

Finite difference analysis of shell structures

Chulong Li

Student: Chulong Li

Project duration Dec. 3, 2020 – Oct. 31, 2021 TU Delft

Assessment committee Dr. ir. P.C.J. Hoogenboom

Prof. dr. ir. M.A.N. Hendriks

TU Delft

 Dr. ir. C. Kasbergen

 Dr. ir. F.P. van der Meer

Summary

The finite element method is widely used in modelling shell structures. However, the finite element method

does not solve the shell differential equations because shell finite elements are derived from solid elements.

Currently, there is not software available for solving the shell differential equations. For plates, a novel finite

difference method has been recently explored by the author (Li, 2020). This Python algorithm does not solve

the fourth-order plate differential equation directly. Instead, it solves eleven first-order differential equations

simultaneously. The advantage of the method is in the boundary conditions; no edge or corner molecules are

involved. Can this plate algorithm can be extended to shell structures? The general shell differential equations

(Sanders-Koiter equations) have never been solved by the finite difference method. If possible, this would

provide an independent way of checking shell finite element results.

The objective of this project was to develop and test a finite difference algorithm called shell code that can

solve the 21 Sanders-Koiter equations. The idea was to use first-order finite-difference approximation only

because this gives a simple discretization and modern computers may be able to handle the large number of

equations.

To this end, a 1200-line Python program has been built. In the process many versions of shell code were

considered, including

1) Two programming languages (Python and R)

2) Three interpolations for approximating gradients (three-point and five-point with two end slopes)

3) Determined and over-determined systems of equations (square and rectangular matrices)

4) Four solvers for the systems of equations

Important constraints are required memory and computation time and they were recorded for each test. Five

shell models with various geometries, loads, and boundary conditions have been analyzed. The results of these

model tests (displacement, bending moment, and shear force) were compared to finite element results.

Discussions on the comparisons have shown that almost all versions produced incorrect results and the most

important factor for affecting results is the solving method.

The version that works well has the following features; five-point interpolation with zero end slope, rectangular

matrix, solver lm.fit.sparse (R). Approximately 80% of the shell code results match the finite element results

with a deviation less than 5% (see Test BLM1-5). The deviation may be removed in the near future by a finer

grid on a powerful computer or by applying an advanced solver. The main conclusion is that it is not only

theoretically possible but also practically possible to solve the Sanders-Koiter equations by the finite difference

method.

Content
1. Introduction ... 1

1.1 Problem Statement ... 1

1.2 Objective .. 1

1.3 Approach .. 2

1.4 Research workflow... 4

2. Literature review ... 5

2.1 A short review on the development of plate and shell theories ... 5

2.2 Sanders-Koiter equations ... 6

2.3 A short review on the finite different method ... 9

2.4 A short overview of application of finite difference method on shell theory .. 10

2.5 Sparse linear system: overdetermined and determined, its storage and solving methods 11

3. Shell code and tests ... 19

3.1 Work flow of code ... 19

3.2 Tested models .. 20

3.3 Differentiation approximated by FDM .. 21

3.4 Formation of matrix [M].. 22

3.5 Loading steps and plotting steps .. 24

3.6 Formation of square matrix [M] .. 25

3.7 Model tests of rectangular and square matrix .. 30

3.8 Solver tests ... 31

3.9 Five-point difference approximation and their tests .. 32

4. Results ... 34

4.1 Finite element solution .. 34

4.2 Rectangular matrix test results .. 37

4.3 Square matrix test results ... 37

4.4 Solver test results ... 38

4.5 Five-point difference approximation test results ... 39

4.6 Overall comparison between shell code results ... 40

4.7 Comparison between Rectangular matrix test and Square matrix test results 47

4.8 Comparison between pinv solver and lm.fit.sparse solver test results .. 48

4.9 Comparison between five-point difference approximation and two-point difference approximation test

results 48

Discussion .. 50

5.1 Accuracy, reliability, and efficiency .. 50

5.2 Matrix quality .. 59

5.3 Possible factors affecting shell code results .. 61

5.4 Simplicity of code structure ... 67

6. Conclusion .. 69

7. Recommendation... 70

8. Reference list ... 71

9. Appendix ... 73

Rectangular matrix test plots .. 73

Square matrix test plots .. 76

Square matrix test plots .. 80

Solver test results ... 91

Five-point difference approximation test plots .. 102

Matrix quality check .. 117

Discussion on number of iterations .. 118

Discussion on unit system .. 118

List of figures
Figure 1: Result plots of uniformly loaded two-way slab 30*30 nodes (Li, 2020) 1

Figure 2: First order derivative by finite difference method .. 9

Figure 3: Compressed Sparse Row format (index pointers, indices, and data) 13

Figure 4:Compressed Sparse Column format (index pointers, indices, and data) 13

Figure 5: Row permutation rp discovering banded structure in the matrix A. (c-d) Row permutation rp

while solving vertical concatenation of two matrices .. 17

Figure 6: Work flow of code .. 19

Figure 7: Add equations to [M] .. 24

Figure 8: Non-zero value distribution in [M] and [f] ... 24
Figure 9: Distribution of assigned equations in the rectangular matrix ... 25

Figure 10: Modified distribution of assigned equations by central node method 26

Figure 11: Modified distribution of assigned equations by undefined node method 28

Figure 12: Modified distribution of assigned equations by undefined node method 29

Figure 13: Work flow of solver tests.. 31

Figure 14: Model 1 displacement, bending moment and shear force finite element results by SCIA

Engineer ... 34

Figure 15: Model 2 displacement, bending moment and shear force finite element results by SCIA

Engineer ... 34

Figure 16:Model 3 displacement, bending moment and shear force finite element results by SCIA

Engineer ... 35

Figure 17: Model 4 displacement, bending moment and shear force finite element results by SCIA

Engineer ... 36

Figure 18: Model 5 displacement, bending moment and shear force finite element results by SCIA

Engineer ... 36

120Figure 19: Comparison of overall test results for model 1... 43

Figure 20: Comparison of overall test results for model 2 .. 43

Figure 21: Comparison of overall test results for model 3 .. 44

Figure 22: Comparison of overall test results for model 4 .. 44

Figure 23: Comparison test results for model 5 ... 44

Figure 24: Comparison of uz results for model 1 .. 44

Figure 25: Comparison of uz results for model 2 .. 44

Figure 26: Comparison of uz results for model 3 .. 44

Figure 27: Comparison of uz results for model 4 .. 44

Figure 28: Comparison of uz results for model 5 .. 45

Figure 29: Comparison of mxx results for model 1 ... 45

Figure 30: Comparison of mxx results for model 2 ... 45

Figure 31: Comparison of mxx results for model 3 ... 45

Figure 32: Comparison of mxx results for model 4 ... 45

Figure 33: Comparison of mxx results for model 5 ... 45

Figure 34: Comparison of vx results for model 1 .. 46

Figure 35: Comparison of vx results for model 2 .. 46

Figure 36: Comparison of vx results for model 3 .. 46

Figure 37: Comparison of vx results for model 4 .. 46

Figure 38: Comparison of vx results for model 5 .. 46

Figure 47:Actual deformed shape of models by shell code results (Test LM1-5) 51

Figure 48:Actual deformed shape of models by finite element solution (SCIA Engineer 19) 51

Figure 49: 3D surface and projections of uz plots from Test R1-5 .. 52

Figure 50: 3D surface and projections of uz plots from Test LM1-5 .. 52

Figure 51:Bending moment mxx edge results by shell code (Test LM1-5, m=n=50) 53

Figure 52:Bending moment mxx edge results by finite element solution (SCIA Engineer 19) 54

Figure 53:Shear force vx edge results by shell code (Test LM1-5, m=n=50) ... 54

Figure 54:Shear force vx edge results by finite element solution (SCIA Engineer 19) 55

Figure 55: Plots of top 100 maximum and minimum values from Test LM1-5 (m=n=30) 56

Figure 56: Plots of top 100 maximum and minimum values from Test R1-5 (m=n=30) 57

Figure 57: Sparsity of matrices .. 59

Figure 58: Condition number of rectangular matrices ... 60

Figure 59: Condition number of square matrices ... 60

Figure 60: Percentage of rank number (%) of rectangular matrices (A and A b  ) 61

Figure 61: Percentage of rank number (%) of square matrices (A and A b  ) 61

Figure 62: Deviation of Test R1 results by increasing number of iterations (m=n=20) 62

Figure 63: Deviation of Test R3 results by increasing number of iterations (m=n=20) 62

Figure 64: Deviation of Test SE1 results by increasing number of iterations (m=n=20) 62

Figure 65: Deviation of Test SE3 results by increasing number of iterations (m=n=20) 62

Figure 66: Deviation of model 1 results with different unit systems ... 64

Figure 67: Deviation of model 2 results with different unit systems ... 64

Figure 68: Deviation of model 3 results with different unit systems ... 64

Figure 69: Deviation of model 4 results with different unit systems ... 64

Figure 70: Deviation of model 5 results with different unit systems ... 65

Figure 71: Condition number of rectangular matrices with different unit systems (m=n=15) 65

Figure 72: Percentage of rank number (%) of rectangular matrices (A and A b  ) with different unit

systems (m=n=15) .. 65

Figure 73: Condition number of rectangular matrices with different approximation method (m=n=15) 66

Figure 74: Percentage of rank number (%) of rectangular matrices (A and A b  ) with different

approximation method (m=n=15) .. 66

Figure 75: Tests on stopping tolerances in lsmr solver for Test R1 (m=n=30) 67

Figure 76: Tests on stopping tolerances in lsmr solver for Test R3 (m=n=30) 67

Figure 77: Tests on stopping tolerances in lsmr solver for Test SE1 (m=n=30) 67

Figure 78: Tests on stopping tolerances in lsmr solver for Test SE3 (m=n=30) 67

Figure 79: Test R1 displacement uz results (m=n=20, 30, 50) .. 73

Figure 80: Test R1 bending moment mxx results (m=n=20, 30, 50) ... 73

Figure 81: Test R1 shear force vx results (m=n=20, 30, 50) ... 73

Figure 82: Test R2 displacement uz results (m=n=20, 30, 50) .. 73

Figure 83: Test R2 bending moment mxx results (m=n=20, 30, 50) ... 74

Figure 84: Test R2 shear force vx results (m=n=20, 30, 50) ... 74

Figure 85: Test R3 displacement uz results (m=n=20, 30, 50) .. 74

Figure 86: Test R3 bending moment mxx results (m=n=20, 30, 50) ... 74

Figure 87: Test R3 shear force vx results (m=n=20, 30, 50) ... 75

Figure 88: Test R4 displacement uz results (m=n=20, 30, 50) .. 75

Figure 89: Test R4 bending moment mxx results (m=n=20, 30, 50) ... 75

Figure 90: Test R4 shear force vx results (m=n=20, 30, 50) ... 75

Figure 91: Test R5 displacement uz results (m=n=20, 30, 50) .. 76

Figure 92: Test R5 bending moment mxx results (m=n=20, 30, 50) ... 76

Figure 93: Test R5 shear force vx results (m=n=20, 30, 50) ... 76

Figure 94: Test SC1 displacement uz results (m=n= 30, 50) ... 76

Figure 95: Test SC1 bending moment mxx results (m=n=30, 50) ... 77

Figure 96: Test SC1 shear force vx results (m=n=30, 50) ... 77

Figure 97: Test SC2 displacement uz results (m=n=30, 50) .. 77

Figure 98: Test SC2 bending moment mxx results (m=n=30, 50) ... 77

Figure 99: Test SC2 shear force vx results (m=n= 30, 50) .. 78

Figure 100: Test SC3 displacement uz results (m=n=20, 30, 50) .. 78

Figure 101: Test SC3 bending moment mxx results (m=n=20, 30, 50)... 78

Figure 102: Test SC3 shear force vx results (m=n=20, 30, 50) ... 78

Figure 103: Test SC4 displacement uz results (m=n=20, 30, 50) .. 79

Figure 104: Test SC4 bending moment mxx results (m=n=20, 30, 50)... 79

Figure 105: Test SC4 shear force vx results (m=n=20, 30, 50) ... 79

Figure 106: Test SC5 displacement uz results (m=n=20, 30, 50) .. 79

Figure 107: Test SC5 bending moment mxx results (m=n=20, 30, 50)... 80

Figure 108: Test SC5 shear force vx results (m=n=20, 30, 50) ... 80

Figure 109: Test SC1 displacement uz results (m=n= 30, 50) ... 80

Figure 110: Test SC1 bending moment mxx results (m=n=30, 50)... 80

Figure 111: Test SC1 shear force vx results (m=n=30, 50) ... 81

Figure 112: Test SC2 displacement uz results (m=n=30, 50) .. 81

Figure 113: Test SC2 bending moment mxx results (m=n=30, 50)... 81

Figure 114: Test SC2 shear force vx results (m=n= 30, 50) .. 81

Figure 115: Test SC3 displacement uz results (m=n=20, 30, 50) .. 82

Figure 116: Test SC3 bending moment mxx results (m=n=20, 30, 50)... 82

Figure 117: Test SC3 shear force vx results (m=n=20, 30, 50) ... 82

Figure 118: Test SC4 displacement uz results (m=n=20, 30, 50) .. 82

Figure 119: Test SC4 bending moment mxx results (m=n=20, 30, 50)... 83

Figure 120: Test SC4 shear force vx results (m=n=20, 30, 50) ... 83

Figure 121: Test SC5 displacement uz results (m=n=20, 30, 50) .. 83

Figure 122: Test SC5 bending moment mxx results (m=n=20, 30, 50)... 83

Figure 123: Test SC5 shear force vx results (m=n=20, 30, 50) ... 84

Figure 124: Test SU1 displacement uz results (m=n=20, 30, 50).. 84

Figure 125: Test SU1 bending moment mxx results (m=n=20, 30, 50) .. 84

Figure 126: Test SU1 shear force vx results (m=n=20, 30, 50) ... 84

Figure 127: Test SU2 displacement uz results (m=n=20, 30, 50).. 85

Figure 128: Test SU2 bending moment mxx results (m=n=20, 30, 50) .. 85

Figure 129: Test SU2 shear force vx results (m=n=20, 30, 50) ... 85

Figure 130: Test SU3 displacement uz results (m=n= 30, 50)... 85

Figure 131: Test SU3 bending moment mxx results (m=n=30, 50) .. 86

Figure 132: Test SU3 shear force vx results (m=n=30, 50) ... 86

Figure 133: Test SU4 displacement uz results (m=n=30, 50).. 86

Figure 134: Test SU4 bending moment mxx results (m=n=30, 50) .. 86

Figure 135: Test SU4 shear force vx results (m=n= 30, 50) .. 87

Figure 136: Test SU5 displacement uz results (m=n=30, 50).. 87

Figure 137: Test SU5 bending moment mxx results (m=n=30, 50) .. 87

Figure 138: Test SU5 shear force vx results (m=n= 30, 50) .. 87

Figure 139: Test SU1 displacement uz results (m=n=20, 30, 50).. 88

Figure 140: Test SU1 bending moment mxx results (m=n=20, 30, 50) .. 88

Figure 141: Test SE1 shear force vx results (m=n=20, 30, 50) ... 88

Figure 142: Test SE2 displacement uz results (m=n=20, 30, 50) .. 88

Figure 143: Test SE2 bending moment mxx results (m=n=20, 30, 50) ... 89

Figure 144: Test SE2 shear force vx results (m=n=20, 30, 50) ... 89

Figure 145: Test SE3 displacement uz results (m=n= 30, 50) ... 89

Figure 146: Test SE3 bending moment mxx results (m=n=30, 50) ... 89

Figure 147: Test SE3 shear force vx results (m=n=30, 50) ... 90

Figure 148: Test SE4 displacement uz results (m=n=30, 50) .. 90

Figure 149: Test SE4 bending moment mxx results (m=n=30, 50) ... 90

Figure 150: Test SE4 shear force vx results (m=n= 30, 50) .. 90

Figure 151: Test SE5 displacement uz results (m=n=30, 50) .. 91

Figure 152: Test SE5 bending moment mxx results (m=n=30, 50) ... 91

Figure 153: Test SE5 shear force vx results (m=n= 30, 50) .. 91

Figure 154: Test P1displacement uz results (m=n=10, 20) ... 91

Figure 155: Test P1 bending moment mxx results (m=n=10, 20) ... 92

Figure 156: Test P1 shear force vx results (m=n=10, 20) .. 92

Figure 157: Test P2 displacement uz results (m=n=10, 20) .. 92

Figure 158: Test P2 bending moment mxx results (m=n=10, 20) ... 92

Figure 159: Test P2 shear force vx results (m=n=10, 20) .. 93

Figure 160: Test P3 displacement uz results (m=n=10, 20) .. 93

Figure 161: Test P3 bending moment mxx results (m=n=10, 20) ... 93

Figure 162: Test P3 shear force vx results (m=n=10, 20) .. 93

Figure 163: Test P4 displacement uz results (m=n=10, 20) .. 93

Figure 164: Test P4 bending moment mxx results (m=n=10, 20) ... 94

Figure 165: Test P4 shear force vx results (m=n=10, 20) .. 94

Figure 166: Test P5 displacement uz results (m=n=10, 20, 30) .. 94

Figure 167: Test P5 bending moment mxx results (m=n=10, 20) ... 94

Figure 168: Test P5 shear force vx results (m=n=10, 20) .. 95

Figure 169: Test LM1 displacement uz results (m=n= 20, 30, 50) .. 95

Figure 170: Test LM1 bending moment mxx results (m=n= 20, 30, 50) .. 95

Figure 171: Test LM1 shear force vx results (m=n=20, 30, 50) .. 95

Figure 172: Test LM2 displacement uz results (m=n=20, 30, 50) ... 96

Figure 173: Test LM2 bending moment mxx results (m=n=20, 30, 50) ... 96

Figure 174: Test LM2 shear force vx results (m=n=20, 30, 50) .. 96

Figure 175: Test LM3 displacement uz results (m=n=30, 50) ... 96

Figure 176: Test LM3 bending moment mxx results (m=n=30, 50) ... 97

Figure 177: Test LM3 bending moment vx results (m=n=30, 50) ... 97

Figure 178: Test LM4 displacement uz results (m=n=30, 50) ... 97

Figure 179: Test LM4 bending moment mxx results (m=n=30, 50) ... 97

Figure 180: Test LM4 bending moment vx results (m=n=30, 50) ... 98

Figure 181: Test LM5 displacement uz results (m=n=30, 50) ... 98

Figure 182: Test LM5 bending moment mxx results (m=n=30, 50) ... 98

Figure 183: Test LM5 shear force vx results (m=n=30, 50) .. 98

Figure 184: Test SLM1 displacement uz results (m=n=20, 30, 50) .. 99

Figure 185: Test SLM1 bending moment mxx results (m=n=20, 30, 50) ... 99

Figure 186: Test SLM1 shear force vx results (m=n=20, 30, 50) .. 99

Figure 187: Test SLM2 displacement uz results (m=n=20, 30, 50) .. 99

Figure 188: Test SLM2 bending moment mxx results (m=n=20, 30, 50) ... 100

Figure 189: Test SLM2 shear force vx results (m=n=20, 30, 50) .. 100

Figure 190: Test SLM3 displacement uz results (m=n=30, 50) .. 100

Figure 191: Test SLM3 bending moment mxx results (m=n=30, 50) ... 100

Figure 192: Test SLM3 bending moment vx results (m=n=30, 50) .. 101

Figure 193: Test SLM4 displacement uz results (m=n=30, 50) .. 101

Figure 194: Test SLM4 bending moment mxx results (m=n=30, 50) ... 101

Figure 195: Test SLM 4 bending moment vx results (m=n=30, 50) ... 101

Figure 196: Test SLM5 displacement uz results (m=n=30, 50) .. 102

Figure 197: Test SLM5 bending moment mxx results (m=n=30, 50) ... 102

Figure 198: Test LM5 shear force vx results (m=n=30, 50) .. 102

Figure 199: Test ALM1 displacement uz results (m=n= 20, 30, 50) ... 102

Figure 200: Test ALM1 bending moment mxx results (m=n= 20, 30, 50) .. 103

Figure 201: Test ALM1 shear force vx results (m=n=20, 30, 50) ... 103

Figure 202: Test ALM2 displacement uz results (m=n=20, 30, 50) .. 103

Figure 203: Test ALM2 bending moment mxx results (m=n=20, 30, 50) ... 103

Figure 204: Test ALM2 shear force vx results (m=n=20, 30, 50) ... 104

Figure 205: Test ALM3 displacement uz results (m=n=30, 50) .. 104

Figure 206: Test ALM3 bending moment mxx results (m=n=30, 50) ... 104

Figure 207: Test ALM3 bending moment vx results (m=n=30, 50) .. 104

Figure 208: Test ALM4 displacement uz results (m=n=30, 50) .. 105

Figure 209: Test ALM4 bending moment mxx results (m=n=30, 50) ... 105

Figure 210: Test ALM4 bending moment vx results (m=n=30, 50) .. 105

Figure 211: Test ALM5 displacement uz results (m=n=30, 50) .. 105

Figure 212: Test ALM5 bending moment mxx results (m=n=30, 50) ... 106

Figure 213: Test ALM5 shear force vx results (m=n=30, 50) ... 106

Figure 214: Test BLM1 displacement uz results (m=n= 20, 30, 50) ... 106

Figure 215: Test BLM1 bending moment mxx results (m=n= 20, 30, 50) .. 106

Figure 216: Test BLM1 shear force vx results (m=n=20, 30, 50) ... 107

Figure 217: Test BLM2 displacement uz results (m=n=20, 30, 50) .. 107

Figure 218: Test BLM2 bending moment mxx results (m=n=20, 30, 50) ... 107

Figure 219: Test BLM2 shear force vx results (m=n=20, 30, 50) ... 107

Figure 220: Test BLM3 displacement uz results (m=n=30, 50) .. 108

Figure 221: Test BLM3 bending moment mxx results (m=n=30, 50) ... 108

Figure 222: Test BLM3 bending moment vx results (m=n=30, 50) .. 108

Figure 223: Test BLM4 displacement uz results (m=n=30, 50) .. 108

Figure 224: Test BLM4 bending moment mxx results (m=n=30, 50) ... 109

Figure 225: Test BLM4 bending moment vx results (m=n=30, 50) .. 109

Figure 226: Test BLM5 displacement uz results (m=n=30, 50) .. 109

Figure 227: Test BLM5 bending moment mxx results (m=n=30, 50) ... 109

Figure 228: Test BLM5 shear force vx results (m=n=30, 50) ... 110

Figure 229: Test AR1 displacement uz results (m=n= 20, 30, 50) .. 110

Figure 230: Test AR1 bending moment mxx results (m=n= 20, 30, 50) ... 110

Figure 231: Test AR1 shear force vx results (m=n=20, 30, 50) .. 110

Figure 232: Test AR2 displacement uz results (m=n=20, 30, 50) ... 111

Figure 233: Test AR2 bending moment mxx results (m=n=20, 30, 50) .. 111

Figure 234: Test AR2 shear force vx results (m=n=20, 30, 50) .. 111

Figure 235: Test AR3 displacement uz results (m=n=30, 50) ... 111

Figure 236: Test AR3 bending moment mxx results (m=n=30, 50) .. 112

Figure 237: Test AR3 bending moment vx results (m=n=30, 50) ... 112

Figure 238: Test AR4 displacement uz results (m=n=30, 50) ... 112

Figure 239: Test AR4 bending moment mxx results (m=n=30, 50) .. 112

Figure 240: Test AR4 bending moment vx results (m=n=30, 50) ... 113

Figure 241: Test AR5 displacement uz results (m=n=30, 50) ... 113

Figure 242: Test AR5 bending moment mxx results (m=n=30, 50) .. 113

Figure 243: Test AR5 shear force vx results (m=n=30, 50) .. 113

Figure 244: Test BR1 displacement uz results (m=n= 20, 30, 50) .. 114

Figure 245: Test BR1 bending moment mxx results (m=n= 20, 30, 50) ... 114

Figure 246: Test BR1 shear force vx results (m=n=20, 30, 50) ... 114

Figure 247: Test BR2 displacement uz results (m=n=20, 30, 50) ... 114

Figure 248: Test BR2 bending moment mxx results (m=n=20, 30, 50) .. 115

Figure 249: Test BR2 shear force vx results (m=n=20, 30, 50) ... 115

Figure 250: Test BR3 displacement uz results (m=n=30, 50) ... 115

Figure 251: Test BR3 bending moment mxx results (m=n=30, 50) .. 115

Figure 252: Test BR3 bending moment vx results (m=n=30, 50) ... 116

Figure 253: Test BR4 displacement uz results (m=n=30, 50) ... 116

Figure 254: Test BR4 bending moment mxx results (m=n=30, 50) .. 116

Figure 255: Test BR4 bending moment vx results (m=n=30, 50) ... 116

Figure 256: Test BR5 displacement uz results (m=n=30, 50) ... 117

Figure 257: Test BR5 bending moment mxx results (m=n=30, 50) .. 117

Figure 258: Test BR5 shear force vx results (m=n=30, 50) ... 117

List of tables
Table 1: Sanders-Koiter equations (Hoogenboom , 2021)... 7

Table 2: Boundary conditions for an edge in the x direction and the y axis pointing outwards 8

Table 3: Boundary conditions for an edge in the x direction and the y axis pointing inwards 8

Table 4: Boundary conditions for an edge in the y direction and the x axis pointing outwards 8

Table 5: Boundary conditions for an edge in the y direction and the x axis pointing inwards 8

Table 6: Geometry and material parameters of models ... 20

Table 7: Pinned edges and Cantilever boundary conditions .. 20

Table 8: Boundary equations ... 21

Table 9: Model configuration... 21

Table 10:Number of assigned equations in rectangular [M] .. 25

Table 11:Number of assigned equations in square [M] by central node method 27

Table 12:Number of assigned equations in square [M] by undefined node method 28

Table 13: Replaced S-K equations and boundary equations correlation ... 30

Table 14:Number of assigned equations in square [M] by undefined node method 30

Table 15: Additional boundary equations .. 30

Table 16: Rectangular and square matrix test configuration ... 30

Table 17a: Solver test configuration of rectangular matrices .. 31

Table 17b: Solver tests of square matrices (The matrices are made square by the equation replacement

method) .. 32

Table 18: Absolute maximum value of finite element results for model1-5 ... 36

Table 19: Absolute maximum value of test R1-5 plots.. 37
Table 20: Absolute maximum value of test SC1-5 plots ... 37

Table 21: Absolute maximum value of test SU1-5 plots ... 37

Table 22: Absolute maximum value of test SE1-5 plots.. 37

Table 23: Absolute maximum value of test P1-5 ... 38

Table 24: Absolute maximum value of test LM1-5 plots .. 38

Table 25: Absolute maximum value of test SLM1-5 plots .. 38

Table 26: Absolute maximum value of test AR1-5 plots ... 39

Table 27: Absolute maximum value of test BR1-5 plots ... 39

Table 28: Absolute maximum value of test ALM1-5 plots ... 39

Table 29: Absolute maximum value of test BLM1-5 plots ... 39

Table 31: Deviation of Test R1-5 results (green:14%, blue: 42%, orange: 44%) 40

Table 32: Deviation of Test SU1-5 results (green:12%, blue: 44%, orange: 44%) 40

Table 33: Deviation of Test SC1-5 results (green:7%, blue: 40%, orange: 53%) 40

Table 34: Deviation Test SE1-5 results (green:12%, blue: 44%, orange: 44%) 41

Table 35: Deviation of Test P1-5 (green:33%, blue: 67%, orange: 0%) ... 41

Table 37: Deviation of Test LM1-5 results (green:61%, blue: 39%, orange: 0%) 41

Table 36: Deviation of Test SLM1-5 (green:53%, blue: 42%, orange: 5.7%) .. 41

Table 36: Deviation of Test ALM1-5 (green:12%, blue: 44%, orange: 44%) ... 42

Table 36: Deviation of Test BLM1-5 (green:78%, blue: 19%, orange: 3%) .. 42

Table 40: Summary of deviation of test results .. 42

Table 37: Comparison between lsmr solver results ... 47

Table 38: Comparison between pinv solver and lm.fit.sparse solver results ... 48

Table 39: Comparison between five-point and two-point difference approximation results (lsmr solver)

 .. 48

Table 40: Comparison between five-point and two-point difference approximation results (lm.fit.sparse

solver) ... 49

Table 41: Comparison between bending moment mxx edge results ... 52

Table 42: Comparison between shear force vx edge results .. 53

Table 43: Deviation of Test LM1-5 overall bending moment & shear force results (m=n=50) 53

Table 44: Memory usage and time by finite element software (SCIA Engineer 19) 58

Table 45: Memory usage and time by different solver in shell code ... 58

Table 46: Model parameters by different unit systems .. 63

Table 47: Sparsity of rectangular matrices... 117

Table 48: Sparsity of square matrices .. 117

Table 49: Condition number of rectangular matrices .. 117

Table 50: Condition number of square matrices .. 118

Table 51: Rank number of rectangular matrices .. 118

Table 52: Rank number of square matrices.. 118

Table 53: Deviation of Test R1 results by increasing number of iterations (m=n=20) 118

Table 54: Deviation of Test R3 results by increasing number of iterations (m=n=20) 118

Table 55: Deviation of Test SE1 results by increasing number of iterations (m=n=20) 118

Table 56: Deviation of Test SE3 results by increasing number of iterations (m=n=20) 118

Table 57: Deviation of Test R1-5 results by new unit systems (N, mm) ... 118

Table 58: Deviation of Test LM1-5 results by new unit systems (N, mm) ... 119

Table 59: Deviation of Test R1-5 results by new unit systems (KN, 10m) ... 119

Table 60: Deviation of Test LM1-5 results by new unit systems (KN, 10m) .. 119

1

1. Introduction

1.1 Problem Statement

The finite element method is the industry standard for analysing shell structures due to its generality and

sophistication. In popular commercial finite element software, the most used shell element type has been

derived from a solid, therefore, the shell differential equations (for example, Sanders-Koiter equations) have

not been used. In fact, currently, there is not a method available for solving the shell differential equations.

