] =
. 0.00
22 24 26 2 30
mm Test LM mm Test ALM = Tef
=60 - III I II B Test SLM
—80 1 === I II
—1001

Figure 24: Comparison of uz results for model 1

Figure 25: Comparison of uz results for model 2

mm Test BR
mm Test SC

mm Test SU
mm Test SE

m Test P
mm Test LM

m Test SLM
mm Test ALM

mm Test R
mmm Test AR

Displacement uz comparsion Model 3

1500 -

1250

1000 -

750

500 4

250 4

= Test BLM

26
. mm Test LM = Test ALM

mm Test SLM

0

28 bo
- Te

mm Test R mm Test BR mmm Test SU o Test P m Test SLM mm Test BLM
mmm Test AR Test SC mmm Test SE mmm TestLM mmm Test ALM
Displacement uz comparsion Model 4
20000 4 i i
15000 4 I I I
& I I II I I “
10000 -
I I II I I "
50001 =N = " gm
22 24 26 28 bo 32
II II = Test LM mm Test ALM mmm Test Bl
01 = TestSLM

Figure 26: Comparison of uz results for model 3

Figure 27: Comparison of uz results for model 4

44

mm TestR B TestBR mmm TestSU mm Test P fm Test SLM mmm Test BLM
fmm Test AR mEm Test SC =W Test SE m Test LM mm Test ALM
Displacement uz comparsion Model 5
10000 i i
N Ii Ii i
6000 I 2
K
II II II B
N II II II B
2000
VI
II II - Test LM mm Test ALM = Test BLM
0 L
Flgure 28 Comparlson of uz results for model 5
c) Bending moment mxx results per model
mm TestR mm TestBR mm TestSU mm Test P o Test SLM mmm Test BLM mm TestR mm Test BR mmm TestSU mm TestP o Test SLM - mmm Test BLM
I Test AR EEE Test SC I Test SE m Test LM I Test ALM i Test AR mm Test SC mm Test SE m TestLM B Test ALM
Bending moment mxx comparsion Model 1 Bending moment mxx compareinn Maral 5
- Test P mmm Test SLM - mmm Test BLN
01 = BN TestP BN TestSLM W Test BL| 60 [] T TestIM m TestALM
IIIIIIIII IIIIIIII = TetiM mm TestALM I
—10 l _—
1G]] e -]
E Ll
=20 - - I
8 I I III 41— r T r r v r r = 204
18 20 22 24 26 28 |30 32
=30 I
I I III]
—40 I
I I II —201
—504

Figure 29 Comparlson of mxx results for model 1

Figure 30: Comparison of mxx results for model 2

mm TestR B Test BR mm Test SU m Test P mm Test SLM mm Test BLM mm Test R mm TestBR mm TestSU o Test P mm Test SLM mm Test BLM
m Test AR mE Test SC mm Test SE mm TestLM mm Test ALM m Test AR B Test SC W Test SE mm TestLM mm Test ALM
Bending moment mxx comparsion Model 3 Bending moment mxx comparsion Model 4
1 i N
P | Ie BN up =E == 10000 I I I
mm Test P mm Test SLM mmm Test B| mm Test P mm TestSLM mm Test B
w Test LM mmm Test ALM w TestLM = Test ALM
1 1
1500 1 200] 6000 °
= £
1000 - 100 I l 4000 -
50 ll -0
0 - — —
500 1 [| 2000 60
-50
II II II II II II 18 20 22 it 26 28 |30 32
||
04 - 01 S _

Figure 31: Comparison of mxx results for model 3

Figure 32: Comparison of mxx results for model 4

mm Test SU
mm Test SE

mm Test R
mmm Test AR

mmm Test BR
mm Test SC

 Test SLM mm Test BLM

mm Test ALM

m Test P
mm Test LM

Bending moment mxx comparsion Model 5

3500

3000

2500

2000

£

1500

1000

500

mm Test SLM
mm Test ALM

mm Test P mm Test BLM

m Test LM

[
I
1.
i
I
-

O | T

w
w

Figure

omparlson of mxx results for modeI 5

45

d) Shear force vx test result per model

mm Test R mmm Test BR mmm Test SU mwm Test P mm Test SLM mm Test BLM
0 TestAR HEE TestSC WM TestSE WM TestLM W Test ALM

Shear force vx comparsion Model 1
0

IIIIIlIII IIIIIIIII I-. II
—4 I II
! I II

-6 I |

|
I
[
IIIIIIIIIIIIIIIII
[I A S R

mm Test R
mmm Test AR

mm Test BR
mm Test SC

mm Test SU
mmm Test SE

m Test P
mm Test LM

mn Test SLM
mmm Test ALM

mm Test BLM

Shear force vx comparsion Model 2

3004

200+

%

=

o

)
| |
IIIIIIIIII

o

400+

300

200+

100+

%
I N A N R
[[| |
[S S A
]
. 1 1 1
. [| ||
| N A N R
[| | |
I N A N N
[| | |
I N A N R
.| | |

0,
immeE i

—100+

-10 -100
Figure 34: Comparison of vx results for model 1 Figure 35: Comparison of vx results for model 2
mm Test R B TestBR Bl TestSU mm Test P Test SLM =l Test BLM mm Test R B TestBR mm TestSU mm Test P Test SLM mmm Test BLM
B Test AR BN Test SC MM Test SE Wl TestLM mmm Test ALM B Test AR B Test SC Ml TestSE WM TestLM mmm Test ALM
Shear force vx comparsion Model 3 Shear force vx comparsion Model 4
500+ 300

%

=

o

S
I
I
[1
1 |
I
]
I
| |
I N S
I N R
]
' ||

o

-100

Figure 36: Comparison of vx results for model 3

Figure 37: Comparison of vx results for model 4

m Test P
mm Test LM

fm Test SLM
B Test ALM

mm Test BLM

Shear force vx comparsion Model 5

mm Test R mm TestBR mmm Test SU
mm Test AR mm Test SC =W Test SE
100 |
ol -m B} BB II II
? II II II II II
04
—501

Flgure 38: Comparlson of VX results for model 5

46

4.7 Comparison between Rectangular matrix test and Square matrix test results

The results of tests using Ismr solver (Test R1-5, Test SU1-5, Test SC1-5 and Test SE1-5) are reorganized
and listed in below table. As shown in below table, different methods of constructing square matrix and
number of nodes did not play a significant role on affecting the accuracy of results. Especially for shear force
and bending moment results, many of they remain unchanged regardless of type of matrix or number of nodes.

Table 41: Comparison between Ismr solver results

Node number

Model 1

Displacement (m)

20*20

30*30

50*50

Bending moment
(KNm/m)

20*20

30*30

50*50

Shear force (kN)

20*20

30*30

50*50

Model 2 | Model 3 | Model 4 | Model 5
12.12 20.01 9.42
12.86 218.05 110.67
12.82 176.32 110.46
15.29 182.79 93.00
15.96 176.45 110.46
14.24 177.34 90.23
14.35 217.16 89.92
16.30 144.61 73.79
26.25 105.23 34.83
25.93 105.23 34.83
25.92 105.23 34.83
25.75 98.06 31.63
25.93 93.57 31.02
26.24 93.57 31.02
26.24 93.57 31.02
25.69 95.87 29.81
5.33 2.08
5.33 2.08
5.3 2.08
5.59 2.48
5.3 1.90
5.3 1.90
5.33 1.90
5.56 2.33 1.08

47

4.8 Comparison between pinv solver and Im.fit.sparse solver test results

The results of tests using pinv solver and Im.fit.sparse solver (Test P1-5, Test LM1-5 and Test SLM1-5) are
reorganized and listed in below table. For model 1, pinv solver and Im.fit.sparse solver can both provide
excellent results where the most deviation is around 1%. For model 2, both solver are bad in terms of providing
shear force results. Only Im.fit.sparse solver can provide accurate displacement results. For rest of models,
the both solvers cannot provide accurate results in the most cases except displacement results of model 4 and
model 5 and bending moment results of model 3.

Table 42: Comparison between pinv solver and Im.fit.sparse solver results

Mode | Test | Model 1 | Model 2 | Model 3 | Model 4 | Model 5
10*10 P -0.4%
P -0.8% -0.71%
20*%20 LM -0.7% 1.13%
Displacement (m) SLM 0.0% | 0.00%
P sor3p LM | -04%
SLM -0.3%
. LM | -0.1%
5050 SLM -0.2%
10*10 P -3.8%
P -1.0%
20*20 LM -1.0%
- 0,
Bending moment (kNm/m) SLM L.3%
30%30 LM -0.4%
SLM -0.4%
LM 0.0%
*
50750 SLM 0.0%
10*10 P -2.1%
P 0.0%
20*20 LM -0.1%
SLM -0.4%
Shear force (kN) 030 LM 13%
SLM 0.0%
LM -0.2%
*
50750 SLM 0.1%

4.9 Comparison between five-point difference approximation and two-point difference
approximation test results

The results of tests using five-point difference approximation (Test AR1-5, Test ALM1-5, Test BR1-5, and
Test BLM1-5) and two-point difference approximation (Test R1-5 and Test LM1-5,) are reorganized and
listed in below table. A few bending results provided by Ismr solver were improved where their deviation was
dramatically reduced (Test AR2 & Test BR2). In the contrast, under Im.fit.sparse solver some bending
moment results have a larger deviation (Test ALM3 & Test BLM2). For rest of results, the expected
improvement on the accuracy by five-point approximation are not clear. There is no significant impact can be
found for the most results.

Table 43: Comparison between five-point and two-point difference approximation results (Ismr solver)
Number Model | Model | Model

of nodes Test | Model 1 | Model 2 3 4 5

20*20

Displacement

(m)

48

30*30

50*50

Bending moment
(KNm/m)

20*20

30*30

50*50

Shear force (kN)

20*20

30*30

50*50

Table 40: Comparison between five-point and two-point difference ap

roximation results (Im.fit.sparse solver)

Model 1 | Model 2 | Model 3

Model 4

Model 5

Number
of nodes
20*20
Displacement
30*30
(m)
50*50
20*20
Bending
moment 30*30
(KNm/m)
50*50
20*20
Shear force "
(kN) 30*30
50*50

49

Discussion

This section aims to discuss whether the objective of this project is fulfilled by analyzing the obtained results.
First, the accuracy, reliability, and efficiency of shell code are validated by reviewing the results and
comparison. The sparsity, condition number, and rank number are calculated for checking the quality of
generated matrices. Then the factors affecting shell code results and the mechanism behind them are also
shown. There are five possible factors affecting shell code results have been discussed, include the number of
nodes, type of matrix, type of solvers, difference approximation methods, number of iterations. The simplicity
of code structure is also discussed by showing the coding process of how to simply apply the new shell theory
equation. In the end, the final discussion is made on the possible improvement and further research.

5.1 Accuracy, reliability, and efficiency

a) Accuracy

The shell code results should bear the three characteristics: accuracy, reliability, and efficiency. Accuracy
means compared to the general finite element results the local and global deviation of shell code results should
be in a reasonable range. Specifically, it requires shell code not only can produce a good estimation of extreme
values in a local area but also can correctly descript the overall behaviour of the tested models globally. So
that discussion on the accuracy is not only on the deviation of numerical values, but also on the distortion of
contour lines, and edges results.

As mentioned in section 4.6, the overall comparison clearly indicated that the deviation of shell code results
is large for most cases. Only for model 1&2 when using Im.fit.sparse solver, the shell code can produce results
with a small deviation less than 15%. Especially the displacement results, in this case, are generally equal to
finite element results (deviation is less than 1%). For model 3-5 when using Im.fit.sparse solver, the
displacement results have a small deviation less than 15%. However, for bending moment and shear force
results, the deviation of extreme values is up to 90%. In some cases, using Ismr solver, the maximum deviation
can even reach 22000%.

To better illustrate the shell code displacement results, actual deformed shapes of models are generated based
on the displacement results (u,, Uy, u,). The displacement results from Test LM1-5 are used to add to the

undeformed geometry shapes to show actual deformed shape. The color map of shapes is determined by the
value of total displacement Uyy; . From the general perspective of observing deformation, the shell code and

finite element software give quite similar results in terms of extreme values and general deformed shape. The
actual deformed shapes by shell code results share some important key features with the finite element results
(Figure 40). For example, the boundary behaviors under various definitions including fixed edges, pin edges
and free edges are correctly described. The concertation of displacement at free nodes and distortion of mesh
grid are also shown in both shell code and finite element results.

Utotal Utotal

3.200e-04 1.800e-04

- CoR 1.500e-04
8.000e-06 2.400e-04
2.000e-04 1.200e-04
1.600e-04
1.200e-04
8.000e-05

4.000e-05

6.400e-06

4.800e-06 e

3.200e-06 6.000e-05

1.600e-06 3.000e-05

0.000e+00 0.000e+00 0.000e+00

Model 2

50

Utotal Utotal

9.600e-03 1.800e-02
8.400e-03
7.200e-03
6.000e-03
4.800e-03
3.600e-03
2.400e-03
1.200e-03
0.000e+00

1.500e-02

1.200e-02

9.000e-03

6.000e-03

3.000e-03

0.000e+00

Model 4 Model 5
Figure 39:Actual deformed shape of models by shell code results (Test LM1-5)

Unad [m]

Model 2

Model 4 Model 5
Figure 40:Actual deformed shape of models by finite element solution (SCIA Engineer 19)

The distortion of contour lines is common among the results when using Ismr solver (Test R1-5, Test SC1-5,
Test SU1-5, and Test SE1-5). At the boundaries of those models, large displacement existed at corners and
edges where the predefined boundary conditions do not allow. As shown in those plots the displacement
contour lines are usually jagged alongside the free edges of model. For better illustration of that, the u, plots

from Test R1-5 are reconstructed into 3D surfaces with projection in horizontal directions (Figure 49) as a
representative of them. The results of other tests might have a few differences in the extreme values but they
share similar distorted boundary behavior. From those horizontal projections, it is clearly be observed that
larger displacement existed at pinned and fixed edges where no displacement should appear. Those edges lines
are distorted into the shape of sine waves. The crests of sine waves are usually local at mid of edge lines. At
the corners of model 1, the displacement is even below the permitted edge lines. And for the free edges of
model 4 and model 5, the edge line should be in sine wave shape instead of the current flat line. The above
features can be more obvious in the comparison of the results of Test LM1-5 (Figure 49). The projections of
u, plot from Test LM 1-5 show that the defined boundary conditions are clearly and correctly expressed at

edges when using Im.fit.sparse solver. And the Ismr solver did not achieve this.

51

3D uz: Max value=-0.000153862 3D UZ: Max value=-0.003051605

3D uz: Max value=-7.142e-06

/\ \

/ /\
00 / 00 0.000

\\\\\‘" G /
Y/ 0
B X _.e\‘\}}..n\\“ ity 1) -0.002
-0.6 — 01/
o i 0.003

-08

-1.0

s
¢ 8

0 3, o

Model 3

%8 1o 00

Model 2

Model 1

3D UZ: Max value=-1.180062311

3D UZ: Max value=-0.736968831

L

10

Model 4
Figure 49: 3D surface and projections of uz plots from Test R1-5

3D uz: Max value=-0.000313325 3D UZ: Max value=-0.000165904

3D uz: Max value=-9.734e-06

.00005
.00000
000Q5,
.00010
.00015
.00020

U]
“;‘" ":”II i

ST

N LT

R
og?

Model 3

3D UZ: Max value=-0.009592911

Model 5

Model 4
Figure 42: 3D surface and projections of uz plots from Test LM1-5

To better illustrate the edge results of bending moment and shear force, bending moment diagram and shear
force diagram is plot alongside the edges of models (Figure 43, Figure 45). The corresponding finite element
edge results are also shown (Figure 44, Figure 46). The extreme values from those plots are collected in below:

Table 45: Comparison between bending moment mxx edge results
Model 1 | Model 2 | Model 3 | Model 4 | Model 5
Shell code 0.0034 5.519 0.00396 2.59 8.927
Bending | (Max) | Finiteelement | o507 | 6311 | oo4s9 | 5044 | 9531
moment mxx solution
edge results Shell code -0.00587 | -0.0178 | -0.0012 -0.221 -0.642
(KNm/m) Mi ini
(Min) F'”;toﬁjt'forgem -0.00027 | -0.08152 | -0.00224 | -1.237 | -0.6037

52

Table 46: Comparison between shear force vx edge results

Model 1 | Model 2 | Model 3 | Model 4 | Model 5
Shell code 3.3631 15.905 0.571 8.886 13.311
Shear force vx | 12 F'”;)eljt'ieorze”t 3376 | 27424 | 2328 | 30297 | 30911
Ed?f,\ff;‘;"s Shellcode | -3.3631 | -11.409 | -0571 | -0594 | -1.704
(Min) | Finite element | 5 300 | 17915 | 2328 | -23351 | -4.17
solution
Table 47: Deviation of Test LM1-5 overall bending moment & shear force results (m=n=50)
Model 1 Model 2 Model 3 Model 4 Model 5
Bending moment 0.00% 3.94% -1.61% -20.53% -19.54%
Shear force -0.18% -13.20% -75.85% -92.02% -75.11%

The above comparison indicates that the shell code edge results basically do not comply with the finite element
results in terms of extreme values except the shear force edge results of model 1. Overall considered, the shell
code has underestimated the edge results numerically. For instance, the shell code gives the maximum shear
force at the edges of model 2 as 15.9 kN/m which is dramatically lower than finite element results of 274.24
kN/m. Such underestimation also occurred for the entire models as shown in Table 43 but to a smaller extent.
Meanwhile, the shell code bending moment and shear force results are more likely concentrated at corners.
For example, the finite element results are generally smoothly varied alongside edges except for bending
moment results of model 1 and shear force results of model 2. The concentration at corners is almost shown
on every model in the shell code results. And also the shell code edge results is jagged for most models.

mxx edge result mxx edge result mxx edge result

© PN w & o

08 0.0 10 98

Model 2

Model 1 !
(max: 0.0034, min: -0.00587) (max: 5.519, min: -0.0178)

mxx edge result

(max: 0.00396, min: -0.00120)

mxx edge result

0 . o0

Model 5
(max: 2.590, min: -0.221) (max: 8.927, min: -0.642)
Figure 43:Bending moment mxx edge results by shell code (Test LM1-5, m=n=50)