Solutions to those equations could be used to perform independent checks of finite element results. It can be

expected that the finite difference results will be the same as the finite element results, however, there might

be theoretically interesting differences, for example in edge stresses. This can provide insight into both the

Sanders-Koiter equations and the applied finite elements. Although the finite element method is a mature

method with a long history of application, it is always good to try and falsify theories. For this purpose, a

direct way to solve the shell differential equations is required.

The simplest way to solve differential equations is the finite difference method. This method has a long history

of application. For example, for plate problems the finite difference method was applied long before the finite

element method (Figure 1). The finite difference method was already used in hand calculations before the

development of electronic computers (Thomée, 2001). However, its application to shell theory was always

considered impractical. In shell theory many higher-order differentiations occur and the grid is curvilinear,

which means that the discretized form of those equations is large and different for every grid point.

Nonetheless, there must be a practical, even simple manner to apply the finite difference method to shell

theory.

Figure 1: Result plots of uniformly loaded two-way slab 30*30 nodes (Li, 2020)

One simple finite difference method is applied in a Python algorithm, called plate code, that has been recently

developed by the author (Li, 2020). The method is simple because only first-order derivatives are used instead

of the common forth-order derivatives. The advantage is that few simple molecules need to be implemented

for the various boundary conditions. The disadvantage is that the matrix constructed is very large, which gives

memory capacity problems and is time-consuming. This method was shown to work well, however, there was

still an unsolved challenge: The number of discretized equations exceeds the number of unknown, which leads

to a rectangular matrix, which is solved in a least square approximation. The least square approximation may

cut off peaks in the solution, for example it may cut of moment peaks or membrane force peaks. It should be

possible to remove some of the equations and make the matrix square without it becoming singular.

1.2 Objective

Based on the previously explored method of solving plates, the objective of this research is 1) to develop a

practical finite difference algorithm for solving the Sanders-Koiter equations for any shell model for available

orthogonal parameterization and 2) understand how the algorithm results can be affected by various factors.

2

This shell code should have the following key features:

1. Use the finite difference method to approximate the Sanders-Koiter equations

2. Results (extreme values, contour plots) agree with finite element solutions or analytical solutions

3. Universally applicable to shell models with different geometries, loads, and boundary conditions

4. Practical computation time and memory usage

5. Square matrix to avoid computing over-determined systems

6. Easy to modify in case of future changes in the Sanders-Koiter equations or the boundary conditions

1.3 Approach

To develop an algorithm with the above key features, the development process of this code is mainly divided

into the following steps. These steps describe the internal logic of the shell code and the work method

experienced by the author. The methodology and encountered difficulties mentioned below are summarized

from daily testing and coding the shell code program. At later stage of shell code development, many plots

and much data were obtained. To understand how the algorithm results can be affected by various factors, a

number of tests were organized and their results were compared. Those results and comparisons were evidence

of the feasibility of this algorithm. Based on those results, errors in the code were spotted and corrected.

Meanwhile, new methods and new concepts were tried to improve the performance of the algorithm.

a) Build the code

The first step to develop this new shell code is to extrapolate the verified method from the plate code (Li,

2020). Many ideas to develop this algorithm have been verified in the previous plate code including ideas on

how to add model equations, define boundary conditions, and correctly approximate differentiation with the

finite difference method. It is worth mentioning that the fundamental concept of solving Sanders-Koiter

equations by finite difference method is from an algorithm developed by Dr. Hoogenboom which was not

successful yet at early development. The number of implemented equations in shell code is nearly twice that

used in plate code and they have more components involved. In shell code, the model body requires 21

Sanders-Koiter (S-K) equations (plates 11) and every edge requires 4 boundary equations (plates 2). As the

most fundamental part of shell code, correctly adding equations for every node on the grid of the model is the

first challenge to be solved. Meanwhile, if a square matrix is required for testing, the specific method of

replacing model equations should be studied. After finishing constructing the matrix, a proper type of solver

should be selected to solve the system which may directly determine the quality of results. During this phase,

most time was spend on the mathematical interpretation of finite difference method and the S-K equations and

how to implement them in Python coding. The challenging part was on how to use programming to realize

the mathematical concepts and structural mechanics concepts.

b) Test the code

In order to prove the general universality of shell code, this new algorithm should be able to solve different

shell model problems with various material properties, geometry shapes, boundary conditions, and load cases.

For this reason, a number of tests was set up for testing shell code with different shell model problems to

prove the shell code can correctly convert models into matrix systems and solve them. Meanwhile, tests were

also organized to investigate other potential factors which might affect the code results like the number of

nodes, type of solvers, and type of matrices. If the shell code could work properly, plots of displacement,

shear force, bending moment, and other results were generated and collected after each test. Other information

like the setup of tests, spent time, and memory usage of the shell code were also recorded. A large group of

extreme values from every generated plot was collected and analyzed.

c) Validate the results

The above test results were used to prove three properties of code results: accuracy, reliability, and efficiency.

To prove accuracy, test results were used to compare with external finite element results. Those finite element

results were obtained from a popular commercial finite element software (SCIA Engineer) where the same

shell models were analysed. The difference between extreme values of displacement, shear force, bending

3

moment results from shell code and finite element software were calculated. They are listed and categorized

in terms of the type of model, the number of nodes, type of matrix, and types of solver in order to show the

accuracy of shell code results and extent of participation of each factor in affecting the accuracy. To prove the

reliability of results, the collected extreme values of displacement, shear force and bending moment were plot

and reviewed for any possible spike in the trend toward an infinite value (singularity). If such a case occurred,

this extreme value should be considered as a computational error and be excluded from comparing with finite

element results. To prove efficiency, spent time and memory usage for each running test were collected and

listed in terms of the type of model, the number of nodes, type of matrix, and types of the solver. By comparing

them with each other, factors that affect the efficiency of code were identified. Spent time and memory usage

were also compared with those of a popular commercial finite element software to show whether the shell

code is efficient for practical use.

d) Improve the code

After obtaining results from the initial version of the workable shell code, the performance of shell code,

including accuracy, reliability, and efficiency mentioned above, were improved if they were not in an

acceptable range. Clearly, this is a common issue at the initial stage of code development. The first step is to

check with the basic setting for shell model parameters or the adding process of S-K equations for model body

and boundary condition to ensure that the purposed model is correctly described. By iterating this step for

different tests which have various setting and requirement, those basic error related to describing model were

revised. Then the next step is to select a proper solver for solving the matrix system. The selection of the

solver is based on the properties and formation process of input matrices. If a square matrix is not required,

then the constructed matrices will be rectangular matrices, an overdetermined linear sparse system. If the

square matrix is needed, this square matrix is still a linear sparse system, but possibly a singular matrix. Further

research needs to be done to understand the characteristics of different solvers in order to select a suitable

solver for each test. The third step is to optimize the application of the S-K equations by applying additional

definitions for parts of the model. It is possible that the application of the S-K equations might be limited by

the mathematic property of the finite difference method or other factors. Therefore, additional equations were

used as theoretic reinforcement for correcting a potential error in edge or corner behaviour. For example, the

free corners or edges of models require additional equations for defining boundary conditions. Additionally,

new finite difference methods were tried since the performance of shell code is directly related to the finite

difference method applied. At the early stages of code development, a two-point difference approximation

was used to replace first derivative in Sanders-Koiter equations. To investigate the effect of computing

truncation errors arising in this process, a five-point difference approximation was also tested and its results

were compared to that of the previous method.

e) Compare the results

After going through the above development process, the shell code produced massive data and plots. In order

to display them in an orderly manner, the main results are categized into four test groups: rectangular matrix

tests, square matrix tests, solver tests, and five-point difference approximation tests. For each group of tests,

five shell models with various material properties, geometry shapes, boundary conditions, and load cases are

used. Meanwhile, at least two levels of the number of nodes were used for each model. In the rectangular

matrix tests, the matrix type is rectangular matrix and the selected solver is lsmr which can solve a linear

model by least square estimation (Fong and Saunders, 2011). In square matrix tests, there are three types of

square matrices generated by different methods and the selected solver was the same as that of rectangular

matrix tests. In solver tests, rectangular matrix and square matrix were both used and two types of the solver

(pinv, lm.fit.sparse) were used. The lm.fit sparse solver can solve the system as a sparse linear fitting problem.

The pinv solver aims to provide approximated inversion of matrices by SVD decomposition (Davis,

Rajamanickam and Sid-Lakhdar, 2016). In the above tests, only two-point difference approximation was used.

In five-point difference approximation tests, two types of five-point approximation and two types of solvers

(lsmr, lm.fit.sparse) were used. To show those results more properly, the first step is to calculate the deviation

of the obtained extreme values by using finite element results as the reference values. The following

comparisons were made: between shell code results and finite element results, between rectangular matrix test

and square matrix test results, between pinv solver and lm.fit.sparse solver results, and between five-point and

two-point difference approximation results. By reviewing those comparisons, it was found how those factors

4

could affect shell code results. Additionally, the calculated deviation of shell code results was also categized

by the type of model, to investigate how the model setting parameters could affect shell code results.

1.4 Research workflow

As shown in the above section, the shell code development can be divided into five sections: build the code,

test the code, validate the results, improve the code, and compare the results. In the workflow, those sections

are repeated a number of times until the shell code satisfies the purposed key features. The below flow chart

shows how the work has been done for the shell code development.

5

2. Literature review

This section aims to provide more information on the theoretical knowledge applied to this algorithm. The

below content includes a short review of general plate and shell theories and a short description of the

development of the S-K equations. Those equations are bounding rules for the behavior of the shell model

which can provide an argument when discussing abnormality among the generated shell code results. There

is also a short review on the finite difference method and its application. Those equations are the mathematical

tools used to approximate first-order derivatives that appear in the S-K equations. The inherited computational

error of the finite difference method could be important for shell code result analysis. The theoretical

knowledge on types of matrix systems is also included. Some explanation on major methods of solving sparse

overdetermined linear system through programming language is also included. That information can be used

to determine the proper solver for different types of matrices and predict the solver capacity in order to select

the best solver.

2.1 A short review on the development of plate and shell theories

The term shell refers to a physical body bounded by two curved surfaces whose distance is smaller than other

dimensions. The distance between the surfaces is called the thickness of the shell (t). The imaginative surface

that divide the thickness into equal halves is called middle surface. Such geometry structure makes the shell

structure has excellent performance in terms of strength / weight ratio and bearing efficiency.

The study on shell started can be dated back to the free vibration analysis of plate problems performed by

Euler (1766). Plate can be viewed as the shell without the curvature brought by curved surfaces. Then J.

Bernoulli (1789) presented a plate model in an attempt to theoretically explain those results. In his model,

plates were described as the combination of mutually perpendicular Euler–Bernoulli beams at right angles.

Furthermore, French mathematician Germain (1826) developed a plate differential equation which

mathematically describe the deformation of plate. The missing term for warping behaviour was added later

by her reviewer Lagrange (1828). The completed form of this equation is the well-known Germain–Lagrange

equation:

4 4 4

4 2 2 4
2

w w w q

Dx x y y

  
+ + =

   

where D is the flexural rigidity of the plate, w is the deflection of the plate, h is the plate’s thickness, and q

is the uniform distributed load.

This equation as the governing differential equation for deflections can also be formulated based on general

equations of theory of elasticity. Cauchy (1828) and Poisson (1828) were the first to do so. The theory of

bending of plates was improved by Navier (1823), who considered flexural rigidity of the plate D in the above

equation as a function of the plate thickness. Later, Kirchhoff published an important thesis on the theory of

thin plates where he introduced physical meaning into the theory of plates by the famous “Kirchhoff’s

hypotheses” (1850). Kirchhoff’s hypotheses are a series of fundamental assumptions used in thin plate

bending theory in which the deflection of a plate is assumed to be small, linear, and elastic. Restated

assumptions (Ventsel and Krauthammer, 2001) are list as below:

 Elastic, homogenous, and isotropic material.

 Initially flat plate.

 Small vertical deflection of the midplane compared with the thickness of the plate.

6

 “Needle hypotheses”: The normal lines of the middle plane remain straight and normal to the middle

surface during the deformation. Thickness remains constant. Negligible vertical shear strains (xy , yz)

and normal strain (z).

 Negligible normal stress z

 Middle surface remains unstrained

Timoshenko also made a profound contribution to the plate bending theory and application of it by providing

solutions of circular plates considering large deflections (1915) and formulation of elastic stability problems

(1913). Moreover, he and Woinowsky-Krieger published a fundamental monograph (1959) which provided

several solutions to various plate bending problems.

The above-mentioned classical plate theory mainly focused on the describing bending and twisting behavior

of plate models while shell models are usually deformed in another way. It is because the shell has an

additional characteristic than a plate –curvature. It makes the deformation of the shell model is predominantly

induced by in-plane stressing. Depending on their curvatures, shells can be categorized as cylindrical (non-

circular and circular), conical, spherical, ellipsoidal, paraboloidal, toroidal, and hyperbolic paraboloidal model.

The most available commercial finite element software is merely capable to solve shell model problems

without considering larger deformation and inelastic behaviour. In order to avoid the difficulties in solving

3D shell models, alternative 2D shell theories are to be more commonly used where shell problems are usually

reduced to the study of deformations of the middle surface. It is a practical and efficient way to solve shell

model problems as long as the above hypotheses were satisfied. However, those simplified elasticity equations

reduce the accuracy of analysis results since some degrees of freedom of the model are omitted.

The first successful approximated shell theory was developed by Love (1892). He took constitutive relations

from Kirchhoff’s hypotheses with his own assumption of small deflection and thinness of a shell to simplify

the strain–displacement relationships in shell models. This theory, called Kirchhoff–Love shell theory, is a

first-order approximation method to solve shell models. However, it is not a perfect theory which have several

inconsistencies. After that, many other first-order approximation theories were later developed based on it.

One of those later theories is Reissner’s linear theory of thin shells (1941). By taking the equilibrium equations,

strain–displacement relations, and stress resultants expression from the three-dimensional theory of elasticity,

the inconsistencies in Love’s theory were eliminated in Reissner’s theory. And Sanders develop his own first-

order approximation shell theory from the principle of virtual work equation and it also successfully removed

inconsistencies in Love’s theory.

2.2 Sanders-Koiter equations

The Sanders-Koiter equations have been individually developed by Sanders (Sanders, 1963) and Koiter (1966)

as a refined nonlinear theory of shells. The accuracy of the Sanders-Koiter theory for calculating larger

vibration amplitudes has been proved (Amabili, 2003).

Symbols

E …………………… …..…… Young’s modulus

t …………………………….. Shell thickness

x , y ………………………. Lamé parameters

xk , yk …….………………….. In plane curvature of parameter lines

xxk , yyk , xyk ………….…….. Curvature tensor

xxm , yym , xym ……………… Moment tensor

xxn , yyn , xyn , yxn …………… Membrane force tensor

7

xp , yp , zp …….…………….. Distributed load

xv , yv , zv …….……………… Out of plane shear forces

xx , yy , xy ………………… Strain tensor of the middle surface

x , y , z …………………… Rotation of a pin perpendicular to the surface

yy , yy , xy ……………….. Curvature deformation tensor

 …………………………….. Poisson’s ratio

u , v …………………………... Curvilinear coordinates

xu , yu , zu ……………………. Displacements

x , y , z ………………………. Local Cartesian coordinates

Table 1: Sanders-Koiter equations (Hoogenboom , 2021)

Equilibrium

equations

() 0
yx

xx xx xy xy yx yy yy y x x y z

vv
k n k n n k n k v k v p

x y


+ + + + + + + + =

 
 1

() () 0
yxxx

y xx yy x xy yx xx x xy y x

nn
k n n k n n k v k v p

x y

 
+ + − + + − − + =    

 2

() () 0
yy xy

x yy xx y xy yx yy y xy x y

n n
k n n k n n k v k v p

y y

 
+ + − + + − − + =    

 3

() 2 0
xyxx

y xx yy x xy x

mm
k m m k m q

x y

 
+ + − + − =    

 4

() 2 0
yy xy

x yy xx y xy y

m m
k m m k m v

y x

 
+ + − + − =    

 5

() () 0xy xx yy xx yy xy xy yxk m m k k m n n− − − + − = 6

Constitutive

equations

()21
xx xx yy

Et
n

v
=  + 

−

 7

()21
yy yy xx

Et
n

v
=  + 

−

 8

()2 2 1

xy yx
xy

n n Et

v

+
= 

+
 9

()
()

3

212 1
xx xx yy

Et
m

v
=  + 

−

 10

()
()

3

212 1
yy yy xx

Et
m

v
=  + 

−

 11

()

3

24 1
xy xy

Et
m

v
= 

+
 12

Kinematic

equations

x
xx xx z x y

u
k u k u

x


 = − +


 13

y
yy yy z y x

u
k u k u

y


 = − +


 14

2
yx

xy xy z x x y y

uu
k u k u k u

y x


 = + − − −

 
 15

8

z
x xx x xy y

u
k u k u

x


 = − − −


 16

z
y yy y xy x

u
k u k u

y


 = − − −


 17

1

2

yx
z x x y y

uu
k u k u

y x

 
 = − + − +    

 18

x
xx xy z x yk k

x


 = −  + 


 19

y
yy xy z y xk k

y


 = +  + 


 20

()yx
xy xx yy z x x y yk k k k

y x


 = + + −  −  − 

 
 21

Boundary conditions for shell are defined as follows:

Table 2: Boundary conditions for an edge in the x direction and the y axis pointing outwards

Type Kinematic (K) Type Dynamic (D)

Impose displacement xu or apply line load = −x yx xxq n k V BC1

Impose displacement yu
or apply line load

= −y yy xyq n k V BC2

Impose displacement zu
or

apply line load


= +


z y
V

q v
x

 BC3

Impose displacement −y or apply line load − yym BC4

Table 3: Boundary conditions for an edge in the x direction and the y axis pointing inwards

Type Kinematic (K) Type Dynamic (D)

Impose displacement xu or apply line load x yx xxq n k V= − + BC5

Impose displacement yu
or apply line load

y yy xyq n k V= − + BC6

Impose displacement zu
or

apply line load z y
V

q v
x


= − −


 BC7

Impose displacement −y or apply line load yym BC8

Table 4: Boundary conditions for an edge in the y direction and the x axis pointing outwards

Type Kinematic (K) Type Dynamic (D)

Impose displacement xu or apply line load x xx xyq n k V= − BC9

Impose displacement yu or apply line load y xy yyq n k V= − BC10

Impose displacement zu
or apply line load z x

V
q v

y


= +


 BC11

Impose displacement x or apply line load xxm BC12

Table 5: Boundary conditions for an edge in the y direction and the x axis pointing inwards

Type Kinematic (K) Type Dynamic (D)

Impose displacement xu or apply line load x xx xyq n k V= − + BC13

9

Impose displacement yu
or apply line load

y xy yyq n k V= − + BC14

Impose displacement zu
or apply line load z x

V
q v

y


= − −


 BC15

Impose displacement x or apply line load xxm− BC16

2.3 A short review on the finite different method

The idea of the finite difference method is studying the continuous process by applying mathematical

discretization. By dividing the process into a finite number of sufficiently small parts, the differential equations

are approximated by a large number of linear equations. The results of derivative over a continuous domain

can be approximated as the summation of a weight function multiplied with results of discrete points.

The general procedure of applying different finite difference schemes for the numerical solution of partial

differential equation is outlined as below:

 Convert the continuous process variables into a discrete set of points.

 Approximate partial derivatives using finite difference approximation.

 Solve the resulting finite difference equations.

By definition, the first order derivative can also be calculated as below. The first order derivative of a one-

dimensional, continuous function ()f x is calculated based on values of adjacent points

() () () () () ()

0 0 0
lim lim lim

2→ → →

+ − − − + − −
 = = =

h h h

f x h f x f x f x h f x h f x h
f

h h h

Figure 2: First order derivative by finite difference method

The key point of the finite difference method is approximating the derivatives. For example, the domain of

variable x of the continuous function ()f x is interval AB. The interval AB starts at point A (a, 0) and ends

at B (b, 0) which is divided into equal intervals  =x h . h is the finite increment of the variable x . Assume the

()f x is linear continuous function with expression of () 2f x a b x c x= +  +  .

The first order derivative of ()f x is given by below calculation:

()

()

()

()
1

1 1 1 1

1

2 2

i
i i i i

i

i

f f x h
f xf f f f

f f x b b
h x h

f f x h

−
− + − +

+

 = − 
  − − 

=  = −  = =   
  

= + 

10

In practice, it is called the expression for a central difference approximation of ()()/f x x  . It is also referred

to as the two-point derivative approximation since the calculation is based on the values of two adjacent points.

If the two adjacent points are on the one side, it is called the one-sided finite difference approximation which

is calculated as below:

()

()

()

()1 2 1 2
1

2

3 4 3 4

2 2
2

i
i i i i i i

i

i

f f x
f xf f f f f f

f f x h b b
h x h

f f x h

+ + + +
+

+

 = 
   −  +  −  + 

= +  =  = =   
  

= + 

()

()

()

()1 2 1 2
1

2

3 4 3 4

2 2
2

i
i i i i i i

i

i

f f x
f xf f f f f f

f f x h b b
h x h

f f x h

− − − −
−

−

 = 
   −  +  −  + 

= −  = −  = = −   
  

= − 

Assume ()f x is linear continuous function with expression () 2 3 4f x a b x c x d x e x= +  +  +  +  . The first

order derivative of ()f x is given by the following calculation:

()

()

()

()

()

()

2

1
2 1 1 2 2 1 1 2

1

2

2

8 8 8 8

12 12

2

i

i
i i i i i i i i

i

i

i

f f x h

f f x h
f xf f f f f f f f

f f x b b
h x h

f f x h

f f x h

−

−
− − + + − − + +

+

+

 = −
 

= − 
− + − − + −  =  =  = =   
  = +

 
 = + 

It is the five-point derivative approximation since the calculation is based on the values of four adjacent points.

2.4 A short overview of application of finite difference method on shell theory

Analytical methods to solve plate and shell problems are limited to relatively simple geometries, load cases,

and boundary conditions. Exact solutions to plate and shell problems are difficult, or even impossible to find.

Even if it can be solved, those analytical solutions are usually expressed in terms of infinite trigonometric

series. Therefore, the finite element method is widely used. An alternative computational method is the finite

difference method. (Rudolph Szilard 1974) .

Some general concepts of the finite different method are listed in the following:

1. Finite difference mesh: the reference network that covers the middle surface of the shell in the shape of a

rectangular or triangular grid.

2. Finite difference operator: the finite difference equations that replaces governing differential equations of

shell theory at mesh point.

The finite difference operator is also used to formulate the boundary conditions. Applying the finite difference

method to shell models creates a set of linear algebraic equations for every node within the model. By solving

the linear system of equations, the numerical results of nodal displacement, shear force, bending moment, and

many other important results can be obtained. In the early stage of application, it was mostly used to obtain

the deformation results. It was achieved by solving biharmonic equations for each node where the fourth-order

differential equations are approximated by finite difference method. However, solving a system of equations

involved with four-order approximation usually results in excessive time on formulating equation molecules

for various boundary conditions and geometry shapes. One way to save time is to replace biharmonic equations

with lower-order equations. Marcus (1932) has split the biharmonic equation into three equations: two second-

order deflection equations and one normal moment equation. By solving them, good displacement results were

obtained for plates with simple supported edges.

11

Another alternative approximation was proposed by Reddy and Gera (1979) in which the fourth-order

differential equation is replaced with three second-order differential equations, as shown in Equation 1. For

various boundary conditions, those equations can perform bending moment analysis for rectangular plates

with conventional finite-difference molecules.

()

2 2

2 2

2 2

2 2

22 2

2 2 2 2
2 1

  
 = − +
   

  
 = − +
   

 
− = − − +

   

x

y

yx

w w
M D v

x y

w w
M D v

x y

MM w
P D v

x x y x

Equation 1: Three second-order differential

equations used in finite difference

approximation

()

2

2

 Q
12

 Q
12

1
2

    
= − + = − −        

     
= − + = − −        

 
= − − +    

yx
x x x

y x
y y y

y x
xy

w
M D v Gh

x y x

w
M D v Gh

y x y

D
M v

x y

 

 = −   = − 
 

x zx y zy
w w

x y

Equation 2:Six first-order differential equations used in finite

difference approximation (h = plate thickness)

Assadi-Lamouki and Krauthammer (1989) develop a method to solve plate vibration problem by solving the

finite difference approximation of six first-order equations (see in Equation 2). Their research has shown that

the obtained vibration study results were in good quality compared to results obtained by classical plate theory.

As mentioned above, the finite difference method replaces the governing equations with a set of algebraic

equations. Then computers are used to find the solution to the algebraic equations. Advantages are:

a) It is a straightforward method to be understood and applied;

b) It is a universal method that can be applied to various problems; and

c) This method can be relatively easily implemented.

Disadvantages are:

d) It requires a certain time and mathematical knowledge to find the proper finite difference operators;

e) To perform the analysis efficiently, this method is usually achieved through computer programming. It

requires more work to produce a program allowing complete automation of the procedure;

f) The parameter matrix of approximated algebraic equations is asymmetric, sparse, and highly possible to

be overdetermined, causing difficulties in finding its numerical solution unless using a least square solver;

g) It may have serious difficulties in applying finite difference method into complicated geometry rather than

the regular square and rectangular shape.

2.5 Sparse linear system: overdetermined and determined, its storage and solving methods

The key to applying the finite difference method to shell problems is to solve the matrix of the approximating

system of linear algebraic equations. From previous experience and practice, the constructed matrix of shell

or plate models is usually overdetermined. 21 S-K equations are assigned to mn nodes of the model. To define

the boundary conditions, an additional number of 4 equations are assigned to the 2(m+n) edge nodes. The

resulting matrix is a rectangular matrix having 21mn columns and 21mn+8(m+n) rows. Alternatively, a square

matrix is constructed by replacing 4 equations of the 21 equations at every edge and corner node. Consequently,

two programs were developed; one for overdetermined and one for determined systems (rectangular and

square matrices).

There are 21 dependent variables in the 21 S-K equations. One equation only contains 4 or 5 dependent

variables on average. Depending on what interpolation is used (two-point or five-point), the interpolation at

one point only involves 2 or 4 adjacent points. The factors of discretized dependent variable are distributed in

12

lines parallel to the diagonal of the matrix. Almost all entries in the matrix are zero, which is convenient for

computation. Matrices with this property are said to be sparse. Therefore, the constructed determined and

overdetermined systems are sparse.

It is important to have efficient storage of, and operations on large sparse matrices.

1. Storage

A sparse matrix is a matrix that has a value of zero for most elements. In a sparse matrix, the ratio of number

of non-zero elements to the size is considered as less than 0.5. If a sparse matrix is stored as a normal dense

matrix, most information stored will be zero elements which is highly inefficient. In order to perform faster

operations and use less memory, there are several different storage methods developed that only store those

non-zero elements, and the zero elements are left unspecified. Since the revolutionary development of

computers, many new alternatives have been developed. Many new algorithms and a number of new software

packages are designed for efficiently finding the solution of different sparse symmetric systems. However,

one important factor limiting the efficiency of solvers is the memory usage of the matrix. The author has

constructed a dense matrix for a shell model of 50*50 nodes which consumed 4 GB of RAM from a laptop

having 8 BG of RAM. Since the operation needed for solving a dense system increasing with the cube of the

matrix size, the computational time for solving this system is more than an hour when using a solver involving

factorization of the system matrix. The Python SciPy sparse package provides below implementations:

a) Coordinate Matrix & Dictionary of Keys Matrix

The simplest sparse matrix format is the Coordinate (COO) format. In this format, three subarrays are used to

store the element values and their coordinate positions. In doing so, the saved memory consumption can be

substantial for a large matrix. Managing the subarrays create overhead which can become negligible as the

dataset grows. It has to be noticed that the dataset should be sufficiently sparse enough otherwise the several

subarrays created by COO format might consume more memory.

Dictionary of Keys (DOK) format performs similar operations like COO except it stores element values and

their coordinates as key-value pairs in dictionaries. The built-in functionality come with dictionaries provide

convenience in constructing and updating matrices. In doing so, the key is hashed as the hash indicates for

looking up corresponding values. It means a constant lookup time for identifying values at any given location.

b) Compressed Sparse Matrices (CSR, CSC)

Three subarrays are stored in the compressed sparse matrices format: index pointers, indices, and data. The

(start, stop) slice of indices are recorded as adjacent pair of number in index pointers. The location of those

adjacent pairs in index pointers indicates the column number (if Compressed Sparse Row format (CSR) is

used) or row number (if Compressed Sparse Column format (CSC) is used). Then the left row number (if CSR

is used) or column number (if CSC is used) is determined by the numbers in the slice of indices. By doing so,

the location of each value in data array in the original matrix can be determined.

13

Figure 3: Compressed Sparse Row format (index pointers, indices, and data)

Figure 4: Compressed Sparse Column format (index pointers, indices, and data)

2. Solve

Solving large sparse linear systems has been a concerning issue for years. It lies at the heart of many problems

in computational science and engineering. Particularly when encountering discretizing continuous problems,

it is common that the constructed system is sparse and large. The direct method for solving a sparse linear

system A x b = involves the explicit factorization of system matrix A, such as Gaussian elimination, into the

product of lower and upper triangular matrices L and U. In the most case, a permutation of system matrix A

is used PAQ LU= where permutations P and Q are chosen to preserve sparsity and maintain stability.

Cholesky factorization TU L= is used if system matrix A is symmetric. Forward elimination followed by

backward substitution completes the solution process for each given right-hand side b. The direct methods are

the general and robust solution for many sparse linear systems. Meanwhile, the constructed system matrix A

in this shell code was a determined or overdetermined sparse matrix and storaged in CSR format. Below are

listed the solving methods which can deal with such systems matrices in an efficient way.

a) Linear regression:

In linear regression, the response of a system is assumed to be the linear combination of the predictors. From

the lecture from NYU (Fernandez-Granda, 2016), the linear regression model can be described as below: the

linear regression model is parametrized by the intercept 0 and weight vector  . For each value of response

vector y , the corresponding values of the predictors are 1, 2, 3,i i i ipX X X X where p is the number of

predictors. And the response vector y contains n number of responses. The linear model is given by:

14

0

1

11 12 1 11

21 22 2 22
0 0

1 2

,1

1 1

1 1

1 1

p

i ij j

j

p

p

pn n n np

y X i n

X X Xy

X X Xy
y X

y X X X

 




  



=

= +  

       
       
       = +   +        
       
          



The linear regression model is usually used in statistics aiming to predict the values of response accurately for

new values of the predictors. The accuracy of prediction of response can be improved as more data points are

included. The weight vector  is updated during this process. The sparse linear system A x b = can also be

viewed as a linear regression model where the intercept 0 0 = as an inverse problem aiming to determine

weight vector  .

For p n , in the condition of full-rank X , the solution of least-square problems is weight estimate
ls and

it is given by:

()
1

T T
ls X X X y

−
=

For n p= , which means the number of data points to fit the linear model that is the same as the number of

parameters, the exact solution of weight vector  can be found. However, this solution usually does not

reflect the actual relation between y and X since the model is too flexible with respect to the number of

available data. This phenomenon is called overfitting. As discussed above, the system matrices in the shell

code can be both determined and overdetermined, which means n p . Linear regression is a suitable method

for a linear model when the number of data points n is large than the p is the number of predictors.

In this way, the problem of solving a sparse linear system A x b = can be restated as the estimation of the

weight vector  from the linear regression model y X= where the predictors X and response y are

known.

Currently the most popular method to estimate the weight vector  is to minimize the sum of the squares of

the fitting error on the training set, which is called least-squares estimation.

.

2
 Minimiz ye X−

b) Least-squares estimation: lsmr solver from Python Package ‘scipy.sparse.linalg’

The Python Package ‘scipy.sparse.linalg’ provides an iterative solver ‘lsmr’ for least-squares estimation. lsmr

can solve the system of linear equations A x b = . A is a sparse or dense matrix of dimension m n where

all cases are allowed: m n= , m n , or m n . b is a vector of length m . This solver is developed based

on the iterative method LSMR proposed by Fond and Saunders(2011).. LMSR is a numerical method for

computing a solution x of linear least square problem
2

Ax b− . Compared to the well-known method LSQR

(Paige and Saunders, 1982), LMSR is also based on Golub-Kahan bidiagonalization of A . It has the property

of reducing kr and kAr monotonically, where k kr b Ax= − is the residual for the approximate solution

15

kx . Hence, although LSQR and LSMR ultimately converge to similar points, it is safer to use LSMR in

situations where the solver must be terminated early.

The LSMR algorithm contains following major steps:

1. The Golub-Kahan process: It is an iterative procedure for transoforming A and b into upper-bidiagonal

form 1 1e and kB . It is equivalent to what would be generated by the symmetric Lanczos process with

TA A and
TA b

2. Using Golub-Kahan to solve the normal equation: In order to find the solution kx of the equation

T TA A x A b = , the subproblem is to choose ky to minimize kAr at each stage. It is given by:

1 1

1

min min

T
k k

k Ty yk k k k

B B
Ar e

e


 +

 
 = −
 
 

3. Two QR factorizations: Convert the subproblem into:
1

min min
0

k k
k k

y t kk k

z R
Ar t

 +

  
= −   

   

4. The heart of LSMR algorithm: Thourgh matrix roatations and substitutions, the recurrence for the

approximated solution kx is given by:

1
k

k k k
k k

x x h


 
−

 
= +  

 

 , 1
1 1

k k
k k k

k k

h h h
 

 
−

− −

 
= −  

 

, 1
1 1

k
k k k

k

h h




+

+ +

 
= −  

 

kx ,
kh , kh are updated for each iteration until the stopping rules are satisfied

5. Stopping rules: kr , T
kA r , kx , and estimates of A and cond(A) are used. All quantitties are

computated at each iteratioin for checking the stopping rules. The pratical stoppig criteria includes three

rules:

S1: Stop if k kr BTOL b ATOL A x +

S2: Stop if T
k kA r ATOL A x

S3: Stop if ()cond A CONLIM

ATOL and BTOL are cv that can be set by the user. S1 is applied when the A x b = system is consistent.

S2 is applied when the A x b = system is inconsistent. If the both stop tolerances are 1 6e − , then the

iteration will stop when the final residual kr is accurate to about 6 digits. Those stop tolerances are the

estimates of the relative error in entries of A and b , allowing for uncertainty in the system. This prevents

the algorithm from doing unnecessary calcualtion beyond the uncertainty of the input data.

CONLIM is the user-set limit for the conditon number of A . The stop rules S3 means the algorithm

terminates if the an estimate of ()cond A exceeds CONLIM . S3 can be applied to any system, consistent

or inconsistent. The ()cond A , the condition number for inversion of A ,is used to measure how sensitive

the inversion of matrix is to changes or errors in the input.

c) Sparse QR factorization:

16

As discussed above, the linear regression method can deal with a linear model when the number of data points
n is larger than the number of predictors p . However, in many applications, the number of data might not be

sufficient enough. Although the system matrices in the shell code gives n p , difference ratio between n

and p is =
n p N

n M N

−

+
 where M is the total number of S-K equations and N is total number of boundary

equations. Meanwhile, 21 M Number of body nodes=  and 4 edge N Number of nodes=  . It means the

difference ratio actually becomes smaller for a model with larger number of nodes. In most cases, the number

of data points n is roughly equal to the number of predictors p . The linear regression may not able to solve

the system accurately. The overdetermined problem is obviously expected when fitting such model through

linear regression. Due to the sparsity of the system, not all predictors are involved for each data point. The S-

K equation contains 4 or 5 quantities on average, which means only around 20% of predictors are involved

for each data point. So, in terms of the linear regression problem, the matrix of predictors still is very sparse.

In the least-squares estimation of linear regression problem, QR decomposition is usually used to convert the

given matrix A into orthonormal matrix Q and upper triangular matrix R and =A QR . For a rectangular

matrix A with size of M N , Q has size of M N and R has size of N N . By introduce the A QR=

into system equation A x b = , it gives below equation.

QRT T T T TA x b A A x A b R A b Q b− = →  = ⎯⎯⎯→ =

It is notable that the matrix R in the QR decomposition is a Cholesky factor of TA A . The TA A has a condition

number which is the square of A . On the other hand, the orthonormal matrix Q will be very dense in general

since A is large and sparse. It means TA A and Q usually cannot be computed explicitly which can adversely

affect numerical precision and robustness. So, it may not be advantageous to directly use the QR

decomposition for large linear sparse systems. Consequently, new steps are needed to provide more accurate

calculation, which is called the sparse QR factorization.

A sparse QR factorization usually contains following steps:

1. Permute the columns or rows of A so that the Cholesky factor of
TA A (or the matrix R , which has the

same structure) remains sparse.

2. Compute a QR decomposition based on the permuted A to obtain matrix R

3. Solve
TRx Q b= where

T T TQ b R A b−=

One solver with such features is the lm.fit.sparse solver from R Package 'MatrixModels'. It is a basic

computing engine for sparse linear least squares regression. This solver receives a sparse overdetermined

matrix as input and returns a vector of approximated solution where the sparse QR factorization method can

be used. However, due to the lack of information in the user manual and source code, the mathematical details

of this solver remain unclear. Previous research done by Svoboda, Cashman, and Fitzgibhon (2018) introduces

an open-source suite of solvers QRkit that can perform sparse QR factorization for common sparsity patterns.

Since QRkit solvers share similar features with lm.fit.sparse solver, it can help to understand the how the

actual lm.fit.sparse solver might work.

The general strategy of QRkit solvers is to express matrix A as some combination of smaller matrices 1 KA .

1 KA are divided based on shape and sparsity patterns to store and compute the QR factorization more

efficiently. Then those smaller matrices are processed through different methods leading to easier QR

factorizations. The final result of factorization of A is the combination of factorization of smaller matrices.

One of those process methods is row and column permutations which is are used in the most of sparse QR

factorization solver. If the sparsity pattern of A is not obvious enough to be categized, applying row and

17

column permutations is a suitable method which can convert an overdetermined and sparse A into a block

diagonal/banded matrix. The row and column permutation
rP ,

cP would reorder the rows or columns of A

in order to create an A with ‘As-Banded-As-Possible’ sparsity pattern.

rA P A = ,
cA AP =

In practice, both permutations are used in order to create A with row-banded structure and reduce the fill-in

of the QR decomposition at the same time.

r cA P AP =

Figure 5: Row permutation rp discovering banded structure in the matrix A. (c-d) Row permutation rp while

solving vertical concatenation of two matrices

d) Moore-Penrose inverse

The Moore–Penrose inverse, variously known as the generalized inverse, pseudoinverse, or Moore-Penrose

inverse, is common m n method to find the solution of linear equations that cannot be computed through

least square method. For all matrices A whose entries are real or complex numbers, their Moore–Penrose

inverse A+ is defined and unique. This matrix was independently defined by Moore in 1920 and Penrose (1955)

A Moore–Penrose inverse satisfy all of the following four criteria:

() ()
* *

, , , AA A A A AA A AA AA A A A A+ + + + + + + += = = =

where *A denotes the conjugate transpose for matrix A .

If the inverse of *A A exists, then: ()
1

* *A A A A
−

+ = and nA A I+ =

If the inverse of *AA exists, then: ()
1

* *A A AA
−

+ = and mAA I+ =

However, it is common that above conditions are not satisfied, meaning those inversions have zero or many

solutions. In this case, the approximated pseudoinverse can still be found with the help of single value

decomposition (SVD). Since nA A I+ = is impossible, the problem now is to find the nA A I+  by minimizing

2
nA A I+ − . The SVD provides the following solution:

TA VD U+ +=

18

where , , U D V respectively the left singular vectors, the singular values and the right singular vectors of A .

In SVD, the matrix A is a factorization of form
*UDV which is not unique. Since the singular values D is

rectangular diagonal matrix with on-negative real numbers on the diagonal, the pseudoinverse D+ can be

calculated by taking the reciprocal of non-zero values of D .

One significant impact of applying SVD is the high computational cost during the decomposition of the matrix.

According to Trefethen (1997), the first step of SVD is reducing the matrix into a bidiagonal matrix. The

second step is to compute the SVD of the bidiagonal matrix through an iterative method with set-up certain

precision. The overall computational cost is about ()2O mn floating-point operations (flops). With particular

methods (Householder reflections, QR algorithm), the overall cost ranges from 22mn to 24mn flops. It is

several times higher than the normal matrix multiplication.

The pinv solver from the Python numpy package is able to perform the above calculation.

19

3. Shell code and tests
This section provides the general mathematic details and programming structure of the shell code. The basic

workflow of the code is introduced. Some important steps like the formation of matrices, construction of

square matrices, and loading and plotting are explained specifically. In order to prove the general universality

of the shell code, two shell models with various material properties, geometry shapes, boundary conditions

were set up. A number of tests were organized to investigate influential factors including number of nodes,

types of solvers, different methods of keeping the matrix square, and different difference approximation

methods.

3.1 Work flow of code

This code is designed to deal with simple shell model problems by solving Sanders-Koiter equations at a nodal

level where the differentiation in equations is replaced by the finite difference method. With proper input

parameters, several sparse matrices are constructed to form an overdetermined sparse linear system [M]*[u]

= [f] where [M] represents the stiffness matrix of the modelled shell structure, [u] represents the vector of

deformations, forces and moments at nodal level, and [f] represents the vector of applied forces or prescribed

deformation at nodal level. Vector [u] is solved and reconstructed to generate 21 plots of nodal results of xu ,

yu , zu , xx ,
yy ,

xy , x ,
y , z , xx ,

yy ,
xy , xxn ,

yyn ,
xyn ,

yxn , xv ,
yv , xxm ,

yym , and
xym .

The work flow of code can be summarized and illustrated as below:

Step 1:
Inputs of parameters to determine material property, geometry of models and boundary

condition type

Step 2: Define differential equations in x and y direction by finite difference methods

Step 3: Create empty matrices for [M], [u] and [f]

Step 4:
Add Sanders-Koiter equations to overdetermined sparse matrix [M] while add load

components to [f]

Step 5: Defined the boundary conditions by adding components to [M] and [f]

Step 6: Solve [u] from [M]*[u] = [f] by several different solvers

Step 7: Postprocessing and display results of solved [u]

Figure 6: Work flow of code

In step 6, several different solvers from the R language and Python language are tried and compared in order

to obtained satisfactory accuracy. The comparison between different solver results is shown in below section

of solver performance analysis with solver computation time and memory usage.

By comparing shell code results with the analytical solution and finite element solution, one set of results with

highest accuracy is selected as main results to be shown in below section of code results.

Meanwhile, for an overdetermined system like [M]*[u] = [f], [u] cannot be solved exactly and an

approximated [M] is used in the calculation. To find out which Sanders-Koiter equations are approximated

and the extent of that approximation, some equations are left out in order to construct [M] as a square matrix.

20

The specific details of replacing equations with boundary conditions are shown in section of formation of

square matrix (Section3.3.6, page 27).

3.2 Tested models

To fully demonstrate the capability of the shell code, two shapes were tested (Table 6) with various boundary

conditions (Table 7) and various numbers of nodes. Table 8 specifies the boundary condition equations. The

configuration of tested five tested models are summarized in Table 9. There are two load cases involved:

uniformly vertical load and uniformly normal load. They both have the magnitude of
210 kN/mp = − . The

direction of uniform vertical load is aligned with the global vertical axis. The direction of uniformly normal

load is perpendicular to the middle surface of shell.

Table 6: Geometry and material parameters of models

Flat square shape Canopy shape

Length 1l m= , thickness 0.06t m= Length 12l m= , radius 2a m= ,thickness 0.06t m=

Young's modulus 7 221 10 kN/mE = 

Poisson's ratio 0.3nu =

Young's modulus 7 221 10 kN/mE = 

Poisson's ratio 0.15nu =

Number of nodes in x direction: m

Number of nodes in y direction: n

Number of nodes in x direction: m

Number of nodes in y direction: n

Shell curvature: 0xx yy xyk k k= = =

Lamé parameters: ,
1 1

x y
l l

m n
 = =

− −

In plane curvature: 0x yk k= =

Shell curvature:
1

0,xx xy yyk k k
a

= = = −

Lamé parameters: ,
1 1

x y
l a

m n


 


= =

− −

In plane curvature: 0x yk k= =

Table 7: Pinned edges and Cantilever boundary conditions

Pinned edges: Fixed translation at all

edges

Cantilever: Fixed translation and rotation

at one edge

Flat square shape

21

Canopy shape

Table 8: Boundary equations

Pinned edges: Fixed translation at

all edges

Cantilever: Fixed translation and

rotation at one edge

Edge in the x direction and

the y axis pointing

outwards

= 0x y zu u u= =

0yym− =

0, 0yx xx xy yy xy xyn k m n k m− = − =

0, 0
xy

y yy

m
v m

x


+ = − =



Edge in the x direction and

the y axis pointing inwards

= 0x y zu u u= =

0yym =

0, 0yx xx xy yy xy xyn k m n k m− + = − + =

0, 0
xy

y yy

m
v m

x


− − = =



Edge in the y direction and

the x axis pointing

outwards

= 0x y zu u u= =

0xxm− =

= 0x y zu u u= =

0x =

Edge in the y direction and

the x axis pointing inwards

= 0x y zu u u= =

0xxm =

0, 0xx xy xy xy yy xyn k m n k m− = − =

0, 0
xy

x xx

m
v m

y


+ = =



Free corners / 0, 0
2

xy yx
xy

n n
m

+
= =

Table 9: Model configuration

No. Shape
Boundary

conditions
Load case

Number of

nodes

Model 1
Flat square shape

Pinned edges
Uniformly vertical load 20,30,50m n= =

Model 2 Cantilever

Model 3

Canopy shape

Pinned edges Uniformly vertical load
30,50m n= = Model 4

Cantilever
Uniformly vertical load

Model 5 Uniformly normal load

3.3 Differentiation approximated by FDM

() 0
yx

xx xx xy xy yx yy yy y x x y z

vv
k n k n n k n k q k q p

x y


+ + + + + + + + =

 

Sanders-Koiter equation 1

……

1: Dx(vx,1.0)

2: Dy(vy,1.0)

……

Differentiation

In order to add Sanders-Koiter equations to matrix [M] at nodal level, differentiation of that equation is

required to be translated into a discrete form where the finite difference method takes place. The first order

① ②

22

derivative of ()f x is given as
() 1 1

2

i i

x

f x f f

x

− + −
=

 
and the one-sided finite differences of first order derivative

is
() 1 23 4

2

i i i

x

f x f f f

x

+ +  −  +
= −

 
. The differentiation of one quantity (, x y ) in the shell code is

approximated by predefined finite difference functions ((),xD k g , (),yD k g) where k represents the quantity

to be differentiated while g works as positive/negative sign of the value (g = -1/1).

Central

difference:
() ()1 1,

2
x i i

x

g
D k g f f− += −


 () ()1 1,

2
y j j

y

g
D k g f f+ −= −



Forward

difference:
() ()1 2, 3 4

2
x i i i

x

g
D k g f f f+ +=  −  +


 () ()1 2, 3 4

2
y j j j

y

g
D k g f f f+ +=  −  +



Backward

difference
() ()1 2, 3 4

2
x i i i

x

g
D k g f f f− −= −  −  +


 () ()1 2, 3 4

2
y j j j

y

g
D k g f f f− −= −  −  +



def D1x(k,g):

 if i==0:

 M[row,k*m*n+j*m+i+2]=-1*g/(2*alphax(i/(m-1),j/(n-1)))

 M[row,k*m*n+j*m+i+1]= 4*g/(2*alphax(i/(m-1),j/(n-1)))

 M[row,k*m*n+j*m+i]=-3*g/(2*alphax(i/(m-1),j/(n-1)))

 elif i==m-1:

 M[row,k*m*n+j*m+i]= 3*g/(2*alphax(i/(m-1),j/(n-1)))

 M[row,k*m*n+j*m+i-1]=-4*g/(2*alphax(i/(m-1),j/(n-1)))

 M[row,k*m*n+j*m+i-2]= 1*g/(2*alphax(i/(m-1),j/(n-1)))

 else:

 M[row,k*m*n+j*m+i+1]= 1*g/(2*alphax(i/(m-1),j/(n-1)))

 M[row,k*m*n+j*m+i-1]=-1*g/(2*alphax(i/(m-1),j/(n-1)))

 return

Location:

(at left edge)

k3 = k*m*n+j*m+i+2

k2 = k*m*n+j*m+i+1

k1 = k*m*n+j*m+i

(at right edge)

k3 = k*m*n+j*m+i

k2 = k*m*n+j*m+i-1

k1 = k*m*n+j*m+i-2

(inside grids)

k2 = k*m*n+j*m+i+1

k1 = k*m*n+j*m+i-1

Code 1: Finite difference approximation in x direction

3.4 Formation of matrix [M]

The size of matrix [M] depends on the number of nodes and applied boundary conditions. The number of

columns is 21mn and number of rows is 21 8 8mn m n +  +  for pinned edge boundary condition where

8 8m n +  is from four boundary equations for each edge node. If free corners exist, the additional boundary

equations are added at free corner nodes. Each free corner node requires two additional boundary equations.