Model 4

53

I
“”“”“”Hmn |

0.08152

Model 1 Z Model 2 Model 3
(max: 0.0007, min: -0.00027) (max: 6.311, min: -0.08152) (max: 0.0459, min: -0.02244)

Model 4 Model 5
(max: 5.044, min: -1.237) (max: 9.531, min: -0.6037)
Figure 44:Bending moment mxx edge results by finite element solution (SCIA Engineer 19)
vx edge result

vx edge result

vx edge result

0.0

0.2
0.4
0.6
0.8

Model 1 Model 2
(max: 3.3631, min: -3.3631)

(max: 15.905, min: -11.409)

vx edge result

(max: 0.571, min: -0.571)

vx edge result

Model 4 Model 5
(max: 8.886, min: -0.594) (max: 13.311, min: -1.704)
Figure 45:Shear force vx edge results by shell code (Test LM1-5, m=n=50)

54

\\\ .
Model 1 Mod-el 2 Model 3

(max: 3.376, min: -3.376) (max: 274.240, min: -17.915) (max: 2.328, min: -2.328)

Model 4 | Model 5
(max: 30.297, min: -23.351) (Max: 30.911, Min: -4.17)
Figure 46:Shear force vx edge results by finite element solution (SCIA Engineer 19)

In conclusion, the shell code can only produce accurate displacement results (deviation is less than 15%) when
using Im.fit.sparse solver. The distortion of contour lines is common among the results when using Ismr solver.
In terms of edge results, the most of them is incorrect as they are significantly underestimated.

b) Reliability

The reliability means obtained results are exanimated through various methods to avoid possible numerical
error as much as possible. For example, a singularity check has been made to ensure those extreme values
were not collected at those unrealistic peaks. In finite element models, it is possible that a few extreme values
of finite difference models tend toward an infinite value as the result of a potential computational error. Such
a phenomenon is also likely to occur in finite difference models. The singularities should be excluded from
normal extreme values otherwise they might compromise the validity of the comparison of extreme values in
the above section. To do that, the top 100 maximum values and minimum values from Test LM1-5 and Test
R1-5 are collected and plot in below (Figure 47 & Figure 48) to show whether there is any spike in the
distribution of extreme values. The absolute maximum values from finite element results of Table 18 are also
plot as a comparison. Generally speak, there is no such spike showing extreme values tend toward an infinite
value. Among those plots, there are three major spikes in terms of variating extreme values: shear force results
of Test LM2, bending moment results of Test LM4 and bending moment results of Test R2. Compare to the
overall variation of extreme values among the 100 nodes, those spikes indicate a rapid variation in values for
a small number of nodes. However, the extent of such variation is far from the trend toward an infinite value.
In the summary, there is no singularity has been found in those results.

55

uz: Max & Min values

0.000000 +

—0.000002

—0.000004

—0.000006 -

—0.000008

—— Max values
Min values
—— Finite element results

—0.000010 4

o] 20

40 60 80 100

mxx: Max & Min values

vx: Max & Min values

0.0

—0.14

—— Max values
Min values
—— Finite element results

—0.24

—0.34

—0.44

—— Max values
04 Min values
—— Finite element results

a) Test LM1

uz: Max & Min values

mxx: Max & Min values

vx: Max & Min values

0.00000 4

—0.00005 -

—0.00010 4

—0.00015 4

—0.00020 +

—0.00025 4

—0.00030 -

—— Max values
Min values
—— Finite element results

—— Max values
31 Min values
—— Finite element results

—— Max values
Min values
—— Finite element results

0 20

T
40 60 80 100

T T
o] 20 40 60 80 100

T
20 40 60 80 100

b) Test LM2

uz: Max & Min values

0.00010

0.00005

0.00000 4

—0.00005 -

—0.00010 -

—0.00015 4

—_—

—— Max values
Min values
—— Finite element results

—0.00020 1

0 20

40 60 80 100

mxx: Max & Min values

0.20 1

_‘K

—— Max values
Min values
—— Finite element results

0.15

0.10 4

0.05 1

0.00 4

—0.05 4

-0.104

-0.151

vx: Max & Min values

2.5

2.01

—— Max values
Min values
—— Finite element results

0.5+

0.04

—0.54

c) TestLM3

uz: Max & Min values

mxx: Max & Min values

vx: Max & Min values

0.000
—0.001
—0.002
—0.003

—— Max values
—0.004 Min values
—0.005 4
—0.006

—0.007 4

—— Finite element results

—0.008 q

—— Max values
Min values
2 A —— Finite element results

1-_\“&

304

254

204
—— Max values
15 4 Min values
—— Finite element results

0 20

T
40 60 80 100

T
0 20 40 60 80 100

T
0 20 40 60 80 100

d) TestLM4

uz: Max & Min values

mxx: Max & Min values

vx: Max & Min values

0.000

—0.002

—0.004

—0.006

—0.008

—0.010 1

—0.012 4

—0.014 q

—— Max values
Min values
—— Finite element results

—— Max values
Min values
—— Finite element results

401

30 1

—— Max values
Min values
—— Finite element results

204

104

0 20

T
40 60 80 100

T T
[} 20 40 60 80 100

T
o] 20 40 60 80 100

e) Test LM5

Figure 47: Plots of top 100 maximum and minimum values from Test LM1-5 (m=n=30)

56

uz: Max & Min values

vx: Max & Min values

mxx: Max & Min values

0.000002 4 3] 0.04 \ —— Max values
Min values
0.000000 4 5 —— Finite element results
—0.1
—0.000002 1 14
—— Max values —— Max values 024
—0.000004 1 I\'!ln values 04 Min values
—— Finite element results —— Finite element results
14 —-0.34
—0.000006 -
-2
—0.000008 —0.4 4
-3
—0.000010 T T T T T T T T T T T =0.5 T T T T T
o] 20 40 60 80 100 20 40 60 80 100 o] 20 40 60 80 100
uz: Max & Min values mxx: Max & Min values vx: Max & Min values
ooo00s{ 61
0.00000 4 2] 51
—0.00005 4
21 10
_0.00010 4 —— Max values —— Max values
Min values Min values
—0.00015 4 —— Finite element results —— Finite element results
54
—0.00020 e
—— Max values
—0.00025 : o4
Min values
—0.00030 § —— Finite element results
T T T T T T T T T T T T T T T T T
0 20 40 60 80 100 20 40 60 80 100 o] 20 40 60 80 100
uz: Max & Min values vx: Max & Min values mxx: Max & Min values
0.00015 |
15 4 —— Max values 64 —— Max values
0.00010 4 Min values N!ln values
10 4 —— Finite element results —— Finite element results
0.00005 4
5
0.00000 - —— Max values 2
Min values 04
—0.00005 4 —— Finite element results
-5 04
—0.00010 +
~104
—0.00015 A o]
~154
—0.00020 4
0 20 40 60 80 100 20 40 60 80 100 o] 20 40 60 80 100
uz: Max & Min values mxx: Max & Min values vx: Max & Min values
'\\x 54 30 4
0.000 44 259
34 204
—0.002 15 4
—— Max values 24 —— Max values — Max values
Min values Min values 101 Min values
—0.004 4 —— Finite element results 1 —— Finite element results —— Finite element results
54
04
—0.006 o
14 -5
—0.008 2] -10
T T T T T T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100 4] 20 40 60 80 100
uz: Max & Min values mxx: Max & Min values vx: Max & Min values
10 40 4
0.000
84
—0.002 1 29
64
—0.004 —— Max values —— Max values 204 —— Max values
Min values 44 Min values Min values
—— Finite element results —— Finite element results —— Finite element results
—0.006 q 104
2
—0.008 | o] 0
—0.010 1 -2

o 20 40 60 80 100

20 40 60 80 100

e) TestR5
Figure 48: Plots of top 100 maximum and minimum values from Test R1-5 (m=n=30)

57

c) Efficiency

The efficiency means shell code can produce results in a fast and economic way. It means the time spending
and memory usage of shell code is competitive when compared to some popular commercial finite element
software. Here SCIA Engineer 19 is selected to solve those model problems. The model data used in SCIA is
the same as the shell code model configuration (Table 9). The computational time and memory usage of
computation activity of SCIA was recorded as below. Since lack of a direct method for measuring the running
time of SCIA, the time was measured in approximated way manually. It is noticeable that the computational
time and memory usage of this finite element software is only related to the number of nodes.

Table 48: Memory usage and time by finite element software (SCIA Engineer 19)

Number of 20%20 30*30 50*50
nodes
Memory | .| Memory | .| Memory | .
usage usage usage
Model 1-5 | 231IMB | 1s | 241MB | 4s | 274MB | 6s

The memory usage of shell code and spent time at the solving step were recorded and listed below. overall
considered, the shell code uses less memory but more time. The spent time of shell code is significantly higher
than that of SCIA and it increases dramatically as the number of nodes increases. The highest memory usage
of shell code is only nearly half of finite element software. The memory usage of shell code with Ismr solver
is increased by 23% when as the number of nodes increased from 20*20 to 50*50. And there is no significant
difference appeared in memory usage at the solving step when a different input matrix is used. The memory
usage at the solving step seems only related to number of nodes regardless of type of matrices and solvers.
However, the spent time is significantly higher as the input matrix of the square sparse matrix is used in most
scenarios. The input square matrices generated by the undefined node method and central node method lead
to generally higher time spending for all five models (Test SU, SC). On the contrary, the results of Test SE
and Test SLM indicate that spent time at the solving step is sensitive in a model-oriented way. When test
models are flat plate square (Test SE1, 2 & Test SLM1, 2), the spent time can be only around 25% of that of
canopy models (Test SE3-5 & Test SLM3-5).

Table 49: Memory usage and time by different solver in shell code

Number of nodes 20*20 30*30 50*50
Solver type Type qf input Memory Time Memory Time Memory Time
matrix [M] usage usage usage
Rectangular sparse 98.8672 104.0859 120.9961
matrix MB 0.897s MB 2.154s MB 10.105s
Square sparse matrix | 98.8008 103.5820 120.6719
(Test SU, SC) MB 5.046s MB 11.410s MB 72.991s
Square sparse matrix | 97.5430 102.4844 118.7852
Python (Test SE1, 2) mB |37 B 8115 | “yp | 2209
solver: Ismr | Square sparse matrix 102.6445 119.7070
(Test SE3) / / MB 17.1068s MB 31.699s
Square sparse matrix 102.8359 119.6328
(Test SE4) / / MB 10.130s MB 89.229s
Square sparse matrix 102.8359 119.7578
(Test SE5) / / MB 13.279s MB 97.949s
ReCta?ﬁ;t'ﬁ;Sparse 147.3MB | 1.63s | 1489MB | 4.19s | 153.9MB | 24.68s
Square sparse matrix | 111.9023 115.2969 115.3047
(Test SLM 1) MB 4.863s MB 5.568s MB 8.106s
R solver: Square sparse matrix | 111.8125 115.5742 141.3125
Im.fit.sparse (Test SLM 2) MB 6.365s MB 5.763s MB 8.293
Square sparse matrix 114.6328 135.4336
(Test SLM 3) / / MB 8.460s MB 27.723s
Square sparse matrix 114.6328 135.4336
(Test SLM 3) / / MB 8.460s MB 27.723s

58

Square sparse matrix 113.6367 135.7070
(Test SLM 4) / / MB 8.502s Mg | 26.590s
Square sparse matrix 118.3633 130.5742
(Test SLM 5) / / MB 8.988s MB | 283463
10*10 20*20
Python Rectangular matrix | 131.375 148.2656
solver: pinv_ | in Python array form MB 7.412s MB 453.638s

5.2Matrix quality

a) Sparsity

In order to show the quality of matrices generated by shell code, the rectangular matrices and square matrices
produced by equation replacement method were checked. The first property checked is sparsity which is
defined as the fraction of zero elements in a matrix. According the calculation, the sparsity of rectangular
matrices is basic same to square matrices. So that below Figure 57 only shows how the sparsity is varied with
different number of nodes for each model. As the number of nodes increased, sparsity rises slowly from lowest
value of 99.99675% to highest value of 99.99951%. Since the non-zero elements are generally distributed on
the local diagonal lines of matrix, the number of zero elements increase in a faster way with larger matrix size.
Despite the different boundary conditions of each model, the sparsity is the same for the models that use same
geometry shape (Flat square shape: Model 1&2, Canopy shape: Model 3-5). As shown in below figure, the
sparsity of model 1 and model 2 is generally equal. Models 3-5 also share the same sparsity.

100.00000%
Model 2

Model 3

—©-Model 1
Model 4
—%—Model 5

99.99950%

99.99900%

99.99850%

Sparsity (%)

99.99800%

99.99750%

99.99700%

(@)

Number of nodes

99.99650%

20*%20 30*30 50*50

Figure 57: Sparsity of matrices
b) Condition number

The second property checked is the condition number for inversion. For matrix A, the condition number is
x(A)=|AJ|A%|. For a system of linear equations A-x=b, the condition number of matrix A can be viewed

ly=x|

I

as a relative error magnification factor (Cline et al., 1979). The error in solution x is which satisfies

the below expression:

%SSHAHHA1||_)%SS-K(A) [(A+E)y:b, g:U]
X X

where ¢ is the relative error in A, Y is the perturbed solution of the linear system, E represents the
perturbation of matrix A.

The upper bound of error in solution x is determined by the condition number and relative error of matrix A.
The same upper bound was also found if perturbation exists in vector b:

59

—”y_X” Sg”A””A’l" —)—"y_X" <g-K(A) [Ay =b+e, gZHJ

I I [o
where ¢ is the relative errorin b, Y is the perturbed solution of the linear system, e represents the perturbation
of vectorb.

The derivation of above relation depends on inequality |jo| <|AJ|x||. However, when . (a)is large, this

relation is very weak for almost all b. In summary, the upper bound of error in solution x is mainly determined
by the error in matrix A and the condition number of A. A higher condition number can magnify the error
in matrix A so that error in solution x is more likely higher. It is noticeable that the precondition of this
conclusion is that the linear system is solved by matrix inversion. Although only part of test results was
obtained through matrix inversion, the condition number can be still used to measure the how sensitive the
solution is to the perturbations in matrix A.

The condition number of rectangular matrices used in Test R1-5 and square matrices Test SE1-5 was obtained
and plot in below figures (Figure 58, Figure 59). Due to limited capacity of author’s PC, number of nodes of
models in condition number calculation was lower than actual model used in tests. The data of those figures
can be found in Annex (Table 49, Table 50). For all matrices, the condition number increases with the number
of nodes of the model. The condition number of model 4 is nearly equal to that of model 5 regardless of types
of matrices. The condition number of the matrix shows a relationship that varies with the type of model. For
rectangular matrix, condition number of models: model 1 > model 2 > model 3 > model 4 = model 5. For
square matrices, condition number of models: model 3 > model 1 > model 2 > model 4 = model 5. The lowest
condition number is 6.46e+15 and the highest condition number is 8.69E+16. Regardless of type of matrix,
the condition number is much larger than 1. Those matrices can be said as ill-conditioned and they are almost
singular. Finding the inverse of such matrices or solution of such linear systems is highly possible to end up
with large numerical errors.

1.00E+17 8.00E+16
—6-Model 1
Model 4

—%—Model 5

Model 2
Model 3

—6—-Model 1
Model 4
—%—Model 5

Model 2

9-00E+16 Model 3

7.00E+16

8.00E+16
6.00E+16
7.00E+16

6.00E+16
5.00E+16

4.00E+16

Condition number

3.00E+16
2.00E+16

1.00E+16

0.00E+00

H—% nodes

5.00E+16

4.00E+16

3.00E+16

2.00E+16

1.00E+16

0.00E+00

Condition number

Number of nodes

10*10 12%12 15*15 10*10 12*12 15*15

Figure 50: Condition number of rectangular matrices | Figure 51: Condition number of square matrices

c) Rank number

Another property checked is the rank number of matrix A. The rank of matrix is equal to length of a longest
linearly independent list of columns (or rows) of matrix (Johnson and Horn, 1985). For a system of linear

equations A-x=b, if the rank of A is equal to the rank of augmented matrix [A| b], the system is consistent

which means there is at least one solution for x. The rank number of rectangular matrices used in Test R1-5
and square matrices Test SE1-5 was obtained. The rank number as a percentage of the total number of rows
of solution x is plot in below figures (Figure 60, Figure 61). The data of those figures can be found in Annex

(Table 51, Table 52). The rank of augmented matrix [A| b] for those tests was also obtained. It has been found
that rank of A is equal to the rank of augmented matrix [AI b] for all tests.

60

As shown in below figures, the rank number of matrix is reduced with higher number of nodes. For rectangular
matrices, percentage of rank number of models: model 5 = model 4 > model 3 > model 2 > model 1. For
square matrices, percentage of rank number of models: model 5 = model 4 > model 3 > model 2 > model 1.
Regardless of type of matrix, percentage of rank number is less 100% for all models which means those linear
systems solved shell code has infinitely many solutions.

100.00% 100.00%

98.00%
98.00% %

96.00%

96.00% 94.00%

94.00% 92.00%

90.00%

O\e\o 88.00%

92.00%

Rank number (%)
Rank number (%)

o— © —O
90.00% 86.00%
—©-Model 1 Model 2 84.00% | —©-Model 1 Model 2
88.00% Model 4 Model 3 .00 Model 4 Model 3
- 2.00% =
—%-Model 5 Number of nodes —%-Model 5 Number of nodes
86.00% 80.00%

1010 12%12 15*15 10%10 12%12 15*15
Figure 52: Percentage of rank number (%) of rectangular | Figure 53: Percentage of rank number (%) of square

matrices (A and [A| b}) matrices (A and [AI b])

5.3Possible factors affecting shell code results

a) Type of matrix, difference approximation method, type of solver

In the above result sections (4.7, 4.8, 4.9), several comparisons have been made on numerical results in order
to investigate three factors specifically including the type of matrix, difference approximation methods, and
type of solver. Those are factors previously assumed to play an important role in affecting shell code results.
However, those numerical result comparisons indicate that not every factor can significantly affect the results.