For cantilever boundary condition where two free corners exist, the number of rows is 21 8 8 +4mn m n +  +  .

As defined in Sanders-Koiter equations, 21 unknown quantities are assigned to each node. which are , x yu u ,

, , , , , , , , , , , , , , , , ,z xx yy xy x y z x xx yy yx x y xx yy xyx yy xyu n n n v v m m m         . During the code

tests, they are assigned with an integral value from 0 to 21 indicating their proposed location in a solved [u]

in order to extract results accordingly.

For example, Sanders-Koiter equation 1 is added to the matrix [M] by the adding process code. For adding

one value to matrix, the process can be described as

[Row number,] Parameter of unkownM K m n j m i  +  + = . In this expression, K is the assigned integral

value from 0 to 21 representing the location in the solved [u] vector. j is the coordinate of the node in v

direction and i is the coordinate of the node in u direction.

23

() 0


+ + + + + + + + =
 

yx
xx xx xy xy yx yy yy y x x y z

qq
k n k n n k n k q k q p

x y

Sanders-Koiter equation 1

1: M[row,nxx*m*n+j*m+i]=kxx(i/(m-1),j/(n-1))

2: M[row,nxy*m*n+j*m+i]=kxy(i/(m-1),j/(n-1))

3: M[row,nyx*m*n+j*m+i]=kxy(i/(m-1),j/(n-1))

……
Adding process

The adding process contains two loops (Loop ① & Loop ②). In Loop ①, adding process is repeated for every

node at one line along u-direction. Loop ② repeats Loop ① until all lines are fulfilled, so that unknown

quantities are added to every node. In each adding process, the parameters of unknowns are added into

matrices as their location in [M] is altered with changing i and j in the loops.

row=-1

for j in range(n): # Add Sanders-Koiter equation 1 to the matrix -----------------------------

 for i in range(m):

 row=row+1

 M[row,nxx*m*n+j*m+i]=kxx(i/(m-1),j/(n-1))

 M[row,nxy*m*n+j*m+i]=kxy(i/(m-1),j/(n-1))

 M[row,nyx*m*n+j*m+i]=kxy(i/(m-1),j/(n-1))

 M[row,nyy*m*n+j*m+i]=kyy(i/(m-1),j/(n-1))

 Dx(vx,1.0)

 Dy(vy,1.0)

 M[row,vx*m*n+j*m+i]=ky(i/(m-1),j/(n-1))

 M[row,vy*m*n+j*m+i]=kx(i/(m-1),j/(n-1))

 f[row]=-pz(i/(m-1),j/(n-1))

Code 2: Add Sanders-Koiter equation 1 to the matrix [M]

The column number of starting points for unknown quantity K is K m n  . For each adding process in Loop

①, the column number and row number increased accordingly for m times. Then Loop ② repeats Loop ①

for n times. Meanwhile for every Loop ①, the row number is incremented by one. By adding one equation,

m n rows of matrix have been generated.

The below figure shows the pattern of non-zero values in matrix [M] during this adding procedure where the

values are diagonally distributed. The same adding procedure is also utilized for adding boundary conditions

at edges and corners. While adding values to [M], the force vector [f] is also filled with applied force

components.

= row m n

=row m

……

=j n

……

=i m

1   +  +K m n j m i

① ② ③

_①Loop _②Loop

1  K m n

_①Loop

1= +row row

=row m

2  K m n

_②Loop

3  K m n

=i m

1   + K m n j m

0=j

1=j

24

Figure 7: Add equations to [M]

After all equations and boundary conditions have been added to [M], the distribution of non-zero values in

matrix [M] is simplified as below. The completely assembled matrix [M] is a rectangular sparse matrix where

values are in parallel to the diagonal line of the matrix.

Figure 8: Non-zero value distribution in [M] and [f]

3.5 Loading steps and plotting steps

Sanders-Koiter equations give the vertical displacement zu which is in the normal direction of the mid surface

of the shell. For the non-flat geometry like the canopy shape used in model 3-5, the direction of zu for those

models does not comply with the global z-axis. In order to apply vertical load and plot the vertical

displacement in global z-axis, different definition is required at loading step and plotting step of shell code.

The total displacement xyzu is calculated as 2 2 2
xyz x y zu u u u= + + by those calculated xu , yu , and zu

results.

Uniformly vertical load for model 1& 2: Uniformly vertical load for model 3-5:
def px(u, v):

 return 0

def py(u, v):

 return 0

def pz(u, v):

 return p #p = 10 kN

def px(u, v):

 return 0

def py(u, v):

 return

p/(math.sin(v*math.pi)*math.tan(v*math.pi)+math.cos(v*m

ath.pi))

def pz(u, v):

 return

p*math.tan(v*math.pi)/(math.sin(v*math.pi)*math.tan(v*m

ath.pi)+math.cos(v*math.pi)) #p = 10 kN

 Normal load for model 3-5:

 def px(u, v):

 return 0

def py(u, v):

ux=0; uy=1; uz=2; epsilonxx=3;epsilonyy=4;gammaxy=5; phix=6; phiy=7; phiz=8; kappaxx=9kappayy=10;rhoxy=11; nxx=12; nyy=13; nxy=14; nyx=15; vx=16; vy=17; mxx=18; myy=19; mxy=20

Eq1 pz

Eq2 px

Eq3 py

Eq4

Eq5

Eq6

Eq7

Eq8

Eq9

Eq10

Eq11

Eq12

Eq13

Eq14

Eq15

Eq16

Eq17

Eq18

Eq19

Eq20

Eq21

BC at

edges

BC at

corners

[M] [f]

25

 return 0

def pz(u, v):

 return p #p = 10 kN

Code 3: loading step for different models

x[j][i], y[j][i], z[j][i] are the displacement results solved by S-K equations

if modelv == 1: # when geometry shape is canopy shape

 for j in range(n):

 for i in range(m):

 UX[j][i] = x[j][i]

 UY[j][i] = y[j][i]*math.sin(j/(n-1)*math.pi)+z[j][i]*math.cos(j/(n-1)*math.pi)

 UZ[j][i] = y[j][i]*math.cos(j/(n-1)*math.pi)+z[j][i]*math.sin(j/(n-1)*math.pi)

 UXYZ[j][i] = math.sqrt(x[j][i]**2+y[j][i]**2+z[j][i]**2)

elif modelv == 2: # when geometry shape is flat square

 for j in range(n):

 for i in range(m):

 UX[j][i] = x[j][i]

 UY[j][i] = y[j][i]

 UZ[j][i] = z[j][i]

 UXYZ[j][i] = math.sqrt(x[j][i]**2+y[j][i]**2+z[j][i]**2)

Code 4: plot the vertical displacement in global z-axis for different models

3.6 Formation of square matrix [M]

As shown in above section, the constructed matrix is in rectangular shape. It requires the solver of shell code

should able to solve an overdetermined sparse system. Only an approximated solution can be found for such

system. It is possible to find a way to make the matrix square by replacing boundary condition equations at

edge nodes with S-K equations at internal nodes. Solving such square matrix might produce results with higher

accuracy compared to the solution of rectangular matrix. Below sections show how the equations are

distributed for nodes and show three different ways of making the matrix square.

a) Distribution of assigned equations in rectangular matrix

As shown above, the matrix [M] is a rectangular sparse matrix because additional boundary condition

equations are defined for edge and corner nodes. In order to make a square matrix, some of the equations at

edges and corners need to be removed. The distribution of assigned equations for the nodes can be different

in case of the appearance of free corner.

a) Cantilever b) Pinned edges
Figure 9: Distribution of assigned equations in the rectangular matrix

Table 10:Number of assigned equations in rectangular [M]

Node type
Cantilever:

Number of nodes

Pinned edges:

Number of nodes
SKN BEN ABEN

26

Edge nodes 2 2 8m n +  − 2 2 8m n +  − 21 4 /

Free corner

nodes
2 / 21 8 2

Fixed corner

nodes
2 4 21 8 /

Internal nodes () ()2 2m n−  − () ()2 2m n−  − 21 / /

(Total number

of nodes)
m n m n

(SKN
: Number of defined Sanders-Koiter equations per node,

BEN : Number of defined regular boundary equations per node

ABEN : Number of defined additional boundary equations per node)

In addition, on the cantilever fixed edge corner node only impose ux = uy = ux = phix = 0. The reason is that

this node is fixed and not free at the same time. The adjacent node on the free edge is really free

The total number of equations are calculated for the two boundary conditions which determines the number

of rows in rectangular matrix [M].

Cantilever: () () () () () ()21 4 2 2 8 21 8 2 2 21 8 2 21 2 2 21 8 8 4m n m n mn m n+   +  − + + +  + +  +  −  − =  +  +  +

Pinned edges: () () () () ()21 4 2 2 8 21 8 4 21 2 2 21 8 8m n m n mn m n+   +  − + +  +  −  − =  +  + 

b) Central node method

As boundary equations are essential for constraining shell behavior, some Sanders-Koiter equations at internal

nodes have to be taken out. One way of doing that is only add the full Sanders-Koiter equations to a small

group of central nodes (4 < i < m-5, 4 < j < n-5). Except the internal nodes marked below, only 20 Sanders-

Koiter equations are added for the rest nodes.

Figure 10: Modified distribution of assigned equations by central node method

Node type
Cantilever: Number of

nodes

Pinned edges: Number of

nodes
SKN BEN ABEN

27

Edge nodes 2 2 8m n +  − 2 2 8m n +  − 20 4 /

Free corner

nodes
2 / 20 8 2

Fixed corner

nodes
2 4 20 8 /

Intermediate

nodes
()() ()()2 4 6 2 4 6m n  − +   − ()() ()()2 4 6 2 4 6m n  − +   − 20

Central

nodes
() ()10 10m n−  − () ()10 10m n−  − 21 / /

(Total

number of

nodes)
m n m n

Table 11:Number of assigned equations in square [M] by central node method

The total number of equations are calculated for the two boundary conditions which determines the number

of rows in rectangular matrix [M]:

Cantilever:
() () () () ()() ()()

() ()

20 4 2 2 8 20 8 2 2 20 8 2 20 2 3 6 2 3 6

21 10 10 21 2 2 104

m n m n

m n mn m n

 +   +  − + + +  + +  +    − +   − 

+  −  − =  −  −  +

Pinned edges:
() () () ()() ()()

() ()

20 4 2 2 8 20 8 4 20 2 3 6 2 3 6

21 10 10 21 2 2 100

m n m n

m n mn m n

 +   +  − + +  +    − +   − 

+  −  − =  −  −  +

In fact, by removing one Sanders-Koiter equation for intermediate nodes, when m=n>25, the previous

overdetermined matrix becomes underdetermined. The spare rows are filled with zeros in order to make the

matrix square. If m=n<=25, the row number is larger than the column number making an overdetermined

matrix. So that in following model tests, the model 1 and model 2 with 20*20 node are not tested.

for j in range(n): # Add Sanders-Koiter equation 21 to the matrix -----------------------------

 for i in range(m):

 BCs() # adding boundary conditions at edges and corners

 if i < m-5 and i > 4 and j < n-5 and j > 4:

 row=row+1

 M[row,rhoxy*m*n+j*m+i]=-1

 D1y(phix,1.0)

 D1x(phiy,1.0)

 M[row,phiz*m*n+j*m+i]=kxx(i/(m-1),j/(n-1))-kyy(i/(m-1),j/(n-1))

 M[row,phix*m*n+j*m+i] +=-kx(i/(m-1),j/(n-1))

 M[row,phiy*m*n+j*m+i] +=-ky(i/(m-1),j/(n-1))

Code 5: Adding Sanders-Koiter equation 21 only to central nodes

c) Undefined node method

Another way is simply not adding one of the Sanders-Koiter equations for all nodes. The adding process stops

when the number of remained nodes is equal to the number of required boundary equations. I In this way,

there is a part of the internal nodes only having 20 Sanders-Koiter equations which is called an undefined

internal node as shown below.

28

·

Figure 11: Modified distribution of assigned equations by undefined node method

Table 12:Number of assigned equations in square [M] by undefined node method

Node type
Cantilever:

Number of nodes

Pinned edges:

Number of nodes
SKN

BEN ABEN

Edge nodes 2 2 8m n +  − 2 2 8m n +  − 21 4 /

Free corner nodes 2 / 21 8 2

Fixed corner

nodes
2 4 21 8 /

Undefined internal

nodes
8 8 4m n +  + 8 8m n +  20

Internal nodes
() ()

()

2 2

8 8 4

m n

m n

−  −

−  +  +

() ()

()

2 2

8 8

m n

m n

−  −

−  + 
 21 / /

(Total number of

nodes)
m n m n

Under such configuration, the calculated total number of equations is equal to the number of columns in both

two boundary conditions.

Cantilever:

() () () () () () ()

() ()

21 4 2 2 8 21 8 2 2 21 8 2 20 2 2 8 8 4

21 2 2 21

m n m n m n

m n mn

+   +  − + + +  + +  +   −  − −  +  +  

+  −  − = 

Pinned edges:
() () () () () ()

() ()

21 4 2 2 8 21 8 4 20 2 2 8 8 4

21 2 2 21

m n m n m n

m n mn

+   +  − + +  +   −  − −  +  +  

+  −  − = 

29

for j in range(n): # Add Sanders-Koiter equation 21 to the matrix -----------------------------

 for i in range(m):

 row = row + 1

 M[row,rhoxy*m*n+j*m+i]=-1

 D1y(phix,1.0)

 D1x(phiy,1.0)

 M[row,phiz*m*n+j*m+i]=kxx(i/(m-1),j/(n-1))-kyy(i/(m-1),j/(n-1))

 M[row,phix*m*n+j*m+i] +=-kx(i/(m-1),j/(n-1))

 M[row,phiy*m*n+j*m+i] +=-ky(i/(m-1),j/(n-1))

 if row >= B-(C)-1: # B = 21*(m)*(n); C = 8*n+8*m+4 or 8*n+8*m+

 break

 else:

 continue

 if row >= B-(C)-1:

 break

for j in range(n): # adding boundary condtions -----------------------------

 for i in range(m):

 BCs()

Code 6: Adding Sanders-Koiter equation 21 to nodes except the undefined nodes

d) Equation replacement method

The third method is replacing specific Sanders-Koiter equations at only edge nodes. The selection of replaced

Sanders-Koiter equations follows the types of quantities in defined boundary condition equations.

Additionally, several Sanders-Koiter equations at corners are also replaced based on the types of quantities in

defined corner boundary condition equations. The number of replaced Sanders-Koiter equations is equal to

the number of added boundary equations at edges and corners. The correlation between replaced Sanders-

Koiter equations and added boundary equations is listed in below.

Figure 12: Modified distribution of assigned equations by undefined node method

Added boundary

equations

Replaced Sanders-

Koiter equations

Added boundary

equations

Replaced Sanders-

Koiter equations
0zu = S-K equation 1 0xy yy xyn k m− = S-K equation 9
0xu = S-K equation 2 0yx xx xyn k m− = S-K equation 9
0yu = S-K equation 3 0xxm = S-K equation 10

0
xy

x

m
v

y


+ =


 S-K equation 4 0yym = S-K equation 11

0,
xy

y

m
v

x


+ =


 S-K equation 5 0xym = S-K equation 12

0xx xy xyn k m− = S-K equation 7 0x = S-K equation 16

30

yy xy xyn k m−
S-K equation 8 0y = S-K equation 17

Table 13: Replaced S-K equations and boundary equations correlation

For pinned edges boundary condition, as shown in boundary equation table (Table 8), five different boundary

equations are involved: 0zu = , 0xu = , 0yu = , 0xxm = and 0yym = . The corresponding replaced Sanders-

Koiter equations are equation 1 to 3 and 10 to 11. For cantilever boundary condition, the replaced Sanders-

Koiter equations include equation 1 to 11 and 16. Based on boundary equations, four corresponding Sanders-

Koiter equations are replaced for each edge node. For corner nodes, the Sanders-Koiter equations are removed

without adding boundary equations to avoid repeated definition of boundary condition. The required boundary

condition equations are defined by adding additional boundary equations.

Table 14:Number of assigned equations in square [M] by undefined node method

Node type
Cantilever:

Number of nodes

Pinned edges:

Number of nodes
SKN

BEN ABEN

Edge nodes 2 2 8m n +  − 2 2 8m n +  − 17 4 /

Free corner nodes 2 / 17 0 4

Fixed corner

nodes
2 4 17 0 4

Internal nodes () ()2 2m n−  − () ()2 2m n−  − 21 / /

(Total number of

nodes)
m n m n

The total number of equations are calculated for the two boundary conditions which determines the number

of rows in rectangular matrix [M]:

Cantilever: () () () () () ()17 4 2 2 8 17 4 2 17 4 2 21 2 2 21m n m n mn+   +  − + +  + +  +  −  − = 

Pinned edges: () () () () ()17 4 2 2 8 17 4 4 21 2 2 21m n m n mn+   +  − + +  +  −  − = 

Table 15: Additional boundary equations

 Pinned edges Cantilever

Free corners /
0, 0

2

xy yx
xy

n n
m

+
= =

0xxm = , 0yym =

Fixed corners
0zu = , 0xu = , 0yu = ,

0xxm = or 0yym =

0zu = , 0xu = , 0yu = ,

0x = or 0y =

3.7 Model tests of rectangular and square matrix

For the purpose of finding the approximation of results during the sparse matrix solving, both rectangular and

square matrices are constructed for all models. The constructed systems are solved with a least square solver

(Python solver: from scipy.sparse.linalg import lsmr) for further comparison. The test configuration is listed

below.

Table 16: Rectangular and square matrix test configuration

(Least square method

solver)
Model 1 Model 2 Model 3 Model 4 Model 5

Rectangular matrix Test R1 Test R2 Test R3 Test R4 Test R5

Square matrix Test SC1 Test SC2 Test SC3 Test SC4 Test SC5

31

(central node method)

Square matrix

(undefined node method)
Test SU1 Test SU2 Test SU3 Test SU4 Test SU5

Square matrix

(equation replacement

method)

Test SE1 Test SE2 Test SE3 Test SE4 Test SE5

3.8 Solver tests

The performances of three solvers have been compared

1) Python least square method (rectangular and square matrices)

2) Python singular value decomposition (rectangular)

3) R linear sparse model fitting (rectangular and square)

Table 17 and 18 show the extra computations that have been performed.

By various initial inputs of geometry, boundary conditions, load components and node number, sparse

matrices [M] and [f] are constructed and saved in files. To evaluate the capacity of various solvers, all models

are solved with other solvers than the least square method solver. The test configuration is list as below.

Table 17: Solver test configuration of rectangular matrices

 Model 1 Model 2 Model 3 Model 4 Model 5

Python solver:

from numpy.linalg import pinv

(Singular value decomposition)

Test P1 Test P2 Test P3 Test P4 Test P5

R solver:

MatrixModels:::lm.fit.sparse

(Linear sparse model fitting)

Test LM1 Test LM2 Test LM3 Test LM4 Test LM5

The sparse rectangular matrix [M] is constructed in the form of the Python dok matrix (dictionary of keys

based sparse matrix). The completely assembled matrix [M] is converted into coordinate format and saved as

npz. file whose size is determined by the number of nodes. The size of the saved [M] is 175 kb for 30*30 node

model and 450 kb for 50*50 node model. If a R solver is applied, the [M] have to be reconstructed into a

readable R sparse matrix, while sparse matrix [f] is constructed in the form of a Python array and saved as

npy. file. The size of saved [f] is 154 kb for 30*30 node model and 420 kb for a 50*50 node model. Then the

calculated [u] array is saved as npy. file and results are extracted from it to generate the 21 plots (Fig. 17).

The above process can be summarized as the flow chart below. Beside the generated plots, the computational

time and memory usage during the execution process is also recorded.

Figure 13: Work flow of solver tests

32

For the constructed sparse square matrix [M] by equation replacement method, the R script solver of linear

model fitting is used to be compared with the results of least square method solver.

Table 18: Solver tests of square matrices (The matrices are made square by the equation replacement method)

(Square matrix, Equation replacement

method)
Model 1 Model 2 Model 3 Model 4 Model 5

R solver:

MatrixModels:::lm.fit.sparse

(Linear sparse model fitting)

Test

SLM1

Test

SLM2

Test

SLM3

Test

SLM4

Test

SLM5

3.9 Five-point difference approximation and their tests

In the above tests, three-point interpolation is used for the first derivative expression in the Sanders-Koiter

equations. When performing a finite number of steps to approximate a process with infinitely many steps,

discrepancies arise between the approximation and actual expression. By expanding the function in a Taylor

series around the point where the finite difference formula approximates the derivative, the truncation error

can be calculated.

 Truncation error

Central

difference:
() ()2 41

24
R f t t O t=  + 

Forward

difference:
() ()2 31

3
R f t t O t=  + 

Backward

difference
() ()2 31

3
R f t t O t= −  + 

The dominating term for small t is () 21

24
f t t  , () 21

3
f t t  and () 21

3
f t t−  in above expressions which

are proportional to 2t and the truncation error for two-point difference approximations is of second order in

t . Thus, three-point difference approximation is a second-order accurate discretization of the derivative.

Such error might play an essential role in evaluating the accuracy of calculation results of shell code. In order

to investigate the effect of truncation error, two set of difference approximations with higher level accuracy

were used in several tests. They both are five-point interpolations but with different difference coefficients as

listed below.

Five-point difference approximation type A:

Central

difference:
() () ()1 1 2 2

3
,

4 8
x i i i i

x x

g g
D k g f f f f− + − += − + − +

 
 () (),y j

y

g
D k g f=



Forward

difference:
() 1 2 3 4

1 3 3 45 71
,

56 28 7 28 56
x i i i i i

x

g
D k g f f f f f+ + + +

 
= − + − + − 
  

 () (),y j
y

g
D k g f=



 () 1 1 2 3
13 3 6 3 1

,
28 14 7 14 28

x i i i i i
x

g
D k g f f f f f− + + +

 
= − − + − + 
  

 () (),y j
y

g
D k g f=



Backward

difference:
() 1 2 3 4

1 3 3 45 71
,

56 28 7 28 56
x i i i i i

x

g
D k g f f f f f− − − −

 
= − − + − + − 

  
 () (),y j

y

g
D k g f=



 () 1 1 2 3
13 3 6 3 1

,
28 14 7 14 28

x i i i i i
x

g
D k g f f f f f+ − − −

 
= − − − + − + 

  
 () (),y j

y

g
D k g f=



Five-point difference approximation type B:

33

Central

difference:
() () ()1 1 2 2

8
,

12 12
x i i i i

x x

g g
D k g f f f f− + − += − + − +

 
 () (),y j

y

g
D k g f=



Forward

difference:
() ()1 2 3 4, 25 48 36 16 3

12
x i i i i i

x

g
D k g f f f f f+ + + += − + − + −


 () (),y j

y

g
D k g f=



 () ()1 1 2 3, 3 10 18 6
12

x i i i i i
x

g
D k g f f f f f− + + += − − + − +


 () (),y j

y

g
D k g f=



Backward

difference:
() ()1 2 3 4, 25 48 36 16 3

12
x i i i i i

x

g
D k g f f f f f− − − −= − − + − + −


 () (),y j

y

g
D k g f=



 () ()1 1 2 3, 3 10 18 6
12

x i i i i i
x

g
D k g f f f f f+ − − −= − − − + − +


 () (),y j

y

g
D k g f=



New tests with five-point difference approximations are proposed and their test configuration is in the list

below:

(Rectangular

matrix)
Solver type Model 1 Model 2 Model 3 Model 4 Model 5

Type A

approximation

Least square

method solver
Test AR1 Test AR2 Test AR3 Test AR4 Test AR5

Linear sparse

model fitting

Test

ALM1

Test

ALM2

Test

ALM3

Test

ALM4

Test

ALM5

Type B

approximation

Least square

method solver
Test BR1 Test BR2 Test BR3 Test BR4 Test BR5

Linear sparse

model fitting

Test

BLM1

Test

BLM2

Test

BLM3

Test

BLM4

Test

BLM5

34

4. Results
This section presents the test results obtained mainly as plots and extreme values, and compares them. Other

information like solver capacity and singularities are also shown. For each run of the code, 21 plots were

generated. In order to prevent excessive work, only three plots (displacement uz, bending moment mxx, and

shear force vx) and their extreme values were analyzed. Below sections only show the extreme values and the

plots are listed in appendix (Page 82). The first shown are the plots generated by finite element software,

which work as a reference for calculating the errors of shell code results. Subsequently presented are results

from rectangular tests, square tests, solver tests, and five-point difference approximation tests. These results

are compared. In addition, several 3D plots show the overall deformation of the structures and distortion at

boundaries more intuitively. At the end of this section is a summary of major findings.

4.1 Finite element solution

The defined five models are also tested in finite element software SICA Engineer (version 19.1.3). The

generated displacement, bending moment and shear force plots are shown in below. The averaged element

size is 0.05 m for all models so that the number of nodes is 20*20 for model 1 & 2 and 240*125 for model 3,

4 & 5.

Displacement uz Bending moment mxx Shear force vx

Figure 14: Model 1 displacement, bending moment and shear force finite element results by SCIA Engineer

Displacement uz Bending moment mxx Shear force vx

Figure 15: Model 2 displacement, bending moment and shear force finite element results by SCIA Engineer

35

Displacement uz (abs max value: 0.0001935)

Bending moment mxx (abs max value: 0.2114)

Shear force vx (abs max value: 2.393)

Figure 16:Model 3 displacement, bending moment and shear force finite element results by SCIA Engineer

Displacement uz (abs max value: 0.007884)

Bending moment mxx (abs max value: 5.0646)

36

Shear force vx (abs max value: 30.699)

Figure 17: Model 4 displacement, bending moment and shear force finite element results by SCIA Engineer

Displacement uz (abs max value: 0.009739)

Bending moment mxx (abs max value: 9.5143)

Shear force vx (abs max value: 38.9266)

Figure 18: Model 5 displacement, bending moment and shear force finite element results by SCIA Engineer

Table 19: Absolute maximum value of finite element results for model1-5

 Model 1 Model 2 Model 3 Model 4 Model 5

Displacement uz (m) 69.78 10−
43.107 10−

41.935 10−
37.884 10−

39.734 10−

Bending moment mxx (kNm/m) 0.478 5.310 0.2114 5.0646 9.5143

Shear force vx (kN/m) 3.369 18.296 2.393 30.699 38.9366

37

4.2 Rectangular matrix test results

(Please find plots in Appendix)

Table 20: Absolute maximum value of test R1-5 plots

Number

of nodes
Model 1 Model 2 Model 3 Model 4 Model 5

Displacement

(m)

20*20 67.333 10−
42.896 10−

30*30 67.006 10−
42.525 10−

33.062 10−
0.166 0.101

50*50 66.728 10−
41.746 10−

33.281 10−
0.182 0.116

Bending

moment

(kNm/m)

20*20 0.39 7.42

30*30 0.39 7.29 5.71 290.74 179.39

50*50 0.39 8.73 5.77 299.47 189.15

Shear force

(kN/m)

20*20 3.28 4.45

30*30 3.32 4.52 15.15 95.51 58.49

50*50 3.32 4.61 15.13 97.50 60.62

4.3 Square matrix test results

(Please find plots in Appendix)

Table 21: Absolute maximum value of test SC1-5 plots

Number

of nodes
Model 1 Model 2 Model 3 Model 4 Model 5

Displacement

(m)

20*20

30*30 6.063E-6 2.594E-04 2.526E-03 1.398 1.085

50*50 6.146E-6 1.779E-04 2.970E-03 1.720 0.885

Bending

moment

(kNm/m)

20*20

30*30 0.252 8.238 5.691 537.988 340.874

50*50 0.246 7.55 5.759 478.973 304.628

Shear force

(kN/m)

20*20

30*30 3.316 4.162 15.154 119.880 74.463

50*50 3.342 4.049 15.137 112.732 70.404

Table 22: Absolute maximum value of test SU1-5 plots

Number

of nodes
Model 1 Model 2 Model 3 Model 4 Model 5

Displacement

(m)

20*20 5.915E-06 3.699E-04

30*30 5.644E-06 3.317E-04 2.681E-03 1.727 1.087

50*50 5.714E-06 1.997E-04 2.948E-03 1.406 0.888

Bending

moment

(kNm)

20*20 0.261 8.094

30*30 0.252 8.224 5.692 538.000 340.879

50*50 0.246 7.551 5.759 478.976 304.630

Shear force

(kN/m)

20*20 3.277 4.229

30*30 3.316 4.162 15.154 119.876 74.461

50*50 3.342 4.049 15.137 112.731 70.403

Table 23: Absolute maximum value of test SE1-5 plots

Number

of nodes
Model 1 Model 2 Model 3 Model 4 Model 5

Displacement

(m)

20*20 6.715E-06 3.215E-05

30*30 6.517E-06 2.731E-05 3.152E-03 1.449 0.915

50*50 6.413E-06 1.847E-04 3.348E-03 1.148 0.728

20*20 0.269 7.693

38

Bending

moment

(kNm/m)

30*30 0.258 7.791 5.655 501.722 310.424

50*50 0.249 7.128 5.642 490.586 293.100

Shear force

(kN/m)

20*20 3.068 4.105

30*30 3.164 4.058 15.767 135.343 83.841

50*50 3.252 4.639 15.707 129.465 80.819

4.4 Solver test results

(Please find plots in Appendix)

Table 24: Absolute maximum value of test P1-5

Number

of nodes
Model 1 Model 2 Model 3 Model 4 Model 5

Displacement

(m)
10*10 9.741E-06 3.172E-04 1.307E-04 0.0103 0.0131

20*20 9.704E-06 3.140E-04 1.647E-04 7.828 0.0144
Bending

moment

(kNm/m)

10*10 0.460 5.436 0.111 4.967 4.901

20*20 0.473 5.691 0.182 1.624 5.192

Shear force

(kN/m)

10*10 3.299 13.503 0.127 4.262 5.595

20*20 3.368 15.854 0.458 1.278 4.162

Table 25: Absolute maximum value of test LM1-5 plots

Number

of nodes
Model 1 Model 2 Model 3 Model 4 Model 5

Displacement

(m)

20*20 9.707E-06 3.142E-04

30*30 9.704E-6 3.134E-04 1.660E-4 7.703E-03 9.375E-03

50*50 9.770E-06 3.126E-04 1.703E-04 7.776E-03 9.329E-03

Bending

moment

(kNm/m)

20*20 0.473 5.696

30*30 0.476 5.732 0.201 1.598 7.300

50*50 0.478 5.519 0.208 2.590 8.927

Shear force

(kN/m)

20*20 3.367 15.866

30*30 3.325 16.042 0.407 1.809 8.181

50*50 3.363 15.881 0.578 8.887 13.311

Table 26: Absolute maximum value of test SLM1-5 plots

Number

of nodes
Model 1 Model 2 Model 3 Model 4 Model 5

Displacement

(m)

20*20 9.707E-06 3.107E-04

30*30 9.748E-06 3.107E-04 1.685E-04 7.847E-03 9.671E-03

50*50 9.764E-06 3.107E-04 1.715E-04 7.882E-03 9.559E-03

Bending

moment

(kNm/m)

20*20 0.472 5.311

30*30 0.476 5.312 0.201 1.676 7.080

50*50 0.478 5.312 0.208 3.060 8.377

Shear force

(kN/m)

20*20 3.355 15.502

30*30 3.368 37.308 0.836 4.040 21.910

50*50 3.373 85.032 1.278 12.221 27.159

39

4.5 Five-point difference approximation test results

(Please find plots in Appendix)

Table 27: Absolute maximum value of test AR1-5 plots

Number

of nodes
Model 1 Model 2 Model 3 Model 4 Model 5

Displacement

(m)

20*20 6.92E-06 1.62E-04 0.0026 0.1275 0.0798

30*30 6.56E-06 2.22E-04 0.0031 0.1460 0.0916

50*50 6.24E-06 2.43E-04 0.0027 0.1854 0.1229

Bending

moment

(kNm/m)

20*20 0.4008 5.6398 6.2022 270.1302 171.0242

30*30 0.3903 6.5045 6.0320 281.4246 176.5635

50*50 0.3815 7.8378 5.7824 297.1835 190.9475

Shear force

(kN/m)

20*20 3.3058 4.2638 14.5238 103.3915 64.3321

30*30 3.3283 4.4615 14.7720 102.5811 63.6840

50*50 3.3459 4.5138 14.9345 102.8183 64.5399

Table 28: Absolute maximum value of test BR1-5 plots

Number

of nodes
Model 1 Model 2 Model 3 Model 4 Model 5

Displacement

(m)

20*20 6.86E-06 5.62E-05 0.002 0.158 0.101

30*30 6.52E-06 5.70E-05 0.003 0.225 0.145

50*50 6.22E-06 5.46E-05 0.003 0.271 0.173

Bending

moment

(kNm/m)

20*20 0.397 3.965 5.863 229.598 145.720

30*30 0.389 4.481 5.939 247.476 157.932

50*50 0.380 4.919 5.830 253.871 161.883

Shear force

(kN/m)

20*20 3.297 4.175 14.995 98.603 61.354

30*30 3.323 5.106 15.102 100.866 63.118

50*50 3.344 7.108 15.085 100.285 62.853

Table 29: Absolute maximum value of test ALM1-5 plots

Number

of nodes
Model 1 Model 2 Model 3 Model 4 Model 5

Displacement

(m)

20*20 9.926E-06 3.119E-04 1.795E-04

30*30 9.660E-06 3.117E-04 1.412E-04 8.24E-03 9.39E-03

50*50 9.671E-06 3.123E-04 1.536E-04 7.89E-03 9.59E-03

Bending

moment

(kNm/m)

20*20 0.4837 5.3274 1.0208

30*30 0.4757 5.4997 0.6447 3.4571 5.9238

50*50 0.4757 5.5936 0.4981 2.9374 7.3001

Shear force

(kN/m)

20*20 3.2730 13.0253 4.8254

30*30 3.0708 13.8312 3.7759 7.3638 6.0894

50*50 3.0451 14.5493 3.4545 5.2990 8.1810

Table 30: Absolute maximum value of test BLM1-5 plots

Number

of nodes
Model 1 Model 2 Model 3 Model 4 Model 5

Displacement

(m)

20*20 9.72E-06 3.12E-04

30*30 9.75E-06 3.11E-04 1.71E-04 7.79E-03 9.48E-03

50*50 9.77E-06 3.11E-04 1.73E-04 7.81E-03 9.51E-03

Bending
moment

(kNm/m)

20*20 0.4767 5.5872

30*30 0.4779 5.6588 0.2087 3.6551 9.6528

50*50 0.4785 5.5902 0.2112 5.0066 9.2010

Shear force 20*20 3.3681 19.6723

40

(kN/m) 30*30 3.3785 27.1999 0.8588 16.9374 17.1115

50*50 3.3755 52.9049 2.4201 29.3033 14.4334

4.6 Overall comparison between shell code results

To show the accuracy of shell code results, the absolute maximum values of the above plots are compared to

absolute maximum values obtained by the finite element method. The deviation is calculated as (shell code

result - finite element result)/ finite element result. The deviation is converted into percentage form if it is in

range of (-1 ,1). Those results are listed in the below tables and their absolute values are labeled with different

colors where green represents less than 10%, blue represents ranged from 10% to 100%. and orange represents

over 100%. Overall considered, the results of Test BLM1-5 show the best accuracy where green results take

accunt for 78%. In the results of tests using lsmr solver (Test R1-5, Test SU1-5, Test SC1-5 and Test SE1-5),

the accuracy of results of model 1 and model 2 is relatively good. The results of rest models are heavily

overestimated.

Table 31: Deviation of Test R1-5 results (green:14%, blue: 42%, orange: 44%)

Node

number
Model 1 Model 2 Model 3 Model 4 Model 5

Displacement (m)

20*20 -30.04% -14.58%

30*30 -28.36% -3.55% 12.121 20.012 9.417

50*50 -33.35% 6.06% 13.024 22.039 10.913

Bending moment

(kNm/m)

20*20 -17.58% 39.83%

30*30 -19.01% 37.32% 26.000 56.406 17.855

50*50 -19.01% 64.46% 26.315 58.131 18.881

Shear force (kN/m)

20*20 -2.75% -75.67%

30*30 -1.57% -75.31% 5.332 2.11 50.23%

50*50 -1.59% -74.81% 5.324 2.18 55.69%

Table 32: Deviation of Test SU1-5 results (green:12%, blue: 44%, orange: 44%)

Node

number
Model 1 Model 2 Model 3 Model 4 Model 5

Displacement (m)

20*20 -34.09% 19.05%

30*30 -38.07% 6.76% 12.855 218.051 110.670

50*50 -37.47% -35.73% 14.235 177.336 90.227

Bending moment

(kNm)

20*20 -20.89% 52.43%

30*30 -47.19% 54.88% 25.925 105.228 34.828

50*50 -21.02% 42.20% 26.242 93.573 31.018

Shear force (kN/m)

20*20 -7.91% -76.89%

30*30 -1.57% -77.25% 5.333 2.90 91.24%

50*50 -1.66% -77.87% 5.326 2.67 80.81%

Table 33: Deviation of Test SC1-5 results (green:7%, blue: 40%, orange: 53%)

Node

number
Model 1 Model 2 Model 3 Model 4 Model 5

Displacement (m)

20*20

30*30 -38.07% -93.98% 12.818 176.321 110.465

50*50 -37.47% -43.62% 14.349 217.163 89.918

Bending moment

(kNm/m)

20*20

30*30 -47.19% 54.87% 25.948 105.225 34.828

50*50 -21.02% 42.21% 26.242 93.573 31.018

Shear force (kN/m)

20*20

30*30 -1.57% -77.25% 5.333 2.91 91.24%

50*50 -1.66% -77.87% 5.326 2.67 80.82%

41

Table 34: Deviation Test SE1-5 results (green:12%, blue: 44%, orange: 44%)

Node

number
Model 1 Model 2 Model 3 Model 4 Model 5

Displacement (m)

20*20 -31.34% 3.48%

30*30 -33.36% -12.10% 15.289 182.790 93.000

50*50 -34.43% -40.55% 16.302 144.611 73.789

Bending moment

(kNm)

20*20 -43.72% 44.88%

30*30 -46.03% 46.72% 25.750 98.064 31.627

50*50 -47.91% 34.24% 25.689 95.866 29.806

Shear force (kN/m)

20*20 -8.93% -77.56%

30*30 -6.08% -77.82% 5.589 3.41 115.33%

50*50 -3.47% -74.64% 5.564 3.22 107.57%

Table 35: Deviation of Test P1-5 (green:33%, blue: 67%, orange: 0%)

Number of

nodes
Model 1 Model 2 Model 3 Model 4 Model 5

Displacement (m)
10*10 -0.40% -98.98% -32.45% 30.64% 34.58%

20*20 -0.78% -98.99% -14.88% -0.71% 47.94%

Bending moment

(kNm)

10*10 -3.77% 2.37% -47.49% -1.93% -48.49%

20*20 -1.05% 7.18% -13.91% -67.93% -45.43%

Shear force (kN/m)
10*10 -2.08% -26.20% -94.69% -86.12% -85.63%

20*20 -0.03% -13.35% -80.86% -95.84% -89.31%

Table 36: Deviation of Test LM1-5 results (green:61%, blue: 39%, orange: 0%)

Node

number
Model 1 Model 2 Model 3 Model 4 Model 5

Displacement (m)

20*20 -0.75% 1.13%

30*30 -0.43% 0.87% -14.26% -0.60% -1.45%

50*50 -0.10% 0.61% -11.98% -0.96% -1.98%

Bending moment

(kNm)

20*20 -1.05% 7.27%

30*30 -0.42% 7.95% -5.15% -68.46% -23.27%

50*50 0.00% 3.94% -1.73% -48.85% -6.17%

Shear force (kN/m)

20*20 -0.06% -13.28%

30*30 -1.31% -12.32% -83.17% -94.11% -78.99%

50*50 -0.18% -13.20% -76.14% -71.05% -65.81%

Table 37: Deviation of Test SLM1-5 (green:53%, blue: 42%, orange: 5.7%)

Node

number
Model 1 Model 2 Model 3 Model 4 Model 5

Displacement (m)

20*20 -0.75% 0.00%

30*30 -0.33% 0.00% -14.21% -0.47% -0.65%

50*50 -0.16% 0.00% -11.99% -0.03% -1.80%

Bending moment

(kNm)

20*20 -1.26% 0.02%

30*30 -0.42% 0.04% -4.92% -66.91% -25.59%

50*50 0.00% 0.04% -1.61% -39.58% -11.95%

Shear force (kN/m)

20*20 -0.42% -15.27%

30*30 -0.03% 103.91% -65.06% -89.62% -43.73%

50*50 0.12% 364.76% -46.59% -68.61% -30.25%

42

Table 38: Deviation of Test ALM1-5 (green:12%, blue: 44%, orange: 44%)

Node

number
Model 1 Model 2 Model 3 Model 4 Model 5

Displacement (m)

20*20 1.5% 0.4%

30*30 -1.2% 0.3% -27.04% 4.49% -3.58%

50*50 -1.1% 0.5% -20.63% 0.12% -1.45%

Bending moment

(kNm)

20*20 1.2% 0.3%

30*30 -0.5% 3.6% 2.05 -31.74% -37.74%

50*50 -0.5% 5.3% 1.36 -42.00% -23.27%

Shear force (kN/m)

20*20 -2.8% -28.8%

30*30 -8.9% -24.4% 0.58 -76.01% -84.4%

50*50 -9.6% -20.5% 0.44 -82.74% -79.0%

Table 39: Deviation of Test BLM1-5 (green:78%, blue: 19%, orange: 3%)

Node

number
Model 1 Model 2 Model 3 Model 4 Model 5

Displacement (m)

20*20 -0.6% 0.3%

30*30 -0.3% 0.3% -11.83% -1.18% -2.56%

50*50 -0.1% 0.1% -10.84% -1.00% -2.33%

Bending moment

(kNm)

20*20 -0.3% 5.2%

30*30 0.0% 6.6% -1.28% -27.83% 1.46%

50*50 0.1% 5.3% -0.09% -1.15% -3.29%

Shear force (kN/m)

20*20 0.0% 7.5%

30*30 0.3% 48.7% -64.11% -44.83% -56.1%

50*50 0.2% 1.89 1.13% -4.55% -62.9%

Table 40: Summary of deviation of test results

 Green (≤10%) Blue (≤100%) Orange (>100%)

Test R1-5 13.89% 41.67% 44.44%

Test SC1-5 6.67% 40.00% 53.33%

Test SU1-5 11.11% 44.44% 44.44%

Test SE1-5 11.11% 38.89% 50.00%

Test P1-5 33.33% 66.67% 0.00%

Test LM1-5 61.11% 38.89% 0.00%

Test SLM1-5 58.33% 36.11% 5.56%

Test AR1-5 11.11% 44.44% 44.44%

Test ALM1-5 52.78% 41.67% 5.56%

Test BLM1-5 77.78% 19.44% 2.78%

It can be observed that the accuracy of shell code results is strongly related to model types and test

configurations. In order to show their influence more comprehensively, the deviation of shell code results was

reorganized into model result plots categorized by its test type. In this way, it can be shown more clearly that

how the shell results can be influenced by those important factors including the number of nodes, type of

solver, type of matrix, and type of approximation. In the below plots, the deviation of all test results is shown

in one figure for every model.

The type of solver is the most important factor on the accuracy. The lm.fit.sparse solver (Test LM, SLM,

ALM, BLM) generally gives far more accurate results than lsmr solver (Test, R, AR, BR, SC, SU, SE). As

shown in the summary table (Table 40), the green results in lm.fit.sparse solver tests take up over 50% while

the percentage of green results in lsmr solver tests is less than 15%. As shown in Figure 24 to Figure 28, under

lm.fit.sparse solver the most results of model 1 and model 2 have excellent accuracy around 1% while only

shear force results of model 2 have deviation over 10%. The rest lsmr solver results are mostly orange where

43

the deviation of many results is even over 1000%. For model 3 to 5, in fact there are only a few green results

no matter which solver is used.

Other factors like the type of matrices (Rectangular or square), difference approximation (five-point or two-

point) play a less significant role in the accuracy. The different matrix types (square: Test SC, SU, SE or

rectangular: Test R, AR, BR) and different finite difference approximation methods (two-point: Test R, LM

or five-point: Test: AR, BR, ALM, BLM) did not cause not significant difference. In the most cases, the use

of square matrix and new approximation method has made the shell code give less accurate results. As shown

in summary table (Table 40), shell code give less green results when use square matrix and new approximation

method. However, the Test BLM is an exception with the highest rate of green results.

Another important factor is number of nodes and its influence differs for different types of models and types

of solvers. For models 1 to 3, generally the deviation of displacement and bending moment results is increased

for higher number of nodes when lsmr solver is used. If pinv solver and lm.fit.sparse solver is used, a higher

number of nodes bring lower deviation. For model 4 to 5, not matter which solver is used, higher number of

nodes often means lower deviation.

By comparing absolute maximum values of plots to finite element results, the accuracy of shell code results

can be found to be related to the type of solver, number of nodes, and type of model. The type of solver is the

most important factor on the accuracy. The accuracy is also various between different types of results. Other

factors like the type of matrices (Rectangular or square), difference approximation (five-point or two-point)

does not play a significant role in the accuracy.

Accuracy by type of solver: R solver: lm.fit.sparse > Python solver: pinv > Python solver: lsmr

Accuracy by models: model 1≈ model 2 > model 3 ≈ model 4 ≈ model 5

Accuracy by type of matrices: square matrix ≈ rectangular matrix

Accuracy by type of difference approximation: five-point approximation > two- point approximation (only in

a limited cases)

Accuracy by type of result: displacement result > shear force, bending moment result

Accuracy by number of nodes: 50*50 > 30*30 > 20*20

a) Overall test results per model

Figure 19: Comparison of overall test results for model 1 Figure 20: Comparison of overall test results for model 2

44

Figure 21: Comparison of overall test results for model 3 Figure 22: Comparison of overall test results for model 4

Figure 23: Comparison test results for model 5

b) Displacement uz test results per model

Figure 24: Comparison of uz results for model 1 Figure 25: Comparison of uz results for model 2

Figure 26: Comparison of uz results for model 3 Figure 27: Comparison of uz results for model 4

45

Figure 28: Comparison of uz results for model 5

c) Bending moment mxx results per model

Figure 29: Comparison of mxx results for model 1 Figure 30: Comparison of mxx results for model 2

Figure 31: Comparison of mxx results for model 3 Figure 32: Comparison of mxx results for model 4

Figure 33: Comparison of mxx results for model 5

46

d) Shear force vx test result per model

Figure 34: Comparison of vx results for model 1 Figure 35: Comparison of vx results for model 2

Figure 36: Comparison of vx results for model 3 Figure 37: Comparison of vx results for model 4

Figure 38: Comparison of vx results for model 5

47

4.7 Comparison between Rectangular matrix test and Square matrix test results

The results of tests using lsmr solver (Test R1-5, Test SU1-5, Test SC1-5 and Test SE1-5) are reorganized

and listed in below table. As shown in below table, different methods of constructing square matrix and

number of nodes did not play a significant role on affecting the accuracy of results. Especially for shear force

and bending moment results, many of they remain unchanged regardless of type of matrix or number of nodes.

Table 41: Comparison between lsmr solver results

 Node number Test Model 1 Model 2 Model 3 Model 4 Model 5

Displacement (m)

20*20

R -30.0% -14.6%

SU -34.1% 19.1%

SC

SE -31.3% 3.5%

30*30

R -28.4% -3.5% 12.12 20.01 9.42

SU -38.1% 6.8% 12.86 218.05 110.67

SC -38.1% -94.0% 12.82 176.32 110.46

SE -33.4% -12.1% 15.29 182.79 93.00

50*50

R -33.4% 6.1% 15.96 176.45 110.46

SU -37.5% -35.7% 14.24 177.34 90.23

SC -37.5% -43.6% 14.35 217.16 89.92

SE -34.4% -40.6% 16.30 144.61 73.79

Bending moment

(kNm/m)

20*20

R -45.4% 52.4%

SU -45.4% 52.4%

SC

SE -43.7% 44.9%

30*30

R -47.1% 54.9% 26.25 105.23 34.83

SU -47.3% 54.9% 25.93 105.23 34.83

SC -47.3% 55.1% 25.92 105.23 34.83

SE -46.0% 46.7% 25.75 98.06 31.63

50*50

R -48.5% 42.2% 25.93 93.57 31.02

SU -48.5% 42.2% 26.24 93.57 31.02

SC -48.5% 42.2% 26.24 93.57 31.02

SE -47.9% 34.2% 25.69 95.87 29.81

Shear force (kN)

20*20

R -2.7% -76.9%

SU -2.7% -76.9%

SC

SE -8.9% -77.6%

30*30

R -1.6% -77.3% 5.33 2.08 91.24%

SU -1.6% -77.3% 5.33 2.08 91.24%

SC -1.6% -77.3% 5.33 2.08 91.24%

SE -6.1% -77.8% 5.59 2.48 1.15

50*50

R -0.8% -77.9% 5.33 1.90 80.81%

SU -0.8% -77.9% 5.33 1.90 80.8%

SC -0.8% -77.9% 5.33 1.90 80.8%

SE -3.5% -74.6% 5.56 2.33 1.08

48

4.8 Comparison between pinv solver and lm.fit.sparse solver test results

The results of tests using pinv solver and lm.fit.sparse solver (Test P1-5, Test LM1-5 and Test SLM1-5) are

reorganized and listed in below table. For model 1, pinv solver and lm.fit.sparse solver can both provide

excellent results where the most deviation is around 1%. For model 2, both solver are bad in terms of providing

shear force results. Only lm.fit.sparse solver can provide accurate displacement results. For rest of models,

the both solvers cannot provide accurate results in the most cases except displacement results of model 4 and

model 5 and bending moment results of model 3.

Table 42: Comparison between pinv solver and lm.fit.sparse solver results

 Node

number
Test Model 1 Model 2 Model 3 Model 4 Model 5

Displacement (m)

10*10 P -0.4% -98.98% -32.45% 30.64% 34.58%

20*20

P -0.8% -98.99% -14.88% -0.71% 47.94%

LM -0.7% 1.13%

SLM -0.7% 0.00%

30*30
LM -0.4% 0.87% -14.26% -0.60% -1.45%

SLM -0.3% 0.00% -14.21% -0.47% -0.65%

50*50
LM -0.1% 0.61% -11.98% -0.96% -1.98%

SLM -0.2% 0.00% -11.99% -0.03% -1.80%

Bending moment (kNm/m)

10*10 P -3.8% 2.37% -47.49% -1.93% -48.49%

20*20

P -1.0% 7.18% -13.91% -67.93% -45.43%

LM -1.0% 7.27%

SLM -1.3% 0.02%

30*30
LM -0.4% 7.95% -5.15% -68.46% -23.27%

SLM -0.4% 0.04% -4.92% -66.91% -25.59%

50*50
LM 0.0% 3.94% -1.73% -48.85% -6.17%

SLM 0.0% 0.04% -1.61% -39.58% -11.95%

Shear force (kN)

10*10 P -2.1% -26.20% -94.69% -86.12% -85.63%

20*20

P 0.0% -13.35% -80.86% -95.84% -89.31%

LM -0.1% -13.28%

SLM -0.4% -15.27%

30*30
LM -1.3% -12.32% -83.17% -94.11% -78.99%

SLM 0.0% 1.04 -65.06% -89.62% -43.73%

50*50
LM -0.2% -13.20% -76.14% -71.05% -65.81%

SLM 0.1% 3.65 -46.59% -68.61% -30.25%

4.9 Comparison between five-point difference approximation and two-point difference

approximation test results

The results of tests using five-point difference approximation (Test AR1-5, Test ALM1-5, Test BR1-5, and

Test BLM1-5) and two-point difference approximation (Test R1-5 and Test LM1-5,) are reorganized and

listed in below table. A few bending results provided by lsmr solver were improved where their deviation was

dramatically reduced (Test AR2 & Test BR2). In the contrast, under lm.fit.sparse solver some bending

moment results have a larger deviation (Test ALM3 & Test BLM2). For rest of results, the expected

improvement on the accuracy by five-point approximation are not clear. There is no significant impact can be

found for the most results.