For example, the comparison between Rectangular matrix test and Square matrix test result shows that many
results remain near equal regardless of the type of matrix, as shown in Figure 39 and Figure 40. No matter
what method was used to produce square matrix, the most of square matrix results remained nearly unchanged.
Meanwhile, the expected improvement on the result accuracy brought by square matrix was only observed on
few displacement results with a small extent. In the most cases, rectangular matrix gives better results but also
in a small degree.

In the comparison of results of five-point and two-point approximation methods (section: 4.9), the expected
improvement on the result accuracy by five-point approximation depends on model type. For model 2, type
A five-point approximation methods given the best bending moment results under Ismr solver (Figure 43).
For model 4 & 5, the deviation of displacement and bending moment results was significantly reduced by
applying five-point approximations under Ismr solver (Figure 44). In those results, Type B approximation
provided more reduction on deviation. For the rest results under Ismr solver and the most results under
Im.fit.sparse solver, regardless of the type of approximation method, shell code has given nearly identical value.
The expected improvement on the result accuracy has been only found for limited cases. Specially for results
under Im.fit.sparse solver, five-point approximation even dramatically increase the deviation. It indicates that
the truncation error reduced by five-point approximation method did not play a significant role in affecting
the accuracy of shell code results.

The results of pinv solver and Im.fit.sparse solver have shown better numerical accuracy than the Ismr solver
in almost all cases (see 4.6). In the comparison between results of pinv and Im.fit.sparse solver, the pinv solver
gives better displacement result and bending moment only for model 4 of 20*20 nodes. In rest cases, pinv
solver and Im.fit.sparse solver gives results in similar level of accuracy.

61

b) Number of nodes, number of iterations

The effect of other factors including number of nodes can be found in the overall comparison (section 4.6). In
finite element software, higher number of nodes generally brings more accurate results. The improvement on
accuracy can be found in many results (Figure 27, Figure 28, Figure 32, Figure 33, Figure 34, Figure 37,
Figure 38). They are displacement and bending moment results of model 4&5 and shear force results of model
1&5. However, the opposite has been found in many displacement and bending moment results of model 1&2
(Figure 24, Figure 25, Figure 26, Figure 29). As shown in those figures, the deviation of shell code results
was increased as the number of nodes grows. While another factor that can be found in the overall comparison
is the model setting. It is obvious that the results of models 1&2 (flat square shape) are less deviated on average
compared to the results of models 3-5 (canopy shape). The highest deviation of results of models 1&2 is less
than 400% while many results of models 3-5 have deviation over 1000%.

Another factor is the number of iterations for Ismr solver. It is equal to the number of columns of matrix A
for the linear system A-x =b in default. If the number of nodes is 20*20, the number of iterations for Ismr
solver is 21-mn=21-20-20=8400. In order to investigate the effect of this factor, Tests R1, R3, SE1, SE3 with
20*20 nodes were recalculated by manually changing number of iterations ranged from 8400*0.01 to
8400*100. The deviation of those results is shown in below figures (Figure 62, Figure 63, Figure 64, Figure
65). The data of those figures can be found in Annex (Table 53, Table 54, Table 55, Table 56). Those data
clearly shows that Ismr did not give the most accurate results under default setting. For model 1 (Test R1, Test
SE1), the deviation of results can be reduced to less than 1% as the number of iterations increases by 100
times. For model 3 (Test R3, Test SE3), the deviation of results is dramatically lower with increasing number
of iterations. However, the deviation of displacement results is still around 200% at 8400*100 iterations. A
higher number of iterations can help to improve the numerical accuracy but to a different extent for different
models.

8400%0.01 8400%0.1 8400*0.2 8400%0.5 8400 8400*2 8400*5 8400*10 8400*100 8400%0.01 8400%0.1 8400%0.2 8400%0.5 8400 8400%2 8400*5 8400*10 8400*100
3000 8 .
Number of iterations

2500

2000

1500

1000

s00

Deviation (%)
F
1

80 0

90 500

—*—uz mxx VX —*—uz mxx VX Figure
Figure 54: Deviation of Test R1 results by increasing 55: Deviation of Test R3 results by increasing number of
number of iterations (m=n=20) iterations (m=n=20)

0 8400%0.01 8400%0.1 S-Illll-'ll:\j‘:lll::;;"llll:’:,r”i:ll\:li“"\ 8400%2 8400*5 8400%10 N-Il]lbr'l(m 1600 8400%0.01 8400%0.1 8400%0.2 8400%0.5 8400 8400%2 8400*5 840010 B400*100

Number of iterations

10 1400
20 1200
1000 —

30 /\-\
40 —~ 800

600

on (%

50

Deviation (%
Deviati

60 400

- 200
70
0
80
9%

——uz mxx VX
——uz mxx VX

Figure 56: Deviation of Test SE1 results by increasing Figure 57: Deviation of Test SE3 results by increasing
number of iterations (m=n=20) number of iterations (m=n=20)

62

¢) Unit systems

In shell code, the unit system is determined when set up model parameters. Meanwhile, different unit system
can lead a difference in several orders of magnitude for the numerical values of those parameters, thus
affecting the numerical values of the matrix elements. For the models in pervious tests, the unit of force is kilo
Newton (kN) and the unit of length is meter (m). In engineering practices, another unit system is widely used
which is Newton for force (N) and millimeter for length (mm). In order to investigate the effects of value of
matrix elements on the calculation, this unit system with another new unit system was used for Test R1-5 and
Test LM 1-5. The new unit system uses 10 meters (10m) for length and kilo Newton (kN) for force. It is not
designed for practical use but merely for changing the value of matrix elements in a different way. The values
of model parameters with different unit system are shown in below:

Table 46: Model parameters by different unit systems

Model 1-2 Model 3-5 All models
. 2
(KN, m) unit p=10 kN;m -
system | =1m,t=0.06m | =12m,t=0.06m,a=2m E =21x10" kN /m
(Default) E-t=1.26x10" kN /m
E-t3 = 4.536x10% kNm
p:10><10_3 N /mm2,
(N, mm) unit | =1000mm .t = 60mm | =12000mm, t =60mm, E—21x10% N/ mm2
system a =2000mm E-t=1.26x107 N/mm
E-t3 =4.536 10" Nmm
p=10x10% kN /10m?
(N, 10m) 1y _ 1 10m, £ =0.006 10m =121 A0 I0M, | & = 21.10° kn r10m®
unit system a=0.21um E-t=1.26x108 kN /10m
E-t3 = 4.536x10"3 kN10m
Shell curvature: Shell curvature:
_ _ — 1
kxx—kyy—kxy—o Kok = Ky =0, Kyy =—=
Laméparameters: .) a
In plane curvature: m- n-
K —k. —0 In plane curvature:

As shown in shell code sections (3.4, 3.5) the value of matrix elements is directly determined by value of
model parameters (length |, thickness t, radius a, Young's modulus E , load P). When adding S-K
equations, if there are components of first order derivative, the values of matrix element is determined by the
finite difference approximation where the Laméparameters , and ay are involved. Those elements take up
about 70% of total. Higher numerical value of length | leads higher numerical value of Laméparameters

which means smaller values of matrix elements for the approximated derivative (see section 3.3). For some
components involving shell curvature higher numerical value of radius a leads to lower values of shell

curvature kW which also contributes lower values of matrix elements. When adding constitutive equations

(see Table 1), the value of matrix elements is determined by E-t and e -+3 where Young's modulus E aand
thickness t are both involved. For other elements that are not involved with E-t, e -t3, shell curvature kyy

and finite difference approximation, their values are remain unchanged regardless of unit systems.

As shown in above table, compared the default (kN, m) unit system, the (N, mm) unit system brings higher
values of length, thickness t and radiusaand lower values of Young's modulus E and load P . It means under

63

(N, mm) unit system the elements of matrix [M] has lower value when they are produced by finite difference
approximation. The matrix [M] under (kN, 10m) unit system is the exact opposite where those elements have
higher value. While for the elements produced during adding constitutive equations, only a few of them has
higher values under (N, mm) unit system since E-t is numerically equal to pervious one but £.t3 is
dramatically higher. Under (kN, m) unit system, higher E -t and lower g -t3 makes some of these elements
have higher values and some have lower values. In summary, applying (N, mm) unit system can lead to the
majority of elements of matrix [M] has lower value and a few elements have higher values. Applying (KN,
10m) unit system means the opposite where majority of elements has higher value while a few elements have
lower values.

The deviation of Test R1-5 and Test LM1-5 results under new unit systems was calculated and compared
results with default unit system (see Figure 66, Figure 67, Figure 68, Figure 69, Figure 70). The data of new
test results can be found in Annex (Table 57, Table 58, Table 59, Table 60). In order to display the results in
details, only deviation between -100% and 100% is shown in those plots. Overall considered, no matter what
unit system is used, deviation of most of results is not reduced but increased. The deviation of Test LM1-5
results under new unit systems is considerably higher compared those under default unit system. The highest
deviation of Test LM1-5 under default unit system was below 100% but many new unit system results were
over that. It is also true for Test R1-5 where deviation of the most of new unit system results were over 100%.
The only exception is the results of Test R1 under (kN, 10m) unit system (see Figure 66). The deviation of
those results was lower than the default unit system results. In conclusion, no matter it makes matrix elements
have higher or lower values, applying new unit systems only cause more deviation in the most cases.

| t R(N.mm) B Test R(kN.10m) BN Test LM(KN,m) BN Test R(N.mm) BN Test R(kN.10m) BN Test LM(KN,m)
£ R(kN.m) B Test LM(N.mm) B Test LM(N,10m) Test R(kN.m) B Test LM(N,mm) B Test LM(N,10m)

Result Comparsion Model 1 Result Comparsion Model 2

‘et
esl

| - | . e
BN - <) TR T r
o IR 1 ||

ML - L™
~100 -100

Figure 58: Deviation of model 1 results with different Figure 59: Deviation of model 2 results with different
unit systems unit systems

B Test R(N.mm) B Test R(kN.10m) B Test LM(KN,m) B Test R(N.mm) B Test R(kN.10m) B Test LM(KN,m)
Test R{(kN.m) B Test LM(N,mm) B Test LM(N,10m) Test R{(kN.m) B Test LM{N,mm) B Test LM(N,10m)
el 3 Result Comparsion Model 4

B —II_II_II_II
75

| =
.
———
" E——
———
" E——
!
" ——
———
S N
| S N
]
[]

[el - [-
= HH S | L S HHE I
. | . Rl
- I ol - I
ol oA a1
Figure 60: Deviation of model 3 results with different Figure 61: Deviation of model 4 results with different

unit systems unit systems

64

BB TestR(N.mm) B TestR(KN.10m) BB Test LM(KN.m) Displacemnt uz results for
Test R(kN.m) B Test LM(N.mm) B Test LM(N,10m) 20%20, 30*30, 30*30 nodes
Result Comparsion Model 5

1 0 Bending moment mxx
results for ...

| Il
- o] pres
' i

] | |
L n
o2 R
—— —
I —
I — —
I — ——
N N
. —— —

Figure 62: Deviation of model 5 results with different
unit systems

d) How do these factors work?

The factors discussed in above sections can be categized into two types: factors that alter the matrix (number
of nodes, difference approximated method, unit system), factors that alter the solving process (type of solver,
number of iterations). The number of nodes directly changes the size of the matrix, which dramatically altering
the quality of matrices. As shown in matrix quality section 5.2, sparsity, condition number, and rank number
of generated matrices show a strong correlation with the number of nodes. Regardless of type of model and
type of matrix, higher number of nodes increases the sparsity and condition number while rank number was
reduced. It indicates that the approximated solution of linear systems with higher number of nodes is more
possible to having large numerical errors, which has been reflected in shell code results. When applying
different the unit systems, the value of the most matrix elements has been reduced or magnified exponentially.
The altered matrix shows different properties (see Figure 71, Figure 72). Matrices were even more rank
deficient if a new unit system was used. Meanwhile the condition number of matrices was higher with new
unit systems. The only exception occurred for model 1 &2 where their condition number was lower when
using (N, mm) unit system. It could explain why only deviation of some model 1 and model 2 results was
lower under (N, mm) unit system while other results deviation was higher with new unit system.

1.40E+17 100.00%
—©-Model 1 Model 2

1.20E+17 Model 4 Model 3 95.00%
—#%—Model 5

90.00%
1.00E+17

85.00%

8.00E+16
80.00%

6.00E+16
75.00%

Condition number
Rank number (%)

—©-Model 1 Model 2
4.00E+16 70.00% Model 4 Model 3
—%—Model 5
2.00E+16 65.00%
Number of nodes
Number of nodes 60.00%
0.00E+00 - - _
(N, mm) (KN, m) (KN, 10m) (N, mm) (KN, m) (KN, 10m)
Figure 63: Condition number of rectangular matrices Figure 64: Percentage of rank number (%) of
with different unit systems (m=n=15) rectangular matrices (A and [A| b}) with different unit

systems (m=n=15)

Applying new difference approximation method also altered the matrices whose properties is shown in below
figures (Figure 73, Figure 74). The condition number of matrices with five-point approximation increased for
model 3-5 while decreased for model 1 & 2. These increases and decreases occur on a relatively small scale.
The rank number with five-point approximation has varied but also on a relatively small scale. Mathematically,
the inherent numerical error brought by two-point approximation is larger than that of five-point
approximation. If such error plays an important role in affecting deviation of results, the properties of matrices
are expected to be significantly altered by applying a new five-point approximation. However, such alteration

65

has not been found. It indicates that the finite difference approximation method does not have a significant
effect on the shell code results.

1.00E+17 100.00%

-©-Model 1 Model 2
98.00% *\’\K

9.00E+16 Model 4 Model 3
96.00%

8.00E+16 —%—Model 5

7.00E+16

6.00E+16 94.00%

5.00E+16
92.00%

Rank number (%)

4.00E+16

Condition number

3.00E+16 90.00% C— © —O
2.00E+16 V//*(//* -©-Model 1 Model 2
LOOE+16 88.00% Model 4 Model 3
0.00E200 Number of nodes 86.00% Numberofnodes —%-Model 5

two-point Type A four-point Type B four-point two-point Type A four-point Type B four-point
Figure 65: Condition number of rectangular matrices Figure 66: Percentage of rank number (%) of
with different approximation method (m=n=15) rectangular matrices (A and [AI b:') with different

approximation method (m=n=15)

The most profound difference on shell code results was caused by the type of solver. However, due to the lack
of information on Im.fit.sparse solver, the specific details on how this solver has such an advantage still
remains unclear. The possible reason might relate to the sparse QR factorization in Im.fit.sparse solver and
the stopping rules in Ismr solver. As illustrated in 2.5 section, applying QR factorization to system matrix is a
necessary step for both Im.fit.sparse solver and Ismr solver. In normal QR factorization the system equation
A-x =D is converted to R™" ATb=QTb where Q is orthonormal matrix and R is upper triangular matrix
and A= Q- R. The orthonormal matrix Q of an overdetermined sparse system cannot be found explicitly

which can adversely affect numerical precision of results. The computational error in this process is influenced
by the sparsity and size of the matrix. So that factorization of smaller matrices could have less computational
error than the factorization of entire matrix. The general strategy for sparse QR factorization is dividing A
into numbers of smaller matrices A, . . The factorization of those smaller matrices is computed individually

to the form the final result of factorization of A instead of applying factorization directly to a large sparse
overdetermined system as Imsr solver. So that compared to Ismr and pinv solver, Im.fit.sparse solver produces
results with much less deviation in overall. Like the number of iterations, the stopping rule of Ismr solver
could also adversely affect results. Three stopping rules mentioned in 2.5 section show that iteration will stop
when the residual of the final iteration is smaller than the stopping tolerance ATOL and BTOL . The default
stopping tolerance used in tests iS ATOL = BTOL =1x10"12 which means relative error in A and b is
assumingly equal to this value. In order to show the effect of this factor, a series of new stopping tolerances
were used for Test R1&3 and Test SE1&3 and results are shown in below figures (Figure 75, Figure 76, Figure
77, Figure 78). It shows that default stopping tolerance does not guarantee a lower deviation for every result.
The deviation of displacement results even increases with lower stopping tolerance used. For model 3, the
deviation of shear force and bending moment results also grows as the stopping tolerance decreases. The
lowest deviation of results occurred at some point below default stopping tolerance and it is different for each
type of results. It indicates that the current default stopping tolerance is not the best setting to obtain the
accurate results. In conclusion, the sparse QR factorization reduces computational error in Im.fit.sparse solver
results and improper stop tolerance setting enlarge the error in Ismr solver results.

66

Stop tolerances (ATOL=BTOL)
1.00E-06 1.00E-08 1.00E-10 1.00E-12
10
15
20

1]

25
30
35
40
-50 Buz Emxx vX

Deviation (%)

Stop tolerances (ATOL=BTOL)

1.00E-06 1.00E-08 1.00E-10 1.00E-12
3000
2500
2000
&
1500 | =
g
1000 | 5
z
a
500
0 == lllrlII
-500 Huz Emxx VX

Figure 67: Tests on stopping tolerances in Ismr solver
for Test R1 (m=n=30)

Figure 68: Tests on stopping tolerances in Ismr solver
for Test R3 (m=n=30)

Stop tolerances (ATOL=BTOL)
1.00E-06 1.00E-08 1.00E-10 1.00E-12

e

-80 Byz Emxx VX

40

20

Deviation (%)

Stop tolerances (ATOL=BTOL)

1.00E-06 1.00E-08 1.00E-10 1.00E-12
1400
1200
1000
800 | —~
8
600 | £
§
400 | £
200
0
|] ||
-200 Euz Emxx Bvx

Figure 69: Tests on stopping tolerances in Ismr solver
for Test SE1 (m=n=30)

Figure 70: Tests on stopping tolerances in Ismr solver
for Test SE3 (m=n=30)

5.4Simplicity of code structure

One of the objectives of this project is the being able to easily modify the code structure in order to change
applied shell theory. In common finite element software, applying a different theory generally means
switching the element type and user defined element usually is not allowed. Some sophisticate finite element
software can do that but require coding and mathematic knowledge. Compared to them, the advantage of shell
code is that it allows users to apply a new theory to models in a much straightforward manner.