Table 43: Comparison between five-point and two-point difference approximation results (lsmr solver)

 Number

of nodes
Test Model 1 Model 2

Model

3

Model

4

Model

5

Displacement

(m)
20*20

R -30.0% -14.6%

AR -29.2% -47.8%

49

BR -29.8% -81.9%

30*30

R -28.4% -3.5% 12.12 20.01 9.42

AR -33.0% -28.5% 14.91 17.52 8.41

BR -33.3% -81.7% 11.98 27.52 13.92

50*50

R -33.4% 6.1% 15.96 176.45 110.46

AR -36.2% -21.9% 13.07 22.52 11.62

BR -36.4% -82.4% 12.90 33.40 16.82

Bending moment

(kNm/m)

20*20

R -45.4% 52.4%

AR -16.2% 6.2%

BR -16.9% -25.3%

30*30

R -47.1% 54.9% 26.25 105.23 34.83

AR -18.3% 22.5% 27.53 54.57 17.56

BR -18.7% -15.6% 27.09 47.86 15.60

50*50

R -48.5% 42.2% 25.93 93.57 31.02

AR -20.2% 47.6% 26.35 57.68 19.07

BR -20.4% -7.4% 26.58 49.13 16.01

Shear force (kN)

20*20

R -2.7% -76.9%

AR -1.9% -76.7%

BR -2.1% -77.2%

30*30

R -1.6% -77.3% 5.33 2.08 91.24%

AR -1.2% -75.6% 5.17 2.34 63.56%

BR -1.4% -72.1% 5.31 1.59 62.11%

50*50

R -0.8% -77.9% 5.33 1.90 80.81%

AR -0.7% -75.3% 5.24 2.35 65.76%

BR -0.8% -61.2% 5.30 1.58 61.42%

Table 40: Comparison between five-point and two-point difference approximation results (lm.fit.sparse solver)

Number

of nodes
Test Model 1 Model 2 Model 3 Model 4 Model 5

Displacement

(m)

20*20

LM -0.7% 1.1%

ALM 1.5% 0.4%

BLM -0.6% 0.3%

30*30

LM -0.1% 0.6% -11.98% -0.96% -1.98%

ALM -1.2% 0.3% -27.04% 4.49% -3.58%

BLM -0.3% 0.3% -11.83% -1.18% -2.56%

50*50

LM -0.1% 0.6% -11.98% -0.96% -1.98%

ALM -1.1% 0.5% -20.63% 0.12% -1.45%

BLM -0.1% 0.1% -10.84% -1.00% -2.33%

Bending

moment

(kNm/m)

20*20

LM -1.0% 7.3%

ALM 1.2% 0.3%

BLM -0.3% 5.2%

30*30

LM -0.4% 7.9% -5.15% -68.46% -23.27%

ALM -0.5% 3.6% 2.05 -31.74% -37.74%

BLM 0.0% 6.6% -1.28% -27.83% 1.46%

50*50

LM 0.0% 3.9% -1.73% -48.85% -6.17%

ALM -0.5% 5.3% 1.36 -42.00% -23.27%

BLM 0.1% 5.3% -0.09% -1.15% -3.29%

Shear force

(kN)

20*20

LM -0.1% -13.3%

ALM 1.2% 0.3%

BLM 0.0% 7.5%

30*30

LM -1.3% -12.3% -82.99% -59.66% -83.56%

ALM -8.9% -24.4% 57.79% -76.01% -84.36%

BLM 0.3% 48.7% -64.11% -44.83% -56.05%

50*50

LM -0.2% -13.2% -76.14% -71.05% -65.81%

ALM -9.6% -20.5% 44.36% -82.74% -78.99%

BLM 0.2% 1.89 1.13% -4.55% -62.93%

50

Discussion
This section aims to discuss whether the objective of this project is fulfilled by analyzing the obtained results.

First, the accuracy, reliability, and efficiency of shell code are validated by reviewing the results and

comparison. The sparsity, condition number, and rank number are calculated for checking the quality of

generated matrices. Then the factors affecting shell code results and the mechanism behind them are also

shown. There are five possible factors affecting shell code results have been discussed, include the number of

nodes, type of matrix, type of solvers, difference approximation methods, number of iterations. The simplicity

of code structure is also discussed by showing the coding process of how to simply apply the new shell theory

equation. In the end, the final discussion is made on the possible improvement and further research.

5.1 Accuracy, reliability, and efficiency

a) Accuracy

The shell code results should bear the three characteristics: accuracy, reliability, and efficiency. Accuracy

means compared to the general finite element results the local and global deviation of shell code results should

be in a reasonable range. Specifically, it requires shell code not only can produce a good estimation of extreme

values in a local area but also can correctly descript the overall behaviour of the tested models globally. So

that discussion on the accuracy is not only on the deviation of numerical values, but also on the distortion of

contour lines, and edges results.

As mentioned in section 4.6, the overall comparison clearly indicated that the deviation of shell code results

is large for most cases. Only for model 1&2 when using lm.fit.sparse solver, the shell code can produce results

with a small deviation less than 15%. Especially the displacement results, in this case, are generally equal to

finite element results (deviation is less than 1%). For model 3-5 when using lm.fit.sparse solver, the

displacement results have a small deviation less than 15%. However, for bending moment and shear force

results, the deviation of extreme values is up to 90%. In some cases, using lsmr solver, the maximum deviation

can even reach 22000%.

To better illustrate the shell code displacement results, actual deformed shapes of models are generated based

on the displacement results (xu , yu , zu). The displacement results from Test LM1-5 are used to add to the

undeformed geometry shapes to show actual deformed shape. The color map of shapes is determined by the

value of total displacement xyzu . From the general perspective of observing deformation, the shell code and

finite element software give quite similar results in terms of extreme values and general deformed shape. The

actual deformed shapes by shell code results share some important key features with the finite element results

(Figure 40). For example, the boundary behaviors under various definitions including fixed edges, pin edges

and free edges are correctly described. The concertation of displacement at free nodes and distortion of mesh

grid are also shown in both shell code and finite element results.

Model 1

Model 2

Model 3

51

Model 4

Model 5

Figure 39:Actual deformed shape of models by shell code results (Test LM1-5)

Model 1

Model 2

Model 3

Model 4

Model 5

Figure 40:Actual deformed shape of models by finite element solution (SCIA Engineer 19)

The distortion of contour lines is common among the results when using lsmr solver (Test R1-5, Test SC1-5,

Test SU1-5, and Test SE1-5). At the boundaries of those models, large displacement existed at corners and

edges where the predefined boundary conditions do not allow. As shown in those plots the displacement

contour lines are usually jagged alongside the free edges of model. For better illustration of that, the zu plots

from Test R1-5 are reconstructed into 3D surfaces with projection in horizontal directions (Figure 49) as a

representative of them. The results of other tests might have a few differences in the extreme values but they

share similar distorted boundary behavior. From those horizontal projections, it is clearly be observed that

larger displacement existed at pinned and fixed edges where no displacement should appear. Those edges lines

are distorted into the shape of sine waves. The crests of sine waves are usually local at mid of edge lines. At

the corners of model 1, the displacement is even below the permitted edge lines. And for the free edges of

model 4 and model 5, the edge line should be in sine wave shape instead of the current flat line. The above

features can be more obvious in the comparison of the results of Test LM1-5 (Figure 49). The projections of

zu plot from Test LM 1-5 show that the defined boundary conditions are clearly and correctly expressed at

edges when using lm.fit.sparse solver. And the lsmr solver did not achieve this.

52

Model 1

Model 2

Model 3

Model 4

Model 5

Figure 49: 3D surface and projections of uz plots from Test R1-5

Model 1

Model 2

Model 3

Model 4

Model 5

Figure 42: 3D surface and projections of uz plots from Test LM1-5

To better illustrate the edge results of bending moment and shear force, bending moment diagram and shear

force diagram is plot alongside the edges of models (Figure 43, Figure 45). The corresponding finite element

edge results are also shown (Figure 44, Figure 46). The extreme values from those plots are collected in below:

Table 45: Comparison between bending moment mxx edge results

 Model 1 Model 2 Model 3 Model 4 Model 5

Bending

moment mxx

edge results

(kNm/m)

(Max)

Shell code 0.0034 5.519 0.00396 2.59 8.927

Finite element

solution
0.0007 6.311 0.0459 5.044 9.531

(Min)

Shell code -0.00587 -0.0178 -0.0012 -0.221 -0.642

Finite element

solution
-0.00027 -0.08152 -0.00224 -1.237 -0.6037

53

Table 46: Comparison between shear force vx edge results

 Model 1 Model 2 Model 3 Model 4 Model 5

Shear force vx

edge results

(kN/m)

(Max)

Shell code 3.3631 15.905 0.571 8.886 13.311

Finite element

solution
3.376 274.24 2.328 30.297 30.911

(Min)

Shell code -3.3631 -11.409 -0.571 -0.594 -1.704

Finite element

solution
-3.376 -17.915 -2.328 -23.351 -4.17

Table 47: Deviation of Test LM1-5 overall bending moment & shear force results (m=n=50)

 Model 1 Model 2 Model 3 Model 4 Model 5

Bending moment 0.00% 3.94% -1.61% -20.53% -19.54%
Shear force -0.18% -13.20% -75.85% -92.02% -75.11%

The above comparison indicates that the shell code edge results basically do not comply with the finite element

results in terms of extreme values except the shear force edge results of model 1. Overall considered, the shell

code has underestimated the edge results numerically. For instance, the shell code gives the maximum shear

force at the edges of model 2 as 15.9 kN/m which is dramatically lower than finite element results of 274.24

kN/m. Such underestimation also occurred for the entire models as shown in Table 43 but to a smaller extent.

Meanwhile, the shell code bending moment and shear force results are more likely concentrated at corners.

For example, the finite element results are generally smoothly varied alongside edges except for bending

moment results of model 1 and shear force results of model 2. The concentration at corners is almost shown

on every model in the shell code results. And also the shell code edge results is jagged for most models.

Model 1

(max: 0.0034, min: -0.00587)

Model 2

(max: 5.519, min: -0.0178)

Model 3

(max: 0.00396, min: -0.00120)

Model 4

(max: 2.590, min: -0.221)

Model 5

(max: 8.927, min: -0.642)

Figure 43:Bending moment mxx edge results by shell code (Test LM1-5, m=n=50)

54

Model 1

(max: 0.0007, min: -0.00027)

Model 2

(max: 6.311, min: -0.08152)

Model 3

(max: 0.0459, min: -0.02244)

Model 4

(max: 5.044, min: -1.237)

Model 5

(max: 9.531, min: -0.6037)

Figure 44:Bending moment mxx edge results by finite element solution (SCIA Engineer 19)

Model 1

(max: 3.3631, min: -3.3631)

Model 2

(max: 15.905, min: -11.409)

Model 3

(max: 0.571, min: -0.571)

Model 4

(max: 8.886, min: -0.594)

Model 5

(max: 13.311, min: -1.704)

Figure 45:Shear force vx edge results by shell code (Test LM1-5, m=n=50)

55

Model 1

(max: 3.376, min: -3.376)

Model 2

(max: 274.240, min: -17.915)

Model 3

(max: 2.328, min: -2.328)

Model 4

(max: 30.297, min: -23.351)

Model 5

(Max: 30.911, Min: -4.17)

Figure 46:Shear force vx edge results by finite element solution (SCIA Engineer 19)

In conclusion, the shell code can only produce accurate displacement results (deviation is less than 15%) when

using lm.fit.sparse solver. The distortion of contour lines is common among the results when using lsmr solver.

In terms of edge results, the most of them is incorrect as they are significantly underestimated.

b) Reliability

The reliability means obtained results are exanimated through various methods to avoid possible numerical

error as much as possible. For example, a singularity check has been made to ensure those extreme values

were not collected at those unrealistic peaks. In finite element models, it is possible that a few extreme values

of finite difference models tend toward an infinite value as the result of a potential computational error. Such

a phenomenon is also likely to occur in finite difference models. The singularities should be excluded from

normal extreme values otherwise they might compromise the validity of the comparison of extreme values in

the above section. To do that, the top 100 maximum values and minimum values from Test LM1-5 and Test

R1-5 are collected and plot in below (Figure 47 & Figure 48) to show whether there is any spike in the

distribution of extreme values. The absolute maximum values from finite element results of Table 18 are also

plot as a comparison. Generally speak, there is no such spike showing extreme values tend toward an infinite

value. Among those plots, there are three major spikes in terms of variating extreme values: shear force results

of Test LM2, bending moment results of Test LM4 and bending moment results of Test R2. Compare to the

overall variation of extreme values among the 100 nodes, those spikes indicate a rapid variation in values for

a small number of nodes. However, the extent of such variation is far from the trend toward an infinite value.

In the summary, there is no singularity has been found in those results.

56

a) Test LM1

b) Test LM2

c) Test LM3

d) Test LM4

e) Test LM5

Figure 47: Plots of top 100 maximum and minimum values from Test LM1-5 (m=n=30)

57

a) Test R1

b) Test R2

c) Test R3

d) Test R4

e) Test R5

Figure 48: Plots of top 100 maximum and minimum values from Test R1-5 (m=n=30)

58

c) Efficiency

The efficiency means shell code can produce results in a fast and economic way. It means the time spending

and memory usage of shell code is competitive when compared to some popular commercial finite element

software. Here SCIA Engineer 19 is selected to solve those model problems. The model data used in SCIA is

the same as the shell code model configuration (Table 9). The computational time and memory usage of

computation activity of SCIA was recorded as below. Since lack of a direct method for measuring the running

time of SCIA, the time was measured in approximated way manually. It is noticeable that the computational

time and memory usage of this finite element software is only related to the number of nodes.

Table 48: Memory usage and time by finite element software (SCIA Engineer 19)

Number of

nodes
20*20 30*30 50*50

Memory

usage
Time

Memory

usage
Time

Memory

usage
Time

Model 1-5 231MB 1s 241MB 4s 274MB 6s

The memory usage of shell code and spent time at the solving step were recorded and listed below. overall

considered, the shell code uses less memory but more time. The spent time of shell code is significantly higher

than that of SCIA and it increases dramatically as the number of nodes increases. The highest memory usage

of shell code is only nearly half of finite element software. The memory usage of shell code with lsmr solver

is increased by 23% when as the number of nodes increased from 20*20 to 50*50. And there is no significant

difference appeared in memory usage at the solving step when a different input matrix is used. The memory

usage at the solving step seems only related to number of nodes regardless of type of matrices and solvers.

However, the spent time is significantly higher as the input matrix of the square sparse matrix is used in most

scenarios. The input square matrices generated by the undefined node method and central node method lead

to generally higher time spending for all five models (Test SU, SC). On the contrary, the results of Test SE

and Test SLM indicate that spent time at the solving step is sensitive in a model-oriented way. When test

models are flat plate square (Test SE1, 2 & Test SLM1, 2), the spent time can be only around 25% of that of

canopy models (Test SE3-5 & Test SLM3-5).

Table 49: Memory usage and time by different solver in shell code

 Number of nodes 20*20 30*30 50*50

Solver type
Type of input

matrix [M]

Memory

usage
Time

Memory

usage
Time

Memory

usage
Time

Python

solver: lsmr

Rectangular sparse

matrix

98.8672

MB
0.897s

104.0859

MB
2.154s

120.9961

MB
10.105s

Square sparse matrix

(Test SU, SC)

98.8008

MB
5.046s

103.5820

MB
11.410s

120.6719

MB
72.991s

Square sparse matrix

(Test SE1, 2)

97.5430

MB
3.733s

102.4844

MB
8.115s

118.7852

MB
22.093s

Square sparse matrix

(Test SE3)
/ /

102.6445

MB
17.1068s

119.7070

MB
31.699s

Square sparse matrix

(Test SE4)
/ /

102.8359

MB
10.130s

119.6328

MB
89.229s

Square sparse matrix

(Test SE5)
/ /

102.8359

MB
13.279s

119.7578

MB
97.949s

R solver:

lm.fit.sparse

Rectangular sparse

matrix
147.3MB 1.63s 148.9MB 4.19s 153.9MB 24.68s

Square sparse matrix

(Test SLM 1)

111.9023

MB
4.863s

115.2969

MB
5.568s

115.3047

MB
8.106s

Square sparse matrix

(Test SLM 2)

111.8125

MB
6.365s

115.5742

MB
5.763s

141.3125

MB
8.293s

Square sparse matrix
(Test SLM 3)

/ /
114.6328

MB
8.460s

135.4336
MB

27.723s

Square sparse matrix

(Test SLM 3)
/ /

114.6328

MB
8.460s

135.4336

MB
27.723s

59

Square sparse matrix

(Test SLM 4)
/ /

113.6367

MB
8.502s

135.7070

MB
26.590s

Square sparse matrix

(Test SLM 5)
/ /

118.3633

MB
8.988s

130.5742

MB
28.346s

 10*10 20*20

Python

solver: pinv

Rectangular matrix

in Python array form

131.375

MB
7.412s

148.2656

MB
453.638s

5.2 Matrix quality

a) Sparsity

In order to show the quality of matrices generated by shell code, the rectangular matrices and square matrices

produced by equation replacement method were checked. The first property checked is sparsity which is

defined as the fraction of zero elements in a matrix. According the calculation, the sparsity of rectangular

matrices is basic same to square matrices. So that below Figure 57 only shows how the sparsity is varied with

different number of nodes for each model. As the number of nodes increased, sparsity rises slowly from lowest

value of 99.99675% to highest value of 99.99951%. Since the non-zero elements are generally distributed on

the local diagonal lines of matrix, the number of zero elements increase in a faster way with larger matrix size.

Despite the different boundary conditions of each model, the sparsity is the same for the models that use same

geometry shape (Flat square shape: Model 1&2, Canopy shape: Model 3-5). As shown in below figure, the

sparsity of model 1 and model 2 is generally equal. Models 3-5 also share the same sparsity.

Figure 57: Sparsity of matrices

b) Condition number

The second property checked is the condition number for inversion. For matrix A , the condition number is

() 1A A A −= . For a system of linear equations A x b = , the condition number of matrix A can be viewed

as a relative error magnification factor (Cline et al., 1979). The error in solution x is
y x

x

−
 which satisfies

the below expression:

() ()1 ,
y x y x E

A A A A E y b
x x A

   −
 − −

 →   + = =  
 

where  is the relative error in A , y is the perturbed solution of the linear system, E represents the

perturbation of matrix A .

The upper bound of error in solution x is determined by the condition number and relative error of matrix A .

The same upper bound was also found if perturbation exists in vector b :

60

()1 ,
y x y x e

A A A Ay b e
x x b

   −
 − −

 →   = +   
 

where  is the relative error in b , y is the perturbed solution of the linear system, e represents the perturbation

of vector b .

The derivation of above relation depends on inequality b A x . However, when ()A is large, this

relation is very weak for almost all b . In summary, the upper bound of error in solution x is mainly determined

by the error in matrix A and the condition number of A . A higher condition number can magnify the error

in matrix A so that error in solution x is more likely higher. It is noticeable that the precondition of this

conclusion is that the linear system is solved by matrix inversion. Although only part of test results was

obtained through matrix inversion, the condition number can be still used to measure the how sensitive the

solution is to the perturbations in matrix A .

The condition number of rectangular matrices used in Test R1-5 and square matrices Test SE1-5 was obtained

and plot in below figures (Figure 58, Figure 59). Due to limited capacity of author’s PC, number of nodes of

models in condition number calculation was lower than actual model used in tests. The data of those figures

can be found in Annex (Table 49, Table 50). For all matrices, the condition number increases with the number

of nodes of the model. The condition number of model 4 is nearly equal to that of model 5 regardless of types

of matrices. The condition number of the matrix shows a relationship that varies with the type of model. For

rectangular matrix, condition number of models: model 1 > model 2 > model 3 > model 4 = model 5. For

square matrices, condition number of models: model 3 > model 1 > model 2 > model 4 = model 5. The lowest

condition number is 6.46e+15 and the highest condition number is 8.69E+16. Regardless of type of matrix,

the condition number is much larger than 1. Those matrices can be said as ill-conditioned and they are almost

singular. Finding the inverse of such matrices or solution of such linear systems is highly possible to end up

with large numerical errors.

Figure 50: Condition number of rectangular matrices Figure 51: Condition number of square matrices

c) Rank number

Another property checked is the rank number of matrix A . The rank of matrix is equal to length of a longest

linearly independent list of columns (or rows) of matrix (Johnson and Horn, 1985). For a system of linear

equations A x b = , if the rank of A is equal to the rank of augmented matrix A b   , the system is consistent

which means there is at least one solution for x . The rank number of rectangular matrices used in Test R1-5

and square matrices Test SE1-5 was obtained. The rank number as a percentage of the total number of rows

of solution x is plot in below figures (Figure 60, Figure 61). The data of those figures can be found in Annex

(Table 51, Table 52). The rank of augmented matrix A b   for those tests was also obtained. It has been found

that rank of A is equal to the rank of augmented matrix A b   for all tests.

61

As shown in below figures, the rank number of matrix is reduced with higher number of nodes. For rectangular

matrices, percentage of rank number of models: model 5 = model 4 > model 3 > model 2 > model 1. For

square matrices, percentage of rank number of models: model 5 = model 4 > model 3 > model 2 > model 1.

Regardless of type of matrix, percentage of rank number is less 100% for all models which means those linear

systems solved shell code has infinitely many solutions.

Figure 52: Percentage of rank number (%) of rectangular

matrices (A and A b  )

Figure 53: Percentage of rank number (%) of square

matrices (A and A b  )

5.3 Possible factors affecting shell code results

a) Type of matrix, difference approximation method, type of solver

In the above result sections (4.7, 4.8, 4.9), several comparisons have been made on numerical results in order

to investigate three factors specifically including the type of matrix, difference approximation methods, and

type of solver. Those are factors previously assumed to play an important role in affecting shell code results.

However, those numerical result comparisons indicate that not every factor can significantly affect the results.

For example, the comparison between Rectangular matrix test and Square matrix test result shows that many

results remain near equal regardless of the type of matrix, as shown in Figure 39 and Figure 40. No matter

what method was used to produce square matrix, the most of square matrix results remained nearly unchanged.

Meanwhile, the expected improvement on the result accuracy brought by square matrix was only observed on

few displacement results with a small extent. In the most cases, rectangular matrix gives better results but also

in a small degree.

In the comparison of results of five-point and two-point approximation methods (section: 4.9), the expected

improvement on the result accuracy by five-point approximation depends on model type. For model 2, type

A five-point approximation methods given the best bending moment results under lsmr solver (Figure 43).

For model 4 & 5, the deviation of displacement and bending moment results was significantly reduced by

applying five-point approximations under lsmr solver (Figure 44). In those results, Type B approximation

provided more reduction on deviation. For the rest results under lsmr solver and the most results under

lm.fit.sparse solver, regardless of the type of approximation method, shell code has given nearly identical value.

The expected improvement on the result accuracy has been only found for limited cases. Specially for results

under lm.fit.sparse solver, five-point approximation even dramatically increase the deviation. It indicates that

the truncation error reduced by five-point approximation method did not play a significant role in affecting

the accuracy of shell code results.

The results of pinv solver and lm.fit.sparse solver have shown better numerical accuracy than the lsmr solver

in almost all cases (see 4.6). In the comparison between results of pinv and lm.fit.sparse solver, the pinv solver

gives better displacement result and bending moment only for model 4 of 20*20 nodes. In rest cases, pinv

solver and lm.fit.sparse solver gives results in similar level of accuracy.

62

b) Number of nodes, number of iterations

The effect of other factors including number of nodes can be found in the overall comparison (section 4.6). In

finite element software, higher number of nodes generally brings more accurate results. The improvement on

accuracy can be found in many results (Figure 27, Figure 28, Figure 32, Figure 33, Figure 34, Figure 37,

Figure 38). They are displacement and bending moment results of model 4&5 and shear force results of model

1&5. However, the opposite has been found in many displacement and bending moment results of model 1&2

(Figure 24, Figure 25, Figure 26, Figure 29). As shown in those figures, the deviation of shell code results

was increased as the number of nodes grows. While another factor that can be found in the overall comparison

is the model setting. It is obvious that the results of models 1&2 (flat square shape) are less deviated on average

compared to the results of models 3-5 (canopy shape). The highest deviation of results of models 1&2 is less

than 400% while many results of models 3-5 have deviation over 1000%.

Another factor is the number of iterations for lsmr solver. It is equal to the number of columns of matrix A

for the linear system A x b = in default. If the number of nodes is 20*20, the number of iterations for lsmr

solver is 21 =21 20 20=8400mn   . In order to investigate the effect of this factor, Tests R1, R3, SE1, SE3 with

20*20 nodes were recalculated by manually changing number of iterations ranged from 8400*0.01 to

8400*100. The deviation of those results is shown in below figures (Figure 62, Figure 63, Figure 64, Figure

65). The data of those figures can be found in Annex (Table 53, Table 54, Table 55, Table 56). Those data

clearly shows that lsmr did not give the most accurate results under default setting. For model 1 (Test R1, Test

SE1), the deviation of results can be reduced to less than 1% as the number of iterations increases by 100

times. For model 3 (Test R3, Test SE3), the deviation of results is dramatically lower with increasing number

of iterations. However, the deviation of displacement results is still around 200% at 8400*100 iterations. A

higher number of iterations can help to improve the numerical accuracy but to a different extent for different

models.