In shell code, modifying shell theory equations can be achieved by directly deleting or adding code lines. For
example, if torsion behaviour of models is not considered while S-K equations is still wanted, it can be directly

achieved by muting the lines involving shear strain yyy in the equation adding process. As shown in section

3.4, when adding equations to the models, each component of equation is added individually and of course

can be removed individually.

S-K equation 9 (remove Yyy):

2 2
Nyy +N
N % =0

for j in range(n):
matrix ---
for i in range (m) :
row=row+1
M[row, nxy*m*n+j*m+i]=-0.5
M[row, nyx*m*n+j*m+i]=-0.5
M[row,gammaxy*m*n+j*m+i]=k #muted

Add Sanders-Koiter equation 9 to the

67

for j in range(n): # Add Sanders-Koiter equation 15 to
the matrix -----——---------"--"-----—-—-
for i in range (m) :

S-K equation 15 (remove Yy): row=rowtl o
M[row,gammaxy*m*n+j*m+i]=-1 #muted
au ou Dly(ux,1.0)
=—X+—y—2kxyuz—kxux—kyuy Dlx (uy,1.0)
ay OX M[row,uz*m*n+j*m+i]=-2*kxy (i/ (m-1),73/ (n-1))

)
M[row, ux*m*n+j*m+i] +=-kx(i/(m-1),3/(n-1))
M[row,uy*m*n+j*m+i] +=-ky(i/(m-1),73/(n-1))

=X 7Y oKty —Kyly —kyu
oy ox xyUz —KxUx —Kyly

The whole equation or entire set of equations can be modified like this. It is possible to replace the entire S-K
equations with another set of user-defined equations. Users are free to adopt their own theory to solve model
problems in the shell code.

5.5 Plate code and shell code

In the previously developed plate code (Li, 2020), three plate models have been tested whose results were
usually 10 to 20% lower than its analytical solution. The main conclusion was that it is possible to solve plate
equations by only applying first-order finite-difference approximation. The assumed computation error in
those results was suspected to be related to the programming error and solving method.

68

6. Conclusion

The goal of this project was to develop a workable algorithm that can solve shell model problems through the
finite difference method and understand how the results can be affected. The finite difference results were
compared to finite element solutions. The main conclusion is that the selected version of the algorithm
performs a relatively good analyses of the considered shell models. It produces displacement, shear force and
bending moment results for both the flat square shape and the canopy shape with various boundary conditions
and load conditions. This algorithm uses the Im.fit.sparse solver, an over-determined system of equations
(rectangular matrix) and a five-point interpolation (version B). About 80% of shell code results match the
finite element results with a deviation less than 5%.

Many factors have little influence on the computation results (displacement, membrane forces, moments, and
shear forces). Examples of these factors are the mathematic property of the matrix (determined or
overdetermined), the finite difference approximation method, and the unit system. The effect of those factors
has been investigated with sparsity, conditional number, and rank number of the matrices. Those matrix
quality checks have shown the non-uniform way of change in conditional number and rank number of matrices
when those factors were monotonically altered. There is not a clear relationship between those factors and
deviations of shell code results from corresponding tests. This means that obtaining the best results by altering
those factors could a very case-sensitive and time-consuming task.

Since in most cases the constructed matrices were ill-conditioned, the standard solver numpy.linalg.solve
(Python) was not used. Three solvers have been implemented and compared; numpy.linalg.Istsq (Python),
numpy.linalg.pinv (Python), Im.fit.sparse (R). The latter is able to compute the 5050 grid, however, this
solver is not easy to implement. Unfortunately, the results strongly depend on settings in the solving steps
such as the number of iterations and stop tolerances (see pp 61, 66). With the help of sparse QR factorization,
the best shell code results were produced by the Im.fit.sparse solver. Some numpy.linalg.pinv solver results
can reach a similar level of numerical accuracy but it is more expensive in terms of time and memory usage.

The boundary conditions have been implemented by adding equations or by replacing equations. The former
leads to an over determined system the latter to a determined system of equations. There are no remarkable
differences in computation results between these systems.

The discretization has been implemented by three-point interpolation and by five-point interpolation. The five-
point interpolation type B produces very promising results (see pp. 33, 113). Sometimes an hourglass mode
occurs as a slight undulation on the results (see pp. 75, 77, 80). The undulation changes with more grid points
but does not disappear. The undulation is strongest for determined systems.

Through numbers of tests and discussions, one thing has been proved is that the selected version of shell code
can solve shell model problems by solving Sanders-Koiter equations with finite difference method. The
current best configuration of algorithm is using rectangular matrix which means describing boundary
conditions by adding equations instead of replacing them, and using a five-point interpolation for
discretization. Many previously assumed important factors for affecting shell code results were actually less
significant. During the process of exploring the possible reasons for numerical error in generated results, the
most tests are about changing the inputs of computation and they did not affect shell code significantly.
However, the most vital difference in results occurred under different computation methods. It is reasonable
to assume that there should be a more powerful mathematic tool for solving an overdetermined linear sparse
system. Maybe under further research of developing mathematic tools, finite difference method could be a
more promising and practical method for solving model problems.

69

7. Recommendation

As discussed in the above sections, the solving method should be a key part of further improvement of the
algorithm. The correct solver settings are essential for the quality of results. In the current shell code, matrix
quality checks and solver settings were manually set up in previous tests. It is possible to build an iterative
process so that the solver can automatically alter its setting. The deviation of shell code results will be checked
and work as a reference for altering solver settings in the next iteration until deviation results is within an
acceptable range. It could help to find the best solver settings for every case efficiently.

Another possible improvement is to find a new iterative solver, which can apply a vector of weights in the
fitting process. The stop rules of current iterative solvers used in shell code (Ismr and Im.fit.sparse) all consider
the residual r, for the approximate solution x, . Once it meets the preset stop tolerance, the solver will stop

and give results. This residual is calculated as r, = b — Ax, Where all the rows of system matrix A are equally

involved. However, rows for equations describing boundary conditions are only accounted for less than 1%
of the whole matrix. This means the boundary conditions might be not satisfied as the residual is low enough
to meet the stop rules since the rest rows for S-K equations describing model body dominates the residual r, .

This might explain why distortion of results has been usually found on boundaries of model. This assumed
vector of weights could manually increase the weights of boundary condition equations in calculating the
residual so that when residual meets the stop rules the boundary conditions are satisfied.

70

8. Reference list

Amabili, M. (2003) ‘A comparison of shell theories for large-amplitude vibrations of circular cylindrical
shells: Lagrangian approach’, Journal of Sound and Vibration TA - TT -, 264(5), pp. 1091-1125. doi:
10.1016/S0022-460X(02)01385-8 LK - https://tudelft.on.worldcat.org/oclc/4924705977.
Assadi-Lamouki, A. and Krauthammer, T. (1989) ‘An explicit finite difference approach for the Mindlin
plate analysis’, Computers & structures. Elsevier, 31(4), pp. 487—494.

Bernoulli, J., J. (1789) “Essai theorique sur les vibrations de plaques elastiques rectangularies et libers’,
Nova Acta Acad Petropolis, 5, pp. 197-219.

Cauchy, A.-L. (1828) ‘Sur I’equilibre et le mouvement d’une plaque solide’, Exercises de Matematique,
3(1828), pp. 328-355.

Chladni, E. F. F. (1802) Die akustik. Breitkopf & Héatel.

Cline, A. K. et al. (1979) ‘An estimate for the condition number of a matrix’, SIAM Journal on Numerical
Analysis. SIAM, 16(2), pp. 368-375.

Davis, T. A., Rajamanickam, S. and Sid-Lakhdar, W. M. (2016) ‘A survey of direct methods for sparse
linear systems.’, Acta Numer., 25, pp. 383-566.

Euler, L. (1766) ‘De motu vibratorio tympanorum’, Novi commentarii academiae scientiarum
Petropolitanae, pp. 243-260.

Fernandez-Granda, C. (2016) DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science, New
York University. Available at: https://cds.nyu.edu/math-tools/.

Fong, D. C.-L. and Saunders, M. (2011) ‘LSMR: An iterative algorithm for sparse least-squares problems’,
SIAM Journal on Scientific Computing. SIAM, 33(5), pp. 2950-2971.

Germain, S. (1826) Remarques sur la nature, les bornes et I’étendue de la question des surfaces élastiques,
et &uation géné&ale de ces surfaces. Huzard-Courcier.

Johnson, C. R. and Horn, R. A. (1985) Matrix analysis. Cambridge university press Cambridge.

Kirchhoff, G. (1850) Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe.

Koiter, W. T. and Delft University of Technology, D. of M. E. L. of E. M. (1966) Purpose and achievements
of research in elastic stability., Report Department of Mechanical Engineering, Delft University of
Technology ; 363 TA - TT -. Delft SE - 29 blz. ; .. cm.: Delft University of Technology. Available at:
https://tudelft.on.worldcat.org/oclc/841152853.

Lagrange, J. L. (1828) ‘Note communiquée aux Commissaires pour le prix de la surface @astique dé&embre
1811°, Ann. Chimie Physique, 39(149151), p. 1828.

Li, C. (2020) Finite difference analysis of plate structures. Delft University of Technology. Available at:
http://homepage.tudelft.nl/p3r3s/BSc_projects/eindrapport_chulong_li.pdf.

Love, A. (1892) A treatise on the mathematical theory of elasticity’.

Marcus, H. (1932) Die Theorie elastischer Gewebe und ihre Anwendung auf die Berechnung biegsamer
Platten. Springer.

Navier, C. (1823) ‘Bulletin des Sciences de la Societe Philomathique de Paris’. Paris.

O’Connor, D. (1985) ‘Report on the Dublin matrix theory conference, March 1984: An introduction to
sparse matrices’, Linear Algebra and its Applications. North-Holland, 68, pp. 271-272.

Paige, C. C. and Saunders, M. A. (1982) ‘LSQR: An algorithm for sparse linear equations and sparse least
squares’, ACM Transactions on Mathematical Software (TOMS). ACM New York, NY, USA, 8(1), pp. 43—
71.

Penrose, R. (1955) ‘A generalized inverse for matrices’, in Mathematical proceedings of the Cambridge
philosophical society. Cambridge University Press, pp. 406—413.

Poisson, S.-D. (1828) Mémoire sur [’équilibre et le mouvement des corps élastiques. F. Didot.

Reddy, J. N. and Gera, R. (1979) ‘An improved finite-difference analysis of bending of thin rectangular
elastic plates’, Computers and Structures, 10(3), pp. 431-438. doi: 10.1016/0045-7949(79)90018-X.
Reissner, E. (1941) ‘A new derivation of the equations for the deformation of elastic shells’, American
Journal of Mathematics. JSTOR, 63(1), pp. 177-184.

Sanders, J. L. (1960) An improved first-approximation theory for thin shells. US Government Printing
Office.

Sanders, J. L. (1963) ‘Nonlinear theories for thin shells’, Quarterly of Applied Mathematics, 21(1), pp. 21—
36. doi: 10.1090/gam/147023.

71

Sanders Jr, J. L. (1967) ‘On the shell equations in complex form’.

Svoboda, J., Cashman, T. and Fitzgibbon, A. (2018) ‘QRkit: Sparse, Composable QR Decompositions for
Efficient and Stable Solutions to Problems in Computer Vision’, in 2018 IEEE Winter Conference on
Applications of Computer Vision (WACV). IEEE, pp. 1263-1272.

Szilard, R. T. A.-T. T.- (1974) ‘Theories and Applications of Plate Analysis : Classical Numerical and
Engineering Methods’. Hoboken: Wiley [Imprint]. Available at:
http://onlinelibrary.wiley.com/book/10.1002/9780470172872.

Thomée, V. (2001) ‘From finite differences to finite elements. A short history of numerical analysis of
partial differential equations’, Journal of Computational and Applied Mathematics, 128(1-2), pp. 1-54. doi:
10.1016/S0377-0427(00)00507-0.

Timoshenko, S. (1913) Sur la stabilitédes systanes &astiques. A. Dumas.

Timoshenko, S. P. (1915) ‘On large deflections of circular plates’, Mem Inst Ways Commun, 89.
Timoshenko, S. P. and Woinowsky-Krieger, S. (1959) Theory of plates and shells. McGraw-hill.
Trefethen, L. N. and Bau 11, D. (1997) Numerical linear algebra. Siam.

Ventsel, E. and Krauthammer, T. T. A.-T. T.- (2001) ‘Thin plates and shells : theory, analysis, and
applications’. New York: Marcel Dekker. doi: 10.1201/9780203908723 LK -
https://tudelft.on.worldcat.org/oclc/54351771.

72

9. Appendix

Rectangular matrix test plots

Test R1, three-point interpolation, flat square, vertical loading, rectangular matrix

uz: Max value=-6.728e-06 1e-6
10
uz: Max value=-7.006e-06 - uz: Max value=-7.333e-06 -
24 10 leo 10 16
24
12 12
o 08 12 08
0.0 0.0
0.0
06 12 a2
06 12 06
> 24
2.4 > >
R -24
4
36 0.4 0.4 —3.6
-36
48 48
48
02 0z 0z 6.0
80 —6.0
=12
00 -12 0.0 -12 0.0
a2 04 an e 10 00 02 04 06 08 10) 02 04 06 08 10
o u u
Figure 71: Test R1 displacement uz results (m=n=20, 30, 50)
mxx: Max value=-0.245871037
Lo 004 mxx: Max value=-0.252522845 mxx: Max value=-0.261022132
10 004 10
000 0.00
a8 0.00
0.04 08 08 -0.04
—0.04
06 0.08 .08
0.6 —0.08 0.6
> 0.12
0.12 > >
-0.12
04
016 04 04 0.16
-0.16
020
oz o020 02 -0.20 02
024
0.24 ~0.24
a4 0.0 0.0 -0.28
o0 02 04 os o8 10 00 02 04 06 08 10 00 02 04 06 08 10
v u u

Figure 72: Test R1 bending moment mxx results (m=n=20, 30, 50)

vx: Max value=-3.342004019

04 0.6
u

iz
' 2
1
0
-1
-2
-3
0.8 10

vx: Max value=-3.315967223

3
08 2
1

06
>]

04
-1
02 -2
-3

00

0o 02 04 06 o8 10
u

vx: Max value=3.276763182
10

3
08 2
1
06
> [
04
-1
02 =2
-5
00
o8 10

0.0 02 0.4 0.6

m=n=50

m=n=30

m=n=20

Figure 73: Test R1 shear force vx results (m=n=20, 30, 50)

Test R2, three-point interpolation, flat square, vertical loading, rectangular matrix

L0

uz: Max value=-0.000174615

X 0.00003

0.00000
0.8

-0.00003
0.6

-0.00006

~0.00009
04

-0.00012
0.2

~0.00015
00 -0.00018

0.0 02 0.4 06 08 10

10 uz: Max value=-0.000252468

0.8

0.6

’ 04

0.2

00
0.0 02 04 06 0.8 L0

0.00004

0.00000

~0.00004

~0.00008

-0.00012

-0.00016

-0.00020

~0.00024

uz: Max value=-0.00028964

08

0.6

) 0.4

02

0.0
0.0 02 04 06 0.8 10

0.00005

0.00000

-0.00005

-0.00010

-0.00015

-0.00020

~0.00025

-0.00030

m=n=50

m=n=30

m=n=20

Figure 74: Test R2 displacement uz results (m=n=20, 30, 50)

mxx: Max value=7.550217786

mxx: Max value=8.222911701

04 0.6
u

mxx: Max value=8.093664791

0.4 06
u

m=n=50

m=n=30

m=n=20

Figure 75: Test R2 bending moment mxx results (m=n=20, 30, 50)

vx: Max value=4.048595378

40
32
24
X 16
08
00
-08
-16
4 -24
0.0 02 0.4 06 08 10
u

o

o

e

e

00

00

vx: Max value=4.16248139

4.0
ER
24

: 16
0s
0.0

. -08
-1.6

a0 0z 0.4] [10
u

vx: Max value=4.229909319

08 32
24
06
16
0.4 08
0.0
02
-0.8
» -
0.0 -6
0.0 0.2 04 06 08 10

m=n=50

m=n=30

m=n=20

Figure 76: Test R2 shear force vx results (m=n=20, 30, 50)

a) Test R3, three-point interpolation, canopy, vertical loading, rectangular matrix

w0 UZ: Max value=-0.003281751

00

0.0006
0
0.0000
25
-0.0006
=20
—0.0012
15
-0.0018
Lo
-0.0024
a 2 H & & 10 12
x

0.0012

-0.0030

UZ: Max value=-0.003062489
0.0012

s 0.0006
30 0.0000
2 ~0.0006
20

—0.0012
15

-0.0018
10

~0.0024
s

—~0.0030
004 |

13

2 4 6 8 10 12
%

m=n=50

m=n=30

Figure 77: Test R3 displacement uz results (m=n=20, 30, 50)

L0

00

mxx: Max value=-5.759847994

a0

-08
-16
-24
32
-40
48
-5.6

0.0 [¥] 04 06 0.8 10

mxx: Max value=-5.692171614

10
0.0
08 -08
-16
06
24
-32
04
-40
02 -48
-56
00
0o 02 04 0.6 08 10

m=n=50

m=n=30

Figure 78: Test R3 bending moment mxx results (m=n=20, 30, 50)

74

vx: Max value=-15.154636588

vx: Max value=-15.137346105
L0 16
12
0.8
8
0.6 @
= 0
04 4
-8
0.2
-12
004 18
0.0 02 0.4 0.6 08 10
u

Figure 79: Test R3 shear force vx results (m=n=20, 30, 50)

b) Test R4, three-point interpolation, canopy, vertical loading, rectangular matrix

UZ: Max value=-1.399002495

UZ: Max value=-1.223685232

m=n=50 m=n=30
Figure 80: Test R4 displacement uz results (m=n=20, 30, 50)
mxx: Max value=478.979793147 80 mxx: Max value=538.005046734 s60
m=n=50 m=n=30
Figure 81: Test R4 bending moment mxx results (m=n=20, 30, 50)
vx: Max value=112.729138905 vx: Max value=119.872044551

m=n=50

Figure 82: Test R4 shear force vx results (m=n=20, 30, 50)

75

c) R5, three-point interpolation, canopy, normal loading, rectangular matrix

a0 UZ: Max value=-0.884675236 UZ: Max value=-1.085015184
m=n=50
Figure 83: Test R5 displacement uz results (m=n=20, 30, 50)
mxx: Max value=304.632166937 220 mxx: Max value=340.879515217 50
m=n=50
Figure 84: Test R5 bending moment mxx results (m=n=20, 30, 50)
vx: Max value=70.402637453
m=n=50
Figure 85: Test R5 shear force vx results (m=n=20, 30, 50)
Square matrix test plots
Test SC1, three point interpolation, flat square, vertical loading, square matrix
uz: Max value=-6.063e-06 1e—
uz: Max value=-6.146e-06 1e-6 10 E 1

02 0.4 0.6 0.8

o

m=n=50

m=n=30

Figure 86: Test SC1 displacement uz results (m=n= 30, 50)

76

mxx: Max value=-0.245934841

—0.04

—0.08

-0.12

-0.16

-0.20

-0.24

mxx: Max value=-0.252464732

—0.04

—0.08

v

-0.12

-0.16

-0.20

-0.24

m=n=50

Figure 87: Test SC1 bending moment mxx results (m=n=30, 50)

vx: Max value=-3.342003856
10

| 3
2
1
> 0
-1
-z
Hs
0.0
0.0 02 0.4 06 08 10
u

=

vx: Max value=-3.315967583

m=n=50

m=n=30

Figure 88: Test SC1 shear force vx results (m=n=30, 50)

Test SC2, three point interpolation, flat square, vertical loading, square matrix

uz: Max value=-0.00017786

L0 0.00003
0.00000
0.8
~0.00003
0.6
~0.00006
~0.00009
04
-0.00012
0.2
~0.00015
00 —0.00018
0.0 02 04 06 0.8 10
u

uz: Max value=-0.000259437

10 0.00004
0.00000
0.8
-0.00004
0.6 -0.00008
-0.00012
a4
-0.00016
02 -0.00020
-0.00024
a0
00 02 04 06 o8 10
u

m=n=50

m=n=30

Figure 89: Test SC2 displacement uz results (m=n=30, 50)

mxx: Max value=7.551220703

mxx: Max value=8.223810441

m=n=50

Figure 90: Test SC2 bending moment mxx results (m=n=30, 50)

77

vx: Max value=4.048575972

L0

a0

Y 32

24

L6

- 08

) oo
-08
-16
a0 | 24

0.0 02 04 [-X] 08 10
u

e

e
@

o
&

e

vx: Max value=4.162451404

4.0
32
2.4
16
08
0.0

. -0.8
-16

0.0 02 04 06 0.8 10

u

m=n=50

m=n=30

Figure 91: Test SC2 shear force vx results (m=n= 30, 50)

Test SC3, three-point interpolation, canopy, vertical loading, square matrix

40 UZ: Max value=-0.002970454

0.0010

35 0.0005
30 0.0000
25 ~0.0005
=20 -0.0010
L5 -0.0015
L0 -0.0020
0.5 -0.0025
004 | -0.0030
o 2 a 6 8 10 12
x

UZ: Max value=-0.002525611

40
35
30
25
= 2.0
15
10
05
a0
o 2 4 6 a 1o 12
x

0.0004

0.0000

—0.0004

-0.0008

-0.0012

-0.0016

-0.0020

—0.0024

m=n=50

m=n=30

Figure 92: Test SC3 displacement uz results (m=n=20, 30, 50)

mxx: Max value=-5.758919192

0.0
-08
-1
-24
-32
-4.0

g -48
-56

00 o2 04 0.6 08 10
u

00

mxx: Max value=-5.690905994

0.0
-0
-16
-2.4
-2
-4.0

: -48
-5.6

0.0 02 04 06 o8 10
u

m=n=50

m=n=30

Figure 93: Test SC3 bending moment mxx results (m=n=20

.30, 50)

1o vx: Max value=-15.136625203

0.0 + J i
06 0.8 10
u

0.0 02 04

6

2

o

o
&

it
1
8
a
0

e
a

o

-1

16

vx: Max value=15.154260356

0.0 0.2 04

16
12
0.8
8
0.6 4
> 0
a4 4
-8
02
-12
0.0 4 J -16
06 08 10
u

m=n=50

m=n=30

Figure 94: Test SC3 shear force vx results (m=n=20, 30, 50)

78

Test SC4, three-point interpolation, canopy, vertical loading, square matrix

UZ: Max value=-1,398724612

40

00
s

-0z
30

-0.4
25

-0.6

=20

15 -8
10 -10
05 -1z

UZ: Max value=-1.72027864

m=n=50

m=n=30

Figure 95: Test SC4 displacement uz results (m=n=20, 30, 50)

mxx: Max value=478.972579848 80

320

240

160

mxx: Max value=537.988143106

L0 560

08

0.6 20
240

04

02 80
0

0.0

0.0 02 04 06 0.8 10
u

m=n=50

m=n=30

Figure 96: Test SC4 bending moment mxx results (m=n=20, 30, 50)

vx: Max value=112.731694335

u

vx: Max value=119.879631811

m=n=50

Figure 97: Test SC4 shear force vx results (m=n=20, 30, 50)

Test SC5, three-point interpolation, canopy, normal loadin

, square matrix

UZ: Max value=-1.085183929

To 2 4 6 8 1 12
x

0.00

-0.16

-0.32

-0.48

—0.64

-0.80

-0.96

-112

a0 UZ: Max value=-0.885164941
.
-0.12
3.0
-0.24
"
> 2.0
v
—0.60
1.0
-0.72
05
-0.84
0.0
m=n=50

m=n=30

Figure 98: Test SC5 displacement uz results (m=n=20, 30, 50)

79

m=n=50 m=n=30
Figure 99: Test SC5 bending moment mxx results (m=n=20, 30, 50)

m=n=50
Figure 100: Test SC5 shear force vx results (m=n=20, 30, 50)
Square matrix test plots
Test SC1, three-point interpolation, flat square, vertical loading, square matrix

m=n=50 m=n=30
Figure 101: Test SC1 displacement uz results (m=n= 30, 50)

m=n=50

Figure 102: Test SC1 bending moment mxx results (m=n=30, 50)

80

vx: Max value=-3.342003856
10

vx: Max value=-3.315967583

m=n=50
Figure 103: Test SC1 shear force vx results (m=n=30, 50)
Test SC2, three-point interpolation, flat square, vertical loading, square matrix

m=n=50 m=n=30
Figure 104: Test SC2 displacement uz results (m=n=30, 50)

m=n=50 m=n=30
Figure 105: Test SC2 bending moment mxx results (m=n=30, 50)

m=n=50

Figure 106: Test SC2 shear force vx results (m=n= 30, 50)

81

Test SC3, three-point interpolation, canopy, vertical loading, square matrix

UZ: Max value=-0.002970454

UZ: Max value=-0.002525611

m=n=50 m=n=30
Figure 107: Test SC3 displacement uz results (m=n=20, 30, 50)
10 mxx: Max value=-5.758919192 ﬂ mxx: Max value=-5.690905994
m=n=50 m=n=30
Figure 108: Test SC3 bending moment mxx results (m=n=20, 30, 50)
1o vx: Max value=-15.136625203 1 1o vx: Max value=15.154260356 1
m=n=50 m=n=30
Figure 109: Test SC3 shear force vx results (m=n=20, 30, 50)
Test SC4, three-point interpolation, canopy, vertical loading, square matrix
40 UZ: Max value=-1.398724612 UZ: Max value=-1.72027864

m=n=50

Figure 110: Test SC4 displacement uz results (m=n=20, 30, 50)

82

mxx: Max value=478.972579848

mxx: Max value=537.988143106

560

m=n=50 m=n=30
Figure 111: Test SC4 bending moment mxx results (m=n=20, 30, 50)
vx: Max value=112.731694335 1o vx: Max value=119.879631811
m=n=50 m=n=30
Figure 112: Test SC4 shear force vx results (m=n=20, 30, 50)
Test SC5, three-point interpolation, canopy, normal loading, square matrix
a0 UZ: Max value=-0885164941 ﬂ UZ: Max value=-1,085183929
m=n=50 m=n=30
Figure 113: Test SC5 displacement uz results (m=n=20, 30, 50)
mxx: Max value=304.62782236 220 mxx: Max value=340.874190596 350

0

m=n=50

m=n=30

Figure 114: Test SC5 bending moment mxx results (m=n=20, 30, 50)

83

vx: Max value=70.404141646

04 0.6
u

70

60

50

30

20

10

™
08 e
50
06
0
30
04
20
0z 10
0
00
0o a2 04 06 a8 1
u

vx: Max value=74.462922283

o

m=n=50

m=n=30

Figure 115: Test SC5 shear force vx results (m=n=20, 30, 50)

Test SU1, three-point interpolation, canopy, vertical loading, square matrix

0.

uz: Max value=-5.915e-06 1e—6
uz: Max value=-5.714e-06 le-6 uz: Max value=-5.664e-06 le-6
36 2s
36
24
12
08 24
12
12 0.0
0.0
06 0.0 12
B =12 12
0.4 -2.4
g 24 Caa
36
-3.6 -3.6
0.2
-) 48
ok | e 0 o B oo 00 k- = oo
00 02 04 06 08 10 10 L. o2 . as as 10
Figure 116: Test SU1 displacement uz results (m=n=20, 30, 50)
mxx: Max value=-0.24590946 mxx: Max value=-0.252395788 mxx: Max value=-0.260897246
0.00
0.00 0.00
0.8 0.8 0.8 -0.04
a0a a0a
-0.08
as a8 as a8 as
-0.12
-0.12 -0.12
04 04 04 =0.16
—0.16 —0.16
e
0.2 -0.20 0.2 -0.20 0.2
o
-0.24 -0.24
0 02 04 06 08 10 0.0 02 04 06 08 1
. .

o

m=n=50

m=n=30

m=n=20

Figure 117: Test SU1 bending moment mxx results (m=n=20, 30, 50)

10

vx: Max value=3.342005782

0.

0.

3
.8 2
1
.6
o
04
-1
0.2 -2
-3
0.0
0.0 02 0.4 06 08 10
u

vx: Max value=-3.315969642
10

3
0.8 2
1
06
Bl o
04
-1
0.2 -2
-3
0.0
0.0 02 0.4 06 08 10
u

vx: Max value=-3.276765587

10
3
0.8 2
1
06
Bl o
04
-1
0.2 -2
-3
0.0
0.0 02 0.4 06 08
u

10

m=n=50

m=n=30

m=n=20

Figure 118: Test SU1 shear force vx results (m=n=20, 30, 50)

84

Test SU2, three-point interpolation, flat square, vertical loading, square matrix

uz: Max value=-0.000199673

uz: Max value=-0.000331737

uz: Max value=-0.000369906

L0 0.00003 0.00005 0.00005
0.00000 0.00000 0.00000
o -0.00003 ~0.00005 —0.00005
06 ~0.00006 ~0.00010 ~0.00020
= ~0.00009 ~0.00015 I
o4 —0.00012 ~0.00020 -0.00020
=0.00025
0.z —0.00030
-0.00018 -0.00030
—0.00035
0.0 0.2 0.4 0.6 08 10 0.4 06 08 0.4 06 08
m=n=50 m=n=30 m=n=20
Figure 119: Test SU2 displacement uz results (m=n=20, 30, 50)
mxx: Max value=7.551237925 o mxx: Max value=8.223831147 0 mxx: Max value=8.094360659 0
T 12 12
6
6.0 6.0
5
48 48
.
36 36
3
24 2.4
2
1 12 12
0 0.0 0.0
04 o6 04 06
. .
m=n=50 m=n=30 m=n=20
Figure 120: Test SU2 bending moment mxx results (m=n=20, 30, 50)
vx: Max value=4.048579348 vx: Max value=4.162453623 vx: Max value=4.229878934
40 40 40
3z 32 32
2.4 2.4 24
Le L6 16
= o8
o
08
0.0
0.0
0.0
-0.8
0.8
-1.6 0.8
16
04 o6 08 10
.
m=n=50 m=n=30

Figure 121: Test SU2 shear force vx results (m=n=20, 30, 50)

Test SU3, three-point interpolation, canopy, vertical loading, square matrix

UZ: Max value=-0.002948143

0.0012

0.0006

0.0000

-0.0006

-0.0012

-0.0018

~0.0024

—0.0030

UZ: Max value=-0.002681317

0.0010

0,0005

0.0000

-0.0005

~0.0010

-0.0015

-0.0020

-0.0025

m=n=50

Figure 122: Test SU3 displacement uz results (m=n= 30, 50)

85

10 mxx: Max value=-5.691870708
o mxx: Max value=-5.759586704 00
m=n=50 m=n=30
Figure 123: Test SU3 bending moment mxx results (m=n=30, 50)
10 vx: Max value=15.15403369 1
10 vx: Max value=15.136646406 .
m=n=50 m=n=30
Figure 124: Test SU3 shear force vx results (m=n=30, 50)
Test SU4, three-point interpolation, canopy, vertical loading, square matrix
a0 UZ: Max value=-1.406381242 20 UZ: Max value=-1.727111505
m=n=50 m=n=30
Figure 125: Test SU4 displacement uz results (m=n=30, 50)
mxx: Max value=478.976268799 80 mxx: Max value=538.000108874 s60

04 06 08

m=n=50

Figure 126: Test SU4 bending moment mxx results (m=n=30, 50)

86

vx: Max value=112.730690682

wvx: Max value=119.875571658

m=n=50
Figure 127: Test SU4 shear force vx results (m=n= 30, 50)
Test SUS5, three-point interpolation, canopy, normal loading, square matrix

a0 UZ: Max value=-0.887511469 20 UZ: Max value=-1.08664019

m=n=50 m=n=30
Figure 128: Test SU5 displacement uz results (m=n=30, 50)

m=n=50 m=n=30
Figure 129: Test SU5 bending moment mxx results (m=n=30, 50)

04 06 08

m=n=50

Figure 130: Test SU5 shear force vx results (m=n= 30, 50)

87

Test SE1, three-point interpolation, flat square, vertical loading, square matrix

Lo uz: Max value=-6.413e-06 1e-6

@ ﬂ” 1o uz: Max value=-6.517e-06 1e-6
m=n=50 m=n=30
Figure 131: Test SU1 displacement uz results (m=n=20, 30, 50)
1o mxx: Max value=-0.24862 00s
@ H 1o mxx: Max value=-0.25814608 H"‘
m=n=50 m=n=30
Figure 132: Test SU1 bending moment mxx results (m=n=20, 30, 50)
Lo vx: Max value=-3.25177554
i] vx: Max value=-3.163640013 ﬂ3z 10 vx: Max value=3.068177185 ﬂ3z
m=n=50 m=n=30 m=n=20
Figure 133: Test SE1 shear force vx results (m=n=20, 30, 50)
Test SE2, three-point interpolation, flat square, vertical loading, square matrix
uz: Max value=-0.000184723 200007 10 uz: Max value=-0.000273136 200004 10 uz: Max value=-0.000321494 000005
m=n=50 m=n=30 m=n=20

Figure 134: Test SE2 displacement uz results (m=n=20, 30, 50)

88

mxx: Max value=7.127706694

04 0.6

mxx: Max value=7.791863834

04 0.6

mxx: Max value=7.692926164

m=n=50

m=n=30

Figure 135: Test SE2 bending moment mxx results (m=n=20, 30, 50)

wvx: Max value=4.638583311
L0 H

e
&

2
@

e
4

e

0.0 02 04 06 08 10

wvx: Max value=4.057950054

m=n=50

m=n=30

Figure 136: Test SE2 shear force vx results (m=n=20, 30, 50)

Test SE3, three-point interpolation, canopy, vertical loading, square matrix

UZ: Max value=-0.003347799

0.0

30
25
=20
15
10
o 2 a & H 10 12
x

0.0016

0.0008

0.0000

-0.0008

-0.0016

-0.0024

-0.0032

UZ: Max value=-0.003151796

|

2 a 6 8 10
x

0.0012

0.0006

0.0000

~0.0006

~0.0012

-0.0018

~0.0024

~0.0030

m=n=50

m=n=30

Figure 137: Test SE3 displacement uz results (m=n= 30, 50)

mxx: Max value=-5.641875488

0.0 02 04 06 0.8
u

mxx: Max value=-5.655471787

m=n=50

Figure 138: Test SE3 bending moment mxx results (m=n=30, 50)

89

vx: Max value=-15.707504143

10 16
12
3
6 N
> o
: -4
! J -16
4 06 0.8 10
u

e
=

o

e
=

°

9
Lood
s

0.0 02 a

vx: Max value=-15.76692059

0.8
8
06 N
> o
04 .
s
0z
-1z
00 -16
a0 02 04) 08 10

m=n=50

Figure 139: Test SE3 shear force vx results (m=n=30, 50)

Test SE4, three-point interpolation, canopy, vertical loading, square matrix

UZ: Max value=-1.148401728

UZ: Max value=-1.449340255

m=n=50 m=n=30
Figure 140: Test SE4 displacement uz results (m=n=30, 50)
1o mxx: Max value=460.586218081 i“' 1o mxx: Max value=503.722172008
m=n=50 m=n=30
Figure 141: Test SE4 bending moment mxx results (m=n=30, 50)
vx: Max value=129.464684534 vx: Max value=135.343453259 150

04 06
u

m=n=50

Figure 142:

Test SE4 shear force vx results (m=n= 30, 50)