Figure 54: Deviation of Test R1 results by increasing

number of iterations (m=n=20)

Figure

55: Deviation of Test R3 results by increasing number of

iterations (m=n=20)

Figure 56: Deviation of Test SE1 results by increasing

number of iterations (m=n=20)

Figure 57: Deviation of Test SE3 results by increasing

number of iterations (m=n=20)

63

c) Unit systems

In shell code, the unit system is determined when set up model parameters. Meanwhile, different unit system

can lead a difference in several orders of magnitude for the numerical values of those parameters, thus

affecting the numerical values of the matrix elements. For the models in pervious tests, the unit of force is kilo

Newton (kN) and the unit of length is meter (m). In engineering practices, another unit system is widely used

which is Newton for force (N) and millimeter for length (mm). In order to investigate the effects of value of

matrix elements on the calculation, this unit system with another new unit system was used for Test R1-5 and

Test LM 1-5. The new unit system uses 10 meters (10m) for length and kilo Newton (kN) for force. It is not

designed for practical use but merely for changing the value of matrix elements in a different way. The values

of model parameters with different unit system are shown in below:

Table 46: Model parameters by different unit systems

 Model 1-2 Model 3-5 All models

(kN, m) unit

system

(Default)

1l m= , 0.06t m= 12l m= , 0.06t m= , 2a m=

210 /p kN m= ,
7 221 10 /E kN m= 

71.26 10 /E t kN m = 
3 44.536 10 E t kNm = 

(N, mm) unit

system
1000l mm= , 60t mm=

12000l mm= , 60t mm= ,

2000a mm=

3 210 10 /p N mm−=  ,
4 221 10 /E N mm= 

71.26 10 /E t N mm = 
3 104.536 10 E t Nmm = 

(kN, 10m)

unit system
0.1 10l m= , 0.006 10t m=

1.2 10l m= , 0.006 10t m= ,

0.2 10a m=

2 210 10 /10p kN m= 
9 221 10 /10E kN m= 

81.26 10 /10E t kN m = 
3 34.536 10 10E t kN m− = 

For all unit

system

Shell curvature:

0xx yy xyk k k= = =

Lamé parameters:

,
1 1

x y
l l

m n
 = =

− −

In plane curvature:

0x yk k= =

Shell curvature:
1

0,xx xy yyk k k
a

= = = −

Lamé parameters:

,
1 1

x y
l a

m n


 


= =

− −

In plane curvature:

0x yk k= =

As shown in shell code sections (3.4, 3.5) the value of matrix elements is directly determined by value of

model parameters (length l , thickness t , radius a , Young's modulus E , load p). When adding S-K

equations, if there are components of first order derivative, the values of matrix element is determined by the

finite difference approximation where the Lamé parameters x and y are involved. Those elements take up

about 70% of total. Higher numerical value of length l leads higher numerical value of Lamé parameters

which means smaller values of matrix elements for the approximated derivative (see section 3.3). For some

components involving shell curvature higher numerical value of radius a leads to lower values of shell

curvature yyk which also contributes lower values of matrix elements. When adding constitutive equations

(see Table 1), the value of matrix elements is determined by E t and 3E t where Young's modulus E a and

thickness t are both involved. For other elements that are not involved with E t , 3E t , shell curvature yyk

and finite difference approximation, their values are remain unchanged regardless of unit systems.

As shown in above table, compared the default (kN, m) unit system, the (N, mm) unit system brings higher

values of length, thickness t and radius a and lower values of Young's modulus E and load p . It means under

64

(N, mm) unit system the elements of matrix [M] has lower value when they are produced by finite difference

approximation. The matrix [M] under (kN, 10m) unit system is the exact opposite where those elements have

higher value. While for the elements produced during adding constitutive equations, only a few of them has

higher values under (N, mm) unit system since E t is numerically equal to pervious one but 3E t is

dramatically higher. Under (kN, m) unit system, higher E t and lower 3E t makes some of these elements

have higher values and some have lower values. In summary, applying (N, mm) unit system can lead to the

majority of elements of matrix [M] has lower value and a few elements have higher values. Applying (kN,

10m) unit system means the opposite where majority of elements has higher value while a few elements have

lower values.

The deviation of Test R1-5 and Test LM1-5 results under new unit systems was calculated and compared

results with default unit system (see Figure 66, Figure 67, Figure 68, Figure 69, Figure 70). The data of new

test results can be found in Annex (Table 57, Table 58, Table 59, Table 60). In order to display the results in

details, only deviation between -100% and 100% is shown in those plots. Overall considered, no matter what

unit system is used, deviation of most of results is not reduced but increased. The deviation of Test LM1-5

results under new unit systems is considerably higher compared those under default unit system. The highest

deviation of Test LM1-5 under default unit system was below 100% but many new unit system results were

over that. It is also true for Test R1-5 where deviation of the most of new unit system results were over 100%.

The only exception is the results of Test R1 under (kN, 10m) unit system (see Figure 66). The deviation of

those results was lower than the default unit system results. In conclusion, no matter it makes matrix elements

have higher or lower values, applying new unit systems only cause more deviation in the most cases.

Figure 58: Deviation of model 1 results with different

unit systems

Figure 59: Deviation of model 2 results with different

unit systems

Figure 60: Deviation of model 3 results with different

unit systems

Figure 61: Deviation of model 4 results with different

unit systems

65

Figure 62: Deviation of model 5 results with different

unit systems

d) How do these factors work?

The factors discussed in above sections can be categized into two types: factors that alter the matrix (number

of nodes, difference approximated method, unit system), factors that alter the solving process (type of solver,

number of iterations). The number of nodes directly changes the size of the matrix, which dramatically altering

the quality of matrices. As shown in matrix quality section 5.2, sparsity, condition number, and rank number

of generated matrices show a strong correlation with the number of nodes. Regardless of type of model and

type of matrix, higher number of nodes increases the sparsity and condition number while rank number was

reduced. It indicates that the approximated solution of linear systems with higher number of nodes is more

possible to having large numerical errors, which has been reflected in shell code results. When applying

different the unit systems, the value of the most matrix elements has been reduced or magnified exponentially.

The altered matrix shows different properties (see Figure 71, Figure 72). Matrices were even more rank

deficient if a new unit system was used. Meanwhile the condition number of matrices was higher with new

unit systems. The only exception occurred for model 1 &2 where their condition number was lower when

using (N, mm) unit system. It could explain why only deviation of some model 1 and model 2 results was

lower under (N, mm) unit system while other results deviation was higher with new unit system.

Figure 63: Condition number of rectangular matrices

with different unit systems (m=n=15)

Figure 64: Percentage of rank number (%) of

rectangular matrices (A and A b  ) with different unit

systems (m=n=15)

Applying new difference approximation method also altered the matrices whose properties is shown in below

figures (Figure 73, Figure 74). The condition number of matrices with five-point approximation increased for

model 3-5 while decreased for model 1 & 2. These increases and decreases occur on a relatively small scale.

The rank number with five-point approximation has varied but also on a relatively small scale. Mathematically,

the inherent numerical error brought by two-point approximation is larger than that of five-point

approximation. If such error plays an important role in affecting deviation of results, the properties of matrices

are expected to be significantly altered by applying a new five-point approximation. However, such alteration

66

has not been found. It indicates that the finite difference approximation method does not have a significant

effect on the shell code results.

Figure 65: Condition number of rectangular matrices

with different approximation method (m=n=15)

Figure 66: Percentage of rank number (%) of

rectangular matrices (A and A b  ) with different

approximation method (m=n=15)

The most profound difference on shell code results was caused by the type of solver. However, due to the lack

of information on lm.fit.sparse solver, the specific details on how this solver has such an advantage still

remains unclear. The possible reason might relate to the sparse QR factorization in lm.fit.sparse solver and

the stopping rules in lsmr solver. As illustrated in 2.5 section, applying QR factorization to system matrix is a

necessary step for both lm.fit.sparse solver and lsmr solver. In normal QR factorization the system equation

A x b = is converted to
T T TR A b Q b− = where Q is orthonormal matrix and R is upper triangular matrix

and A Q R=  . The orthonormal matrix Q of an overdetermined sparse system cannot be found explicitly

which can adversely affect numerical precision of results. The computational error in this process is influenced

by the sparsity and size of the matrix. So that factorization of smaller matrices could have less computational

error than the factorization of entire matrix. The general strategy for sparse QR factorization is dividing A

into numbers of smaller matrices 1 KA . The factorization of those smaller matrices is computed individually

to the form the final result of factorization of A instead of applying factorization directly to a large sparse

overdetermined system as lmsr solver. So that compared to lsmr and pinv solver, lm.fit.sparse solver produces

results with much less deviation in overall. Like the number of iterations, the stopping rule of lsmr solver

could also adversely affect results. Three stopping rules mentioned in 2.5 section show that iteration will stop

when the residual of the final iteration is smaller than the stopping tolerance ATOL and BTOL . The default

stopping tolerance used in tests is 121 10ATOL BTOL −= =  which means relative error in A and b is

assumingly equal to this value. In order to show the effect of this factor, a series of new stopping tolerances

were used for Test R1&3 and Test SE1&3 and results are shown in below figures (Figure 75, Figure 76, Figure

77, Figure 78). It shows that default stopping tolerance does not guarantee a lower deviation for every result.

The deviation of displacement results even increases with lower stopping tolerance used. For model 3, the

deviation of shear force and bending moment results also grows as the stopping tolerance decreases. The

lowest deviation of results occurred at some point below default stopping tolerance and it is different for each

type of results. It indicates that the current default stopping tolerance is not the best setting to obtain the

accurate results. In conclusion, the sparse QR factorization reduces computational error in lm.fit.sparse solver

results and improper stop tolerance setting enlarge the error in lsmr solver results.

67

Figure 67: Tests on stopping tolerances in lsmr solver

for Test R1 (m=n=30)

Figure 68: Tests on stopping tolerances in lsmr solver

for Test R3 (m=n=30)

Figure 69: Tests on stopping tolerances in lsmr solver

for Test SE1 (m=n=30)

Figure 70: Tests on stopping tolerances in lsmr solver

for Test SE3 (m=n=30)

5.4 Simplicity of code structure

One of the objectives of this project is the being able to easily modify the code structure in order to change

applied shell theory. In common finite element software, applying a different theory generally means

switching the element type and user defined element usually is not allowed. Some sophisticate finite element

software can do that but require coding and mathematic knowledge. Compared to them, the advantage of shell

code is that it allows users to apply a new theory to models in a much straightforward manner.

In shell code, modifying shell theory equations can be achieved by directly deleting or adding code lines. For

example, if torsion behaviour of models is not considered while S-K equations is still wanted, it can be directly

achieved by muting the lines involving shear strain xy in the equation adding process. As shown in section

3.4, when adding equations to the models, each component of equation is added individually and of course

can be removed individually.

S-K equation 9 (remove xy):

()2 2 1

0
2

xy yx
xy

xy yx

n n Et

v

n n

+
= 

+

+
 =

for j in range(n): # Add Sanders-Koiter equation 9 to the

matrix -----------------------------

 for i in range(m):

 row=row+1

 M[row,nxy*m*n+j*m+i]=-0.5

 M[row,nyx*m*n+j*m+i]=-0.5

 # M[row,gammaxy*m*n+j*m+i]=k #muted

68

S-K equation 15 (remove xy):

2

0 2

yx
xy xy z x x y y

yx
xy z x x y y

uu
k u k u k u

y x

uu
k u k u k u

y x


 = + − − −

 


 = + − − −

 

for j in range(n): # Add Sanders-Koiter equation 15 to

the matrix -----------------------------

 for i in range(m):

 row=row+1

 # M[row,gammaxy*m*n+j*m+i]=-1 #muted

 D1y(ux,1.0)

 D1x(uy,1.0)

 M[row,uz*m*n+j*m+i]=-2*kxy(i/(m-1),j/(n-1))

 M[row,ux*m*n+j*m+i] +=-kx(i/(m-1),j/(n-1))

 M[row,uy*m*n+j*m+i] +=-ky(i/(m-1),j/(n-1))

The whole equation or entire set of equations can be modified like this. It is possible to replace the entire S-K

equations with another set of user-defined equations. Users are free to adopt their own theory to solve model

problems in the shell code.

5.5 Plate code and shell code

In the previously developed plate code (Li, 2020), three plate models have been tested whose results were

usually 10 to 20% lower than its analytical solution. The main conclusion was that it is possible to solve plate

equations by only applying first-order finite-difference approximation. The assumed computation error in

those results was suspected to be related to the programming error and solving method.

69

6. Conclusion
The goal of this project was to develop a workable algorithm that can solve shell model problems through the

finite difference method and understand how the results can be affected. The finite difference results were

compared to finite element solutions. The main conclusion is that the selected version of the algorithm

performs a relatively good analyses of the considered shell models. It produces displacement, shear force and

bending moment results for both the flat square shape and the canopy shape with various boundary conditions

and load conditions. This algorithm uses the lm.fit.sparse solver, an over-determined system of equations

(rectangular matrix) and a five-point interpolation (version B). About 80% of shell code results match the

finite element results with a deviation less than 5%.

Many factors have little influence on the computation results (displacement, membrane forces, moments, and

shear forces). Examples of these factors are the mathematic property of the matrix (determined or

overdetermined), the finite difference approximation method, and the unit system. The effect of those factors

has been investigated with sparsity, conditional number, and rank number of the matrices. Those matrix

quality checks have shown the non-uniform way of change in conditional number and rank number of matrices

when those factors were monotonically altered. There is not a clear relationship between those factors and

deviations of shell code results from corresponding tests. This means that obtaining the best results by altering

those factors could a very case-sensitive and time-consuming task.

Since in most cases the constructed matrices were ill-conditioned, the standard solver numpy.linalg.solve

(Python) was not used. Three solvers have been implemented and compared; numpy.linalg.lstsq (Python),

numpy.linalg.pinv (Python), lm.fit.sparse (R). The latter is able to compute the 50×50 grid, however, this

solver is not easy to implement. Unfortunately, the results strongly depend on settings in the solving steps

such as the number of iterations and stop tolerances (see pp 61, 66). With the help of sparse QR factorization,

the best shell code results were produced by the lm.fit.sparse solver. Some numpy.linalg.pinv solver results

can reach a similar level of numerical accuracy but it is more expensive in terms of time and memory usage.

The boundary conditions have been implemented by adding equations or by replacing equations. The former

leads to an over determined system the latter to a determined system of equations. There are no remarkable

differences in computation results between these systems.

The discretization has been implemented by three-point interpolation and by five-point interpolation. The five-

point interpolation type B produces very promising results (see pp. 33, 113). Sometimes an hourglass mode

occurs as a slight undulation on the results (see pp. 75, 77, 80). The undulation changes with more grid points

but does not disappear. The undulation is strongest for determined systems.

Through numbers of tests and discussions, one thing has been proved is that the selected version of shell code

can solve shell model problems by solving Sanders-Koiter equations with finite difference method. The

current best configuration of algorithm is using rectangular matrix which means describing boundary

conditions by adding equations instead of replacing them, and using a five-point interpolation for

discretization. Many previously assumed important factors for affecting shell code results were actually less

significant. During the process of exploring the possible reasons for numerical error in generated results, the

most tests are about changing the inputs of computation and they did not affect shell code significantly.

However, the most vital difference in results occurred under different computation methods. It is reasonable

to assume that there should be a more powerful mathematic tool for solving an overdetermined linear sparse

system. Maybe under further research of developing mathematic tools, finite difference method could be a

more promising and practical method for solving model problems.

70

7. Recommendation

As discussed in the above sections, the solving method should be a key part of further improvement of the

algorithm. The correct solver settings are essential for the quality of results. In the current shell code, matrix

quality checks and solver settings were manually set up in previous tests. It is possible to build an iterative

process so that the solver can automatically alter its setting. The deviation of shell code results will be checked

and work as a reference for altering solver settings in the next iteration until deviation results is within an

acceptable range. It could help to find the best solver settings for every case efficiently.

Another possible improvement is to find a new iterative solver, which can apply a vector of weights in the

fitting process. The stop rules of current iterative solvers used in shell code (lsmr and lm.fit.sparse) all consider

the residual
kr for the approximate solution kx . Once it meets the preset stop tolerance, the solver will stop

and give results. This residual is calculated as
k kr b Ax= − where all the rows of system matrix A are equally

involved. However, rows for equations describing boundary conditions are only accounted for less than 1%

of the whole matrix. This means the boundary conditions might be not satisfied as the residual is low enough

to meet the stop rules since the rest rows for S-K equations describing model body dominates the residual kr .

This might explain why distortion of results has been usually found on boundaries of model. This assumed

vector of weights could manually increase the weights of boundary condition equations in calculating the

residual so that when residual meets the stop rules the boundary conditions are satisfied.

71

8. Reference list
Amabili, M. (2003) ‘A comparison of shell theories for large-amplitude vibrations of circular cylindrical

shells: Lagrangian approach’, Journal of Sound and Vibration TA - TT -, 264(5), pp. 1091–1125. doi:

10.1016/S0022-460X(02)01385-8 LK - https://tudelft.on.worldcat.org/oclc/4924705977.

Assadi-Lamouki, A. and Krauthammer, T. (1989) ‘An explicit finite difference approach for the Mindlin

plate analysis’, Computers & structures. Elsevier, 31(4), pp. 487–494.

Bernoulli, J., J. (1789) ‘Essai theorique sur les vibrations de plaques elastiques rectangularies et libers’,

Nova Acta Acad Petropolis, 5, pp. 197–219.

Cauchy, A.-L. (1828) ‘Sur l’equilibre et le mouvement d’une plaque solide’, Exercises de Matematique,

3(1828), pp. 328–355.

Chladni, E. F. F. (1802) Die akustik. Breitkopf & Härtel.

Cline, A. K. et al. (1979) ‘An estimate for the condition number of a matrix’, SIAM Journal on Numerical

Analysis. SIAM, 16(2), pp. 368–375.

Davis, T. A., Rajamanickam, S. and Sid-Lakhdar, W. M. (2016) ‘A survey of direct methods for sparse

linear systems.’, Acta Numer., 25, pp. 383–566.

Euler, L. (1766) ‘De motu vibratorio tympanorum’, Novi commentarii academiae scientiarum

Petropolitanae, pp. 243–260.

Fernandez-Granda, C. (2016) DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science, New

York University. Available at: https://cds.nyu.edu/math-tools/.

Fong, D. C.-L. and Saunders, M. (2011) ‘LSMR: An iterative algorithm for sparse least-squares problems’,

SIAM Journal on Scientific Computing. SIAM, 33(5), pp. 2950–2971.

Germain, S. (1826) Remarques sur la nature, les bornes et l’étendue de la question des surfaces élastiques,

et équation générale de ces surfaces. Huzard-Courcier.

Johnson, C. R. and Horn, R. A. (1985) Matrix analysis. Cambridge university press Cambridge.

Kirchhoff, G. (1850) Über das Gleichgewicht und die Bewegung einer elastischen Scheibe.

Koiter, W. T. and Delft University of Technology, D. of M. E. L. of E. M. (1966) Purpose and achievements

of research in elastic stability., Report Department of Mechanical Engineering, Delft University of

Technology ; 363 TA - TT -. Delft SE - 29 blz. ; .. cm.: Delft University of Technology. Available at:

https://tudelft.on.worldcat.org/oclc/841152853.

Lagrange, J. L. (1828) ‘Note communiquée aux Commissaires pour le prix de la surface élastique décembre

1811’, Ann. Chimie Physique, 39(149151), p. 1828.

Li, C. (2020) Finite difference analysis of plate structures. Delft University of Technology. Available at:

http://homepage.tudelft.nl/p3r3s/BSc_projects/eindrapport_chulong_li.pdf.

Love, A. (1892) ‘A treatise on the mathematical theory of elasticity’.

Marcus, H. (1932) Die Theorie elastischer Gewebe und ihre Anwendung auf die Berechnung biegsamer

Platten. Springer.

Navier, C. (1823) ‘Bulletin des Sciences de la Societe Philomathique de Paris’. Paris.

O’Connor, D. (1985) ‘Report on the Dublin matrix theory conference, March 1984: An introduction to

sparse matrices’, Linear Algebra and its Applications. North-Holland, 68, pp. 271–272.

Paige, C. C. and Saunders, M. A. (1982) ‘LSQR: An algorithm for sparse linear equations and sparse least

squares’, ACM Transactions on Mathematical Software (TOMS). ACM New York, NY, USA, 8(1), pp. 43–

71.

Penrose, R. (1955) ‘A generalized inverse for matrices’, in Mathematical proceedings of the Cambridge

philosophical society. Cambridge University Press, pp. 406–413.

Poisson, S.-D. (1828) Mémoire sur l’équilibre et le mouvement des corps élastiques. F. Didot.

Reddy, J. N. and Gera, R. (1979) ‘An improved finite-difference analysis of bending of thin rectangular

elastic plates’, Computers and Structures, 10(3), pp. 431–438. doi: 10.1016/0045-7949(79)90018-X.

Reissner, E. (1941) ‘A new derivation of the equations for the deformation of elastic shells’, American

Journal of Mathematics. JSTOR, 63(1), pp. 177–184.

Sanders, J. L. (1960) An improved first-approximation theory for thin shells. US Government Printing

Office.

Sanders, J. L. (1963) ‘Nonlinear theories for thin shells’, Quarterly of Applied Mathematics, 21(1), pp. 21–

36. doi: 10.1090/qam/147023.

72

Sanders Jr, J. L. (1967) ‘On the shell equations in complex form’.

Svoboda, J., Cashman, T. and Fitzgibbon, A. (2018) ‘QRkit: Sparse, Composable QR Decompositions for

Efficient and Stable Solutions to Problems in Computer Vision’, in 2018 IEEE Winter Conference on

Applications of Computer Vision (WACV). IEEE, pp. 1263–1272.

Szilard, R. T. A.-T. T.- (1974) ‘Theories and Applications of Plate Analysis : Classical Numerical and

Engineering Methods’. Hoboken: Wiley [Imprint]. Available at:

http://onlinelibrary.wiley.com/book/10.1002/9780470172872.

Thomée, V. (2001) ‘From finite differences to finite elements. A short history of numerical analysis of

partial differential equations’, Journal of Computational and Applied Mathematics, 128(1–2), pp. 1–54. doi:

10.1016/S0377-0427(00)00507-0.

Timoshenko, S. (1913) Sur la stabilité des systèmes élastiques. A. Dumas.

Timoshenko, S. P. (1915) ‘On large deflections of circular plates’, Mem Inst Ways Commun, 89.

Timoshenko, S. P. and Woinowsky-Krieger, S. (1959) Theory of plates and shells. McGraw-hill.

Trefethen, L. N. and Bau III, D. (1997) Numerical linear algebra. Siam.

Ventsel, E. and Krauthammer, T. T. A.-T. T.- (2001) ‘Thin plates and shells : theory, analysis, and

applications’. New York: Marcel Dekker. doi: 10.1201/9780203908723 LK -

https://tudelft.on.worldcat.org/oclc/54351771.

73

9. Appendix

Rectangular matrix test plots

Test R1, three-point interpolation, flat square, vertical loading, rectangular matrix

m=n=50 m=n=30 m=n=20

Figure 71: Test R1 displacement uz results (m=n=20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 72: Test R1 bending moment mxx results (m=n=20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 73: Test R1 shear force vx results (m=n=20, 30, 50)

Test R2, three-point interpolation, flat square, vertical loading, rectangular matrix

m=n=50 m=n=30 m=n=20

Figure 74: Test R2 displacement uz results (m=n=20, 30, 50)

74

m=n=50 m=n=30 m=n=20

Figure 75: Test R2 bending moment mxx results (m=n=20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 76: Test R2 shear force vx results (m=n=20, 30, 50)

a) Test R3, three-point interpolation, canopy, vertical loading, rectangular matrix

m=n=50 m=n=30

Figure 77: Test R3 displacement uz results (m=n=20, 30, 50)

m=n=50 m=n=30

Figure 78: Test R3 bending moment mxx results (m=n=20, 30, 50)

75

m=n=50 m=n=30

Figure 79: Test R3 shear force vx results (m=n=20, 30, 50)

b) Test R4, three-point interpolation, canopy, vertical loading, rectangular matrix

m=n=50 m=n=30

Figure 80: Test R4 displacement uz results (m=n=20, 30, 50)

m=n=50 m=n=30

Figure 81: Test R4 bending moment mxx results (m=n=20, 30, 50)

m=n=50 m=n=30

Figure 82: Test R4 shear force vx results (m=n=20, 30, 50)

76

c) R5, three-point interpolation, canopy, normal loading, rectangular matrix

m=n=50 m=n=30

Figure 83: Test R5 displacement uz results (m=n=20, 30, 50)

m=n=50 m=n=30

Figure 84: Test R5 bending moment mxx results (m=n=20, 30, 50)

m=n=50 m=n=30

Figure 85: Test R5 shear force vx results (m=n=20, 30, 50)

Square matrix test plots

Test SC1, three point interpolation, flat square, vertical loading, square matrix

m=n=50 m=n=30

Figure 86: Test SC1 displacement uz results (m=n= 30, 50)

77

m=n=50 m=n=30

Figure 87: Test SC1 bending moment mxx results (m=n=30, 50)

m=n=50 m=n=30

Figure 88: Test SC1 shear force vx results (m=n=30, 50)

Test SC2, three point interpolation, flat square, vertical loading, square matrix

m=n=50 m=n=30

Figure 89: Test SC2 displacement uz results (m=n=30, 50)

m=n=50 m=n=30

Figure 90: Test SC2 bending moment mxx results (m=n=30, 50)

78

m=n=50 m=n=30

Figure 91: Test SC2 shear force vx results (m=n= 30, 50)

Test SC3, three-point interpolation, canopy, vertical loading, square matrix

m=n=50 m=n=30

Figure 92: Test SC3 displacement uz results (m=n=20, 30, 50)

m=n=50 m=n=30

Figure 93: Test SC3 bending moment mxx results (m=n=20, 30, 50)

m=n=50 m=n=30

Figure 94: Test SC3 shear force vx results (m=n=20, 30, 50)

79

Test SC4, three-point interpolation, canopy, vertical loading, square matrix

m=n=50 m=n=30

Figure 95: Test SC4 displacement uz results (m=n=20, 30, 50)

m=n=50 m=n=30

Figure 96: Test SC4 bending moment mxx results (m=n=20, 30, 50)

m=n=50 m=n=30

Figure 97: Test SC4 shear force vx results (m=n=20, 30, 50)

Test SC5, three-point interpolation, canopy, normal loading, square matrix

m=n=50 m=n=30

Figure 98: Test SC5 displacement uz results (m=n=20, 30, 50)

80

m=n=50 m=n=30

Figure 99: Test SC5 bending moment mxx results (m=n=20, 30, 50)

m=n=50 m=n=30

Figure 100: Test SC5 shear force vx results (m=n=20, 30, 50)

Square matrix test plots

Test SC1, three-point interpolation, flat square, vertical loading, square matrix

m=n=50 m=n=30

Figure 101: Test SC1 displacement uz results (m=n= 30, 50)

m=n=50 m=n=30

Figure 102: Test SC1 bending moment mxx results (m=n=30, 50)

81

m=n=50 m=n=30

Figure 103: Test SC1 shear force vx results (m=n=30, 50)

Test SC2, three-point interpolation, flat square, vertical loading, square matrix

m=n=50 m=n=30

Figure 104: Test SC2 displacement uz results (m=n=30, 50)

m=n=50 m=n=30

Figure 105: Test SC2 bending moment mxx results (m=n=30, 50)

m=n=50 m=n=30

Figure 106: Test SC2 shear force vx results (m=n= 30, 50)

82

Test SC3, three-point interpolation, canopy, vertical loading, square matrix

m=n=50 m=n=30

Figure 107: Test SC3 displacement uz results (m=n=20, 30, 50)

m=n=50 m=n=30

Figure 108: Test SC3 bending moment mxx results (m=n=20, 30, 50)

m=n=50 m=n=30

Figure 109: Test SC3 shear force vx results (m=n=20, 30, 50)

Test SC4, three-point interpolation, canopy, vertical loading, square matrix

m=n=50 m=n=30

Figure 110: Test SC4 displacement uz results (m=n=20, 30, 50)

83

m=n=50 m=n=30

Figure 111: Test SC4 bending moment mxx results (m=n=20, 30, 50)

m=n=50 m=n=30

Figure 112: Test SC4 shear force vx results (m=n=20, 30, 50)

Test SC5, three-point interpolation, canopy, normal loading, square matrix

m=n=50 m=n=30

Figure 113: Test SC5 displacement uz results (m=n=20, 30, 50)

m=n=50 m=n=30

Figure 114: Test SC5 bending moment mxx results (m=n=20, 30, 50)

84

m=n=50 m=n=30

Figure 115: Test SC5 shear force vx results (m=n=20, 30, 50)

Test SU1, three-point interpolation, canopy, vertical loading, square matrix

m=n=50 m=n=30 m=n=20

Figure 116: Test SU1 displacement uz results (m=n=20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 117: Test SU1 bending moment mxx results (m=n=20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 118: Test SU1 shear force vx results (m=n=20, 30, 50)

85

Test SU2, three-point interpolation, flat square, vertical loading, square matrix

m=n=50 m=n=30 m=n=20

Figure 119: Test SU2 displacement uz results (m=n=20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 120: Test SU2 bending moment mxx results (m=n=20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 121: Test SU2 shear force vx results (m=n=20, 30, 50)

Test SU3, three-point interpolation, canopy, vertical loading, square matrix

m=n=50 m=n=30

Figure 122: Test SU3 displacement uz results (m=n= 30, 50)

86

m=n=50 m=n=30

Figure 123: Test SU3 bending moment mxx results (m=n=30, 50)

m=n=50 m=n=30

Figure 124: Test SU3 shear force vx results (m=n=30, 50)

Test SU4, three-point interpolation, canopy, vertical loading, square matrix

m=n=50 m=n=30

Figure 125: Test SU4 displacement uz results (m=n=30, 50)

m=n=50 m=n=30

Figure 126: Test SU4 bending moment mxx results (m=n=30, 50)

87

m=n=50 m=n=30

Figure 127: Test SU4 shear force vx results (m=n= 30, 50)

Test SU5, three-point interpolation, canopy, normal loading, square matrix

m=n=50 m=n=30

Figure 128: Test SU5 displacement uz results (m=n=30, 50)

m=n=50 m=n=30

Figure 129: Test SU5 bending moment mxx results (m=n=30, 50)

m=n=50 m=n=30

Figure 130: Test SU5 shear force vx results (m=n= 30, 50)

88

Test SE1, three-point interpolation, flat square, vertical loading, square matrix

m=n=50 m=n=30 m=n=20

Figure 131: Test SU1 displacement uz results (m=n=20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 132: Test SU1 bending moment mxx results (m=n=20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 133: Test SE1 shear force vx results (m=n=20, 30, 50)

Test SE2, three-point interpolation, flat square, vertical loading, square matrix

m=n=50 m=n=30 m=n=20

Figure 134: Test SE2 displacement uz results (m=n=20, 30, 50)

89

m=n=50 m=n=30 m=n=20

Figure 135: Test SE2 bending moment mxx results (m=n=20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 136: Test SE2 shear force vx results (m=n=20, 30, 50)

Test SE3, three-point interpolation, canopy, vertical loading, square matrix

m=n=50 m=n=30

Figure 137: Test SE3 displacement uz results (m=n= 30, 50)

m=n=50 m=n=30

Figure 138: Test SE3 bending moment mxx results (m=n=30, 50)

90

m=n=50 m=n=30

Figure 139: Test SE3 shear force vx results (m=n=30, 50)

Test SE4, three-point interpolation, canopy, vertical loading, square matrix

m=n=50 m=n=30

Figure 140: Test SE4 displacement uz results (m=n=30, 50)

m=n=50 m=n=30

Figure 141: Test SE4 bending moment mxx results (m=n=30, 50)

m=n=50 m=n=30

Figure 142: Test SE4 shear force vx results (m=n= 30, 50)

91

Test SE5, three-point interpolation, canopy, normal loading, square matrix

m=n=50 m=n=30

Figure 143: Test SE5 displacement uz results (m=n=30, 50)

m=n=50 m=n=30

Figure 144: Test SE5 bending moment mxx results (m=n=30, 50)

m=n=50 m=n=30

Figure 145: Test SE5 shear force vx results (m=n= 30, 50)

Solver test results

Test P1, three-point interpolation, flat square, vertical loading, rectangular matrix

m=n=20 m=n=10

Figure 146: Test P1displacement uz results (m=n=10, 20)

92

m=n=20 m=n=10

Figure 147: Test P1 bending moment mxx results (m=n=10, 20)

m=n=20 m=n=10

Figure 148: Test P1 shear force vx results (m=n=10, 20)

Test P2, three-point interpolation, flat square, vertical loading, rectangular matrix

m=n=20 m=n=10

Figure 149: Test P2 displacement uz results (m=n=10, 20)

m=n=20 m=n=10
Figure 150: Test P2 bending moment mxx results (m=n=10, 20)

93

m=n=20 m=n=10
Figure 151: Test P2 shear force vx results (m=n=10, 20)

Test P3, three-point interpolation, canopy, vertical loading, rectangular matrix

m=n=20 m=n=10

Figure 152: Test P3 displacement uz results (m=n=10, 20)

m=n=20 m=n=10
Figure 153: Test P3 bending moment mxx results (m=n=10, 20)

m=n=20 m=n=10
Figure 154: Test P3 shear force vx results (m=n=10, 20)

Test P4, three-point interpolation, canopy, vertical loading, rectangular matrix

m=n=20 m=n=10

Figure 155: Test P4 displacement uz results (m=n=10, 20)

94

m=n=20 m=n=10

Figure 156: Test P4 bending moment mxx results (m=n=10, 20)

m=n=20 m=n=10

Figure 157: Test P4 shear force vx results (m=n=10, 20)

Test P5, three-point interpolation, canopy, normal loading, rectangular matrix

m=n=20 m=n=10

Figure 158: Test P5 displacement uz results (m=n=10, 20, 30)

m=n=20 m=n=10

Figure 159: Test P5 bending moment mxx results (m=n=10, 20)

95

m=n=20 m=n=10

Figure 160: Test P5 shear force vx results (m=n=10, 20)

Test LM1, three-point interpolation, flat square, vertical loading, rectangular matrix

m=n=50 m=n=30 m=n=20

Figure 161: Test LM1 displacement uz results (m=n= 20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 162: Test LM1 bending moment mxx results (m=n= 20, 30, 50)

Ll;,.`

m=n=50 m=n=30 m=n=20
Figure 163: Test LM1 shear force vx results (m=n=20, 30, 50)

96

Test LM2, three-point interpolation, flat square, vertical loading, rectangular matrix

m=n=50 m=n=30 m=n=20

Figure 164: Test LM2 displacement uz results (m=n=20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 165: Test LM2 bending moment mxx results (m=n=20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 166: Test LM2 shear force vx results (m=n=20, 30, 50)

Test LM3, three-point interpolation, canopy, vertical loading, rectangular matrix

m=n=50 m=n=30

Figure 167: Test LM3 displacement uz results (m=n=30, 50)

97

m=n=50 m=n=30

Figure 168: Test LM3 bending moment mxx results (m=n=30, 50)

m=n=50 m=n=30

Figure 169: Test LM3 bending moment vx results (m=n=30, 50)

Test LM4, three-point interpolation, canopy, vertical loading, rectangular matrix

m=n=50 m=n=30

Figure 170: Test LM4 displacement uz results (m=n=30, 50)

m=n=50 m=n=30

Figure 171: Test LM4 bending moment mxx results (m=n=30, 50)

98

m=n=50 m=n=30

Figure 172: Test LM4 bending moment vx results (m=n=30, 50)

Test LM5, three-point interpolation, canopy, normal loading, rectangular matrix

m=n=50 m=n=30

Figure 173: Test LM5 displacement uz results (m=n=30, 50)

m=n=50 m=n=30

Figure 174: Test LM5 bending moment mxx results (m=n=30, 50)

m=n=50 m=n=30

Figure 175: Test LM5 shear force vx results (m=n=30, 50)

99

Test SLM1, three-point interpolation, flat square, vertical loading, square matrix

m=n=50 m=n=30 m=n=20

Figure 176: Test SLM1 displacement uz results (m=n=20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 177: Test SLM1 bending moment mxx results (m=n=20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 178: Test SLM1 shear force vx results (m=n=20, 30, 50)

Test SLM2, three-point interpolation, flat square, vertical loading, square matrix

m=n=50 m=n=30 m=n=20

Figure 179: Test SLM2 displacement uz results (m=n=20, 30, 50)

100

m=n=50 m=n=30 m=n=20

Figure 180: Test SLM2 bending moment mxx results (m=n=20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 181: Test SLM2 shear force vx results (m=n=20, 30, 50)

Test SLM3, three-point interpolation, canopy, vertical loading, square matrix

m=n=50 m=n=30

Figure 182: Test SLM3 displacement uz results (m=n=30, 50)

m=n=50 m=n=30

Figure 183: Test SLM3 bending moment mxx results (m=n=30, 50)

101

m=n=50 m=n=30

Figure 184: Test SLM3 bending moment vx results (m=n=30, 50)

Test SLM4, three-point interpolation, canopy, vertical loading, square matrix

m=n=50 m=n=30

Figure 185: Test SLM4 displacement uz results (m=n=30, 50)

m=n=50 m=n=30

Figure 186: Test SLM4 bending moment mxx results (m=n=30, 50)

m=n=50 m=n=30

Figure 187: Test SLM 4 bending moment vx results (m=n=30, 50)

Test SLM5, three-point interpolation, canopy, normal loading, square matrix

102

m=n=50 m=n=30

Figure 188: Test SLM5 displacement uz results (m=n=30, 50)

m=n=50 m=n=30

Figure 189: Test SLM5 bending moment mxx results (m=n=30, 50)

m=n=50 m=n=30

Figure 190: Test LM5 shear force vx results (m=n=30, 50)

Five-point difference approximation test plots

Test ALM1, five point interpolation, type A, flat square, vertical loading, rectangular matrix

m=n=50 m=n=30 m=n=20

Figure 191: Test ALM1 displacement uz results (m=n= 20, 30, 50)

103

m=n=50 m=n=30 m=n=20

Figure 192: Test ALM1 bending moment mxx results (m=n= 20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 193: Test ALM1 shear force vx results (m=n=20, 30, 50)

Test ALM2, five point interpolation, type A, flat square, vertical loading, rectangular matrix

m=n=50 m=n=30 m=n=20

Figure 194: Test ALM2 displacement uz results (m=n=20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 195: Test ALM2 bending moment mxx results (m=n=20, 30, 50)

104

m=n=50 m=n=30 m=n=20

Figure 196: Test ALM2 shear force vx results (m=n=20, 30, 50)

Test ALM3, five point interpolation, type A, canopy, vertical loading, rectangular matrix

m=n=50 m=n=30

Figure 197: Test ALM3 displacement uz results (m=n=30, 50)

m=n=50 m=n=30

Figure 198: Test ALM3 bending moment mxx results (m=n=30, 50)

m=n=50 m=n=30

Figure 199: Test ALM3 bending moment vx results (m=n=30, 50)

Test ALM4, five point interpolation, type A, canopy, vertical loading, rectangular matrix

105

m=n=50 m=n=30

Figure 200: Test ALM4 displacement uz results (m=n=30, 50)

m=n=50 m=n=30

Figure 201: Test ALM4 bending moment mxx results (m=n=30, 50)

m=n=50 m=n=30

Figure 202: Test ALM4 bending moment vx results (m=n=30, 50)

Test ALM5, five point interpolation, type A, canopy, normal loading, rectangular matrix

 b

m=n=50 m=n=30
Figure 203: Test ALM5 displacement uz results (m=n=30, 50)

106

m=n=50 m=n=30

Figure 204: Test ALM5 bending moment mxx results (m=n=30, 50)

m=n=50 m=n=30

Figure 205: Test ALM5 shear force vx results (m=n=30, 50)

Test BLM1, five point interpolation, type B, flat square, vertical loading, rectangular matrix

m=n=50 m=n=30 m=n=20

Figure 206: Test BLM1 displacement uz results (m=n= 20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 207: Test BLM1 bending moment mxx results (m=n= 20, 30, 50)

107

m=n=50 m=n=30 m=n=20

Figure 208: Test BLM1 shear force vx results (m=n=20, 30, 50)

Test BLM2, five point interpolation, type B, flat square, vertical loading, rectangular matrix

m=n=50 m=n=30 m=n=20

Figure 209: Test BLM2 displacement uz results (m=n=20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 210: Test BLM2 bending moment mxx results (m=n=20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 211: Test BLM2 shear force vx results (m=n=20, 30, 50)

Test BLM3, five point interpolation, type B, canopy, vertical loading, rectangular matrix

108

m=n=50 m=n=30

Figure 212: Test BLM3 displacement uz results (m=n=30, 50)

m=n=50 m=n=30

Figure 213: Test BLM3 bending moment mxx results (m=n=30, 50)

m=n=50 m=n=30

Figure 214: Test BLM3 bending moment vx results (m=n=30, 50)

Test BLM4, five point interpolation, type B, canopy, vertical loading, rectangular matrix

m=n=50 m=n=30

Figure 215: Test BLM4 displacement uz results (m=n=30, 50)

109

m=n=50 m=n=30

Figure 216: Test BLM4 bending moment mxx results (m=n=30, 50)

m=n=50 m=n=30

Figure 217: Test BLM4 bending moment vx results (m=n=30, 50)

Test BLM5, five point interpolation, type B, canopy,normal loading, rectangular matrix

m=n=50 m=n=30

Figure 218: Test BLM5 displacement uz results (m=n=30, 50)

m=n=50 m=n=30

Figure 219: Test BLM5 bending moment mxx results (m=n=30, 50)

110

m=n=50 m=n=30

Figure 220: Test BLM5 shear force vx results (m=n=30, 50)

Test AR1, five point interpolation, type A, flat square, vertical loading, rectangular matrix

m=n=50 m=n=30 m=n=20

Figure 221: Test AR1 displacement uz results (m=n= 20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 222: Test AR1 bending moment mxx results (m=n= 20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 223: Test AR1 shear force vx results (m=n=20, 30, 50)

111

Test AR2, five point interpolation, type A, flat square, vertical loading, rectangular matrix

m=n=50 m=n=30 m=n=20

Figure 224: Test AR2 displacement uz results (m=n=20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 225: Test AR2 bending moment mxx results (m=n=20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 226: Test AR2 shear force vx results (m=n=20, 30, 50)

Test AR3, five point interpolation, type A, canopy, vertical loading, rectangular matrix

m=n=50 m=n=30

Figure 227: Test AR3 displacement uz results (m=n=30, 50)

112

m=n=50 m=n=30

Figure 228: Test AR3 bending moment mxx results (m=n=30, 50)

m=n=50 m=n=30

Figure 229: Test AR3 bending moment vx results (m=n=30, 50)

Test AR4, five point interpolation, type A, canopy, vertical loading, rectangular matrix

m=n=50 m=n=30

Figure 230: Test AR4 displacement uz results (m=n=30, 50)

m=n=50 m=n=30

Figure 231: Test AR4 bending moment mxx results (m=n=30, 50)

113

m=n=50 m=n=30

Figure 232: Test AR4 bending moment vx results (m=n=30, 50)

Test AR5, five point interpolation, type A, canopy, normal loading, rectangular matrix

m=n=50 m=n=30

Figure 233: Test AR5 displacement uz results (m=n=30, 50)

m=n=50 m=n=30

Figure 234: Test AR5 bending moment mxx results (m=n=30, 50)

m=n=50 m=n=30

Figure 235: Test AR5 shear force vx results (m=n=30, 50)

114

Test BR1, five point interpolation, type B, flat square, veritcal loading, rectangular matrix

m=n=50 m=n=30 m=n=20

Figure 236: Test BR1 displacement uz results (m=n= 20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 237: Test BR1 bending moment mxx results (m=n= 20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 238: Test BR1 shear force vx results (m=n=20, 30, 50)

Test BR2, five point interpolation, type B, flat square, veritcal loading, rectangular matrix

m=n=50 m=n=30 m=n=20

Figure 239: Test BR2 displacement uz results (m=n=20, 30, 50)

115

m=n=50 m=n=30 m=n=20

Figure 240: Test BR2 bending moment mxx results (m=n=20, 30, 50)

m=n=50 m=n=30 m=n=20

Figure 241: Test BR2 shear force vx results (m=n=20, 30, 50)

Test BR3, five point interpolation, type B, canopy, normal loading, rectangular matrix

m=n=50 m=n=30

Figure 242: Test BR3 displacement uz results (m=n=30, 50)

m=n=50 m=n=30

Figure 243: Test BR3 bending moment mxx results (m=n=30, 50)

116

m=n=50 m=n=30

Figure 244: Test BR3 bending moment vx results (m=n=30, 50)

Test BR4, five point interpolation, type B, canopy, vertical loading, rectangular matrix

m=n=50 m=n=30

Figure 245: Test BR4 displacement uz results (m=n=30, 50)

m=n=50 m=n=30

Figure 246: Test BR4 bending moment mxx results (m=n=30, 50)

m=n=50 m=n=30

Figure 247: Test BR4 bending moment vx results (m=n=30, 50)

Test BR5, five point interpolation, type B, canopy, normal loading, rectangular matrix

117

m=n=50 m=n=30

Figure 248: Test BR5 displacement uz results (m=n=30, 50)

m=n=50 m=n=30

Figure 249: Test BR5 bending moment mxx results (m=n=30, 50)

m=n=50 m=n=30

Figure 250: Test BR5 shear force vx results (m=n=30, 50)

Matrix quality check

Table 51: Sparsity of rectangular matrices

Number

of nodes
Matrix size Model 1 Model 2 Model 3 Model 4 Model 5

20*20 400*8708 99.99675% 99.99675% 99.99699% 99.99700% 99.99700%

30*30 18900*19360 99.99854% 99.99854% 99.99864% 99.99865% 99.99865%

50*50 52500*53288 99.99947% 99.99947% 99.99951% 99.99951% 99.99951%

Table 52: Sparsity of square matrices

Number

of nodes
Matrix size Model 1 Model 2 Model 3 Model 4 Model 5

20*20 400*8708 99.99675% 99.99675% 99.99699% 99.99700% 99.99700%

30*30 18900*19360 99.99854% 99.99854% 99.99864% 99.99865% 99.99865%

50*50 52500*53288 99.99947% 99.99947% 99.99951% 99.99951% 99.99951%

Table 53: Condition number of rectangular matrices

Number

of nodes
Matrix size Model 1 Model 2 Model 3 Model 4 Model 5

10*10 2100*2240 4.197e+16 2.887e+16 1.256e+16 6.458e+15 6.458e+15

118

12*12 3024*3204 5.739e+16 3.804e+16 1.785e+16 9.142e+16 9.1428e+15

15*15 4725*4953 8.69E+16 6.05E+16 3.04E+16 1.71E+16 1.71E+16

Table 54: Condition number of square matrices

Number

of nodes
Matrix size Model 1 Model 2 Model 3 Model 4 Model 5

10*10 2100*2100 3.809e+16 2.398e+16 3.851e+16 1.463e+16 1.463e+16

12*12 3024*3024 4.386e+16 3.424e+16 5.560e+16 1.966e+16 1.966e+16

15*15 4725*4725 6.83E+16 5.59E+16 7.60E+16 3.96E+16 3.96E+16

Table 55: Rank number of rectangular matrices

Number

of nodes
Matrix size Model 1 Model 2 Model 3 Model 4 Model 5

10*10 2100*2240 1930 1998 2040 2083 2083

12*12 3024*3204 2761 2840 2919 2973 2973

15*15 4725*4953 4293 4394 4533 4613 4613

Table 56: Rank number of square matrices

Number

of nodes
Matrix size Model 1 Model 2 Model 3 Model 4 Model 5

10*10 2100*2100 1831 1968 1958 2054 2054

12*12 3024*3024 2639 2796 2816 2943 2943

15*15 4725*4725 4133 4334 4406 4569 4569

Discussion on number of iterations

Table 57: Deviation of Test R1 results by increasing number of iterations (m=n=20)
Number of

iterations
8400*0.01 8400*0.1 8400*0.2 8400*0.5 8400 8400*2 8400*5 8400*10 8400*100

uz (%) -80.43 -23.02 -30.74 -30.36 -30.04 -28.88 -24.33 -0.58 -0.77

mxx (%) -31.15 -45.41 -15.59 -17.92 -17.58 -16.8 -13.93 -1.04 -1.1

vx (%) -2.69 -2.74 -2.8 -2.79 -2.75 -2.65 -2.26 -2.3 -0.31

Table 58: Deviation of Test R3 results by increasing number of iterations (m=n=20)
Number of

iterations
8400*0.01 8400*0.1 8400*0.2 8400*0.5 8400 8400*2 8400*5 8400*10 8400*100

uz (%) 291.42 1268.85 1402.11 1111.91 457.65 394.1 251.92 218.78 219.98

mxx (%) 1116.95 2544.8 2544.5 2484.44 1485.23 1413.49 978.81 785.59 194.43

vx (%) 372.75 531.91 531.88 465.89 328.5 294.73 219.74 174.21 -3.52

Table 59: Deviation of Test SE1 results by increasing number of iterations (m=n=20)

Number of

iterations
8400*0.01 8400*0.1 8400*0.2 8400*0.5 8400 8400*2 8400*5 8400*10 8400*100

uz (%) -81.72 -29.88 -31.3 -35.71 -34.09 -29.12 -25.2 -23.17 -1.09

mxx (%) -29.86 -43.79 -43.79 -19.15 -20.89 -16.76 -14.68 -13.47 -1.28

vx (%) -9.37 -8.93 -8.93 -8.46 -7.91 -5.89 -4.94 -4.23 -2.62

Table 60: Deviation of Test SE3 results by increasing number of iterations (m=n=20)

Number of

iterations
8400*0.01 8400*0.1 8400*0.2 8400*0.5 8400 8400*2 8400*5 8400*10 8400*100

uz (%) -66.48 1364.72 1473.82 1470.87 844.86 450.33 235.25 232.59 215.72

mxx (%) 195.46 349.78 349.54 349.54 295.72 185.47 112.73 232.59 -48.07

vx (%) 196.8 313.6 313.58 313.56 246.16 188.37 142.86 132.66 -16.04

119

Discussion on unit system

Table 61: Deviation of Test R1-5 results by new unit systems (N, mm)

 Number of nodes Model 1 Model 2 Model 3 Model 4 Model 5

Displacement (m)

20*20 -48.51% -98.15%

30*30 -34.39% -99.37% -75.95% -99.67% -99.87%

50*50 -97.59% -99.72% -78.16% -99.77% -99.91%

Bending moment (kNm/m)

20*20 -66.27% -97.97%

30*30 -69.74% -98.50% -97.83% -99.63% -99.92%

50*50 -89.42% -98.90% -98.27% -99.71% -99.89%

Shear force (kN/m)
20*20 198.67% -85.05%

30*30 375.13% -84.11% -87.47% -96.60% -98.67%

50*50 146.14% -81.11% -90.00% -96.99% -97.57%

Table 62: Deviation of Test LM1-5 results by new unit systems (N, mm)

 Number of nodes Model 1 Model 2 Model 3 Model 4 Model 5

Displacement (m)

20*20 -0.76% -0.09%

30*30 -0.32% -0.05% -15.34% -37.09% 14.76%

50*50 -0.11% -0.02% -11.91% -37.03% 27.10%

Bending moment (kNm/m)

20*20 -1.08% 1.69%

30*30 -0.38% 0.62% 270.58% 322.73% 168.03%

50*50 -0.02% 0.11% 49.89% 228.76% 170.82%

Shear force (kN/m)
20*20 -0.41% 74.44%

30*30 -0.05% 256.73% 89.18% 84.83% 14.73%

50*50 0.13% 639.12% 23.96% 65.69% 41.51%

Table 63: Deviation of Test R1-5 results by new unit systems (KN, 10m)

 Number of nodes Model 1 Model 2 Model 3 Model 4 Model 5

Displacement (m)

20*20 -30.32% -60%

30*30 -33.74% -53.09% 71950.46% 153287.15% 71051.63%

50*50 -36.66% -38.84% 71210.84% 125441% 67532.01%

Bending moment (kNm/m)

20*20 -17.58% 251.83%

30*30 -19.27% 315.03% 25888.83% 24437.23% 7744.13%

50*50 -20.65% 398.61% 23656.46% 27326.24% 8840.20%

Shear force (kN/m)
20*20 -2.92% -81.81%

30*30 -1.68% -81.58% 766.57% 276.72% 89.10%

50*50 -0.85% -76.64% 781.53% 300.93% 103.48%

Table 64: Deviation of Test LM1-5 results by new unit systems (KN, 10m)

 Number of nodes Model 1 Model 2 Model 3 Model 4 Model 5

Displacement (m)

20*20 6.77% 5.97%

30*30 0.56% 4.58% -16.54% -31.57% 41.60%

50*50 -0.28% 1.69% -12.91% -32.08 40.15%

Bending moment (kNm/m)

20*20 2.97% -2.73%

30*30 0.12% -2.30% -9.03% -71.15% -50.72%

50*50 -0.12% 7.02% -2.15% -63.75 -26.17%

Shear force (kN/m)
20*20 0.04% -43.57%

30*30 1.64% -35.13% -86.75% -96.30% -91.75%

50*50 -2.30% -12.91% -82.70% -92.23 -81.55%