90

Test SEb, three-point interpolation, canopy, normal loading, square matrix

UZ: Max value=-0.727978438

UZ: Max value=-0.914780676

m=n=50 m=n=30
Figure 143: Test SE5 displacement uz results (m=n=30, 50)
mxx: Max value=293.100825684 00 mxx: Max value=319.424285016 .
T
m=n=50 m=n=30
Figure 144: Test SE5 bending moment mxx results (m=n=30, 50)
1o vx: Max value=80.818926856 H vx: Max value=83.841729144
m=n=50
Figure 145: Test SE5 shear force vx results (m=n= 30, 50)
Solver test results
Test P1, three-point interpolation, flat square, vertical loading, rectangular matrix
uz: Max value=-9.704e-06 uz: Max value=-9.741e-06
i 0.0000000 0.0000000
' —0.0000032 -0.0000032
> —0.0000048 —0.0000048
: —0.0000064 —0.0000064
. —0.0000080 —0.0000080
—0.0000096 —0.0000096
0.0
0.0 0.2 0.4 0.6 0.8 1.0

m=n=20

m=n=10

Figure 146:

Test P1displacement uz results (m=n=10, 20)

91

1o mxx: Max value=-0.472731144 10 mxx: Max value=-0.459676743
’ 0.00 ’ 0.00
08 008 08 —0.06
0.6 -0.16 0.6 —-0.18
s -0.24 z —0.24
0.4 04
-0.30
-0.32
02 02 036
—0.40 —0.42
*%00 02 0.4 06 0.8 1.0 048 %0 0.2 0.4 0.6 0.8 1.0 —oas
m=n=20 m=n=10
Figure 147: Test P1 bending moment mxx results (m=n=10, 20)
vx: Max value=3.368147858 vx: Max value=-3.299306489
. 2 2
1 1
. -2 -2
0ol ‘ ‘ ‘ I | -3 ‘ ‘ I | -3
0.0 0.2 0.4 0.6 0.8 10 0.4 0.6 0.8 1.0
m=n=20 m=n=10
Figure 148: Test P1 shear force vx results (m=n=10, 20)
Test P2, three-point interpolation, flat square, vertical loading, rectangular matrix
uz: Max value=-0.000314007 uz: Max value=-0.000317199
0.00000 0.00000
—0.00004 _0.00005
—0.00008
-0.00010
—0.00012
z —0.00016 > —0.00015
—0.00020 -0.00020
—0.00024 ~0.00025
—0.00028 0.00030
—0.00032 '
0.4 0.6 0.8 10
m=n=20 m=n=10
Figure 149: Test P2 displacement uz results (m=n=10, 20)
mxx: Max value=5.690569157 mxx: Max value=5.435670149
5.6
> 48
4.8
.0 4.0
3.2
32
> a > 2.4
16 16
0.0 0.0
m=n=20
Figure 150: Test P2 bending moment mxx results (m=n=10, 20)
vx: Max value=15.853727347 vx: Max value=13.502865684 ”
15 2
12 10
9 8
6
3 2
0 0

92

\ m=n=20 \

m=n=10

Figure 151: Test P2 shear force vx results (m=n=10, 20)

Test P3, three-point interpolation, canopy, vertical loading, rectangular matrix

UZ: Max value=-0.000164652
4.0 0.00003 UZ: Max value=-0.000130727
35 0.00000 0.00002
30 0.00000
25 000003 —0.00002
—0.00006 —0.00004
> 2.0
15 —0.00009 —0.00006
—0.00008
1.0 —0.00012 -0.00010
0.5 0.00015 ~0.00012
oo 2 4 6 8 10 12 —0.00014
m=n=20
Figure 152: Test P3 displacement uz results (m=n=10, 20)
mxx: Max value=0.182215122 020 10 mxx: Max value=0.111085221 o1a
0.8
0.10 0.06
0.05 0.6 4 0.03
0.00 > 0.00
- 047 —0.03
-0.05
-
O'oo.o 0.2 0.4 06 0.8 0 -
m=n=20 m=n=10
Figure 153: Test P3 bending moment mxx results (m=n=10, 20)
20 vx: Max value=0.458499384 a8 vx: Max value=-0.126575239
35 036 0.12
10 024 0.08
25 012 0.04
> 2.0 0.00 > 0.00
15 012 -0.04
10 024 -0.08
0.5 o036 -0.12
oo
0 2 4 6 8 10 12
m=n=20
Figure 154: Test P3 shear force vx results (m=n=10, 20)
Test P4, three-point interpolation, canopy, vertical loading, rectangular matrix
UZ: Max value=-0.00782826
UZ: Max value=-0.010350626
0.000
0.0000
—0.001
—0.002 -0.0016
—0.003 -0.0032
—0.004 -0.0048
—0.005 —0.0064
~0.006 —0.0080
oo —0.0096
—0.008
m=n=20

Figure 155: Test P4 displacement uz results (m=n=10, 20)

mxx: Max value=1.6235802173614502

1.0 mxx: Max value=4.966850318
15 a8
0.8 1.2 4.0
0.9 32
0.6
> 0.6 2.4
0.4 1.6
0.3
0.8
02 N 00 00
03 —08
0.0
0.0 0.2 0.4 0.6 0.8 10
m=n=20 m=n=10
Figure 156: Test P4 bending moment mxx results (m=n=10, 20)
vx: Max value=1.277629017829895
1.0 vx: Max value=4.261619976
12 1.0 .
0.8 0.8 0.8 3
0.6 0.4 2
R 0.6 4 1
0.0
0.4 044 o
0.4 1
0.2 o8 0.2 4 -2
-3
0.0 —— -1.2 0.0 T T T T 1
0.0 0.2 0.4 0.6 0.8 10 0.0 02 0.4 0.6 0.8 1.0
m=n=20 m=n=10
Figure 157: Test P4 shear force vx results (m=n=10, 20)
Test P5, three-point interpolation, canopy, normal loading, rectangular matrix
uz: Max value=-0.014427597 uz: Max value=-0.013127578
0.000 0.000
—0.002 -0.002
—0.004 —0.004
—0.006 ~0.006
’ ~0:008 -0.008
—0.010
-0.010
—0.014 o014

0.4 0.6 0.8
u

m=n=20

m=n=10

Figure 158: Test P5 displacement uz results (m=n=10, 20, 30)

mxx: Max value=5.192183528

0.4 0.6 08
u

mxx: Max value=4.90175126

0.0 02 0.4 0.6 0.8 1.0

m=n=20

m=n=10

Figure 159: Test P5 bending moment mxx results (m=n=10, 20)

94

vx: Max value=-5.595750447

1.0
3.6
2.4 0.8 1
12

0.6 4
0.0 >

0.4 4
-12
—2.4 024
-36

0.0

0.0

0.

r
4
2 0.4 0.6 0.8 1.0
u

vx: Max value=4.162427018
10 b
osl * ¥
0.6 -

>
0.4 4
0.2
')
0.0
0.0 0.2 0.4 0.6 0.8 10
u

m=n=10

Figure 160: Test P5 shear force vx results (m=n=10, 20)

Test LML, three-point interpolation, flat square, vertical loading, rectangular matrix

uz: Max value=-9.77e-06 1e-6

uz: Max value=-9.738e-06

le-6

uz: Max value=-9.707e-06

m=n=50 m=n=30 m=n=20
Figure 161: Test LM1 displacement uz results (m=n= 20, 30, 50)
mxx: Max value=-0.475895735 mxx: Max value=-0.472804448
mxx: Max value=-0.477957846

0.0 02 04 0.6 08 10
u

u

m=n=50

m=n=30

Figure 162: Test LM1 bending moment

mxx results (m=n= 20, 30, 50)

LI;,.”

vx: Max value=3.363017443

3
2
1
- o
-1
02 -2
-3
00

0.0 0.2 04 0.6 08 10

vx: Max value=3.325181001

10
3
08 2
1
0.6
> o
04
-1
02 -2
-3
00
[} 08 10

06

vx: Max value=3.36740332

10
08
06
0.4
02
0.0
0.0 02 04 06 0.8 10

El

2

m=n=50

m=n=30

Figure 163: Test LM1 shear force vx results (m=n=20, 30, 50)

95

Test LM2, three-point interpolation, flat square, vertical loading, rectangular matrix

uz: Max value=-0.000312573

uz: Max value=-0.000313426

uz: Max value=-0.000314154

0.00000 0.00000 0.00000
. =0.00004 =0.00004 08 ~0.00004
-0.00008 =0.00008 =-0.00008
3 —-0.00012 —-0.00012 06 —-0.00012
= ~0.00016 - ~0.00016 - ~0.00016
=0.00020 =0.00020 o =0.00020
~0.00024 ~0.00024 ~D.00024
). 0.2
- - ooooze
0.0 -0.00032 -0.00032 0.0 -0.00032
0.0 0.2 0.4 06 08 10 0 [:¥] 04 06 0.8 10
m=n=50 m=n=30 m=n=20
Figure 164: Test LM2 displacement uz results (m=n=20, 30, 50)
mxx: Max value=5.519196055 e mxx: Max value=5.731861945 mxx: Max value=5 696155996
5.6 5.6
48
48 4.8
i
40 40
32
32 32
i 24 B 24
2 24
16 16
.. 08 08
o
0.0 0.0
0.0 0.0
0.0 02 04 o6 08 10
. .
m=n=50 m=n=30
Figure 165: Test LM2 bending moment mxx results (m=n=20, 30, 50)
10 vx: Max value=15.880739432 . vx: Max value=16.042226293 vx: Max value=15.865896066 -
15
12 b
0.8 12 1
B
> > > 8
6
04 ° 6
—4 3 4
0.2 i » N 2
o
0.0 -12 -3
0.0 02 04 o6 08 10 0.0 02 04 06 08 10
. .
m=n=50 m=n=30

Figure 166: Test LM2 shear force vx results (m=n=20, 30, 50)

Test LM3, three-point interpolation, canopy, vertical loading, rectangular matrix

UZ: Max value=-0.000170344

40
35
30
25
=20
15
10
05
00
o 2 4 L] 8 10 12
x

0.00003

0.00000

-0.00003

-0.00006

-0.00008

-0.00012

-0.00015

~0.00018

UZ: Max value=-0.000166008
0.00003

0.00000

-0.00003

-0.00006

~0.00009

-0.00012

~0.00015

—0.00018

m=n=50

Figure 167: Test LM3 displacement uz results (m=n=30, 50)

96

mxx: Max value=0.207761806

mxx: Max value=0.200589451

m=n=50 m=n=30
Figure 168: Test LM3 bending moment mxx results (m=n=30, 50)
10 vx: Max value=-0.578029102 i““ 1o vx: Max value=0.407106252
m=n=50 m=n=30
Figure 169: Test LM3 bending moment vx results (m=n=30, 50)
Test LM4, three-point interpolation, canopy, vertical loading, rectangular matrix
UZ: Max value=-0.007759273 UZ: Max value=-0.007703718
m=n=50
Figure 170: Test LM4 displacement uz results (m=n=30, 50)
mxx: Max value=4.025282613 0z mxx: Max value=2.53231314

m=n=50

m=n=30

Figure 171: Test LM4 bending moment mxx results (m=n=30, 50)

97

vx: Max value=15.707005346

vx: Max value=3.10941817

m=n=50

Figure 172: Test LM4 bending moment vx results (m=n=30, 50)

Test LMD, three-point interpolation, canopy, normal loading, rectangular matrix
m=n=50

Figure 173: Test LM5 displacement uz results (m=n=30, 50)
m=n=50

Figure 174: Test LM5 bending moment mxx results (m=n=30, 50)

m=n=50

Figure 175: Test LM5 shear force vx results (m=n=30, 50)

98

Test SLM1, three-point interpolation, flat square, vertical loading, square matrix

0.0 0.2 0.4 0.6 0.8 Lo
u

0.4 0.6
u

0.0 0.2 0.4 0.6 0.8
u

UZ: Max value=-9.764e-06 uz: Max value=-9.748e-06 uz: Max value=-9.707e-06

) 0.0000000 0.0000000 0.0000000

' —0.0000016 —0.0000016 —0.0000016

) —0.0000032 —0.0000032 —0.0000032

N —0.0000048 > —0.0000048 > —0.0000048

- ~0.0000064 ~0.0000064 ~0.0000064

B —0.0000080 —0.0000080 —0.0000080

' —0.0000096 —0.0000096 —0.0000096

“o 2 4 6 8 10 12 00 0.2 0.4 0.6 0.8 10 0.0 0.2 04 06 08 10

X u u
m=n=50 m=n=30 m=n=20
Figure 176: Test SLM1 displacement uz results (m=n=20, 30, 50)
mxx: Max value=-0.477917186 0.00 mxx: Max value=-0.476204846 0.00 mxx: Max value=-0.472860856 000
—0.06 —0.06 —0.06
-0.12 -0.12 -0.12
-0.18 -0.18 -0.18
> —0.24 > —0.24 > —-0.24

-0.30 -0.30 -0.30
—0.36 —0.36 —0.36
—0.42 -0.42 -0.42
—0.48 —0.48 —0.48

m=n=50

m=n=30

m=n=20

Figure 177: Test SLM1 bending moment mxx results (m=n=20, 30, 50)

vx: Max value=3.373246258

10

3

0.8 2

1

> o
’ -1
. -2
-3

0.0+ T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
u

vx: Max value=3.367233227

1

.0
3
0.8 2
1
0.6
> o
04
-1
02 -2
-3
0.0+ T T T T {
0.0 0.2 0.4 0.6 0.8 L0
u

vx: Max value=-3.355487289

0.0 0.2 0.4 0.6
u

1.0
3
0.8 5
1
0.6
> o
0.4
-1
0.2 -2
-3
0.0+ T . T T {
0.8 10

m=n=50

m=n=30

m=n=20

Figure 178: Test SLM1 shear force vx results (m=n=20, 30, 50)

Test SLM?2, three-point interpolation, flat square, vertical loading, square matrix

uz: Max value=-0.000310749

0.00000
—0.00004
—0.00008
-0.00012
—0.00016
—0.00020
-0.00024
—0.00028

—0.00032

0.4 0.6 . 1.0
u

0.0

uz: Max value=-0.000310729

0.4 0.6
u

0.00000

—0.00004

—0.00008

—0.00012

—0.00016

—0.00020

—0.00024

—0.00028

—-0.00032

uz: Max value=-0.000310671

1.0

0.00000

—0.00004

—0.00008

—0.00012

—0.00016

—0.00020

-0.00024

—0.00028

—0.00032

m=n=50

m=n=30

m=n=20

Figure 179: Test SLM2 displacement uz results (m=n=20, 30, 50)

99

mxx: Max value=5.312083632 . mxx: Max value=5.311935675 . mxx: Max value=5.31066233 .
48 48 4.8
40 4.0 4.0
3.2 3.2 3.2
> >
2.4 2.4 2.4
16 16 16
0.8 0.8 0.8
0.0 0.0 0.0
0.4 0.6 0.8 1.0 0.4 0.6 0.8
u u u
m=n=50 m=n=30 m=n=20
Figure 180: Test SLM2 bending moment mxx results (m=n=20, 30, 50)
vx: Max value=-85.03222668 vx: Max value=-37.307797428 vx: Max value=-15.502411203
10 1.0 7 1.0 16
16 16
12
0.8 0 0.8 1 8 0.8 1 .
0
06 e 0.6 0.6 4
> -32 -8 > 0
: as 0.4+ -16 0.4+ 4
-24 -8
. —64 0.2 4 0.24
32 -12
-80
0.0 0.0+ —40 0.0 T T T -16
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.0 0.2 0.4 0.6
u u u
m=n=50 m=n=30 m=n=20

Figure 181: Test SLM2 shear force vx results (m=n=20, 30, 50)

Test SLM3, three-point interpolation, canopy, vertical loading, square matrix

UZ: Max value=-0.000171549

4 6 8
X

0.00003

0.00000

—0.00003

—0.00006

—0.00009

—0.00012

—0.00015

—0.00018

UZ: Max value=-0.000168497

. 0.00003
- 0.00000
: —0.00003
' —0.00006
' -0.00009
: -0.00012
. ~0.00015
. ~0.00018
0 2 4 6 8 10 12
X

m=n=50

m=n=30

Figure 182: Test SLM3 displacement uz results (m=n=30, 50)

mxx: Max value=0.208482871

00 02 0.4 06 08
u

=0.05

—-0.10

-0.15

mxx: Max value=0.201207731

0.20

0.15

0.10

0.05

0.00

=0.05

-0.10

-0.15

m=n=50

Figure 183: Test SLM3 bending moment mxx results (m=n=30, 50)

100

u

Lo vx: Max value=-1.278046741 1o vx: Max value=-0.835696562 09
) ‘ 12 i ‘ -
0.8 4 0.8 0.8 1 0.6
0.4 0.3
0.6 7 0.6 4
> 0.0 > 0.0
0.4 04 o41 -0.3
024 0.8 024 s
0.0 T T T T 1 o 0.0-’ T -0.9
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 08 10
m=n=50 m=n=30
Figure 184: Test SLM3 bending moment vx results (m=n=30, 50)
Test SLMA4, three-point interpolation, canopy, vertical loading, square matrix
UZ: Max value=-0.007821825 "0 UZ: Max value=-0.007846862
0.000 ’ 0.000
35
-0.001 -0.001
—0.002 —0.002
—0.003 —0.003
—0.004 >20 —0.004
—0.005 —0.005
—0.006 —0.006
—0.007 —0.007
—0.008 —0.008
4 6 8 10 12 8
m=n=50 m=n=30
Figure 185: Test SLM4 displacement uz results (m=n=30, 50)
mxx: Max value=3.060469613 mxx: Max value=1.676266125 L8
30 '
15
08 25 0.8
12
2.0
0.6 0.6 09
L > ¢
0.6
0.4 10 0.4
0.3
0.5
02 0.2 0.0
0.0
-0.3
—-0.5 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10
m=n=50 m=n=30
Figure 186: Test SLM4 bending moment mxx results (m=n=30, 50)
vx: Max value=12.221015658 vx: Max value=-4.039878587
10 1.0 - 4
' 12 N
0.8 1 9 0.8 P
6 1
0.6 0.6
> 3 > o
0.4 4 0 0.4 -1
-3 -2
0.2 0.2 3
' -6
-4
0.0 T T T T -9 0.0+
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0

m=n=50

Figure 187: Test SLM 4 bending moment vx results (m=n=30, 50)

Test SLMDS5, three-point interpolation, canopy, normal loading, square matrix

101

UZ: Max value=-0.009558923 UZ: Max value=-0.009671772
0.0032 ~0.0032
00058 ~0.0064
~0.0080 s
0 2 4 6 8 10 b 00098
m=n=50 m=n=30
Figure 188: Test SLM5 displacement uz results (m=n=30, 50)
mxx: Max value=8.377017967 e mxx: Max value=7.079559872 s
6.0 s
0.0 02 0.4 0.6 0.8 w2 0.4 06 2
m=n=50 m=n=30
Figure 189: Test SLM5 bending moment mxx results (m=n=30, 50)
vx: Max value=27.159591906 28 1o vx: Max value=21.909806585 "
24 18
20 2 12
16 0.6 6
12 > 0
s 041 .
¢ 024 -12
0.4 06 - *%0 02 04 06 08 Am -
m=n=50 m=n=30
Figure 190: Test LM5 shear force vx results (m=n=30, 50)
Five-point difference approximation test plots
Test ALM1, five point interpolation, type A, flat square, vertical loading, rectangular matrix
uz: Abs Max value=-9.671e-06 uz: Abs Max value=-9.66e-06 uz: Abs Max value=-9.926e-06

10

1.0

10

0.0000000

0.0000000 0.0000000

0.8 ~0.0000016 0.8 -0.0000016 0.8 ~0.000001¢|

—0.0000032 —0.0000032|

—0.0000032
0.6

0.6 0.6

—0.0000048 > —0.0000048|

> —0.0000048 >
0.4 0.4 0.4

—0.0000064 —0.0000064 —0.0000064

02 —0.0000080 02 e-07 -9.5568 —0.0000080 02 —0.000008()

—0.0000096 —0.0000096

—0.0000096
0.0

0.0

m=n=50 m=n=30 m=n=20
Figure 191: Test ALM1 displacement uz results (m=n= 20, 30, 50)

102

mxx: Abs Max value=-0.475677342

mxx: Abs Max value=-0.475663415

mxx: Abs Max value=-0.483724379

0.08
0.00
-0.08
-0.16
-0.32
P 5 Min va jes op 5 Max val
b -0.40
089603429
429 -0.48
m=n=50 m=n=30 m=n=20
Figure 192: Test ALM1 bending moment mxx results (m=n= 20, 30, 50)
vx: Abs Max value=-3.045099838 vx: Abs Max value=3.070811569 vx: Abs Max value=-3.273015372
1.0 3.2 1.0
3
08 L
> 0

.070811527
[.070811569
0.0 0.2 0.4 0.6

15364
.273015371
0.0 0.2

m=n=50

m=n=30

Figure 193: Test ALM1 shear force vx results (m=n=20, 30, 50)

Test ALM2, five point interpolation, ty

pe A, flat square, vertical loading, rectangular matrix

uz: Abs Max value=-0.000312303

uz: Abs Max value=-0.000311724
0.00000

—0.00004
—0.00008
—0.00012
—0.00016

—0.00020

0.00000

—0.00004

—0.00008

—0.00012

—0.00016

—0.00020

uz: Abs Max value=-0.000311856

0.00000

—0.00004

—0.00008

—0.00012

—0.00016

—0.00020

—0.00024 —0.00024 —0.00024
—0.00028 —0.00028 —0.00028
—0.00032 —0.00032 —0.00032
0.4 0.4
u u u

Figure 194: Test ALM2 displacement uz results (m=n=20, 30, 50)

mxx: Abs Max value=5.593588953

mxx: Abs Max value=>5.499696701

mxx: Abs Max value=5.327361262

m=n=50

m=n=30

Figure 195: Test ALM2 bending moment mxx results (m=n=20, 30, 50)

103

0.8

0.6 q

>

0.4 4

0.2+

vx: Abs Max value=14.549349469

14.50039912

[14.541019552
(14.541020943
[14.549348159

[Top 5 Max values

7.240
-10.83039359
0

0.0 4

0.0 0.2

0.4 0.6 0.8 1.0

u

vx: Abs Max value=13.831235328

vx: Abs Max value=13.025347498

14

12

10

m=n=50

m=n=30

Figure 196: Test ALM2 shear force vx results (m=n=20, 30, 50)

Test ALM3, five point interpolation, type A, canopy, vertical loading, rectangular matrix

UZ: Abs Max value=-0.000153577

UZ: Abs Max value=-0.000141182

0.00003 0.00003
0.00000 0.00000
—0.00003 —0.00003
—0.00006
—0.00006
—0.00009
—0.00009
-0.00012
-0.00012
—0.00015
—0.00015
.
m=n=50
Figure 197: Test ALM3 displacement uz results (m=n=30, 50)
mxx: Abs Max value=-0.49814409 mxx: Abs Max value=-0.644677037
1.0 W W 10 T T
I8 X iy AR
1 I
0.8 0.8 032
0.16
0.6 = 064" +
. 0.00
. “ ' . "
-0.16
0.4 o2 044" 4
-0.32
Top 5 Max values Top 5 Min valles |8l g 3 Top 5 Max values Top 5 Min valyies|
0.2 {0.2830649i 0.2 0450646066 0.610497358 |l o
2878 8951232 -0.64467 5
2 51233 0644 4 -0.64
0.0 4 L —0.5 0.0 7
0.0 . 0.0 0.2 0.4 0.6 0.8 10
u u
m=n=50 m=n=30
Figure 198: Test ALM3 bending moment mxx results (m=n=30, 50)
10 vx: Abs Max value=3.454525994 10 vx: Abs Max value=3.775920127 .
! Wl Yy T - BN LULLERUSE®ED
1 N E o Y
3
0.8 1 2 0.8
2
061 ! 0.6 ! 1
] > ' ' 0
0.4 o 0.4 Y -1
[Top 5 Max values Top 5 Min valjies| [fop 5 Max values Top 5 Min valjies g
02 B.307423745 -3.3074236]3 -2 0.2 667623224 -3.667623201
[8.343337624 -3.343337578 699691572 -3.699691562
.343337653 -3.343337651 .6996916 -3.6996 L7 -3
54525882 -3.454! 5 -3 3 3.7 3
0.0 + 3 1 0.0 4 4
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

u

u

m=n=50

m=n=30

Figure 199: Test ALM3 bending moment vx results (m=n=30, 50)

Test ALM4, five point interpolation, type A, canopy, vertical loading, rectangular matrix

UZ: Abs Max value=-0.007893368

0.000

—0.001

—0.002

—0.003

—0.004

—0.005

—0.006

—0.007

—0.008
4 6 8 10 12
X

UZ: Abs Max value=-0.008237782

0.0000

—0.0012

—0.0024

—0.0036

—0.0048

—0.0060

—0.0072

-0.0084

m=n=50

Figure 200: Test ALM4 displacement uz results (m=n=30, 50)

mxx: Abs Max value=2.937443086

Nands

0.4 0.6 0.8 1.0
u

m=n=50

m=n=30

Figure 201: Test ALM4 bending moment mxx results (m=n=30, 50)

vx: Abs Max value=5.298970632

vx: Abs Max value=7.363839066

m=n=50

Figure 202: Test ALM4 bending moment vx results (m=n=30, 50)

Test ALMD5, five point interpolation, type A, canopy, normal loading, rectangular matrix

UZ: Abs Max value=-0.009477313

0.0000

—0.0016

—0.0032

—0.0048

—0.0064

—0.0080

—0.0096

] 2 4 6 8 10 12
x

20 UZ: Abs Max value=-0.009385391

0.0000
35
30 —0.0016
25 —0.0032
=20
—0.0048
—0.0064
—0.0080
—0.0096

m=n=50

Figure 203: Test ALM5 displacement uz results (m=n=30, 50)

105

mxx: Abs Max value=7.675558941

u

mxx: Abs Max value=5.923822345

m=n=50

m=n=30

Figure 204: Test ALM5 bending moment mxx results (m=n=30, 50)

vx: Abs Max value=10.231466979

vx: Abs Max value=6.089445384

m=n=50

Figure 205: Test ALM5 shear force vx results (m=n=30, 50)

Test BLM1, five point interpolation, type B, flat square, vertical loading, rectangular matrix

uz: Abs Max value=-9.771e-06 uz: Abs Max value=-9.754e-06

0.0000000

—0.0000016

—0.0000032

—0.0000048 >

—0.0000048 >

uz: Abs Max value=-9.719e-06

0.0000000 0.0000000

—0.0000016 - —0.0000016

—0.0000032 —0.0000032

—0.0000048

0.4 0.4
—0.0000064 —0.0000064 —0.0000064
—0.0000080 —0.0000080 —0.0000080
—0.0000096 —0.0000096 —0.0000096
u u u

Figure 206: Test BLM1 displacement uz results (m=n= 20, 30, 50)

mxx: Abs Max value=-0.478528489 mxx: Abs Max value=-0.47791949

u u

mxx: Abs Max value=-0.476679412

m=n=50 m=n=30

Figure 207: Test BLM1 bending moment mxx results (m=n= 20, 30, 50)

106

vx: Abs Max value=3.37551528

-3.375514005
0.4 0.6 0.8 1.0

10

0.0

vx: Abs Max value=-3.37847137

3
2
1
0
-1
es Top 5 es|
-3.313: 3 -2
3.35652. 6
3.356523682
.378471199 -3.378471355 -3
378471235 -3.37847]
0.0 0.2 0.4 0.6 0.8 10

u

vx: Abs Max value=3.368137341

Y 02

m=n=50

m=n=30

Figure 208: Test BLM1 shear force vx results (m=n=20, 30, 50)

Test BLMZ2, five point interpolation, ty

pe B, flat square, vertical loading, rectangular matrix

uz: Abs Max value=-0.000311144

0.00000

—0.00004

—0.00008

—0.00012

—0.00016

—0.00020

—0.00024

0.2
—0.00028

—0.00032

u

uz: Abs Max value=-0.000311494

0.00000

—0.00004

—0.00008

—0.00012

—0.00016

—0.00020

—0.00024

0.2
—0.00028

—0.00032

u

uz: Abs Max value=-0.00031173

0.00000

—0.00004

—0.00008

—0.00012

—0.00016

—0.00020

—0.00024

—0.00028

—0.00032

m=n=50

m=n=30

Figure 209: Test BLM2 displacement uz results (m=n=20, 30, 50)

mxx: Abs Max value=5.5901647

mxx: Abs Max value=5.658801962

mxx: Abs Max value=5.587244871

5.6

48

4.0

32

m=n=50

m=n=30

Figure 210: Test BLM2 bending

moment mxx results (m=n=20, 30, 50)

1.0

0.8

0.6

04

0.

[N

0.0

vx: Abs Max value=-27.199921993

24
16
8
0
1 -8
Top 5 Max values Top5
_p2.073874939 -16
2.094475977
£2.094476704
2.508638237 —24
2.508638512
0.0 0.2 0.4 0.6

vx: Abs Max value=19.672300507

10 20
15
0.8
10
0.6 | 5
0.4 0
[Top 5 Max values Top 5 Mi esil —>
0.2 17:575145235 3303
[18.387937633 928287402 Ml |,
[18:387937779 4928287656
[15.672300446 14.678127/8
0.0 5 26l ;5
0.0 0.2 0.4 0.6 0.8 1.0

vx: Abs Max value=-52.904861488
10 36
24
0.8
12
0.6 0
>
-12
0.4
24
[Top 5 Max values Top 5 Mi es
0.2 28207837416 -24.9 36
28.771369495 -37.5. 1
£8.771370867 -37.53. 0.
B0.799839664 -52.904833pc 1 —48
0.0 799848181 . . -52,90486 14
0.0 0.2 0.4 0.6 0.8 10
u

m=n=30

Figure 211: Test BLM2 shear force vx results (m=n=20, 30, 50)

Test BLMB3, five point interpolation, type B, canopy, vertical loading, rectangular matrix

107

UZ: Abs Max value=-0.000172523

40 0.00003
33 0.00000
3.0
—0.00003
25
~0.00006
=20
~0.00009
15
~0.00012
10
05 —0.00015
0.0 —0.00018
0 2 4 6 8 10 12
X

4.0

35

3.0

25

2.0

15

10

0.5

0.0

UZ: Abs Max value=-0.000170617
0.00003

0.00000

—0.00003

—0.00006

—0.00009

—0.00012

—0.00015

—0.00018

~
-
o
@
=
S
=
I~

m=n=50

Figure 212: Test BLM3 displacement uz results (m=n=30, 50)

mxx: Abs Max value=0.211217719

10

5 Max values
10577835
112177

21121
0.21121

mxx: Abs Max value=0.208697158

m=n=50

Figure 213: Test BLM3 bending moment mxx results (m=n=30, 50)

vx: Abs Max value=-2.420081202

vx: Abs Max value=-0.858795838

10 1.0 0.9
2.4 ‘
081 16 0.8 1 06
08 03
> 0.0 > 0.0
044 o8 0.4 1 o
Top 5 Max values Top 5 Min valjies op 5 Max values Top 5 Min valfies
02 35801315 S30s00170 [l ° 02 B 3aaraazor D8aszaazto M o6
P.398061954 -2.3980618p4 . 8
£.42008093 2420080913 - —2.4 5
0.0 2420081016 . . 2.4200812p 00 sl ;o
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
m=n=50 m=n=30
Figure 214: Test BLM3 bending moment vx results (m=n=30, 50)
Test BLMA4, five point interpolation, type B, canopy, vertical loading, rectangular matrix
UZ: Abs Max value=-0.00779062 UZ: Abs Max value=-0.00780521
0.000 0.000
-0.001 -0.001
—0.002 -0.002
-0.003 -0.003
—0.005 —0.005
-0.006 -0.006
-0.007 -0.007
—0.008 -0.008
m=n=50

Figure 215: Test BLM4 displacement uz results (m=n=30, 50)

108

mxx: Abs Max value=5.006551028

Y 02

0.4 0.6 0.8
u

mxx: Abs Max value=3.6550904

m=n=50

Figure 216: Test BLM4 bending moment mxx results (m=n=30, 50)

10

>

02

0.0

vx: Abs Max value=29.303309144

0.8 1

0.6

0.4 4

[Top 5 Max values

28914295547

£9.14945381

9.149453988

£9.303308105
9303309144

Top 5 Min val
-13.957377.

-17.00795!
-17.00796!
-17.26826!
-17.26826"

H
25

P9
28

PR

0.0 0.2

0.4 0.6 0.8
u

10

vx: Abs Max value=16.937445901

m=n=50

m=n=30

Figure 217: Test BLM4 bending moment vx results (m=n=30, 50)

Test BLMS5, five point interpolation, type B, canopy,normal loading, rectangular matrix

UZ: Abs Max value=-0.009507052

0.0000

—0.0016

—0.0032

—0.0048

—0.0064

—0.0080

—0.0096

UZ: Abs Max value=-0.00948497

0.0000

—0.0016

—0.0032

~0.0048

—0.0064

-0.0080

—0.0096

m=n=50

Figure 218: Test BLM5 displacement uz results (m=n=30, 50)

mxx: Abs Max value=9.200966792

0.4 0.6
u

mxx: Abs Max value=9.652784075

m=n=50

m=n=30

Figure 219: Test BLM5 bending moment mxx results (m=n=30, 50)

109

vx: Abs Max value=14.433417978

vx: Abs Max value=17.11153774

u

m=n=50

m=n=30

Figure 220: Test BLM5 shear force vx results (m=n=30, 50)

Test AR, five point interpolation, type A, flat square, vertical loading, rectangular matrix

uz: Abs Max value=-6.884e-06 1e-6 uz: Abs Max value=-7.23e-06 1e-6 uz: Abs Max value=-7.603e-06 1e-6
[+X+]
=16
. .
48
bp 5 Max valus Top 5 Min vall Bp 5 Max values i 5
06 6.849¢-06 e-06
-6.883e-06 -6.4
-6.883e-06
-6.883e-06
10
m=n=50 m=n=30
Figure 221: Test AR1 displacement uz results (m=n= 20, 30, 50)
mxx: Abs Max value=-0.246405828 mxx: Abs Max value=-0.253973908 mxx: Abs Max value=-0.265298161
0.00 0.00
004 —0.04
—0.08 008
-0.12
. o .
-0.16
-0.16
B -0.20
0 -0.20
-0.24
—0.24
o
m=n=50 m=n=30 m=n=20

222: Test AR1 bending moment mxx results (m=n= 20, 30, 50)

vx: Abs Max value=-3.346554538

-3.346554538
3

04 06 08 10

vx: Abs Max value=-3.328845205

vx: Abs Max value=-3.306954933

0.8 2
1

0.6
> o

0.4
-1
0.2 -2
154933 -3

o0 306954933
00 02 04 06

m=n=50

m=n=30

Figure 223: Test AR1 shear force vx results (m=n=20, 30, 50)

110

Test AR2, five point interpolation, type A, flat square, vertical loading, rectangular matrix

uz: Abs Max value=-8.351e-05 1e-5 uz: Abs Max value=-9.6869e-05 1e-3 uz: Abs Max value=-0.000101129 1e-3
L6
16 16
0o 00 00
-1.6 1.6 1.6
-3.2 -3.2
-, -,
4.8
" Top 5 Minvalst: [°* o4
6.4 “9.598e-0
-8.0 -8.0
-8.0 -9.6 -9.6
10 10
Figure 224: Test AR2 displacement uz results (m=n=20, 30, 50)
10 mxx: Abs Max value=-7.615005333 mxx: Abs Max value=-6.482636644 mxx: Abs Max value=5.298548538
| 6 a8
R — | 48
08 a 08 - 08 oy 32
2 16 16
06 0.6 0.6
o 0.0
04 -2 04 16 04
1.6
3.
[fop 5 Max values Top 5 Min valugs -4 [fop 5 Max values Top 5 Min valugs 2 5 Max values Top 5 Min valugs
0.2 P233748977 -3.702082413 0.2 14635787487 2659271755 0.2 14256939514 -1.93195774 -32
778202613 5.805298526 p.332074433 -4.5230¢ 1 -4.8 [4.62961939 -3.369438306
778202616 5.805 8 -® 5.332074433 4.523 2 }4.62961939 E
163422307 -1.6. 9 5.865411545 6.4 ~6.4 p.298548538 -5.264 48
0o 02 04 06 08 10 0.0 02 04 06 08 1.0 0.0 02 0.6 08 10
. g
Figure 225: Test AR2 bending moment mxx results (m=n=20, 30, 50)
vx: Abs Max value=3.923230993 vx: Abs Max value=3.953114922 vx: Abs Max value=3.966494962 %
3 3 3
08
2 2 2
' 8 1 0.6 1
o o
-1 -1
values -2
-2 -2 02
2766
+3.38645¢ -3
-3 -3 194962 -3.509221 8
0.0 0.2 04 06 0.0 02 04 06 08 10

Figure 226: Test AR2 shear force vx results (m=n=20, 30, 50)

Test AR3, five point interpolation, type A, canopy, vertical loading, rectangular matrix

UZ: Abs Max value=-0.003497309

0.0016

0.0008

0.0000

-0.0008

—0.0016

-0.0024

-0.0032

4.0

3s

UZ: Abs Max value=-0.00302086

0.0012

0.0006

0.0000

~0.0006

-0.0012

—0.0018

—0.0024

-0.0030

m=n=50

Figure 227: Test AR3 displacement uz results (m=n=30, 50)

111

mxx: Abs Max value=-5.774571422 mxx: Abs Max value=-6.028090945
0.0 0.0
-08 -0.8
-1.6 -1.6
24 -24
5 5
32 -32
-4.0
-4.0
00824233 48
012411839 e
-56
-56
-64
i
m=n=50
Figure 228: Test AR3 bending moment mxx results (m=n=30, 50)
vx: Abs Max value=-14.935279977 wvx: Abs Max value=14.770489553
08 08
B 8
0.6 4 0.6 4
os . .
5 Max values Top 5 Min valugs -8 5 Max values Top 5 Min valugs r
02 608187935 <14.608187935 02 825367731 <13.825367731
837042019 -14.83704219 515206121 -14.515206121
14.837042019 -14.837042q19 -12 [14.515206121 14515206121 -12
0.0 14935279977 -14.93¢ _16 0.0 4770489553 Ja770am05ss M .
0.0 [:¥] 0.4 06 08 10 0.0 [:¥] 04 06 0.8 10
m=n=50 m=n=30
Figure 229: Test AR3 bending moment vx results (m=n=30, 50)
Test AR4, five point interpolation, type A, canopy, vertical loading, rectangular matrix
UZ: Abs Max value=-0.49495236 w0 UZ: Abs Max value=-0.624525248
0.00 0.00
008 0.08
_ s
-0.16
) -024
s
.
-0.32 -0.40
-0.40 —0.48
-0.56
-0.48
e
a 2 4 6 8 10 12
:

m=n=50

Figure 230: Test AR4 displacement uz results (m=n=30, 50)

mxx: Abs Max value=348.806332338

mxx: Abs Max value=402.40800862

Top 5 Min valups

m=n=50

Figure 231: Test AR4 bending moment mxx results (m=n=30, 50)

112

vx: Abs Max value=105.864696106

vx: Abs Max value=113.344370768

Top 5 Min valugs
-25.919568559

m=n=50

Figure 232: Test AR4 bending moment vx results (m=n=30,

50)

Test ARS, five point interpolation, type A, canopy, normal loading, rectangular matrix

UZ: Abs Max value=-0.305640913

000
~0.04

. -0.08
012
—0.16
-0.20
024

- -0.28
032

a 2 4 [] 8 10 12
x

UZ: Abs Max value=-0.390064839

m=n=50

Figure 233: Test AR5 displacement uz results (m=n=30, 50)

mxx: Abs Max value=222.476122231

m=n=50

Figure 234: Test AR5 bending moment mxx results (m=n=3

0, 50)

vx: Abs Max value=66.434827847

m=n=50

Figure 235: Test AR5 shear force vx results (m=n=30, 50)

113

Test BR1, five point interpolation, type B, flat square, veritcal loading, rectangular matrix

uz: Abs Max value=-6.821e-06

1e-6 uz: Abs Max value=-7.155e-06 1e-6 uz: Abs Max value=-7.549e-06 166 L,
m=n=50 m=n=30 m=n=20
Figure 236: Test BR1 displacement uz results (m=n= 20, 30, 50)
mxx: Abs Max value=-0.246290333 00 mxx: Abs Max value=-0.253618339 504 mxx: Abs Max value=-0.261947541 00
000468029 —0.20 —0.20 Dg;:ﬁ:s o
Leairse -
m=n=50 m=n=30
Figure 237: Test BR1 bending moment mxx results (m=n= 20, 30, 50)
vx: Abs Max value=3.345035209 vx: Abs Max value=3.324433769 10 vx: Abs Max value=3.324433769
-2 02 4 -2
-3 44337;: -3
m=n=50 m=n=30 m=n=20
Figure 238: Test BR1 shear force vx results (m=n=20, 30, 50)
Test BR2, five point interpolation, type B, flat square, veritcal loading, rectangular matrix
uz: Abs Max value=-4.0382e-05 1e-5 uz: Abs Max value=-4.5604e-05 uz: Abs Max value=-4.8587e-05 1e=s
16 0.000016
o8 0.000008 3
00 0.000000 o
o8 —0.000008 1
= e > —0.000016 =)
B il -4 Top 5 Min valyesfll o 00 Top 5 Minvalus [3
- —0.000040 -4

10

—0.000048

m=n=50

m=n=30

Figure 239: Test BR2 displacement uz results (m=n=20, 30, 50)

114

mxx: Abs Max value=4.500958799

mxx: Abs Max value=4.00038761
v

Top 5 Min val

-1.0495515p

-1.0841779

-1.0841779
L2

mxx: Abs Max value=3.486956359

m=n=50

m=n=30

Figure 240: Test BR2 bending moment mxx results (m=n=20, 30, 50)

vx: Abs Max value=3.923230993

vx: Abs Max value=3.953114922

vx: Abs Max value=3.966494962

0.6
> o
0a 5
values e
02
766
-3
194962
0.0 -4
0.0 02 04 06

m=n=30

Figure 241: Test BR2 shear force vx results (m=n=20, 30, 50)

Test BR3, five point interpolation, type B, canopy, normal loading, rectangular matrix

UZ: Abs Max value=-0.002907817
40

0.0018

0.0012

0.0006

0.0000

—0.0006

—0.0012

—0.0018

—0.0024

—0.0030

UZ: Abs Max value=-0.002993273

0.0012

0.0006

0.0000

-0.0006

-0.0012

~0.0018

-0.0024

—0.0030

m=n=50

Figure 242: Test BR3 displacement uz results (m=n=30, 50)

mxx: Abs Max value=-5.812625062

mxx: Abs Max value=-5.921082379

m=n=50

Figure 243: Test BR3 bending moment mxx results (m=n=30, 50)

115

vx: Abs Max value=-15.093279772 vx: Abs Max value=15.10427864
0.8 0.8
a 8
06 4 06 4
o4 . o4 .
5 Max values Top 5 Min valugs -8 5 Max values Top 5 Min valugs -8
02 .770499159 -14.7704991 02 182958638 -14.182958634
985605332 -14.985605333 . 797855959 -14.797855963
14.985605335 -14.985605334 -1z 14.797855969 -14.797855965 -1z
115.093279771 -15.093279771 115.104278625 -15.10427863
0.0 1509327977 -15.0932797 _16 0.0 15.10427864 -15.104278d3 _16
0.0 02 04 06 0.8 10 0.0 0.2 04 06 08 10
m=n=50 m=n=30
Figure 244: Test BR3 bending moment vx results (m=n=30, 50)
Test BR4, five point interpolation, type B, canopy, vertical loading, rectangular matrix
UZ: Abs Max value=-0.142184828 w0 UZ: Abs Max value=-0.166648579
.
an
Y 10 0.03
-0.04
25 ~0.06
an
—0.08 -0.09
"
-0.10 -0.12
10
-0.12
. 05 0.15
an
o o
a 2 4 [] 8 10 12 1]
:
m=n=50

Figure 245: Test BR4 displacement uz results (m=n=30, 50)

mxx: Abs Max value=224.38219478 mxx: Abs Max value=227.789530293

-100.422691)
-100.422691)
-101.62065

= &

-100.626234
-102.648412

m=n=50

Figure 246: Test BR4 bending moment mxx results (m=n=30, 50)

vx: Abs Max value=93.36678293 vx: Abs Max value=95.437071858

Top 5 Min valigs
658

m=n=50

Figure 247: Test BR4 bending moment vx results (m=n=30, 50)

Test BR5, five point interpolation, type B, canopy, normal loading, rectangular matrix

116

UZ: Abs Max value=-0.09662902

UZ: Abs Max val

ue=-0.110569256

m=n=50

Figure 248: Test BR5 displacement uz results (m=n=30, 50)

mxx: Abs Max value=143.032414145

64.6185973
547627257 -60
31

mxx: Abs Max value=145.346594332

Figure 249: Test BR5 bending moment mxx results (m=n=30, 50)

vx: Abs Max value=58.46146051

-17.855652854
| 1785565244

Top 5 Min walist
-16.802975058
-17.875215964
-17.8752159

Figure 250: Test BR5 shear force vx results (m=n=30, 50)

Matrix quality check
Table 51: Sparsity of rectangular matrices

(':lfur:ggz; Matrix size Model 1 Model 2 Model 3 Model 4 Model 5
20%20 400*8708 | 99.99675% | 99.99675% | 99.99699% | 99.99700% | 99.99700%
30*30 | 18900*19360 | 99.99854% | 99.99854% | 99.99864% | 99.99865% | 99.99865%
50*50 | 52500*53288 | 99.99947% | 99.99947% | 99.99951% | 99.99951% | 99.99951%

Table 52: Sparsity of square matrices

(')\lfurgzgg Matrix size Model 1 Model 2 Model 3 Model 4 Model 5
20*20 400*8708 | 99.99675% | 99.99675% | 99.99699% | 99.99700% | 99.99700%
30*30 | 18900*19360 | 99.99854% | 99.99854% | 99.99864% | 99.99865% | 99.99865%
50*50 | 52500*53288 | 99.99947% | 99.99947% | 99.99951% | 99.99951% | 99.99951%

Table 53: Condition number of rectangular matrices

c'}”;ggg; Matrix size | Model 1 Model 2 Model 3 Model 4 Model 5

10*10 | 2100*2240 | 4.197e+16 | 2.887e+16 | 1.256e+16 | 6.458e+15 | 6.458e+15

117

12*12 3024*3204 | 5.739e+16 | 3.804e+16 | 1.785e+16 | 9.142e+16 | 9.1428e+15
15*15 | 4725*%4953 | 8.69E+16 | 6.05E+16 | 3.04E+16 | 1.71E+16 | 1.71E+16
Table 54: Condition number of square matrices
o'\::unrgggg Matrix size | Model 1 Model 2 Model 3 Model 4 Model 5
10*10 | 2100*2100 | 3.809e+16 | 2.398e+16 | 3.851e+16 | 1.463e+16 | 1.463e+16
12*12 | 3024*3024 | 4.386e+16 | 3.424e+16 | 5.560e+16 | 1.966e+16 | 1.966e+16
15*15 | 4725*4725 | 6.83E+16 | 5.59E+16 | 7.60E+16 | 3.96E+16 | 3.96E+16
Table 55: Rank number of rectangular matrices
Number Matrix size | Model 1 | Model 2 | Model 3 | Model 4 | Model 5
of nodes
10*10 | 2100%2240 1930 1998 2040 2083 2083
12*12 | 3024*3204 2761 2840 2919 2973 2973
15*15 | 4725*%4953 4293 4394 4533 4613 4613
Table 56: Rank number of square matrices
Number Matrix size | Model 1 | Model 2 | Model 3 | Model 4 | Model 5
of nodes
10*10 | 2100*2100 1831 1968 1958 2054 2054
12*12 | 3024*3024 2639 2796 2816 2943 2943
15*15 | 4725*4725 4133 4334 4406 4569 4569

Discussion on number of iterations
Table 57: Deviation of Test R1 results by increasing number of iterations (m=n=20)

'\i't‘é’:;i’i%rn‘;f 8400%0.01 | 8400*0.1 | 8400%0.2 | 8400%0.5 | 8400 | 8400*2 | 8400*5 | 8400*10 | 8400*100
uz (%) -80.43 2302 | -30.74 | -30.36 | -30.04 | -28.88 | -2433 | -058 0.77
mxx (%) 31.15 4541 | -1559 | -17.92 | -1758 | -16.8 | -13.93 | -1.04 11
vx (%) 2.69 274 28 279 | 275 | 265 | -2.26 23 031
Table 58: Deviation of Test R3 results by increasing number of iterations (m=n=20)
'\i't‘ér::t’i%rnzf 8400*0.01 | 8400%0.1 | 8400%0.2 | 8400*0.5 | 8400 | 8400*2 | 8400*5 | 8400%10 | 8400*100
uz (%) 29142 | 1268.85 | 1402.11 | 111191 | 457.65 | 394.1 | 251.92 | 218.78 | 219.98
mxx (%) | 111695 | 2544.8 | 25445 | 2484.44 | 148523 | 1413.49 | 978.81 | 78559 | 194.43
vx (%) 372.75 | 531.91 | 531.88 | 46589 | 3285 | 294.73 | 219.74 | 17421 | -352
Table 59: Deviation of Test SE1 results by increasing number of iterations (m=n=20)
'\i't‘ér::t’i%rn‘;f 8400%0.01 | 8400*0.1 | 8400*0.2 | 8400%0.5 | 8400 | 8400*2 | 8400*5 | 8400*10 | 8400*100
uz (%) 81.72 29.88 313 3571 | -34.09 | 2912 | -252 | -23.17 -1.09
mxx (%) 29.86 4379 | -4379 | -1915 | -20.89 | -16.76 | -14.68 | -13.47 1.28
vx (%) 9.37 8.93 8.93 ~8.46 791 | 589 | 494 | -423 262
Table 60: Deviation of Test SE3 results by increasing number of iterations (m=n=20)
'\i't‘é’:;kt)i‘;rn‘s’f 8400%0.01 | 8400*0.1 | 8400*0.2 | 8400*0.5 | 8400 | 8400*2 | 8400*5 | 8400*10 | 8400*100
uz (%) 6648 | 136472 | 147382 | 1470.87 | 844.86 | 450.33 | 23525 | 23259 | 21572
mxx (%) | 10546 | 349.78 | 34954 | 34954 | 29572 | 185.47 | 112.73 | 232590 | -48.07
vx (%) 196.8 3136 | 31358 | 31356 | 246.16 | 188.37 | 142.86 | 132.66 | -16.04

118

Discussion on unit system

Table 61: Deviation of Test R1-5 results by new unit systems (N, mm)

Number of nodes | Model1l | Model2 | Model 3 | Model 4 | Model 5
20*20 -48.51% [-98.15%
Displacement (m) 30*30 -34.39% | -99.37% | -75.95% | -99.67% | -99.87%
50*50 -97.59% | -99.72% | -78.16% | -99.77% | -99.91%
20*20 -66.27% | -97.97%
Bending moment (KNm/m) 30*30 -69.74% | -98.50% | -97.83% | -99.63% | -99.92%
50*50 -89.42% | -98.90% | -98.27% | -99.71% | -99.89%
20*20 198.67% | -85.05%
Shear force (KN/m) 30*30 375.13% | -84.11% | -87.47% | -96.60% | -98.67%
50*50 146.14% | -81.11% [-90.00% | -96.99% | -97.57%
Table 62: Deviation of Test LM1-5 results by new unit systems (N, mm)
Number of nodes | Model 1 | Model 2 | Model 3 | Model 4 | Model 5
20*20 -0.76% -0.09%
Displacement (m) 30*30 -0.32% -0.05% -15.34% | -37.09% | 14.76%
50*50 -0.11% -0.02% | -11.91% | -37.03% | 27.10%
20*20 -1.08% 1.69%
Bending moment (kNm/m) 30*30 -0.38% 0.62% 270.58% | 322.73% | 168.03%
50*50 -0.02% 0.11% 49.89% | 228.76% | 170.82%
20*20 -0.41% 74.44%
Shear force (KN/m) 30*30 -0.05% | 256.73% | 89.18% 84.83% 14.73%
50*50 0.13% | 639.12% | 23.96% 65.69% | 41.51%
Table 63: Deviation of Test R1-5 results by new unit systems (KN, 10m
Number of nodes | Model 1 | Model 2 | Model 3 Model 4 Model 5
20*20 -30.32% | -60%
Displacement (m) 30*30 -33.74% | -53.09% | 71950.46% | 153287.15% | 71051.63%
50*50 -36.66% | -38.84% | 71210.84% | 125441% | 67532.01%
20*20 -17.58% | 251.83%
Bending moment (kNm/m) 30*30 -19.27% | 315.03% | 25888.83% | 24437.23% | 7744.13%
50*50 -20.65% | 398.61% | 23656.46% | 27326.24% | 8840.20%
20*20 -2.92% | -81.81%
Shear force (KN/m) 30*30 -1.68% | -81.58% | 766.57% 276.72% 89.10%
50*50 -0.85% | -76.64% | 781.53% 300.93% 103.48%
Table 64: Deviation of Test LM1-5 results by new unit systems (KN, 10m)
Number of nodes | Model1 | Model 2 | Model 3 | Model 4 | Model 5
20*20 6.77% 5.97%
Displacement (m) 30*30 0.56% 4.58% -16.54% | -31.57% | 41.60%
50*50 -0.28% 1.69% -12.91% -32.08 40.15%
20*20 2.97% -2.73%
Bending moment (kNm/m) 30*30 0.12% -2.30% -9.03% | -71.15% | -50.72%
50*50 -0.12% 7.02% -2.15% -63.75 -26.17%
20*20 0.04% -43.57%
Shear force (KN/m) 30*30 1.64% -35.13% | -86.75% | -96.30% | -91.75%
50*50 -2.30% | -12.91% | -82.70% -92.23 -81.55%

119

